
Community configuration
Letting communities take control
by JSON configuration
Martin Urbanec, Jon Harald Søby

Wikimedia Hackathon 2023

May 20, 2023

https://s.wmcr.cz/wmhack23-community-config

Agenda

1. What Community
configuration is?

2. Where can Community
configuration help?

3. Future plans
4. Discussion

01 What
Community
configuration is?
Martin Urbanec

What Community
configuration is?

1. Introduction
2. Live demo
3. Implementation
4. Limitations

Introduction

● Special:EditGrowthConfig

● Special page that allows each
community to easily configure Growth
features

● Simple format usable by less
tech-savvy folks

● Empowers each community to
customise features to fit their culture
and needs

More at MW:Community_configuration.

Filling out the above form and submitting then edit different JSON
config files (below).

https://www.mediawiki.org/wiki/Growth/Community_configuration

Short demo

https://test.wikipedia.org/wiki/Special:EditGrowthConfig

Implementation
The JSON file(s)
● Normal wiki pages as Community

configurations̓ backend

○ Several configuration pages

● Used on (almost) every pageview

● Configuration is cached (except errors)

● Manual changes are encouraged

Implementation
Validation
● What is validated: data types,

authorized config keys

○ Each on-wiki JSON config file is
validated separately

● Runs on every change of the file

● Possible (but difficult) to work around

● Intended to prevent accidental
changes

● Invalid config is fully ignored. Error message displayed by MediaWiki upon saving an invalid edit.

Implementation
Access
● Two different Config objects

○ One accesses PHP globals only

○ One accesses on-wiki JSON pages,
falling back to PHP globals on
failure.

● Community configuration will fall
back to PHP configuration on error
(PHP-provided configuration must
provide sensible defaults).

$loggingEnabled =
$this->getConfig()->get(
'GEHomepageLoggingEnabled'
);

[...]

'mentorship' =>
$this->wikiConfig->get(
'GEMentorshipEnabled'),

Current
limitations
● Discoverability: Administrators often do not

know theyʼre in fact able to customize many
aspects of Growth features.

● No external access: While the JSON pages can
be accessed outside of MediaWiki, their
format is not stable. In addition to that,
presence of a config key does not guarantee
that it is used.

● Limited to Growth: Community configuration
is fully implemented in GrowthExperiments.
In its current state, it cannot be reused by
non-Growth developers. Changes made via Community configuration (excluding changes made by WMF staff)

Available from
https://martin-urbanec.toolforge.org/growth-reports/community_configuration_usage/

Questions?

02 Where can
Community
configuration
help?
Jon Harald Søby

Extensions

● Citoid
● PageTriage
● Babel
● ProofreadPage
● Wikimedia Incubator
● [your extension here]

Core?

● Simple config changes that donʼt
need to be passed by developers,
such as:
○ Changing the logo (celebratory

logos)
○ Extra user groups?
○ Sitename?
○ Various other things from

InitialiseSettings.php/LocalSetti
ngs.php

Questions?

03 Future plans

Martin Urbanec

Factor Community
configuration

out of GrowthExperiments!

If editors with extended rights can
transparently and easily configure
important on-wiki functionality for all
users, communities will have control over
how features function on their wikis, and
WMF teams will be able to ship new
functionality quickly.

Source: https://w.wiki/6j7W

https://w.wiki/6j7W

Future plans
Open questions #1
● What are the use cases? What level of

flexibility is needed?

● Should communities be able to add their
own fields to Community configuration
(gadgets, user scripts, etc.)?

● How to improve the discoverability of the
feature?

● Should all configuration be present in one
place (like Special:Preferences) or one
config per featureset (like
Special:EditGrowthConfig)?

Future plans
Open questions #2
● Should config changes be supervised by

WMF/stewards/…? How can problematic
changes be avoided?

○ Example: checkuser , userrights

● Should we use Vue for a more modern
admin form experience?

● How to ensure config is always loaded from
the correct storage?

● What should be exposed by the API about
the configuration?

04 Discussion

