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What Community 
configuration is?

1. Introduction
2. Live demo
3. Implementation
4. Limitations



Introduction

● Special:EditGrowthConfig

● Special page that allows each 
community to easily configure Growth 
features 

● Simple format usable by less 
tech-savvy folks 

● Empowers each community to 
customise features to fit their culture 
and needs 

More at MW:Community_configuration.

Filling out the above form and submitting then edit different JSON 
config files (below).

https://www.mediawiki.org/wiki/Growth/Community_configuration


Short demo

https://test.wikipedia.org/wiki/Special:EditGrowthConfig


Implementation
The JSON file(s)
● Normal wiki pages as Community 

configurations̓ backend

○ Several configuration pages

● Used on (almost) every pageview

● Configuration is cached (except errors)

● Manual changes are encouraged



Implementation
Validation
● What is validated: data types, 

authorized config keys

○ Each on-wiki JSON config file is 
validated separately

● Runs on every change of the file

● Possible (but difficult) to work around

● Intended to prevent accidental 
changes

● Invalid config is fully ignored. Error message displayed by MediaWiki upon saving an invalid edit.



Implementation
Access
● Two different Config objects

○ One accesses PHP globals only

○ One accesses on-wiki JSON pages, 
falling back to PHP globals on 
failure.

● Community configuration will fall 
back to PHP configuration on error 
(PHP-provided configuration must 
provide sensible defaults).

$loggingEnabled = 
$this->getConfig()->get( 
'GEHomepageLoggingEnabled' 
);

[...]

'mentorship' => 
$this->wikiConfig->get( 
'GEMentorshipEnabled' ),



Current 
limitations
● Discoverability: Administrators often do not 

know theyʼre in fact able to customize many 
aspects of Growth features.

● No external access: While the JSON pages can 
be accessed outside of MediaWiki, their 
format is not stable. In addition to that, 
presence of a config key does not guarantee 
that it is used.

● Limited to Growth: Community configuration 
is fully implemented in GrowthExperiments. 
In its current state, it cannot be reused by 
non-Growth developers. Changes made via Community configuration (excluding changes made by WMF staff)

Available from 
https://martin-urbanec.toolforge.org/growth-reports/community_configuration_usage/



Questions?
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Extensions

● Citoid
● PageTriage
● Babel
● ProofreadPage
● Wikimedia Incubator
● [your extension here]



Core?

● Simple config changes that donʼt 
need to be passed by developers, 
such as:
○ Changing the logo (celebratory 

logos)
○ Extra user groups?
○ Sitename?
○ Various other things from 

InitialiseSettings.php/LocalSetti
ngs.php



Questions?
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Factor Community 
configuration

out of GrowthExperiments!



If editors with extended rights can 
transparently and easily configure 
important on-wiki functionality for all 
users, communities will have control over 
how features function on their wikis, and 
WMF teams will be able to ship new 
functionality quickly.

Source: https://w.wiki/6j7W

https://w.wiki/6j7W


Future plans
Open questions #1
● What are the use cases? What level of 

flexibility is needed?

● Should communities be able to add their 
own fields to Community configuration 
(gadgets, user scripts, etc.)?

● How to improve the discoverability of the 
feature?

● Should all configuration be present in one 
place (like Special:Preferences) or one 
config per featureset (like 
Special:EditGrowthConfig)?



Future plans
Open questions #2
● Should config changes be supervised by 

WMF/stewards/…? How can problematic 
changes be avoided?

○ Example: checkuser , userrights

● Should we use Vue for a more modern 
admin form experience? 

● How to ensure config is always loaded from 
the correct storage?

● What should be exposed by the API about 
the configuration?



04 Discussion


