(

GEOLOGICAL SURVEY OF ILLINOIS,

A. H. WORTHEN, Director.

VOLUME VII.

GEOLOGY PALEONTOLOGY

$$
G E \bigcirc \mathcal{O} \bigcirc G Y \text { by A. H. WORTHEN. }
$$

$$
276169
$$

PALEONTOLOGY,

By A. H. W0RTHEN, 0RESTES St. JOHN and S. A. MILLER.

WITH ADDENDA

BY CHARLES WACHSMUTH AND W. H. BARRIS,

ILLUSTRATED
BY JULIUS MAYER \& CO., BOSTON, MASS.
PUBLISHED

```
BY AUTHORITY OF THE LEGISLATURE OF ILLINOIS.
MAY, 1883.
```

H. W. HOKKER.

Printela and Binnek
Sprongfield, Ildinois.

PREFACE.

This volume has been prepared and will be published under the provisions of an act of the Thirty-second General Assembly, authorizing the publication of Volume 7 of the Geological Survey of Illinois, approved May 26, 1881.
The first section of the volume is devoted to economical geology, and mainly to a record of the development of the coal resources of the State since the publication of the last preceding volume in 1875. The mining interests of the State are now second only in importance to those of agriculture, and although the information obtainable in regard to many of the experiments made with the drill, as well as that to be derived from the shafts but recently sunk within the borders of our coal-producing area, has in many cases been incomplete and unsatisfactory, through the non-preservation of the records kept by those having the work in charge, yet the data obtained, although by no means as complete as could be desired, will, I trust, prove of considerable value, and tend to the further development of this important industry.

Sections two and three are devoted to the description and illustration of the fossil forms belonging to the Carboniferous formation of the Mississippi valley, and, as these are mostly new to science, their publication will constitute an additional, and, I trust, an acceptable contribution to our present knowledge of the specific character of the Carboniferous fauna of the North American continent.

In our work on the vertebrates, I have had the assistance of Mr_{r}. Orestes St. John, of Topeka, Kansas, whose familiar acquaintance with the fossil fishes of the palæozoic rocks render his work of special value to those interested in this department of palæontology.

In the inrestigation of fossil echinoids, I was so fortunate as to secure the assistance of S. A. Miller, Esq., of Cincinnati, whose familiarity with that class of organism renders his determinations of more than ordinary value, and his work has resulted in the satisfactory clucidation of some rery difficult and rather unsatisfactory material.

The illustrations for this rolume were mostly drawn by Mr. Charles K. Worthen, and are faithful reproductions of the original specimens; and the plates have been engraved and printed by Messrs. Julius Mayer \& Co., of Boston, in their usual excellent style.

One hundred and sixty-five plates of fossils have been published in the preceding volumes of the Geological Surrey of Illinois, which, with those contained in the present volume, brings the aggregate number now published up to one hundred and ninety-six, nearly all of which have been devoted to the illustration of species new to science, and mainly obtained in prosecuting the field work of the geological survey, from formations existing within the borders of the State.

The work, however, is by no means complete, and at least two volumes more, illustrated by forty to fifty plates each, would be required to complete the palwontology of the State in the manner originally contemplated. These volumes should also include such economical results as may be obtained in the meantime by future investigations.

Nothing further can be done in this direction, howerer, until provision is made for it by a special act of the General Assembly: and it remains for the legislative authorities to determine whether the work shall be continued and eventually completed, in accordance with the original plan, or cease with the pulbication of the present rolume.
A. H. WORTHEN.

CHAPTER I.

ECONOMICAL GEOLOGY.

Coal.-The extensive area of the Illinois Coal Field, covering more than thirty-six thousand square miles of territory within the boundaries of this State, is now under a process of rapid development, and the liberal expenditure of capital and labor in this special field of human industry during the last decade, has resulted in placing Illinois as the second on the list of coal producing States of the Union. No other mineral resource within our borders is at all comparable in intrinsic value with our coal deposits, and their complete development is a subject of vital interest to the commonwealth, and deserves to be encouraged by all legitimate means.

The abundance of coal, the wide area over which it extends, and the facility with which it can be mined, and the low price at which it has been placed upon the market, has been a leading cause of the great increase in our railroad facilities and manufacturing industries, thus adding vastly more than the intrinsic value of the coal product alone, to the material wealth of our people. It has enabled us to compete successfully with the water powers of New England in the manufacture of our raw products, and thus saves the cost of a double transportation to which our people were heretofore subjected, in the transfer of our raw products to the eastern manufacturers, and the manufactured product back to the great food producing centers of the Mississippi valley.
In Rock Island county, where only the lower seam, or No. 1 of the general section of the Illinois Coal Measures, is found thick enough for profitable mining, and where it has been relied on for the supply of the entire region north of the Rock Island rapids for the last thirty years or more, the supply is now well nigh exhausted, and the counties lying further east and south must now be resorted to for the future supply of that region. Rock Island county lies on the extreme northwestern borders of the coal field, and the Coal Measures there rest upon Devonian limestone, the whole of the
lower Carboniferous series of limestones, sandstones, shales, etc., having thinned out in a northerly direction before reaching the southern borders of that county.

The Devonian limestone in this county presented an uneren surface for the reception of the overlying coal deposits, and consequently the coal itself was not found of uniform thickness, being often much thicker in the depressions of the limestone than elsewhere, and sometimes giving out altogether on the higher portions of the underlying beds. This has made the business of prospecting for coal in this county rather precarious for some years, and led to the expenditure of a considerable amount of capital that has yielded no adequate return.

But it is clear, as these experiments show, that the main deposit of coal in this county is now well nigh exhausted, and prospectors will do well to turn their attention to the counties lying to the castward, where the higher seams may be found.

For the benefit of those who may not hare access to the preceeding volumes of these reports, the following condensed section of the Coal Measures of this State is here inserted.

5	Sandstone and shale with a six inch seam of coal. Coal No. 16-1² to 3 feet.
75 to 100 feet.	Sandstone and shale. Coal No. 15-1 to 32 feet.
50 to 60 feet.	Sandstone and shale.
E	Coal No. 14-1 ${ }^{1 / 2}$ to 2 feet.
S0 to 90 fect.	Sandstone and shale.
	Conl No. 13-0 to 3 feet.
75 to 80 feet.	Sandstone aud shale.
\square Braxa	Coal No. 12-0 to 1 foot
20 to 25 foet.	Shales and limestone.
	Coal No. 11-0 to 1 foot.
30 to 10 foet.	Shales.
	Cual No. 10-0 so 1 frot.
sill to 911 feet.	Sandstone, shater and limestone.
	Conl No. s-1) to 2 fuet.
Lith in jofret.	Siamatune, shalu and limestonu.
	C'onl No. $\mathrm{s}-1 \mathrm{tu} 2 \mathrm{fe}$ fet.
an tol lat feers.	Sinndstome, flate and llmentone.
	Coul Xo. - 1 s09 fert.
2110	
	('ual No. 6 - ${ }^{\text {a }}$ to 6 feret.

Of the six lower seams represented in the foregoing condensed section, where they outcrop in the valley of the Illinois river, five are found of sufficient thickness to be profitably mined at some points and will afford an aggregate thickness of about twenty feet of marketable coal. They are not everywhere of uniform thickness, however, as for example, No. 1, at Seville, in Fulton county, is three feet or more in thickness, while at the outcrop, south of Lewistown, on the north bank of Spoon river, it is too thin to be profitably mined. At Prairie City it is reported at $3 \frac{1}{2}$ feet in the shaft recently sunk at that point, while in the vicinity of Colchester it is nowhere thick enough to work, and is often absent altogether, or represented by a bed of bituminous shale.
At Roodhouse, in Greene county, this seam was reached at the depth of about ninety feet, passing through the following beds: Ft. In.
Drift clay, soil, etc... 75
Blue and ash-colored clay shale..................... .. 15
Black shale.. 1 ft . to 1 . 3
Coal.. 2 4
Fire and potters' clays.. 18
This is probably the equivalent of the Battery Rock coal, which outcrops in the bluffs of the Ohio river a few miles below the mouth of the Saline, and is there associated with the heavy bed of conglomerate that forms the base of the Coal Measuress in Southern Illinois. The coal is there only about 18 inches thick, and the mines formerly opened there have generally been abandoned.

Coal No．2，however，is very uniform in its development，though it seldom attains a thickness of more than three or three and a half feet．The superior quality of the coal which it affords has led to its being mined wherever it can be reached at a moderate depth． Along the western and northern borders of the coal field it has gen－ erally a very uniform thickness of about two feet，but in the vicinity of Murphysboro，in Jackson county，it is a double seam，the upper division being three feet and the lower two feet in thickness．In the vicinity of LaSalle it is the lowest coal found，and there has an average thickness of about $2 \frac{1}{2}$ to $3 \frac{1}{3}$ feet．

Coal No． 3 is a very uncertain seam，and is more frequently represented by a bed of bituminous shale than by a true coal．It has been mined at Atkinson，in Henry county，where it ranges in thickness from three to three and a half feet of good coal．It also outcrops in Fulton county，three miles northwest of Fairview，show－ ing about eighteen inches of good coal．The lower seam in the Bloomington shaft I am also inclined to refer to this coal，and it is there three feet eight inches in thickness．In Gallatin and Saline counties there is a three－foot coal which occupies about the same position in those counties that No． 3 occupies in the valley of the Illinois river，but as the thicker seams lying above it are easily ac－ cessible，but little attention has been given to the lower seams．

No． 4 is also an uncertain seam and has only been identified at two or three points in the State．In Gallatin county it was found two and a half feet in thickness，and it has been identified at one or two points in Fulton county．Away from the borders of the coal field，nothing is at present known as to the development of these lower seams，all experiments being usually ended when the first workable coal is reached．A boring at Riverton，seven miles east of Springlield，is the only one near the center of the State that has been carried entirely through the Coal Measures．

The following is the report of that boring，furnished by Mr．C．B． Swan，the contractor，commencing below coal No．is and extending to the base of the Coal Measures：

[^0]Ft.
Limestone(?) 15
Black shale 10
Coal No. 3(?) 1
Fire clay 3
Gray shale 20
Limestone(?) 15
Black shale 11
Coal No. 2 5
Fire clay. 2
Sandy shale 14
Black shale 10
Limestoner? 20
Sandstone 63
Blue shale 16
Coal No. 1 4
Fire clay. 1
Shale and sandstone 67655

Having no other section through the lower portion of the Coal Measures in this part of the State for comparison, I am not prepared to say how far the above report can be depended on as correct. The beds reported as limestones 40,15 and 20 feet in thickness, were probably in part at least hard sandstones, as no such heavy beds of calcareous rocks are anywhere known in the State below the horizon of the Riverton coal. At Olney, in the south part of the State, a boring for artesian water was made to the depth of two thousand feet, passing through only one coal seam, which was fourd at a depth of eleven hundred and sixty feet from the surface. A section of this shaft will be given further on in this report. From this boring it would seem that all the coal seams save one have thinned out in that portion of the State.

At Canton, in Fulton county, a boring for artesian water was recently made by Messrs. Atwater \& Co., commencing above the horizon of coal No. 5 and extending through the lower Carboniferous limestones and into the Silurian rocks below. The following section will exhibit the lower Coal Measure strata passed through in this boring:
Ft. I
Surface deposits, soil, clay, etc 40
Shale 40
Coal No. 5 4
Shale 15
Limestone(?) 20
Shale 61
Slate (horizon of coal No. 3) 15
Shale 30
Coal No. 2 6
Fire clay 6

Only two thin seams of coal were found here below No. 5, neither of which were thick enough to be of any practical value. No. 1, which at Seville, about sixteen miles west of Canton, is three feet thick, was only one foot at Canton, and it is also about the same at its outcrop in the bluffs of Spoon river, south of Lewistown.

Coal No. 5, or the Springfield coal, as it is sometimes called, is perhaps the most reliable and persistent seam in its development of any in the State. Its average thickness is about six feet, and its range from four to tight. From Bloomington to Carlinville, along the line of the St. Louis, Alton and Chicago railroad, it has been found at every point where a boring or shaft has been carricd down to the proper depth; and recently a shaft has been sunk to it at Decatur, where it was found at a depth of about six hundred feet. At Sandoval and Centralia, a seam averaging about the same in thicliness is found at about the same depth, which may be the equivalent of the Springfield coal. At all these points the seam is about six feet in thickness, and it probably affords at this time more than one-half of the entire coal product of the State. There are now seven coal shafts in operation on this seam within two miles of the State capital, and nearly as many more within the limits of Sangamon county. The roof is usually composed of a hard black slate overlaid by a few feet of argillaceons limestone, the former containing numerons fossil shells, by which it may usually be readily identified.

Coal No. 6 is mined at several localities in Fultou and P'eoria counties, where it ranges from four to five feet in thickness. It affords a coal somewhat softer than that from No. 5 , hut freer from sulphur, and therefore better adapted for forging iron. The seam is more irregular in its development than No. 5, and consequently is neglecterl except when a superior quality of eonl is required for the smith's forge, or some other special use. In the shafts in samgramon county, it ranges from a few inches to three feet in thicharss. but no attempt has been made to work it in any of those in operation at the present time.

Coal No. 7 is well developed on the northern, eastern and southern borders of the Illinois coal field, ranging in thickness from four to seven feet. On the western borders of the field it is usually only from one to three feet thick, and is generally neglected for the thicker seams below. It is the main seam at Danville, the upper seam of workable coal in the shafts in La Salle county, and the main seam in Gallatin, Saline and Williamson counties, where it sometimes attains a maximum thickness of eight or nine feet. In the last named county an excellent coke is made from it, which finds a ready market in St. Louis for the use of the iron foundries at that point.

This is a brief résumé of the coal seams in the lower Coal Measures, as they appear around the borders of the coal field, and it is from this part of our coal area that our present supply of coal is mainly obtained. The shaft at Decatur has demonstrated that at least one of our main coals has retained its average thickness to the center of the field, and future experiments with the drill must determine whether any of the coals below No. 5 can be made available, when the supply from that has been exhausted. All experiments with the drill in the central and southeastern portions of the State, whether undertaken in search of coal or for any other purpose, should be carefully conducted, with the end in view of determining, as far as possible, the extent of our coal resources in that portion of the State, where the main coals, if present at all, are from six hundred to a thousand feet or more below the surface.

The increase in the coal products of the State from 1867 to 1880 was about 400 per cent., the product of 1867 being about $1,500,000$ tons, while according to the U.S. census report for 1880 the product of that year is placed at $6,089,514$ tons, equal to an annual increase of about 30 per cent. The census report, moreover, includes only such mines as are worked in the regular way, while there is a large amount mined annually for local use by the process of "stripping" on the outcrops of the thinner seams, of which that report would have no record. This would no doubt swell the amount for 1880 to at least $6,250,000$ tons. This increase of our coal products has been mainly on the northern and western borders of the field, where the coal deposits are the most accessible, and the facilities for market are better than in other portions of our coal area.

At Olney a boring was made about two years since in search of artesian water, and the following record of the work was furnished
by Mr. Victor E. Phillips, of Olney. The boring was carried to the depth of 2,000 feet, and failed to find flowing water. About 1,270 feet appears to have been through the Coal Measures, and one seam of coal five feet in thickness was passed at the depth of 1,160 feet. The following is a copy of the log kept by Mr. Phitlips:

The bottom of the Coal Measures was probably reached abont No. 30 or 31, and all below those mmbers may be referced to the lower Carboniferons, or to subordinate strata. It is quite remarkabte thint a boring shonld be earried throngh so great a thickness of Coal

Measure strata without meeting more than one well defined seam of coal, and it seems quite probable that some of the beds reported as black slate may also represent the horizon of thin beds of coal, the material being so mixed with the slate as to prevent identification.

Since the publication of volume 6, of these Reports, a shaft has been sunk at Sandoval, reaching a thick bed of coal at the depth of $\mathbf{C} 02 \frac{1}{2}$ feet. The following is a copy of the record of this shaft:
In.
No. 1. Surface deposits, clay, gravel, etc 8
No. 2. Shale and sandstone. 78
No. 3. Blue shale. 16
No. 4. Limestone (Shoal creek bed) 10
No. 5. Black shale 6
No. 6. Coal 2
No. 7. Fire-clay 6
No. 8. Sandstone and shale. 6
No. 9. Black shale 2
No. 10. Limestone. 6
No. 11. Fire clay. 5
No. 12. Sandstone and shale 109
No. 13. Coal. 2
No. 14. Fire-clay. 2
No. 15. Sandy conglomerate 5
No. 16. Sandstone and shale. 8
No. 17. Fire clay 2
No. 18. Pebbly clay 4
No. 19. Clay shale. 11
No. 20. Blue slate 8
No. 21. Coal 10
No. 22. Fire clay. 10
No. 23. Nodular blue shale 6
No. 24. Gray limestone 8
No. 25. Blue shale 2
No. 26. Gray limestono. 6
No.27. Blue shale. 3
No. 28. Dark shale 12
No. 29. Coal 6
Total depth 609

At Breese, twenty-two miles west of Sandoval, the coal was found at the depth of $397 \frac{1}{2}$ feet, but no detailed record of the beds passed through was kept. The coal ranges from seven to eight feet in thickness, and has a clay parting an inch or two thick, about two feet from the bottom. A bed of light gray limestone, ten feet in thickness, was passed through some twenty-five to thirty feet above the coal. The roof consists of bituminous shale, containing Discina nitida and the spines and dermal plates of fishes. The coal is considerably impregnated with the bi-sulphuret of iron, and is gener-
ally inferior in quality to that obtained from the Troy shaft, in Madison county. A bed of gray limestone, probably the Shoal creek rock, was found in this shaft immediately below the surface deposits, which were here only about 25 feet in thickness.

At Trenton the slaaft is 320 feet in depth to the top of the coal. No detailed record of this sliaft was kept. The coal is fire feet in thickness, and of excellent quality, and is said to bring from one to one and a half cents per bushel more in the St. Louis market than the Collinsville and Caseyville coals. The roof shales contain Leaia tricarinata, which I regard as a characteristic fossil of coal No. 7.

At Troy, in Madison county, the shaft is 315 feet in depth to the top of the coal. The seam here is $5_{\frac{1}{2}}^{\frac{1}{2}}$ feet thick, and in quality it is equal to that obtained from the 'Irenton shaft. The shale over the coal is similar to that at Trenton, and contains the same fossils.
The Nashville slaaft, in Washington county, is about 414 feet in depth to the top of the coal, and the following detailed record was made :
No. 1. Surface clay and gravel..

No. 5. Coal (niddle slaty)..
No. f. Clay shalゥ.. 6
No. 7. Siandstone and sandy shate... is

No. 9. Blue shale... 14
No. 10. Pebbly llmestone... 2
No.11. 13latck slate......... .. 1

No. 14. Sandy. shate and sandstone......
No. 15. Jluo shalu (bottom slaty)ni
No. 11, (онl... 1

No. 18. Límo conglomerate..

No. 21. Blue chny shalo... 2

Nin. 21. Flro-clıy......... ...

No. 2४, 13lnck slate.... 3

Ft. In.
No.32. Shale 26
No.33. Limestone 42
No. 34. Shale 26
No.35. Limestone 10
No.36. Dark blue shale. 6
No.37. Limestone $\begin{array}{ll}8 & \\ 2 & 8\end{array}$
No. 38. Black slate
76
No. 39. Coal
Total depth to bottom of coal 4216

No. 3 of this shaft is undoubtedly the Shoal creek limestone, and the coal is here about 370 feet below it, which corresponds very nearly with its position in the Sandoval shaft, if the coal at these two points is identical, as is probably the case.

A shaft has been sunk at Okawville by Shulze \& Brother, and an irregular seam of very good coal was reached at a depth of about 276 feet. This shaft commences below the horizon of the Shoal creek limestone, but as no detailed record of the beds passed through was made, no satisfactory conclusion could be formed as to the position of this seam in relation to that found at Nashville and Sandoval. It undoubtedly holds a ligher position, and that seam may probably be found here by carrying the shaft down to the proper depth. If an accurate record of the strata passed through had been kept, some estimate of the additional depth required to reach a better seam might be given, but without it the question can only be settled by actual experiment.

The following record of a boring near Winchester in Scott county, made by the Manchester Mining Co., under the direction of Mr. G. R. Darling, was furnished by Mr. John C. Andrus. Manchester is located near the western borders of the Illinois coal field, and hence only about 120 feet of Coal Measure strata were found, including the horizon of coals No. 1 and 2, neither of which were thick enough to be of any practical value for deep mining:
Feet.
No. 1. Soil, clay and gravel 59
No. 2. Fire-clay?. 7
No. 3. Slaty coal, (local) 1
No. 4. Clay shale 10
No. 5. Sandstone 1
No. 6. Coal 2
No. 7. Hard sandstone 7
No. 8. Clay shale 10
No. 9, Limestone 2
No. 10. Soapstone 10
No. 11. Sandstone 1
No. 12. Clay shale. 12
Feet.
13
No. 13. Shale and slate
45
45
No. 14. Hard sandstone, (luase of Coal Measures)
11
11
No. 15. Shale 4
No. 1i. Hard silicious stone
7
7
No. 17. Sandy shale
11
No. 18. Blate
8
No. 19. Hard limestone 20
No. 20. Shale 10
No. 21. Limestone and shale
31
31
No. 22. Shale, very hard 1
No. 23. Sulphuret of iron.
\because
\because 6
No.24. Limestonc and shale.
No.24. Limestonc and shale.
No. 25 . Limestone
No. 25 . Limestone
1
1
No. 26. Shale
No. 26. Shale
21
21
No. 27. Hard limestone
No. 27. Hard limestone 312

All the beds below No. 14 of the foregoing section probably belong to the St. Louis and Keokuk divisions of the Lower Carboniferous series, and hence are below the horizon of any known coal.
At Roodhouse, about four miles southwest of Manchester, a shaft was sunk for coal, and the lower seam was found to be 2 feet 4 inches in thickness, with a good roof of black slate. The beds passed through, in sinking the shaft, were the following:

Ft. In.

Soil, clay and gravel, (drift) 75
Blue and ash-colored clay shale.. 15
Black slato... 1 foot to 1
Coal.
3
21
Fire-clay and clay shale.
18
A boring made here, struck the St. Louis limestone at a depth of about fifty feet below the coal. The roof of the Roodhouse coal is a hard black shale or slate filled with nodules of sulphuret of iron, which makes a permanent and snbstantial roof. The under elay seems to be of a good quality, and similar to that so extensively used at Whitehall for fire-brick and pottery. In Scott comnty, and in the central and western portions of Greene and Jersey, the two lower coals, Nos. 1 and 2 of tho general section, are the only ones likely to oecur; but on the extreme enstern borders of the last named counties, coals 5 and if are to he found on Hodge's creek, near the Grene comnty line, and a mile and a half west of Brightom, near the castern border of Jersey comuty.

At Gillespie, in Macompin connty, a shaft las been sumk during the past year hy B. L. Dorsey if Son, for the details of which I am indebted to Mr. Alexamder Butters. Coal No. 5 was fomed here at the depth of abont 365 feet, passing the following beds:
No. 1. Soil and drift clay In.No. 2. Coarse limestone24No. 3. Black shale2
No. 4. Coal, (No. 11) 1
No. 5. Fire-clay 8
No. 6. Dark blue shale 3
No. 7. Limestone 6
No. 8. Light-blue shale 30
No. 9. Coal, (No. 10)4
No. 10. Fire-clay 2
No. 11. Light and dark shales 40
No. 12. Fíre-clay 20
No. 13. Bituminous shale. 6
No.14. Limestone, (Carlinville bed) 8
No.15. Bituminous shale 10
No. 16. Coal, (No. 9) 3
No. 17. Fire-clay 6
No.18. Jight-colored shales 58
No. 19. Soft limestone 2
No. 20. Bituminous shale 3
No. 21. Coal, (No. 8)7
No. 22. Sandy shale 40
No. 23. Variegated shales with streaks of coal 17
No. 24. Sandstone in heavy beds, and shale 55
No. 25. Hard limestone 5
No. 26. Coaĩ, (No. 6) 6
No. 27. Fire-clay 8
No. 28. Clay shale 8
No. 29. Limestone 27
No. 30. Black slate 2 to
No. 31. Coal, (No. 5) $\frac{7}{373} \quad \frac{10}{5}$Bottom of coalSeveral shafts have been sunk in Sangamon county since the pub-lication of the former volumes of the geological reports, but in mostcases no detailed record was kept. At Girard it was about 340 feetto coal No. 5. No details could be obtained of the first 190 feet,except that a six-inch seam of coal was found at the depth of 104feet. The following is a record of the lower part of this shaft:
In.
Drift, clay, shales, etc., details not given 190
Coal, (No. 8) 4
Shale, with iron bands at the base
10
10 2
ck shale 8
Fossiliferous limestone
Fossiliferous limestone
Coal, (No. 7) 1
Fire-clay 9
Gray shale. 19
Fine black shale 8
Coal, (No. 6) 6
Fire-clay 3
Impure limestone. 3
Hard gray sandstone 102
Dark gray shale 2
Blue shale 1
Limestone 4
Light gray shale 3

	Ft.	In.
Impure limestone...	,	3
Black shale.....	2	10
Gray shale..	G	
Dark blue shale.	2	
Fossiliferous limestono	1	
Dark gray sandstone..	5	3
Shale and limestone...	4	
Fossiliferous limestone	0	6
Black slate...		
Coal, (No. 5)..	348	

Total denth.
At Auburn coal No. 5 was reached at a depth of 208 feet. The coal ranges from six to seven fect in thickness, with a good roof of black slate and limestone. No details of the shaft could be obtained.
In Menard county several shafts have been sunk since the publication of the report on that county, among which are those at Sweetwater, Athens, Greenview and Tallula. The following record of the Sweetwater shaft was lindly furnished me by Mr. W. Parkin:

$$
\text { Ft. } \mathrm{In} \text {. }
$$

No. 1. Soil and brown clay -
No. 2. Hardpan 10
No. 3. Sand 10
No. 4. Clay 2
No. 5. Black mucky soil (forest bod) 6
No. 6. Clay with streak of smut six inches 2
No. \%. Limestone 3
No. 8. Clay shale 8
No. II. Bituminous shale 6
No. 11. Coal 6
No. 12. Fire clay.166

Total deptl

In this shaft they evidently struck the bed rock about the borizon of another coal seam, probably Nos. 6 or 7 , as the lowest chay bed in the above section was reported to have a streak of black clay about three feet from the bottom six inches thick, which no doubt came from the decomposition of a black slate, or a thin seam of coal.
The (ireenview shaft is 97 feet to the top of the coal. The seam is about six feet thick with a roof of black shale. Bed rock was struck at the depth of forty feet.
Tho Thllula shaft is 175 feet in depth. Coal five to six feet in thickness, with the usual black shate roof. The fire clay below the coal is reported to be 14 feet thick.

At Athens two shafts have been sunk. The first one was located in the creek bottom about three-quarters of a mile west of town, and is 155 feet in depth to the top of the coal. This shaft was sunk in 1869, and was worked mainly to supply the local demand for fuel. The new shaft is located near the railroad, and is 227 feet in depth. The coal averages about six feet in thickness, and has a good roof of black slate and limestone. Both are on the same seam, the difference in the depth of the shafts resulting from the higher surface level, where the new shaft is located. I visited Athens for the purpose of obtaining the necessary detailed information to enable me to report in full upon this shaft, but found no record available, and I learned that if such a record had been kept, it was not in the possession of the present owners of the mine.
The following report of a boring for coal at Virginia, in Cass county; was furnished by Mr. Joseph Wilson, who was employed by the parties interested to superintend the work:
Ft. I
No. 1. Soil and brown clay 7
No. 2. Yellow clay 6
No. 3. Blue clay 29
No. 4. Hardpan. 28
No. 5. Forest bed (ancient soil) 3
No. 6. Hardpan. 4410
No. 7. Sandstone $71 \quad 11$
No. 8. Hard limestone] 1
No. 9. Black shale 26
No 10. Clay shale $10 \quad 3$
No.11. Coal No. 2 6
No. 12. Fire clay. 3
No. 13. Black shale 3
No. 14. Clay shale. 6
No. 15. Potter's clay 13
No.16. Coal 2
No. 17. Sandstone and shale 1
No.18. Coal 3
No. 19. Sandstone and shale 9
No. 20. Coal. 8
No. 21. Sandstone and shale. 164
No. 23. Coal. 3
No. 23. Sandstone 29
No. 24. Coal. 2
No.25. Sandstone and shale. 9
No. 26. Clay shale 4
No. 27. Sandstone 5
No. 28. Hard silicious rock 2
No. 29. Clay shale 6
No. 30. Hard silicious rock. 6.
No. 31. Hard green shale 10
No. 32. Limestone 1
No. 33. Sandstone. 8

The coal from No. 8 of this boring appeared to be of excellent quality, and if the roof proves to be sufficiently firm, the seam can be worked to good advantage. Nos. 16 to $2 \pm$ represent the horizon of coal No. 1, divided here into five thin seams of only a few inches in thickness, and too thin in the aggregate to be of any practical value.

The base of the Coal Measures is probably the hard siticous rock No. 30, while Nos. 31 to 39 represent the St. Louis and Warsaw beds, and all below and including No. 40 belong to the Keokuk limestone.
An unsuccessful attempt to obtain coal was made at Farmer City, by sinking a slaft to the depth of 163 feet without reaching bedrock, and then boring to the depth of about 313 feet below the bottom of the shaft, making a total depth of tili feet. For the details of this boring I am indelted to Mr. Sowdon, muder whose supervision it was made.
t. In.
\qquad
Shaft
16i3
Blue clay

('unl... 8 . 10

('lay mhale..

COAL MEASURES.
Ft. In
Hard rock (limestone?) 81
Black shale 23
Clay shale 84
Limestone 64
Sandstone 5
Shale and slate 36
Hard sandstone 8
Fire-clay 10
Shale 10
Soit sandstone 6
Clay shale. 03
Coal. 5
Fire-clay 3
I am of the opinion that the coal seam at the bottom of this boring is number six or seveu of the general section, and if so, number five would be found from fifty to seventy-five feet below, and would probably be from four to six feet in thickness.
A coal shaft has been sunk at Decatur to the depth of about 600 feet, but I have not been able to obtain any reliable information in regard to it, further than a copy of the published record of the boring made previous to sinking the shaft. I visited the locality shortly after the shaft was completed, and found, by an examination of the roof shales, that it was probably coal No. 5, and was told that it was about four and a half feet in thickness, although the published record of the boring gives but three feet six inches as the thickness of the coal. For the privilege of copying this record from a Decatur paper I am indebted to Mr. Stoddard, of Mattoon. That this boring is not quite reliable, is shown by the fact that it records a six foot one inch seam of coal at the depth of 413 feet, while the shaft was sunk to the depth of about 600 feet to a seam but little more than two-thirds the thickness of the one reported abore. The coal passed through at the depth of $4: 3$ feet was probably coal No. 8 of the general section, which seldom exceeds two feet in thickness, and is often replaced entirely by bituminous shale. The following is a copy of the published record of this boring:

[^1]No. 1. Superficial deposits, consisting of clay, sand, hard-pan, and two distinct

No. 4. Calcareous shale... 14
No. 5. Marly sandstone.. 1
No. 6. Calcareous shale.. 32
In

In.
5
No. 7. Argillacoous sandstone 2
No. 8. Red shale 8
No. 9. Argllaceous limestone 7
No. 10. Brown shale 2
No. 11. Argillaceous limestone 2
No. 12. Calcarcous shale 4
No. 13. Coal and bituminous shale.6
No, 14. Calcareous shale 5 5
No. 15. Brown shale 1
No. 16. Argillaceous sandstone 1
No. 17. Coal86
No. 18. Argillaceous shale 9$8 \quad 6$
No. 19. Nodular limestone 5
No. 20. Caloareous shale.
No. 21. Argillaceous shale 10 10 9 9
No. 22. Hard limestone
No. 22. Hard limestone
No. 23. Argillaceous shale 2 2
No. 24. Bituminous shale
No. 24. Bituminous shale 12
No. 25. Argillaceous shale i
No. 26. Hard limestone6
No. 27, Argillaceous limestone16
No. 28. Black and gray shale 13
No. 29. Argllaceous shale
No. 29. Argllaceous shale
No. 30. Argillaceous limestone 21
9
No. 31. Argillaceous shale 2
No. 32. Argillaceous sandstono 2
No. 33. Calcareous shale 1
No. 34. Bituminous shale6
No. 35. Coul 15
No. 36. Argillaceous nodular shalo 19
No. 37. Argillaceous slaty shalo
17
17
No. 38. Hard gray limestone 17 17
No. 39. Soft shale1
No. 40. Bltumlnous shale
No. 41. Argllaceous shalo 6
No. 42. Brown shale 3 9
No. 43. Calcaroous shale
No. 44. Argllaceous limostono. 3
No. 45. Calcareous shale 9
No. 46. Rod varlegated shale 18
No. 47. Gray argillaceous shalo 3
No. 48. Bitumlnous shale 3
No. 49. Gray argllaceous shale 1
No. 50. Bituminous shalo
No. 51. Gray, caloareous shale 6 6
No. 52. Bltumlnous sinale 1 1
No. 53. Coni and llmestono
No. 54. Bituminous shalo
No. 65. Soft limostone 1 1
No. 56. Arsillacoous shale 2
No. 57. Bitumlnous shale i
$\stackrel{y}{*}$
No. 5 . K . Conl ?
No. 59. Gray shate 9
No. 60. Argiliaceous llmestone (i)
No. 61. Shale 10
No. 62. Limontone6661

Abstract

-

^[-]

 6

No. 63. Coal In. 6
No. 64. Blue and gray shales
No. 65. Marly sandstone 6
No. 66. Calcareous shale 5
No. 67. Sandstone 15
No, 68. Gray slate 9
No. 69. Bituminous shale 3
No. 70. Coal 6
No. 71. Fire-clay 2
Total depth 9

No. 22 is probably the Carlinville limestone, and No. 35 the representative of No. 8 coal, and beyond this the strata cannot be positively identified with those occurring at other localities in the adjacent portions of the State.

In the Niantic shaft, coal No. 5 was found at the depth of about 350 feet. The seam was there five and a half feet in thickness, overlaid by three feet of black shale. The following record of the shaft was furnished by Mr. W. W. Conard, under whose superintendence the work was done:
Ft. In
No. 1. Soil and brown clay 11
No. 2. Sand and gravel 4
No. 3. Gravelly hard-pan 25
No. 4. Blue hard-pan 10
No. 5. Soft clay. 15
No. 6. Gray hard-pan 10
No. 7. Soft brown clay 7
No. 8. Limestone 10
No. 9. Blue flinty rock 2
No. 10. Black slate 3
No. 11. Fire-clay. 6
No. 12. Limestone 10
No. 13. Blue and gray shale 7
No. 14. Black shale 1
No. 15. Coal No. 9. 2
No. 16. Fire-clay 1
No. 17. Nodular limestone 5
No. 18. Clay shale. 5
No. 19. Soft blue sandstone 16
No. 20. Gray shale 42
No. 21. Coal No. 8 3
No. 22. Fire-clay. 6
No. 23. Sandstone. 10
No. 24. Gray shale 45
No. 25. Hard flinty rock 10
No. 26. Black shale 3
No. 27. Fire-clay 9
No. 28. Blue and red shales 15
No. 29. Black slate. 5
No. 30. Coal No. 7. 3
No. 31. Fire-clay 6

All the coal seams from 5 to 9 are clearly represented in this shaft, and are readily identified. It is to be regretted that such records are not kept of every shaft sunk in the State, for they would be of permanent value to the proprietors and operators alike, in settling many questions that necessarily arise in coal muing operations, and would prove a source of scientitic as well as economic information to all who desire to become acquainted with the fuel resources of the State. In risiting the various shafts that have been sunk within the past three or four years, I have found that not more than one-third of the whole number have preserved any record whatever of the different beds passed through.
Two very important experments have been made during the past two years, to determine whether the main coal seans could be found available over the central portion of the Illinois coal field, and both have proved successful. The first me mudertatien was the shaft at Mattoon, which is probably the decpest one west of Pittsburg. In this, coal No. 2 of the general section was found at the depth of abont $¢ 00$ feet. No. 5 was passed at a depth of nearly 700 feet, but was found to be too thin to be of any practical ralne. For the following details of the Mattoon shaft I am indebted to Theo. Jonte, Esq., and Mr. Stoddard :

In.
No. 13. Clay shale 83
No. 14. Black shale and coal (coal No. 14) 5
No. 15. Red shale 20
No. 16. Sandstone and lime 108
No. 17. Coal No. 13 6
No. 18. Fíre-clay 6
No. 19. Clay shale 66
No. 20. Coal No. 12 8
No. 21. Fire-clay 3
No. 22. Sandstone 6
No. 23. Coal No. 11 7
No. 24. Fire-clay and shale. 11
No. 25. Coal No. 10 11
No. 26. Fire-clay 4
No. 27. Limestone, upper part shaly 37
No. 28. Coal No. 9 4
No. 29. Sandy shale 79
No. 30. Clay shale 28
No. 31. Coal No. 7 1 ft .6 in. to 2 6
No. 32. Dark clay shale
No. 33. Coal. 6 2
No. 34. Fire clay 3
No. 35. Gray shale 12
No. 36. Limestone 15
No. 37. Black slate 2 feet, coal 1 inch (coal No. 6) 1
No 38. Clay shale 36
No. 39. Coal No. 5 1
No. 40. Sandstone and shale 72
No. 41. Coal No. 3 11
No. 42. Fire clay 5
No. 43. Limestone 8
No. 44. Blue shale 2
No. 45. Hard gray limestone 12
No. 46. Sandy shale 58
No. 47. Sandstone and shale 46
No. 48. Gray shale 19
No. 49. Coal No. 2 4
Total depth 908
No indications of coal No. 4 were noticed, and its place is about midway between coals 3 and 5, but with that exception the whole series from No. 2 to 15 come in in regular order, and are readily identified. The product from No. 2 in this shaft is a clean bright coal, apparently nearly free from iron pyrites, and, judging from its external appearance, sufficiently free from all deleterious substances to be used in its raw state for smelting iron. A block of the roof shale of No. 5 was sent to my office by Mr. Jonte, and I found it filled with Discina nitida, Lingula mytiloides and Cardinia? fragilis, which characterize this coal in all the shafts in this and the adjoining counties, and fix the horizon of that coal in this shaft beyond question.

Great credit is due to the stockholders in this mining enterprise, and to the citizens of Mattoon generally, for their persevering efforts in bringing this costly experiment to a successful termination.
The other important experiment alluded to above, was made with the diamond drill at Pana, and was successfnl in finding a coal seam about seven feet in thickness at the depth of a little orer 700 feet. For the following details of this boring I am indebted to J. W. Ketchell, Esq., of Pana, in whose office I was permitted to examine the core of rock taken out with the drill as the work progressed:

PANA BORING.
Ft. In.
No. 1. Soil and brown clay.. 11
No. 2. Hardpan...
No. 3. Jlue clay.. $\frac{.}{}$
No. 4. Sand and gravel.. 12
No. 5. Hard red clay... 18
No. 6. Forest bed.. 3
No. 7. Blue clay............ .. 57

No. 9. Clay... $19 .{ }^{19}$
No. 10. Limeston0.. 3 . 1
No. 11. Clay shale with lime nodules.................. 2 . 10

No. 13. Blue and gray limestone.. 16 10 10
No. 14. Dark clay shale... 1 it
No. 15. Gray limestone............. . .. 12 . 6
No. 16. Sandy shalo... 10 . 10
No. 17. Sandstone and shaio.. 43 . 6
No. 18. Fine grained sandstono.. 18
No. 19. Biuish clay shale.. 14 ?

N゙o. 22. No core, probsbiy fire-clay i .
No. 23. Blue and chocolate co!ored shnie... 41 .
No. 24. Calcareous shale with fossils.. 0 ?
No. 2:. Conl No. $11 . \ldots$.. 0 . 11

No. 29. Clay shaio.. 3

No. 31. Sardy shale.. 10 . 11
X̊ก. 32. Bluı clay stale .. 8 1

Ft. In.
No. 42. Black shale 7
No. 43. Coal (local) 8
No. 44. Fire-clay and nodular arg. limestone. 1
No. 45. Mottled dark sandstone
8
No. 46. Striped sandy shales.
3
No. 47. Clay shale.
6
No. 48. Fossiliferous shale
1
No. 49. Coal No. 8
6
No. 50. Shale and'flre-clay
No. 51. Sandy shales and sandstone. 6
No. 52. Coal No. 7 6
No. 53. Dark clay shale 15
No. 54. Dark argillaceous limestone 6
No. 55. Bituminous shale.
3
No. 56. No core (soft calcareous shale?)
9
9
No. 57. Hard pyritiferous rock
No. 57. Hard pyritiferous rock 8
No. 59. Hard clay shale. 3
No. 60. Argillaceous limestone 6
No. 61. Dark shale 2
No. 62. Dark gray limestone 12
No. 63. Black shale
10
No. 64. Septaria (nodule)
No. 65. Black shale 1
No. 66. Coal 73
Total depth $.719 \quad 6$

The surface deposits at Pana proved to be about 127 feet thick, and consequently they struck the bed-rock considerably below the horizon of coal No. 14, which outcrops on the creek two or three miles south of the city. No. 13 could not be identified in the boring, and its place would be not far below No. 15 of the section. One interesting feature of the superficial deposits here was the presence of two distinct Forest beds, or ancient soils, one three and a half and the other two and a half feet thick, and separated by 57 feet of blue clay. One or both of these ancient soils have been found over a large portion of the State, and they present a serious obstacle to the land ice or glacier theory of the origin of the Drift deposits.

Another important boring with the diamond drill has been made by the Ellsworth Coal Company, two miles west of Danville. This boring shows the general development of all the coals in the lower Coal Measures from No. 7 to the bottom of the series. It commences just below the Danville coal, which is No. 7 of the general section, and ends in the sandstone at the base of the Coal Measures. These lower seams have their outcrop in Indiana, and this is the first attempt that has been made on the eastern border of the coal region in Illinois to ascertain whether any of the lower seams could
be found in that portion of the State of sufficient thickness to be of practical value.

DANVILLE BOHING. Ft. In.

No. 4. Blue and gray shale... 17 . 11
No. 5. Black shale... 11
No. 6. Coal No. 6 (Grape creek).. 11

No. 8. Limestone and shale.. © .
No. 9. Sandy slates... $11 i$. 5
No. 10. Gray shale... 11
No. 11. Black shale... is
No. 12. Dark gray shale... 10 .
No. 13. Sandstonc and shale...
No. 14. Coal No. 4... ... 1 if
No. 15. Shale.................. .. 4

No. 17. Grayं shale... 1 i

No. 19. Coal No. 2 ... 1
No. 20. Shale and limestone.. 3
No. 21. Coal-upper division of No. 1....... .. \boldsymbol{Q}_{2}
No. 22. Black shiale... 8
No. 23. Coatl-lower division of No. l.. 1 .
No. 24. Shate and sandstone.. 11
Total.
$256-5$
This boring has demonstrated that coal No. 2 may be fomd in this portion of the State with a more than average thickiness of fon feet, and the superior quality of the coal which it affords will stimulate those largely interested in coal mining operations to carry their shafts down to this horizon, even where the thicker seams above are well developed. The Ellsworth Coal Company are entitled to the credit of making the first effort to ascertain what conld be fomm on the eastern borders of the Illinuis coal field helow the horizon of coal No. 6.

On the western border of the coal fied in nearly the same latitude, a shaft was recently sunk throngh the lower portion of the Coal Measures, bat developing no conl that was more than thirty inches in thickness. For the following detaits of the shaft at Praire City, in McDonough county, I am indehted to Mr. B. F. Worden, of that place:

Ft. In.
Nis. 1. Soll und ilrifl elay..
No. 2. Blamk flswllo rork ..

COAL MEASURES.
Ft. In
No. 5. Coal No. 3 2
No. 6. Fire-clay. 26
No. 7. Sandstone 136
No. 8. Clay shale 156
No. 9. Coal No. 2 10
No. 10. Clav shale 26
No. 11. Hard rock 2
No. 12. Clay shale 19
No. 13. Calcareous sandstone 13
No. 14. Black shale. 4
No. 15. Coal (local) 04
No. 16. Fire-clay 1
No. 17. Sandstone 4
No. 18. Clay shale 13 6
No. 19. Slate 8
No. 20. Coal No. 1 5
No. 21. Cannel coal. 7
No. 22. Mixture of coal and slate 1
Total depth of shaft 4
From this point a boring was made to the depth of 88 feet, pass-ing through the following strata:
Ft.
Clay shale 22
Sandstone 8
Sandstone 4Gray limestone (Lower Carboniferous).

The gray limestone at the bottom of this boring is probably the upper division of the Lower Carboniferous series, and no coal would be found by sinking to a greater depth. Nos. 19, 20 and 21 of the sliaft probably represent coal No. 1, while No. 15 represents a local seam. No. 9 is coal No. 2, No. 5 is coal No. 3, and No. 3 of the shaft is either a local development or a representative of coal No. 4

No. 18 is said to be an excellent quality of tile clay, and the shaft may be utilized in the production of this useful article for the manufacture of pottery and drain tile on a large scale.

A boring made at Milford, in Iroquois county, was carried to the bottom of the Coal Measures, reaching the Lower Carboniferous limestone at about 200 feet, and though two coal seams were passed through neither of them were thick enough to be of any practical value. The following beds were passed through in this boring:

[^3]Ft. In
Clay shale
Clay shalo-
Bandstone 16
Clay shale 2
Coal No. 18
Fire clay 2
Sandstone 5
Shale. 4
Sandstone 3
Lower Carboniferous limestone 0 6
Jotal depth $2010-4$
The following record of a boring made at Charleston, in Coles county, was furnished by Mr. C. B. Swan, under whose direction the work was done:Ft
No. 1. Soil and surfince clay 15
No. 2. Hard-pan 15
No. 3. Gray shale 30
No. 4. Fire-clay 3
No. 5. Shale 20
No. 6. Limestone 4
No. 7. Shale 3
No. 8. Limestone 20
No. 9. Green shale 2
No. 10. Black shale 3
No. 11. Limestone 7
No. 12. Black shale 5
No. 13. Gray slate 45
No. 14. Coal :
No. 15. Fire-clay. 3
No. 16. Gray shale 28
No. 17. Black shale 10
No. 18. Coal 3
No. 19. Fire-clay 3
No. 20. Gray shale 16
No. 21. Llmestono \because
No. 2. Black shale !
No. 23. Llmestono. 15
No. 24 Jight shate $+3$
No. 25. Black shalo 41
No. 20. Roul shalo 11
No. 2\%. IImestone. 20
No. Nr. Clay shale : 6
No. 29. Conl 1
No. 30. Flre-clay 1
No. 31. JImnstone if
No. 32. Clay shale. 32
No. 33. Ilmentone and shate 11
No. 34. Santy shale 40
So. 35. Black shatu S
No. 36. Coal 5
Total deoph 5

I am not able to correlate this boring, either with the shaft at Mattoon or the diamond drill boring at Pana. I am satisfied that it is not deep enough to reach the horizon of coal No. 5, but it is possible that the lowest coal reported in the boring may be No. 7 , and if this conclusion is correct, No. 5 would be found at from 60 to 75 feet below. The limestones reported in this boring have no analogues any where else in the Coal Measures, either in the number of the beds or their aggregate thickness. Nos. 6, 8 and 11 constitute a calcareous mass 31 feet in thickness, with only about 8 feet of intervening shales, and in my examinations of the outcrops on the Embarras river, in this and the adjoining county of Cumberland, no such heavy beds of limestone were found.

The "Fusulina" limestone which outcrops in the vicinity of Greenup, and along the Embarras river at intervals nearly to the south line of Coles county, is nowhere more than five feet in thickness, and I found no calcareous shales of any considerable thickness associated with it that could be mistaken in the boring for limestone. This may be represented, however, by No. 6 of the boring, and the 20 foot limestone No. 8 may be the equivalent of the Quarry Creek limestone of Clark county, 'which is underlaid by a green shale there, and possibly agreeing with that reported under the limestone in this boring. Below this there are four other beds of limestone reported, varying in thickness from six to twenty feet, making an aggregate of some 80 or 90 feet. If this is a true record of the Coal Measure strata underlying Coles county, it shows a greater thickness of calcareous beds here than have been found elsewhere in the State.
BORING AT H s RVEL.
No. 1. Surface soil and clay 17
No. 2. Sandy shale 3
No. 3. Clay shale 56
No. 4. Limestone 10
No. 5. Clay shale 12
No. 6. Limestone 5
No. 7. Green shale 30
No. 8. Black shale 4
No. 9. Sandy shale 20
No. 10. Clay shale 160
No. 11. Limestone 3
No. 12. Clay shale 30
No. 13. Black shale 3
No. 14. Clay shale 40
No. 15. Limestone 2
No. 16. Clay shale 10
No. 17. Black shale 3

ECONOMICAL GEOLOGY.

Feet.
36
No. 18. Clay shate 7
No. 19. Limestone 26
No. 20. Clay shale. 3
No. 21. Sundstono 8
No. wa. Clay shale 1
No. 23. Limestone 2
No. 24. Black slate 10
No. 25. Clay shale 2
No. 2i. Limestone. 34
No. 27. Clay shale. 4
No. 2ヶ. Sandy shale 85
No. 29. Light eray, sandy shale 38
No. 3\%. Sandy shale 2
No. 31. Clay shalo 109
No. 32. Sandy shale and sandstone 7.5
Total deıth

Harvel is about fifteen miles N.NE. of Litchfield, in Montgomery county, and on comparing the above boring with the shaft and boring at the latter locality, given on a subsequent page, it will be seen that there is no correspondence worthy of note between them. The thiming out and consequent disappearance of a coal seam in certain localities is not an unusual occurrence, but the entire absence of a half dozen seams where they might be expected to occur, is quite an extraordinary occurrence.
For the following record of the escapement shaft at Dawson, in Sangamon county, sunk by the Wabash Coal Company, I am indebted to Mr. Thomas P. Mowitt:

Fi. In.
No. 1. Surfaco soil, cluy and suad.
(iN)
105

No. 3. Blue shale.............................. ... 1
No. 4. Hard eonglomernto...... ..

No. 14. \|litil brown rock...

Total demth

Dawson is if feet above the station at Rivertm, where the Rivertom coal shaft is located, and as the thepth of the Dawson shaft was was not deep enough to allow for the average dip of the coal to the
eastward, I was inclined to believe before seeing the record of the Dawso11 shaft that the seam they were working was No. 6, and that No. 5 was to be found some thirty or forty feet below. But on comparing the record of the shaft at Dawson with that at Riverton, I am convinced they are both on the same seam, though the dip between these points is scarcely more than one foot to the mile, while from the western outcrop of No. 5 to Riverton it averages about severl feet. From Dawson to Niantic it averages nearly the same, while from Niantic to Decatur it increases to at least twelve or fourteen feet to the mile.

Section of the Winona shaft at Winona, near the northeast corner of Marshall county, furnished by Mr. E. L. Monser :
Ft. I
No. 1. Soil and yellow clay. 10
No. 2. Blue clay 46
No. 3. Sand. 10
No. 4. Hardpan 34
No. 5. Red clay 3
No. 6. Soft clay shale 3
No. 7. Hard limestone 6
No. 8. Brown shale 6
No. 9. Sandstone 7
No. 10. Blue shale 13
No. 11. Dark clay shale 4
No. 12. Limestone. 13
No. 13. Gray slate 6
No. 14. Black slate 3
No. 15. Coal (poor) No. 10? 0
No. 16. Gray slate. 11
No. 17. Blue shale 2
No. 18. Limestone (top hard). 11
No. 19. Brown shale 8
No. 20. Clay shale. 6
No. 21.. Hard sandstone 2
No. 22. Clay shale. 4
No. 23. Brown shale 2
No. 24. Blue shale. 6
No. 25. Hard limestone 2
No. 26. Blue shale. 4
No. 27. Clay shale (gray) 17
No. 28. Blue shale. 5
No. 29. Brown shale. 14
No. 30. Blue sandstone. 30
No. 31. Gray slate 14
No. 32. Dark shale 38
No. 33. Coal No. 7? 3
No. 34. Fire-clay (top, good) 10
No. 35. Sandy shale. 8
No. 36. Clay shale 18
No. 37. Black shale. 3
No. 38. Dark shale. 2
No. 39. Brown shale 3
Ft. In
No. 40. Flint rock? 4
No. 41. Dark slate 4
No. 42. Nodular flre-clay 10
No. 43. Brown shale. 04
Nio. 44. Fire-clay. 48
No. $4 \bar{j}$. Sandy shale 36
No. 46. Soft clay shale. 18
No. 47. Sandstone 156
No. 48. Gray slate. 8
No. 49. Dark slate with iron bands. 6
No. 50. Gray slate with sulphur balls 6
No. 51. Black slate, with fossil shells 4
No. 52. Gray shale, with shells and plants 8
No. 53. Black slate 6
No. 54. Blue clay shale. i
No. 55. Limestonc in two bands, with 3 inches shale. 1
No. 56. Dark soanstone 4
No. 57. Limestone. 1
No. 58. Dark clay shale. 6
No. 59. Black slate. 5
No. 60. Coal-upper 5 inches cannel, No. 4 $!$
No. 61. Fire-clay 6
No. 62. Limestone 1
No. 63. Dark clay shale. (i)
No. 64. Black slate j
No. 65. Coal No. 3. 2
No. 66. Fire-clay 5
No. 67. Limestone 2
No. 68. Clay shale (light and dark) 2
No. 69. Coal (poor). 4
No. 70. Sandstone, with sulphurand 1 inch coal 6
No. 71. Dark clay shale. 13
No. 72. Hard sulphur rock. 6
No. 73. Black slate. 6
No. 74. Gray slate and shale. 8
No. 7. Coal No. 2. 8
Total denth $5: 6$

The coal at the bottom of this shaft is without doubt coal No. 2 of the general section, though it is not quite so thick here as it a verages iu LaSalle county. Quite possibly its average thickness will prove to be greater than the above figures may indicate. It is one of the most persistent seams in the State, and furnishes a better quality of coal usually than any of the others. Its freedom from sulphur is sometimes so complete that it can be used in the raw state for smelting iron.

A boring made at Marissa, in St. Clair county, commenced muder the Belleville conl, shows that there is no coal feam of any value below that in that part of St. Clair counts.Boring at Marissa, commencing at the bottom of the Bellevillecoal:
No. 1. Fire-clay Ft. In.No. 2. Limestone or septaria11
$2 \quad 10$No. 3. Fire-clay
No. 4. Septaria? 11
No. 5. Clay shale, with concretions of iron ore 10
No. 6. Black shale 6
No. 7. Clay shale 33
No. 8. Blue slate, with nodules 3
No. 9. Limestone 3
No. 10. Black slate 6
No. 11. Coal 3
No. 12. Fire-clay and coal 7
No. 13. Fire-clay 54
No. 14. Coal 10
No. 15. Fire clay 116
No. 16. Variegated shale 16
No. 17. Light sandy shale $8 \quad 9$
No. 18. Dark limestone 03
No. 19. Light micaceous sandstone 156
No. 20. White fine grained sandy shales $50 \quad 1$
Total depth 225Salt water commenced flowing in No. 17, and increased so as tostop further progress in No. 20. The lower coals are probablyrepresented by Nos. 11 and 14, neither of which are of any practicalvalue. The sandstone and sandy shale constituting the last 65 feetprobably represent the sandstone usually found at the base of theCoal Measures.The following is a record of a boring for coal made at Lementon,in St. Clair county, on the line of the B. \& S. I. R. R., for whichI am indebted to Mr. E. C. Leonard:
Ft. In.
No. 1. Soil. clay and gravel 38
No. 2. Carbonaceous clod coal No. 6? 1
No. 3. Clay shale 11
No. 4. Red and yellow sand? 1
No. 5. Clay shale 12
No. 6. Hard rock 1
No. 7. Clay shale 7
No. 8. Black slate 96
No. 9. Coal No. 5 16
No, 10. Fire-clay and shale 31
No. 11. Hard rock 6
No. 12. Black slate 36
No. 13. Coal No. 3. $0 \quad 2$
No. 14. Fire-clay and clay shale 9
No. 15. Brown shale 4
No. 16. Hard blue shale 9
No. 17. Blue slate 1

Althongh this boring commences above the horizon of No. 5 coal, it was found to be too thin at this point to be of any practical ralue, while the two lower seams penetrated in the bore were also valueless. This barren area is not rery extensive, as No. 5 outcrops on Silser creek, about four miles a little east of north from Lementon, with its normal thickness of fise to six feet. Probably a boring two or three miles east of this point would result in finding this seam of coal with its average thickness, and at less tham a hundred feet from the surface.

The following is a.record of a boring made at Chapin, on the county line between Scott and Cass counties:

Fi. In
No. 1. Soil and drift clays... in

No. \&. Brown shale... II 6
No. 5. Sindstone.. 18 it

No. 8. Clay shale.. . . 1 .
No. 9. Sulphur roek...
No. 10. Fossilifnrous limestone.. 1
No. 11. Hard black slatr.. 8
No. 1:. ('onl... :

Von. 11. Limrstone.. 1
․‥ 1\%. Clay shalu
No. 1i. Blue llmestone.. t

No. 1к. Sindatonu..
No. 19. (iray shale............................ ... і
No. ๑1. Ifard sandstone... :
No. 21. Sulphur rock undernal..

No, ョ!. (iray flmıstone... ii

Total dopth

A shaft was sank to the first coal. No. 12 of the reend, hut it proved to be an mprodnctive seam, and the experiment was soon

abandoned. It is probably the same as the Neeleyville coal, but it is only about half as thick here as it is at Neeleyville, two miles further west.

A shaft was commenced by Mr. Loy, at Edgewood, in Effingham county, and when last reported on was down nearly to the base of the upper Coal Measures, and as it was commenced above coal No. 16 , the highest seam in the State of any practical value, the record is very interesting as showing the regular developments of these upper seams in the centre of the basin. For the following record I am indebted to Dr. G. W. Bassett, of Vandalia:

EDGEWOOD SHAFT.
t. In.

No. 1. Soil, clay, sand and gravel.. 59 . 6
No. 2. Rotten sandstone... 1

No. 4. Red sandy shale.. 2
No. 5. Gray shale.. 16

No. 7. Coal No. 16.. 0
No. 8. Blue shale.. 3
No. 9. Sandstone and sandy shale.. 13
No. 10. Dark clay shale... 20

No. 12. Hard calc, sandstone.. 3
No. 13. Gray sandy shale... 8
No. 14. Clay shale, bottom dark... 10
No. 15. Coal smut.. 0
No. 16. Pebbly limestone and iron stone.. 3
No. 17. Dark sandy shale... 30
No. 18. Dark shale with limestone bands... . 11

No. 20. Fire-clay, with nodules of limestone... 3
No. 21. Calcareous sand or limestone.. 8
No. 22. Blue shale.. 30
No. 2\%. Dark gray shalө ... 30
No. 24. Dark and fawn-colored fossiliferous shales... 40
No. 25. Bituminou's shale, with shells and crinoids... . . 1
No. 26. Coal, upper part cannel-No. 14.. 2
No. 27. Dark gray fire-clay... 3
No. 28. Sandstone and sandy shale .. 18
No. 29. Dark blue shale ... 6
No. 30. Dark and fawn-colored shale.. 12
No. 31. Coal (semi-block) No. 13... 1
No. 32. Fire-clay, with sigillaria, etc. ... 1
No. 33. Dark sandy shale... 12
No. 34. Dark and fawn-colored shales... 27
No. 35. Black bituminous limestone (fossiliferous) ... 3
No. 36. Coal No. 12 1
No. 37. Fire-clav .. 2
No. 38. Dark gray shale, with one inch eoal... 5
No. 39. Fire-clay ... 1
No. 40. Hard sand rock... 3
No. 41. Black sandy shale... . . 5
No. 4.. Hard sandstone 93
No. 43. Very dark shale 4
No. 44. Limestone 4
No. 45. Jointed flre-elay 3
No. sf. Limestonc6
No. 47. Jointed flre-clay 1
No. 48. Black clod-Coal No. 11 2
No. 49. Limestone. 3
No. 51. Jointed fire-clay6
Dio. 51. Limestone 1
No. 52. Bituminous shalle i
No. 53. Dark gray shale, with plants 23
No. 54. Sandstone, with salt-water. 3
No. 55. Dark gray shale. 1
No. 56. Conglomerate limestone0 r
No. 57. Rash coal-Coal No. 11 $:$
No. 58. Blitek elod 4
No. 50. Limestone, partly concretionary 10
No. 190. Black shale 11Total denth

This shaft terminates apparently not very far above the horizon of the Shoal Creek limestone, which lays about 385 feet above the coal in the shafts at Sandoral aud Centralia, the nearest points where any of the lower coals have been opened, and it would have to be sunk about 400 feet further to reach a coal seam of any practical value for deep mining.

BUILDING STONE.

Many valuable quarries of building stone have been opened in this State since the publication of the preceding volumes, but from the press of other duties, I was not able to give as mucli time to their examination as was necessary to enable we to report fully mpon them.
The location of the Southem l'enitentiary at Chester lins resulted in the development of a very important industry, in comection with the extensive heds of limestone and sandstone which had long been known to ocenr at that locality, but had remnined comparatively useless for the want of the lahor and capital necessary for their full development.
That division of the lower Carboniferens formation known as the "Chester (iromp" comprises several beeds of limestone, niandstone and shate, and it is mon the lower part of this formation that the city of Chester and the Southem Penitentinry are sitmated. The following section will show the relative position and thickness of the rocks exposed on the l'enitentiary grounds:

Massive brown sandstone, exposed.. 25
Limestone and shale, partly exposed... 50
Green and blue argillaceous shales, mostly beneath a covered slope......................... 70
Massive gray with partings of green and blue shales, exposed.
The prison buildings and yard are located on the lower limestone of the foregoing section, which is probably more than a hundred feet in thickness, and extends below the low-water level of the river, and to the height of sixty to eighty feet above low-water mark. The quarry in the prison yard has a perpendicular face of about forty feet of solid limestone in beds from one to four feet in thickness, and presents considerable variety of color and texture. Its prevailing color is a light gray, passing sometimes into buff, and again into a dark bluish-gray. The rock is sufficiently compact to receive a high polish, and some of the beds would make a handsome marble. The upper part of the bed is semi-oolitic in structure, while other portions are almost entirely made up of minute bryozoans, and the other low forms of organic life.

These quarries afford material adapted to all the ordinary uses to which limestones are usually applied, and from the favorable location of this institution on the Lower Mississippi, with uninterrupted navigation at nearly all seasons to all southern points, and with transportation by railroad to the iuterior towns where building stone of good quality is always in demand, a ready market will be found for all the varieties of building stone which the prison quarries can supply.

Dimension stone of almost any desirable size may be obtained here, and the foundation stone for the monument to be erected at Chester to the memory of Gov. Bond had just been completed, and was awaiting transportation to the cemetery at the time of my last visit to this locality. This was a single stone, $7 \frac{1}{2}$ by $7 \frac{3}{4}$ feet square, and 30 inches thick, and estimated to weigh about 12 tons.

The prison buildings are mainly constructed of a fine brown sandstone, obtained from the upper bed of the foregoing section. The quarries from which this rock was obtained are about half a mile north of the penitentiary, but on the lands belonging to the institution. The quarries present a perpendicular face of about 25 feet of evenly-bedded brown sandstone, the beds varying in thickness from four inches to four feet or more. It breaks evenly across the lines of bedding, and blocks of any desirable size can be readily obtained. When freshly quarried the rock is soft, and can be easily dressed, but it hardens on exposure, and forms a handsome
and durable stone for massive buildings. The supply of both sandstone and limestone is practically inexhaustible.

At Eransville, on the Okaw river, a fine quarry of excellent limestone has been opened, and a large amount of rock for the abutments of a suspension bridge has been taken out. The quarries are located about half a mile back from the river, and a hundred feet or more above low-water mark. The rock is a massive light-gray semi-oolitic limestone, and is the highest bed outcropping in the vicinity of the town.

The principal quarry shows a perpendicular face of about 15 feet of massive grayish-drab colored limestone, that closely resembles some of the semi-oolitic beds of the St. Louis group. Some of the beds attain a thickness of four or five feet, and will furnish dimension stone of any desirable size.

No characteristic fossils were found in it, but it was underlaid by nearly a hundred feet of shales and thin-bedded limestones, filled with the characteristic fossils of the Chester group, learing no doubt in regard to the formation to which it belongs. It may, perhaps, be the equivalent of the regularly-bedded portion of the upper limestone in the Chester bluffs. The surface over which it forms the bed rock is considerably broken by siuk holes, similar to, but smaller than those which prevail where the St. Louis limestone is the underlying rock. Should a railroad be constructed through this part of Randolph county, these quarries would become a source of profit to the owners, and would add an important item to the business of the road.

Rockitlle Quarrics.-Two miles and a half west of Seville, in Fulton county, extensive quarries have been opened since the report on that county was published, in a sandstone overlying No. 2, and outeropping in the bluffs of a small stream ruming into Spoon river. These quarries are owned by Robert F. Leeman, of Cincinnati, who has erected machinery for manufacturing grindstones, whetstones, seythestones, and also for supplying dimension stone to the Wabash road and the towns on its route. The rock in the quarry shows a perpendicular face of about 20 feet, and furmshes dimension stone from two to three feet in thickness, and as large as can bo conveniently handled.

The best grindstone grit comes from near the middle of the bed, and the stones manufactured liere range from two to four feet or more in diamoter. The rock has a sharp gut, and secms to possess an even texture that makes the stomes desiruble for ordinary use.

These quarries employ about 33 men, and being located immediately upon the railroad, the product can be readily shipped to any point where a market can be found.

The bottom of the quarry furnishes the best dimension stone, especially where it is required to withstand the action of frost and water. Its power of resistance is said to equal any sandstone yet found in the State.

At Marietta siding, about a mile further west, another quarry has been opened, but little work except stripping has been done. It is located on the same sandstone as the Rockville quarries.

COAL OIL.

The Litchfield Coal Company made a boring in the bottom of their coal shaft in November, 1879, for the purpose of determining whether another coal scam thick enough to be profitably mined, could be found below the one they were then working, and at the aepth of $€ 82$ feet below the surface, and 255 below the coal in their shaft, they found the first deposit of coal oil of any value that has been found in the State. It is a heavy lubricating oil, and was associated with salt water and gas, the latter in such quantity that it might be utilized for lighting the city. For the following record of the beds passed through at Litchfield to reach this oil deposit, I am indebted to the Secretary of the Litchfield Coal Company.
Ft. In
No. 1. Surface clay, gravel, etc 6
No. 2. Limestone. 14
No. 3. Black slate and coal. 6
No. 4. Fire clay 4
No. 5. Clay shale 8
No. 6. Shelly limestone 5
No. 7. Shale and gray slate 79
No. 8. Hard, silicious rock 6
No. 9, Fire-clay. 2
No. 10. Shelly limestone. 8
No. 11. Brown silicious rock, very hard 6
No. 12. Soft clay shale 6
No. 13. Gray shale and sandstone. 14
No. 14. Brown sandy shale. 19
No. 15. Sandstone and shale 97
No. 16. Gray shale 45
No. 17. Dark shale 33
No. 18. Black shale 7
No. 19. Coal-No. 5?2
No. 20. Hard fire-clay 16
No. 21. Hard silicious rock 6
No. 22 . Coarse brown sandstone 9
When I visited this locality in October, 1882, there were four wells
in operation, producing about two barrels of crude oil per day each.
The product is a heavy lubricating oil, worth considerably more in
themarket than the common petroleum. It comes, apparently, from
about the base of the Coal Measure Conglomerate, or possilly from
one of the Upper Chester sandstones.
Nothing definite is known as to the extent of the area over which
this oil basin extends, as no boring has been made in the comnty
deep enough to reach the oil-bearing strata, except in the immediate
vicinity of Litchfield. The well commenced at Irving some months
ago may throw some light on this question if carried to the depth
of 1,000 feet, which I understand to be the requirement of the orig-
inal contract.

SALT WELLS.

After the publication of the report on Perry county, a boring was made at St. Johns, for the purpose, mainly, of determining whether there was a coal seam of any practical ralne below the Du()noin coal. At the depth of 970 feet a sandstone saturated with salt water was reached, that extended to the depth of $1,0.01$ feet, the brine rising to varions heights from 150 to 250 feet below the surface. There are now six wells in operation here, with a flow of about 16 gallons per minnte to each well. The present yield of merchantahle salt at these works is stated at 3,500 barrels per ammm, and the product is manufactured into the various grades of salt in common use. No record of the boring eonld he obtained, but two thin coals were reported its ocenrring below the DuQuoin seam.

NOTES ON LA SALLE COUNTY.
LaSalle is one of the most interesting counties in the State, not only from the variety and economic value of its mineral resources, but also from the peculiar geological phenomena that are presented within its borders. Situated on the northern confines of the great coal field of Illinois, its coal products find a ready market in the more northerly portions of this and the adjoining States of Wisconsin and Minnesota, where no productive coal beds have hitherto been found, and its favorable position in regard to the iron and zinc deposits of the northwest makes this county an eligible location for the economical reduction of these metaliic products.
Among the economical resources of this county, bituminous coal ranks first in importance, and is found underlying nearly all that portion of the county lying south of the Illinois river, as well as a limited area north of that stream. Four coal seams, of sufficient thickness to be of practical value in the production of coal, outcrop within the limits of the county, and are the representatives of coals numbered 2, 4, 5 and 7 of the general section of the Coal Measures of this State.
Their aggregate thickness is about sixteen feet, and their range from two to seven feet, and they will be described further on in indicating the localities where they are worked.
An anticlinal axis crosses this county from northwest to southeast, having its center in the valley of the Illinois river, about three miles east of the city of LaSalle, where the Lower Magnesian limestone of Owen, the oldest rock in the State, is elevated above the surface to the height of about 80 feet. The Lower Carboniferous, Devonian and Upper Silurian formations are all absent in this portion of the State, so that the Coal Measures in LaSalle county overlie, unconformably, both the Trenton limestone and St. Peters sandstone of the Lower Silurian series.
The exposure of the Lower Magnesian limestone is restricted to a limlted area in the valley of the Illinois, its outcrop only extending eastward from Split-rock labout two miles. It affords the best hydraulic limestone in the State, and the manufacture of hydraulic cement has been an important industry at Utica for many years.
The St. Peters sandstone, which immediately overlays the Lower Magnesian limestone, forms the main portion of the river bluffs from near Utica to a point two or three miles east of Ottawa, and on Fox
river from its mouth to the vicinity of Indian Creek, a distance of about ten miles. This sandstone will furnish an inexhaustible supply of the best glass sand to be found in the Mississiypi Valley, and in its economical importance it is second only to the Coal Measures in the value of its products. It is found at only two points in the State outside of LaSalle county, viz: at Grand de Tour, in Lee, and at Cap au Gres in Calhoun, counties. Its maximum thickness is probably about 225 feet in the southern part of this county, but it thins out to the northward, so that in the northern portion it does not much exceed 150 feet. Its extensive outuzาps in the bluffs of the Illinois river make its economical products easily accessible to both railroad and water transportation, and the abundance of coal to be obtained in close proximity to this sandstoue indicates that this is one of the most favorable points in the State, or in the United States, for the manufacture of all kinds of glassware, and several extensive factories of this kind have already been established in this county.

The Trenton limestone, which is the next formation above the St. Peter's sandstone, has been so much eroded where it appears in natural outcrops in this county, that no accurate estimate of its original thickness could be made from an examination of its surface exposures, but in boring at Streator for artesian water, its thickness was found to be a little over 203 feet, which is not more than half its arerage thickness in other portions of the State, where it has not been subjected to erosion. The outcrops only show the presence of from 25 to 75 feet of the lower part of the formation, the remainder, with the overlying Upper Silurian strata which were probably deposited over this portion of the State, have been remored by the long-continued eroding agencies which immediately preceded the Upper Carboniferous era.
The 'Trenton limestone affords some good building stone, and some of the layers take a good polish, and make a handsume marble. Usually it has too large a per cent. of alumina and magnesia to make a good material for the lime-kiln.

Clays suitable for brick, pottery and drain tile are abondant, and some of the fire-clays of the lower Coal Measures seem to he adapted to the manufacture of fire-brick.

Coal is by far the most important and raluable mineral product of Lasalle connty, and its favorable position on the extreme northemb border of the productive combled fielmanes the ralue of this prodnet, both for consmmption in manufacturing establishments at
home, and for export to the north, where no coal is to be found either in this or adjacent States.
The local examinations made during the past year were mainly confined to the southern half of the county, and were especially directed to the determination of the number, thickness and relative value of the coal seams to be found within its borders.

The axis of disturbance which has already been mentioned as crossing the county from northwest to southeast, follows the course of the Vermilion river from its mouth to the Livingston county line, and probably beyond, and has produced a marked irregularity in the distribution of the productive coal seams, and rendered their determination somewhat more difficult than would be the case if the beds had remained in their normal position.

North of the Illinois river, and east of this axis, no productive mines have been opened, except on the outcrop of the lower seam, where it has been worked to a limited extent for a local supply, nor is it probable that any extensive coal mines will ever be opened in that part of the county, although there is a considerable area there that is underlaid by thin outliers of the lower Coal Measures.

South of the Illinois, and east of the Vermilion, there is quite an extensive area underlaid in part by three productive coal seams, though, so far as I was able to determine, not more than two of these could be found at the same locality. At Lowell the Vermilion river flows over massive beds of Trenton limestone, and this forms the lower portion of the river bluffs, extending on the west side to the height of twenty feet or more above the river. The limestone is here directly overlaid by the Coal Measures fifty feet or more in thickness, showing the following section:
No. 1. Sandstone partially exposed... 8 to 10
No. 2. Shale, with bands of Septaria.. 10 to 12
No. 3. Black sheety shale.. 2 to 3
No. 4. Clay shale.......................... 6 to 8
No.5. Coal No. 4... 3
No.6. Green and purple shales.. 8 to 10
No. 7. Trenton Limestone.
. 15 to 20
The sandstone at the top of the foregoing section was only exposed in the top of the bluff about half a mile below the bridge at Lowell; and is probably the same sandstone which underlies the Streator coal at points further up the river. A band of limestone occurs somewhere in the bluff at this point, composed mainly of crinoidal stems about half an inch in diameter, a specimen of which was found here by the Hon. Elmer Baldwin. I did not find it in
place, but it probably belongs somewhere in No. 2 of the foregoing section. It was only some three or four inches in thickness. No. 3 of the section I am inclined to regard as the representative of coal No. 5, and a thin coal occurs with it at some other points on the northeastern borders of the coal field. This would make the coal below it the representative of coal No. 4 of the general section, and further evidence in favor of this conclusion will be given further on. The quality of the coal obtained in the vicinity of Lowell is inferior to that obtained from the Streator seam, and also much inferior to that afforded by the lower seam in the shafts at Peru and LaSalle, which of itself is an indication that the Lowell coal is not identical with that.

On Sec. 24, T. 32, R. 2, the section observed was similar to that at Lowell, with the exception of the Trenton limentone. Which is here at least 30 or 40 feet below the river level, the intervening space being occupied by the lower beds of the Coal Measures, which apparently thin out in a northerly direction before reacling that point. The section here is as follows:
No. 1. Sundstono 10 10 12
No. 2. Shale... 61012

Šo. 7. Covered spate.. 1 io 5
No.8. Conl in river bed............ ... 112. 10 :
Forty-seven feet below the base of the foregoing section another seam of coal, 30 inches thick, was found by boring at this point, which I have no doubt is coal No. 2 of the general section, and the lowest seam in the shafts nt LaSalle and Pern.

At Patterson's shaft, on Sec. 31, T. 32, R. 3, this lower seam is worked, and it affords a clean, hard, bright coal, whont 3 fect thick, overlaid by a dove-colored chay shate, quite mulike any beds ontcropping on the Vermilion, either above or helow this point. Coal No. 4 appears to have thimed out toward the somth before reaching this point, white No. 2 and the accompanying stratn thin ont in the opposite direction, so that there is no representative of the coal or the shate aloove it in the vieinity of Lowell.

At kirkpatrick's ford, on the Vemilion, we met with the first onterop of the streator coal, in ascending that stremm. The section at this puint is as follows:

The coal in Patterson's shaft is about 80 or 90 feet below the Streator seam, and the space between the sandstone at the base of the foregoing section and coal No. 2 is mainly occupied by argillaceous and bituminous shales, with one or more bands of hard, impure limestone. No record of the Patterson shaft was kept, and no exposure was found where a detailed section from coal No. 2 to the sandstone under the Streator coal could be made.
As coals No. 2 and 4 are nowhere exposed at the same point on the Vermilion, a superficial examination might lead to the conclusion that they were not distinct seams, but the difference in the quality of the coal they afford, and in the character of the roof shales, and moreover the presence of both seamis on Sec. 24, T. 32, R. 2, where a boring was made to demonstrate the presence of the lower seam, leaves no room to doubt the separate position which they occupy. Hence we are justified in the conclusion that there are three coals outcropping on the Vermilion, all of which are worked at the present time; No. 2 in the shaft at Patterson's, No. 4 in the vicinity of Lowell, and No. 7 at Kirkpatrick's ford, and in the vicinity of Streator.
Some diversity of opinion has existed with those who have given special attention to the geology of this county, in regard to the position which the Streator coal occupies in the general section of the coal strata of this State, but from a careful examination of all the outcrops of the seam from Kirkpatrick's ford, to the last point where it appears above the river level above Streator, I am fully satisfied that it is the exact equivalent of coal No. 7 of the general section. The coal which it affords is perhaps rather better in quality than that hitherto obtained from the upper seam in the shafts about Peru and LaSalle, but it has been generally neglected in all the shafts where Nos. 2 and 5 are found, and therefore its average quality at those points has not been fairly determined. It ranges in thickness from 5 to 8 feet, with an average of about 6 feet, and it probably affords as much coal at the present time as No. 5 , which is the next in average thickness, and the one most extensively mined in the central part of the county.

In the ricinity of Brock's ford, two miles south of Streator, a limestone occurs near the top of the bluff, that closely resembles the limestone south of Petersburg, in Menard county, which there lies some 25 to 30 feet above coal No. 7 , and it contains a similar group of fossils. In addition to this, the shales below the Streator coal contain ironstone concretions, completely filled with the little crustacean figured, and described in a preceding rolume under the name of Leaia tricurinata, which is regarded as a characteristic fossil of the shales under coal No. 7, from whence it has been obtained at several localities in the State. The following section shows the strata to be seen in the bluffs of the Vermilion, between Brock's ford and Streator.

Fect. In.
No. 1. Light gray compact limestone...
No. 2. Blue sandy slales and soft sandstone, with concretions of sandyironore 35
No.3. Bltumlnous shalo... 0 to :

No. 5. Shale with discoidal concretions of iron ore..................................... 6 to i

No. 7. Hard con retionary sandstone.. 12 to 15
No.8. Shaly sandstone, extending below the river lovel, exposed 20 to 25

The limestone at the top of the section contans several species of small Brachiopods, the most common being Athyris subtilitu, Spirifer lineatus, Tcrebratula boridens, and a small Naticopsis, or Truchydomia, which were mostly in the form of casts, the pustulose shell being removed.

The hard sandstone, No. 7 of the section, will make a durable stone for rough walls where strength is the main requisite.

Between Streator and the mouth of Prairie creck, the sundstone under the Streator conl rises so as to form with the sandy shales below, a perpendicular cliff about forty feet in height. Over this sandstone ridge the coal has been carried away by the denuding agencies of the Drift period, but a short distance away from the river it comes in again immediately below the drift. Near the mouth of the creek the sandstone becomes thimer, and the coal appears above it and slopes rapidly down to the river level.

Several horings have been made in the ricinity of Streator, to the horizon of coal No. 2, but I was mable to obtain any reliable record of the strata passed throngh. I was informed, however, that the distanee between the two seams was about 80 feet. The quality of the coal afforded by No. a is generally superior to that of any of the higher seams, hut it seldom exceeds a thichess of 3 or 4 feet, and lying deeper below the surface, and conseqnently requir-
ing a larger investment of capital to reach it, it has generally been neglected where the upper seams were developed. In McDonough county, where its average thickness scarcely exceeds two feet, it has furnished the main supply of coal for the city of Quincy, including the river trade at that point for the past twenty-five years, and will no doubt continue to do so for at least another decade.

The aggregate thickness of the Coal Measures on the east side of the axis, heretofore mentioned, probably does not much exceed 200 feet, and the distance between coals No. 2 and 7 is about 80 feet, while on the west side the distance between these coals is about 200 feet, and the entire thickness of the Coal Measures may be estimated at over 600 feet. This variation in the thickness of this formation is probably in part due to the rapid thinning out of the beds towards the eastern border of the coal field, and in part to erosion which has carried away on the eastern side nearly all the strata above the horizon of No. 7 coal.

The details of the following section of the Union Coal company's shaft, at LaSalle, was furnished by Mr. Chas. J. Devlin, the acting Secretary of the company. This shaft is located in the south part of the city, and commences below the main limestones that outcrop along the river bluffs from LaSalle to Peru.
Ft. In.
No. 1. Clay shale 11
No. 2. Brown shale 11
No. 3. Coal. 1
No. 4. Brown shale 20
No. 5. Hard limestone 3
No. 6. Shale 10
No. 7. Rock 1
No. 8. Shale. 12
No. 9. Fire-clay. 6
No. 10. Rock 3
No. 11. Fire-clay 12
No. 12. Pebbly clay6
No. 13. Clay shale. 6
No. 14. Black slate 10
No. 15. Clay shale or fire-clay 15
No. 16. Coal, No. 7 (?) 4
No. 17. Fire-clay and clay shale. 24
No. 18. Sandstone 2
No. 19. Black shale 13
No. 20. Coal, No. 5 5
No. 21. Clay shale. 60
No. 22. Limestone. 5
No. 23. Shale, with some limestone. 71
No. 24. Dove colored shale. 12
No. 25. Coal, No. 2. 4
Total depth 330

I refer No. 16 in this sluaft to the horizon of coal No. 7, mainly from its stratigraphical position, but it is not impossible that it may represent No. 6 instead. No fossels wore found in connection with it, at the only outcrop of the seam I was enabled to examine, and hence its stratigraphical position is the only evidence that was available for its identification. The outcrop of this coal was found in a deep ravine, just below the uplift at Split Rock, where an opening had been made to procure the potter's clay, which forms a heavy bed immediately below the coal.

Two miles and a half north of La Salle, one of the deepest shafts in the county has been sunk by the Caledonia Coal Company, and the following details of it were kindly furnished by the pit boss, Mr. Johi P. Duncan:
No. 1. Drift clay and gravel. Ft. In. 13No. 2. Green and purple shales, with thin bauds of impure limestone and a
thin coal seam 60
No. 3. Limestone, in two beds. 2No. 4. Llue, green unl gray shales
215
No. 5. Black slate 8
No. Co 1 No...
No. 6. Coal No. 7 (?) 4
No. 7. Fire and potter's clay 16
No. 8. Clay shale 1.1
No. 9. Coal No. 5G
No. 10. Fire-clay.. 5
No. 11. Sandstone. 5
No. 12. Clay shale 54
No. 13. Brown shale. 90
No. 14. Black slate 2
No. 15. Saudstone 14
No. 2li. Black slate 2
No. 17. Clay shale 14
No. 18. Coal No. 2, 3111
Total depth 4

The lower seam is the one worked at the present time, in this shaft, and it is said to be underlaid here by a bed of excellent fire clay, from 12 to 14 feet in thickness. The coal which it affords is superior in quality to that from either of the upper seams.
Tho beds above the main limestones, No. 3 of the Coledonia shaft, were found well exposed, in the ligg cut on the Illinois Central railroad north of the zine works, and the following is a detailed section of them as they appeared there:
No. 1. Firwen and asti-gray clay whates Feet
No. 2. Nodular ealeareous slabla 3
No. 3. (irrenlsh clay shme 121015
No. 1. Impure chonealato.ealored Inmentome \because
No. 5. leal unil troons shaten. 11
No. G. Groen, shaly clay 8

> LA SALLE COUNTY.
Feet.
No. 7. Nodular shale, or shaly limestone 6
No. 8. Upper main limestone. 12
No. 9. Green shale. 2
No. 10. Lower limestone. 10 to 12

These are the highest Coal Measure strata outcropping in the county, and they have been referred by some observers to the Permian age, but I was unable to find any satisfactory evidence of unconformability between them and the limestone No. \&, on which they rest, and the fossils, so far as they have been determined, are of well-known Coal Measure forms.
The most common fossils in the calcareous shales and impure limestones of this horizon were the following species: Orthis Pecosii, Chonetes Flemingi, Productus La Sallensis, Hemipronites crassa, Athyris subtilita, all of which are characteristic Coal Measure forms. On the south side of the Illinois, these beds make their appearance in the cut of the Illinois Central railroad from the river bluff to a point half a mile or more beyond Oglesby, where the railroad grade finally ascends entirely above them and onto the overlying drift deposits.
The beds immediately below the main limestones are well exposed in the bluffs between La Salle and Peru, and there is a decided increase in the thickness of the shales as we recede from the axis of disturbance, already mentioned on a preceding page. On the Little Vermilion where it intersects the bluffs of the Illinois, the main limestones are separated by only about two feet of greenishcolored shales, but in descending the river bluffs toward Peru, the shale increases to a thickness of 8 or 10 feet. The following section was made along the river bluff in the vicinity of Peru:

Ft. In.

No. 1. Upper limestone.. 10 to 12
No. 2. Green and purple shales... 6 to 8
No. 3. Lower division of main limestone.. 6 to 8
No. 4. Bituminous shale... 1
No. 5. Gray, brown and green shales .. 8
No. 6. Impure coal... 0
No. 7. Gray and green shales.. 12 to 15
No. 8. Nodular limestone... 4 to 5
No. 9. Green nodular shale... 12 to 15
No. 10. Hard gray limestone.... .. 2 to ;
No. 11. Green shale (exposed).................... ... 2
No. 12. Unexposed to river level.. 15 to 20
No. 1 of this section is the main quarry rock used as a building stone in LaSalle and Peru. It is a compact gray limestone, considerably stained with the oxide of iron, and resembles the limestone
on Sugar Creek, in Sangamen county, used in the construction of the Old State House at Springfield.

The most characteristic fossils of this limestone are Productus Nebrascensis, P. Prattcnianns, P. punclatus, Spirifer cameratus, Athyris subtilita, Pinna per-acuta, crinoidal joints, and, rarely, the body of a Enpachycrinus or Potcriocrinus. A few fish teeth and spines have also been obtained from this limestone.

The lower division of the limestone No. 3 of the foregoing section, which may be reganded as a distinct bed, is quite argillaceous and of but little value as a building stone. It is uneveuly bedded, and the layers are separated by shaly partings, that are, at some points, completely filled with fossil shells. The fossils of this limestone are Athyris sultilita, Terebratula bovidens, Spirifer cameratus, S. lineatus, Productus longispinus, Spiriferina Kentuckensis, Platyostoma Peoriense, numerous corals not yet determined, and casts of Pleurotomaria, Bellerophon and Nautilus of several species.

I have been inclined to regard this limestone as the equiralent of that at Carlinville, which it resembles, both in its lithological characters and in the specific character of its embedded fossils. If so, it represents the horizon of No. 9 coal, and is the dividing line between the upper and lower Coal Measures. It is rather more argillaceous here than in Macoupin county, but otherwise it bears a close resemblance to that rock, and its position is about where that limestone, if present here, should be found.

Onl the south side of the Illinois river there are two or three coal slafts in operation, only one of which had any record of the beds passed througl. The Oglesby shaft furnished me the following section :

No, 1. Drill clay and gravel.	Fl
No. 2. Limestone, in two bods	25
N゙o. 3. Shalo	7
No. 4. Coal.	0
No. 5. Shalo..	\%
No. 6. Hard rod rock	1
No. 7. Shalo	s
No. 8. Sanpstone.	4
No. 9. lied shale	13
No. 10. Gray shata	$!$
Ṅ. 11. Jimestono.	3
No. 12. Stinle	19
No. 13. Ilaril rock	2
No. 11. Slialo.	S9
No. 1\%. Sundalono	14
No, 16. Shalo.	[14
No. 1\%. Black whato	18
No. 18. Conl-No. 7?	3

No. 19. Fire-clay and shale Ft_{50} In.
No. 20. Coal-No. 5
No. 21. Fire-clay 9
No, 22. Sandstone 4
No. 23. Dark red shale. 6
No. 24. Sandstone and sandy shale 11
No. 25. Shale 71
No. 26. Gray clay shale 6
No. 27. Coal No. 2 $3 \quad 6$ 6
10Both the lower seams are worked in this shaft, and they furnishall the coal mined in the vicinity of LaSalle or Peru at the presenttime, but it is quite probable that when a careful examination of theupper seam is made, it will be found to afford, at some points, afair quality of coal. It is unquestionably the representative of eitherNo. 6 or 7 of the general section, and both of them are extensivelymined in other portions of the State.
Whether the Streator coal, and the upper seam in the shafts at LaSalle and vicinity, are identical, is a point I have been unable to decide with certainty, as no fossils were found associated with the latter at the only localiiy where its outcrop could be seen, and the associated strata afford no satisfactory evidence on this point.
The character of the deep-lying formations beneath the southern part of LaSalle county was fully determined by the artesian boring at Streator, and I am indebted to Dr. E. Evans for the following record of this well:
No. 1. Drift-clay, sand and gravel Ft.
No. 2. Coal Measures 211
No. 3. Trenton limestone. 203
No. 4. St. Peters sandstone 225
No, 5. White limistone. 90
No. 6. White sandstone 133
No. 7. White limestone. 211
No. 8. White sandstone. 37
No. 9. Dark gray limestone 50
No. 10. Fine reddish sandstones. 15
No. 11. Dark gray limestone 13
No. 12. White and brown sand 1
No. 13. Gray limestone 18
No. 14. White and brown sandstone. 168
No. 15. Blue shale 100
No. 16. Dark limestone 73
No. 17. Variogated sandstone. 187
No. 18. Soft limestone 60
No, 19. Variegated seales 158
No. 20. Dark red sandstone. 80
No. 21. Blue shale. 50
No. 22. Bluish, drab and buff limestone 383

Nos. 5, 6, 7 and 8 sloould probably be included in the Calciferous group, while all below that may be referred to the Potsdam period. and this boring indicates a very rapid increase in thickness of both these formations in their southward extension, over what they attain in Wisconsin and Minnesota, where they form the surface rocks over extensive areas.

Peddicord's well, near Marseilles, was carried to the depth of $2,18!$ feet, but the flow of water was only one and a half barrels per hour, The following is a copy of the published record of this well:

No. 1. Drift clay, gravel, etc... 2_{6}
No. 2. Cliay shale ... is
No. 3. Limestone ..
No. 4. St. Peters sandstone ..
No. 5. Calciferous ...
No. 6. White sindstonė.. gie $_{2}$
No. 7. Limestone ... 5

No. 9. Slate ... 11:

No. 12. Sandstone
No. 1:3. Limestono ... 16
Total dopth
$2.14!$
The principal flow of water was from No. 12, aud it rose within 16 feet of the surface until the well was tubed, when it orerilowed the surface, yielding about 36 barrels per day. The quality of the water is not given. No. 5 is described in the muluished section as Calciferons, but it probably includes nearly or quite 200 feet that properly belongs to the Potsdam period. The similarity in the lithological character of the beds composing these two gromps is such that it is impossible to determine, from the material brought up from an ordinary boring, where the stratum belongs, and the thickness of the Calciferons must be determined by its genernl average at other localities.
'The St. Peters sandstone, and the white sandstone of the Calciferons group, were both found to he water-hearing in the streator well, the water from the St. Peters coming within foet of the smrface, and that from the Caleferons within about 34 foct, and the water was reported to be sweet and nuparently free from deleterions mineral substances. The water from the Potsdam was brackishamd mufit for eommon use, but rose in a tube to the lieight of fis feet above the surface.

The loention of this well is of feet above Lako Michigme and 618 fect abowe sea level.

The surface deposits of LaSalle county will furnish an inexhaustible supply of sand, clay and gravel. The sand pit in the vicinity of Streator furnishes a clean, sharp sand, that is shipped in large quantities by railroad wherever a market can be found. The following section may be seen at this pit:
Brown clay .. 4

Coarse gravel..
The clay used in making tile at Streator comes from the bottom of what were formerly shallow surface ponds, that have been filled up mainly by the wash from the ligher grounds by which they were surrounded. It is a tough, fine, unctious clay, and at some points is found as much as ten or twelve feet in thickness. It is evidently more modern than the brown clay of the Drift period, and overlays that deposit when both are present. The growth and decay of aquatic grasses, that usually abound in shallow ponds, produce a fine silicious sedinent, and this, with the wash from the higher grounds adjacent to them, will fairly account for the occurrence of these tough clays in this position. In other portions of the county the brown clay of the Drift, or, more properly speaking, of the loess, is used in the tile factories with satisfactory results.

In closing these brief notes on the geology of LaSalle county, I desire to express my obligations io Dr. E. Evans, of Streator, for valuable information in regard to the geology of that part of the county, and for hospitable entertainment, and transportation to such localities on the Vermilion river as it seemed desirable to visit; and also to the Hon. Elmer Brldwin for similar favors while exploring the outcrop on the river in the vicinity of F'arm Ridge ; and also to Mr. John B. Duncan, of the Caledonia shatft, Mr. Chas. J. Devlin, of the Union, and the proprietors of the Oglesby shaft, for a detailed record of their works.

It is to be regretted that a detailed record of every coal shaft is not kept, for such records would be of great value, not only to the proprietors and managers of the mines, but to all who desire to obtain reliable information in regard to the value and extent of our coal resources.

PARTII.

PALEONTOLOGY OF ILLINOIS.
 SECTION I.
 DESCRIPTIONS OF FOSSIL VERTEBRATES.

By ORESTES ST. JOHN and A. H. WORTHEN.

DESCRIPTIONS OF FOSSIL FISIIES.

A Partial Revision of the Cochliodonts and Psammodonts; Including Notices of Miscellaneous Material Acquired from the Carboniferous Formations of the United States.

By ORESTES ST. JOHN and A. H. WORTHEN.

INTR0DUCT0RY.

The present work is largely though not exclusively concerned with the consideration of those distinctively carboniferous families of ancient Selachians, the Cochliodontidæ and the Psammodontidæ. Although in the majority of instances the classification now adopted has necessitated the amending, amplifying, and curtailment of the attributes ascribed to genera, it has not been deemed necessary to give a detailed diagnosis of all the genera thus revised. In the latter instances the descriptions of species will afford the necessary information relating to the peculiarities of the genera to which they belong, and a glance at the illustrations will often convey a vivid impression of those distinctions.

It has been impossible to avoid repetition of details in the notices of the species, especially in the desire to render for each species a comprehensive diagnosis by itself ; otherwise the descriptions would mainly consist of comparisons of their distinctive features as contrasted with one another, and we have deemed it the safer plan to err on the score of details rather than brevity, stating the facts concisely as possible, but omitting none of evident consequence as aids to a fair conprehension of their special characteristics and their resemblances and distinctions compared with allied species. In no similar investigation have so many and varied materials relating to these interesting groups of Selachians been brought forward for critical consideration at the same time. That the subject was somewhat involved may be readily understood by all students; but to none so much as to the specialist can the actual state of things in this relation be at all adequately appreciated. This has largely resulted from incomplete data, and to some extent also to the lack of familiarity with the association of forms in the same deposits. For it must be confessed that in the very few exceptions these remains
have treen considered individually, either the various forms have been interpreted as distinct speeies, or in some instances they lave been regarded as the representatives of distinct genera. This has given rise to the establishment of generic groups which already we see the neeessity of abandoning, while the specific forms are largely curtailed by their association into well-defined categories embracing two, three, and even fomr distinct forms, all pertaining to a single species. There can no longer remain a donbt as to the specific identity of the four forms which Messrs. Newberry and Worthen deseribed under the head of Corhliodus nobitis (C'orh. Latus) of Dr. Leidy; and yet we are here furnished three gronps formerly remarded as possessing generic importance, viz: Cochliodus, Strchlonlus, and Ifclodus, in part. The amouncement of l'rofessor Richard Owen of the discovery of a third mandibular form of Cochliodus (the preeise nature of which, however, we are not familiar with) very likely will add a fifth form to those already noted moder so-ealled generic heads as really belonging to the gems Cochlodus. Very nearly the same state of things obtains in relation to the genera Dellorlus, Sranduludus, P'ucilodus, ete. Indecd the varions forms of all these Cochliodont genera have very generally reeeived specitie designations, while some of them have been ilentitied with genera widely differing from one another, as is the case with the forms herein noticed under the generic term Orthoplcurodus.

While the facts elicited by the stratigraphical knowledge accompanying the greater part of the moterials smmitted to n s have rendered possible, indeed neeessitated the revision of the genera of the Cochliodonts, it has also developed interesting amd importunt ficts bearing on the derivation and relations of thene genem. That these may be made comprehensible in hriefent statement, the sulbjoined tabmar review of the geologieal formations immediately concerned, may not he inadmissible in this phace.

Thble of Carbonferons formations, as doveloped in the region of tho Upper Mississippi:

[^4]In the majority of cases the remains of fishes are found in definite, readily identifiable horizons, indeed chiefly in a limited stratum, where they are crowded together forming veritable bone-beds, though by no means thus restricted, as their remains are found more or less scattered in many formations. Yet the latter occurrences are, as might be expected, comparatively rare.

The earliest genus, Psephodus, whose relations with the more typical representatives of the family may be a matter of reasonable doubt, had its beginning in the oldest or Kinderhook formation, only ceasing in the latest or Chester epoch of the Lower Carboniferous period. Near the close of the Kinderhook epoch Vaticinodus was introduced, authentic representatives of which continued to exist during the Upper Burlington epoch. Tceniodus, whose relations seem to be nearest Psephodus of all the true Cochliodonts, is first met with in the Keokuk formation, continuing thence into the Chester, where it is last seen. During the Upper Burlington epoch Deltoptychius was introduced, which appears to be a modification of Vaticinodus, as is also Stenopterodus, which originated at the same time, and whose remains occur in each succeeding formation as late as the St. Louis, while Deltoptychius continued to exist during the deposition of the Chester limestone. In point of time, also, Sandalodus began contemporaneously with the latter genera, with which its affinities appear to be most intimate, although it presents a more marked modification of generic characteristics than those distinguishing the three last named genera, one from the other. In Orthopleurodus these modifications are carried to an extreme, as especially notable in the maxillary terminal form, though its mandibular terminal teeth are very similar to the homologous form of Deltoptychius, while the median form of the same jaw is intimately allied to that of Sandalodus. Pertaining to the same category are the forms of Xystrodus, and, perhaps, Tomodus, which apparently was the contemporary of the above mentioned genera, its remains being first encountered in the Upper Burlington, and only ceasing in the lower Coal Measures. It presents the simplest form of the group to which it especially pertains, and throughout its extensive vertical range or distribution in time, it maintains its distinctive peculiarities with remarkable persistency.

Considcring the more typical representatives of the family, the carliest to appear is C'lifonodus, which began during the Lower Burlington epoch and is last met with in the St. Louis. It is clearly the forerumer of Pucilolus and Cochliodus, which appeared at later epochs, and which are modifications based upon the same plan, and which might readily be supposed to possess features that entitle them to at least sub-family rank in contradistinction to the before-mentioned genera. While Cochliodus was apparently of comparatively brief duration, since its remains have thus far only been met with in the St. Louis and Chester formations, Pacilodus, the carlier of the two to make its appearance, dates from the Warsaw, the last representative being derived from the upper Coal Measures. Throughout this rast geological range its species manifest the least tendency toward differentiation, on the contrary maintaining the distinctive characteristics of the genus with extraordinary fidelity to the type. The same may be said of Deltodus, whose inception is contemporary with Chitonodus, with which its rclations are, perhaps, the most intimate. This is especially pronomeed in the casc of the bomologons terminal forms of the mandible of either gemns, Biltodus maintaining a simple convex anterior lobe in lien of the median coronal prominence of Chitonodus, which is a mere modification of the former, and which reached its extreme differentiation in Cochliodus; but in the supposed terminal form of the mper jaw we are again prosented with a marked departure from the Cochliodes type, the significance of which is songht in the previonsly mentioned gemns Somdalodus, while a less intimate relationship with Deltoptyclius and Orthopleurodus is moterl, hat sutticient to arrest attention with suggestions of their common origin. Delforlensis evidently was a later molitieation of Diftomlus, amb, althongh it is a well defined group, it is mot clear whether it should le deemed of greater rank than sulgeneric.

The foregoing ohservations are rather what the comparatively meagre facts seem to suggest, than actual demonstrations of a complete system of derivation and gemerie relations. It is therefore with no small digeree of trepidation we renture to exhihit thees suppored relationships in diagramatic form ; bint it will at laast mbas re the purposes of illustrating in a vivid mamer the stratigrapheral range of the varions generic gromps alhuled to.

DIAGRAM ILLUSTRATING THE STRATIGRAPHICAL DISTRIBUTION AND THE RELATIONS OF THE GENERA OF COCHLIODONTS.

Kinderそook.

Besides the above mentioned Cochliodonts and Psammodonts, a considerable number of heretofore undescribed forms, pertaining chiefly to Ichthyodorulites, or defensive spines, are noticed, being acquisitions acquired since the publication of the preceding volume of the Illinois Geological Survey. As in connection with the latter work the authors owe acknowledgment to the same gentlemen, who have not only contributed material, but have freely shared the results of their familiarity with the objects themselves, and the invaluable information relating to their stratigraphical association and distribution, so that we feel a double interest with them as contributors to a knowledge of these early vertebrates.

Besides the magnificent collections of Mr. Frank Springer and Mr. IV. C. Vinn IIorne, in the use of which we lave enjoyed unrestricted liberties, we are indebted for valuable aids, which are duly acknowleiged at the proper place in the accompanying text. Throngh the courtesy of Dr. Charles A. White, palieontologist of the U. S. Geolugical Survey, we have had access to the collections of the National Musenm, which have leen bronglit in by Government expeditions to the Territories. We are also under great olligations to Dr. Joseph Leidy, who kindly procured us the loan of valuable types belonging to the Mnsenn of the Academy of Natural Science of Philadelphia. It affords us pleasure in remiering acknowledrgments and our thanks to Lord Enniskillen and Dr. L. de Konnek, for valuable information in relation to the occurrences of Carboniferons fishes in Great Britain and Belgium. We are also specially indehted to Mr. Charles Wachsmuth, who has favored us with much additional material from the kinderhook and Burlington formations. Similar farors have also been extended us by Mr. L. A. Cox, of Keokink, Mr. Alexander Butters, formerly of ('arlinville, and Dr. George Hambach, of St. Lonis. We have also had the use of Mr. L. A. Fuller's collection, and Mr. A. S. Tiffiny, of Mavenport, has placed in our hands some very interesting inaterial from varions Carboniferous and Deronian formations. Professor I. C. White, of the l'emsylvania (ieological Survey, has kimily furnished us material from the Lower Carbonferons fish-horizons, which he has diseovered in Western I'emsylvania; hat these last, we regret, we have bern eompelled to omit in the present work.
(). 内'т. J. nill A. II. IV:

COCHLIODONTID \notin, 0 wen.

Genus PSEPHODUS, Agassiz.

Psephodus, Λ gassiz, MSS., 1859, etc.
The genus Psephodus was recognized by Professor Agassiz iu 1859, by whom Coelliodus magnus, Ag., of the Irish Mountain limestone, was regarded as the typical species. This determination was ascepted by British palæichthyologists, and a few years later, 1862, it was authoritatively published by Messrs. J. Morris and G. E. Roberts, in the Quat. Journ. of the Geol. Soc. of London, XVIII, p. 102. At a subsequent date, 1866, Messrs. Newberry and Worthen, in their investigations of the fossil fishes published in the report of the Illinois Geological Survey, Vol. 2, p. 92, described several congeneric species from the American Lower Carboniferous formations, however, evidently overlooking the prior published conclusions arrived at by Professor Agassiz, as they distinctly identify the type species of Psephodus with the American species, to which they applied the generic designation Aspidodus. In regard to the generic identity of the American species described under the latter designation, as also those additional ones herein first made known, with Psephodus maguus, Agass., there is not the least doubt.

In the present work the results of the attempts made to identify the probable complete dentition of Psephodus are omitted, only such forms receiving brief diagnostic notice, the relations of which may be considered as even more than probably determined. These consist of two distinct forms of heavy, more or less spirally in-rolled triturating or crushing plates, investing the median region of the rami of the jaws:

First, teeth presenting a trapezoidal outline, the crown traversed longitudinally by a low, obtuse-crested ridge, culminating posterior of the median line, the imere margin somewhat angularly rounded, outer extremity always truncate with channeled, crenulate articular surface, the lateral borders undulated as though for cöadaptation with the lateral articular extremities of narrow serial teeth.

Second, teeth generally more obliquely trapezoidal in outline, in which the coronal ridge is relatively inconspicuous, and the inner margin gently arched, from which the lateral horders less rapidly converge towards the outer extremity, their articular surfaces also undulated. Coronal surface minutely punctate. The above forms are provisionally referred to opposed positions on the lower and npper jaws respectively, chiefly on account of the somewhat stronger resemblance of the first mentioned form with the contour of the mandibular teeth of typical Cochliodonts. With the above remains are associated narrow or transserscly elongate teeth, whose crenulated edges and coronal contour clearly point to their intimate linship with the preceding forms. The latter include the European form originally described under the term Helodus planus, Agass., which was by Capt. Jones regarded as belonging to I'sephodus mugnus. There are other similar forms more or less numerously represented in the collections, which may also prove to have been associated with those above noticed.

In reference to the dentition of P sephodus our information is still meagre, although the identity of a variety of seemingly widely direrse forms may be asserted with a degree of confidence. While certain conspicuous forms belonging to the genus may be compared with the dental elements met with in Cochliodus. there was uncuesstionably a marked contrast in the character of the combined dental armament of the jaws of those genera. Indeed, the resemblances between them are but little more intimate than olitnins in the instance of Cestracion and Cochliodus. While the metian portion of the rami of the jaws of I 'siphodus was enveloped ly a moderately contorted dental plate, constitnting its chief point of resemblance with Cochlionlus, this plate was flamked on cither side by series of testh disposed in rows from within outward similar to the oecurrence of the teeth mon the jnws of Ceatrafum. 'Therefore, the solid triturating plates of I'sciphodus are not strietly homokoguls with the hargo posterior teeth of Cochliedus, hint they are more properly designated as "median" teeth of the rami of the jaws.

Not infrequently individuals of the median forms are met with which show one or more partially detached, laterally elongate teeth at the outer extremity of the plate, which is always abruptly truncated, leading to the inference that these median plates themselves were, in the earlier stages of development, made up of series of teeth. On the other hand, certain forms occur which have been noticed under various generic designations (Desmiodus, Orodus), which are composed of series of transverse coronal crests, firmly soldered into a continuous plate at the impingement of their bases, in which condition they bear a remarkable resemblance in outline and direction of inrollment, to the above mentioned median forms. But beyond deducing certain permissible conclusions bearing on the probable affinities of Psephodus, the meagre array of data is deemed insufficient to warrant, at the present time, the critical relegation of the diverse dental materials alluded to in this connection.

In American geological history, Psephodus was amongst the earliest representatiens of its order in the Lower Carboniferous period, its first occurrence dating from the Kinderhook epoch. Although the succeeding Burlington, Keokuk and Warsaw formations have as yet afforded no evidence of the presence of the remains of the genus (if we except the occasional appearance of Helodus planus-like forms), its forms are sparingly met with in the St. Louis deposits, and in the super-adjacent Chester division several forms, probably pertaining to a single species, are conspicuously prevalent. The various species occurring through so great an interval of time, ranging from the earliest to the latest epoch of the period, exhibit an extraordinary persistency of the type without parallel amongst the Cochliodonts, if we except the doubtful relations of the later introduced species provisionally identified with Vaticinodus. From this point of view the genus would appear to be prominently isolated so far as relates to precursor or subsequent derivatives. Of the former we have not even the vaguest intimation, and the latter, even under the most liberal interpretations, have undergone excessive differentiation. The presence, in the extreme anterior portion of the jaw of Cochliodus, of transverse coronal ridges, if not of isolated teeth, in series corresponding to those abaft and forward of the convolute median plate in Psephodus, offer tangible evidence of their probable origin, though their relations are less intimate than might be expected in groups almost coeval in their inception.

While it is not deemed improbable that the acquisition of more complete evidence may lead to the discovery of still more intimate relationship between Psephodus and typical Cochliodonts, the relations of the former with Psammodus are so remote as to preclude the inference, which has, however, found expression, that Pscphodus constitutes a sort of transition connecting the Psammodonts with the Cochliodonts.

Psephodu's obliques, St. J. and W.

Pl. I, Figs. 1, 2.3,4, 5.
Under the above term are included series of teeth represented in the collections by a number of individuals, which range themselves under two, perhaps three or more well-defined groups, distinguished by their outline and general conformation, and which, takeu together, are not considered separable into so many distinct species; on the contrary, there exists strong presumptive evidence of their laving constituted parts of the dentition of one and the same species.

Only the two most conspicuous forms are noticed in this place.
One of these forms is represented by teeth which possess the characteristics of what may bo regarded the typical representative teeth of the genus Pscphodus, comparable with the larger and more tumid teeth of P. magmus, Agass., distinguishable, however, by their more symmetrical and smaller size. In general outline convolutely and irregularly pentangular, moderately imrolled, onter extremity slightly rounded and obliquely truncated from front outward and downward, the basal portion showing a broad channel beneath the projecting coronal border; anterior border slightly sigmoidally curved, forming nearly a right angle with the outer margin, coronal enamel forming a narrow crenulated fold above the nearly verticalychameled base; posterior border similarly curved, but of greater extent, agreceng in other respects with the opposite side; inmer margin broadly rounded or obtusely angular, coronal portion well-detined from the deep, somewhat produced and shallow-chameled base (in most specimens the basal portion is worn away, the crown projecting beyond its original support). Coronal surface moderately arehed in both direce tions, traversed a little posterior of the middle by the median ridge, which forms a rather prominent angulation partaking of the curvature of the defining borders, anterior slope broader than the fomewhat more coneave and abrupt posterior dectivity. whieh latter is prombed into an ohtuse alation at the extreme posterior angle, beyond which extends the bose ferminating in an ohtinse spur. Sur-
face minutely and closely punctate. The proportionate dimensions of large examples vary considerably, according to the state of truncation of the inrolled extremity; in other respects, however, as in general outline and coronal contour, the observable variation of individual teeth is comparatively unimportant, save what is attributable to wear while in use. Both the anterior and posterior borders are faintly undulated, suggesting their association with series of smaller teeth. The latter condition is even more markedly exhibited in the teeth (including this particular form,) from the Chester limestone, Psephodus crenulatus, N. and W., with which the th described under the name Aspidodus convolutus, N. and W., is specifically identical. The posterior sinuations are fewer, indicating larger teeth for the contiguous series than those at the opposite border. The relations of crown to base are shown in the illustrations given of the teeth in question. These teeth probably occupied a median position upon the rami of the mandible. An ordinary-sized tooth measures in greatest breadth between the inner angles 40 mm ; ditto, across outer extremity 25 mm ; length along antero-lateral border 20 mm ; ditto, postero-lateral border 30 mm ; depth of tooth at middle of anterior border 3 mm ; ditto, middle of inner margin 5 mm ; greatest length along coronal ridge 40 mm . The proportions will, of course, be found to vary in individuals of the same age, in accordance with the abbreviation of the outer extremity.

Teeth strikingly in contrast with the preceding form, occurring in the collection with the same frequency, but possessing superficial characters which strongly suggest their intimate connection with that form \% may be regarded as the opposed form of the upper jaw. They are distinguishable by their trapezoidal outline and relatively uniform low coronal surface, and proportionally less robust build. Outer extremity obliquely truncated in the same direction observed in the previously mentioned form, or from the anterior angle outward and downward, and forming nearly a right angle with the antero-lateral border, the narrow coronal fold projecting beyond the furrowed base, and somewhat irregular in outline, forming an articular edge with a similar preceding tooth of the same series; antero-lateral border proportionately shorter than in the first noticed form, slightly curved sigmoidally, nearly vertical, with a narrow channel defining the crenulated coronal fold from the base, and more or less distinctly undulated; postero-lateral border somewhat more strongly curved, obtusely rounded at the inner posterior angle, the crenulated coronal fold slightly overarching the basal portion, which is also
channeled and undulated as in the opposite border; inner margin broadly rounded, base excavated as in the previously described formi. Crown very slightly arched transversely, well-preserved specimens showing two 0^{1} scure longitudinal prominences, one near and rising rather abruptly from the posterior border, the other a little anterior of the middle; a third, and perlaps sometimes quite as well marked ridge, occurs just back of the anterior border. Coronal surface fincly and closely punctate. A medium-sized tooth measures across the inner margin 2.9 mm ; ditto, outer margin 16 mm ; length along anterior border 21 mm ; ditto, posterior border 32 mm ; depth of tooth at middle of anterior border 3 mm ; ditto, inner margin about 5 mm .

A very small specimen which is provisionally identified with the maxillary form of the present species, shows a proportionately shorter tooth of a more rhombic outline, the outer margin, also interior and posterior borders, distinctly crenulated, the former strongly so, and further distinguished by the gradual convergence of the lateral borders, greater and more regular transverse convexity of the coronal region, as contrasted with the typical specimens. These features of coronal contour are also intimately shared by a more elongate mature tooth, but which, though imperfect along the anterior horder, and considerably worn towards the outer extremity, evidently closely agrees in outline with the typical examples.

Compared with other American Carboniferous forms of Psiphendus, the present offers characteristics readily distingnishing them specifically. From I^{\prime}. crenulatus (N. and W^{W}.) of the Chester formation, the species differ in the uniformly larger size of the teeth, representing the dentition of different parts or opposite jaws. The large median teeth, prohably belonging to the lower jaw, differ in leing less massive, possessing fower and less distinct undnlations in cither border supposed to have relation to contignons series of smalles teeth, and the less strongly marked crenulations of the narrow coromal fold. The depressed trapezoidal tecth inchaded in the seromd form described moder the above specific eaption, and which are fupposed to lave helonged to the upper jaw, differ from the corresponding teeth of the Chester species in essentially the same respects ahove cited, with perhaps less marked ohliquity of immer and outer margins and less strong spiral imollment. livamples of both of the alowe forms of the Chester species show the entire margins and horlers of the teeth to have hoen eremulnted; hesides they are more or less deeply motehed in one or other border, showing the manner
of coalescing of transversely elongate teeth of the younger with the broad long plates of the later stages of growth. The latter feature assumes various phases, from a shallow undulation in the border to a deep slit extending through the thickness of the crown and base, the impinging margins being crenulated as in the inner and outer margin of entire individuals. None of the Kinderhook examples, however, show this latter feature, yet it may be expected to occur in them as well as in the Chester species. A medium-sized tooth of the Chester species affords the following measurements: Breadth across inner margin, 22 mm . ; ditto, outer margins, 13 mm . ; length along anterior border, 13 mm .; ditto, posterior border, 16 mm .; thickness of tooth at middle of anterior border, 3 mm . ditto, posterior border, 4 mm .

The teeth of the present species differ from European species Psephodus magnus, Agass., as also from the Chester P. crenulatus (N. and W.) in their more symmetrical outline and distinct definiticn of the angles. The Chester species, perhaps, bears more intimate comparison, but it is not known to have attained nearly the size of the European species. The Kinderhook teeth under consideration are further distinguished by the comparatively distinct angulation of the coronal ridge of the mandibular form.

> Psephodus placenta, (N. and W., sp.)

Pl. II, Fig. 5-8.
Helodus placenta, Newberry and Worthen, 1866, IIl. Geol. Surv., II, p. 80 PI. V, Fig. 4, 4a.
Associated with the forms last described under the name Psephodus obliquus, the collections contain a few examples of teeth, which so far as relates to superficial markings and general appearances, might be presumed to have belonged to the fishes that bore those teeth. But in all the collections from Chester localities, where the forms of P. crenulatus abound, there is not a single representative of the form here alluded to. Therefore, in recognition of its distinctive features, it is provisionally referred to a distinct species.
As at present understood, only two forms of teeth have been recognized as probably belonging to this species. First, median form of the upper jaw (?) / Teeth irregularly quadrilateral in outline, moderately inrolled spirally, anterior and posterior borders differing little in relative length, converging at a slight angle, the narrow enamel fold defined by a slight groove from the basal portion, which shows coarse verrucose markings; inner margin broadly
rounded with a slight sigmoidal curvature extending into the obscure posterior alation, the vertical plane of the base equal in depth to the height of the enamel fold from which it is well defined; outer margin obliquely truncated from the anterior angle dowuward and outward, usually much worn and otherwise mutilated. The anterior and posterior borders show more or less distinct and rather wide undulations. Coronal surface uniformly and closely punctate, somewhat strongly arched transversely into a broad rounded prominence culminating a little anterior to the median line, posterior slope gently concave. Breadth of medium-sized tooth across inner margin, 23 mm .; ditto, outer margin, 18 mm .; length along anterolateral border, 20 mm ; about equal to the opposite border; depth of tooth at middle of anterior border, 2.5 mm . Second, median form of the lower (?) jaw: Teeth corresponding with the second form, described under P. obliquus, and having the same general outline, but distinguishable by the less rapid convergence of the lateral borders and the considerable gilibosity of the coromal region, which rises into a low broad prominence, traversing the crown nearly centrally, or a little abaft the median line. The large mique individual of this particular form afforded by the collections, is somewhat mutilated, the borders and extremity not being elearly shown ; the imer margin is broadly rounded, with a slight sigmoidal oblique course, the crown surface punctate as in the other forms.

Comparisons of the first above mentioned form with the type specimen described by Messrs. Newberry and Worthen, under the name Helodus placenta, leaves no doubt as to their specific identity. The original specimen figured in the report of the Illinois Geol. Sursey, II, Pl. V, fig. 4. ta, is that of a small individual, the transerse diancter of which considerably exceeds the length from within outwards, the inner margin and base being in an cxtraordinarily perfect state of preservation, cten showing the delieate erenulations of the rather heary coronal fold that rises from and projects somewhat heyond the mural hasal area. The onter portion of the tooth, on the other hand, is mueh worn, though the entire outline is still preserved, its characteristies being well reproduced in one of the figures illustrating the species as herein interpreted.

Compared with Psiphodus olliquus, the forms of the present species reveal the following salient distinctions: The supposed mandibular modian teeth are relatively narrower, lateral hordus less rapidly ronverging, the more menty central position of the axis of the coromal ridge, and the less nugularly rounded immer margin; in the
supposed opposed form of the upper jaw, the lateral borders more gradually converge the anterior position and greater prominence of the coronal ridge, while the inner margin is less obliquely rounded than obtains in the corresponding forms of the last described species.

Geological position and locality: Upper fish-bed of the Kinderhook formation; Burlington, Iowa.

Psephodus? Symmetricus, St. J. and W.

Pl. I, Fig. 6, 7.

The present species is represented by a single form, with which only one or two individuals, of doubtful generic relations, have thus far been provisionally identified. The form corresponds to that referred to the median position on the lower jaw. The typical example is that of a tooth below medium size, sulb-trapezoidal in outline, moderately arched from within outwards and somewhat closely inrolled, giving to the outline a relatively great breadth as compared to the length of the tooth. The outer margin and coronal region is worn and broken away, nor are the postero-and antero-lateral borders sufficiently preserved to show more than the projection of the basal rim beyond the coronal limits, as obtains in both examples, the borders gradually converging, coronal limits defined from the basal rim by a shallow sulcus; the inner margin is broadly rounded, with a slight sigmoidal curvature in passing from the obtuse anterior angle to the slightly produced posterior angle. The crown surface gently rises from the antero-lateral border, culminating in a broad low crest situate in the posterior half of the coronal area, thence more steeply sloping into the narrow shallow concavity parallel with the posterior border; surface minutely punctate. Greatest diameter across the inner margin .17 mm .; length along the anterolateral border 7.5 mm .
'Ihe type specimen shows a faint longitudinal depression near the median line, which does not appear to have been produced by wear as it descends to the unworn enameled inner margin, and toward the antero-lateral border the surface is marked by a thread-like groove, defining a narrow plain belt along that side, which is apparently also a permanent constituent of the coronal contour.
Another and smaller tooth belonging to the left ramus of the lower jaw, shows nearly the same outline as the specimen described above, but it is distinguished by the greater prominence of the
coromal ridge and the somewhat greater obliquity of the posterolateral border. As in the above example, the antero-lateral borter has a moderately oblique course from the obtuse inner angle outward and forward, and is similarly marked by the produced basal rim; the posterior depression, however, is quite obsolete, the slope from the summit of the coronal ridge to the rounded fold along the postero-lateral border showing scarcely the least transverse concavity; on the other hand, while the gentler deelivity in front is faintly depressed, it is destitute of the impressed threat-like line and narrow belt parallel with the anterior border ohserred in the larger tooth. The surface punctation of the smaller specinens is appreciably coarser and more like that of the associated tecth of Psephoclus, and in both the remnant of coronal enamel along the inner margin is traversed by similar faint parallel lines of growth.

In the proeess of the preliminary distribution of the materials of the collections for study, the teeth upon which the foregoing notices are based were referred to l'sephodus obliquus, a relationship which may yet prove to be well founded-the smaller of the examples above referred to possilly representing the young stage of the large teeth described under the latter designation. The latter specimen, however, shows the inrolled extremity entire, instead of the oblique truncation such as distinguishes all mature intividuals of Psiphodus, while the strong iurollment and eonsequent strongly arched longitudinal profile offer marked contrast with the forms of Psophedus with which the present tecth were associated. The larcre example lears a striking resemblance to the mandibular posterior form of Cochliodus; but of the latter gemes no other remains have thus far been discovered in linderlook horizons affording the teeth above notieed.
(icological position and lorality: Kimderhook formation; Dmrlington, Iowa.

Psemhinus latus, it. J. and W.
II. I1, IIg. $1,3$.

Tecth small. Mandibular median (?) form suln-triansular in ontlines moderately arehed in the direction of imollinent. Antere lateral horder nearly strught, mululated. the eromutated coromal fold sharply inleveled to the chameled basal portion; postoro-lateral or obligne border rapidly converging towards the onter extremity, mahing
an angle of 55° with the opposite border, with which it agrees in other respects, although the basal portion is thicker and expanded posteriorly beyond the limits of the coronal fold; inner margin at right angles to the antero-lateral border, broadly arched from the obtuse anterior angle round the base of the coronal prominence, behind which it makes a slight concavity on the way to the subacute posterior extremity. Coronal surface gradually rising into the rounded crest which lies a little behind the median line, the posterior slope slightly concave, the anterior slope even less so, alate expansion obscurely defined. Surface marked by minute, widespaced punctæ. Greatest lateral diameter across the inner margin 13 mm . ; length along antero-lateral border $9 . \mathrm{mm}$.

The above described form is represented by a couple of nearly entire teeth, in the collection of Mr. Van Horne. They are closely related to the corresponding form of the representative species occurring in the Chester formation, which latter, however, is distinguished by the finer punctation, more oblique backward course of the inner margin, and less central position of the coronal ridge.

The St. Louis collections also afford many examples of the diverse forms of teeth which have usually been identified with the genus Helodus, but which, possessing certain characteristics in common with unquestionable forms of Psephodus, seem to possess intimate generic relations with the present form. The latter teeth may be distinguished in a general way by their eccentric coronal prominence, crenulated lateral borders and margin of the abrupt outer coronal slope, presenting extreme variation in outline and coronal contour. Not infrequent examples are met with showing the downward and outward produced base characteristic of Lophodus, as obtains in L. (Helodus) didymus, Ag.; but more frequently the posterior basal portion is inbeveled, indicating that the individual may have constituted one of a series of teeth more or less perfectly joined at their bases, forming a continuous plate the same as is known to occur in individuals of Psephodus. Varying from the asymetrical contorted forms to broad surfaced sublunate symmetrical teeth, almost every conceivable variation attributed to this class of teeth is observed amongst the St. Louis material, the same as occurs in the Kinderhook and Chester collections. The specific identity of these diverse forms with the teeth above described is in many instances as clearly indicated as may be under the circumstances; but that all of them belong to a single species, we would not undertake to affirm with equal confidence.

Geological position and locution: St. Louis limestone; Alton, Ill., St. Louis, Mo.

Psepionus gunulatus, St. J. and W.

PI. II. Fig. 4.

Tooth small, quadrato-lunate in outline, lateral borders nearly parallel, posterior margin strongly arched forward, making obtuse angles with the lateral borders, anterior margin correspondingly concare, terminating in the acnte, ontward-produced lateral angles. Coronal region moderately arched in both direetions, with an abrupt declivity hordering the anterior side, the surface presenting a somewhat meven contour, which is also diseoverable in the slightly greater prolongation and rounding of one of the lateral angles, and the relatively greater depth of the tooth at that side; the enamel makes a distinet narrow belt sharply inbeveled to the hasal portion all round, lateral borders obscurely undulated, posterior edge plicatodenticulate, onter margin ocenpied by vertienl plice terminating below in deep crenulations. The base is relatively thick; inferior surface slightly depressed and smooth, lateral borders nearly vertical and faintly chameled, imner margin deeply channeled, together with the coronal belt, and terminating below in a thin rim slightly in adrance of the coronal edge, the edges all round coarsely pitted. Coronal surface presents a somewhat irregular, minnte punctate structure, showing marked evidences of attrition from use. Brealth across outer margin 9.5 mm . ; length along one of the lateral horders 5 m m . ; length along modian line 8 mm .
The mique specimen above described represents a nearly perfect tooth of a form not before met with. Its athinities are minquestionably with P'siphodus, with whose numerous dental remains it is ascociated. The narrow forms of P. cremulatus (N. and W., sp., present, in their erenulated murgins, striking resemblance with the present tooth, even as to the detaiks enmmerated above, thomgh perhaps not so pronounced as ohsersed in the individual described. The same olservation hohls as regards tho coronal eontour, which is gradually sloped from the brink of the abrupt onter declivity to the imer margin. It is, therefore, with some douht its speeitie distinctness is recognized; it may prove to belong to a posterior row of teeth of one or other jaw, or possibly interposed near the symphysis between the that, marrow, Ihclodux-like treth, whose spereifie iflentity with the contorted, inrolled median plates of P. crembertus
can scarcely be questioned. Its salient contrasts, compared with the forms associated under the latter specitic designation, consist in the more symmetrical outline, and coarser, irregular character of the coronal punctæ.

Geological position and locality: Chester limestone; Chester, Illinois.

Genus TANIODUS, L. de Koninck Mss.
Teeth representing the posterior form of the upper jaw attain large size, sub-rhomboidal or oblique-trapezoidal in outline, moderately arched from within outward, and inrolled, more or less obliquely, outward and forward. Lateral borders regularly and gradually converging toward the outer extremity, which may be truncate, as in Psephodus, of moderate depth, inferior or basal portion channeled and distinctly defined from the coronal fold, which forms a sort of coping along the upper edge; antero-lateral border relatively short, having a more or less oblique outward and forward course and slightly concave curvature between the obtuse inner angle and point of inrollment ; postero-lateral border gently and regularly arched from the subacute posterior angle, and gradually converging outward with slightly greater obliquity than the opposite border; inner margin making a gentle 'curvature from the posterior angle forward to the rounded angle at the base of the coronal prominence, where it is suddenly deflected forward with a slight concavity to the anterior angle, making a very obtuse angle with the posterior half of its course. Coronal contour presenting a simple posterior prominence culminating in a low, rounded crest, the broad posterior slope usually slightly convex, though sometimes faintly depressed, that on the opposite side apparently more abrupt and merging into the slightly

- depressed anterior area; the surface is more or less distinctly undulated by transverse ridges separated by narrow furrows, conforming in outline to the inner margin. The usual punctate structure occurs over the entire coronal region, the pores showing a tendency to irregular elongation in the axis of the transverse sulci. Inferior surface of teeth showing the dense inferior layer longitudinally striated; thickest beneath the coronal ridge.

The foregoing diagnosis applies to a group of teeth meagerly represented in the collections by the form homologous with the posterior teeth of the upper jaws of Cochliodus and allied genera. A single, nearly perfect specimen from the Carboniferous limestone of Kesi,

Belgium, in the De Kioninck collection, belonging to the Museum of Comparative Zoölogy, at Cambridge, bears the manuscript mane, Teniodus contortus, de Kion? The characteristics which distingtish this specimen are intimately reproduced in the American famples hereinafter particularly noticed, and which constitute a well-defined form, for which we have adopted the unpublished appellation bestowed upon the typical species recognized by Dr. de Koninck. The relations of these teeth are apparently near l'sephorlus, from the supposed maxillary median forms of which they are indeed chielly distinguishable by the pronounced differentiation of the coromal contour, in which respect they approach nearer certain remote forms of typical Cochliodonts, e. g., Stenopterodus.

The American species are readily distinguishable from the congeneric Belgian species, T'. contortus, de lion. The latter is remarkable for its comparatively strong inrollment, slightly depressed posterior coronal slope; in general proportions and outlines it bears closest resemhlance to the Chester tecth, T. obliquus.

The genus is known only from Carboniferous strata, of which, besides the typical European representative, there are authentic determinations of three species from America, all from the Lower Carboniferous series.

> Theniodus fachates? (N. and $\mathrm{W} . \mathrm{sp}$. Pl. XIIt, Fig..

Maxillary posterior tooth attaining large size, elongate sulhrhomboidal in outline, gently arched in the direction of inrollment. Antero-lateral horder relatively short, ohlignely prodnced ontward and forward at an angle of about 25 with a line connecting the inner angles of the tooth; postero-lateral border very gradually converging toward point of imrollment with a gently arched conrse -character of coronal fold and basal rim not known in cither border; inner margin maling nearly a right angle with the posterne lateral border to a point abont midway, where it is abrmptly rommded and deflected forward with a slightly eoncave comrse thanee to tho ohtase nnterior angle, wom specimens beveled inferions: Crown surface chiefly oeempied hy the posterior prominence, which presents a broad gently convex slope rising from the postero-lateral boarder into the erest, tho opposito side more abruptly deseenting mad merging info the shallow depression oecopying tha anterior portion of the crown; the surface is more or less sitrongly marked
by transverse undulations conforming to the inner margin, the narrow intervening grooves showing coarse and irregularly elongate punctæ which elsewhere present at the triturating surface merely circular orifices spaced by twice or thrice their own diameter. The original specimen measures in transverse diameter between the inner angles about 38 mm .; greatest length above 50 m .

The above species was originally described from a unique imperfect example, and the very few subsequent accessions are even more fragmentary, and none are sufficiently entire to give the exact proportions of the perfect tooth. The fragments are, however, readily recognizable by their peculiar coronal contour and transverse undulations. In the light of these imperfect data, there appears to be specific identity between the Keokuk teeth and a couple of fragments of the same forms discovered by Mr. Van Horne in the Warsaw beds; the Keokuk specimens are more worn and present a less strongly undulated surface than obtains in the Warsaw examples, which otherwise, in outline, proportions and general coronal contour, agree well with the Keokuk teeth. A fragment of another specimen, from the St. Louis formation, near Pella, Iowa, representing a tooth of the ordinary size attained by the present species, is also undistinguishable from the individuals just mentioned. The present form presents marked contrasts with that noticed from the Chester formation under the head of Teniodus obliquus, as remarked in the observations appended to the diagnosis of the latter species.

Geological positions and localities: Keokuk limestone, Warsaw and Hamilton, Illinois. Also, sp.?, Warsaw limestone, above Alton, Ill. ; and sp.?, St. Louis formation, Pella, Iowa.

Tamiodus regularis, St. J. and. W.

PI, XIII, Fig. 11.

Teeth of large size. Maxillary posterior (?) form sub//rhomoidal in outline, moderately arched in the direction of inrollment. Antero-lateral border very oblique in its forward and outward course, the coronal belt nearly vertical and comprising half the height of the border, a slight sulcus defining it from the basal portion, the inferior edge of which is broken away; postero-lateral border almost parallel with the opposite side, making an angle of about 55° with a line drawn between the angles of the inner
margin, coronal enamel apparently forming a narrow fold, basal border not preserved; inner margin broadly arehed from the subacute posterior angle round the base of the coronal prominence, thence with a slight concarity on the way to the obtuse anterior angle, worn specimens inbereled below. Two-thirds or more of the coronal surface is occupied by the posterior lobe or prominence, which is gently and regularly arched transversely, the anterior slope descending into the rery shallow concarity of the anterior portion of the crown, which is abruptly truncated at the articular border; surface marked by irregularly spaced transverse undulations, which are nearly obsolete in worn specimens, and producing a banded appearance conforming in outline to the inner margin; the punctie are small, moderately closely arranged and uniform, save, in the axes of the transverse furrows where they often present irregular elongate orifices. The surface of the dense inferior layer is smooth or irregularly striated longitudinally. The tooth is very thick and massive beneath the coronal prominence, whence its substance gradually diminishes in thickness towards the lateral borders. Greatest breadth of tooth across the imner margin 4.5 m m , length of antero-lateral border to point of emrollment probably nearly 22 mm , or in the neighborhood of two-thirds that of the postero-lateral border.

The description is founded upon a unique example purporting to have been derived from a locality on the Warsaw limestone near Bedford, Indiana. The tooth is unmistakally congeneric with the form noticed under the name Timiodus juscitutus, but representing a somewhat larger and more cutire individual. It is, however, specifically distinguishable from the latter by the proportionately greater breath and transversely more regularly arched coronal prominence, which does not exhilit the sudden dethection in the conrse of the transwerse undulations noticenble in the above cited speries.

Geological position and locality: Warsaw limentone, near Beaford. Lawrence Comety, Indiana.

Thanoms omaqu's, St. J. and W.
Pl. XIII, Mis. 10.
Maxillary posterior (?) teeth of medimm size, ollignely trapezoidal in ontline, somewhat strongly arehed from within outwards. Anterolatemb border obliquely protuced ontwad mad forwad at an angle of about ? 0 with a right line connecting the immer angles of the
tooth, coronal enamel forming a narrow belt rounded to the basal border, which was probably of shallow depth; postero-lateral border converging toward point of inrollment at an angle of about 35° with the opposite border, and similarly defined by the rounded enamel fold, which in both borders shows indistinct traces of minute crenulation, basal rim in either border not known; inner margin making a broad sigmoidal curvature, broadly arched round the base of the coronal prominence from the subacute posterior angle, with a moderate concavity in passing to the obtuse anterior angle, in worn specimens inbeveled inferiorly. Coronal prominence occupying threefourths of the entire area of the crown surface, moderately elevated and broadly arched transverely, the broader slope regularly rising from the postero-lateral border into the nearly median low crest and slightly more steeply sloped into the shallow depressed belt occupying the anterior portion of the surface; the coronal surface is traversed by strong, more or less regularly spaced undulations parallel with the inner margin, the intervening sulci occupied by the irregularly elongated orifices of the medullary tubes which elsewhere appear as minute circular pits, spaced by three times their own diameter, surrounded by low rims with faint stellate radiations; in worn surfaces the transverse undulations become obsolete, though the position of the sulci is still plainly discernible by the parallel bands of coarse pores. Greatest lateral diameter of a medium size tooth $80 \mathrm{~m} . \mathrm{m}$., length along antero-lateral border to point of inrollment about $15 \mathrm{~m} . \mathrm{m}$.
The above described form which was discovered by Dr. Hambach, is represented by three individuals, all belonging to the right ramus of the upper jaw, one only presenting a nearly entire tooth. This is sufficiently perfect to permit satisfactory comparison with congeneric forms and the discrimination of its specific peculiarities. Intimately allied to the earlier occurring species, it is at the same time distinguishable from that described from the Warsaw horizon of Indiana, Teniodus regularis, by its relatively narrower proportions and more oblique outline; fit differs from T.. fasciatus, of the Keokuk formation, as also the form provisionally identified with that species from the Warsaw beds above Alton, both in its greater obliquity and transverse diameter. At the same time it bears a general resemblance to the Belgian species T. contortus, De Kon., which latier, however, is relatively longer, the enamel fold of the lateral borders much more strongly developed, and in the distinct depression of the posterior slope of the crown surface.

Grological position and locality: Chester limestone, Chester, Illinois.

(ienus VA'TICINODUS'. St. J. and W.

The distribution and investigation of the materials illustrating Ieltopitychius and allied genera, have brought into prominence homologous forms of teeth which range themselves under a group apparently characterized by persistent features, in contradistinction to Deftoptychius on the one hand, and Stenoptcrodus on the other, and which, if we are correct in inferring their generic distinetness, offer a premonition of the later differentiated Orthopleurndus, ete. Unfortunately, however, the state of preservation of the material illustrating these forms is in no instance such as leads to indubitable couclusion in regard to their generic distinctness from stenopterodus. Hence the varions specific categories into which the forms from the several formations readily resolve themselves, are provisionally recognized under the above generic designationf.
The forms above referred to represent the posterior teeth of the upper and lower jaws. The maxilliary form is in every respect like the corresponding teeth of Deltoptychius, save in the apparent absence of the least vestige of the presence of the secondary lobe, the entire anterior portion of the tooth forward of the posterior prominence presenting a plain surface, such as obtains in Stenup)terodus. The anterfor-lateral border is probably truneated from the inner angle slightly obliquely outward and forward, in which resuet it differs from the prevalent condition observed in typical Diltoptychius and stemopterodus. The mandibular form is also iu general ontline and contour like that of the former genus; but the indiriduals here referred to do not preserve a trace of the narrow plan belt such as in Delfoptychius, distinetly ditines the median lobe from the edge of the abrupt antero-latern border. In the latter particular the teeth referred to bear striking restmblance to the mandibular posterior form of Orthoplemrodus. As ull of the few examples of thin form are represented ly evidently wom individuals, it camot be demied that they may be merdy abraded teeth of Deltaptychins.

With one or two exceptions, the specis noticed in this comection ure manentionably distinct from thense hereinafter deseribed moder the head of Deltoptychins. These possible execptions relate to the

[^5]species noticed respectively from the St. Louis and Chester formations, as will be remarked further on. The earliest representative occurs in the upper horizon of the Kinderhook formation, the Upper Burlington, St. Louis and Chester each contributing representative forms, while a single form from the Upper Coal Measures, and one from the Lower Coal Measures, are with doubt here referred. The Kinderhook and Upper Burlington afford the typical representatives, being represented by examples which it is difficult to believe ever possessed the distinctive characters essentially attributed to Deltoptychius. We owe to the kindness of Lord Enniskillen opportunity to compare, from drawings, a magnificent tooth derived from the Carboniferous limestone of Oreton, in Shropshire, England, and belonging to the museum at Florence Court, Ireland. The latter tooth shows a large example, above four inches in its greatest diameter, and of proportionate dimensions, of the maxillary posterior form. So far as it is possible to judge from the drawings, it possesses precisely the coronal contour characteristic of the teeth of the corresponding form noticed in the following pages. The resemblances in common between the Shropshire and the Kinderhook teeth are especially pronounced, neither the one nor the other would be mistaken for a typical Deltoptychius. In both examples the posterior prominence is obscurely defined from the plain anterior region, which shows not a trace of secondary lobe. The genus may also include the tonth described by Dr. L. de Koninck ${ }^{3}$ under the name Streblodus tenerrimus, from the Lower Carboniferous deposits of Tournay, Belgium.

Again, if the evidence be fairly admissible, the forms here especially referred to, offer some most interesting suggestions bearing on the derivation of allied and coëxisting generic forms. That referred to under the name Vaticinodus vetustus, from the Kinderhook, represents the earliest species not only of this particular group, but also of typical Cochliodonts. Passing up into the Upper Burlington, next is met with an apparently congeneric form V. discrepans. During the latter epoch Chitonodus, the immediate precursor of Cochliodus, was introduced, and also Deltoptychius and Stenopterodus. The latter is plainly a somewhat more pronounced differentiation, while Deltoptychius holds an intermediate place between the primal groups and Stenopterodus.

[^6]Vaticinodus vetustes, St. J. and W.

I'I. III, Fiz. I.
The unique example of the present species represents a large posterior tooth belonging to the left ramus of the upper jaw. It is elliptical or spatulate in general outline, moderately arched longitudinally, and apparently strongly inrolled along the outer margin, terminating posteriorly in a sharply-rounded angle formed by the posterior basal spur, which extends conspicuously beyond the coronnl limits, angle of obliquity of the antero-lateral border not shown, but evidently forward from the imer angle. The tooth is considerably thickened in the region of the posterior border, its smbstance rapidly diminishing in the opposite direction, on accomnt of which the anterior articular border is liable to mutilation, as is the case in the present example. The basal rim along the postero-lateral horder forms a prominent platform projecting beyond the coronal burder for half the distance toward the point of inrolment, the coronal emmel forming a heavy rounded inbereled belt distinetly defined from the basal portion, which latter also forms a deep border along the imer margin of the tooth. Inferior surface marked by interrupted coarse verrucose strise, conforming in direction to that of the inrollment of the tooth. The crown still retains along the imner margin the urig. inal coating of glossy cuamel, the summit and outer region exhibiting progressive degrees of wear from use, and tine pumetate structure, inner margin distinctly defined from the base by the limits of the enamel coating, and marked hy parallel lines of growth; posterior prominence ocenpying perhaps one-third the lateral diameter of the crown, presenting a broad, low convexity flattened along the crest and somewhat depressed from within ontwards, where it merges into the boffler anterior area, which latter is smonth and withont longitudinal folds. From the surface conformation, and direction of inrollment, it is safo to infer the sumewhat oblique outward and forward course of the antero-lateral border. (ireatest lagth of crom probably near 13 centimetres, to extremity of posterior spur 15 centimeters, greatest breadth near middle of tonth nlong a line diagomal to the longitudinal axis 45 mm .

The mutilated condition of the sole example representing the species does not allow the making ont of the character of the anterolaternl herder ; otherwise the specimen permits of satiffactury eomparison with allied comgen rie teeth. (If the latter there mppears to
be a strong resemblance to the large tooth found at Oreton, in Shropshire, drawings of which were kindly communicated by Lord Enniskillen, showing a tooth of nearly equal dimensions and differing chiefly from the present form in the less prominent and well defined posterior coronal lobe, and perhaps less massive proportions in the region of the coronal prominence. The latter form we are not aware has been described. The distinctions of the present form, compared with the smaller forms hereinafter described, need not receive further notice in this place. The Belgian Carboniferous tooth described by Dr. L. de Koninck under the name Streblodus tencrrimus, is under medium size, and is further distinguished from the present tooth by its relatively narrower posterior prominence and stronger spiral inrollment.

Geological position and locality: This unique example was derived from the uppermost bed of the Kinderhook series exposed in the banks of Long Creek, a tributary of Skunk river, Des Moines Co., Iowa.

Vaticinodus miscrepans, St. J. and W.

Pl. III, Fig. 2, 3.
The collections contain three or four examples of maxillary posterior teeth, which, although in a fragmentary state of preservation, apparently differ from any of the associated species thus far made known from the Upper Burlington horizon, in which the present form was discovered by Mr. Springer. They are evidently referable to the above genus, and offer the following distinctive features, especially compared with the much more prevalent forms of Stenopterodus planus, with which they are associated, and for which they are most liable to be mistaken: Attaining a larger size, the teeth are specially distinguished by the much more rapid convergence of the postero-lateral border, and the consequent greater obliquity of the coronal prominence, which presents a broad, very slightly convex posterior slope, and abrupt declivity in front, where it is defined by a slight angulation from the plain anterior area. The inner margin is more sharply rounded in the region of the base of the coronal prominence, slightly concave or constricted in front, and thence to the obtuse anterior angle it pursues a gently arched or nearly direct course. The coronal surface shows minute, closely
set punctr; toward the inner margin the enamel layer. is undulated by transverse lines of growth. The absence of distinct longitudinal arrangement of the punctre also contrasts with the above named species. A mature individual attains a breadth across the inner margin of 27 mm ., and a lengtly along the antero-lateral horder of probably 10.5 m m .

We have thus far failed to recognize other and probably associate forms of the above species, so that it is impossible to say how intimate its relations are with the teeth that constitute the representative forms of the allied genns Stenopterolus. The general outline and the obliquity of the coronal prominenee offer striling resemblances to Deltoptychius, but the absence of the secondary lobe anterior of the principal prominence precludes its reference to that genus.

Geological position and locality: Upper Burlington limestone fishbeds; Buffington ercek, and Augusta, Iowa.

Vaticinodus? simplex, St. J. and W.

PI. IV, Fic. 220.

Teeth of small size. Maxillary posterior teeth subelliptical in outline. Antero-lateral border somewhat obliquels trineated from the obtuse inner angle forward to point of inrollment; pusterolateral border very rapidly eonverging from the sliarply romuled posterior extremity toward point of inollment, forming, an angle of 20° to 30° with the opposite border, making a broad gentle arch; basal border elanneled and posteriorly produced into a thin rim which extends beyond the limits of the inbereled coronal border; inner margin in front nearly parallel with the postero-lateral border, strongly and abruptly arched round the base of the coromal ridge to the posterior extremity, basal portion relatively deep and plaeed in the same plane as the crown from which it is defined by the inbeveled inferior belt of enamel. Coronal region moderately arehed in the direction of imrollment, posterior lobe ocenpring rather less than half the lateral diameter of the crown. very oblique, and sufficiently well-defined in front, moderately arched transverkely with a slight depressed belt along the postero-lateral border ; anterior portion or neek nearly plain, or very faintly convex transversely, with an obscuro revolving sulens margined by a narrow plain belt along the antero-lateral botder,-in worn examples, esen tho posterior lobe is imperfectly defined in front
from the plain anterior neck．Surface along inner margin often preserving the external coating of dense opaque enamel，with more or less distinct lines of growth；otherwise the surface exhibits a minute pitted structure produced by the relatively widely－spaced punctæ．A mature tooth measures in greatest width between the inner angles 10 m m ．；length of antero－lateral border to point of inrollment 4.5 m m ．
Thus far only the posterior teeth of the upper jaw have been identified．The fragmentary condition of the majority of the speci－ mens often renders their identification with one another a difficult matter，not to mention the necessary comparisons in order to determine their relationship with other similar forms occurring in the same strata．In their general aspect these teeth bear a striking resemblance to Deltoptychius expansus；but they may be dis－ tinguished by the absence of the median sulcus and subordinate ridge in front of the posterior coronal prominence，and specifically by their narrow transverse diameters．

Associated with the above mentioned teeth，certain forms repre－ senting the mandibular posterior teeth occur，which might be mis－ Maグ郎 taken for specimens of the homologous form of Deltoptychius expansus．None of the latter specimens are in a state of preserva－ tion to show their distinctive features with sufficient clearness to dispel all uncertainty in regard to their generic relations．Their coronal region is divested of the superficial enamel coating，expos－ ing the minute close punctate structure such as appears in worn surfaces，and presenting a nearly plain coronal prominence without subordinate narrow belt along the antero－lateral border，as occurs in typical examples of Deltoptychius；in the latter respect these teeth approach the corresponding form referred to Orthopleurodus， and while we are in doubt as to their actual affinities，they are provisionally placed in the present specific association，of which characteristic examples of both forms are presented in the illustra－ tions．Compared with the homologous teeth of Deltoptychius expan－ sus，they are further distinguished by the less oblique backward course of the inner margin，which forms nearly a right angle with the antero－lateral border，the appreciably narrower and less up－ raised alation，which is marked near the border by a slight furrow or angulation from which rises the narrow marginal belt along that side，and which is inbeveled to the channeled basal portion．The deep antero－lateral border is abruptly truncated，half its height enveloped in the belt of coronal enamel，which is well defined from
the downward and slightly outward produced basal rim. A medium sized tooth measures between the angles of the immer margin 5 m m , and about the same as the length along the antero-lateral border.

Geological position and localities: St. Louis formation: St Louis, Mo., Alton, Ill., P'ella, Iowa.

Vaticinodus? similis, St. J. and W.
Pl. IV, Fig. 17-19.
Maxillary posterior teeth very small, subspatulate in outline, very obliquely inrolled. Antero-lateral border with moderate obliquity outward and forward, coronal fold rery narrow and inbereled to the shallow, channeled basal rim ; postero-lateral border slightly arched, basal portion channeled and limited above by the inbeveled coronal fold, posteriorly expanding beyond the coronal border terminating in the sharply-rounded posterior extremity; inner margin abruptly and deeply arehed from the posterior angle round the base of the coronal prominence, thence more gently curred to the obtuse anterior angle. Coronal prominence occupying about half the entire area of the crown, moderately and regularly arched transversely, culminating in the low rounded erest near the auterior side where it is more or less well defined from the plain anterior area into which the slope merges. Surface closely and finely punctate, the anterior region showing faint revolving plice. Breadth between the angles of the inner margin about 9 m m .; length along antero-lateral border probably 3 mm . A large tooth measures 22 mm . across the inner margin, and if $\mathrm{m} ~ \mathrm{~m}$. at tho antero-lateral horder.

With the above described form occur teeth referable to the opposed position on the lower jaw, and which may hase been associated with them. 'Ihese teeth might readily he mistalien for wom examples of the mandibular posterior teeth of Melfoptychius, which they closely resemble in outline and contour of the coronal region. The specimen fignted presents the usual appearance of the form, which has in triangular outline, the antero-laterat border slighty curved, with aboupt mural face, half or more of its height onveloped in the enamel belt which is distinctly defined from the slightly flaring hasal rim; inner margin nearly at right nughes with the miterior border, broadly arehed in a slight sigmoidal course passing

to the posterior angle; postero-lateral border, basal portion channeled and expanded behind. The principal lôbe occupies something less than half the transverse diameter of the crown, presenting a nearly plane or slightly convex slope to the abrupt anterior edge, along which should lie the distinctly defined narrow, plain belt did these teeth belong to Deltoptychius, and where, indeed, in some specimens a faint depressed line does occur, a character in accordance with the homologous form of the latter genus; posteriorly the slope more abruptly descends into the wide posterior depression, along the outer border of which lies the rather suddenly upraised posterior wing. The surface presents a similar punctate appearance noted in connection with the before mentioned maxillary teeth. Breadth across inner margin, 5 mm ; length of antero-lateral border to point of inrollment, about 5 mm .

The maxillary teeth above noticed present an approach to the straight postero-lateral border characteristic of Orthopleurodus; but here the resemblance ceases, for the border is gently arched, and the position of the posterior lobe, or rather the anterior culmination of its crest, determines its relations with the present genus, should it prove not to be referable to Deltoptychius. Their existence, however, is extremely suggestive of the derivation of the coalmeasure genus, although there seems to be evidence that the present genus survived the introduction of Orthopleurodus, along with which its supposed representatives are found.

Compared with the previously described forms from the St. Louis limestone, V. simplex, there exists the most intimate relationship, if not actual specific identity, the chief distinction consisting in the apparent greater robustness of the present teeth.
With the above observations, until more complete materials shall have been acquired, the determination of the generic identity of these fragmentary dental remains will necessarily remain for the present in a state of uncertainty. So intimately are the species of Vaticinodus, Stenopterodus and Deltoptychius linked together, that it might be anticipated the more differentiated forms of Orthopleurodus may have had ancestors in direct line as early as the time when the sediments of the St. Louis and Chester formations were in process of deposition.
Geological position and locality: Chester limestone, upper fish-bed stratum; Chester and Evansville, Illinois.

Vaticinodus? carbovarius, St. J. and W.
PI. IV. Fif. 20.
Maxillary posterior teeth below inedium size, irregularly oblong or subspatulate in outline, moderately arched from within outwards. Postero-lateral border somewhat rapidly couverging from the acutely rounded posterior extremity to the point of inrollment, the narrow enamel fold inbereled and distinctly defined from the rather widely expanded basal rim, which projects gently downward and outward beyond the coronal limits; antero-lateral border not preserved; inner margin apparently broadly and regularly arched, inbeveled inferiorly. Coronal prominence occupying half, perhaps more, of the crown surface, obscurely defined in front from the plane anterior area, gently arched transversely with the wider slope posterior of the low crest. Worn surface minutely and closely punctate.

The present species is recognized from a single specimen belonging to the left ramus of the upper jaw. Unfortunately it is mutilated, not displaying the character of the antero-lateral border, and the coronal surface is so disfigured by attrition as to obscure the original contour. Its relations, however, seem to be with the teeth arranged under the present generic formula, of which it is an interesting recurrence in the uppermost groups of the Carboniferous series. It is, howerer, possible that it may prove to be generieally allied to Stenopterolus. Worn specimens of the corresponding form of the St. Louis species, S. parvulus, would indeed be difficult to distinguish from the present unique example.

Gcological position and locality: Lower Conl Measures, roof of coal No. 5, of the Illinois general section, Carlinville, Illinois.

Vaticinones? leris, St. J. and W.

Posterior tooth of the maxillaries of small size, sulpromboidal in outline. Antero-hateral bonder very ohlique in forward and outward course, making to comparatively slght magle with the iuner margin, which is broadly arehed to the obtusely rounded posterior angle; postero-lateral border gently arched, converging toward the point of inrollment at an angle of sor, more or less, with the npposite side, and parallel with the forward half of tho inner margin, hasal por-
tion channeled, inbeveled fold of the coronal enamel ; the antero-lateral border similarly defined. Posterior lobe of the crown gently arched transversely, in front merging into the plane anterior surface from which it is apparently obscurely defined. Surface, along the inner margin preserving the dense enamel layer, with distinct lines of growth parallel with that margin; the worn triturating surface showing a minute punctate structure, the pores of extreme minuteness and relatively widely spaced. Greatest breadth across inner margin 9.5 m m , the basal spur extending a millimeter farther; length along antero-lateral border about 4.5 m m .

Only a solitary example of the present species is known to us. The coronal contour, although much worn by use, presents charac. teristics consonant with Vaticinodus, specifically differing from its Coal Measure congener V. carbonarius, by the relative great diameter in the direction of inrollment, the broad and uniformly arched inner margin, also the more obscure definition of the coronal prominence. The arched condition of the postero-lateral border, and the entirely dissimilar coronal contour distinguishes the tooth from the homologous form of Orthopleurodus, with which it is associated in the same deposits.

Geological position and locality: Upper Coal Measures; upper limestone at LaSalle, Ill.

Genus DELTOPTYCHIUS, Agassiz.

Deltoptychius, Agassiz, MSS., 1859, etc., D. (Cochliodus) acutus, Ag.

Teeth possessing the general characteristics attributable to the family Cochliodontidæ.
Posterior teeth of the lower jaw trigonal in outline, generally strongly built, and moderately arched in the direction of inrollment. Antero-lateral border partaking of a slight sigmoidal curvature in consonance with the spiral inrollment of the tooth, defined by a nearly vertical wall forming at the brink a right angle with the superior crown surface, and enveloped to a greater or less extent in the coronal enamel which usually constitutes a slight inbeveled fold well defined from the basal portion; postero-lateral border more or less oblique to the opposite border, toward which it converges at the outer extremity, defined above by a shallow enamel fold, beneath which the basal rim projects downward and outward, terminating posteriorly in a more or less produced spur; inner margin broadly
rounded or sigmoidally curved from the ohtuse anterior angle into the more acute extremity of the posterior wing. Coronal contour presenting three divisions, all regularly namrowing towarl the onter extremity, viz: In front, n narrow transversely plane helt; a more or less prominent median ridge defined in front ly a slight amgulation from the anterior belt, and sloping postriorly into the broad depression from which rises the more or less laterally expanikel posterior wing,-well preserved teeth also showing a slight angulation on this side of the median lobe where it joins the pusterior depression.

Posterior teeth of the upper jaw subspatulate in general ontline, termimating posteriorly in an acute angle or spur, antero-lateral border truncated generally obliquely outward and backward, strongly inrolled along the outer margin for two-thirds the distance from the anterior extremity. Crown defined from the base ly a shallow inbeveled fold along both the antero-and the postero-lateral borters, the basal portion in front nearly vertical or somewhat channeled, projecting downward and outward behind where it forms the spur at the extreme posterior angle. Coronal region showing a depressed posterior prominence, in front of which less or more remute, a smaller secondary ridge, separated by a plain intervening furrow, and hating an oblique course from the within outwad in conformity with the direction of inrollment; anterior neck generally smonth, destitute of marked revolving ridges or furrows, and gradually coutracting toward the truncate anterior horder, where the vertical depth of the tooth is at the minimum, in consequence of which the anterior border is extremely liable to mutilation as is shown lye the rarity of entire examples of this form.

Tho maxillary posterior form is immediately succected in front by at least one series of teeth, consisting of transwerse coronal ridges, which together present a trapezoidal outline, the postero-lateral tineder articulating with the posterior tooth nearly straight and forming a right or obtuse angle with the immer margin, antero-lateral border more or less obliquely converging towards the outward extremity. 'the coronal ridges present a series of parallel erests, vertieally convex behind and concave in front, which in gemeral postess to some extent characters in eommon with certain forms of teeth, which have beell varionsly referred to the genera Helodus and Chomat odus.

Coronal surface presenting the nsual enamel conting: worn burfaces pmetate.

The various forms of teeth constituting the dentition of Deltopty chius have been in all cases recognized from isolated detached specimens, save in the instance of the maxillary posterior and median serial teeth. In the latter we have authentic evidence of specific identity, in the discovery by Mr. Wachsmuth of a specimen showing the teeth in actual juxta-position. Wherever the one form occurs there also is found the othere, and taking this fact into consideration and what is known of the various forms of teeth belonging to the genera Cochliodus, Orthopleurodus, etc., the association here conjectured seems to be amply warranted. The genus as here defined bears intimate relationship with Cochliodus and Chitonodus, holding an intermediate position between the latter and Vaticinodus and Stenopterodus. It is, however, distinguished from the former by peculiarities in the coronal contour of the maxillary posterior teeth, and the greater obliquity cuneate outline of the mandibular posterior form, but chiefly in the character of the enameled ahrupt anterolateral border of the latter form, which in Cochliodus presents a narrow fold precisely like that along the postero-lateral border, also as occurs in either lateral border of the maxillary posterior form. This, in view of the uniformity of the articular borders in the vari-oze forms of Cocluliodus, Chitonodus and their intimate allies, might be regarded as inconsistent with the conjectured association of forms in the present generic group of teeth. But after all it seems in some sort to foreshadow or form a transition from the true Cochliodus type to that of Pocilodus, the mandibular posterior form of which possesses much the same character of steep enameled anterolateral border as obtains in the homologous form of the present genus; in both of the latter genera the articular border of the opposed maxillary form partakes still to a most intimate degree of the character of typical Cochliodus.
The genus is apparently confined to the measures of the Lower Carboniferous period, representative species occurring in each of the successive formations beginning with the Upper Burlington, and includes the form described by Dr. Leidy under the name Cochliodus nitidus, of the Chester formation. ${ }^{1}$

According to the above interpretation of the facts, the genus possesses precisely similar diagnostic terms distinguishing the form referred by authors to the "anterior" tooth of Deltoptychius acutus,

[^7]Agass., of the Mountain limestone of Ireland; and almost to the same degree the maxillary posterior form named Sitreliodus Colci, Agass., MSS., 1859, from the same deposits. The so-called "terminal" tooth, which authors have associated with the first named form, is strictly more intimately related to P'acilodus, and is homolugnos with the mandibular posterior form, as shown by the alate posterolateral border, and although destitute of transverse undulations or imbrications, it partakes in a marked degree of the coronal conformation distinguishing the latter genus. Hence we are strongly impressed with the conviction that the two forms heretofore associated under the designation I. acutus pertain to quite distinct generic categories, and that there exists strong probability of the generic identity with the present forms of the teeth referred to under the term Strcllodus Colei, and their possible specific identity with the mandibular posterior (so-called "anterior") teeth of D. acutus. The typical form of Strellodus Colei, however, presents distinctions whieh might readily be regarded as emphasized specific variations, as compared with the maxillary posterior form of Cochliodus contortus, Agass., (Strehlodus oblongus, Agass.) ; and at the same time it presents an extreme departure from the normal characters distingnishing the same form which is here ascribed to represcontative American species of Deltoptychius. From tho latter tho Irish form is distinguished by the considerable breadth of the depressed interval soparating the narrow secondary lobe from the posterior cormal prominence and the consequent relatively narrower anterior neck. which latter is nearly plain and terminated precisely as above described. It will, therefore, he observed on close inspection of the Irish and Anerican forms that, white they differ in the atove respect, they are more intimately related to one another than the former is with the maxillary posterior tooth of Coch. contortus (Strel. ohlongus,) and it is on theso grounds we have becn lul to suggest its generie identity with Deltoptychius, as herein ameuded. The Irish form referred by anthors to the "terminal" tooth of lhithetychius, is not mot with in this country, unless, as has already hecn mentioned, it should ho regarded as identical with the mmmibular form of "'merilolus. We are, however, not aware that the Irish localities huse afforded other l'eribentus forms which might he mpentically identified with the latter.

Deltoptychius primus, St. J. and W.
Pl. V, Fig. 6-8.
The dentition of the earliest known species of Deltoptychius is represented in the collections by a few imperfect, fragmentary examples of the posterior forms of the upper and lower jaws, which attain medium size. The mandibular teeth may be distinguished in the examples before us by the obscurer definition of the median prominence from the narrow belt in front, and shallow depth of the enameled abrupt antero-lateral border. The opposed teeth of the upper jaw appear to have had the principal posterior prominence relatively more convex transversely, producing a more rounded outline in this part of the inner margin than obtains in the representative Keokuk species. In the proportionate prominence of the secondary lobe, the present teeth bear greater resemblance to the corresponding form occurring in the Warsaw limestone, from which, however, they differ in the greater convexity of the posterior prominence. In size the above noticed teeth are uniformly below that attained by the allied forms in the Keokuk limestone, holding in this particular an intermediate position between the latter and the Warsaw species.

The examples of the above noticed forms thus far known, chiefly from discoveries of Mr. Springer and Mr. Wachsmuth, are few, and unfortunately in a very imperfect state of preservation, owing to the friable nature of the mineralized dental substance; and while the material is insufficient to enable a detailed description of the teeth, it affords ample evidence of the generic relations, as also indicating the characteristics by which they may be contrasted with congeneric forms.

Geological position and localities: Upper Burlington fish-bed; Buffington creek, and Augusta, Iowa.

Deltoptychius Wachsmuthi, St. J. and W.

Pl. V , Fig. 1-5.

Teeth attaining medium size. Mandibular posterior form triangular in outline, sigmoidally curved along the inner margin, terminating in front in a narrow, inrolled beak; postero-lateral border gradually converging toward the outer extremity, showing a deep, nearly vertical basal border, slightly inclined outward, and expanded toward the
posterior angle, and marked above by the narrow enameled fold which is defined from the basal portion by a slight channel; antero-lateral border forming a vertical face at the imer angle, gradnally sloping upward and backward toward the outer extremity, and, save a narrow belt along the inferior edge, enveloped in the enamel fold, which is also well defined from the basal rim. Coronal region traversed longitudinally by a moderately prominent, transversely arched median ridge, the axis of which lies nearest the antero-lateral border, and sharply defined on either side by an angulation or narrow groove; anterior belt relatively narrow, very faintly arched transversely, or nearly plane, and searcely half the width of the median-lobe; posterior alation about the same width as the median-lobe, transsersely concave and merged into the posterior depression from which it steeply rises into the produced posterior angle. Surface finely punctate. Greatest length of tooth along postero-lateral border, 40 mm .; ditto, antero-lateral border, 30 mm .; breadth across inner margin, 23 mm .; greatest height of antero-lateral border, 8 mm .

Maxillary postcrior teeth subspatulato in outline, strongly from within outwards, outer margin strongly inrolled; postero-lateral border making a broad curve ontward and forward from the obtnsely pointed posterior angle to point of inrollment, thence to the anterior angle the ontline is slightly concave; inmer margin arched round the base of the coronal prominence, and thence nearly straight to the anterior border; antero-lateral border slightly obliquely truncated from the inner to the onter angle, and equal to about two-thirds the diameter of the tooth along a line diagonal to the direction of inrollment across tho posterior ridge. Posterior lobe of the crown occupying little more than one-third the total hreadth of the tooth, moderately arched transersely, the crest enlminating in front where the surface rapidly descends into the narrow furrow detining it from the subordinate ridge, which latter presents a nearly uniform convexity, gradually marrowing from within outward, and, in perfect specimens, defined in front $b y$ a distinct thongh slight angulation; anterior neck nearly smooth, with a few obscure rugose lines along the imer margin, destituto of revolving rideres. Brendth of a mediumsize footh between the imer angles, is mm. : breadth of tooth across the posterior prominence diagonal to the inrollment, 20 mm . : length along antero-lateral borderf, 13 mm .

Mavilary median tecth fomming a triangular plato articulatum with the posterior tooth by the struight pustero-lateral border, the
oblique antero-lateral border rapidly converging toward the outer extremity, which presents the same degree of inrollment observed in the preceding posterior form. Coronal region presenting a series of transverse ridges, which individually possess coronal claracters ascribable to certain forms of Helochus, a medium-size specimen showing five such coronal ridges, whose longer axes correspond to longer diameter of the posterior tooth. The individual ridges rise in an even convex surface behind, culminating in an obtuse even crest, the outer face moderately concave vertically, and invested in the enamel layer, save along the crests, which reveal the relatively coarse punctate structure. Breadth of series across inner margin 10 m m . ; length along postero-lateral border 11 mm ., corresponding to that of the anterior border of the posterior tooth. The proportionate dimensions of the individual coronal ridges are represented in the illustrations.

Of the forms above noticed and associated under the same specific designation, the collections contain a fair suite of representatives, amongst which the teeth referred to the posterior position upon the lower jaw are in about double the numbers of those belonging to the maxillaries; while of the small anterior, or median dental series of the upper jaw, only a single specimen is known-that discovered by Mr. Wachsmuth, at Danville, Iowa. With regard to the latter, the resemblance it bears to Helodus elytra, N. and W., of the same geological horizon, creates a suspicion of the specific identity of similar Helodus-like teeth with the form here alluded to. The original specimen of Helodus elytra, however, apparently shows a series of independent, contiguous teeth, in their relative natural position, but with their coronal crests worn down almost even with the basal margins, so that it is impossible to determine the coronal contour, although, as has been stated, we strongly suspect the form is identical with teeth, perfect specimens of which have been described under other designations. The consolidation along the basal impingement of the separate teeth is precisely what has been noticed in connection with other allied forms of this family, and although a matter of biological interest and importance, it should not militate against the recognition of the specific identity of series of isolated teeth and those that are joined by their bases into a solid dental plate, as is the case in the above form.

The maxillary posterior teeth are seldom preserved entire, and the attenuation of the anterior region exhibits unmistakable evidences of the excessive attrition these teeth were subjected to during the life
of their possessors. In some specimens, as that discovered by Mr. Wachsmuth, the abraded anterior coronal region presents a coarse, irregular punctate structure, characteristic of the raso-dentine composing the body of the teeth. In mature and much-worn tecthwhere the enamel and outer subjacent layers have been removed hy the process of attrition-a similar exposition of the conrse, tubular structure is laid bare all round the inner and outer margins of the tooth; in other examples the abrasion has been carried so far as to produce a deep channeling of the surface of the posterior prominence in the direction of the long, or transserse diameter of the tooth; and in those that preserve the crown surface in a perfect state, the enamel along the inner margin, through which the minnte, prismatic structnre is visible, shows distinct parallel incremental lines, more or less sharply impressed, and even reaching well up orer the crown, producing an irregular, undulated surface, extending alike over the posterior prominence and the anterior neck. In well-preserved specimens the secondary lohe in front of the principal coronal prominence is defined with absolute distinctness. The posterior angle probably terminated in a more or less produced spur, the enamel apparently forming a narrow fold enveloping the superior edge of the anterolateral border, similar to what obtains in corresponding teeth of Cochliodus; howerer, in some specimens this border is slightly raised into a low, obsenrely-defined marginal ridge.
The mandibular posterior teeth, also, exhibit much the same superficial features dne to the various conditions of usage and preservation as enumerated in connection with the teeth of the opposite jaw. The anterior plane-belt is usnally merged into the median prominence toward the onter margin, the result of wearing down of the crown surface; but toward the imer margin the coronal contonr is well, even sharply defined, the surface enveloped in a layer of polished enamel.

Geoloyical prosition and localities: Kienknk limestone: Warsaw, Hamilton, Nanroo, and Henderson county, (Illinois); 「Keoknk, Danville, Bentonsport, (Lowa) ; Booneville, (Missomi).

Delfortichieg Varsoniensis, St. J. and W.
11. 1. Fig. 11. 15.

Mandibular posterior teeth trigonal in ontline, apparently strongly inrolled at the onter extremity, imer margin very oblique and broadly rounded with slight sigmoidal curvature, postero-lateral bor-
der rapidly converging toward the outer extremity. Median ridge of crown prominent, occupying a nearly central position and well defined from the relatively wide anterior belt, which latter presents the characteristic angulation and abrupt face enveloped for the greater part of its depth in the coronal enamel; posteriorly the slope of the median ridge descends into the broad depression on that side, from which rises the relatively wide posterior expansion or alation. Crown surface densely punctate. A specimen below medium size measures in greatest length from posterior angle to outer extremity about 11.5 m m .; antero-lateral border about 6.5 m m . ; breadth at inner margin 8 m m .

Posterior tooth of upper jaw of the usual spatulate outline, anterolateral border obliquely truncated from inner angle forward to outer angle, posterior extremity somewhat produced from which the posterolateral border somewhat rapidly converges toward point of inrollment. Posterior prominences occupy half, or a little more, of the coronal area, secondary lobe about one-third the dimensions of the principal ridge, from which it is separated by a deep furrow, and well defined in front from the apparently smooth anterior area which gradually con'racts towards the anterior border. Superficial punctation agreeing with that described above. A mature specimen measures in greatest diameter across the inner margin 17 m m .; greatest breadth across posterior prominence 7 m m ; length along antero-lateral border 4.5 m m .

The present species is made known from a single representative each of the posterior form pertaining respectively to the upper and lower jaws. Neither of these examples is entire, although they are sufficiently so to permit of a not unsatisfactory comparison with other generically allied forms. The species is most intimately allied to that occurring in the St. Louis formation, Dcltoptychius expansus; especially is this relationship apparent in the close resemblance that exists between the maxillary posterior forms of the two species. It differs, however, from the latter species in a marked degree in respect to the coronal contour of the mandibular posterior teeth, which shows the median ridge well developed and defined from the narrow belt in front and the much greater obliquity of the inner margin of the tooth.
Geological position and localities: From characteristic strata of the Warsaw formation; Clifton, above Alton, and Golden Bluffs near Warsaw, Illinois.

Deltoptychics expansus, St. J. and W.

II. V, Fig. ?. 13.

Posterior teeth of the mandibles, trigonal in general outline, outer extremity strongly inrolled, relatively broadly expanded posteriorly, and broadly arehed along the imner margin with sigmoidal curvature in passing to the posterior extremity of the strong wing expansion. Antero-lateral border slightly eurved sigmoidally, moderately deep, the greater portion of the vertical face being covered by the coromal enamel and making a well-defined angulation above; postero-lateral border rapidly converging toward the extremity, basal portion projeeting somewhat beyond the narrow and prominent fold limiting the coronal surface, and more or less produced posteriorly. Coronal surface showing a broad, deep posterior depression, which, together with the alate border, constitutes half the lateral diameter of the tooth; median lobe relatively narrow, generally obseurely detined in front from the narrow anterior plane belt with which it is usually merged over the greater extent of the outer surface. Length of a medium-size tooth along antero-lateral border 8 mmi .; breadth at inner margin 8.5 mm .

Posterior tooth of the upper jaw in outline spatulate, terminating posteriorly in an eccentric sharply rounded spur, antero-lateral border obliquely truneated from immer angle ontward and forward. Coronal prominence comprising nearly two-thirds the transverse diameter of the tooth, posterior lobe moderately conves transversely, sulordinate lobe relatively broad and prominent, anterior area smooth, and narrowed toward the antero-lateral border. Surface minntely and closely punctate, in the same mamer observed in the opposed teeth. Greatest transverse diameter of a medium-size tooth about 12 mm . greatest diagonal hreadth aeross the posterior prominence 5 mm . length along antero-lateral border 4.5 to 5 mm .

Of other dental forms oeeurring with the above described teeth, none have been recognized as probably specifically identical. In superficial coronal characters, as the pmetation and appearance of the enamel layer, the two forms alove notied possess most intimate charactors in common, so that, notwithstanding the fact that all the material in our possession consists of isolated teeth, little donht is enterfained as to their having eonstituted parts of the dentiton of the same specios.
(ompared with the Keoknk species, D). Wachsmuthi, the presunt teeth present well-marked differences whieh serve to distinguish them
specificaliy. The mandibular posterior teeth are proportionately shorter from within outward and wider across the inner margin, and the median-lobe perhaps less well defined from the narrow anterior belt; while the opposed tooth of the upper jaw has the secondary lobe relatively much more strongly developed and the coronal prominence occupying a greater portion of the crown surface.

The state of preservation of these diminutive teeth, especially in the instance of those pertaining to the mandible, is extraordinary. But of the maxillary teeth the collections afford few examples, and these are without exception mutilated at the antero-lateral border, in consequence of the extreme although not disproportionate attenuation they undergo in that region.

Geological position and localities: St. Louis limestone; Alton and Monroe county, Ill.; Pella, Iowa; St. Louis, Mo.

- Deltoptychius nitidus, (Leidy, sp.)

$$
\text { PI. V, Fig. } 16 .
$$

Cochliodics nitidus, Leidy, 1856. Trans. Am. Phil. Soc., xi, p. 87. PI. v, f. 2.
The present species was originally described by Dr. Leidy, from a large-sized specimen of the posterior tooth of the left ramus of the lower jaw, which was obtained at Chester, in this State. The teeth are massive, and strongly built, triangular in outline, pos-tero-lateral border rapidly converging toward the outer extremity, inner margin broadly curved round the base of the median prominence, antero-lateral border nearly straight, relatively short, the enamel fold extending well down over the abrupt face. The basal portion along the postero-lateral border, in a mature individual like the type noticed by Dr. Leidy, extends in a conspicuons rim beyond the well-defined enamel fold, terminating in a strong, bony spur, posteriorly, and reaching the point of strong inrollment, where it presents the usual channeled condition. The crown is strongly arched from within outward, median lobe embracing about half the lateral diameter of the crown, usually prominently arched transversely, a slight angulation defining it from the narrow anterior belt, the slope behind descending into the posterior depression, which is bordered by the relatively narrow alation. A medium-sized tooth measures, along the postero-lateral border from the posterior angle to point of inrollment, 12 mm ; length along antero-lateral border; 7.5 mm . ; breadth across inner margin, 10 mm .

The collections contain examples of maxillary posterior teeth, from the same deposits and localities, associated with the above described
teeth, which probably belongel to the same species. The latter, however, are in so worn and mutilated a state of preserration as not to exlibit details beyond mere outline, by which they may be satisfactorily compared with other specimens of the same form.

The loan of the type was kindly procured us by Dr. Leidy, a careful comparison of which with the material before us leaves not the least doubt as to their specific identity. The species, as represented by the posterior teeth of the mandible, is intimately allied to D. expansus, of the St. Louis limestone, being chiefly distinguished by its more robust figure, stronger inrollment, and narrower posterior alation. The majority of the examples of this form exhibit traces of excessive coronal abrasion, which in some instances las leveled the median prominence, destroying its definition from the plane anterior belt, in which latter condition the individuals bear deceptive resemblance to the homologous teeth of Orflopleurolus.

Gcological position and locality: Chester limestone; Chester, Ill.

GENUS STENOPTERODUS. ${ }^{1}$ St. J. and W.

Teeth, probably occupying a posterior position on the upper jaw, distinguished by their long-elliptic outline, strongly arched and spiral inrollment of the outer extremity. Crown traversed by a posterior prominence or lobe in the direction of imrollment, more or less welldefined from the anterior area, which presents a plane surface, without prominent revolving or longitudinal folds; posteriorly, the crown is well defined from the hase by the inbereled enamel fold, beyond which the basal rim usually more or less projects, often terminating in a strong posterior process, and forming, in wellpreserved specimens, a deep border toward the inner margin, becoming less conspicuous outwardly; anteriorly truncate, usually more or less obliquely so from the inner angle outward and backward to point of inrollment (though sometimes outward and forward from an obtuse immer angle), tho shallow enamel fold inbereled and defined by a narrow suleus from the base. Surface of crown in perfeet stute covered by a dense enamel-like, glossy coating. through which the tubular structure presents a delicate papillose appearance; worn surfaces minutely mind densely pitted by the exposed extremities of the medullary tubes; vaso-dentine of hase coarse, inftrior surface of the dense mferior layer irregularly striated in the direction of insollment.
 alation of tho mandibular fumporlor fuoth

The above diagnosis applies to a certain form of teeth well represented in the collections from various Lower Carboniferous formations, and which is homologous with the long posterior teeth of the upper jaw, formerly embraced under the generic term Streblodus, Agass. Since it is now a well established fact that the latter form formed part of the dental armament of the jaws of the same fish that bore the teeth represented by the original form of Cochliodus, Agass., there can scarcely arise a question as to the position the present form held upon the jaw.

It may, perhaps, be deemed premature at the present time to attempt the identification with the above form of other and associate teeth from amongst the detached dental remains of Cochliodonts, alone contained in the collections; but there are certain forms whose occurrence and intimate association in the same deposits with that above noticed, strongly suggest their congeneric relations and specific indentity. Thus, there are found teeth which, possessing the general characteristics attributed to the large posterior teeth of the mandible of Cochliodus, may be especially characterized by their more trapezoidal outline, posterior position of the median lobe, narrow posterior alation, and the relatively broad flat area of the neck or anterior portion of the coronal region. The latter form is further distinguished by the greater or less obliquity of the outward and backward course of the antero-lateral border, which, together with the postero-lateral border, presents the same condition of narrow, rounded, inbeveled enamel fold and channeled basal rim observed in connection with the opposite maxillary teeth, with which they also agree in the degree of inrollment and longitudinal convexity of the coronal region. The neck or anterior area is nearly plane or faintly swollen transversely, sometimes with a slight depression near to and parallel with the antero-lateral border. The posterior alation is narrow and separated from the median lobe by a comparatively narrow depression. The inner margin is moderately concave in passing the posterior depression, broadly arched round the base of the coronal prominence, and thence to the anterior angle more gently curved or nearly straight. The relative proportions of the teeth are laterally narrower and stouter than the maxillary posterior form.

There are associated with the two most numerously represented species of the genus a form of teeth, which from their general appearance and apparent identity of coronal structure, we have pre-
sumed to identify with the mandibular median form of the present genus. The latter teeth are subrhombic or trapezoidal in outline, with a nearly straight postero-lateral border, and longer and more obliquely converging opposite border, defined by the same style of enamel fold and basal rim, characteristic of the previously mentioned forms; the coronal region presents a broad, nearly plane surface, gradually culminating near the postero-lateral borderf in a depressed, obscurely defined ridge, where the slope to the borter on the one liand is abrupt, and on the other very gentle, the imer margin gently arched and somewhat rapidly deflected to the obtuse posterior angle.

The genus as now understood is represented by species begiming in the Upper Burlington limestone, and in each sncceeding formation of the Lower Carboniferous period, the latest anthentic occurrence being in the St. Louis limestone.

Stenopterodus planus, St. J. and W.

II. IV, Fit. 9-14.

Represented by two forms of teeth below medium size, presumably occupying corresponding positions on opposite jaws.

Posterior teeth of the upper jaw sub-rhomboidal in outline, rather strongly inrolled and arched longitudinally. Antero-lnteral border slightly oblique in its forward and outward couse, basal rim apparently shallow, and defined from the narrow enamel fold by a shallow groove; postero-lateral border conserging nt an angle of about $25{ }^{5}$ with the opposite border, the basal rim somewhat thiekened and produced beyond the limits of the narrow, inrolled enamel fold, inner margin loroadly arehed with a slight angulation near the middle in passing the base of the coromal prominence, in front of which a sharp, slight constriction occurs, the infertior edge inbereled in the worn condition; posterior extremity forming n sul)-acute angle, the margin making an obtuse angle with the anterior border. Coronal prominence comprising more than half the Interal area of the surface, culminating in a low, rounded crest near the median line, with an abrupt shope to the anterior neek, detined ly an intervening shallow groose, the posterior broad slope very gently and faintly depressed transwersely; the anterior neek somewhat rapidly narmews to the antero-lateral border, is gently consex transwersely and marked by faint/ longitudinul plies. The whole onter third or moro of the crown surface presents un even, smooth, triturating area, the result of wear, exposing to view the minute, regnlar punctar, which
usually show marked tendency to elongation in the direction of the inrollment of the tooth; the inner surface shows a dense layer of enamel with fine lines of growth parallel with the inner margin. Greatest transverse diameter of the tooth, 20 mm .; length along antero-lateral border, 6.5 mm . greatest longitudinal diameter, 10.5 mm.

Posterior tooth of the mandible sub-quadrangular in oudline, rather strongly inrolled and longitudinally arched ; corresponding in size with the previously-noticed form. The moderate and regular arching of the inner margin interrupted by the broadly-rounded base of the coronal prominence; antero-lateral border with a slight oblique course outward and backward, enamel fold relatively deep and inbeveled to the shallow, channeled basal rim; postero-lateral border very gradually converging, making an angle of 10° or $1 j^{\circ}$ with the opposite side, the narrow enamel fold well defined from the basal portion, which forms a shallow rim projecting considerably beyond the limits of the crown. Median prominence regularly and broadly arched transversely, culminating a little posterior of the median line, and occupying quite half of the lateral diameter of the crown; posteriorly, the slope merges into the shallow concavity bordered exteriorly by the gently-upraised alation, in front defined by a faint angulation from the wide, slightly convex belt intervening between the median lobe and the antero-lateral border. The surface of the anterior belt is marked by faint, revolving plicæ, and along the inner margin the enamel coating shows more or less distinct parallel undulations, or lines of growth, the outer half of the coronal surface exhibiting the usual evidences of excessive trituration, the entire coronal area minutely and closely punctate, the punctæ showing the longitudinal elongation precisely after the manner observed in connection with the opposed maxillary teeth. Breadth across inner margin, 17 mm .; longitudinal diameter along the axis of median lobe, 9.5 mm ; length along antero-lateral border, 7 mm .

The two forms of teeth described above are represented in equal numbers in the collections, and their uniform association and agreement in size and superficial characters preclude any doubt as to their specific identity. As commonly occurs in the teeth of this family, in consequence of the attenuation of the borders, seldom is a specimen met with showing the antero-lateral border entire, and indeed in the majority of examples of the mandibular form the posterior wing or alation is also mutilated or broken away.

Teeth supposed to represent the median form of the mandibles, small, trapezoidal in outline, strongly arched from within outward. Postero-lateral (?) border nearly straight, with slight obliquity in its outward and slightly forward course, basal portion evidently shallow, channeled, and defined above by the relatively strong, rounded enamel fold; antero-lateral or oblique border converging from the sub-acute imner angle to point of inrollment at an angle of about 20° with the opposite border, the strong, rounded enamel fold projecting leyond the comparatively shallow, chameled hasal rim; inuer margin somewhat abruptly rounded from the obtuse posterior angle, thence nearly straight to the anterior angle, usually inbeveled inferiorly. Coronal surface showing a wide, gently depressed aeclivity very gradually rising from the antero-lateral border culminating in a rounded ridge, the posterior slope of which abruptly descends to the postero-lateral border fold, from which it is defined by a narrow parallel depression. The hatter feature may become obsolete in worn specimens-indeed the whole outer half of the coronal surface usually bears evidences of excessive wear from use. The inner margin of the crown preserves the enamel coating, through which the somewhat irregular orifices of the tuhular structure are distinctly discermble, worn surfaces showing a fine pitted structure with the longitudinally elongate punctar exactly as remarked in the before mentioned forms. A medimm sized tooth measures iu greatest dianeter between the imner angles 7.5 mm ; length along postero-lateral border to point of imrollment nearly 4 mm .

In assigning the last above described form to Stcnoptirodus, we have heen guided chiefly ly the marked resemblance of the surface minctation to that ohserved in the posterior forms of the upper and lower jaws with which it is associated in the same deposits. But white the above forms are represented by several indiviluals each, the collections contan only three examples of the prestit form, and two of these are proportionately much smaller than any of the examples of the mandibular posterion teeth with which it is supposed this form was specifically associnted; lint Mr. Springer's colLection contains a single imperfect specimen of a larger individual which corresponds in relative size to the ordinary dimensions of the mandibular posterior teeth.

In gemeral outline and coromal contour these tecth bear some rescmblanees in common with the forms provisionally identified with
the mandibular median teeth of Sandalodus, etc. They are, however, in this case distinguishable by the abrupt posterior declivity of the coronal prominence and its distinctly defined border fold of that side.

Geological position and localities: Upper Burlington fisl-bed; Burlington, Buffington Creek, Augusta, Pleasant Grove, Iowa; Quincy, Honey Creek, Henderson county, Illinois.

Stenopterodus, sp.?

Pl. IV, Fig. 15, 16.

Posterior form of the upper jaw below medium-size, sub-elliptical or spatulate in outline, moderately arched/longitudinally and strongly inrolled along the outer margin. Antero-lateral border comparatively short, with slight obliquity outward and forward ; postero-lateral border gently arched, and rapidly converging from the acutely rounded posterior extremity toward point of inrollment, making an angle of 30°, more or less, with the anterior border; inner margin gently and regularly arched, inbeveled inferiorly. Coronal region presenting a low prominence, the obscurely defined axis culminating about the middle of the tooth, flanked on one side by the wide, nearly plane slope descending to the postero-lateral border, on the other by a narrower, perceptibly steeper declivity, which merges into the relatively narrow, plane anterior neck. Surface minutely and closely punctate, the punctr showing quite regular disposition in parallel longitudinal lines. Breadth across inner margin 14 mm .; length of antero-lateral border about 4.5 mm . Mandibular posterior tooth proportionately corresponding with the opposed maxillary form, trapezoidal in outline, rather strongly arched and inrolled. Inner margin somewhat strongly arched round the base of the coronal prominence, moderately so to the anterior angle, and slightly concave in passing the posterior depression toward the extreme angle; lateral borders not definable. The coronal ridge is strongly convex transversely, occupying apparently quite half the lateral area of the crown, posterior depression well marked and regularly concave transversely, the anterior belt defined by a faint angulation, apparently plain. Surface punctation precisely as observed in connection with the maxillary posterior form, the punctæ being slightly compressed laterally, emphasizing the linear longitudinal arrangement.

The above diagnoses are based upon unique examples in each instance, the former preserving scarcely more than the outline and the excessively worn superficial contour, the latter showing only the central portion of the tooth, the mutilated borders not displaying the outline of the tooth. They furnish a singular instance of the palucity of certain fish-remains in the collections from a formation which has yielded rich and varied materials pertaining to allied genera. The teeth certainly, so far as it is possible to carry the comparison, offer striking resemblance to the corresponding forms occurring in the superjacent Warsaw limestone, Stenopterodus elongutus, in outline, apparently coronal conformation, and the character and disposition of the punctie. We should, therefore, be prepared to recognize their specific identity with the latter forms were the characters noticed in comnection with the sole examples as yet known to us from the Keokuk horizon, shown to be persistent and normal in even a small suite of perfect specimens.

Geological position and locality: Keokuk limestone, fish-bed; Warsaw and Hamilton, Illinois.

Stenopterodes elongatus, St. J. and W. Pl. IV, Fig. 1-3.
Maxillary posterior tecth small, elliptical in outline, considerably arched and strongly imrolled along the onter margin. Course of antero-lateral border nearly at right angles to the transwerse axis of the tooth, opposite border gradually converging from the obtuselypointed extremity toward point of inrollment, neither border sufficiently well preserved to show details of emamel fold and hasal rim. Coronal prominence relatively very broad, or oceupying twothirds the lateral diameter of the tooth, armptly heveled along the postero-lateral boder, broadly and regnlarly areled tramstersely, culminating anteriorly where it is detined by a slight declivity having a very oblique course toward the onter extremity; anterior area relatively narrow, quite smooth, plane, and nicely romded in a narrow fold along the border, which is detined by a narrow sulens from the shallow basal rim. Coronal surface minutely and fincty pmetate, the punctor chibiting a somewhat marked tomeney to linear longitudinal disposition, and in mature examples the enamel shows distinet parallel lines of growth following the broadly romaded curvature of the imer margin. Greatest diameter of a small-oizol tonth, $1: 5 \mathrm{~mm}$.; greatest diagonal hendth near middle, 6 mm .: length ulong antero-lateral border. 4 mm .

Posterior tooth of the lower jaw known only from very imperfectly preserved examples, which, however, shows a rather prominent and regularly arched median lobe, situate nearly centrally, with apparently well-developed posterior wing, nearly equalling in breadth the plane anterior area.

The above described species is represented in the collections by only a few examples, and in only two exceptions are the complete outline and coronal contour shown. From these we are led to recognize distinctive peculiarities that readily distinguish the teeth from congeneric forms previously noticed, with the exception in favor of the possible identity of the Keokuk forms with the present species.

Geological position and locality: Warsaw limestone; Golden Bluffs, near Warsaw, Illinois.

Stenopterodus parvulus, (N. and W. sp.)
Pl. IV, Fig. 4-8.
Sandalodus parvulus (in part), Newberry and Worthen, 1866, Ill. Geol. Surv., II, p. 102, Pl. X, f. 1.

The recognition of the above cited species was based upon a unique, nearly perfect tooth, representing the posterior form pertaining to the upper jaw. The specimen is mutilated along the outer margin in front, the inrolled extremity being broken away. The figure, however, conveys a very inadequate impression of the coronal contour, the engraving exaggerating the accidental features traceable to attrition at the expense of the natural contour surfaces. The specimen exhibits the posterior lobe of the crown, gradually culminating anteriorly, where it is suddenly broken down and defined by a slight depression from the plane anterior area with which it merges in the middle outer region of the coronal surface, where the tooth has been subjected to excessive attrition while in use. In the outward and forward obliquity of the antero-lateral border, also in the distinct definition of the shallow enamel fold along the still more oblique and gently arched postero-lateral border, where the basal portion forms a prominent rim, reaching to the point of inrollment, the original figure above cited conveys a more accurate idea of the form.

The acquisitions of Mr. Van Horne include a beautiful series of the above mentioned teeth, with which are associated, equally numerous, another form, which we have come to regard with a strong
degree of probability as pertaining to the mandible of the speeies. The latter teeth exhibit in a marked degree homologous relationship) to Cochliodus, possessing the same general outline and eoronal contour distinguishing the large posterior teeth of the mandible of that genus, characterized, however, in accordance with the distinctive peeuliarities appertaining to the present genus. The latter form is trapezoidal in outline, and in the arching and inrollment of the tooth it agrees with the opposed form ; posterior wing narrow, basal rim extending conspicuously beyond the limits of the shallow, rounded, inbereled enamel fold; median lohe situated a little posterior of the middle, broadly and regularly arched transversely, culminating in a tumid crest, the slope on the one hand merging into the posterior depression, on the other defined by a slight angulation from the anterior area, which presents a broad plane or gently-convex surface, with faint impressed furrow near the border and nearly equal in breadth to the median lobe; an-tero-lateral border quite obliquely truncated outward and backward from the sub-acute inner angle; the imner margin is gently arched between the angles, somewhat more strongly arehed around the base of the median prominence, and slightly deflected on nearing the posterior extremity. The external enamel coating investing the inner portion of the crown shows distinct lines of growth parallel with the inner margin, the worn surface regularly and minutely punctate, precisely after the mamer observed in the opposite tecth of the upper jaw.

A medium-size posterior tooth of the upper jaw measures, in transeerse diameter across the inner margin, 12.5 mm ; length along antero-lateral border to point of inrollment, $;$ mm.; greatest diancter diagonal to the longitudinal axis. 5.5 mm . I large-sized mandibular posterior tooth measures, across the imer margin, 15.5 mm.; length along antero-lateral border, 7 mm . ; longitudinal diameter, at middle $!\mathrm{mm}$.

Mr. Vinn Horne's collection eontains a single minnte specimen of a tooth which clearly helongs to the form which we have alrenty recognized from the Upper Burlington fish-heds, from examples in the collection of Mr. Springer, and which is refered to the mandibular melimen form of stemopherodus. The present twoth presents the same resemblances in surface punctation, as compared with the posterior forms of s parrulus, as in the former intance whe noted in comection with this form and s. plamus. The latter specimen attains a brendth neross the immer margin net exceeding
3.5 m m ., and length along the straight postero-lateral border about 2 mm . Trapezoidal in outline, it is relatively broader than the Upper Burlington teeth of the same form; the postero-lateral border shows a slight forward obliquity in its outward course, basal portion exceedingly attenuated; antero-lateral borderd converging toward point of inrollment at an angle of about 30° with the opposite border, too imperfect to show the character of the basal rim beneath the narrow, enamel fold; inner margin very gently arched from the anterior angle, and abruptly rounded to the obscure, pos-tero-inner angle. Crown presenting a broad, faintly-depressed slope, culminating in a low ridge closely bordering the postero-lateral side, to which it is abruptly sloped and merged into the distinctly-defined, narrow, marginal fold. Coronal punctation relatively coarse and closely arranged, very similar to that observed in the mandibular and maxillary posterior teeth.

The specific relations of the above described form are, of course, only inferentially determined. It might appear to be an anomalous state of things, especially in view of the fact that the mandibular and maxillary posterior forms of the species to which it is provisionally attributed occur in comparative numbers, the latter form should be represented by a unique example. But the small size of the teeth, and their thin, scale-like fragility, may in part, at least, account for their rare preservation and infrequency in collections.

Geological position and localities : St. Louis limestone; Alton and Monroe county, (Illinois); St. Louis, (Missouri), and Pella, (Iowa).

Genus CHITONODUS, St. J. and W.

Teeth representing the various forms characteristic of the genera of Cochliodonts.

Mandibular posterior teeth trapezoidal in outline, strongly to moderately arched in the direction of inrollment. Antero-lateral border generally but slightly oblique to a line projected between the anterior and posterior angles of the inner margin, basal portion channeled, continued downward and outward into a thin marginal rim, bordered above by the narrow, inbeveled fold of coronal enamel; postero-lateral border converging toward outer side or point of inrollment at a moderate angle, basal portion expanded into a thin rim projecting a greater or less distance beyond the coronal border and terminating in the more or less produced spur of the posterior angle, in front similarly channeled and defined above by the rounded
enamel fold as observed in the opposite border; inner margin most strongly arched backward in passing the base of the prominent median lobe of the crown, with deep, broad sinus or deflection in the region of the posterior alation, in general presenting a moderate sigmoidal curvature, inferior edge usually inbeveled, though originally, or when entire, continued downward in a nearly vertical basal wall; outline of the outer inrolled margin the reverse of that last described. Coronal region presenting a principal or median ridge culminating near the middle of the crown, the anterior slope moderate and uniform to the angulation or slight depression defining the very narrow belt skirting the antero-lateral border; the posterior slope more abruptly descends into the broad depression in that flank, whence arises the prominent posterior ablation. Coronal surface further marked by subordinate revolving ridges and furrows variable in disposition and distinctness of definition, also ornamented by delicate transverse rage or reversed imbrications disposed in more or less parallel order conforming to some degree with the direction of the margin, though subject to interruption by implantation and bifurcation, also obsolete or variable in occurrence in species and individuals; otherwise the surface presents the punetate structure common to allied genera. Inferior surface, enveloped in the dense homogeneous layer, smooth or faintly striated longtudinally, repeating in a less marked degree the coronal contour.

Median teeth of mandibles relatively narrow, trapezoidal in outline, arched and strongly inrolled longitudinally; postero-lateral border conforming to the articular border of the posterior form and constituting the longer side of the tooth, antero-lateral border gradually converging toward the outer extremity, both borders showing the channeled basal portion bordered above by the narrow inbeveled enamel fold, inner margin obliquely rounded from the posterior to the anterior obtuse angle. Coronal surface occupied by a more or less prominent ridge situated nearest the postero-lateral border. on which side the declivity is abrupt, and defined by a narrow subordimate lobe immediately along the border, opposite side more gradably sloping towards the antero-lateral border, which is similarly margined by a narrow ridge with intervening shallow furrow. Surface ornamentation the same as noted in compaction with the posterior terminal form.

Maxillary posterior teeth subquadriateral in general outline, modirately arched and strongly impelled along the outer margin. Anterolateral border slightly oblique to the general course of the imper
margin, basal portion channeled and produced downward and outward in a thin rim, defined above by the narrow inbeveled enamel fold ; postero-lateral border converging toward point of inrollment somewhat more rapidly than in the case of the opposed mandibular teeth, with which it bears much the same characters in respect to the basal portion and enamel fold along the upper edge; inner margin most arched round the base of the posterior coronal lobe, in front of which it is more or less deflected inward ard forward, thence gently arching round the anterior prominence to the obtuse anterior angle. Coronal region divided into two principal revolving elevations, of which the posterior one is much the most prominent, occupying about half the lateral diameter of the crown, the broader slope rising from the postero-lateral border and culminating nearer the auterior side, with a more abrupt slope descending to the median depression; the latter presents a broad transversely more or less concave area, the surface rising anteriorly into the more or less well-defined anterior prominence, thence the slope descends to the antero-lateral border. The coronal surface is further marked by more or less distinct, though generally obscure and sometimes obsolete subordinate revolving ridges and furrows which are chiefly noticeable in the region of the anterior prominence, though sometimes present in the median depression and the long slope of the posterior prominence; more or less distinct transverse rugæ disposed in the same manner noticed in connection with the mandibular posterior teeth, occur, producing an elegant imbricated ornamentation in the individuals thus distinguished. The latter superficial feature is, however, obsolete in some species, and which is equally applicable to all the other forms of certain species of undoubted congeneric relationship.
In regard to the character of the teeth occupying the extremities of the jaws, we can little more than conjecture their identity. Amongst the numerous examples of transversely elongate teeth which were originally disposed in serial order, and which are recognized under various generic appellations which in themselves constitute well-defined groups, there are possibly included forms which may have been associated with the teeth under present consideration.

The generic relations of the forms embraced under the above designation are most intimate with Cochliodus, Agass. Indeed they differ chiefly in the less well defined differentiation of the coronal regions, while in Cochliodus these parts are sharply limited, the
species being chiefly distinguishable by differences in proportions. The absence of transverse rugie may be deemed of greater than specific importance. The genus, however, presents in the ensemble of its specific forms and the within bounds somewhat diserse characteristics, features which indicate for it an important position at the head of this particular group of the family, and from which Cochliodus was probably an off-shoot at a later date. It embraces besides the Burlington forms, species occurring in the Keokuk formation described under the terms Cochliodus latus, Leidy, (Cochliodus molilis, N. and W.) P'arilodus rugnosus, N. and Wr., (including l. oruatus, N. and W.), ete. We are not aware of the existence of later representatives than those above enumerated from the Feokuk formation and a single species from the St. Lonis, the Chester species belonging to typical Corhliohlus.

Were we in possession of sulficiently complete materials to conclusively demonstrate the relations of the species characterized by the presence of the transverse imbrications or ruga, and those in which the coronal surface is simply marked by more or less subordinate revolving furrows and rilges, it might be found that these constitute two distinct groups more or less well defined one from the other. In that event Cochliondus lutus would maturally fall into the group represented by the primitive Burlington species Chitomodus antiquus; while on the other hand, the lieokuk "Precitorlus rugosus" wonld remain in association with the species here first described mader Chitonorlus Spriugeri.

Chimoxones Smmagert, St. J. and W.

PI. VI, Fig. 3-1:

Mandibular posterior teeth trapezoidal in outline, strongly inrolled. Antero-lateral border with a slightly oblique eomse outward and forwned, of moderate height, coronal enamel forming a narrow band abruptly folded over the edtre and inbeveled to the chameled, elosely pitted basal portion: postero-lateral border converging towatit pint of inrollment at an angle of nbout 50^{2} with the opposite side, coronal enamel forming a well-matied rounded fold along the upper eige of the chameted hasal portion: inner margin making a right angle with the antero-bateral hover, gradually produced backwarl from the obtuse anterion angle and sharply enred promb the lase of the coronal prominence, with a corresponding deppsimbation in passing the posterior depreasion into the simbate pouterior cotremity, nsinally inbeved. Superficial eharneters pro-
nounced and quite persistent in their uniformity. Median ridge rising into a rather sharply rounded crest nearly median in position, the anterior slope moderate and slightly concave transversely, terminating in a shallow depression bordered by a very narrow fold immediately along the antero-lateral border; posteriorly the surface abruptly descends into the depression on that side, whence the alate expansion gradually rises with slight transverse concavity into the moderately elevated postero-lateral border. The coronal surface is quite regularly marked by transverse rugæ parallel with the inner margin, the interspaces nearly a millimetre in breadth and rising from below upward producing a reversed imbricated appearance. The ornamental rugæ are most distinct over the depressed areas; in the more elevated exposed portions of the surface they are usually obsolete; however, there are traces of their presence over the entire area of the coronal region. The punctate structure presents the usual appearances associated with teeth whose coronal surface is traversed by transverse ridges and furrows, the punctæ being elongated usually in the direction of inrollment along the transverse folds; exfoliated and worn surfaces showing a relatively minute, crowded punctation. Transverse diameter at the inner margin of a medium-size tooth 20 mm .; length of antero-lateral border to point of inrollment 10.5 mm .
Mandibular median tooth of proportionate size in relation to the posterior form, trapezoidal in outline, elongated in the direction of inrollment. Postero-lateral border nearly straight, opposite border converging toward the outer extremity at an angle of about 20°, inner margin very oblique with a slight sigmoidal curvature from the sharply rounded posterior angle to the obtuse anterior angle. Coronal ridge situated posterior of the median line, of moderate prominence and breadth, posterior slope abrupt and deep to the narrow furrow close along the postero-lateral border, over which the coronal enamel forms a narrow inbeveled fold; anterior declivity nearly equally steep but of less depth, defined by a rounded angulation whence the surface more gently descends with slight transverse convexity to the antero-lateral border just within which lies a shallow parallel furrow recalling that adjacent the articular border of the terminal tooth. Along the posterior border and over a large part of the anterior slope the surface preserves the parallel, rarely bifurcating transverse rugæ, conforming to the direction of the inner margin, and spaced as previously noted in relation to the last described form, with which the general cliaracter of the surface
punctation also agrees. The present form is represented by half a dozen or so imperfect epecimens, which, while they are readily recognizable, are insufficient for comparative measuremonts showing their proportionate dimensions, -a mature example having a transverse diameter across the inner margin of 12.5 mm .
Maxillary posterior teeth corresponding in dimensions with the posterior form of the maudible, presenting the general outline ascribable to this form, moderately arehed longitudinally and strongly inrolled along the outer margin. Antero-lateral horder slightly oblique to a right line connecting the inner angles, presenting a channeled basal rim defined above by the narrow inbeveled fold of coronal enamel; postero-lateral border approaching point of iurollment at an angle of 60', and less, to the opposite border; inner margin broadly arched round the base of the posterior lobe, in front of which it is sharply enntracted and thence contimed in a slightly concave course to the anterior prominence, round which it makes a broad curve terminating in the obtuse anterior angle. The definition of the anterior and posterior regions of the crown is marked; posterior lobe occupsing apparently less than half the lateral diameter of the tooth, broad posterior slope gently and regularly arched transversely, in front steeply sloping from the sharply rounded crest to the angulation forming its anterior limit: the surface of the relatively wide depressed median belt gently: rises into the summit of the anterior lobes, which latter usually presents a more or less well-defined, marrow, rombled ridge, sometimes two or more ohsemre ridges, in part occupying the moderately abrupt slope along the antero-lateral border; in some examples faint revolving ridges extend over the depressed modian belt, and in others obsenre impressed lines may he traced in the wite slope of the posterior lobe. In the perfect state the entire coromal surface was occupied by transverse mate parallel with the inner margin and more or less so to one another, thongh in the latter respect exhititing considerable variation in the broken contmuty. bifureation, and implantation of the ruga, which have the same appearance as in the preceding forms mentioned nlove. Toward the onter margin and indeed over the middle portion of the erown where its surface was subjected to grentest attrition while in use. the rugar are obsolote or nearly so, though in some instances still traceable in the disposition in transterse lines of the more or less elongated or conthent punctar, which are conspiemonsly displayad over the entire surface save along the inmer margin where the
external enamel layer is densest. A mature specimen measures in greatest breadth between the inner angles 30 mm . more or less, length along antero-lateral border 14 mm .

With the exception of the narrow median teeth, the forms whose specific identity is here recognized are represented in about equal numbers of individual teeth in the collections. The mandibular posterior form exhibits some variation, especially in certain examples which show faint revolving ridges or furrows over the broad anterior slope of the coronal prominence, as illustrated in one of the figures representing a tooth referred to this species. The latter feature also recurs in some of the Streblodoid teeth of the upper jaw, as already noticed, and although the absence of these obscure furrows and ridges does not in all cases appear to be attributable to the accidents of wear, their presence in certain individuals is not associated with other characters which might be deemed sufficient grounds for their separation from the specific relations here recognized. Amongst the latter there occurs a single individual from Buffington creek, which, in the relative proportions of the coronal regions with which are associated other features, offer in the main rather marked contrasts with the superficial characteristics noticeable in the typical examples of the form described above. These consist in the relatively wide posterior lobe, the less distinct angular culmination of its crest and gentler anterior declivity, proportionately narrower median depression, more regularly transversely arched anterior lobe, and the upward and forward deflection of the imbrications or transverse rugæ in crossing the median depression, constituting striking features in contradistinction of those recognized in consequence of their prevalence as normal in the typical representatives. Illustrations of the latter specimen are also introduced, although its identity with the present species is only provisionally inferred. Also amongst the few representatives of the mandibular median form the normal condition described above is departed from in appreciable degree, presenting a form distinguished by a relatively elevated regularly arched coronal prominence and correspondingly depressed anterior slope, in which the oblique transverse ruga are more interrupted in continuity than occurs in the case of the typical individuals. The somewhat pronounced variations noted may indeed constitute permanent characteristics such as a larger suite of specimens might prove to possess specific value. But at the present time, owing chiefly to the imperfect state of preservation of the material in which many important details are masked, the evidence is not
deemed sufticient to justify the separation of these individuals from the more characteristic representatives of the species with whieh they are associated.

Compared with heretoforo deseribed species, the present one is allied to that oecurring in the Keokuk formation describel by Messrs. Newberry and Worthen, under the names Pucilodus rugosus and I^{\prime}. ornatus. 'The speeies differ, however, in several marked peculiarities. The closest resemblance between them is noted in connection with the proportions and coronal contour of the mandibular posterior teeth, the Upper Burlington form being mainly distinguishable by the more delicate and close arrangement of the transerse imbrications. The median teeth of the mandibles of the two species differ to a greater extent one from the other, the coromal prominence in the present species possessing greater elevation and more pronounced differentiation of the eulminating ridge. In the posterior teeth of the upper jaw the divergence in the contrasts between the species is even more emphasized, the Upper Burlington examples being destitute of the supplementary ringosities that surmount the crest of the posterior lobe in the lieokuk species.
It seems not, therefore, improbalile that the examination of a larger suite of specimens may reveal the existence of a contemporaneous species during the Upper Burlington epoeh, which the present material rather suggests tham demonstrates, mueh less affords the necessary data for the satisfactory discrimination of its distinctive characteristies. The illustrations convey a fair impression of the species as determined from sueli remains as aro at hand, while at the same time they serve to show the variable appearanee individual specimens present, the limits of which are ditheult to define.

Geological position and luculities: Upper lintington limestone: Burlington, Bullington ereek, Lonisa comuty, Plassant (irove, Augusta, Iowa; (Qniney, Ill.

Cintononts anthects, St. J. and W.

II. VI, Fig. :.

Mandibular posterior tonth less than medium size, trapezuidal in general outline, strongly inrolled and eorrespondingly arched longithdinally. Antero-lateral border making nearly a right angle with

[^8]a line connecting the angles of the inner margin, or very slightly oblique in its forward and outward course, the coronal enamel forming a shallow fold inbeveled to the channeled basal portion; posterolateral border not shown; inner margin produced obliquely backward and rather sharply rounded at the base of the coronal ridge, thence making a concave curvature to the acute posterior extremity. Coronal ridge nearly median, culminating in a rounded crest, posterior slope abrupt to the depression on that side, whence steeply rises the posterior alation, also steeply sloped in front and defined by a faint angulation from the relatively plain belt occupying the anterior portion of the crown, and which is apparently destitute of longitudinal furrows or transverse rugæ. Coronal surface regularly and closely punctate. Transverse diameter across the inner margin 15.5 mm . ; length along antero-lateral border 9.5 mm .

The above description is based upon a single imperfect specimen derived from the Lower Burlington limestone, and which is the earliest discovered representative of the genus. The somewhat distinct demarkation of the plain anterior area of the crown offers a character recalling typical Cochliodus, its relative great breadth constituting the chief distinguishing feature; on the other hand, the coronal contour is remarkably similar to that ascribed to Chitonodus, of which we believe it to be a worn example. Its relations to the species so well represented in the collections from the next succeeding or. Upper Burlington deposits cannot be fully determined; but the before-mentioned marked definition of the coronal ridge from the plain belt in front presents a striking contrast in contour with the same form of C. Springeri. Not even worn examples of the latter species, in which the transverse and even the longitudinal folds are obliterated, bear any intimate resemblance in the particulars alluded to as characteristic of the present tooth.

Geological position and locality: Lower Burlington limestone; Burlington, Iowa.

Chitonodus tribulis, St. J. and W.

Pl. VII, Fig. 18-21.

Teeth of medium size, of which representatives of the mandibular and maxillary posterior forms alone are known.

Posterior teeth of the maxillaries presenting the usual sub-quadrilateral outline, strongly arched and inrolled along the outer margin. Antero-lateral border forming nearly a right angle/ with a direct
line uniting the imner/ anterior and posterior angles, basal portion clanneled, coronal cnamel forming a narrow inbeveled fold along the upper edge; postero-lateral border very oblique, forming an angle of 40 to 50^{\prime} with the opposite border, in respect to basal portion and shallow enamel fold, presenting the usual generic characteristics; inner margin strongly arched from the sulacute posterior extremity round the base of the posterior lobe, in front of which it forms a rather deep broad sinus, and again broadly arehed in passing the anterior coronal prominence to the obtuse anterior angle. Coronal region nearly centrally divided by the median depression; posterior lobe prominent, anterior face steeply rising into the rounded crest, whence the broader slope more gradually and regularly deseends with slight transverse convexity to the posterolateral border, just abovo which lies a faint depressed parallel belt; median depression occupying less than one-fourth the lateral area of the surface, rather deeply excavated and usually well defined; crest of anterior lobe near the posterior side, the broad slope deseending in regular eonvexity to the antero-lateral border. Surface marked by transverse ruge or imbrieations over the less abraded portion of the posterior lowe, and which on reaching the median depression are, in some instances, rather strongly detlected from a direct course downwards and forward, becoming obsolete in the region of the anterior lobe, which is occupied by irregular prominences, produeing an elegant verrucose ormamentation, irregular ridges sometimes taking the place of the rerrueose prominences; surface punctie fine, spaced by little more than their own diameter. A mature specimen measures in greatest diameter between the inmer angles 40 mm . ; length of antero lateral border to point of imrollment about 15 mm .

Mandibular posterior teeth sub-trapezoidal in ontline, strongly arehed and inrolled. Antero-lateral horder moderately oblique in its ontward and forward course from the very ohtuse imere angle. channeled and limited above by the narrow emmeled fold; poterolateral border eonverging toward point of inrollment at an angle of 50 , or less, with the immer margin presenting the usmal chameled condition and cuamel fold above; imer margin strongly arelad romed the lase of the median ridge, with a hrod concave curvature behind in passing into tho produced sulneute ponterior crememe. Madian lobe of crown culnmating in a shaply romeded crest, anterior of a line through the centre of the tooth, stecply sloping and merging into the moderately depressed anterior lielt, the oppo-
site side abruptly descending into the deep posterior depression, alate lobe somewhat steeply upraised and relatively wide, transversely convex and thickened along the border. The superficial transverse rugæ show strongest development in the anterior slope and the posterior wing, in the latter region being nearly at right angles to their course in the former space, where, in some examples, at least, the surface is marked by stronger rugosities descending from the crest of the median ridge. Surface puncte the same as described in the opposed maxillary teeth. A specimen below medium size measures across the inner margin 15 mm . ; length along anterolateral border to point of inrollment 9 mm .

Only the posterior teeth of the upper and lower jaws of the present species have been identified, represented by half a dozen individuals of each form, and these, with one or two exceptions, in the usual fragmentary state of preservation. Compared with the forms of the species with which they are associated, C. rugosus, (N . and $\mathrm{W} . \mathrm{sp}$.), the maxillary teeth are distinguishable by the relative greater prominence of the posterior lobe, the verrucose ornamentation of the anterior lobe, and, perhaps, the course of the transverse rugæ in the region of the median depression. The mandibular teeth also differ in the relative prominence, the sharply rounded crest of the median lobe, depth of posterior depression, proportionately greater breadth of the alate lobe, and more robust build. In some of the features contrasting with the associate species there are more intimate resemblances with the Upper Burlington species, C Springeri, especially as regards the mandibular posterior teeth; but the maxillary teeth of the latter, again, are more like those of C. rugosus, though they are not to be confounded with that species.

Geological position and localities: Keokuk limestone, main fish-bed horizon; Keokuk, Bentonsport (Iowa), Hamilton, Warsaw, Nauvoo and Scott county (Illinois).

Chitonodus liratus, St. J. and W. pl. vi, Fis. 1.
The present species is represented by a solitary imperfect example of a maxillary posterior tooth, showing the anterior portion, the posterior lobe having been destroyed. The part preserved, however, indicates a tooth of small size, with a diameter across the inner margin probably not exceeding 13 mm ., with a length along the
antero-lateral border to point of imrollment a trifle less than 5 mm ., in outline showing the usual quadrilateral figure. The antero-lateral border is very oblique in its course forward and backward, coronal enamel forming a strung, rounded fold inbeveled to the channeled basal portion; imer margin gently arched round the hase of the anterior coronal prominence with a slight concavity forward, and a broader one in the region of the median depression; posterolateral border unknown. Anterior portion of the crown occupied by a pair of low, regularly transversely arched ridges, separated by a shallow, well-defined furrow, and posteriorly defined by a broader median depression intervening between the anterior and posterior lobes. Surface more or less regularly marked by strong, closely arranged transverse imbrications parallel with the inner margin, and apparently extending over the entire coronal region. besides showing a relatively coarse, crowided punctate structure.

The species indicated by the fragment of tooth above described apparently constitutes a typical representative of the genus Chitonodus, of which it is the latest that has, as yet, been made known. It exhibits intimate relations with the Feoknk C. rullosus, but is distinguished by its small size, the greater outward and backward obliquity of the antero-lateral border, and the donbleobed broad anterior prominence; the transterse imbricated ornaa entation markedly partakes of the generic characteristics associated with species of the genus.

Geological position and locality: St. Louis limestone; Alton, Illinois.

Gexus COCIIfliOI)US, Agassiz.

Cocmbindes Vas Homsin, St. J. and II:
II. VII. 1-10.

Teeth below medium size, representatives of the mandibular posterior and median, and maxillary posterior forms are hown.

Mandimar posterior teeth in the outline and contomr of the triturating surface presenting in at romarkable degree the topical characteristies of the gemes, strongly inrolled at the onter marein. Antero-lateral border with a slightly curved outhe, the enamel fold oceupying abont one-third of the vertieal space and sharply
defined by a narrow channel from the downward and outward projecting basal portion, which terminates in a thin rim inferiorly, the axes of the channel showing relatively coarse pits; postero-lateral border with a moderate sigmoidal curvature, diverging posteriorly at an angle of 50° with the opposite border, terminated in the acutely rounded posterior angle, coronal fold equally sharply defined from the basal portion, which is more or less expanded toward the posterior extremity where it forms a wide platform extending beyond the limits of the coronal border, the channel similarly marked by a row of large vascular pits; general direction of inner margin nearly at right angles to the antero-lateral border, broadly arched round the base of the median prominence, and again gently curved sigmoidally in passing to the posterior extremity f coronal region defined by an abruptly inbeveled narrow fold from the deep basal area which terminates inferiorly in a very thin edge/ surface irregularly and coarsely marked by vertical rugosities and sulcif-usually, however, the attenuated rim is broken away, and the margin abruptly inbeveled. Coronal contour strongly arched in the direction of inrollment; anterior belt well defined from the median prominence, slightly, sometimes strongly, arched transversely, with a slight furrow along the anterior edge in well preserved examples; median prominence occupying half the lateral diameter of the crown, strongly and regularly arched transversely, the rounded axis lying a little anterior of the middle, the broader slope descending into the posterior depression where it is defined by a marked angulation; posterior alation proportionately wider than the anterior plane belt, faintly depressed in the middle and slightly arched transversely along the moderately upraised posterolateral border, where the edge of the coronal enamel is inbeveled similarly to the enamel fold along the antero-lateral border, and rounded at the extremity. Along the inner margin of the well preserved tooth the surface is invested in a dense semi-opaque enamel through which the extremities of the tubular structure are faintly outlined; in worn surfaces, this same structure produces a minute, rather widely spaced punctýation, of which there are about 30 pores in the space of a square millimetre. Greatest transverse diameter of the crown of a medium-size example across the inner margin 15 mm ., or to the extremity of the basal spur 17 mm .; length of antero-lateral border to point of inrollment 10 mm .; greatest depth ditto, 1.5 mm .; length along postero-lateral border to the inrolled outer margin 10 mm .

Mandibular median teeth sub-triangular in outline. Posterolateral border slightly curved sigmoidally in conformity with the anterior articular border of the posterior terminal tooth, basal portion rather deeply chameled and coarsely pitted, forming the greater part of the height of the border, well-defined from the enamel-fold and terminating below in a thin outward produced rim; antero-lateral border converging toward outer extremity at an angle of about 30° with the opposite border, relatively short, similarly chamneled and pitted as mentioned in comnection with the posterior border; imer margin making a marked sigmoidal curvature, broadly rounded in passing the lase of the coronal prominence, and thence curved outward on approaching the oltuse anterior angle, joining the posterior border nearly at a right angle. Coronal contour presenting a simple medinn ridge, the posterior slope slightly arched transversely and gently descending to the postero-lateral border, which is occupied by an abruptly bereled slightly depressed belt margined by a narrow, minutely cremulated fold distinctly defining the coronal and basal portions, worn individuals showing a more or less rounded edge; the opposite slope declines more abruptly into a shallow depressed belt occupying the nnterior surface, bordered by the narrow alation, over the edge of which the enamel makes a regularly rounded fold sharply defined along the strongly inbeveled margin from the lasal portion; along the inner margin the coronal region is defined by a narrow rounded fold inbereled to the deep basal belt, which extends downward into a thin edge corresponding with that of the posterior tooth. Superficial enamel and punctate structure the same as described in connection with the preceding form. Length along postero-lateral boriler 10 mm , ; greatest breadth between the imer nugles ? mm.; length of antero-lateral border to point of inrollment fimm.

Ultimate teeth occupying the dentigerous extremity of the lower jaw unknown.

Maxillary posterior tectlı (Strellodus, Agass.) sulspatulate in general outline, strongly and regularly arched from within outward. Antero-lateral boder whth slight forward obliqnity to the long axis of the tooth and gently curved sigmoidatly, basal portion chammeled and extending downard and outwaid into a thin rim, coarsely pitted; postero-lateral border broadly arehed in a slight sigmoidal curvature, converging toward imrolled outcr margin at the angle of (5i) to 65 with the opposite ride, hasal portion apparently relatively low, chameled, and posteriorly expanding beyond the coronal limit
terminating in the more or less produced, acutely rounded posterior extremity; inner margin making two broad arches, the larger in rounding the base of the posterofforonal prominence, the lesser in skirting the anterior prominence on the way to the obtuse anterior angle, in ordinarily preserved teeth inbeveled inferiorly. Coronal contour typical of the corresponding form of the genus, divided into two principal regions occupied respectively by the posterior lobe and the narrower anterior prominence. The posterior prominence culminates about one-fourth the distance from the shallow sulcus forming the demarkation between the coronal elevations, the anterior acclivity rising quite steeply into the obtusely rounded crest, whence the surface much more gently declines in a slight concavity to the postero-lateral border, where the enamel forms a narrow fold distinctly defined from the basal portions; anterior lobe more regularly and gently arched transversely, the longitudinal axis lying near the median depression with a narrow steep slope on that side, the wide, gentle anterior slope being interrupted by more or less distinct revolving furrows, margined along the anterolateral border by a narrow plane belt defined from the anterior prominence by a slight impressed line, the coronal enamel forming a very narrow fold along the antero-lateral border. Greatest breadth of medium-size tooth across inner margin 21 mm .; length of antero-lateral border to inrolled outer margin 8 mm .; greatest length along crest of posterior lobe 13 mm .; position of median depression a little anterior of a line drawn through the centre of the tooth. A large size specimen in the collection of Mr. Van Horne, from Alton, is quite one-third larger than that indicated in the above measurements.

Although the collections afford no positive evidence of the specific identity of the dental elements belonging to the anterior extremity of the upper jaw of the present species, there is, however, a well represented form of teeth occurring in series precisely after the Helodus-like teeth associated with the magnificent group of teeth furnishing the basis for the description of the species Chitonodus latus, (Leidy sp.) (CochliJdus nobilis, N. and W.). More frequently occurring as isolated teeth, examples of two or more teeth occupying their natural relative position in deltoid series have been obtained, so that little doubt can be entertained as to their relations with some Cochliodont, probably to the species herein mentioned. Teeth occurring in series of two or more individuals, together forming a deltoid figure, narrowing from within outward, and presenting
a triturating surface interrupted by prominent transverse ridges and intervening deep furrows, corresponding to the coronal crests of the individuals of the series; in some instances the individual teeth are so intimately united along the impingement of their bases as to obliterate all trace of suture ; again, in other examples the original or occasional individuality of the tecth is indicated by a faint suture, extending in from the borders of the series, while others again show the complete series in natural successional order, but with their bases free. The individuals of the series regularly diminish in size from within outward, although the tooth of the inner margin sometimes presents an immatnre coronal crest, adhering to the inner basal declivity of the immediately preceding fully developed tooth, a feature known to obtain in the Helulus-like teeth associated with C'hitonoilus latus, e. g. Helodus consolidatus, N. and W. The independent teeth are distinguished by their long-elliptical transverse outline seen from above, slightly arched backward along the inner margin of the crown, the opposite side being protuberant in the middle, with concave curvature towards the extremities. The crown rises into a tumid eccentric apex nearer the postero-lateral (?) extremity, outer face slightly concave, opposite side moderately conrex, sharply inbercled and defined from the base, the extremitics marked by a sort of enamel fold, which also faintly appears along the outer margin, but destitute of imbrications, such as appear in the coronal belt of Chomatodus. The base is relatively shallow, inbeveled in front, more or hess chameled and irregularly eoarsely pitted, immer margin much prociuced outward and downward to the dull inferior edge, vertically coarsely rughse; inferior surface faintly depressed, smooth. The large tooth of a medium-size Eeries of these dimaly eoalescent individuals measures in lateral diameter of crown 6 mm ., diameter at the midille 2 mm .; greatest height of crown 1 mm . Crown originally enveloped in a dense semi-opaque enamel, the worn surfaco showing rather widely spaced puncte, varying, however, considerably in the latter respect. The associated teeth clearly homologons with the present form, present rather a wide range in variation, partienlarly in respect to the contour of the coronal region. In some of the teeth the crown is much depressed; in others, again, the onfer face presents a wide, phain, elliptic aren, the immer slope very low, and the erest crowded aser past the hasal border, in which comdition it resembles certain forms of Tancomlus, although the hase is cntirely different from that of the latter genus.

The foregoing diagnosis of the claracteristics pertaining to each of the several dental elements here recognized as having formed part of the dentition of this interesting species, presents in sufficient detail the peculiarities which distinguish it in comparison with other species of the genus. It remains briefly to observe the association of certain teeth in their original relative position upon the jaws, examples of which, fortunately, have been obtained by Mr. Van Horne and Prof. Worthen. The most complete specimen of the mandible shows the posterior and median teeth planted upon a thin semi-osseous tissue composed of coarse granules of ossiiic matter, the walls of which are strengthened from within by a system of transverse bars, like girders, which serve to maintain the shape of the surface upon which the crushing plates rest. The teeth are separated from the supporting rami by a film of calcite, which probably represents the bulk of the tegumentary or formative tissue that enveloped the dentigerous portions of the jaw. The mandible extends anteriorly into a slightly produced, bluntly rounded extremity, which from the inferior surface shows on either side of the symphysial line a shallow pit, which may indicate the position of the corresponding concavity of the dental plate or tooth occupying the extremity of the jaw; but not a vestige of the latter exist in the specimen, and therefore in regard to their form we are as much in the dark as heretofore. Although the maxillary anterior teeth have been provisionally identified, we are unable to conjecture even the form of the opposed mandibular teeth-whether they presented a series of distinct coronal crests or merely a simple inrolled plate. A remarkable specimen of the mandible, belonging to the Woodwardian Museum, obtained from the mountain limestone of Bristol, England, and which was described by Professor Owen, (Geol. Mag. 1867, IV, p. 59, Pl. III, f. 1, 2,) shows the extremity of the rami of Cochliodus contortus, Agass., occupied by a third tooth, the smallest of the series, and presenting a triangular shaped, inrolled plate, traversed by a prominent median ridge which is described as being "very convex and obliquely and gently contorted from behind and below, upward, inward and forward, with a slight increase of breadth or fore and aft diameter. * * * The anterior lobe seems to have had the form of a small tubercle, but its summit is broken off; the posterior lobe is a narrow, seam-like, raised border, extending further back on the outer side, fig. 2 a , than on the inner side of the ramus." Our specimens, unfortunately, afford no means of confirming the observations based on the Bristol specimen, nor do the col-
lections afford examples of teeth corresponding to the anterior form described by Professor Owen.

In relative frequency of occurrence it would, of course, be expected that the larger and more massive teeth appear most abundant in the collections. The posterior teeth of the mandibles and maxillaries are represented about equally in numbers, while the narrow median teeth of the lower jaw, and the Helodus-like forms presumably pertaining to the anterior portion of tho upper jaw, are less frequently met with. This is also true of other species of the same and allied genera occurring in the Lower Carboniferous formations, and the absence of certain forms ought not to militate against the conviction of their existence.

Gcological position and localities: St. Louis limestone; Alton, and Monroe county, Illinois; St. Louis, Missouri ; Pella, Iowa.

Cochliodes obliequ's, St. J. and W.

11. YII, Fig. 17.

Tooth resembling in coronal contour the form assigned to the posterior position on the upper jaw, very small, obliquely trapezoidal in outline, moderately arehed in the direction of inrollment. Anterolateral border nearly straight, obliquely produced forward from the inner angle, making an angle of about 40° with a right line connecting the anterior and posterior angles of the imner margin, low basal portion forming a shallow, channeled rim, detined ahore ly the narrow, rounded, inbeveled enamel fold; postero-lateral or oblique border converging from the rombded posterior extremity to point of inrollment, at an angle of 20^{\prime}, more or less, with the opposite border, basal portion relatively deep, moderately inbeveled and slightly chameled, the coromal enamel forming a delieate fold detining the upper edgo; inner margin broadly arched round the base of the posterfferomal lobe, thence to the obtuse anterior angle nearly straight and closely conforming to a line connecting the inner angles of the tooth. Coronal region presenting a strong posterior prominence, the broad outer slope rombling into the border, from which it is defined liy a slight depressed loelt, anterior slope more abrupt and making a slight angulation where it joins the anterior depressed portion of the crown; the latter presents an area of ahont the same hreadth ans that oectupied by the posterior lobe, depressed, and marhed hy two faint, revolving folds, with a thiril stronger rilgo
along antero-lateral border to which its anterior slope is steeply beveled. Enamel coating along inner margin showing faint lines of growth, the worn crown surface exhibiting relatively coarse crowded punctæ. Length of antero-lateral border to point of inrollment 1.5 mm . ; breadth across inner margin, 2.5 mm .

The above form is represented by a single example, and notwithstanding its minute size, the perfect state of preservation of the tooth permits a detailed interpretation of its diagnostic characteristics and comparison with allied forms. We are, however, in some doubt as to its generic identity, although there is strong evidence of its intimate relationship with Cochliodus, the Streblotał maxillary posterior form of which it closely resembles in coronal contour. This unique specimen, however, does not seem to be referable to the associated species Coch. Van Hornii, unless we are to suppose a most extraordinary change takes place, by which young and mature teeth are made to assume the most unlike semblance to one another. The present tooth, however, compared with the streblodoid maxillary form of Coch. Van Hornii, is distinguished by the following pronounced contrasts: the general obliquity of outline and relatively narrower breadth compared with the length in the direction of inrollment (a feature which is necessarily persistent and directly dependent on the law of development of the dental plates), the extremely prominent posterior lobe, and the depressed median portion of the neck defined by the comparatively prominent ridge along the antero-lateral border. It is in the latter respects the form here especially alluded to offers greatest contrast with the prevailing coronal contour of Cochliodus, and suggests a possible relationship with Deltoptychius.
Geological position and locality: St. Louis limestone; St. Louis, Missouri.

Cochliodus Leidyi, St. J. and W.

PI. VII, Fig. 11-16.

Teeth of small size, the collections furnishing representatives of the posterior and median teeth of the mandible, and the posterior form and Helodus-like series of teeth of the upper jaw.

Mandibular posterior teeth distinguished by their compact build and relatively narrow transverse diameter compared with the length in the direction of the strong zenrollment. Antero-lateral border slightly curved between the inner angle and point of inrollment, presenting
the usual channeled and dowiward and outward projecting basal rim which is coarsely pitted, the border having a course slightly oblique ontward and forward to the transverse axis of the tooth; postero-lateral border converging toward the outer margin at an anglo of about 40 , basal portion chameled and somewhat produced beyond the coronal limits towards the posterior extremty ; imer margin broadly arched round the base of the principal coronal ridge, with a short concavity in front and a broader one in passing the posterior depression into the alate, subacute angle, wom specimens showing the usual inbeveled edge. Anterior belt of crown well-defined, narrow, slightly convex transtersely. the coronal enamel folding over the antero-lateral border in a narrow inbeveled belt distinctly defined from the basal portion; median ridge prominent. relatively broad, ocenpying considerably more than hald the transverse diameter of the crown, moderately and regularly arched transversely and well-defined on either sido by an obtuse angulation or furrow separating it from the anterior belt and the posterior depression; posterior alation relatively marrow, considerably upraised, nearly plane transsersely, the coronal cuamel forming a delicate inbereled fold along the onter edge. Surface mimtely punctate, the medulary tubes somewhat widely spaced and about thirty occurring within a square millimetre, and disposed in scroll-like curves ower the surface of the tooth. Length of a medimm-size footh along thee antero-lateral border 8 mm ; breadth between angles of immer margin 13 mm ; breadth of median lobe at imer margm 8 mm ; do. of posterior alation 3 mm ; do. anterior belt 21 mm .

Mandibular median form, of which the collections offer a solitary imperfect example showing ahont half the immer portion of a mature tooth, exhibits a moderately elevated, sub-angular median ridge, a narrow concavity bordering the postero-lateral edge over which the enamel forms a marrow inbereled fold distinetly defined from the chameled hasal portion; slope in front slighty conease transwersely on nearing the antern-lateral horder. Which latter, as also the very oblique imer margin, is mutilated and not clearly defined. Surface punctation similar to that observed in the posterior terminal form.

Maxillary posterion teeth subspatnlato in general ontline, strongly inrolled. Antero-lateral border shighty whlique with a gentle concave empature ontwad and forward from the obtued inner angle; postero-lateral bosder diserging at an angle of et, more or loss, with the opmosite border, prentiting a broad fentle emratme between
the point of inrollment and the sharply rounded posterior extremity, the basal portion extending considerably beyond the limits of the crown forming a thin marginal rim posteriorly; inner margin broadly arched in general course, suddenly constricted in front of the posterior lobe, and thence more gently arched to the anterior angle. Coronal region presents strong contour contrasts, posterior lobe prominent, constituting somewhat more than half the lateral diameter of the tooth, abruptly rising in front into the rounded crest from which the slope in the opposite direction gently descends in slight transverse convexity to the postero-lateral border, where the coronal enamel forms a thiciz inbeveled fold distinctly defined from the basal portion; the anterior neck is separated from the posterior prominence by a deep narrow depression, in well-preserved examples showing a distinct narrow secondary ridge with steep declivity bordering the median depression, a transversely more gently convex wider belt intervening between the latter and the shallow furrow defining the posterior limits of the narrow relatively prominent belt along the antero-lateral border, where the coronal enamel forms a well-marked fold inbeveled to the basal portion. Superficial punctation the same as in the opposed mandibular teeth. A mature tooth measures in greatest diameter of crown at the inner margin, 22.5 mm ., the basal portion being considerably farther prolonged into the posterior spur; length of antero-lateral border to point of inrollment, 8 mm .; median furrow at inner margin, 13 mm . distant from posterior extremity.
Associated with the above described forms, the collections contain a few examples of Helodus-like teeth, mostly isolated individuals, but occasionally in series, which we are inclined to identify with the present species. One of these series, in the collection of Professor Worthen, presents a series of four teeth firmly soldered at the impingement of their bases, without visible suture, forming a deltoid figure, belonging to the right ramus of the upper jaw. The three outer teeth regularly and gradually diminish in size from behind outward, except the innermost one, which presents the usual condition of immature coronal ridge apparently resting upon the inner deep basal border of the immediately preceding tooth. The anterior basal margin of the outer tooth is channeled, the coronal ridge of all the individual teeth rises into a turgid sub-median apex nearest the postero-lateral border of the series, slightly concave along the sloping obtuse crest on either side and sharply deflected forward at the extremities into a sort of short fold; the inner margin is gently
arched backward, the whole tooth moderately arched rertically and the crown-face rertically convex; the outer face slightly concave rertically, swollen in front of the summit. round which the basal line arches from its slightly concave course near the lateral extremities, which latter are somewhat angularly rounded. The inner and outer coronal margins are sharply inbeveled to the coarsely-pitted basal plate, which behind forms a wide area nearly in the plane of the inner crown-face. The surface punctation is tine, rather widely spaced, much after the same style described in the other forms of the species. The mature imer tooth of the series measures in lateral diameter, 8 mm .; greatest width from behind outward, 3 mm . ; height of inner crown-face, 2.5 mm . The outer or fourth tooth of the same series is 6 mm . in lateral extent, the other dimensions proportionately diminished.
The above described forms embraced under one and the same specific designation, aro well represented in the collections accessille to us from the Chester formation. The species is intimately allided to that described from the subjacent St. Louis limestone, Cochlienlus Iran Hornii, of which it constitutes a fine example of a represontative species. As distinguished from the St. Louis species, the mandibular terminal tooth is relatively narrower in lateral diameter, stronger and more compactly built, the alation proportionately narrower and the median-lobe correspondingly wider; the narrow median tooth is apparently more elevated along the crest : the maxillary posterior teeth, on the other hand, are proportionately more elongate transversely, posterior lobe more prominent, and the median depression more deeply exavated and defined ly steeper walls; in regnad to the distinctions observable in the serial teeth, those supposed to pertain to the present species nre perceptibly hess elongate laterally, with less abrupt imer coronal face, and generally more oobust proportions, as compared with the normally developed individuals of (. V'm Homii, which, as has been pointed out, vary to a viry remarkable degree in their coromb aspects.
(icaloyical position and laculitios: ("hester limestone: ('hester and Evansville, (Randolph comity,) Prairie dn Long. (Monroe comute.) Illinois.

Genus PCECILODUS, Agassiz.
Peecilodus Varsoviensis, St. J. and W. Pl. VIII, Fig. 13, 14.

Posterior teeth of the upper jaw of small size, subelliptical in outline, strongly arched in the direction of inrollment. Anterolateral border slightly oblique to the inner margin forward and outward; postero-lateral border gently arched and converging toward inrolled outer margin at an angle of 30°, more or less, with the antero-lateral border; inner margin moderately concave in the median region, broadly arched round the posterior lobe to the acutely rounded extremity, and similarly arched round the base of the less prominent anterior lobe to the obtuse anterior angle. Coronal region presenting a very oblique, moderately elevated, regularly transversely arched posterior lobe, a slight sulcus extending along the outer side parallel with the postero-lateral border, anteriorly defined by the moderately excavated median depression; the mutilated condition of the neck does not permit the contour of the anterior lobe to be satisfactorily made out, althongh it seems to lave been moderately arched transversely. The posterior lobe shows a few relatively strong transverse corrugations, which are obsolete in worn examples; surface punctation fine and moderately spacedTransverse diameter of a mature tooth at the innes margin 12.5 mm .; length of antero-lateral border 4 mm .

The above species is represented, in the collection of Mr. Van Horne by only two examples of the maxillary terminal form. The specimens are mutilated in the anterior region, but the posterior prominence exhibits the characteristic contour prevalent in certain species of the genus, hence its present reference. The transverse undulations of the posterior lobe recall the Chester species, P. Cestriensis, although they are less in number and not so deeply impressed in the interspaces; while the antero-lateral border seems to be longer and less obliquely curved outward and forward. Its relations with P. St. Ludovici are much less intimate, the presence of the transverse corrugations of the posterior lobe offering a marked distinguishing feature in contrast with that species. Should the anterior lobe be found, from the examination of perfect individuals to present a regularly convex elevation, instead of an angularly arched ridge, such as is characteristic of the genas Pocilodus, the
species represented by the present form would then have to be relegated to Chitonorlus.

Geolugical position and loculity: Warsaw limestone; near the mouth of Piasa creek, above Alton, Ill.

P'ecilones St. Ledovici, St. J. and W.

Pl. VIll, Fig. $\mathrm{x}, 12$.
Teeth of small size, representing the posterior forms of the upper and lower jans; dental armament of the anterior portions of the jaws unknown.

Mandibular posterior teeth strongly arched in the direction of inrollment, in outline presenting the usual subspatulate form. Anterolateral border relatively rery short, forming nearly a right angle with a line comecting the angles of the inner margin, extremely attenuated and contracted from the anterior coronal ridge; posterolateral border conserging toward point of inrollment at an angle of 50^{2}, more or less, with the opposite border, basal portion deeply channeled and widely expanded beyond the coronal limits posteriorly, terminating in the acutely rounded spur of the posterior extremity; imner margin making a deep regular concavity in the region of the posterior depression, broadly arched round the hase of the median lobe, with a shallow concavity in the intermediate depression in front, and angularly arched round the anterior rilge. beyond which the course is suddenly and very obliquely deflected forward to the ohtuse anterior angle. The cormal region is strongly marked by the characteristic contour features. Anterior lobe narrow, prominent, culminating in a rounded crest moderately oblique to the antero-lateral border, in front of the abrupt slightly comeex slope /descending to the coromal limits, where it is bordered by a narrow slightly depressed belt, beyond which the hasal portion projects as a wide, rapidly narrowing apron to the anterior extremuty of the tooth; posterior slope equally abript hut of less rertieal extent; intermediate depression equaling the breadth of the anterior Jobe, in perfect teeth showing a nearty phane arta narrowing from within outward, defined from the bordering devations ly a slight angulation on either side, in worn and matnre examples the depresfion presents a more or less detp, regular transterse eomeatity; medinn or principal lobe situate a little posterior of the median line, boadly and regulanly wrehed transersty, the abmpt and fonger slape descemding into the pebterior depression wheh is tra-
versed by a slight angulation, whence the surface rises with slight conc̣avity into the moderately upraised alation, along the border of which the thickened enamel is rounded over in a relatively wide inbeveled fold to the basal portion. The inner edge of the crown, in some specimens, shows a widish belt of the dense enamel without blemish, as it was when enveloped in the formative membrane; where the surface is exfoliated and abraded the coarse punctate structure is revealed. The surface is ordinarily marked by fine closely arranged punctæ, sometimes showing a disposition toward transverse arrangement, but otherwise smooth and destitute of corrugations. Greatest transverse diameter of a mature tooth across inner margin 16 mm .; length along crest of the anterior lobe to the outer inrolled margin 7 mm . ; or about as great again as the length of the extreme antero-lateral border.

Maxillary posterior teeth subelliptical in outline, strongly inrolled along the outer margin. Antero-lateral border with a slightly oblique forward course, basal portion channeled and defined above by a relatively strong, inbeveled coronal fold; postero-lateral border converging toward point of inrollment at an angle of 30° to 40° with the opposite side, making a gentle regular curve from the produced, acutely-rounded posterior extremity to the inrolled outer margin, basal portion rather deeply channeled and expanded beyond the coronal border; inner margin broadly arched round the base of the posterior prominence, with a broad concavity in the region of the median depression, somewhat angularly arched round the anterior lobe to the obtuse anterior angle. Contour of the coronal regions strongly marked, posterior lobe occupying nearly half the lateral diameter of the crown, presenting a broad gentle slope posteriorly, slightly convex above and faintly depressed on nearing the border, which is defined by a rather strong inbeveled enamel fold; the anterior declivity abruptly descends from the more or less angularly rounded crest with slight concavity, merging into the deep, wide median depression; antesior lobe culminating in a sharply rounded crest flanked by nearly equally steep slopes on either side, that in front terminating in a narrow revolving groove or angulation which is bordered by the narrow, rounded marginal fold of the anterior border. Surface appearances the same as noted in the mandibular teeth above described, with the same tendency to transverse disposition of the punctre in lines more or less coincident with the outline of the inner margin of the tooth. A medium size individual measures in greatest transverse diameter between
the extreme angles of the inner margin $13 \mathrm{~mm} . ;$ length along antero-lateral border 3 mm .
The above described forms are about equally numerously represented in individuals in the collections, although the specimens are in a more or less fragmentary state of preservation. The discovery by Mr. Van Horne of the mandible bearing the posterior pair of teeth, and showing the proximal articular extremity the right ramus and the somewhat produced, laterally narrowed extremity in the region of the symphysis, is the most interesting in comection with the genus. The semi-ossified tissue of the mandille in this instance seems to have remarkably intimate connection with the dental plates, and preserved in such a manner as to lave the appearance of a cylindrical scroll, the inferior or inmer margin being brought round to the exterior side, as the specimen rests in the limestone matrix. It forms a thin plate whose walls liave lieen bronght into contact by pressure, bat posteriorly it probally shows its normal shape and dimensions, where it preents a crescentiform excavation with the condyloid or inferior process most produced posteriorly, the superior process relatively strongest. Anteriorly in the region of the symplysis, the mandible in lens dis:tinctly ontlined. It is moderately produced and apparently olitusely rounded, the rami mecting at the symphysis but not anchylosed, and bearing either side a slight protuberance elongated parallel with the symphysical line, but without a vestige of the dental plates to which they afforded support. The latter evidently of very small size, and if, as in Cochliodus, the distal extremity of the rami were armed with it median and anterior convoluted plate, their cxtreme diminutiveness may accomt for their atsonce in the collections. The same eonclusion is alsn permissibla in refarence to the anterior dentary clements of the upper jaw.

Gerological presition and lncalities: St. Lonis limestone: St. Lonis, Mo.; Alton, Ill.; P'ella, lowa.

Pgcilodus Cestriensis, St. J. and W.

P1. VIII, Fig. 15-17.

Teeth of medium or small size, mandibular posterior form having the general trapezoidal outline of Cochliodus, or a great transverse diameter compared with that in the direction of the strongly areled inrollment. Antero-lateral horder comparatively short, a distinct furrow defining the narrow enamel fold from the shallow basal rim, sharply inrolled spirally at the extremity; inner margin very oblique in front, joining the articular border at a very obtuse angle, suddenly rounded at anterior ridge and more broadly so in passing the base of the principal ridge, moderately incurved in the intermediate space, and again on extending into the somewhat produced posterior angle; postero-lateral border moderately arched and rapidly converging toward point of inrollment, coronal enamel forming a relatively strong fold defined by a deep narrow sulcus from the inferior basal rim, which projects posteriorly beyond the coronal limits, terminating in a more or less produced spur. Antericr coronal ridge nearly as prominent but narrower than that behind, culminating in a sharply rounded crest with steep slopes descending to the anterolateral border on the one hand, and into the deep, narrow median depression on the other; principal ridge situate about equidistant between the angles of the inner margin, broadly arched transversely over the inner third of its extent, but more sharply rounded in the outer portion, the posterior slope abrupt, and as in the parallel ridge somewhat deeply excavated; posterior depression broad and deep, the transversely slightly concave surface steadily rising into the wide posterior alation, which comprises about one-third the lateral diameter of the crown. Surface along the inner margin enveloped in a glassy enamel layer beneath which the minute densely crowded punctæ are distinctly visible, and which are laid bare over the greater area of the triturating surface in front; faint transverse undulations traverse the crown conforming to the curvature of the inner margin, worn specimens exhibiting more distinct irregular undulations along the crests of the coronal prominences. A specimen of ordinary size measures across the inner margin $16 \mathrm{~mm} .$. ; length along principal ridge to inrolled outer margin, 10 mm .; length of anterior articular border, about 3.5 mm .

Maxillary posterior teeth subelliptical in outline, strongly inrolled at the outer margin. Antero-lateral border produced obliquely forward
from the obtuse inner angle; postero-lateral border also obliquely and rapidly converging from the subacute posterior extremity tuwards inrolled margin, basal portion chameled and posteriorly expanding - beyond the limits of the rounden, inbeveled coronal fold ; inmer margin strongly arched rombd the base of the posterior prominence, sharply contracted in front, and broadly arched round the anterior lobe to the antero-lateral border. Coronal region divided into nearly equal parts by the relatively narrow, deeply excavated median depression, posterior prominence regularly arched transverely into the broad rounded crest, which is interrupted by a few relatively strong. short transverse furrows and corresponding ridges extending ower the outer half or more of its extent; anterior rilge also quite prominent witl regular transverse convexity, and similarly marked by transverse corrugations. Surface generally minutely punctate. A specimen below medium size measures, in greatest diameter acrose the inner margin, 13 mm. ; length along antero-lateral border, $3 \mathrm{~mm} .$, more or less.

Other associate forms of the species remain unknown: the small size of the recognized terminal teeth inticate for the mulinown forms a diminutive sizo and delicacy that, in a measure, explains their absence in the collections, which, indeed, contain comparitively few individuals of either of the representative forms described above. The prominent transerse corrugations ormamenting the coronal ridges serve to distinguish the species from its congeners of the suljacent formations and subsedpuent deporits of the Coal Masures. In the latter respect, also, it presents quite as marked a contrast with the liuropean species, originally distinguished moder the names, Porilexlus Jomesiii and l'cicilohlus olliquus, Ag.
(icological prosition and lucality: Chester linentone: Chestor. lllinois.
Pashones Wontman, St. J.
1! VIII. Fiz.s.
The Chestur formation has recently afforded an caimple of a mme dibnlar terminal footh of Pacilonlus, Fhis is referble to a specien markedly distinct from all others lawom to me. The specimen was whtained, probably, from the limestone overlying the horizan from whioh the majority of the fish-remans of the che tor were derives, mat is, thus far, a mime representative of 1 ts kind. Tlle tonth helonge to the left ramms, and, hesiles ite great size, it is distimenishel hy the following characteristics:

General outline trigonal, lateral diameter proportionately short, compared to the length, which it but little exceeds; general course of inner margin nearly at right-angles with the antero-lateral border, somewhat sinuorts and broadly rounded, and somewhat sharply so in passing the angle of the principal coronal prominence, thence pursuing a slightly curved course into the produced posterior angle; antero-lateral border nearly straight or very gently curved sigmoidally in passing into the extremely-inrolled outer extremity; basal portion nearly vertical, very deep, and defined above by the usual narrow enamel fold, which forms an inbeveled coping projecting considerably beyond the basal wall; postero-lateral border rapidly converging toward the outer margin, making an angle of about 50° with the anterior border; condition of coronal fold and basal edge not determinable. Coronal region strongly arched in the direction of inrollment, and principally occupied by the longitudinal prominences; principal ridge nearly median, strongly arched transversely and defined by a more or less distinct angulation from the broad, posterior depression, which is bordered by the gentle acclivity rising into the posterolateral border of the alate expansion; anterior ridge almost equally prominent and similar in contour to the principal ridge, from which it is separated by a deep depression of nearly equal breadth, with very steep, concave walls, slightly flattened along the rounded crest, the slope in front descending, in a similar slight concavity, to the antero-lateral border, which is margined by a very narrow fold of the coronal enamel. Surface minutely and densely punctate, with faint transverse lines along the less worn inner margin, otherwise destitute of the rugosities common to nearly all its congeners. Transverse diameter at the inner margin about 35 mm . ; length of anterolateral border to point of inrollment, 25 mm .; ditto along principal coronal ridge, about 30 mm . ; depth of antero-lateral border, 5 mm .

The outer portion, as also the postero-lateral border, is mutilated, exposing to view the remarkable inrollment which amounts to one and a half revolutions, with a short convoluted apex. The form described differs in so marked a degree from other species of the genus as not to require detailed comparison; it is chiefly distinguished from allied species by the regularly arched coronal ridges, deep narrow median depression, and abbreviated transverse diameter.

This largest American representative of the genus, and I believe the largest species known, is dedicated to Professor Worthen, the venerable director of the geolog.cal survey.

Gcological position and locality: Chester limestone, Chester, Ill.

Pachlodus Springeri, St. J. and W.

P1. VIII, Fig. 19.

The present species is made known from a fow examples representing the postcrior or terminal form of the mandible. The teeth attain medium size, strongly arched in the direction of inrollment. Antero-lateral border slightly oblique, outward and forward, to the general course of the inner margin, relatively short, basal border channeled; postero-lateral border conwerges towards outer inrolled margin at an angle of 30 more or less, with opposite lorder, has:al portion unknown; inner margin strongly ideflected backward from the very obtuse anterior angle, making an angle at the hase of the anterior lobe, with a regular concavity in the region of the median depression, as also in passing the posterior depression into the acutely rounded posterior extremity; broadly arched romed the base of the posterior or principal lobe. The characteristic contour features strongly marked in the coronal region; anterior lohe rising into a narrow sharply rounded crest, antcrior slope slightly concave and defined by a narrow rounded fold inbeveled to the inferior or hasal burder; median depression deeply excavated and regularly concave tramsersely, marked by a few, three more or less. parallel longitudimal folds; posterior ridge more broadly arehed transersely prominent, abruptly declining into the deep posterior depres-ion. which is hordered by the strongly upraised, broad alation. Surface, aside from the already mentioned longitudinal folds necupying the hottom of the median depression, smooth, and minutely and densely pumetate, the pumetat exhihiting a tendeney to transverse diaposition in lines parallel with the inner margm. Breadh hetween :ungles of imer margin 21 mmn . length along antero-lateral border is mu.. or a tritheless than lialf the longitulinal diameter along the anterior lobe.

The above species, the represcutatives of which were disenered by Frank Springer, Bisq.. in whose homor the specific ilcignation is given, offers restmblances :hmost eynally intimate with the species deacrobed respectively from the St. Louis and Chester formations of the Upper Missisappi region, son far at least as may he jnded ly the comparison of the single representative form of the present spocies. The extreme obliquity or rather posteriorly preduced innor margin in front of the anterior lobe, howerer, distinguished the form
from Pocilodus St. Ludovici, and the presence of longitudinal folds in the median depression offers a contrast with P. Cestriensis.

Geological position and locality: Lower Carboniferous limestone strata; vicinity of Santa Fe, New Mexico.

Peecilodus carbonarius, St. J. and W.

PI. VIII, Fig. 20-21.

Teeth of medium or small size, linown from the opposed terminal forms of the upper and lower jaws.
Posterior teeth of the mandibles characterized by the relatively low coronal ridges, the principal ridge situate considerably posterior of a line traversing the middle of the tooth in the direction of inrollment, broadly arched transversely along the inner margin but form ing a narrow angularly rounded ridge toward the outer margin; anterior ridge narrow, sharply rounded along the crest, steeply sloping to the articular border of the antero-lateral side, and nearly equally abruptly inclined behind into the comparatively wide median depression separating it from the principal ridge, and which is traversed by a slight longitudinal fold; posterior depression defined on the one side by the steep slope of the principal ridge, and on the other moderately rising into the comparatively narrow alate expansion of the postero-lateral border, which terminates in the moderately produced posterior angle; postero-lateral border nearly vertical or produced slightly outward inferiorly, defined along the upper edge by the narrow inbeveled enamel fold and slightly channeled ; anterolateral border not well shown in the accessible examples. Breadth of tooth across the inner margin 17 mm .; length of antero-latera Z articular edge 4.5 to 5 mm .; longitudinal diameter alung principal ridge to inrolled outer margin about 13.5 mm .
Posterior teeth of the maxillaries in general outline elliptical, rather strongly and spirally inrolled, broadly arched outward along the inner margin with a slight concavity in the region of the median coronal depression; postero-lateral border terminating in a sharply rounded angle, thence gently and regularly curved in its rapid convergence toward point of inrollment, the relatively strong enamel fold inbereled to the basal rim from which it is defined by a deep narrow groove ; antero-lateral border very oblique outward and forward to the inner margin, and also apparently defined along the upper edge by a narrow inbeveled enamel fold. Coronal contour regularly and rather strongly arched longitudinally, moderately so transversely;
posterior or principal ridge occupying half the lateral diameter of the tooth, rather strongly convex transversely, posterior slope moderate and uniform to the postero-lateral border, opposite slope steeply descending with slight concavity into the narrow median depression Whiclo corresponds in the extreme oblignity to the course of the anterior articular border; anterior ridge culminating in a sharply romoded crest, toward the outer margin thanked by the narly vertical, concave slope of the median depression, the o-ite declivity more gently deseending to the antern-lateral borker along which it is slightly depressed, and marked by faint longitudinal undulations, or sometimes interrupted plice which obliquely descend from near the crest toward the oblique anterior portion of the imner margin. Length of a specimen of ordinary size along the anterolateral border about 6 mm . ; transverse diameter at the imer margin 17 mm .
Triturating surface finely and closely punctate in both forms men. tioned above, presenting the usual variations in accorlance with the degree of abrasion to whicli the surface has been mbjeeted. In crossing the narrow ridges the puncta often show marked lateral elongation and disposition in parallel rows corre-ponding in course to the formative margin. besides the oblique and longitudinal folds ahready mentioned occurring in the anterior slope of the mavillary tecth; and in excessively worn surfaces the mednany layer is entirely removed, exposing to view the dense homogenous inferior layer of the dental structure.
Only a few specimens representing the above described forms have been obtained, asinciated in the same trontum at Laballe; cyamples of probably specifieally itentical foms lase come to our notice from other localities in Illinois and kansas. The species offer characters readily distinguishing it from allied earlier apparing forms; the longitudinally ridged modiam depression and relatively marrow alate eapansion of the mandibular terminal feeth, and the relative proprotiont of the cormul prominences and the peculiar mondatithe of the anterior slope in the maxillary feetly constitute the salient features contrasting the specelies with l. Cistriensis.

 ilark hamenone twenty feet above Coal No. ti, mear Belleville, and If: Buttere has diseowed the sume reminins in the ronf shates of Coal No. 5 ut Carlimille, this State.

Genus DELTODUS, Agassiz.

18ti, Quarterly Jour. Geol. Soc. London, XVIII, p. 94; Messes. Nelvbelry and Worthen,
1866, $111 i n o i s$ Geological Survey. II, n. 96; Lord Enniskillen, 1869, Catalogue of Type
Specimens, Geol. Mag., London, V1, extract, p. 4; Dr. L. DE Konivck, 187\%, Fane du
Calcaire Carbonifire de la Belgique, II, p. 63; Dr. F. BrGSBY, 1878, Thesaurus Devonico-
Carboniferous, 18i8.

The forms have thus far been recognized as having probably pertained to one and the same generic category, as follows:

Mandibular posterior teeth sub-triangular or sub-spatulate in outline, arched and slightly spirally inrolled from within outward. An-tero-lateral border with a slight concavity in its course from the inner angle to the inrolled outer margin, basal portion channeled and terminated below in a thin rim, bordered above by the inbeveled belt which is enveloped in the coronal enamel, and partaking of its punetate structure; postero-lateral border obliquely converging from the sub-acute posterior angle toward the outer margin, gently arched, nearly vertical, basal portion channeled and defined above by a nearrower, more or less abruptly-rounded belt of coronal enamel; inner margin sigmoidally curved, broadly arched from the obtuse anterior angle round the base of the coronal prominence, with a concave course thence to the sub-acute posterior angle. Coronal region pressenting a prominent anterior ridge culminating in a more or less rounded crest near the median line, with gentle inclination to the antero-lateral border, abruptly sloped into the posterior depression, which is defined by the more or less upraised border forming the posterior alate lobe.

Mandibular median teeth cuneate or elongate sub-trapezoidal in outline, relatively narrow, transverse diameter, longitudinally arched and inrolled at the outer margin. Postero-lateral border with a slight sigmoidal curvature and somewhat oblique outward and forward course, basal portion channeled and terminating in a narrow edge, coronal belt relatively wide, abruptly beveled to the narrow ridge limiting the basal furrow, the articular border nicely co-adapted to that of the conterminous posterior tooth; antero-lateral border relatively short, less oblique in its outward and forward course, basal perdion relatively narrow, channeled, limited above by the rounded, innereld enamel fold; the inner margin is peculiar for the obliquity of the anterior half and sudden deflection nearly at right-angles in rounding the base of the coronal ridge, with a slight concavity in its course thence to the subacute posterior angle; coronal region fraversed by a strong median ridge, culminating in a rounded crest,
the slope terminating in a narrow depression, which is bordered by the more or less well-defined marginal fold along the anterior articular border, that behind merging into the wider depression which is bordered by the narrow, alate lobe of the posterior border. Other dental forms of the mandibles unknown.
Maxillary posterior teeth trigonal in outline, relatively longer and less strongly arched and inrolled than the opposed mandibular teeth. Antero-lateral border gently curved sigmoidally outward and slightly forward, proportionately low and inbereled, detined by the narrow, rounded, inbeveled enamel fold, which is separated from the shallow basal rim by a narrow furrow; the pustero-lateral border more obliquely converges toward the onter inrolled margin with gentle curvature, usually strongly inbeveled, the coronal enamel contributing a relatively wide belt inbereled to the leep, more or less distinetlychanneled basal portion, which meets the inferior surface of the tooth in an obtuse angulation; imere margin very obliquely proluced from the slight anterior angle to the base of the coronal prominence. where it is abruptly deflected with a slight concotvity in passing the posterior coronal depression to the sub-ante posterior astremity. The anterior portion of the crown is oecupied by a prominent ridece, the more or less rounded, sometimes angular, crest/ conminating nearest the antero-lateral border, to which it is steeply sloped, ind defined by the shallow depressed belt bordering that side; the op posite side presenting a wider, genily-enter, or coneave slope. descending into the posterior depression, which is bomded ly the more or less strongly-npraised posteriur alation. The character of the anterior teeth associated with the above form has not been determined.

The superfieial chameters associated in eommon with the forms above noticed are subjeet to variations such as characterize the species they represent. While the nomal condition of the crown is that of a smooth. finely and densely munetate sinface. ©o thene features certain species add narrow, momessed transterse sulei, Which in others ansume the magnitude of limad modulations crosse ing the erown parallel to the inner margin of the fonth. There are ahso, in certain speceies, more or has distinetly developed lomgithdinal pliea or furrows. which are enperially disermble in the lese worl surface townd the mate margin.

The forms alowe athuded to have alrody bern homegt the the mitention of maturalists, amb their cougemone relathonship con-

generic identity of the forms here referred to the posterior position upon the upper and lower jaws respectively, to which he then gave the name Deltodus, which was accepted by European authorities and recognized in various publications. Prior to the above date, Professor Frederick McCoy, in the British Palæozoic Fossils, 1855, recognized the probable identity of the narrow median teeth, here referred to the mandibles, with the so-called "anterior teeth" of Deltodus sublavis, which he described under the name Pocilodus parallelus. The latter form presents the same general figure and coronal contour here ascribed to the median form, although at the same time it presents marked specific characters. Heretcfore authors have not essayed the distinct definition of the dental elements pertaining to the upper and lower jaws of this genus, and in the attempt in that direction here initiated we are profoundly conscious of the meagre, imperfect data from which to draw evidence which shall not be open to objection on account of its inconclusive nature. However the facts are briefly stated, and if they do not carry conviction as to the justness of the interpretations arrived at they will at least show the difficulties in the way of the student who shall attempt the restoration of extinct forms from few and detached remains such as are represented by these teeth.

We are thoroughly satisfied with the conjecture of Professor McCoy as to the relative position and specific identity of the narrow median tooth, as above pointed out; but, on the other hand, the data do not sustain former inferences as to the position occupied by the form with which the narrow teeth were associated upon the jaw. The so-called "anterior" tooth possesses essentially the characteristics of the form which, in Cochliodus, is known to hold a posterior or terminal position upon the mandible. The latter form thus transposed readily lends itself to interpreting the median position of the succeeding narrow tooth, the articular walls exactly conforming in coadaptation, and thus placed they assume a symmetrical disposition perfectly in consonance with that characterizing the mandibles of Cochliodus, Pecilodus and Cestracion; on the other hand, it is impossible to conceive of so intimate relations in the case of the so-called "terminal" tooth with either of the forms just alluded to. However, certain features are noticeable by which a certain striking resemblance is manifest between the median form and that here referred to the posterior or terminal position on the upper jaw (the "terminal" tooth of authors). This consists in the remarkably close similarity in coronal contour which obtains in either form alike,
although in ontline and general appearance they are so markedly different one from the other. A comparison of the forms reveals the same depressed or snlcated anterior slope of the principal coronal prominence, very oblique anterior portion of the imer margin and its abrupt deflection in passing around the base of the coronal ridge into the posterior extremity; even the articular edge of the anterior borders in the two forms is very like, but in the posterolateral borders there is marked dissimilarity between them, nor have we been able to identify amongst the material before us forms with which the maxillary posterior teeth were associated. Whether the upper jaw was terminated by a series of teeth, such as undoubtedly occupied the anterior portion of the jaw in Cochliodus, it is impossible at the present time to more than conjecture.
The genns is represented by species thens far anthentically reported only in lower Carboniferous formations in Europe, where it was the cotemporary of Cochliohlus. In America, however, its representatives range from near the hase of the lower Carboniferons (Burlington limestone), thence throngh the successive formations up into the Coal Measures. The following is a list of the species at the present time lnown, the affinities of the forms being recognized in accordance with the characteristics cited in the foregoing descriptions and observations:

Deltodus subleris, Agass., mountain limestone, Great Britain. (-P'ucilodus parallelus, McCoy, and possibly I'ercilous: aliturmis, McCoy.)
1). sandulinus, de Koninck, Carboniferous limestone, Belgium.
1). spetnlatus, N. and W., U. Burlington limestone.
I). ucridentulis, (Leidy-sp.) Keolink linuestone. (-I). stallatus. N. nind W.)
D. undulatus, N. and W: Kicoluk limestone.
I). Intior, St. J. and W. Kiokuk limestone.
1). Lillmi, N. and W. Warsaw limestone?
1). cinctulus, St. J. and W. Warsmw limestone.
I). trilolus, St. I. and IV. Wassaw limestone.

1. purrns, St. J. amd W. St. Lonis limentone.
1). intermetius, St. J. and W . St. Lonis limestone.
I). cingmlutns. N. and W. Chestor limestome:
I). Merourii, Newh. Latwer Carloniferons.
1). Pincllii, St, I. and IV: Cpue Carhoniferons.
I). 1mopinymus, St. J. and W. Cual Menames.

Delfodus latior, St. J. and W.

Mandibular posterior teeth moderately arched longitudinally and rather strongly inrolled, in general outline and dimensions resembling the same form of Dcltodus occidentalis with which they are associated. Antero-lateral border slightly incurved, in length exceeded by the breadth across the inner margin, enamel fold defined from the basal border by a shallow groove ; general course of inner margin slightly oblique to the anterior border, broadly arched round the base of the coronal prominence with a slight concavity between the median and the posterior angles; postero-lateral border gradually converging toward the outer margin, the upper edge defined by a rather thick fold of the coronal enamel. Coronal ridge most prominent in the middle portion of its extent, depressed near the inner margin, culminating in an obtusely rounded crest a little anterior of the median line, anterior slope flat or slightly depressed, posteriorly steeply inclined into the depression on that side, which is bordered by the rather wide moderately upraised alate expansion. Surface punctation very like that observed in D. occidentalis. Length of a medium size tooth along the antero-lateral border to inrolled outer margin 15 mm . ; breadth across inner margin 19 mm .

The posterior form of the mandible alone is known, of which the collections contain but few examples. These present, in the contour of the crown and proportions of the coronal prominence and alate lobe, characters which certainly offer striking contrast to those prevalent in Deltodus occidentalis, with whose remains they are associated. The same observations are equally admissible when compared with the same form of D. undulatus, N. and W., also of the Keokuk, and D. spatulatus, N. and W., of the Upper Burlington limestone. In the depressed anterior slope and the consequent greater or less prominence of the coronal ridge, these teeth bear some resemblance to the homologous form of Cochliodus; however, the condition of the coronal fold of the antero-lateral border as also the coronal contour leave no room for doubt as to their congeneric relations with Deltodus. The paucity of examples and the absence of identifiable individuals of the opposite jaw have occasioned much hesitation in recognizing the specific distinctness of the teeth here alluded to; the materials illustrating D. spatulatus, D. occidentalis, -10
and D. undulatus, ample and variable in their bounds as they are, do not make it clear that the present form is but a varietal phasis of one or other of the last mentioned species.

Geological position and localitics: Leokuk limestone, near Warsaw and Hamilton, Ill. ; Keokuk, Lowa.

Deltodus cinctules, St. J. and W.
PI. IX, Fig. 6, 7.
Teeth below medium size. Mandibular posterior tooth triangular in outline, lateral diameter relatively broad compared to the length, and somewhat strongly inrolled at the outer extremity. Anterolateral border nearly at right angles with a line comnecting the inner angles of the tooth. The upper half or more of its leight enveloped in the strong, inbeveled enamel foll, beneath which the basal portion forms a narrow rim showing a coarse vascular structure; inner margin with a slight sigmoidal curvature, hroadly arched round the base of the coronal ridge, with a moderate concavity in passing the posterior depression into the posterior angle; postero-lateral border gradually converging toward the outer margin, occupied by a well-defined enamel fold extending nearly laalf the depth, basal portion slightly channeled and terminating in a narrow rim inferiorly. Coronal ridge relatively broad, strongly arched laterally, culminating a little anterior of the median line, with a gradual slope into the posterior depression from which rises the relatively narrow, slightly upraised alate lobe which terminates in the sulb-acuto posterior angle; in mature or somewhat worn specimens where the surface has been deprived of the original enamel investment, the crown is undulated by sub-equal transverse folds and intervening narrow sulci conforming to tho bands of elongate punctie that mark the order of increment of the tooth substance. Breadth of an ordi-nary-sized specimen at the imer margin, 11.5 mmn ; length of anterolateral border to point of inrollment, alout 9 mm .

Posterior tooth of the upper jaw trigonal in outline, moderately arelhed in the longitudinal direction. lnner margin making a sigmoidal carvature from tho posterior subbente angle, broadly rounded into the antero-lateral border with which it is more or lest ollapue; anterior articular edge unkinown postero-lateral border gradually converging toward the outer extremity enamel fold well demed and separated from tho basal portion by a narow chamel. Cormal
prominence relatively narrow, culminating about midway of the anterior half of the coronal region, abruptly descending to the anterolateral border, gently sloping into the broad, shallow posterior depression, which together with the slightly upraised wing occupies a proportionately wide extent of the coronal area. Surface marked by sub-equal and more or less parallel transverse folds, separated by narrow furrows similar to the opposed mandibular teeth, and conforming to the curvature of the inner margin. A medium size tooth measures in greatest transverse diameter at the inner margin about 11.5 mm ; greatest length from posterior angle to outer inrolled margin, about 15 mm .
The species above noticed is closely allied to its congeners of the Deltodus undulatus type. The mandibular posterior teeth are, however, distinguishable by their relative great breadth at the inner margin, as compared to the length; the narrow wing expansion recalls more the condition prevalent in D.occidentalis, from which, however, it may be recognized by its broader, shorter form and undulated coronal surface. The opposed maxillary teeth bear a striking resemblance to D. cingulatus, N. and W., of the Chester limestone, differing, however, in the greater obliquity of the inner margin and, perhaps, the more numerous transverse sulci, producing the banded appearance of the crown surface, while the more widely expanded wing, and the greater obliquity of the inner margin, also serve to distinguish them from D. undulatus, N . and W.; also, in both forms of the present species the punctæ are perceptibly more crowded than is the case in D. cingulatus, and in which respect they again resemble D. undulatus.
As yet the collections contain very few examples of the teeth above referred to, but these, besides their small size, offer characters which seem to authorize the recognition of their distinct specific standing, although closely allied to the species with which they have been compared.
Geological position and localities: Warsaw beds: Barrett's Station, St. Louis Co., Mo.; Madison county, Piasa creek above Alton, and Scott county, Ill.

Deltodus thilobus, St. J. aud W.

PI. IX, Fig. s.

Mandibular median tooth of medium size, wedge-shaped in outline, moderately arched and rather strongls imrolled. Postero-lateral or oblique border converging toward the outer extremity at an angle of about 15° with the opposite loorder, slightly sigmoidally curred from the sub-acute inner angle to point of inrollment, basal portion of moderate depth, rather deeply and angularly chameled, the inferior rim produced downward and slightly outward beyond the limits of the enamel fold, which latter forms a wide lelt abruptly bereled above, with an inbereled narrow strip helow; antero-lateral border proportionately short, or hardly more than half the length of the opposite articular border, the rounded anterior coronal lobe inbereled to the relatively shallow-channeled, inbereled (?) basal rim; inner margin very obliquely produced backward from the very obtuse anterior angle to the broadly rounded base of the principal coronal ridge, thence to the posterior angle, making nearly a right angle to its anterior course, with a slight concavity in the region of the posterior depression. The principal ridge occupies half or more of the transrerso diameter of the coronal region, rising into a high, rounded crest, the auterior slope steep and terminating in a narrow depression outwardly defined by the rather prominent, rounded lobe trasersing the antero-lateral border; the opposite slope is rery abrupt, with slight transverse concavity, merging into the rather deep posterior depression, which is hordered by the prominent alate lole of the postero-lateral border. Coromal surface smooth, the imer margin preserving the thin enamel conting, the worn surfaces exhibiting fine, closely arranged punctre. Breadth of tooth at imner margin alout 10 mm ; length along the ohlique border to point of inrollment 14 mm .

The above description is based upon a single nearly perfect tooth, the antero-lateral border being slightly distorted by presure. Compared with allied species, it is readily distinguished from the mandihular median form of the Keoknk and Upper Burlington species. Deltodus accidentalis (Liedy, sp.) and I). spmtulatus, N. and W.. hy the distinct lobed condition of the anterior border; also, the alate lobe is more prominent than in D. sputulutus, and less expanded than oecnrs in I. seculdentalis.

So far as relates to the present unique example, little doubt can arise as to its specifically distinct character ; but as regards the forms with which it was specifically associated, the meagerness of the material hardly furnishes a clue as to their identity. Thus far, the Warsaw limestone has afforded only a few fragmentary remains of Deltodus, some of which certainly are very intimately related to the Keokuk species D. occidentalis (maxillary and mandibular posterior forms) ; but the imperfect state of preservation of these specimens offers nothing definite bearing on their specific identity, as noticed in another place. We are satisfied that the species of Deltodus are, in some instances at least, extremely intimately related to one another, although distinguishable by well-defined peculiarities, as exhibited by ordinarily well-preserved examples. However, amongst the mass of material-like that including D. occidentalis and D. undulatus, of the Keokuk limestone-it is impossible to recognize the specific identity of the fragmentary individuals, and the same state of things undoubtedly obtains in respect to allied representative species.
Messis. Nettberry and Worthen have described (Ill. Geol. Suiv. IV, p. 367, Pl. IV, f. 8) a maxillary terminal form under the name Deltodus Littoni, reported from the Carboniferous limestone of Boone county, Missouri. It is uncertain whether the latter, which is represented by an unique example, was derived from the Warsaw or from the St. Louis formation, both of these formations, as also the Keokuk, etc., occurring in the region indicated; however, the appearance of the limestone matrix does not suggest the latter horizon, and it is supposed the specimen belongs to either the Warsaw or the St. Louis. We owe to the courtesy of Dr. Litton, of St. Louis, the privilege of examining the type specimen. It is a large, muchworn tooth, neither border of which is sufficiently complete to permit of detail comparison with allied species. The relative great breadth and regular convexity of the coronal ridge and apparently narrow posterior alation, offer marked contrast to the prevalent Keokuk species D. occidentalis, bearing a greater resemblance to D. undulatus, especially, compared with worn examples of the latter species, in which the transverse undulations are more or less obscured, or obsolete. It is possible the narrow median tooth described above may be specifically identical with the latter form, in which event, of course, the name by which it is here desiguated will have to give way to the prior term bestowed by Mesṣrs. Newberry and Worthen.

Geological position und locality: Warsaw limestone; Jersey county, Illinois.

Deltones occinentahis? (Leidy, sp.)

Pl. LX, Fitr. ?-10.

Compare Jeltorlus occillentalis, (Cochliodus uceldentulis). Leids. 1six, Trans. Am. I'hish. Soc., X1, (2d ser.)

The collection from the Warsaw and St. Lous formations contain rare examples of the teeth of both the mandibular posterior and median forms and of the maxillary posterior form of a species closely allied to, if indeed it proves not to be identieal with, Dellodus occidentalis, (Leidy sp.) so numeronsly represented in the lieokuk limestone. The Warsaw specimens, of which a single example of the posterior tooth of the upper and lower jaws respectively has been obtained, though fragmentary, present so close a resemblance to the keoknk species that were their stratigraphical derivation not known they would withont hesitation be relegated thereto. The maxillary tooth (Warsaw) does not show quite as angular coronal ridge, but in the outline and coronal contour in other respects it is most intimate in its relations with that species. The mandibular tooth (Jersey comen) preserves only part of the middle or elevated portion of the tooth, the borders and extremities being mutilated showing the general characteristics anve the longitudinal ridges at. tributable to the keoknk teeth. In size they are a little larger than the prevailing dimensions attained by the teeth of that species. The Sit. Louis specimens are even more like the lieoknk teeth so far as it is possible to judge from the fetr examples thms fur obtained. The collection of Mr. Vim Home contains a frogment of the mandibular posterior tooth, from Alton, and Prof. Worthen has oltained from tho same horizon in Monroe comty, an almost entire, thongh somewhat crashed and distorted, example of the opposed tooth lelonging to the left ramus of the upper jaw, in which the keel along the crest of the cormml ridge is well shown. The eharneter of the punctan is also very similne to the kooknk tedth, hoth of the mpecimins here alluded to being in little moder medimm size an compared with the lieokink examples.

Mr. Van Horne has obtained from the Warsaw beds in the neighborhood of the mouth of Piasa creek, above Alton, two specimens of the maxillary terminal form, but, unfortunately, they are in too imperfect a state of preservation for the satisfactory determination of their specific identity. They are quite peculiar for the exceedingly crowded punctation, and one of the specimens shows quite distinct widely spaced transverse undulations traversing the coronal surface, recalling Deltodus cingulatus, N. and W., of the Chester limestone.

The Warsaw beds at Warsaw have also yielded a large example of the mandibular median form, which is difficult to distinguish from the same form associated with Deltodus occidentalis, except that the principal ridge is very perceptibly more broadly rounded or depressed along the crest and the alate lobe relatively stronger and a little more prominent; the antero-lateral border is broken away so that it is not clear how closely it resembles the typical examples of the species with which it is here compared as well as its resemblance to the form referred to under the head of D. trilobus, from which it differs in its more robust build and less emphasized coronal prominence.

The specific identity of the teeth above alluded to, if it proves to be well founded, is of enhanced interest on account of the evidence they furnish on the perpetuation of the species unchanged for so long a period as that involved in the deposition of probably not less than 300 feet of sediments included between the earlier and the latest deposits in which its remains have been found, while other species subsequently appear both in the Warsaw and St Louis formations.

Geological position and localities: Warsaw limestone; Warsaw, Alton, and Jersey county, Ill.: St. Louis limestone; Alton, and Monroe county, Ill.

Deltodus parvus, St. J. and W.

 Pl. IX, Fig. 1-5.Teeth of small size. Mandibular posterior form sub-trapezoidal in outline, rather strongly arched and inrolled, usually a little longer than wide. Antero-lateral border with a slight incurved cutline, basal portion slightly channeled and limited above by the narrow enamel fold; inner margin forming nearly a right angle with the
anterior border, broadly rounded with a slight sigmoidal currature on nearing the slightly produced posterior angle of the alation ; postero-lateral border gradually eonverging toward the outer margin and bordered by a rather strong fold of the coronal enamel. Crown broadly arched over the principal ridge, which occupies two-thirds or more of the entire area, posteriorly rapidly sloping into the depression on that side, which is bordered by the relatively narrow. slightly upraised alate expansion. The surface is interrupted by transverse sulei, especially noticeable near the border in the anterior slope and in the posterior depression, and mmutely and uniformly punctate. A worn specimen of ordinary size measures in length along the antero-lateral border about 7 mm .; greatest breadth across inner margin, 8 mm .

Maxillary posterior teeth trigonal in outline, strongly arehed and spirally inrolled. Antero-lateral border describing a gentle sigmoidal curvature, basal portion clanncled and well defined from the strongly iubereled coronal fold, which constitutes about one-third the leight of the border; postero-lateral border gently arehed, approaching point of inrollment at an angle of about 70 with the opposite side, relatively deep, basal portion slightly inbeveled to the inferior edge and faintly chameled, emamel fold relatively wide and sharply rounded above, inbereled below; inner margin making an angle of about 30^{2} with the anterior border, the anterior half rery obliquely produced backward from the very obtuse anterior angle, rombled and sharply deflected at the immer angle or base of the coronal ridge nearly at right angles to the anterior course, with a slightly coneave eurvature in passing the posterior depression to the posterior angle, worn speeimens showing the usual inbeveled inferior edge. Coronal contour strongly marked, prineipal ridge eulminating in the rounded erest a little anterior of the longitudinal median line; anterior slope stecp, slightly depressed near the articular border, where it flares ont into a narrow border fuld ; posterior slope regularly descending with moderate coneavity, and merging into the posterior depressed belt, which is bordered by the narrow and but slightly upraised expansion of the alate posterior horder. Besides. the irregnlarly dongated pores, the smfare is marked hy transvetse sulci and intervening wider ridges in the same mamer noticed in the mandibular tecth. A mature, perfect tooth measimes across the inner margin ! mm.; length along antero-lateral horder to the inrulled unter margin, 7 mm . ; length along coronal axis, 13 mm .

The present species is represented by several examples of the mandibular and maxillary posterior forms, whose perfect state of preservation permits of detail comparison with allied species. It bears most intimate relations with Deltodus cinctulus of the Warsaw beds, the mandibular teeth being cbielly distinguishable by the proportionately greater breadth of the principal coronal ridge, narrower posterior wing, and the more numerous transverse furrows and ridges; in the case of the maxillary posterior form, it contrasts with that of the above species in the relatively more prominent coronal ridge, narrower alation, abrupt deflection in the course of the inner margin, and the less conspicuous, narrow transverse undulations traversing the coronal region.

A single imperfect specimen of a minute tooth obtained by one of the writers at St. Louis, is provisionally identified with the narrow median form of the mandible of the present species. Partaking in an intimate degree of the outline and coronal contour of the median teeth characteristic of the genus, as it is now interpreted, its small size suggests relationships with the specific forms above alluded to. It shows the prominent, rounded coronal ridge, narrow alate posterolateral border, and the still narrower and shorter articular border of the opposite side, but the mutilated condition of the specimen does not disclose the distinctive specific characters that distinguish it from congeneric forms.

Geological position and localities: St. Louis formation; Pella, Iowa; Alton, Illinois ; St. Louis, Missouri.

Deltodus internedius, St. J. and W.

Pl. IX, Fig. 14, 15.

Teeth attain medium size. Maxillary posterior form sub-triangular in outline, rather strongly arched and inrolled. Antero-lateral border slightly curved sigmoidally, articular edge very narrow, inbeveled to the slightly channeled, shallow basal rim; postero-lateral border converging toward inrolled outer margin at an angle of 35° with the opposite side, somewhat undulated, the relatively thick enamel fold sharply inbeveled to the channeled, posteriorly expanded basal rim, which is rather strongly produced at the subacute, rounded posterior angle; inner margin strongly produced inward and slightly backward from the very obtuse angle at the junction of the anterior articular border, suddenly deflected nearly at right angles and broadly arched
round the base of the coronal ridge, with a slight coneavity in the region of the posterior depression, inferiorly inbereled. Coronal ridge relatively narrow, steeply rising from a faint depressed line near the anterior edge, erest romnded, gradually descending into the posterior wide depression, which is bordered by the moderately upraised alation. Surface nearly smooth, with obscure transrerse lines along which the punctse exhibit elongated or otherwise enlarged openings, rarely anything like undulations appearing. Length along crest of coronal ridge to inrolled outer margin about 31 mm .: length of anterior articular border 18 mm .; greatest breadth across inner margin 21 mm .

The collections from St. Louis horizons afford a solitary authentic example only of the present form, the nearly perfect tooth thure deseribed. This is quite distinct from the earlier-occurring species, and offers striking resemblance in coronal contour with the smooth individuals of Deltodus cingulatus, N. and W., of the Chester formation. It is, perhaps, distingnishable from the latter species by the somewhat less produced posterior angle, less elevated coronal ridge. and shorter artieular edge of the antero-lateral border. A single other imperfect example has been obtained by Mr. Vinn Horne from the same formation at Alton, Illinois, which represents the mandibular posterior form possibly of the same species. The fragment indicates a tooth of a relatively long, narrow outline with a rather oblique imner margin in front, a broad gentle slope deseending from the crest of the coronal ridge to the deep, inhereled coronal fold of the articular border, the opposite flank abruptly descending into the posterior depression; the alation, as also the outer margin of the tootlh, is broken away.

Grological position und localities: St. Louis formation; l'ella, Lowa, Alton, Illinois.

Delitudus Powelli, St. J. and W.

M. X. IIE.

Treeth attnin medinm size. Mandibular terminal form sulspatulatu in ontline, moderately arched longitudinally and rather strongly inmolled at the outer margin. Antero-laternl border gently incurved. enamel fold strongly inbeveled to the chameled basal rim: posterolateral horder gradually eonserges toward onter inrolled margin, making an angle of about $2: 3$ ' with the anterior border. the rommed, inbeveled enamel fold well defined by a narrow suleus from the
shallow basal portion, which is somewhat expanded posteriorly; inner margin broadly and regularly arched round the base of the coronal prominence from the obtuse anterior angle, with a rather deep concave course in the region of the posterior depression, joining the posterior border in a subacute angle, inferiorly inbeveled. Coronal ridge prominent, occupying the anterior two-thirds of the area, and culminating in the broadly rounded crest a little anterior of the median line; anterior slope regularly convex, the posterior declivity more abruptly descending into the relatively narrow posterior depression, which is defined by the narrow, moderately upraised, rounded alate lobe. Surface traversed by well-marked, widely spaced transverse furrows, especially noticeable in the coronal prominence, which are occupied by irregular transversely elongated pores, intervening undulations showing minute, widely spaced punctre. Length of anterior articular border at least 17 mm ; breadth across the inner margin 20 mm .

The unique example above described was obtained by Maj. Powell's expedition to the Grand cañon of Colorado, from the Carboniferous limestone. With the exception of the outer extremity, the specimen is quite entire, admitting of satisfactory comparison with allied forms. Of the latter, it is, perhaps, most intimately related to Deltodus cingulatus, N. and W., of the Chester formation, being distinguished chiefly by its proportionately greater breadth compared to the length of the tooth, narrower and more widely spaced transverse sulci, and narrower alate lobe. It also differs from D. Mercurii, Newb., in the same respects relating to the diametral dimensions and in the distinct transverse undulations of the coronal region,--indeed, the only feature which it shows in common with that species being the narrow posterior alation.

We have described in another place, under the specific designation Deltodus propinquus, a fine large species from the Coal Measures of Illinois, which, so far as relates to the homologous form, bears most intimate resemblance with the present tooth. The only appreciable distinctions by which the latter teeth may be distinguished consist in the greater obliquity of the inner margin and the undulations traversing the crown,-indeed, worn examples, in which the longitudinal undulations are obsolete, are hardly recognizable from the tooth above described.

The specific designation is given in honor of Major J. W. Petwell, U. S. Geologist, in charge of the geographical and geological exploration of the Rocky Mountain region. The unique type is deposited
in the National muscum, at Washington, the loan of which, for examination, was kindly procured us by Dr. Charles A. Wimte.

Gcoloyical position and locality: Carboniferous limestone, probably of the age of the Coal Measures; Grand canon of the Culorato, L'tah territory.

Deltodus propisques, St. J. and W.

Pl. X. Fig. 3, 4.

Mandibular posterior teeth sub-trigonal or sub-spatulate in outline, rather strongly arched longitudinally, with slight, spiral inrollment. Antero-lateral border sigmoidally currell, strongly inbeveled, and occupied by a wide enamel fold, which is sharply defined liy a deep, narrow furrow from the extremely narrow basal rim ; postcro-lateral border converging, at an angle of $35^{-\circ}$ more or less, to the opposite border, also gently curved, coronal enamel forming a prominent, rounded fold, inbeveled to the suleated, moderately deep basal rim, which was apparently continued posteriorly into a spur-like angle; immer margin sigmoidally curved, broadly arelied aromud the base of the coronal prominence, in breadth exceeding the length of the anterior articular border, inferiorly inbeveled. Coronal prominence occupying three-fourths of the area, rather strongly convex laterally, broadly ronnded along the crest, which lies a little anterior of the median line, the wide anterior slope rounded into the anterior borter, posteriorly steeply inclined into the narrow depression on that side, defined along the posterior border by the narrow, rominded, mod-erately-upraised alate lobe. Coronal surface traversed ly rather strong, irregularly-spaced, transverse undulations and longitudinally marked by less distinet plications; the dense, polished enamel also presents a delicate rugoso appearance, the minute rugar having a longitudianl direction; worn surfaces over the onter portion of the crown reveal the usmal pitted structure, the punctar becoming conHhent, or usually longitudinally elongated in the hollows of the transierse undulations. A large tooth shows a transverse diametor across the inner margin of 3.5 mm ; length of anterior articular border from the obtuse inner angle to the peint of inrollment, about 27 mm .

Mandibular me lian form known only from a enuple of fragments. too imperfent for figuring. It is characteriad by the promine nee of the anterior lobe, which presents a rommed erest defind on either side by excedingly ubrupt declivities, on the one hand descending to the anterior border which is margined by an ohsidurely defined narrow fold strongly inbeceled to the deeply-channeled hasal rim,
and on the other merging into the posterior depression, whose pos-tero-lateral border is broken away, as also the inner and outer portions of the tooth. The form was evidently sub-cuneate in outline. The coronal surface exhibits the same punctate characters noticed in connection with the terminal form ; however, the transverse undulations are less conspicuous. The relative size agrees with the preceding form with which it was associated.

Posterior tooth of the upper jaw elongate triangular in outline, rather strongly arched from within outward, and spirally inrolled. Anterior articular border comprising, perhaps, two-thirds of the greatest length of the tooth from the inrolled outer margin to the very produced inner angle at the base of the principal coronal ridge, gently curved sigmoidally, the narrow enamel fold strongly inbeveled to the deeply-channeled, shallow basal rim; postero-lateral border converging at an angle of 45°, more or less, with the anterior articular border, gently curved, the thick enamel fold rounded and sharply inbeveled to the correspondingly deep, flaring basal border, from which it is defined by a deep sulcus; inner margin making a slight angle with the articular border in front, suddenly deflected nearly at right angles in rounding the base of the coronal ridge, and thence passing to the posterior angle with a slight concavity in the region of the posterior depression, worn specimens inbeveled inferiorly. Principal coronal ridge culminating in a rather sharply rounded crest about one-fourth the distance from the anterior border, presenting a steep convexity descending to the shallow depressed belt bordering the articular fold, on the opposite side gently descending into the wide posterior depression from which abruptly rises the narrow, transversely arched alate expansion, and from which it is defined by a distinct augulation. The coronal surface is more or less regularly undulated transversely, producing a nodose appearance along the crest of the principal ridge. The character of the delicately rugose enamel enveloping the inner portion of the crown, and the punctation of the outer worn surface, is precisely as observed in the opposed teeth of the mandible. In both forms, also, the smooth or faintly longitudinally striated inferior surface approximately conforms to the contour of the coronal region, showing the usual dense thin basal layer. Length of a large tooth along the anterior articular border to inrolled outer margin, 32 mm . or more; greatest length of tooth along the crest of the coronal ridge, 58 mm . ; breadth between inner angles of the tooth, about 51 mm .; ditto, between base of coronal ridge and the sub-acute poyterior angle, 39 mm .

The above diagnoses are based upon examples of the mandibular, posterior and median forms, and the posterior form of the upper jaw, derived from lower Coal Measure strata of Illinois. The species is intimately allied to that occurring in the Chester formation, le\%tudus cingulutus, N. and W. The mandibular terminal form, however, is distinguishable by its stouter proportions, wider coronal ridge, and relatively shorter longitudinal diameter. The opposed teeth of the upper jaw, again, differ from the corresponding Chenter form in the more prominently transversely arched alation, in which particular it bears closer resemblance to D. undulatus, \mathcal{N}. and W ., of the Keokuk limestone. from which, however, it widely differs in the more angularly rounded contour and concave posterior slope of the principal coronal prominence. The Conl Measure forms of the Lpper Mississippi region, therefore, constitute a well defined species, as distinguished from the several specific groups occurring in the various formations of the Lower Carboniferous groups in the same region. Its intimate resemblance to the species described from the (prolably) Coal Measure limestone of the Far West, I). I'owcllii, has ahready been remarked upon. It is possible that a larger suite of specimens of the latter species might prove its specific identity with the present teeth; but this can only bo demonstrated by the comparison of all the forms.

Gcological position and localitics: The first example of the present species that was lrought to our notice, several years ago, was discovered by Mr. L. A. Fuller in the shates overlying Coal No. 7, at Danville. Subsequently, Mr. Alexander Jutters ohtained from the roof shales of Coal No. 5, at Carlinville, representatives of all three of the forms thus far identified as pertaining to this speeces.

(BENtS DEL'IODOPN゙心. St. J. and W.

Teeth possessing coromal contonr and general aspeet near Deltonlus.
Mandibnlar posterior teeth distinguished by their oblique sub-triangular outline and the remarkable oldignity of the anterner portion of the inner margin, proportionately short extent of the anterior artieular border, the sometimes longitudinally depressed condition of the anterior slope of the coromel prominence, and the tendency to produce a more or less well defined median moge along its sum-

[^9]mit. The antero-lateral and postero-lateral borders are marked as in Deltodus. The coronal fold of the articular border, perhaps, more rounded and relatively narrower than that of the postero-lateral border.
Teeth, identified with the median form of the mandible, are characterized by their thin, oblique, trapezoidal figure, great length of the posterior, as compared with that of the anterior, articular border, and its strong outward and forward obliquity. The basal rim and enamel fold corresponding in cc-adaptation with the opposed \cdot border of the posterior or terminal tooth, and essentially like the thinner and very short antero-lateral border; inner margin very oblique from the subacute posterior angle forward to the obtuse anterior angle ; coronal surface comparatively plain, or culminating in a low ridge near the posterior side.
The maxillary posterior teeth are characterized by their elongate, wedge-shaped outline, narrow inner margin, and the narrow posterior alation. The postero-lateral or oblique border shows the basal portimon inbeveled, channeled, and defined above by a distinct, inbeveled enamel fold; the opposite articular border is relatively short and mostly enveloped in the enamel fold, beneath which projects the narrow basal rim; the inner margin, as in the corresponding form of Deltodus, is very oblique in its course from the very obtuse angle of the articular border backward to the base of the coronal ridge, where it is abruptly deflected at right angles, thence to the posterior extremity. The crown presents a simple prominence or ridge along the anterior side, with abrupt slope to the articular border, and behind, descending into a shallow depression, from which rises the narrow wing expansion.
The superficial punctation is very like that observed in Deltodus, with similar specific modifications.
There exists so intimate relationship between the forms here alluded to and typical Deltoclus that we have hesitated in recognizing for them more than a subgeneric distinctness. But taking into consideration the community of characteristics by which they are distinguished, and which equally serve to distinguish them from Deltodus, this discrimination seems to be founded in tangible superficial characters that fail not to impress the observer with their ioportances The greater -the familiarity with the various examples embraeed-under-this-grotp, the differentiation, or tendency thereto, of the median ridge of the anterior coronal prominence further widely departs from typical Deltodus, while at the same time it

[^10]marks an ummistakable approach to the coronal condition of certain forms near Cochliodus, e. g. Chitonodus Springeri, ete. Of other dental forms which were associated with the above-mentioned teeth of the mandible and upper jaw, respectively, we are at the present time at a loss to determine their character or identity.

Authentic examples of the forms here associated together have been derived from the Warsaw, St. Louis and Chester formations; certain forms representing mandibular posterior tecth have also been obtained from the Ficokuk formation, but their relations with the present genus are not ąs satisfactorily shown as in the case of the later introdnced forms alluded to. Deltolus anyustus, N. and IV., of the Chester limestone, which was originally described from examples of the elongate posterior tecth of the upper jaw, is regarded as a typical representative of the present genus.

Through the courtesy of Lord Euniskillen we have had opportunity to compare the American forms with sketches of a large "palate" from the Carboniferous limestone of Oreton in Shropshire, England, which seems to be congeneric with the teeth a bove gronped tugether, and the monarch of its kind. Possessing the same outline and general contour of coronal region attributable to the mavillary posterior teeth of Deltodopsis, the Oreton example is di-tingnished by its truly gigantic proportions, and, perhaps, also by its relatively narrow lateral diameter and the very steep declivity descending to the an-tero-lateral border. The tooth from which the above mentionell sketch wats made represents the posterior angle of the wing rombded, as though from wear. The specimen measures in greatest length nearly ? centimetres, breadth across the imer margin about \& centimetres.

1)elitodobsis affinis, St. J. and W:

Fl. Ni, Fig. 1.

The species here alluded to is represented ly a solitary example of the posterior tooth of the mandible. Comparison reveals most intimate relationship with the flucies ofenring in the St. Lomis formation, Deltodopsis St. Luderici. It is characterized, howerer, in contradistinction to that species, hy the relatively great bredth of the posterion depression and wing expansion, the marrower and dis. tinetly transeersely depressed anterior slope of the cormal prominence. The enronal surface is wom, so that the pmetre appear nomewhat conser and more regnlar, while the transverse motnations are rery like what vecurs in the latter specits. Length from
the inner angle of the coronal ridge to the inrolled outer extremity, about 11.5 mm ; greatest breadth across inner margin, 9 mm .

As yet other forms which were probably associated with the above tooth have not been recognized. Indeed it is only within a recent date that the Warsaw beds have afforded many fish remains, and in most instances these represent forms peculiar to the formation.

Geological position and locality: Warsaw shaly limestone, Golden Bluffs, near Warsaw, Ill.

Deltodopsis St. Ludovici, St. J. and W.
Pl. XI, Fig. 2-6.
Mandibular posterior teeth depressed, triangular in general outline, moderately arched longitudinally and inrolled. Antero-lateral border comprising a little more than one-third the extent of the tooth along the coronal ridge, gently curved from within outward, basal rim slightly furrowed and bordered by the distinct, narrow, inbeveled enamel fold; inner margin in front diverging at a slight angle from the anterior angle to the base of the coronal ridge, round which it is sharply curved with a slightly concave course to the acute posterior angle of the alate expansion, inferiorly inbeveled; posterolateral border gently arched, gradually converging toward the suddenly inrolled outer extremity, the narrow inbeveled enamel fold distinctly defined from the nearly vertical channeled basal border. Coronal prominence culminating in an obtusely rounded ridge near the median line, anterior broad slope nearly plane or slightly convex, more abruptly sloping into the depression on the opposite side, which is bordered by the moderately upraised narrow alate expansion of the postero-lateral border. Crown surface minutely and somewhat irregularly punctate, unworn surfaces showing numerous delicate transverse furrows parallel with the inner margin and producing a slight undulated appearance; in some examples the exfoliated enamel reveals a surface delicately striated by wavy threads holding the same course as the undulations. A tooth of medium [size measures along the articular anterior border to point of inrollment 8.5 mm ; transverse diameter across inner margin 13.5 m m ; length along crest of coronal ridge 19 mm .

Mandibular median tooth subtrapezoidal in outline, moderately arched longitudinally, outer extremity strongly inrolled spirally forward. Postero-lateral border gently curved conforming to the
opposed articular border of the terminal touth, hasal border deep, inlieveled, double-furrowed, terminating inferiorly in a uarrow rim, and bordered above by the relatively strong, rounded, inbeveled, enamel fold; antero-lateral border relatively rery shortg the enamel fold inbeveled to the chameled basal border and constituting more than half the height of the border; imer margin making a slight sigmoidal curvature from the acutely romed posterior angle to the obtuse anterior angle, inferionly inbeveled in worn examples. Coronal surface nearly plane transversely, culminating in a low, obscmrely defined ridge close upon and parallel with the postero-lateral border, the broad anterior slope merging into the very shallow depressed belt traversing the anterior portion of the coronal area; surface marked by distinct transverse midulations and furrows parallel with the inmer margin, immer edge enveloped in a dense enamel coating, immediately forward of which the worn surface exhibits irregular verrucose markings, and over the much worn onter laalf the usual pmetate structmre appears, the pmoter displaying marked tendency to irregular elongation in varions directions, in all which particulars the teet! bear most intimate resemblance to the associated forms of the species. A mature tooth measmres across the imer margin 7.3 mm ; along the postero-lateral border to point of inrollment abont 10.5 mm ; antero-lateral border about 4 mm .

Maxillary posterior teeth narrow triangmar or subemeate in ontline, gently arehed longitudinally. The anterior portion of the immer margin diverges at a very slight angle with the antero-lateral border, or making nearly a right angle with the portion bebind the abruptly rombled hase of the coroual ridge, slightly concave in passing the posterior depression into the slightly produced posterior angle ; postero-lateral border very gradually converging towat the outer extremity, which is smdenly imolled; both the antero and the postero-lateral borders aro marked by the narow enand fold, inhereled to the chameled hasal border, which latter in the anterion horder is evecedingly shallow compared with it grater inbeveled depth in the posterior horder. Coronal prominence rising abruptly from the antero-lateral botder, regularly arehed transversely, more gently descending into the posterior depression, which is traversed by a faint angulation defining the imer limits of the barrow and somewhat sharply mpraised posterior wing. Surface markings agreeing with what has already heen observed in relation to the opponem mandibular teeth, even the the dands of the irregular
punctation and undulations and the delicate transverse tracery observed in partially exfoliated surfaces, especially of the wing expansion. A specimen of the ordinary size measures in extreme length along the coronal crest 23 mm ; antero-lateral border about 16 mm ; breadth across inner margin 8 mm .

The present species is of peculiar interest on account of the facts it affords in relation to specific diferentiation and the intimate resemblances that exist between the individuals of allied species. Thus, compared with the Chester form there exists markedly close resemblance between the mandibular posterior teeth, the chief distinction in the present form being its, perhaps, less oblique inner margin, the peculiar coronal ormamentation and less regular punctate structure. But in relation to the maxillary posterior teeth of the two forms, a marked difference is apparent, the present form being relatively much more elongate longitudinally and proportionately narrower, while the proportionately narrow, plane or slightly convex anterior slope contradts with the wide, gently concave declivity characteristic of the Chester teeth.

Geological position and localities: St. Louis formation; Pella, Lowa, Alton and other localities in Madison and Monroe counties, Black's Hill, Hardin Co., Ill., St. Louis, Mo.

> Deltodopsis angustus, (N. and W., sp.) PI. XI, Fig. 7-10.

Maxillary posterior teeth subcuneate in outline, very moderately arched longitudinally, except at the inrolled extremity. The anterolateral articular border comprising somewhat more than half the extreme length of the tooth, defined by the thick, rounded enamel fold, which is strongly inbeveled to the shallow, channeled basal rim; inner margin very obliquely produced backward from the obtuse anterior angle, where it unites with the antero-lateral border, sharply arched round the base of the coronal ridge, with a slight sigmoidal curvature thence to the posterior angle nearly at rightangles to the anterior portion; postero-lateral border gently curved from a right line, very gradually converging toward the inrolled extremity $\%$, coronal enamel forming a very narrow, inbeveled fold, well defined from the shallow-channeled deep basal border, which is usually inbeveled,--probably in perfect specimens nearly vertical,
or slightly produced beyond the coronal limits posteriorly. Anterior ridge oecupying more than half the transverse dianeter of the coronal surface, transsersely arched, abruptly sloping in front to the anterior articular border, more gently declining into the posterior de. pression from whieh the suddenly-upraised, narrow alate lobe is defined by a distinct angulation. Surface minutely and closely punctate, and further marked by more or less distinct transerse undulations conforming to the immer margin, usually obsolete over the greater extent of the coronal region. A specimen of ordinary size shows a length along the coronal ridge of about 23 mm ; transerse diameter at the inner margin, 11 mm .
Posterior tooth of the mandible proportionately agreeing in size with the opposed maxillary teeth, trapezoidal in general outline, of great transverse diameter at the inner margin as compared to the length along the antero-lateral border, strongly inrolled and arched longitudinally. Antero-lateral border obliquely produced outward and forward from the obtuse inner angle, enamel fold forming a narrow, rounded belt inbeveled to the slightly-ehanneled basal rim, which it equals in depth; iuner margin very obliquely produced baeliward from the anterior angle, broadly arched round the base of the coronal prominence with a slight coneavity in passing the posterior coronal depression into the moderately produced, acutely rounded posterior extremity, inferiorly inbeveled; postero-lateral border wery rapidly converging toward the outer inrolled margin, gently curved and nearly parallel with the anterior half of the inner margin, the narrow, rounded enamel fold inbeveled and defined by a slight suleus from the basal portion, which forms a shallow rim projecting downward and outward well beyond the coromal horder,-in worn ex. amples inbeveled. Crown traversed nearly centrally ly a rather prominent regularly trmsversely arehed ridge, the boad slope deseemding to the antero-lateral border, somenhat deprested, more abruptly sloping into the posterior depression, heyond which rises the modemtely upraised ulate expansion of the postero-lateral berder. Surface closely and regularly punctate, mature molividnals. especially those in which the exterior layers have been offoliated. showing more or less distinct crowded rupa parallel with the inner margin of the footh. In both of the above deseribed forms a tondency to compression or clongation of the punctar is observalle, in the transwerse furrows presenting a very deliente tracory in some specimens. A speeimen of ordinury size measures across the inmer margin 18 mm . F limgth of antero-lateral border to the imrolled outer margin, 8 mm ,

The dozen or so examples of each of the above described forms contained in the collections, offer facilities for acquiring a somewhat comprehensive understanding of their characteristic features, which are remarkable for their persistency, the individuals presenting comparatively slight variation among themselves. Although associated in the same strata, in every instance thus far observed the teeth occur as isolated specimens disconnected from their original position in relation to one another. Therefore, in regard to the assumed specific identity of the forms here alluded to, the presumptive evidence is precisely the same as allowed in the association of forms in other specific groups, the justification of which is dexived from what is known in relation to the diverse dentition of Cochliodus. In the present species, however, we are as yet unable to determine the character of the teeth holding anterior positions upon the jaws. In the case of the mandibular terminal or posterior teeth, the relatively short articular border necessitates a corresponding abbreviated longitudinal diameter for the tooth immediately in advance ; and so, also, as regards the maxillary teeth, which latter may have been associated with teeth whose form bears the remotest suggestion of their relationship with the teeth described.

Geological position and locality: Chester limestone, Chester; and near Columbia, Monroe county, Illinois.

Deltodopsis? convolutus, St. J. and W.

> PI. XI, Fig. 11-12.

Teeth obliquely subtrigonal in outline, strongly arched from within outward, with strong spiral inrollment. Antero-lateral border making a gentle sigmoidal curvature in its slightly oblique forward and outward course, basal portion very deep, broadly channeled, terminating below in a narrow rim, and bordered above by the rounded, inbeveled enamel fold which constitutes about one-third the height of the border; postero-lateral border converging at a vaxiable angle of 50° to 70°, mature individuals being relatively narrower than medium, and small-sized teeth, obliquity somewhat greater than that of the opposite side, basal portion deep and rather deeply channeled, the lower edge expanding posteriorly beyond the rounded, inbeveled enamel fold, which envelopes the upper third of the height of the border; inner margin making a slight sigmoidal curvature from the obtuse anterior angle to the base of the coronal ridge
where it is suddenly defleeted nearly at right angles to its longer anterior course, gaining the posterior extremity in a slightly coneave course and nearly at right angles to the postero-lateral border. Coronal region traversed by a prominent, sharply rounded ridge culminating a little more than one-third the distance from the posterior border, to whieh the moderately concare slope abruptly deseends, margined by the very narrow alation, the brond anterior slope more gradually declining with gentle transverse eoncavity in the vicinity of the antero-lateral border. Surface more or less distinetly undulated transversely, the dense enamel layer townd the inner margin as also the worn area marked by impressed, irregu-larly-spaced lines of growth parallel with the inner margin; punctation fine and close. A small perfect tooth measures across the inner margin 11 mm . ; length of antero-laternl border to iurolled outer margin 7 mm .

The above description refers to a form of peculiarly massive strongly involute teeth of whieh there are several well-preserved examples in the collections before us. In regard to the specific relations of these teeth with other known forms, the facts offer little beyond conjecture. So far as relates to the superficial coromal features they offer no appreciable contrast with. Deltedus sputubutus, N . and W .; but the value of these resemblances it is impossille at the present time to determine. In the present instance we have no evidence such as, in the ease of Cochliodus, mables the gromping together of divers dental forms with, to say the least, strong presumptive evidence in support of the interpretations relating to the ir probable arrangement upon the jaws. On the contrary, with respeet to the detached remains of Deloodus and samdaliolus, athough unquestionably partaking of true cochliodont eharaeteristies, the student must be guided hy their general similitnde supplemented ly critical familarity with the external strmetural features which two or more species possesses in common, the persistence of which may bo inferred from what is known to oceur in Cochliodtes and immediately allicel genera foin order to detect even the possible spectife relations of the forms met with. Viewed in this light the association of the present form with the supposed mandihnlar postorior teeth of IClfonlus sjutulatus seems highly improbable. The strong spiral inrollment and the comparaticely narrow, rombded enamel fold of the mithelar border, are not in embonance with the corres. ponding features of the latter form ; hence it does not displace the infored relations of the median form necribed to that speetes,
and which was originally described as the "third" in the series to which the name Cochliodus costatus was given by Messrs. Nẹwberry and Worthen.

Viewed from a standpoint taking cognizance of such features as they possess in common, the form here alluded to offers marked resemblance, in the co-adaptation of the articular borders, to the form described by Messrs. Newberry and Worthen as the "second" tooth of Cochliodus costatus. Essentially the same contour and reversed curvature of the articular borders obtain in the two forms which are otherwise unusually like in coronal contour, so much so indeed as rather to lead to the conclusion that they are distinct species of the same representative form, so little do they differ one from the other in outline and contour; while in Cochliodus the mandibular median tooth widely differs in both these respects from the posterior tooth with which it was associated. Also, there is an appreciable difference in the punctation of the forms here referred to, that of "Cochliodus costatus" being coarser and more irregular, and the general surface contour more uneven and rugged.

We are at a loss to assign the form here particularly alluded to to any of the recognized generic groups. The extreme involution of the outer extremity and the obliquity of the postero-lateral border do not suggest intimate relations with the median form of Cochliodus ; on the contrary, those features, together with the general outline and conformation of the coronal region, are more consistent with the Deltodi, perhaps having closest generic relations with Dcltodopsis, with the mandibular posterior teeth of which it agrees in the obliquity of inrollment, narrow alation, and character of the lateral borders.

Geological position and localitics: Upper Burlington limestone, fish-bed strata ; Burlington, Pleasant Grove, Buffington Creek, Louisa Co., Iowa; Quincy, Ill.

Deltodopsis? inflexus, St. J. and W.

PI. XI, Fig. 13.

Teeth obliquely trapezoidal in outline, strongly arched and spirally inrolled. Lateral borders converging toward outer margin at an angle of about 25°; antero-lateral border somewhat obliquely produced outward and forward from the obtuse inner angle, character of articular edge not known; postero-lateral or oblique border gently arched and more or less sinuous, basal portion greatly thickened
compared with the relatively thin antero-hateral edse, presenting a deep, slightly channeled, inbeveled belt bordered athore by the thick, rounded cuamel fold; inner margin making an angle of about 30^{\prime} with the anterior articular border to the base of the coronal ridge, where it is abruptly rounded and deflected nearly at right angle to its anterior conrse with a slight eoneavity in passing the posterior depression to the subacute posterior angle. Coronal contour strongly marked by the elerated ridge which culminates in a rounded crest overhanging the deep, narrow posterior depression, the wide anterior slope presenting a slight transverse concavity; posterior alation forms a rounded lobe well defined from the groove-like posterior depression. Surface showing more or less distinct longitndinal plicap in the less worn enamel layer toward the inner marcin, and traversed by transverse lines and faint undulations; punctae fine, crowded, showing tendency to conform in their disposition to the transserse lines.

The collections afford only two examples of the above described form, neither of which are sufficiently perfect to permit acenrate measurement of their dimensions, although sufficiently so to allow satisfactory comparison with allied species. In size and general outline it agrees with its predecessor, Deltodopsis? comrolutus, of the Upper Burlington limestone, from which it is distingnished by its appreciably more rohnst build, and especially by the overhanging crest of the coronal ridge or the inflexed slope descending into the narrow posterior depression, and the distinctly lobed condition of the alation.

Geological position aud locality: Kenkuk limestone; Warsaw, Illinois.
1):Lronopsis ? exomitus, St. J. and W.
II. XI. FiL. 14.

T'enth small, subtrigonal in outline, strongly arehod longitndinally: and very strongly inrolled spirally. Antero-lateral border proportionately short, hasal portion chameded and bordered lye the thickened, inheveled emamel fold; postero-lateral border rapidly converging toward onter inmolled margin; imer margin, from the obthse anterior angle, very olliquely detlected backward in a slighty concave curvature, abruptly rommed at the lase of the coronal ridge, with a shallow eonenvity thenee to the posterior angle; coronal ridge promment, the sharply rombled erest culminating nearest the postero-
lateral border, from which it is separated by a relatively narrow intervening depression, which is bordered on the one hand by the low, narrow alation, and on the other by the abrupt posterior slope of the coronal ridge, the wide anterior slope descending with gentle concavity to the narrow raised fold along the antero-lateral border. Surface regularly marked by strong transverse ridges or undulations spaced by narrow grooves parallel with the inner margin, and enveloped in a dense enamel layer, the worn areas showing coarse, widely-spaced punctæ. Transverse diameter across the inner margin about 8 mm . ; length of antero-lateral border to foint of inrollment, $p /$.
about 4 mm .

The form above noticed is represented in the collection of Mr. Van Horne by a single specimen, the postero-lateral border of which is broken away, so that the entire outline of the tooth is not shown. In general outline and coronal contour, it bears intimate resemblance to a congeneric form of the Upper Burlington, Deltodopsis (?) convolutus; it may, however, be distinguished from that form by the greater obliquity of the anterior portion of the inner margin, the probable greater width and more distinct definition of the posterior alate lobe, and the strong transverse undulations of the crown to which it owes its ornate character.
Geological position and locxlity: Warsaw limestone; morth of Piasa mouth creek, above Alton, Illinois.

Deltodopsis ? bialveatus, D.? Keokuk, and D. ? convexus.
Pl. XI, Fig. 15-18.
Teeth wedge-shaped viewed from above, moderately arched in the direction of inrollment. Lateral borders deep, very gradually converging from within outward with a slightly oblique course; basal portion proportionately very deep, channeled above, with a wide slightly inbeveled belt below, terminating in a more or less sharply rounded rim defining the excavated and sometimes longitudinally furrowed inferior surface, defined above by the relatively narrow, rounded, inbeveled enamel fold; inner margin obliquely and gently rounded from the obtuse anterior (?) angle to the subacute angle of the oblique border; coronal belt sharply inbeveled to the deep, slightly produced basal portion. Coronal region usually a little narrower than the base, which extends slightly beyond the limits of the enamel fold in the lateral borders, the worn outer surface presenting a simple lateral convexity, but in the middle and toward the inner margin showing more or less distinct, subangular sulci
separated by a low median ridge. Surface marked by more or less distinct lines of growth parallel with the inner margin, and coarse, irregular and irregularly elongate or confluent punctie. A mediumsize tooth measures across the imer margin 5 mm .; greatest length along the obligue border to point of inrollment, 11 mm ; rertical depth at middle, $4-5 \mathrm{~mm}$.

The foregoing diagnosis presents the normal condition of a peculiar form of teetle which is represented by half a dozen, more or less/ perfect examples in the collections from the Upper Burlington tish-bed. In two of these examples the imer half of the crown shows a simple shallow depressed area defined by the slightly raised border folds, while a third specimen shows throughout a simple transverse conrexity of the coronal surface. The latter variety also possesses a narrower basal support, and in both f its peculiarities it agrees with a solitary example in Mr. Springers collection from the upper or beds of passage fish-bed of the same formation. The latter horizon has also afforded Mr. Springer n second specimen which is undistinguishable from the variety described above.

Only two or three examples of this form have thus far been detected in the Keokuk limestone, above which it has not heen recognized. The latter teeth are rery like the typical specimens desernhed above, showing a similarly double-furrowed coronal surface, the only marked distinction consisting in the greater size and wore robust figure of the Keokuli teeth.

In eonsequence of the meagre data relating to this form it is difficult to determine the character of the mariations alluded towhether they are of specific or merely rarietal importance. ln the accompanying description of the figures illustrating the several varieties the following provisional terms are employed to distingush them: Deltodopsis? bialicatus, I).? comtcrus, I).? Kiokuk.

In the attempt to assign the present form to its proper generie relations we are met at the outset by the difficulties incident to the meagemess of the material for the purposes of comparative examination. The further characterization of the form discloses a slight spiral inrollment, the direction of which indicates that the oblique border is apparently homologous with the postero-lateral border of typical Cochlindonts, and with this character is also associated the oblignity of the imer margin from the posterior angle to the olntnso anterior angle, and the somewhat marked flaring of the inferior lasal rim on the side corresponding to the antero-lnteral border;
therefore, it is evident the form held a median, possibly an anterior, position probably on the mandible. It remains to ascertain its probable associate forms, and here again we are met by the insufficiency of our understanding, which hardly more than suffices vague suggestion. All the individuals alike of all the varieties exhibit a peculiar broad undulate uneven course in the borders of the teeth, which toward the outer inrolled margin usually takes the form of a more or less distinct sudden constriction or narrowing of the coronal region. A very similar character is noticeable in the form previously described by Messrs. Newberry and Worthen under the name Cochliodus costatus, "second tooth," in which the lateral borders are similarly widely undulate and narrowed towards the outer margin, where the strongly inrolled extremity has lost its coronal enamel presenting the appearance of having been embedded in the integument of the jaw, precisely as observed in the form here particularly noticed. Further, there is a somewhat striking resemblance between the latter forms in respect to the peculiar character of the punctation and the rugged surface of the crown, and the relative great depth of the lateral border, although in the present form, apparently, the depth of the borders is even proportionately greater than is the case in "C. costatus" ("second tooth). Beyond this we have not the materials for a more satisfactory comparison, but it seems to us not improbable the latter forms originally formed parts of the dentition of one and the same species.

Geological position and localities: Upper Burlington limestone; Burlington, Augusta, Buffington creek, Louisa Co., Iowa; Keokuk limestone; Warsaw, Ill.

Genus TOMODUS, Agassiz.

Psammodus, Agassiz, 1838, Poissons Fossils III.; Tomodus, Agassiz, Mss.; 1859, etc.

The genus Tomodus, Agassiz, founded upon the species T. convexus of the British Mountain limestone, is known to us by one or two imperfect examples of the large strongly arched form contained in the collections of the Museum of Comparative Zoölogy, Cambridge, which, however, do not afford so satisfactory means of comparison as might be desired in the definition of their generic characteristics. We are, however, indebted to the courtesy of Lord

Enniskillen, for the opportunity to examine sketches of the two forms of the type species, from the Momtain limestone of Bristol, England, helonging to the Museum at Florence Court, which, so far as relates to general outline and coronal contomr, coury a tolerably distinct impression of the peculiarities distingnishing the gemus.

The latter sketches exhibit examples of two forms, the one and apparently that occurring most abundantly, represents an clongate touth below medium size, trapezoidal in outline, with very gradually converging lateral borders, and moderate convexity from within ontward. The straight or antero-lateral border presents an abrupt face with a sharp angulation above, and which seems to be enveloped by an enamei belt; the ohlique border appears to be defined hy a narrow rounded emamel fold inbeveled to the basal rim, which expands somewhat beyond the limits of the coronal border, terminating oin the subacute posterior angle; the imner margin is apparently very gently, sigmoidally (curved) between the obtnse anterior angle and the posterior extremity, or nearly at right angles with the antero-lateral border. The crown shows moderate transverse convexity of the principal prominence along the straght border, the slope somewhat steeply descending into the posterior depression, which is bordered by the narrow upraised alation. The second form of teeth alluded to under the same npecific designation, is represented by medinm-sized examples, trigonal in outline, and strongly arched longitndinally. The antero-lateral or straight border is abruptly trmeated, apparently vertical, und bordered by a lielt of coronal enamel, basal rim not clearly definable; the ollique border is gently curved, rapidly converging toward the outer extromity, character of enamel fold and hasal rim not discernihle; inmer margin broadly and regularly arched between the inner angles, apparently nearly at right angles with the straight border. Coronal region occupied by the very prominent anterior ridge, which forms a slight convexity extending from the sharp angulation along the straight border posteriorly over two-thirds and more of the transrerse area of the crown, where the slope almutly descends to the ohligne postero-lateral border, which shows a very narrow, olsenrely defined alation. In both of the forms above notieed the enomal surface is minutely punctate, the punctar not armaged along distinct trmserers lines. A specimen of the narrow elonkate form meanms in lungth along the straight border ahont 17 mm . : headth across the immer margin 11 mm . ; laternl borders eonverge toward the outer
extremity at an angle of about 25°. A large example of the trigonal form measures in length along the straight border 31 mm .; breadth across inner margin 27 mm ., more or less; lateral borders converge at angles of 30° to 40°.

The above notices of the forms associated by Professor Agassiz under the specific designation Tomodus convexus, will, perhaps, also serve to convey a tangible idea of the distinctively generic characteristics ascribable to the genus Tomodus. Its relations are most intimate with Xystrodus, from which it chiefly differs in the conspicuous convexity of the coronal ridge, the extremely abrupt articular border, and the absence of transverse disposition of the punctæ of the triturating surface. Our knowledge of the genus is so imperfect that we may have overlooked important generic characters, which the specimens themselves might reveal at a glance. Viewed in accordance with the facts elicited from the data within reach, we are led to suspect some confusion exists in the interpretations of the limits of the genus, and that in consequence forms have been referred to it which have no intimate congeneric relationship with Tomodus convexus. Of the latter, the species described by Dr. L. de Koninck in his great work on the Belgian Carboniferous limestone fauna,* under the names Tomodus Craigi, and T. laciniatus, certainly show a wide departure from the typical species T. convexus, Ag., while their relations with Psephodus are strongly suggested to judge from the admirable figures illustrating the Belgian teeth. The specific identity of the two forms ascribed to T. convexus may be also reasonably questioned, since both have the general conformation of mandibular teeth, and it is difficult to conceive how they could have been associated on the same jaw.

The American form mentioned in this connection, and which is provisionally referred to Tomodus, is the sole representative of the genus thus far brought to light in the Carboniferous formations of this country. The genus is Carboniferous, restricted so far as is known to the earlier group of the series.

Tomodus? limitaris, St. J. and W.

Pl. XIII, Fig. 12.

Teeth small, longitudinally elongate,-cuneiform in outline, rather strongly arched in the direction of inrollment. Antero-lateral border gently curved sigmoidally from the obtuse inner angle to the

[^11]outer extremity, enamel fold relatively deep and strongly inbeveled to the chameled basal rim, which is also beveled, in the worn example to tho obtuse inferior edge; postero-lateral or oblique border sinilarly gently arched, somewhat undulated, converging at an angle of about 30° with the opposite border, enamel fold rounded and inbeveled to the slallow-channeled basal border; inner margin gently arched round the base of the coronal prominence, with slight concavity in passing the coronal depression to the sub-acute posterior angle, inbeveled below. Coronal ridge occupying nearly half the anterior coronal area, prominent, gently convex along the broad crest, steeply sloped into the posterior depression, where it is defined by a slight impressed angulation, posterior alation scarcely elevated along the outer border. Surfaco punctation comparatively coarse, irregular, the surface toward the inner margin being transversely undulated and enveloped in the dense enamel layer. Inferior surface gently concave, sinooth. Breadth across imer margin, 5 nim ; greatest length, 10 mm .

Tho umique example furnishing the foregoing description slows a nearly entire, though somewhat worn, tooth, representing, perhaps, the posterior form of the left ramus of the upper jaw. Its relations appear to be near Xystrodus, from which, however, it widely departs in the rounded condition of the enamel fold along the straight border, and especially in the coarse, irregular puncta, which show 110 sign of arrangement in parallel transverse rows. There also exists some likeness to the teeth mentioned under the head of Dettondopsis (?) courolutus, from the samo formation, so far as relates to the clarncter of the punctie and appearance of the surface chamel; but the tooth in question is not lomolognous with the supposed maxillary posterior form of typical Diltoptychius, as evidenced hy the quite different character of the anterior articular looder. [n outline. the tooth equally resembles Tomodus, as represented by authentic examples of T. courcrus, Ag., and this resemblance is even extended to the coronal contour; but we are not sulticiently faniliar with the character of the articular horder in the latter genus to the afble to determine its exact relations with the form here particularly refered to. It is, therefore, with no certain convictions as to their conetneric relations that this exnmple is provisionally placed in the alome genus.

Gicolugical pesition and locolity: Vpper Burlington limestone, fishlede Plensant (irove, lesMoines county, Iowa.

Genus XYSTRODUS, Agassiz.

Xystrodus, Agassiz, Mss., 1859 (Cochliodus stratus, Ag. Poiss. Foss. III, p. 174 ; Xystrodus angustus, Ag. Mss., 1859.

The genus Xystrodus was recognized by Professor Agassiz in 1859, to which he transferred the species previously described under the name Cochliodus striatus, Ag., from the Carboniferous limestone of Ireland. The later term was accepted by European palæichthyologists, and at a later date, 1869, was published in the list of type specimens of the magnificent collection at Florence Court, belonging to Lord Enniskillen, as also in the lists of the British Museum and and other institutions, and incorporated in the great work by Dr. Bigsby, the "Thesaurus Devonico-Carboniferous."

In accordance with the presumptive determinations and nomenclature adopted in the present work, the original or type of the genus Xystrodus striatus is referable to the maxillary posterior form, and notwithstanding the opposed mandibular teeth have been obtained from the same horizons and localities affording the former, we are not aware of their having been specifically identified and described. The latter teeth are recognizable by the extreme alation of the postero-lateral border, giving to the general figure excessive breadth compared to the length in the direction of inrollment.

The above-mentioned teeth agree in all essential features with the forms occurring in the various American Lower Carboniferous formations. Especially is this notable in the case of the Chester teeth Xystrodus verus, which indeed constitutes a typical representative of the genus. Therefore, from such materials as we possess, the following diagnoses of the opposed terminal teeth of the upper and lower jaws are prepared; of the other dental forms with which they were associated during the life of the fish to which they belonged, as yet we have failed to arrive at even a surmise as to their character.

Mandibular posterior teeth distinguished by their triangular outline and great transverse breadth of the inner margin as compared with the longitudinal diameter. Coronal surface occupying the entire superior area of the tooth, comparatively plain, more or less concave, or with a longitudinal depression, the coronal prominence crowded to the anterior side, nearly flat or but gently convex transversely, at the opposite border terminating in the expanded, upraised
alation. Antero-lateral border slightly curved sigmoidally, presenting an alrupt declivity from the angularly rounded upper edge. heneath which the coronal enamel forms a well defined belt, sharply limited by the basal portion, which latter projects downward, forming a narrow rim along the inferior edge; postero-lateral boaler rapidly diverging from the outer extremity; terminating in the more or less produced posterior angle, the npper edge enveloped in the narrow enamel fold, which is distinctly detined from the inferior basal border; inner margin making a moderate sigmoidal curvature, varying in obliquity to the antero-lateral border, with which it may form a right-angle.

Maxillary posterior teeth characterized by the relatively narrow transserse diameter at the inner margin, and consequent wedreshaped ontline. General contour of the coronal region resembling that of the opposed mandibular teeth, the principal prominence extending along the antero-lateral border, slightly convex or plane transversely, more or less steeply sloping into the longitndinal median depression, which is bordered on the opposite side by the upraised narrow wing expansion terminating in the posterior angle; antero-lateral border gently curvel sigmoidally, more or less abruptly, sometimes vertically, sloping from the angular superior edge at the junction with the crown, the enamel forming a belt well detined from the basal border which terminates inferiorly in a thin rim; the opposite side gradually converges from the posterior angle toward the outer extremity, the upper edge enveloped in a distinct, narrow enamel fold, and defined by a slight chamel from the equally shallow basal border; immer margin oblique in one or other direction to antero-lateral border, with which it also sometimes forms a rightangle.

The triturating surface in the typieal species of both the above described forms presents a fine transerse striated appearance. prodaced by the arrangement of the punctar in more or less parallel rows, conforming in direction to the consse of the inner margin. However, the latter feature is mot obseried as a persistent one over the entire extent of the coronal region, even in the typical species, white in others it is but obsenrely apparent, and in some apectes presmanaly otherwise ayreeng with the typical forms, the surface presents no vestige of the transverne striation, on the contrary exhibiting the nama dense pmatate structure commen to the generality of the Cochliodonts.

The genus as herein defined offers intimate relationship with the genera Deltoptychius and Orthoplearodus, especially in the conformation and the distribution of the coronal enamel of the mandibular posterior teeth; but in other and essential characteristics it presents unmistakable features removing its forms from any of the groups of teeth of contemporaneous genera with which they are associated. At the same time we are cognizant of the diversity of the dental armature of the jaws of the Cochliodonts, and the "missing links" which are required in most instances before the restoration of the dentition of these genera can be consummated. But the teeth at present under consideration do not seem to fall into any such recognized combination, as evidenced not only by their peculiar contour, but also by the peculiar superficial structure observed in the typical representatives of the genus, and which is not found in connection with the teeth of other genera occurring in the same geological horizons. Hence, notwithstanding only the more conspicuous elements of the dentition of this genus are, at present, known, these are marked by peculiarities which seem to warrant the recognition of their distinct generic standing.

While we have not the data necessary for carrying the comparisons to a final conclusion, we are much impressed by the intimate resemblances which subsist between the present genus and Tomodus, Agass. A series of careful sketches of authentic examples of Tomodus convexus, Agass., from the Mountain limestone of Bristol, England, and which were kindly submitted to us by Lord Enniskillen, show this relationship in a striking manner. The genus Tomodus, indeed, appears to be a Xystrodus in all save the arrangement of the punctæ in parallel transverse lines; and in the latter respect we find a close, though not absolute agreement, in the initial species occurring in the American Carboniferous species X. simplex.

Thus far ascertained, the genus Xystrodus is met with in both the great divisions of the Carboniferous period. One of the writers, in 1877, described in Dr. Hayden's final report on the U. S. geological survey of Nebraska (p. 24t, Pl. IV, f. 18), a tooth under the name Xystrodus? occidentalis. The examination of subsequently acquired and more complete suites of the fish-remains of our Coal-Measure strata, from the upper division of which the latter specimen was derived, has led us to relegate that particular specimen to the genus Orthopleurodus, it probably being a very worn example, showing only a part of the inner portion of a mandibular posterior tooth of the species ${ }_{-12}^{O}$ carbonarius, (-Deltodus angularis, N. and W.)

Mystrodes smplex, St. J. and W. PI. VIII, FIg. $4,5$.

Tecth small, trigonal in outline, rather strongly arehed from within ontward. Antero-lateral border rery slightly curved, presuting an abrupt face from the sharp angulation above, and enveloped in a rather deep fold of the coronal enamel which is more or less distinctly defined from the deep basal rim; inner margin forming nearly a right angle with the anterior border, gently sigmoidal in corvature with a slallow eoncavity in the region of the coronal depression; postero-lateral border converging toward point of imrollment at an angle of 25° to 30° with the opposite border, coronal enamel forming a marrow rounded fold inbeveled to the shallows basal rim. Coronal prominence slightly convex transversely, bordered by the abrupt angulation along the antero-lateral side, rather steeply sloped posteriorly where it is more or less distinetly defined by a slight angulation, or merges into the broad posterior depression, which is bordered by the steeply upraised alation. Surface showing ordmary punctate structure over the worn areas of the crown, but revealing no distinct arrangement in tramserse parallel rows, in which respect these teeth depant most widdy from the typical species of the genus. Greatest breadth across the immer margin, 7.5 mm . length along antero-lateral border, 8.5 mm .

Mr. Springer's collection contains a single specimen of a long marrow tooth which is supposed to represent the posturior form pertaining to the upper jaw. In general coronal contonr it is very like the abore described form of the mandible, showing the same ubrupt amtero-lateral border, with, bowerer, at relatively namow emamel fold, less steeply upraised alation and more gradually consorging postero-lateral horder, which makes an angle of 20^{\prime} with the "mmosite border. Tho coromal puncta show faint traces of tramsorse disposition, in which particulars it apprathen the typieal speces of Xiystrodus. Length of tooth along motero-lateral border about 11.5 num. ; beanth at immer margin alnont 7 man.
The forms abowe deseribed, which were dombthes associated upent the jaws of the same species, white they hold most intimately to the antline and coromal contonr ascribable fo Nystrobus, as ilhastroted both hy the type X. striutus. Agass., of the Momentain limestone of Irelamd, and the equally t!pical forms from the Lower Carboniferms of Amerien, wifer in contrast the alistnen of distinct tramstrase frrmer ment of the superficial panctu. But, as has been mentioned,
the maxillary posterior tooth shows obscure indications of parallel transverse disposition of the punctæ, though it is not nearly to the same degree apparent as in the typical species of the genus.

The present species bears a somewhat striking resemblance to Tomodus convexus, Agass., of the Mountain limestone of Great Britain. As has been already intimated, there would seem to be very intimate relationship between Xystrodus and Tomodus, the forms of both, especially the mandibular posterior teeth, showing the same outline and contour of the crown, and chiefly distinguished one from the other by the presence or absence of transversely disposed punctæ. In the present species the very obscure indications of the disposition of the punctr in rows parallel with the inner margir of the teeth might be regarded as a transitional feature connecting the more widely differentiated species which are accepted as the typical representatives of one or other of the above named genera.

Geological position and localities: Upper Burlington limestone, fishbed; Buffington creek, Louisa county; Burlington and Augusta (Iowa) ; Monmouth, Illinois.

Xystrodus incondrtus, St. J. and W.
PI. VIII, Fig. 1.
Teeth very small, or below medium size, somewhat strongly arched from within outwards. Antero-lateral border nearly straight, or presenting the usual slight sigmoidal curvature, vertical, meeting in a sharp angle above, over which the enamel folds in a rather deep belt well defined from the basal portion, which inclines slightly outward to the thin inferior edge; inner margin broadly rounded, with a slight concave curvature in passing the coronal depression, the course slightly oblique from the anterior to the posterior angle; postero-lateral border apparently somewhat rapidly converging towards the outer extremity, showing the usual narrow enamel fold along the upper edge, but oftener mutilated from abrasion. Coronal surface occupied by a rather wide, shallow depression, the moderately upraised posterior wing presenting a relatively wide transverse diameter, on the opposite side rising into the gently arched or laterally convex prominence along the antero-lateral border. Triturating surface in almost every case exhibiting indications of excessive wear, in which even the punctate structure is obscure; along the inner margin, however, the teeth often preserve the smooth, dense, polished enamel coating, but in the midale portion of the crown,
where the punctie are best seen, they show only obscure indications of transverse disposition in more or less irregnlar parallel rows. Length of a melium-size tooth at antero-lateral border about 9 mm ; breadth across inner margin nearly 6 mm .
The above description is based upon a few imperfect specimens, which are supposed to represent the posterior teeth of the upper jaw. In general outline and coronal contour they conform to the characteristics of the gemms. As already remarked, the punctar of the triturating surface show an indistinct disposition in transverse rows, in which respect the teeth differ most from typical species of the genus, though to not mueh greater extent than does the St. Louis species, Nystrodus imitatus. It differs, however, from either the St. Louis or Chester species, X. rerus, in the relatively greater breadth of the inner margin and consequent greater transverse cexpansion of the posterior alation. From the Cpper Burlington X. simplex it is distinguished by the greater lateral breadth and convexity of the anterior coromal prominence.

The eollections have thus far afforded no recognizable examples identifiable with the broad posterior teeth of the mandible.

Gcoloyical position and localities: Keokuk limestone, Hamilton and Warsaw, Ill., Keokuk and Bentonsport, lowa.

Xistrodes hmtates, St. J. and W.

 Pl. VIII, Fig. :.Maxillary posterior teeth small, triangular or sub-cunente in outline, gently arched longitudinally. Antero-lateral border slightly curved sigmodally, forming above a sharp angle with the coronal prominence, a narrow enamel helt folding over the mper edge, distinctly defined from the hasal portion, which is nearly vertical or projecting slightly outward, terminating in the attemated inferion edge, whel apparently extends nearly the entire length of this shde of the tootl; immer margin sharply romed from the menterior amgle with a slight coneavity in its conrse fo the slighty prodnced mesterior angle, and forming nearly a right-angle with the antero-lateral horder; postero-lateral border gradmally diverging from the onter extremity at an angle of abont 33 with opposite borler, very fently enrwed, the mpper edge enveloped in a marron fold of the coronal cmamel, ocenpying about half the rertieal height of the border. Cormal surface slighty comex in the inner mown portion of the prineipal prominence, with a moderately steep slope into the medinn depression, from which the surface more gently rises
into the border of the narrow alate expansion. Surface structure minutely and densely punctate ; in the less abraded areas, especially toward the inner margin, the punctæ are arranged in more or less regular parallel transverse lines, conforming in direction to the course of the inner margin. This latter feature, however, is seldom olserved to extend over any considerable area of the coronal region, which oftener shows the ordinary punctate structure with only faint traces of the transverse striation alluded to. Length of a mediumsize tooth along the antero-lateral border, 10 mm .; breadth at inner margin, 4.5 mm . ; elevation of antero-lateral border, 1.5 mm .

The collections afford but few examples of the present species, amongst which occur no examples of the broad alate form attributable to the terminal form of the mandible. Compared with the Chester species, Xystrodus verus, it is distinguished by the proportionately greater breadth, generally smaller size, and the less prevalent and distinct transverse disposition of the punctæ of the coronal surface. In proportions and general outline, the species bears striking resemblance to the corresponding form of X. striatus, Agass., of the Mountain limestone, Armagh, but it differs in being smaller and in the less marked transverse striation.

Geological position and localities: St. Louis formation; St. Louis (Missouri) ; Alton, and Monroe county (Illinois), and Pella ([owa).

Xystrodus verus, St. J. and W.

Pl. VIII, Fig, 6, 7.

Maxillary posterior teeth cuneiform, moderately arched from within outward. Antero-lateral border with slight sigmoidal curvature, abruptly beveled from the coronal angulation, which is obtuse in the region of the inner margin and more acute toward the outer extremity, probably in consequence of the wearing down of the triturating surface, articular border, comprising three-fourths the extent of this side, the upper portion enveloped in the well-defined enamel fold, basal border terminating inferiorly in the thin compressed rim; inner margin broadly rounded at the base of the coronal prominence and gently deflected backward to the posterior angle of the moderately produced alation; postero-lateral border slightly curved, very gradually converging toward outer extremity, coronal enamel forming a narrow fold, inbeveled and well defined from the abrupt downward and slightly outward projecting basal portion. Coronal surface occupied by a broad anterior prominence, slightly arched transverse-

Is-generally, however, so worn down over the outer half as to present the appearance of a gradual slope, descending into the shallow median depression, which is bordered on the opposite side ly the narrow wing-expansion. A mature tooth measures in leneth along the anterior lateral border 18 mm .; brealth across inner margin, 9 mm .; greatest depth of nntero-lateral border, 2 mm .

Mandibular posterior teeth triangular in outline, rather strongly arched and inrolled at the outer extremity; antero-lateral horder steeply beveled from the prominent angulation of the coronal border, a very narrow belt of enamel enveloping the upper edee, beneath which the deep basal belt is more or less distinctly fluted in the direction of inrollment, and terminating inferiorly in the relatively short, atteuuated edge, which constitutes about half the extent of this side of the tooth; inner margin forming nearly a right angle with the anterior border, which it joins in a rounded angle, slightly curved sigmoidally iu passing to the produced posterior angle of the alate expausion, in breadth about equal to the length of the anterior border of the tooth; postero-lateral border rapidly converging toward the outer extremity at an angle of 50° with the anterior border of the crown, or ahout fio with the inferior edge of the base of that side, slightly arched and bounded along the upper edge by the narrow enamel fold, the nearly vertical, slightly chameled hasal border posteriorly expanding beyond the coronal limits and produced into a spur-like process forming the extreme angle of the postery alation. The median portion of the crown presents a broad depression, defined on the one hand by the abrupt declivity descending from the elevated angular ridge of the anterior prominence, and on the other by the more gentlo acclivity rising to the postero-lateral border of the broadly expanded wing, presenting, as in the prerionsly described form, extreme simplieity in coronal eontour. Length along the anterior border of the crown of a large example, 16 mm . greatest depth of the antero-lateral slope. 5.5 mm ; breadth at the inner margin, 13 nm .

Tho surface structure of both of the forms deseribed above is essentially identical. 'The punctar exhibit in a marked degree the transerse urrangement in more or less regularly parallel lines coinciding with the curvature of the inner margin. This feature is especially noticeable in the region of the coronal depression and the less exposed inner portion of the crown, where, in specimens which have un lergone compratisely slight abrasion from trituration, the surface presents a beantifully sculpture i appearance from the slightly
wavy, coalescing and bifurcating sharp transverse rugæ. The linear parallel disposition of the punctæ may be detected even in much worn surfaces, though, as might be expected, it is here less apparent; and toward the outer extremity, in excessively worn teeth, the surface structure does not differ from that usually met with in the Cochliodonts.

The teeth above attributed to the posterior position on the maxillary are comparable to Xystrodus striatus, Agass., from which they are chiefly recognizable by the proportionately narrower outline and perceptibly less expanded alation. The opposed teeth, as herein interpreted, are also intimately allied to a form associated with X. striatus, of which the collections of Lord Enniskillen at Florence Court contain numerous representatives. The latter form, with the original X. striatus, presents exactly the same association of forms which we have attempted to ascribe to the more prominent dental elements of this genus, as represented in the present species. The Chester tooth, however, differs from the extremely alate examples from Armagh in its great length as compared with the inner transverse diameter, or in directly opposite character to the distinguishing features noted in connection with the maxillary teeth.

Geological position and localities: Chester limestone; Chester, and Monroe county, Ill.

Xystrodus bellulus, St. J. and W.

Pl. VIII, Fig. 3.
The form here indicated is represented by a small tooth, somewhat imperfect at the apical extremity and along the oblique border and the inner margin, pertaining to the left ramus of the maxillary. Very gently arched longitudinally, narrow wedge-shaped in outline and very gradually tapering, crown broadly arched laterally, an obscure angulation in the median depression defining the anterior coronal prominence from the narrow, slightly upraised alate expansion along the oblique border; along the straight or antero-lateral border the crown is rounded and then sharply inbeveled from the distinct angulation, the narrow enamel fold limited by a shght furrow, beneath which the basal rim is gently produced outward and downward, terminating in a thin, rounded edge. The inferior surface of the tooth is smooth, approximately conforming in contour to that of the crown. The coronal surface is beautifully marked by
miunte puncte, having individually the appearance of a minute central cone surrounded by a slightly raised rim, and collectively arranged in very regular, seldom bifurcating or implanted transverse grooves, separated by angular carina e which appear to form one side of the rims of the medullary tubes. The illustrations convey an accurate ilea of the size and relative proportions of the form inticater.

Apparently possessing unmistakable generic relations with Xystrodis, the species above indicated differs from the Chester species, X. varus, in the details of contour of the articular area of the antiherolateral, and the proportionally greater breadth of the coronal ridge. The unique example described was discovered by Mr. Wm. Gurley, in the shakes immediately overlying Coal No. 7, Lower Coal Measures of the Illinois general section at Danville.

Genes SANDALODUS, N. and W.

Sambalodes complicates, (N. and IV. sp.)

PI. XII. Fig. 1-4.
Delludus complanalus, Newberify and Womthen, whf, III, Geol. Surra. II. p. An, ГI. IN, f. 4.

The forms originally noticed under the above cited names constrtut a characteristic group or species of Samdulodus, as much so indeed ats does the type of the genus S. lerissimus, N. and W. The illustrations of this species which are now introduced suffice to show the generic relationship and the peolnble specific identity of the two forms alluded to in the above synonymy. Both of the above cited descriptions apply to what we regard as probably the posterior form of the mandible, that referred to under the term Diltodus complanatue representing a crushed and distorted depressed tenth, examples of while wee of more frequent occurrence in the collections than are those corresponding with tho extremely convex examples which afford the type of Trigonodus major. While these somewhat pronomend varieties seem to be quite distinct, viewed in the extreme examples, a sores of teeth like that before as leads to the eombetion of their specific identity.

Bobbles the teeth referred to the mandibular posterior form. the collections also contain a fell examples exactly corresponding to the form which we have referred to the opposed position upon
the upper jaw. The latter is distinguished by its elongate subspatulate shape, narrow lateral diameter and narrow alation, less rapidly converging lateral borders and more oblique direction of the posterior portion of the inner margin, relatively greater extent of the articular edge of the antero-lateral border, (both borders being much as in the same form of the representative Keokuk species, S. levissimus,) and the more uniform coronal contour, which does not present to the same extent the strongly developed ridges characteristic of the opposed mandibular teeth. In all, as also in the teeth supposed to represent the mandibular median form, the coronal punctation is essentially the same, being relatively fine, closely set, and showing a tendency to elongation in the longitudinal direction of the tooth, although very variable in this respect according to the condition of preservation of the coronal surface.
Mandibular median teeth distinguished by their triangular outline, rather strongly arched from within outward and strongly inrolled at the outer extremity. Postero-lateral border nearly straight, defined above by the rounded enamel fold, basal portion channeled and beveled inferiorly to an obtuse edge; antero-lateral border very oblique, rapidly converging from the subacute inner angle to point of inrollment forming an angle of 40° to 50° with the opposite side, basal portion beneath the enamel fold somewhat channeled and beveled, merging into the thickened edge that defines this side of the tooth; inner margin making nearly a right angle with the posterolateral border, gently arched and somewhat more sharply rounded near the posterior angle, worn specimens inbeveled inferiorly. Crown transversely nearly plane, slightly arched near the postero-lateral . border into the low, obscurely defined coronal prominence ; enamel surface near inner margin marked by more or less distinct lines of growth parallel with the inner margin, also faint longitudinal plicæ; worn surface exhibiting the usual minute, closely arranged punctation characteristic of the associated forms of the species. Inferior surface moderately excavated, smooth, conforming in a general way with the contour of the coronal region. A small individual measures in postero-lateral border across the inner margin 10.5 mm . ; length along transverse diameter to point of inrollment 6.5 mm . A large-sized tooth is respectively 29 mm . and 21 mm . in breadth and length.

Compared with the corresponding form of S. lavissimus, of the Keokuk limestone, the mandibular median teeth of the present species are distinguished by their less oblique antero-lateral border and spirally inrolled outer extremity, and smoother coronal surface.

Geological position and localities: Upper Bmrlington fish-bed; Burlington, Pleasant Grove, Augusta, Buffington creck, Lonisa county, (Iowa); Honey creek, Henderson comity, (Ill.) The mandihular median teeth especially allnded to above are amongst the beantifnl collections from the Buffington creck locality, belonging to Mr. Springer.

Sandalodes levisimus, N. and W.
PI. XII, FIg. 8,3
Sandalodus luvissimus Newberay and Worthes, 1sfo, Ill. (icol. Surv. 11, p. lus, I'l. W. f. 6, $7,8$.

Sandalodus graisdis, Newberry and Worthes, lb., II, on 10\%, Pl. 10, f. ?.
 Cochliodus ? crassus, Newberry and Wort-ev, ib., I1, p, 31, Ill, VIII, f. 2, 2a.
I'sammodus? semi-cylindricus. Newberry nud Womtren, ib., 11, p. 109, Fl. ©1. \&. t. ta Psammodus? rhomboideus. Newberiry and Worthen, ib., II, p. Mo, rl. II. \&. 6, 6 .

Mandibular median (?) teeth uttaining large size, triangular in ontline, strongly arehed longitndinnlly with strong spiral inrollment of outer extremity, lateral borders diverging at an magle of about 50 . Postero-lateral border making an angle of about 30° with the imer margin, very gently curved in its course, cormial enamel forming a narrow fold strongly inhereled to the chameled hasal portion, which is romded below into the inferior surface of the tooth; anterolateral border considerably shorter and slightly concave in its course, thick articular edge not shown; immer margin very gently and regmlarly arched between the subacute anterion and postorior angles, inbereled below.

Coromal region presenting a miform plane surface transtersely, with a slight convexity near to mad parallel with the postoro-lateral border, interrupted toward inner margin by irregularly disposed transverse mudulations, or lines of growth, and faint longitndinal lines, sometimes appearing ns unrrow impressed sulci. Surface pmetation mimite and crowded, along the imer inargin concealed beneath the denso chamel layer. The punctate strmetme hears closest ngreement with that ohserved in the largo posterior forms of Sindalodus lervissimus. A large-size tooth measmes neross the inner margin 50 mm . ; length along postero-lateral horder to point of inrollment, 47 mm ; ditto, along the antero-lateral border, ahout 30 mm .

Only three examples of the aboved escribed form occur in the collections, and of these only one displays the entire outline and general coronal contour. The latter example was discovered by Mr. L. A. Cox, in the rock excavations for the government canal around the Keokuk rapids on the Mississippi, and to whom we also owe the opportunity to examine additional material illustrating the dentition of this extraordinary species. We have little doubt as to the specific relations of the above described form, and from its peculiar outline and coronal contour, and the strong spirally inrolled extremity (which makes a complete revolution, then becomes involved in the vaso-dentine, forming a solid mass except for the minutest perforation intercommunicating with either border through its center), we are led to identify it with the mandibular median form of this genus. The specimen affording the above measurements doubtless belonged to a mature fish; the middle portion of the crown, indeed, is excessively worn, affording a striking illustration of the severe usage to which the teeth were subjected during life.

It is our belief that the form originally described under the name Deltodus grandis, N. and. W., is specifically identical with Sandalodus lavissimus, N. and W., which latter name was applied to the long teeth iwhich we presume to have held the posterior place upon the upper jaw, the former form occupying the opposed position upon the mandible. The meagre data might not be deemed as affording sufficient grounds for the limitation of the three abovementioned forms; but the facts themselves, though few, seem to us to offer something more than a mere suggestion of such a relationship. The names Sandalodus grandis, N. and W., Cochliodus? crassus, N. and W., Psammodus semi-cylindricus, N. and W., and Psammodus? rhomboideus, N. and W., were applied to abnormally worn and otherwise imperfect examples of the maxillary posterior form of this species.

Geological position and localitics: Keokuk limestone; Keokuk and Bentonsport, (Iowa,) Hamilton, and Warsaw, (Ill.,) Boonville, (Mo.).

Sandalodus, sp.?

Pl. XII, Fig. 5, 6.

The Warsaw limestone has thus far afforded very meagre and imperfectly preserved material referable to the genus Sandalodus. The Warsaw horizon at the mouth of the Piasa, above Alton, has
afforded Mr. Van Horne three individuals, one of which is doubtful, the others representing the forms ilentified with the posterior tecth of the upper and lower jaws. There are also a couple of similar specimens from the same horizon, one from Monroe county and the other was found by Master Willis Worthen at Golden Bluffs, near Warsaw, in this State. From Indiana localities, probably on equivalent strata, we have seen similar teeth, but these are not now accessible to us for critical comparison.

With a single exception, all of the above mentioned specimens are too imperfect to allow of satisfactory definition and comparison with the species known from other formations, hence we hesitate to undertake their discrimination from allied species which they elosely resemble, occurring in earlier and later formations. The small immature individuals of Sanduloclus lecrissimus, of the Feokuk limestone, offer in a general why many features in common with their Warsaw representatives; while the Lpper Burlington species, S. complanatus, especially the excessively arched examples of the mandibular posterior form, strikingly resemble certain individuals ocenring in the Warsaw beds. On the other hand, the latter deposits afford specimens of the same form which might readily be identified with that belonging to S. sputulatus of the succeeding St. Lonis formattion. We are well aware how deceptive are the characters afforded by imperfect materials in this group of fossil teeth. especially when they are not supplemented by a large number of examples from whel a more comprehensive understanding of the specitic characteristies may lie lerived. And so far as relates to the specimens hare particularly alluded to, we can only reiterate the facts relating to thw risemblances, leaving those that may he regarded as peculiar and indicating specific distinctness for future amplifiention and demonstration.

Geolegical position aul localities: Warsaw limestone, Warsaw; l'asa ercek above Alton, and Monroe C'O., Ill.

> Sanbalones spatleates, N. and W. II. Nll, Fis :

Mandihular median teeth small, traperoidal in outhme, moderately arched in the direction of inrollment, breadth apparently excendug
the length. Postero-lateral border nearly straight, with a slight oblique course outward and forward, enamel fold narrow, basal portion relatively deep, slightly channeled; antero-lateral border converging toward point of inrollment at a moderate angle with the opposite border, the relatively deep basal rim projecting beyond the coronal fold; inner margin gently arched from the rounded posterior angle, with a slight sigmoidal curvature in passing to the subacute anterior angle; as usual the edge is inferiorly beveled. Crown surface very gently and uniformly convex transversely, the enameled inner portion showing transverse imbrications or lines of growth parallel with the inner margin, with the usual delicate rugose appearance, beneath which the tubular structure is discernible, and which in worn surfaces assumes the minute, closely arranged punctate character. Greatest transverse diameter across inner margin, 13 mm . ; length along postero-lateral border to point of inrollment, about 8 mm .
The form above described is represented by a solitary specimen, in the collection of Mr. Van Horne. The tooth is in good preservation, save that the outer margin has been entirely worn away, presenting a thick, blunt emarginate edge, the inrolled extremity on the posterior side being much more worn than at the opposite side. The inferior surface of the tooth, however, plainly shows the direction of the oblique inrollment, as indicated by the course of the longitudinal striation. The form agrees in all essential particulars with the homologous teeth noticed in connection with Sandalodus complanatus, and S. lavissimus; at the same time it also agrees, in the character of the surface punctation and the delicate rugose markings of the enamel layer, with the other forms of the species to which we have referred it. However, in the supposed associate forms we have failed to detect the presence of transverse lines of growth, such as constitute a marked feature in the enamel layer of the present form. The uniform transverse convexity of the coronal region and its outline readily distinguish the present tooth from its congeneric allies.

Referring to the synonymy it will be observed that the form originally described under the name Deltodus rhomboideus, N. and W., is transferred to the specific category embracing the form first noticed under the term Sandalodus spatulatus, the two forms respectively representing the supposed posterior teeth of the lower and upper jaws of the same species. These forms most intimately agree in the details of coronal structure, while they differ one from the
other in outline and coronal contour exactly after the mamer noticed in the Fieokuk and Burlington species. The tooth subsequently deseribed.under the designation Sumdalodus crussus, N. and W., from the same formation, is identical with the former described form, the original account of S. spatulutus being founded npon an imperfect, excessively worn tooth. The collection of Mr. Van Horne contains a splendid suite of the latter forms, in all stages of growth and conditions of preservation, permitting of the most satisfactory study of their normal peculiarities and rariations, so far as this may he made from detached and scattered teeth.

Geological position and localitics: St. Louis limestone; Alton, and Monroe county, Ill., St. Louis, Mo.

Geaus ORTHOPLEURODU'S, ${ }^{1}$ St. J. and W.

Posterior teeth of the upper jaw subspatulate in gencral outline: postero-lateral border straight or nearly so, and probably gently curved downward and inward at the outer extromity and gently arched in the same direction, terminating pusteriorly in an acute angle or spur, whence the inner margin, which is greatly thickened or massive, is broadly rounded into and merging with the thin antero-lateral border towards the extremity. Coronal surface occupied by a prominent principal fold or ridge rising nearest the straight border, and dlanked on the anterior slope by an obsenre secondary ridge; the punctate cmamel forms a distinct narrow fold along the thickened straight border. Where it is distinctly defined from the basal portion lig a slight groove.

Tweth supposed to have occupied in similar position on the mandibles, listinguished by their trigonal ontline, some what strong and spiral imrollment of the extremity, toward which the antere-and postero-lateral borders regnlarly converge, immer margin more or less oblignely rombled and sigmodially cinved from front towards the posterior angle. Coronal smeface pranenting a more or less well-definced plane materior fold, abruptly holven down on that side, where the coronal chamel forms a wide lett sharply defmed from the dep
 Aepressiont from which rises the alate posterior lube, which is limitad (eteriorly by a marow fold of cmamal keparating the crown from the hasal purtion of the tonth.

[^12]Mandibular median or second teeth characterized by their triangular outline, rather strong inrollment of the outer extremity, straight postero-lateral border which is similarly enameled to the antero-lateral border of last above described posterior dental plates, antero-lateral border rapidly and irregularly converging from the subacute angle of the broad, slightly arched inner margin. Coronal surface forming a broad, low arch, or nearly plane transversely.

Although in every case detached and separated from their natural position upon the jaws, there is strong inferential evidence of the dental elements described above having constituted parts of the dentition of one and the same fish, as will appear more at length under the head of specific descriptions. The genus as here constituted does some violence to the interpretation of the affinities of the teeth attributed by authors to other genera, but the facts are believed to justify no other conclusion, while in the typical species, at least, there can hardly exist a doubt as to the specific identity of the widely dissimilarly shaped teeth alluded to in the foregoing generic diagnosis.

The genus as now understood includes, besides the American forms hereinafter described, possibly a form of teeth from the Carboniferous limestone of Bristol (England), which lias been referred to Tomodus, Agass. All the specimens of maxillary teeth are mutilated by having their exceedingly thin anterior portion broken away; and this fact naturally suggests the possible occurrence of corresponding dental plates in European collections-however, in so fragmentary a state as not to have attracted attention to their probable relationship with the more robust mandibular teeth.

Compared with Sandalodus, N. and W., the following distinguishing features are especially noticeable: The posterior form of the mandible is abruptly broken down in a prominent mural face along the antero-lateral border, which is enveloped in a widish belt of the coronal enamel, and the anterior position of the transversely, nearly plane, well-defined coronal prominence, in all which there is striking contrast with the very restricted antero-lateral articular border of typical homologues of Sandalodus. In the posterior teeth of the upper jaw, the coronal prominence, instead of being situated forward of the median line, as in Sandalodus, rises close along the postero-lateral border, the wide coronal declivity being transferred to the opposite side of the tooth. The median teeth of the mandible, representatives of which belonging to either generic group are exceedingly rare, present essentially the same characteristics
so far as the meagre materials at the present time in hands permit of leeing det (rmined.

The earliest representatives of the genus occurring in American rocks were discovered by Mr. Springer in Lower Carboniferous strata, probably of Chester age, of New Mexico; the trpical repre sentative species, Orthopleurodus curbomarius, belongs to the Upper Carboniferous, the upper division of which has afforded the majority of specimens thus far, although apparently the same species is not unfrequently met with in deposits near the base of the Coal Measures.

Orthopleurodus carbonarius, (N. and W. sp.) pars. PI. XIII, Fig. ©; 8.
sandalodus carbonarius, Newbehby and Wontaen, Jseri, Ill. Geol. Surv.. II, p. 104, pl. I 1. 4. 5.

Dellodus angularis. Newberry and Wobthen, ingi, Ill. Geol. Surv.. II. p. 9\%. PI. [J. f. 1
A singularly interesting group of teeth discovered by Mr. L. A. Fuller in the shales orer Coal No. 5 of the Illinois General Section of Coal Measure strata, at Bloomington, leaves little room for douht respecting the specific identity of the above cited forms, and with which is associated a third form probably holding a position immediately in adrance of the posterior tooth of the mandibles, that originally described under the name Deltolus angularis. This "second" or median tooth of the mandible is distinguished hy its triangular outline, straght postero-lateral border corresponding in coindaptation with the articular border of the above mentioned posterior tooth, and the miform depressed coronal contom: A similar tooth hats been obtained from the Upper Coal-Measure strata nenr Topeka, liansas, where indivituals of the long posterior teeth of the upper jaw (Sumdalodus curbomarius) have also been foumd ; and only recently Professor Worthen has hrought from the L pper Coal strata at LaSalle, representatives of all three forms. The gencric diagnosis, founded on the typical speotic forms belonging to the presont species, sufticiently deseribes the individual eharacteristies of the imrious dental dements here nseribed to it.
The group of terth discovered by Mr. Fuller. which bear erory appennce of husing belonged to one and the smme imbividual, preFent the following proportionate mensurements: Maxilhary posterior tooth, groatest preserved length alomg the stomght lorder 18 mm . greatere liveadth 7 mm . : Lreadth at broken extremity dimm. Pos.

outer inrolled extremity 14 mm .; greatest breadth between angles of inner margin 9.5 mm .; breadth of coronal prominence at inner margin 5 mm .; length along antero-lateral border 11 mm . Mandibular median tooth, length along posterior articular border 8 mm ., breadth along inner margin 6.5 mm .
The long posterior teeth of the which in well-preserved examples show the coronal ridge defined on either side by a slight impressed angulation, owing to the extreme thinness of the outer portion are invariably mutilated by having the outer extremity broken away. This attenuation is probably due in part, at least, to the excessive wear this part of the coronal surface has been subjected to while in use, and the vicissitudes to which they have been exposed subsequent to their disengagement from the maxillary supports has resulted in disfiguring this part of the teeth so that the form of the extreme antero-lateral border and outer extremity can only be conjectured. However, it probably partook of the general characteristics of the corresponding tooth of Stenopterodus and Deltoptychius in truncation and definition of coronal and basal regions. The far more uniformly massive posterior teeth of the mandible, however, are often found quite entire. The position and consequent severe usage suffered by the median teeth of the mandible by which they have been defaced, as also their extremely simple form, may have led to their being overlooked in many instances.

Geological position and localities: The stratigraphical distribution of the above species, as it is at present understood, is known to extend from the lower part of the Lower Coal Measures, well up into the Upper division ; the vertical range in Kansas is known to include above 1,500 feet of exclusively Upper Coal Measure strata; LaSalle, Springfield, Carlinville, Staunton, Belleville, Bloomington, Danville, also, localities in Fulton and Vermilion counties, Illinois; Posey county, Indiana; several localities in the Upper Coal Measures of Iowa, Nebraska, Kansas and Missouri.

Orthopleurodus convexus, St. J. and W.

PI. XIII, Fig. 4, 5.

Posterior teeth of mandible agreeing closely in outline with the corresponding form of Orthopleurodus carbonarius, moderately arched from within outwards and revolute; antero-lateral border moderately curved sigmoidally, and occupied by a rather deep enamel belt beneath the sharp, anterior coronal angulation; inner margin broadly
ant obliquely roumded, with slight sigmoidal outline extending into the posterior alation, which latter is usually broken away. Anterior coronal lobe occupying half or more the breadth of the tooth, gently arched transversely, conspicuously so toward the immer margin, merging into the postero-lateral depression, from which it is defined by the rounded angulation of that side. Surface miformly and minutely punctate. Length of a mcdium size tooth along an-tero-lateral border, 19 mm ; breadth across inner margin, about 14 mm .

Maxillary posterior tooth subspatulate in outline, broadly rounded at imer margin, postero-lateral border slightly concave, gently arched from within outward, extremity not known. Crown surface considerably arched transversely over the principal promineuce in the vicinity of the iuner margin, where the tooth attains comparatively thick, massive proportions, the ridge anteriorly rapidly diminishing in prominence. Surface punctation minute and uniform. Length of a tooth below medium size along straight border, probably at least 1.5 mm . breadth, about 9 mm .

The above descriptions are founded upon a single example of each form, respectively, discovered by Pruf. J. J. Stimerso... Both specimens are in imperfect coudition, but such parts as remain present certain peculiarities which seem to justify their reference to a distinct species. Compared with the species prevalent in the Coal Measures of the western States, Orthoplewrodus carlmarius, the mandibular posterior tooth differs in the marked transverse convexity of the principal lobe along the straight side, instead of being tlat, ats in that form ; the opposed teeth of the upper jaw are very like, in both the western and eastem forms,-the latter, perhaps, being distingnished by its more massive proportions in the region of the immer margin. A larger suite of material from the Allegheny region may show the above distinctive features to be of subordinate importance, marking mere individual variation, but in a direction not apparent in any of the western specimens.

Gonlogieal position and lecality: From strata above Mahoning sandstone, C'oal Measures; near Morgantown, Wist Virginia.

Orthopleurodus Novo Mextcanus, St. J. and W.

Pl. XIII, Fig. 1-3.

Teeth below medium size, represented by forms occupying the posterior position on the lower and upper jaws.

Mandibular posterior teeth trigonal in outline, moderately arched in the direction of inrollment. Antero-lateral border slightly curved sigmoidally, enamel belt abrupt and well defined from the downward and slightly outward produced basal-rim ; postero-lateral border making an angle of about 55° with the opposite side; inner margin slightly obliquely produced backward from the anterior angle and gently curved sigmoidally, worn specimen inbeveled inferiorly. Coronal prominence usually well defined, rather widely expanded toward the inner margin, posterior slope merging into the regularly transversely concave posterior depression, from which the alate expansion steeply rises into the prominent postero-lateral border. Surface punctation exceedingly minute and widely spaced. Breadth of a large specimen between the angles of the inner margin 13.5 mm .; length along antero-lateral border to point of inrollment about 12 mm .

Posterior teeth of upper jaw subspatulate in outline; antero-lateral border unknown, that extremity of the teeth being extremely attenuated and in consequence mutilated ; postero-lateral border exhibiting the characteristic straight outline, basal border slightly channeled, and probably continued into a spur-point at the posterior angle; inner margin broadly arched backward round the coronal prominence and thence more gently curved toward the broken anterior angle. Coronal ridge prominent, rounded along the crest which culminates close upon the postero-lateral border to which the surface steeply descends, the broad anterior slope slightly depressed before reaching the margin of the tooth, the ridge more or less rapidly declining immediately behind the greatest prominence. Punctate structure the same as observed in the mandibular teeth. An ordinary size specimen measures along the postero-lateral border about 15 mm ., greatest breadth of tooth at right angles to the straight border 7 mm .

The present species is determined from a few specimens of the maxillary posterior form and a single example of the mandibular posterior tooth, which were discovered by Mr. Springer, in the fish-
bed stratum near the base of the Carboniferous series at Santa Fe, New Mexico. The state of preservation of the specimens, although not perfect, is sufficient to afford the hasis of comparison with the allied species Orthopleurodus carbomarius, occurring in the Coal Measures of the Mississippi Valley. While the present species is smaller in size, the mandibular posterior teeth differ from the latter in their proportionately greater breadth as compared with the length along the antero-lateral border; the maxillary posterior teeth may be distinguished by the apparently less oblique course of the coronal ridge, while the surface punctation is much the same in both species, the punctie, perhaps, more widely spaced in the New Mexican tecth. Its resemblances with the above species is more intimate than with Orthopleurodus concexus, although there is a marked similarity in the maxillary posterior forms, as indicated by the imperfectly worn examples.

Gcological position and locality: From the fish-bed laser near the base of the Carboniferous series, associated with other Lower Carboniferous fish-remains; near Santa Fé, Now Mexico.

PSAMMODONTID E, l. de Koninek.

Genus PSAMMODUS, Agassiz.

Psammodus, Agassiz, 1843, Poissons Fossiles, tome III, p. 110.
Teeth quadrilateral or trapezoidal in general outline, variable, usually thick and massive. The coronal region presents a more or less plane surface, according to the position the form occupied upon the jaws, always arched, generally moderately, in the longitudinal direction or from behind forward, transversely concave (maxillary teeth), or more or less convex (mandibular teeth), sometimes raised into a low ridge along the exterior lateral border, also along the articular inner border, or showing a more or less wide convexity in the latter region, and sometimes presenting a more or less well defined transverse prominence in mature maxillary form. The marginal limits of the crown are well defined, rounded along the exterior of lateral border and usually inbeveled, and almost always making an angulation at the articular inner border and along the anterior and posterior margins, the enamel extending well down and more or less distinctly defined from the coarse vermicularly pitted basis, which constitutes the greater part of the height of the tooth. In front and behind, the basal wall is nearly exactly vertical to the plane of the coronal surface and moderately channeled or concave; the inner articular face is also vertical and slightly excavated, presenting generally at one or the other extremity an obliquely truncated articular facet for co-adaptation with the contiguous tooth of the opposite series, the extent and obliquity of the truncation varying greatly according to the species; the exterior lateral border, in typical forms, shows an expansion of the basal portion beyond the coronal limits, increasing in breadth and terminating in a more or less produced spur at the postero-outer angle of the tooth. 'The coronal surface exhibits under an ordinary lens a distinct vertical prismatic structure, each of the vertical columns enclosing a medullary tube the appearance of which at the surface produces the exceedingly minute punctation usually observed in these teeth; the exceedingly elegant vermiculose rugosity exhibited in the less worn surfaces of certain
species is produced by the wrinkling of the emamel or external layer, and which apparently has no other relation to the medullary tules than to rudely define them in irregular and transverse or longitudinal rows, the punctie rarely confluent, and the rugose appearance becoming obsolete or more or less obseured over the more exposed parts of the triturating surface. The inpression also prevails that the tendency to rugosity of the coronal surface increasen with age, since this appearance so far as observed seems to be most prevalent and conspicuous in large individuals belonging to the series which have received several accessions, the imermost individuals of which Lave suffered little from the abrading effects of trituration while in use: but it is not an essential character, as some species evidently always remained quite smonth in their coronal areas. The inferior surface is plane, in a general way conforming to that of the crown, and even possessing distinctive rharacteristics as applied to species: it shows in the perfect state a rather dense thin layer, perhaps in degree rather than structually differing from the more cellulose middle layer composing the bulk of the base, and usually marked by more or less distinct longitudinal grooves, or smooth, and faintly liecled nearest the immer articular horder.

In drawing up the foregoing diagnostic account of P 'sammorlus, the authors have been actuated by the desire to place before the student of palaichthyology such data as they themselves poswessed relating to the genus, and which they owe largely to the lind oftices of their colaborators. It will have been observed that the genus embraces a variety of forms, which, while their generic identity is unquestimed, offer so diverse appearances as, in the absence of other than detached and fragmentary remains, to greatly eomplicate the determination of the relative position the forms occupied upon the jaws. Their congeneric identity is proven ly identity of outline and contour and superficial structure common alike to eacla and all of the forms, and these latter resolve themselves into certain welldefined groups, so that specitic distinctions mar be reengnized in unique examples pertaining to on or the other form. But in the attempt to associate these forms under defimte, specific combinntions, the observer is necessarily compelled to rely, to some extent at least, on other than superficial resemblances, as, for example, the association of the individuals in the horizons whence they were derived. The process is often further complicated by the accidents of collecting, for it not unfrequently happens that a series of lecth
from a locality consists not of a single form merely, but of individuals pertaining to the same side in relation to their position upon the jaws. However, fortunately, now and then appears a specimen which seems to set at rest whatever doubts may have been entertained as to the actual state of things, and in a few of the species the collections are rich in data going to establish a more precise and comprehensive understanding of the species themselves and the family and ordinal relations of the genus.

So far as has come to the notice of the writers, the genus Psammodus has been classed by authors with the Cestracionts; Dr. L. de Koninck, however, recognizing their distinct family character, for which he proposed the term Psammodontidæ.* As early as 1843, Captain Jones, in a communication in reference to his acquisitions of fish remains from the mountain limestone localities in the vicinity of Armagh, says: "There are good specimens of one more tooth, somewhat allied to Psammodus, yet having a distinct character, which will connect it with the Myliobates;" \dagger and to whom should be credited thus early the recognition of the affinities of the Psammodonts.

The examination of a considerable suite of the teeth of Psammodus must convince one of their having originally occupied a serial position upon the jaws, stretching across from side to side, in the manner exemplified by the Myliobates of Tertiary and existing seas. Indeed, Dr. de Koninck alludes, loc. c., to a series of three teeth of the species P. porosus, found by Mr. Neilson in the mountain limestone deposits near Glasgow (N. B.), which still retain their relative position to one another, and with which the distinguished palæontologist reconstructs the dental armament of the jaw. But perhaps the most complete and satisfactory information to be derived from isolated detached teeth is that secured by Mr. Springer of the species bearing his name, from the Upper Burlington limestone of our Lower Carboniferous series. The latter are so well preserved as to furnish many and highly desirable details without which still some uncertainty might intervene to a satisfactory conclusion on the chief points relating to the disposition of the teeth upon the jaws. These show conclusively that the teeth were arranged in at least double rows, not exactly opposite, but the tooth of one or other row in advance of its mate, the articular border showing obliquely truncated facets at one or other angle by which it is coadapted to the articular faces

[^13]of the two contiguous teeth of the opposite parallel row, thus producing an asymmetrical alternating arrangement only less symmetrical than obtains in the modern Myliobates. That their real aftinities are with the Myliodonts there can be no doubt; but whether they should be regarded as entitled to a specific family rank distinct from their living allies, we do not deem ourseives prepared at the present moment to affirm. As far back as 1862, Professor Agassiz, as is well known to his students who were at that date and sulsequently matriculated at Cambridge, had recognized the ordinal relationship of the Psammodi, and besides the typical Psammodus he also included the several allied genera of the Actolates type anticipated thus early in the earth's history by the genera Copodus, Pleurogomphus, Pinnacodus, Labodus, Dimyleus, etc., which were recognized from mountain limestone species occurring in the British Islands.

Notwithstanding the incompleteness of our materials in certain important partsculars, we deem it something more than mere conjecture the assignment of the forms to definite positions upon the jaws. As is well known, the maxillary dentaries of Myliwbates present a gently longitudiually arched condition so far as relates to the grinding surface of the series of teeth with which the jaw was paved across; and that the mandible presents in comparison a triturating surface strongly rolled in the same direction. The same state of things may readily be appreciated in a suite of examples of I^{\prime} summodus: The nearly plane or longitudinally slightly arched and trunsversely more or less concare coronal contour of the teeth, may with reason be regarded as having belonged to the upper jaw: and those teeth which exhibit a contour almost the reverse of that just noticed, being perceptibly more strongly arched longitudinally, also transversely consex, with a more rapid convergence of lines projected vertically to the coronal surface downard from either margin, indicate for a series of teeth a more strongly rolled surface area than in the above mentioned form, and corresponding in this essential to the teeth composing the series of the mandible in the Myliodonts. But the collections, both European and American, afford examples of a form which, possessing essentially the ontline and contour of the previously mentioned forms, differ from them in their ohlong shape, being relatively longer than wide, and the dipressed mediun region and rommed condition of the cormal folds along the lateral borders. All of the examples of the latter form which have come to our notice are further distinguished hy the relatively great depth of the insal portion, which, however, in other respects intimately agrees
with the associated forms. They plainly held a lateral position, and from the character of the articular border, especially as displayed in mature individuals, they apparently alternated with a row of median symmetrical teeth, of whose remains, however, not a vestige has been detected in the collections accessible to us. In the event of the above inference proving well founded, the latter form would, with its associates, present a dental formula entirely unique and distinct from what obtains in typical Psammodus. There is marked diversity amongst the latter, as will be made apparent in the subjoined descriptions of species.
Attention is also directed to certain resemblances existing between the Psammodi and Cochliodonts. As is well known, the teeth of the latter were disposed on distinct rami of the jaws, instead of spanning the jaws from side to side, as is the case with the Psammodonts. But in respect to the outer lateral borders of certain forms of teeth representative of the two families, characteristics are observed which hardly are to be relegated to the category of mere resemblances, and the presence of which suggests interesting homologies between the respective forms belonging to either group. In this way the projection of the basal rim beyond the coronal border in the external border and its prolongation into an acute spur terminating at the posterior extremity, are unquestionably the same in the exterior and posterior terminal forms of either family,-the posterior teeth of Cochliodonts homologically corresponding with the form constituting the exterior rows of teeth in the Psammodonts, even the direction of the obliquity of this side adding stress to the likeness in which the forms of both families share. The succeeding forms of the Cochliodonts find their representatives in the inner rows (where such exist) of the Myliodonts, and in those genera of the latter in which the jaws are arched by a single row of dental plates, fine condition is such as would be produced were the rami of the Cochliodont jaws drawn out into a transverse position and their dental armature consolidated into single plates stretching from side to side across the symphysis. Indeed, in these early forms a much more intimate relationship exists between the types of these two great orders of Selachians than obtains between their representatives of later geological times.
The genus is strictly of Carboniferous origin and duration, indeed beginning nearly at the dawn of the earlier period and ceasing at its close. The Coal Measures thus far have not yielded a trace of the remains of Psammodus.
II. XX. Fig. $4-11$.

Mandibular teeth rhomboidal in outline, variable in the proportions of length and lireadth; anterior and posterior margins nearly parallel; very gently and irregnlarly curved forward, the coromal belt occupying less than one-third the vertical height of the tooth, extending deepest in the interior margin, and in well preserved examples cremulated with vertical plicie, producing an exccedingly beautiful sculptured belt well defined from the deep basal portion by a slight inbeveled hand: the basal portion is also marlied by Dingram of mandbular tecth of Psammoms irregular rertical rugosities, worn Sipiogeri. Mandibular series from Bhove, trit- surfaces exposing the coarse osseurating surfaco.
Fig. Transerse profle of mandibular ous structure which extends to the series.
fig. c. Longitudinal profle of mandibular dense, thin inferior laver. The series. inner border is usually nearly straight and vertical, the enamel belt continuous with that of the margins, though less distinctly sculptured; one or other angle of the border is truncated at a slight angle, presenting an articular facet of variable extent, though not always well defined from the greater articular face. Onter horder presenting a more or less romuded angle in front, gently curved and terminatug in a more or less produced angle or spur posteriorly: the coronal enamel is well defined and margined posteriorly ly a "dish elpansion of the basal border, which is eontimed into the posterior spur. Coronal surface very gently and regularly arched longitndinally. the angles of the posterior and anterior margins and inner articular border sharply defined, that along the onter border rounded from the lesser coromal fold of that side, which is sometimes defined ly a marrow mpressed line. though nstatly merging into the shallow median Aepression, from which rises the wider, very flight consevity that oecupies the imere portion of the surface. In some specimens the coronal surface shows distinctly the primatic structure, the minnte punctur being less discernible.

The teeth are so variable in relative dimensions that comparative measurements are of little use for other purpose than to show the maxima attained by the species, as indicated by the breadth; thus, the largest perfect example shows a transverse diameter across the posterior margin of 33 mm ., the smallest perfect tooth measuring about 16 mm . in breadth.

Fig. $\quad c$

Diagram of maxillary teeth of PsammoJus springer.
a. Maxillary series, triturating surface.
b. Transverse profile of maxillary seties.
c. Longitudinal profiles of maxillary

A form differing from that above noticed chiefly in the proportionately greater length of the teeth, compared to their breadth, giving them a more lozenge-shaped outline are quite as numerously represented in the collections, and which we suppose to have constituted the armature of the opposite jaw of the same species. Examples of muchworn, mature teeth present an almost regular arch, or curvature, from the inner anterior to the outer posterior spur angle without distinct intermediate angulation at the junction of the exterior border with the anterior margin, and the inner coronal prominence, as also the outer lesser ridge, is reduced to a nearly plane surface transversely. The inner articular border is quite straight, extremely thickened and wedging out towards the exterior border; in every instance of the teeth here admitted, the truncated facet is extremely small, sometimes occurring at one angle, again at the opposite; however, most of the specimens being truncated at the posterior angle. The very gentle longitudinal convexity of the coronal surface of the tooth indicate that the curvature of the series constituted a smaller segment of a circle than was the case with the beforementioned form; hence the supposition of their maxillary position. In dimensions, as also in surface structure, the form agrees with that previously noticed.

The above noticed forms are about equally represented in numbers in the collections from the Upper Burlington "fish-bed," where they are not uncommon fossils. The truncated articular facets vary somewhat in extent as they do also in position, occurring in one individual at one angle and in another at the opposite angle; and judging from the claracter of the articular border, it seems most probable that the teeth were ranged in double rows, the individuals of one or the other range slightly in adrance of the corresponding teeth of the opposite range, the long articular face and short facet of one tooth joining the same parts of the opposite contiguous tooth. This presumed disposition of the teeth produces the alternating appearance shown in the outline diagrams given in comnection with the illustrations of the several sorts of teeth here specifically assuciated. The individuals of the two forms slow precisely the same variability in the truncated ạngle of the immer articular border, though the asymmetry is much less pronounced in the supposed maxillary form than it is in the shorter form referred to the mandible of the same species. Indeed, it is the absence of symmetry in these tecth that offers one of the strongest contrasts with the living representatives of the family. Yet it should be remembered that the existing Myliodonts are subject to abnormal rariations, such as the interpolation of an extra row of lateral dental plates, while the individuals of the sireral ranges are placed in alternating order. The collections have been ransacked, but without result in revenling the restige of a symmetrical median dental plate, such an one as would restore to the rows of tecth a perfectly symmetrical arrangement, like that illustrated in the hypothetical diagram amexed, the lateral forms of which
 will readily be recognized in the illustrations of actmal specimens. We can, therefore, whly conjecture the possible existence of median feeth similar in shape to the supposed form shown in the diagram,
 score and a half of examples of the lateral forms contained in the collections, would seem to afford sightit gromeds for the smpposition of the existence of intermediate symmetrical feeth in the dental formnla of the genns to which the species belongs.

Geologieal position and localities : Upper Burlington limestone, "fishbed;" Buffington creek, Louisa county, Pleasant Grove, Augusta, and Burlington, Iowa; Cedar creek, Henderson county, and Quincy, Illinois.

Psammodus tumidus, St. J. and W.

Pl. XIV, Fig. 1-4.

The collections contain several examples representing two forms corresponding with the supposed mandibular and maxillary teeth of the foregoing species, Psammodus Springeri, of the same deposits, and which, presenting apparently persistent characters by which they may be distinguished, we are led to provisionally indicate under a distinct specific appellation. Presenting the same general outline, they are distinguished from P. Springeri principally by the greater extent of the truncated angle of the inner articular border and the distinct longitudinal rugosities that make a highly wrought ornamental belt usually extending a short distance forward from the posterior margin, both of which characters are common to the two forms. The short, broad mandibular teeth do not differ otherwise to any marked extent from the same form of the above-mentioned species, unless the crown shows a somewhat greater transverse concavity and more strongly arched contour from within outward; however, the prominence along the inner lateral border is somewhat more distinctly defined by longitudinal furrows than is observed in the corresponding teeth of P. Springeri. But in respect to the maxillary form, the most striking contrast is noticeable in the latter particular. The inner coronal prominence becomes strongly developed, presenting a distinctly defined lobe, laterally rounded with steep declivity falling to the depressed median area, which in some instances is quite strongly plicated longitudinally in addition to the rugose belt ornamenting the crown surface immediately along the posterior margin; in worn examples the rugose sculpturing is obsolete. In the majority of instances the limit of the inner coronal ridge is detined by a narrow impressed line. The lesser coronal ridge along the exterior lateral border bears intimate resemblance to P. Springeri, and the same observation may be applied to the superficial structure of the teeth.

At the outset we were inclined to regard the teeth above referred to as merely variations from the normal condition of Psammodus Springeri. Indeed a more extensive suite of material may possibly
prove them to be specifieally identical. Tho individuals exhibit precisely the same variableness as regards the position of the truneate angle of the articular border, though, as has been already remarked, the facet is of greater extent; indeed, in some instances occupying nearly half the length of the border.

Genlogical position and localitics: Upper Burlington limestone, ehielly from the main "fish-bed," a single example from the upper fish-bed horizon; Buffington Creek, Pleasant Grove, Augusta, Iowa, and Quincy, Illinois.

Psammodes turgides, St. J. and W'.

PI, XV. Fig. 4.

A unique example of the maxillary tooth, derived from the fishbed of the Burlington-Keokuk "division beds," shows a still wider divergence from Psammodus Springeri, and which we lave prorisionally recognized under the above specific designation. In outline the tooth resembles the same form of I. Spriugeri and P. tumidus, its relationship with the latter being most intimate. The inner border is nearly equally divided into two long articular facets separated ly an angulation, the truneate facet being at the posterior angle, the coronal belt very deep and well detined from the slightly chameled basal portion. The inner coronal ridge is rery prominent. ocenpying fully half the tramsierse diameter of the erown, broadly arched in both directions and defined from the median depression by a sharp impressed line; outer lnteral border not kinown. The surface shows a minute punctate structure throngh the dense enamel layer enveloping the crown; along the posterior margin the surface presents a beatiful rugose appearance from tho beaded longitudinal plice, which oxtend some distanco from the margin, and the artieular border as also the presersed portions of the anterior and posterior margins are similarly ornamented with vertical rugosities. The specinen measures between the angles of the inner horder 15.5 mm , probably about the same as the greatest transverse diameter at the posterior margin.
A solitary und somewhat mutilated specimen, ohtained by Mr. Springer from the main fish-bed of the upper Burlington limestone, presents exactly the same character of imer articular border that dintinguishes the above described tooth. But the coronal prominence of the latter example, although very hoad, is comparatively low and merging into the slallow median depression, which wis apparently
bordered exteriorly by a nearly straight, vertical face similarly marked to the other vertical sides by vertical beaded rugosities. This specimen, if it is correctly deciphered, has a nearly rectangular outline so far as relates to the external border and the anterior and posterior margins, the angulation of the inner border giving the tooth a pentangular figure, Taking into consideration the vertical condition of the straight exterior border, which shows features consonant with an articular face, this tooth certainly suggests a form not hitherto recognized, and which is at the same time a true Psammodus. It is possible that the specimen represents one side of a median series of teeth comprising two ranges, the inner articular borders alternating and the exterior borders joining the inner articular borders of teeth of the form of those described under P. Springeri, \&c.? The specimen is strongly suggestive of such a combination of dental elements, after the fashion sketched in the an-

Hypothetical diagram of Psammodus turgidus.

Geological position and locality: Fish-bed of the Upper BurlingtonKeokuk division beds; DesMoines Co., Iowa.

Psammodus Lovianus, St. J. and W.
Pl. XIV, Fig. 7-9.
Teeth attain medium size. Maxillary form subrhomboidal in outline, rather strongly arched from within outward. The margins gently arched forward and parallel, the anterior margin apparently somewhat strongly inbeveled, though really vertical to the edge of the crown surface, posterior margin showing a belt of enamel extending perhaps one-fourth its depth, and well defined from the slightly excavated base. Inner border making nearly a right-angle with the margins, the truncated posterior angle reaching about onefourth the distance of the border, and making a rather strongly marked angulation with the anterior portion of the articular face,
the enamel belt also distinetly defined and delicately sculptured in vertical rugosities, traces of which are also detected in the belt of the anterior and posterior margins; outer border gently curred, and rery gradually diverging from the rounded anterior angle to the posterior angle, which terminates in a somewhat produced spur, the basal portion projecting prominently beyond the border of the crown, which is limited by a narrow enamel fold. The coronal region presents a remarkably uniform surface, in the main gently depressed transversely without well-defined inner prominence, and rather abruptly upraised along the outer border, which forms the most prominent part of the coronal surface. The worn surface exhilits minute punctation, and the less worn portions show a delicate reticulate structure, produced by the walls of the vertical prisms enclosing the medullary tubes. Greatest diameter across the posterior margin, 53 millimeters; length along the inner margin, about 30 mm . ; breadth across anterior margin, 38 mm . ; thickness of tooth, about 15 millimetres.

Mandibular form subquadrangular in outline, moderately archod in both directions. Iuner border marlied by a slight angulation defining the anterior and posterior articular facets which are apparently nearly equal in extent, coronal enamel well defined along the deep, slightly inbeveled basal portion ; cxterior border gently arehed, very gradually converging toward the obtuse or sharply rounded anterior angle, the basal portion projecting more or less beyond, and well defined from the rounded coromal border; anterior and posterior margins making the same slight sigmoidal curvature, with a shallow concavity in front and a corresponding broad courexity belind from the inner angles, the basal portion all around more or less distinetly marked hy rertical rugosities. The greater area of the coronal region is ocempied liy the broad low convexity of the inner prominence, which is rounded to the inner border, and on the other hand slopes into the narrow shallow depression bordered by the narrow fold along the outer border; in front. the coronal promincone presents a lunate, slightly depressed area, cxtending back from the anterior margin a greater or less distance, evidence of wear while in use. The surface presents, apparently, the same charactur of pmotation observed in the above noticed form. Grentest transverse diameter across the posterior margin, 3.5 mm.; length ulong inner border, $2 f$ mm. : breadth at the anterior margin, 28 mm .

The present species, represented by the two abose mentioned forms, is hown from half a dozen individuats in a more or lems
imperfect state of preservation. A nearly perfect mandibular tooth, save for the mutilation of the outer posterior angle, from the Lower Burlington limestone, may not be distinguishable from less perfect specimens from the main fish-bed of the Upper Burlington in which occur the maxillary teeth described. The almost quadrangular shape of the form and its proportionately narrower transverse diameter are the only apparent characters inconsistent with their association with the typical example of the supposed maxillary form above noticed. The same horizon in the Upper Burlington limestone at Quincy, however, has afforded Professor Worthen a unique specimen of a tooth referable to the same form, which is distinguished by its narrow lateral diameter and more quadrangular outline, which, together with the course of the anterior and posterior margins, strikingly resemble the opposed form mentioned above; its transversely depressed coronal surface, however, clearly discloses its homological identity with the supposed masillary form. Greater or less variability in the proportions of these teeth may be readily anticipated, and the latter example may be merely an unusually elongate tooth of the same species as that regarded as the type of the species, first described above. However, should this supposition prove to be erroneous, the last mentioned tooth would then be a unique representative of a distinct species, while the narrow tooth would probably be identifiable with the species to which the maxillary teeth described above belong.

The forms described differ in so marked a manner from those of the previously described species, Psammodus Springeri, P. tumidus, P. turgidus, as not to require special review of the distinctive features. The maxillary form offers a typical example of the genus, and which strongly resemble individuals of P. porosus, Agass. The specific name is given in honor of Mr. James Love, of Burlington, to whom we are indebted for many favors.

Geological position and localities: Lower and Upper Burlington limestone; Burlington, Iowa, and Quincy, Illinois.

Psammodus glyptus, St. J. and W.
 Pl. XIV. Fig. 5, 6.

There are two imperfect specimens of large-size teeth in the collections representing opposed forms of the upper and lower jaws, which are distinguished by the very slight longitudinal convexity and by the following characteristics respectively: The form probably -14
referable to the lower jaw is apparently subquatrangular in outline. the coronal surface regularly transwersely arched into the low prominence which ocenpies the greater part of its arcil, a shallow dupression extending along the outer borler; the eoronal belt in thre anterior margin and imer border extents one-fonth or one-third the depth, and is marked by delicato rertical rugusitics, and dino tinctly defined from the basal portion, -the posterior and outer sides unknown. The surface of the crown presents an elaborate sculpfured appearance from the delicate rugosities which are dispored in longitudinal lines, a narrow wom lelt along the anterion culge copasing the minute punctate structure, the surface licee also showing faint transverse undulations. The supposed maxillary form presents a broad shallow concavity in the transverse diameter, and very gently arehed longitudinally, the enamel forming a well-defined hitt, deeper along the imer articular border tham at the anterior (?) margin, which is rather strongly inbeveded. The coronal surface pritents an exceedingly intricate rugose omamentation, the rugositicu apparcutly not conforming to any definite direction. The examplen attain a brealth of 40 to 50 millimetres, but they are too imperfect to whom details other than those noticed.

The first noticed form bears marked resemblance to the corresponding form of Psommodus Lorianus in ontline and contour, so far as these features are decipherable, and the peculine rugose ormancutation of the coronal surface may be that of a tooth which has luen less exposed to wear than the examples noticed under the latter specific designation. Still the present tooth differs from that fom in laving a more angular inner border, the crown in $み$. Lavianus being rounded to the enamel belt of the articnlad border. In relation to the companion tooth deseribed above, its matilated condition hardly affords the necessary data for the restomtion of its outline mat foronal contour, but the leantiful ormamentation of the surface is well displayed. In the latter charmeter the tonth departs se widely from the specimen with which it is provisiomally ansociated that we are inclined to regard their specilic identity as improballe. In the prculiar sconlpturing of the coronal surface it heats greater resemblane to the lieokuk species, P. grandis, though the diaposition of the rugat is much less regnlar than obtains in the hatter fpecies.

The same formation affords a fragment of a small tonth betoming to the form individuals of which we hase daewhere notiend under the specitie designation l'summentus crassily. The specimen practres only is part of the onter border, wheh shows a somewhat obliptie
direction, making an obtuse angle with the anterior margin and which is strongly beveled from the acuminate culmination of the outer coronal ridge; the crown is rather deeply depressed trans. versely, and very moderately arched longitudinally, presenting a beautifully sculptured surface which bears a striking resemblance to the style of ornamentation observed in the typical specimen above described. The specific identity of the present example with that form, however, is merely conjectural. The specimen is of especial interest from the fact that it belongs to an opposite row,-all the individuals of P. erassidyis at present known being from the same side.

Geological position and localities: Upper Burlington limestone, main fish-bed; Quincy and Cedar Creek, Henderson county, Ill.

Psammodus grandis, St. J. and W.
Pl. XV, Fig. 1-3.
Teeth attain large size. Maxillary form subrhomboidal in outline, moderately arched longitudinally, gently depressed transversely. Inner articular border nearly straight,-one specimen showing a slightly truncated posterior angle for the lesser articular facet, while a smaller individual shows a faint angulation a little in advance of the middle, but so disfigured by abrasion as not to clearly show its character,-Coronal enamel forming a narrow fold more or less well defined from the deep basal portion; outer border not preserved; anterior margin very gently curved or nearly straight; posterior margin gently arched, more or less irregularly undulated, especially in mature teeth. Coronal surface in young examples smooth and regularly convex and concave in the two diameters, maturer individuals being traversed by more or less conspicuous transverse undulations, and which are even faintly discernible in the earlier-formed smaller teeth. The surface is elegantly sculptured, the rugose lines showing a decided transverse arrangement, though sometimes taking an oblique course over limited areas, and in the more exposed parts presenting a reticulate appearance like Arabesque designs, and in worn surfaces becoming obsolete where the ordinary minute punctæ appear. A small tooth presents the following relative proportions: Breadth across posterior margin, about 30 millimetres; breadth across anterior margin 24 mm ; length along inner articular border about 20 mm .

Mandibular tecth subquadraugular moutline, rather strongly arched from within outward. Lateral borders unknown. The alnterior and posterior margins marked by a marrow coronal foll well defined from the basal portion, which latter in front is slightly chameled with a corresponding convexity along the postomor margin. The coronal region, besides the rather strong longitudinal arching, presents a gentle transserse convexity, which probably occupies the greater extent of the coronal area. The anterior half or more of the surface is oceupied by a tramstirse prominence, behind which the surface steeply slopes to a wide plane are bordering the posterior margin, presenting a contom some what corresponding to that of mature examples of the opposite jall. The rugose ornamentation and punctation of the coromal surfice preaents a repetition of the charactors noted in comection with the maxilary form. The imperfect sole representative of the form shous a lonyitudinal diancter of 90 millimetres, indicating the luge dimentions attained by the fishes represented by the present tuth, and which was, so far as we are aware, the largest of its kind.

The above species is known to us from a couple of imperfect teeth referable to the upper jaw, and a narrow section of a gigantic specimen belonging to the opposite jaw or mandible. The smatler of the maxillary teeth shows searcely a vestige of the ruguse coronal ornamentation, the surface on the contrary being densely ocoupied hy the exposed orifices of the vertical tubes, which exhihit variuns stages of wear, from the simple puncte of exeessively abraded areas to the crater-like form surcounded by a rim of intensely hard sulatance, the punctic simple or confluent, with discernible traces of the coarect prismatic structure. We are inclined to regard this footh, at first sight so dissimilar in its superticial aspeets, as speeilieally identical with its associates. It is an extremely rare species, and we regret the lack of materials necessary for a comparison with the forms of the typical Emopean species with which it sharts many points of resemblance.
cicolonical prasition and localities: Ficokuk limestone. Feukuk and Bentonspert, Iowa.

Psammodus plenus, St. J. and W.

Pl. XVI, Fig. 1-4. Pl. XVII, Fig. 1-4.

Teeth attain large size. Form supposed to pertain to the upper jaw subrhomboidal, or of a laterally elongate-trapezoidal outline, gently arched antro-posteriorly. Margins nearly parallel, somewhat irregularly undulated, making a shallow concavity and then very slightly arched toward the antero-lateral angle, the reverse occurring in the posterior margin where the concavity is in the approach to the postero-lateral angle, both margins inbeveled or perpendicular to the crown surface, the anterior having greatest apparent obliquity, and defined above by the narrow coronal belt which constitutes less than one-fourth the depth of the face; the inner border is nearly straight, showing a faint angulation a little posterior of the middle, and a narrower truncated articular facet at the posterior angle, the coronal folds of the margins forming a continuous belt well defined from the moderately channeled basal portion, which terminates inferiorly in a narrow rim; the outer border is very gently arched, converging at an angle of about 15°, more or less, with the opposite border, and generally sharply rounded at the anterior angle, terminating in a more or less produced, acute angle posteriorly; in small or earlier-formed teeth the outer border is sharply inbeveled above and somewhat deeply channeled, limited by the narrow flange or basal rim below; but in larger individuals the basal portion increases in prominence, forming a massive border extending considerably beyond the coronal limits and terminating in a more or less produced spur at the posterior angle. Coronal surface smooth, gently arched longitudinally and between the lateral borders, making a broad, shallow concavity, forming an angle along the inner border and sharply rounded in the narrow coronal fold along the outer border, where it is well defined from the basal portion in small and large examples alike. The crown surface is uniformly minutely punctate, the pores being considerably spaced and confined within the easily discerned vertical prisms. However, the surface structure varies according to the state of preservation. In much worn examples the punctre are coarse and crowded, while in others under an ordinary lens the radi of calcigerous tubes around the orifices of the pores and the minute prismatic structure of the inter-spaces are beautifully revealed. Again, the lines of growth generally describe a segment of a broad circle with the convexity toward the posterior
margin, showing that the formative nucleus was sitnatel nearly midway the anterior margin; in excessively worn individuals, whether from use or abrasion subsequent to dislodgement from the jaw, the posterior margin presents a broat convexity between the posterior lateral angles, markedly in contrast with the actual curvature in perfect teeth. A small tooth measures in greatest diameter across the posterior margin 29 millimetres. length along inner horder aliont 10 mm . The perfect state of prescration of many of the specinens afford a fine exhibition of the character of the inforior surface, and which is applicable to all the species of the genus to greater or less degree. Conforming in a general way to the cornual contour, it is enveloped in a thin smooth layer of dense matter faintly striated longitudinally, forming a low ridge or angulation ahout one-third the distance from the imer border from which the surface regulinly slopes to the lateral borders, the tooth showing its maximum depth at the posterior margin.

T'eeth supposed to have been opposed to the preceding form, or pertaining to the mandible, are distinguished ly their subquadrangular outline and relatively narrower transverse diameter compared to the length. The anterior margin is broadly arehed forward with a slight concavity near tho imer angle, which is slighty auriculate and sharply rounded at the outer angle; the posterior margin presents essentially the same outline, both margins faintly channeled, the posterior one most strongly inbeveled, the anterior nearly vertical. The imer horder is nearly straight, making a faint angulation a little posterior of the midille in medium-size tecth, a slight articular facet occuring at the trumeated posterior angle, the articular face faintly chameled and somenlat strongly inbeveled; outer border very gently arehed and gradually converging anturioly, basal portion in small mad medium-size teeth rather deeply channeled, in larger specimens showing a thick rim extending ennsilerably heyond the coronal limits amd teminating in a produced spur posteriorly. The cormal surface is very gently arehed longitudinnlly forward from the rather steep dedivity bordering the posterior margin, and Enently ennvex transtoreely, a narrow chamel hordering the immer and posterion sides, which, towether with the anterior margin, arn Wefined by an abrunt angle, the cormal chamel forming a narrow fold encireling the tooth; along the exterior border the coromal surfone is ordinatily abmptly romded to the nagular demarhatom hotween crown and hase, lint in lare tecth this amele is less prominent, thongh the coromal limits are still well definct; a slight longi-
tudinal depression is discernible a little within and parallel with the outer border. The surface is smooth and full, the superficial structural details exactly agreeing with those observed in the preceding form. In the unworn rounded outer border of one or two specimens the coronal enamel presents faint rugosities apparently conforming to the lines of growth, and which must have produced an exceedingly delicate sculptured appearance in the surface. A small individual measures in transverse diameter across the posterior margin 13 millimetres; length along the inner border 14 mm . A mediumsize specimen is 35 mm ., and 26 mm . in the same dimensions; and the largest individual as yet observed shows a lateral breadth of 53 mm .

The above described forms undoubtedly pertained to one and the same species. They occur in the collections in about equal numbers, and present precisely the same superficial features in all respects save outline and contour. The supposed maxillary teeth apparently vary but little in proportions. The larger teeth differing from the small ones chiefly in the greater basal development in the region of the outer border. A fragment of a very large tooth obtained by Mr. Alexander Butters, representing an individual which was probably not less than 90 millimeters in lateral diameter, presents the same coronal contour in every particular, save the rounded posterior angle of the inner border and the irregular, deeply scolloped posterior margin, which may be likened to a line of overhanging cliffs. The latter specimen is also of interest on account of showing the permanence of depth maintained by the enamel belt, which is disproportionately shallow as compared with the relative dimensions of the tooth, while the basal portion is excessively developed.

In regard to the supposed mandibular teeth, there is observable a much greater latitude in variability, especially in the proportions, with age. The earlier formed teeth are relatively longer, while the larger individuals show a greater transverse breadth, with which latter character is also associated that noted in large examples of the opposed form, in which the basal portion is developed into a prominent flange along the exterior border. The collections contain two large teeth, which differ so greatly from the normal condition of medium and small-sized examples, that they might be mistaken for representatives of a distinct species. The latter teeth are very broad compared to the length, and to further obscure their probable actual specific identity, the posterior margin is in both cases broken away, its outline conforming to the backward-arched lines of
growth, instead of presenting the forward curvature or moderate concavity characteristic of perfect teeth. The anterior margin, also, shows an accurate outline, with auriculations at either ancle, which may be attrilutable in part to wear from the severe usage to which the teetly were subjected during the life of their possessor: The backward curvature of the lines of growth, which appear to be indicated by alternating belts slightly varying in density and hardness, are the same as above remarked in the maxillary form.

It is a singular, not to say extraordinary, circumstance that none but left-side individuals of the supposed maxillary form and rightside teeth of the mandible exist in the collections, which contain a score and a half of specimens in all combitions of preservation. Supposing the teeth to have been ranged in clonhle rows upon the jaws, the impingement of iudividuals of opposite rows at their oblique articular imer borders gives to the transverse section a marked concavity, while the inbeveled apparent obliquity of the anterior and posterior margins indieate a considerable fore and aft arehing in the coromal contom of the series of maxilary teeth. The individuals of the opposed mandibmar form, viewed in the same relative position, present contour diametrically opposite to those noted in relation to the maxillary series, the transverse section of tho double row showing a consexity conforming to the concarity of tho opposed series, though the longitudinal arching of the series of the latter form was pereeptibly less than that of the mandibnlar serics. The latter observations apply to the small and medium size tecth, but in the large mature tecth the longitudinal convoxity of the crown seems to be more pronouncel, which wonld give to the series of teeth upou the jaw a greater relative convexity from behind forwards. Howerer, it will have become apparent, that there is intimate correspondence in the coronal contour and co-idinptation of triturating surface in the two forms here associated moler the same specilic desiguation. And, however large the materials in onr possession, it is hardly more hlan sharif ative of the complete history of the species they represint.

An imperfect tooth from the same formation at Grand lapiels, Michigan, kimdly submitfed to ns for examination hy Prof. E. A. Strong, appears to loe intimately allied to the present species. The specimen is also a left-side tooth of the mandibular form. from which the mamel layer has heen exfoliated, revaling a beantifut puretate surface quite in contrast to that usually prevalent in the teeth derwed from Missouri and Milinois lucalities. The medullary
tubes are raised into crater-like prominences encircled by delicate radi, giving to the surface a beautiful stellate ornamentation very like that so commonly met with in the teeth of Cochliodonts. The general outline agrees with that of typical examples, the posterior margin in the worn condition conforming to the bands of growth; but the coronal contour shows a greater fullness in the inner half, in which particular it bears greater resemblance to the Chester species Psammodus angularis, N. and W. However, similarly preserved examples from Alton show a less regular concavity in the transverse profile and corresponding fullness in the inner half, approximating the conditions observable in the Michigan example. It is much to be desired that larger materials from the latter quarter be obtained, in order to trace more definitely the characteristics of its piscine fauna and its relations to that of the southern and southwestern areas of the same deposits.
The maxillary tooth bears somewhat marked resemblance to the same form of teeth occurring in the Upper Burlington limestone, Psammodus Lovianus, but the associate mandibular teeth are quite different from those identified with the latter species, as will be manifest on comparison of the illustrations given of the two species. We regret the lack of material permitting detail comparison with the European species P.porosus, Agass., although little doubt is entertained respecting the specific distinctness of the above described forms.

Geological position and localities: Not uncommon in the St. Louis limestone ; St. Louis, Mo., Alton, and Monroe Co., Ill., Grand Rapids, Michigan.

Psamiodus celatus, St. J. and W.
Pl. XVIII, Fig. 1.
A fragment of a small tooth from the St. Louis formation at Pella, offers so well-marked peculiarities that we have decided to notice it under the abore designation. It is homologous with the form elsewhere referred to the upper jaw, and is distinguished from Psammodus plenus, of the same formation, by the concavity in the curvature of the outer border, the strongly produced postero-outer angle, more strongly inbeveled anterior basal wall, and the rugation of the coronal surface, which presents a very moderate longitudinal convexity and transversely depressed contour. The length of the tooth along the outer border between the acute posterior and the
sharply rounded anterior angle is about 11.5 mm ., the liasal rim somewhat expanded laterally and produced posteriorly, increasing the length of the border to about 13 mm . The trimsserse diameter across the posterior margin exceeded 13 millimetres; in consequence of the mutilation of the immer articular border the entire breadth of the tooth is not shown. The posterior margin is somewhat decply concave in outline, the anterior extremity wats apparently gently arched or nearly straight, but it bears evidences of wear by which its outline is made to appear slightly coneave, the coronal margins well defined from the base, making as slight angulation in front and behind sharply defining the inbereled inferior basal face.
The abore described tooth is peculiar in ontline, but the coronal sculpturing rescmbles that of Psammodus glyptus, also P. reticulutus, N. and W., of the Chester limestone, although it cannot be confounded with cither of those species. The rugit show irregular disposition, in which particular the tooth contrasts with the superficial ornamentation observed in individuals of the form referred to I. crussidens, while it represents a different form from that upon which the latter species was based.

Gcologival position and locality: St. Louis formation, Pella, Iowa.

> Psamimodes crasidinens, St. J. and W. Pl. xyili, Fik. 2-6.
 f. 3,3 a. Not P^{\prime}. rugostrs, Agatsiz.

Teeth attain large size, subrhomboidal in outline. Coronal surface moderately arched from behind forwards, somewhat stepply sloped in the region of the anterior margin, with a distinct longitudinal median depression, bordered on either side by a moderately prominent fold rommed to the lateral horders, where the coronal enamel is more or less distinctly defined from the hasal portion of the tontis. The outer border is gently arehed, mother sharply rounded into the anterior margin, terminating posteriorly in an achte angle ; anterior margin also broadly arehed from the romuded onter magle to the subnente imer angle, preacnting in unworn individuats a sharp edge inferionly inbeveled with the losal portion; posterior margin closely repeats the curvature of the cpposite estremity. somelimes informpted by mdnations, and terminating in slarp amgles; the imer horder conforms in a general way to the chrrature of the opprisite sile, but townd the anterior extremity the
tooth is laterally expanded, dividing the articular border by a more or less conspicuous angulation into two distinct areas somewhat variable in extent. The basal portion of the tooth is very deep, the outer border considerably expanded beyond the coronal fold, more or less produced at the posterior angle, and inbeveled below to the relatively reduced inferior surface; inner face broadly channeled and interrupted by the before-mentioned angulation; anterior face also excavated vertically and somewhat inbeveled from the plane of the coronal surface; posterior margin presenting a slallow vertical con-cavity,-the edges all round making an angle, except along the outer side, with the inferior surface, which latter shows a faint median ridge. The coronal surface presents a minute punctate structure, the pores somewhat widely spaced, sometimes confluent, and enclosed in the usual vertical prisms. Toward the posterior margin there appear indications of transverse rugæ. The basal walls are vertically and irregularly plicated, and perforated by the irregular pores and occasional alvolar cavities; the abraded inferior surface shows delicate vermiculose markings, but in the perfect state it presents the usual dense, smooth layer, which also envelopes the walls of the base. A large-size perfect tooth measures across the posterior margin 32 mm ., and about 25 mm . across the anterior extremity; length along inner border 45 mm . depth of tooth at the posterior margin 21 mm ., and 20 mm . at the opposite extremity.

The collections afford four or five examples of a form of teeth, which, in their coronal contour and general conformation, also in the details of their superficial structure, show unmistakable relationship with Psammodus, although they present a type differing in certain well-defined characteristics from the previously herein described species of the genus. The first authentic example of the form here alluded to is that described by Professor $\mathrm{McCoy}{ }^{1}$ under the name P. canaliculatus, from the mountain limestone of Ireland. The examples before us all belong to the same side, while that figured by Professor McCoy represents a tooth from the opposite side. As in the previously described forms, the character of the articular walls clearly indicate the paired arrangement of the teeth,-indeed in the instance of the Upper Burlington species, P. Springeri, the examples frotir opposite rows are about equally represented in the collections, and the same may be said of the European species, P. porosus and P. rugosus (sp. ?) of Agassiz. While this statement is true so far as it goes, and the form in question doubtless occupied a lateral position

[^14]upon the jaws, we have yet to ascertain the rehative disposition of the individnal teeth thereupon. The peculiar character of the imer articular borler permits of coadaptation meither with opposites of the same form, nor with the other forms with the remains of which the present one is associated, and we are left in doulst even as to the generic identity of the hatter. The crescent-shaped ontline of the immer articular faces indicate at corresponding convexity for the outer border of the teeth of the contignons row articulating with this form. The space intervening between opposite individuals of the form is lingulate in shape, but whether it was oecupied hy a single row of lingulate teeth, or that these were further subdivided can only be conjectured. On the other hand, if the dental formula ascribed to the Upper Burlington species, I. Springeri, which seems to be well founderl, attributing to it a simple biserial arrangemont, be regarded as typical of the gemms, then we should have in the present form a new element further complicating the dental formula to an extent which, if met with in existing Myliodonts, might constitute a distinctive feature of gencric significance. We are, however, fully cognizant of the meagemess of the datil at this timse

 possessed, and would clearly discrimmate betweon the facts themselves and that which they suggest with greater or less degree of plausibility.

The accompanying diagram represents the simplest dental combination of the form here particularly alluded to. The limgulate teeth of the median row certamly offer strong resemblance to some of the generic forms with which C'openluss cornutus, Agass., is associated; lout mone such have been reeconized in the present ease. True, we have a form oceurrimg in the same horizon with the prement species which is referable to the latfer group; hut it charly has no intimate relatomaliop with the form in question.

The few individuals mentioned nhore as comprising the sole repres.
sentatives of the present form occurring in the St. Louis limestone, vary considerably one from the other. The large, normally entire tooth in the collection of Mr. Van Horne is supplemented from the same locality by a proportionately shorler tooth, which has the angulation of the inner articular border situated nearer the middle of the tooth instead of one-fourth the distance from the anterior extremity as in the specimen just mentioned, with which it exactly agrees in other particulars. A third example from the same locality, at Alton, offers still other differences, as in the obliquity of the anterior margin, the angulation of the inner border being crowded forward and merged with the inner lateral angle, the stronger developement of the outer basal rim, and the prominent transverse ruga that envelope the posterior two-thirds of the coronal surface, the anterior slope and the ridge parallel with the inner border being worn smooth, revealing the ordinary punctate structure noted in the above mentioned specimens. A smaller tooth derived from the same formation, at Pella, differs from the above in the very slight developement of the angulation in the articular border, which is situated about one-third the distance from the anterior angle; the coronal fold also shows a sharp angulation along the rertical inner border, but the opposite border is worn away, destroying every vestige of the prominent basal rim usually occurring along that side of the tooth, though the basal region is otherwise very like that described from normally preserved specimens. The coronal surface, however, is worn quite smooth, showing the ordinary punctæ. We are inclined to regard all of the above mentioned specimens as probably pertaining to one and the same species, the variable condition of the coronal surface being due to the effects of trituration, and the other peculiarities, as the position of the angulation in the inner border, such as may be attributed to individual variation. This inference, however, may appear inconsistent at first sight, but we have already observed marked variations in the same parts, as noted in individuals described under Psammodus plenus, of whose specific identity scarcely a doubt can arise.

The specimen figured in Pl. XI, f. 3, 3a, of Vol. II., Ill. Geol. Survey, where the form is referred by Messrs. Newberry and Worthen to Psammodus rugosus, Agass., also represents a short tooth, in an almost perfect state of preservation, save the wearing away of a patch of the crown at the outer anterior angle. It presents a rhomboidal outline, the anterior margin gently curved forward, the deep basal portion inbeveled, the posterior margin correspondingly
curved; the outer border broadly arehed, the basal portion projecting in a prominent, thick rim beyond the eoronal linits, slightly producel posteiorly, and inbeveled to the inferior surface; the inner border presents precisely the conformation olserved in typical examples, except that the :mgulation is placed forwards a little less than one-fifth the distance from the anterior angle, distinctly defining the anterior articular facet from the long posterior articnlar surface. The coronal surface is longitudinally moderately arched, and trausversely depressed, limits of the crown well defined at the sides, the imner ridge presenting the abrupt face noticed in the above mentioned example from Pella; the outer ridge also rises into a low accumination nearest the anterior angle. The wom smrface exposen the usual minute punctate structure, but in the more depressed portions which have escaped abrasion, the transverse rugae are discermible, the same as noted in one of the Alton specimens of a very clongate tooth.

The present species differs equally from that noticed from the Upper Burlington limestone, and Psommolus comuliculatus, Mecoy, of the Irish Mountain limestone: Felatively shorter than the latter, from the former it may be distinguished by the lese prominent and more rounded contour of the coronal ridge along the outer border.

Geoloyical position and localities: St. Louis formation; Alton. Ill.: Pella, Iowa.

Psammodes angularis, N. and W.
PI. XIN, Fig. $1,2$.
 f. 2. 2n, 2h,

The ubowo designated species wat dencribed from a wearly perfect sxample belonging to the form provisomally refered to the mandible. In order to farilitate emparison with the forms described in prereding pages, we rinture to supplement the lorif doseription alowe citud hy a somewhat detailad motice of the fpecide, hatad upont the original example and the few additional specimens sulseepuently discosered in the amme horizon whence the type was derived.

The supposed mandibular toth attim medimm size, showing a trape\%oidal ontline. The coromal re gion is monderate and regularly arched from binhed forwards, gently depressed tranberecly, with. lowserer, a fullocess in the inmer half or more of the area, which
amounts to a slight convexity in the long diameter of the tooth, the outer border being well defined by a narrow ridge, separated from the convex inner area by a shallow, longitudinal depression. The anterior margin is gently arched, with a slight concavity near the inner angle and rounded into the outer border at the opposite angle, the inbeveled basal portion meeting in a sharp angle with the coronal surface; posterior margin describing approximately the same curvature, the crown defined by a sharp angle, the slightly-inbeveled basal portion channeled, the upper portion enveloped in a glassy, enamel layer; outer border gently arched, terminating posteriorly in a more or less produced spur, the narrow coronal ridge rounded to and well defined from the basal rim, which latter is not sufficiently well-preserved to show its actual outline and magnitude. The inner border is nearly straight, with a slightly-oblique course forward and outward, and faint angulation near the anterior angle, the crown making a sharp angle with the channeled basal wall, and margined by a slight-impressed line, forming a narrow border encircling the contiguous sides of the crown. The inferior surface, in the perfect state, shows irregular striato-punctation in the slightlyconcave, longitudinal direction, with a slight elevation about onethird the distance from the inner border, where the tooth attains its maximum depth. The coronal surface is uniformly minutely punctate, plainly exhibiting the superficial structural features common to the congeneric forms. Transverse diameter across the posterior margin, 29 mm. ; length along inner articular border, 17 mm .; greatest depth of tooth, 6.5 mm .

Worn examples of the above described form show a greater transverse convexity of the coronal surface, while the edges are rounded, obliterating the narrow, impressed border mentioned above; it is not improbable also the outer ridge may become nearly obsolete in similarly preserved specimens. The homologous form of the St. Louis species Psammodus plenus presents a striking contrast to the present teeth, being proportionately longer, with less inbeveled posterior and anterior walls, and greater lateral convexity of the coronal surface. Indeed, the nearest allied species at present known is that from the Upper Burlington, P. Springeri, the corresponding form of which differs in the directly opposite direction of the obliquity of the inner articular border, greater length, and more produced posterior angle of the outer border.

In accordance with the presumed homological relations of the various forms of teeth ascribed to the genus, the form pertaining to
the upper jaw of the above species is recognized in the teeth which Messes. Newberry and Worthen identified with Psummodus porous $^{\text {M }}$ of Agassiz. These teeth are evidently most intimately related, so far as may be judged from the similarity in the details of their surperficial coronal strmetme, which is, indeed, identical in both of the forms. We are, therefore, convinced that they represent forms of one and the same species, presenting the same combination of dental apparatus observed in the several species described in the foregoing pages.

The latter form is distinguished by its transversely elongate frapezoidal outline, the course of the lateral borders, aud general contour of the coronal region intimately repeating those parts as observed in Pstmmodus plenus, of the St. Louis formation. The inner border, which is similarly marked by a slight angulation a little in advance of the middle, shows a distinct truncation of the posterior angle with a narrow articular facet. In the character of the anterior and posterior margins, also, intimate resemblances are noticcalle with the above species. But the examples of the present form are appreciaby of greater depth and more solid or massive proportions, and the punter of the coronal surface are also perceptibly tither and me numerous even than remarked in the corresponding teeth of I^{\prime}. plenus. A mature tooth measures in greatest trimbictse diameter across the inner margin 3.1 mm . ; length along inner border 23 mm. ; greatest depth of tooth 10 mm .

Together with the associate form, both forms occurring in the same horizon, the feces is readily distinguished from that with which it has already been compared, and of which it is inn interesting example of a representative species. As regards their relations with the European teeth originally described by Professor A dratisiz meter the name of Psemmulus porous. We deem it hardly probable that that species is so variable as to include the present forms.
lieolngical position and lomentity: Chester limestone; Chester. Illinois.

> Psammones matriculates, N. and W.

 f. $5, \mathrm{Bm}$.

Besides the typo specimen, the collections from the same horizon whence that was derived contain weer inmerfeet couples, apparentry representing the two forms ascribed to the neper and the lower jaws, which are believed to be specifically identical with the tooth
originally noticed by Messrs. Newberry and Worthen. The original specimen is probably that of an immature tooth which had not been brought into use prior to the destruction of its possessor, and it is owing to this fact that it presents merely the coronal crest or shell entirely detached from the base, which was of a coarse porous structure and less solidified than the layer more strictly pertaining to the coronal region; also to the same state of things is doubtless attributable the very perfect state of preservation of the rugose ornamentation, which in this instance occupies the entire coronal surface. Fragments of teeth identical in contour and ornamentation are readily identified with the above specimen; but others bearing unmistakable evidence of excessive abrasion while in use, present a nearly plane coronal surface with only traces of the ruge remaining in the more depressed portions of the surface. The latter, from the general outline, apparent original contour, and the posteriorly gently convex course of the transverse depressions which also correspond with the lines of growth, strongly indicate their identity with the original specimen, and it is with the aid of these maturer examples that the outline of the form may be more definitely sketched, the type specimen being imperfect at either lateral border.

The type example is probably a representative of the form provisionally identified with the upper jaw. The teeth attain medium size, quadrilateral in outline. In more or less worn specimens, the usual condition of the examples that have been found, the coronal region presents a moderate longitudinal convexity, and a slight transverse concavity, in which direction the surface shows a more or less distinct undulation, the plane posterior slope preserving traces of the original rugose ornamentation. The coronal surface of unworn teeth, like the type specimen of the form, shows a rather strongly arched contour from behind forward, produced by a conspicuous transverse ridge, from which the surface gently slopes with slight concavity to the anterior margin, more steeply sloped behind to a slight impressed angle, whence the surface presents a nearly plane area of variable width, terminating in the posterior margin, and irregularly undulated longitudinally; the crest of the transverse ridge is gently sagged throughout the greater part of its extent, and on nearing the outer (?) border it is somewhat steeply sloped into what appears to have formed a shallow, narrow depression just within the outer coronal fold; even in worn examples the latter conformation of the coronal surface is more or less discernible, but the inner border is angularly rounded to the nearly ver-
tical articular wall, which latter shows a slight concavity between the angles, the anterior angle distinctly truncated for the narrow oblique articular facet. Anterior and posterior margins parallel, nearly straight, or gently arched forward with a slight coneavity' toward the inner angle in front, and a corresponding consexity in the posterior margin, inbereled to the basal portion, which wats of proportionate rertical depth. The basal support of the borders is not preserved. The surface of unworn teeth exhibits an exceedingly intricate reticulated ornamentation, produced by the rugar occupying the interspaces between the punctio, the prevalent continuity having a transterse direction; on the other hand, worn surfaces show rather coarse, crowded punctie, confluent in the depressed transverse belts. Lateral diamcter of a medium-size smooth tooth across the posterior margin, 37 mm ; length along inner loorder, $22 \mathrm{mm}$. ; depth of tooth, at least 8 mm .
l'rofessor Worthen has oltained from the same deposits, and associated with the foregoing teetl, a single imperfect example of a tooth which may prove to be identical with the opposed mandibular form of the present species. It shows a medium size tooth, quadrilateral in outline, the worn anterior margin slightly areuate, thongh originally probably gently arched, corresponding approximat, ly with the moderate concarity of the posterior margin, inmer border making nearly a right-angle with the margins, posterior angle truncnted, with a rather prominent angulation about one-third the distunce forward; onter border unknown. The crown is well defined all round from the deep, slightly excavated basal walls, which are in-beveles-strongly so along the anterior margin. The latter feature accords with the rather marked convexity of the cormal rewion from behind forward, giving to the series of teeth a strougly rolled longithelinal section, the surfuce showing a faint transierse furrow in the unterior half, where, as also in the slope hordering the pusterior margin, the surface presents the samm ragese omamentation doseribed in comection with the previonsly mationed form, the more exposed parts showing a smooth, densely punctate surface. The eoromal area is nearly plane. or faintly depressed transworsely, with a slight depression parallel with the outer border, and showing a fullness somewhat contrasting with the opposed masillary form. Transerse diameter at the posterior magim, at least !() man.; lencth of immer border, $2: 2 \mathrm{~mm}$; rertieal depth of tooth. at least 10 mm .

While the presiously noticed mathary fom hardly requires detail comparison with the homologoms form of P'sammonfus angularis
occurring in the same deposits, it possesses characters of a much more intimate nature in common with the same form of P. grandis of the Keokuk limestone. But besides its much smaller size, the mandibular form departs widely from that of the Keokuk species, as will be apparent on comparing the coronal contour of the two species, as shown in the illustrations. The mandibular tooth bears some resemblance to the maxillary form of P. angularis, but besides its rugose ornamentation, the punctæ exposed in the worn surfaces are perceptibly coarser and more crowded than observed in that species, which shows a uniformly minutely punctate surface, the punctæ being rather widely spaced.
Geological position and locality: Chester limestone, Chester, Illinois.

Genus COPODUS, Agassiz.

Copodus, Agassiz, MSS., 1859. (Psammodus cornutus, Agass., 1838, Poissons Fossiles, tome III, p. 174; Catalogue of Type Specimens of Fossil Fishes in the Museum of the Earl of Enniskillen at Florence Court. Ireland, Geol. Mag. VI, 1869; Dr. John J. Bigsby, 1878; Thesaurus Devonico-Carboniferus; etc.

GENUS COPODUS. Maxillary form.
Fig. a. Triturating surface.
Fig, b. Transyerse profle from inner margin.
Fig. c. Longitudinal profile.

Teeth bilaterally symmetrical, spanning the jaw
longitudinally in conformity with the arched coronal contour, the tooth attaining maximum depth along the mesial line at the posterior margin. The crown may present a lunate depression extending a greater or less distance backward from the anterior margin and without mesial suture, arranged in a single longitudinal series from behind forwards. Lateral borders gradually converging anteriorly, where they make an obtuse angle with the convex anterior margin, posteriorly produced into an acute angle meeting the lateral extremities of the concave posterior margin. Coronal region slightly arched longitudinally and laterally, distinctly defined from the base. The lateral borders of the base form a more or less prominent rim projecting beyond the coronal limits, beveled or rounded inferiorly and more or less produced at the postero-lateral angles. The anterior and posterior walls vertical to the plane of the crown surface and channeled. Inferior surface regularly arched transversely, and gently concave
of variable depth, which is due to abrasion white in usu. The coronal surface is enveloped in a thin layer of enamel, beneath which as also in the worn areas the punctate structure is clearly discernible, the punctie enclosed in vertical prisms, as also observed in relation to the superficial structural features of $\nu_{\text {sammorlus. }}$

The foregoing diagnosis applies to a form which, from the moverate antero-posterior convexity of the crown, and which was communicated to the series of teeth, evidently pertains to the maxillary. Associated with the above form. Mr. VanHorne has discovered a fragment of a tooth, exhibiting precisely the same structural features above noticed, which we are led to regard as the representfive of the opposed form belonging to the lower jaw.

porous.
Mandibular form.
Fig. a. 'l'rituratlag surFace. Transverse proHa Prom inner margin. Figs. c. longitudinal rome. the present instance all the facts seem to point to generic identity with the first described form, which is mmistakally congeneric with the teeth designated li Professor Agassiz miler the above generic appellation. As to the homological relations of the two forms alladed to above, to briefly recapitulate:- The slight longitudinal convexity of the first described form, indicating for the series of teeth associated in the same row a very moderately archil longetuinal content' ; and in the chan of the latter form the strong conwaxy of the crown from behind forwards, indicating a corresponding strongly rolled ont line for the sorites of two or more individuals, in both instances constitute characters consomme with what netnally
obtains in forms of teeth of opposite jaws of Tertiary and existing Myliodonts.
The affinities of the Copodi are certainly with the Myliodonts, the single row of teeth, spanning the jaws like paving flags, finding a somewhat intimate repetition in the still existing genus Aetobatis. There are, however, other characters that offer marked contrasts in contradistinction of the ancient and the latter modern representative, and which probably should be interpreted as possessing an importance even of greater consequence than generic. The characteristics possessed in common with the genus Psammodus, Agass., show unmistakable family relationship with the latter, while structurally and in the character of the basal portion of the teeth there is even striking contrast to the features noted in typical Myliodonts. We are, therefore, of the opinion that the family distinctions of the Palæozoic teeth here alluded to are paramount and should be so recognized; hence the family designation Psammodontide, which was bestowed by Dr. de Koninck on this group of ancient selachian remains, is here adopted.
The genus appears to be restricted to the earlier groups of Carboniferous formations both in Europe and America.

Copodus Van Hornit, St. J. and W.

Pl. XX, Fig. 2, 3.

Teeth representing the forms pertaining respectively to the upper and the lower jaws, and which attain medium size.
Maxillary teeth lingulate in outline, very gently arched from within outward. Lateral borders nearly straight, gradually converging and angularly rounded into the anterior margin, posteriorly terminating in a produced spur, the basal portion projecting in a widish rim beyond the coronal limits, inferiorly inbeveled and rounded to the inferior surface; anterior margin regularly and moderately arched, the coronal band forming a coping constituting onefourth or one-third of the deptl, and well defined from the excavated basal portion; the posterior margin approximately conforms to the curvature of the opposite margin, and is similarly marked, the channeled basal portion in both instances irregularly vertically pitted. The coronal region is moderately arched transversely, flattened along the median line, with a lunate depressed triturating area reaching back from the anterior margin a greater or less dis-
tance; near the borders the surface is depressed and definel from the projecting basal rim by a delicate fold, the enamel terminating in an acute angle at the postero-lateral extremities. The surface is usmally worm, exposing the minute, irregular puncte, the lateral edges and imner margin retaining greater or less areas, enveloped in the superficial emanel layer, which shows exceedingly delicate rugid radiating towards the lateral and posterior sides. Inferior surfice corresponding in longitudinal coneavity to the consexity of the crown, transtersely gently arehed with a slight median illgulalation, the dense extemal hayer smooth or faintly flated longitudinally. A large tooth measures in greatest transerese diameter betwetn The posterior comua 20 millimetres; the entmeled coronal are a shows a breadth of 13.5 mm .; length of tooth along the median line 15 mm . ; depth at the posterior margin $\pm 1 \mathrm{~mm}$.

Teeth, referable to the mandible of the same species that bore the preceding form, which they resemble in outline and coronal aspect. are specially distinguished by their relatively greater breadih compared with the length, and rather strongly rolled contom of the crown from behind forwatrds. The anterior margin is somewhat strongly arched forward from the slight uuricnlate intero-lateral angles, merting in a rombed angulation ut the median line, the inbeveled coromal portion forming at well-defined narrow belt, bentath which extends the deep border of the slightly chameled basal portion, in whiel particulars also there is mmistakable identity with the preceding form; the lateral borders gradually converge, making obtuse angles in front and posteriorly produced, the basal rim forming a conspicuous bonder, slightly upraised along the outer side. rombdet ledow mad mered into the inferior surface; posterior mangin unkown probably appoximating the curvature of the opposite extromity. Coronal surface strongly arehed Ingitndially, the trinsresse convexity moderate amd regular, with at shallow, marrow demession parallel with the lateral borders, along which an excestingly delicat. fold defines the crown from the lasal rim: in front the smface is worn into a lunate depression of greater or less extent mad depth, the puncta and the delieate rugose omamentation of the (mamel layer agreeing with the surface uppearanees noted in the nfposed form ; tnwards the posteriog margin the snface shows distinet lines of growth, mahing a boond areh backwate and deftected on wering the lateral borders. limt whel does not necessarnly intscate the ontline of the posterior margin, which donbthess in the profel stht prescmis a concavity correbonding to the comvex ont-
line of the anterior margin. Inferior surface moderately concave longitudinally, and quite strongly arched transversely, meeting at the median line in an obtuse angle, the dense surface layer longitudinally striated. Transverse diameter across posterior margin at least 22 mm .; length along the median line probably 12 mm .; greatest depth of tooth 6 mm .

The form first mentioned above, and which is regarded as having belonged to the upper jaw, presents as typical an example of the genus, as does Copodus cornutus of Agassiz. It is distinguished from that form by the more regularly arched outline of the anterior margin and the transverse convexity of the crown-surface, in the latter respect bearing greater resemblance to C. spatulatus, Agass., from which, however, it is distinguishable by the more constant posterior expansion of the borders of the crown proper.

The form pertaining to the mandible bears a striking resemblance to the teeth designated under the generic term Labodus, Agass., and which may well be supposed to be homologous with the present form. It differs markedly from the typical species indicated by Professor Agassiz, L. prototypus, from the Irish Mountain limestone, in the relatively great transverse convexity of the coronal surface.

The discovery of the above species adds another name to the long list of genera common to the Lower Carboniferous formations of the Old and New Worlds. The specific designation is given in honor of W. C. Van Horne, Esq.

Geological position and localities : St. Louis limestone; St. Louis, Mo., and Alton, Ill.

Copodus pusillus, St. J. and W.
PI. XE, Fig. 1.
Teeth very small. Form pertaining to the upper jaw subrhomboidal in outline, lateral borders very gradually converging and somewhat sharply rounded into the slightly arched anterior margin, the worn tooth showing the posterior margin also broadly arched backward. The coronal region is gently and about equally arched in both directions, with a faint narrow depression near the lateral borders, which latter are bordered by a narrow fold beveled to and distinctly defined from the basal rim; in front the coronal belt forms a narrow lenticular strip inbeveled to the channeled basal wall, and above the usual lunate triturating area. The coronal surface was enveloped in a dense enamel layer marked by faint
longitudinal rugac, and showing beneath the vertical prismatic structure and punctic, the latter minutely and closely pitting the worn areas in front; the crown also shows the broadly arched lines of growth to which the posterior margin in worn individuals more or less conforms. The basal portion of the tooth is not known. 'ransverse diameter of tooth across the posterior margin at least 9 mm ; length along modian line 7.5 mm .

The above described species is reprenented by a unique example discovered by Dr. George Hambach, showing nearly the cutire coronal area, but the basal portion is destroyed, and the posterior margin worn even with the broadly arebed curvature of the lines of growth. The postero-lateral cornua are also absent from the same cause; otherwise the specimen clearly displays its distinctive peculiarities. Compared with the preceding species from the St. Louis limestone, Coporlus Van Hornii, the present form is distinguished ly its more angular outline, the lateral borders much less rapidly converging anteriorly, and perhaps the more uniform convexity of the coronal surface. The specimen somewhat reselubles certain forms from the Irish Lower Carboniferons deposits referred by Professor Agassiz, to the intimately allied ge mus Pimacodus : lut if we correctly interpret the distinctive peculiarities of the latter genus, the present tooth differs in not possesing the emarginated anterior margin which characterizes that genus, as represented by the typieal form I. gonoplax, Agass.

Grolngical position and locality: Chenter limestone; Chester. Ill.

ICHTHYODORULITES.

Genus CTENACANTHUS, Agassiz.

Ctenacanthus Coxianus, St. J. and W.
Pl. XXI, Fig. 1.

Dorsal spines attain large size, somewhat rapidly tapering, laterally compressed, presenting a wedge-shaped transverse section, moderately arched, and apparently but moderately inclined backward judging from the slight obliquity of the line of insertion as shown in the example before us. Anterior edge sharply rounded and occupied by a single carina interrupted by strong transverse ridges; lateral surfaces slightly convex, occupied by prominent costæ, flattened along their crests, and separated by deep, narrow sulci, increasing by occasional bifurcation, and ornamented by irregular transverse ridges, which present an abrupt declivity above and a more gentle convexity below, apparently smooth. Posterior face unknown. Pulp cavity apparently occupying less than half the antero-posterior diameter, and situated entirely within the posterior half of the spine. The specimen described attained a length of at least 150 millimetres; antero-posterior diameter at line of insertion probably 45 mm . ; lateral diameter at same point 14 mm .

The above described species is recognized from a fragment of a large spine, which shows a length of 90 millimetres, including part of the base showing the line of insertion from which the comparatively erect position in the fish's back is inferred. Its relations are most intimate with Ctenacanthus Mayi, N. and W., of the Upper Burlington limestone, and the fish to which it belonged was a representative species of that to which C. Mayi pertained. These two spines are almost exactly of the same proportions and form. The Keokuk specimen is, howerer, somewhat more robust, and is further distinguishable by the greater width and depth of the intercostal sulci and relatively narrower costre the transverse carinæ or nodes along the anterior ridge are also narrower and less tumid, the costro
more frequently bifurcate, presenting less lroad, that surfaces toward the base, and the pulp cavity apparently has greater extent toward the extremity than is the case in C. Mayi. The poiterior wall of the spine is destroyed, revealing the deep furrow of the pulp eavity. the entive length of the frament and which was probably clowed to the line of insertion. In C. Mengi the posterior face was simply channeled and hordered by the hateral flanges, which show traces of the posterior denticles, also that the lateral surfaces hore longitudinal costie quite to the posterior edges.

The unique example described was discovered hy Mr. L. A. Cox, of Keoknk, in whose honor the species is dedicated.

Gcological position and locality: Keokuk limestone; excarations for the Government canal round the Kcokuk rapids, near Montrose, Iowa.

Ctenacasties Deflexus, St. J. and W.

 PI. XXII, Fig. 1.Fiu spine of mediun size, laterally compressed, moderately arelud along the anterior edge, the posterion face relatisely strongly coneave, the spine uniformly expanding presenting a great breadth at the dorsal line, and indicating a rery remmbent position. The lateral suffaces rery gradnally converge, with slight consesity. from the postero-lateral angles forward, where they are regularly rommed into the anterior edge; the posterior face, in the somewhat abraded specimen, is abruptly frmeated, with indieations of a low longithdinal ked, the angular lateral edges bearing a row of minnte, wertieally compersed dentiches which are spaced by abont the ir own diameter. The costation of the lateral surface is quite regular, the rideres regularly diminishing in size posteriorly, and simply convex. separated by a marrow impressed line, increasing ly hifurenton Which much more frequently ocems immerliatoly along the dorsal lias, begom which the attomated basal walls project in a narron border from at point just above the inferior anime of the ponterior fact. The anterior edge is ocomped by a comparatively wile ridee. which at intervals somds off lateral rilges. The atire coposed surface is densely crowded with the enstal thbereles, whele form irrernhar mheonical prominences with vertically plicated or carinatod sides, producing a stellate appearance, and which are weat more cromed than repreanted in the full-size illustration. Aloug the worn anterior edge, wher any remans of the co-tie are visible,
they have a pectinated appearance at their edges, in token of the tubercles originally ornamenting their crests. They are so crowded upon the costr as to compel an alternate disposition; in the anterior portion they are crowded vertically, but over the greater portion of the surface they are spaced by about their own diameter. The pulp cavity is relatively large at the inferior angle of the posterior face, beneath which it first opens out, exposing the deep trough-like excavation extending thence to the proximal extremity, but rapidly diminishing above where it is filled by the peculiar deposition of dense matter analogous to the inferior homogeneous layer met with in the associated teeth of Coclliodonts, the 50 or 60 milimetres of the distal extremity being solid.

Mr. Butters has obtained from the St. Louis formation a single representative of the above described species, representing a spine 20 to 25 centimetres in length, of which the posterior face constituted half, little more or less. Unfortunately, the specimen was much mutilated in freeing it from the limestone matrix, both extremities being broken, and preserving a length of about 15 centimetres of the middle portion of the spine. It is a fine representative of a peculiar form of ichthyodorulite, of which several examples are known, and which is distinguished by the great fore and aft extent of the dorsal line and corresponding breadth of the inserted basal portion. In the foregoing description, allusion was made, in connection with the latter character, to the probable recumbent position the spine occupied in the creature's back; but this, after all, may not necessarily indicate unusual recumbency in view of the fact that, in certain living sharks, the integuments are built up about the bases of the spines, forming low, laterally compressed prominences from which their tips protrude, as is the case in Cestracion. We hesitate, however, in recognizing this feature as possessing generic importance in contradistinction to the narrow, more regularly and gradually tapering spines with which the latter have been generically associated.

The specific relations of the present specimen with previously described spines are perhaps most intimate with the Kinderhook species, Ctenacanthus speciosus, St. J. and W., and C. spectabilis, St. J. and W. Its distinguishing features, however, are so pronounced as not to require detailed comparison.

Geological position and locality: St. Louis limestone; Alton, Ill.

Ctenacanthus Harrisony, St. J. and W.

Pl. XXIII, Fis. 1.

The collection from the St. Louis formation contain an example of a large spine which is apparently intimately allied to the last procedin! species, Ctenacanthus deflexus, but which presents certain well-marked peculiarities at variance with the distinctive features of that species. These differences do not appear to be such as might lie attributable to age, and on the whole we are inclined to regard them as being of specific importance.

The specimen under consideration shows the greater part of a spine which probably attained a length of between 20 and 25 centimetres, and it apparently belonged to the broad-based type of which the preceding species constitutes a typical representative. Presenting about the same degree of curvature along the dorsal edge, it more gradually tapers, and the transverse section is less compressed laterally, approaching nearer a triangular outline than is the case in the former species, which, however, it resembles in the solid tip, and comparatively limited extent of the closed pulp cavity. The specimen is mnch worn, but not sufficient to obliterate the limits of the dorsal line, the position of which is indicated by a symonetrieal undulation in the abraded surface extending at a sharp angle backwarl and npward from the inferior dorsal angle; the posterior edges of the lateral walls are also evidently rounded by abrasion, so that it is didicult to inake a satisfactory restoration of the outline of these edges that will accord with the known form of the corresponding portion of the species with which the present spine is especially compared. Along the dorsal edge, which is broadly rombled into the moderately convex sides, several rows of densely thberenlated costar are still retained in a very perfect state of preservation, showing the transversely compressed tubereles with abrupt derlivity abore and steep slope below, delieately seulptured by vertical or radiating earina, the tubercles spaced by abont their own diameter vertically and those of one row separated from the contiguens row liy a mere lime; over the remainder of the surface the costar are absolete. The posterior face is quite convex, with a low, rombded median angulation, and, in the specimen, sharply romed into the lateral surfaces; there remains not a ristige of denticles along the postero-laternl angles. The posterior wall of the pulp cavity has been hrokn away, -it originally extended a distance of at last 7
or 8 centimetres from the tip before it opened out in the deep, trough-like excavation that extends thence to the proximal extremity.

As has already been remarked, the speciroen described may prove to be specifically identical with that noticed under the head of C'tenacanthus deflexus. But this relationship can be satisfactorily determined only from the examination of additional materials, both forms being at the present time known from unique and imperfect examples. The specimen here referred to was obtained by Mr. George B. Harrison, of Bloomington, to whom we are also indebted for other interesting contributions.

Geological position and locality: St. Louis limestone; Alton, Illinois.

Ctenacanthus Pellensis, St. J. and W.

PI. XXI, Fig. 2

The collection of Mr. Van Horne contains a fragment of a mediumsized spine of a species not hitherto noticed. The specimen preserves a length of about 15 millimetres apparently from near the dorsal line, and from the high opening of the pulp cavity and other characters to be noticed further on, it would seem to belong to the section of Ctenacanthi characterized by the great extent of the dorsal line. The fragment indicates a thick, gradually tapering form, obtuse wedge-shaped in cross section, the posterior side deeply excavated by the open trough of the pulp cavity, which is defined by the beveled edges of the postero-lateral angles. Lateral surfaces gently convex, somewhat sharply arched into the rounded or subangular anterior edge. The surface ornamentation is very intricate and elegant, consisting of numerous delicate longitudinal costæ more or less regularly diminishing in size from the anterior edge, more frequently bifurcated and deflected on nearing the postero-lateral angles where they cease at the exterior beveled edge; in front the costr present plain, rounded enameled crests spaced by narrower intervening sulci, their lateral edges studded with delicate downward curved transverse carinæ or tubercles; the third rib from the dorsal edge shows more or less distinct undulations, and the fifth rib is surmounted by small stellate tubercles more or less variable in the details of surface sculpture and disposition, their apices directed upward, and which apparently extend over the entire posterior flank of the lateral surfaces.

The spine under consideration is, perhaps, less intimately allied to Ctemucanthus gemmutus, St. J. and W., than with C. Nellexns herein described, hoth from the same formation. In certain fatures of surface ornamentation it resembles the former, but in genoral form it is apparently allied to the lattor; white in the details of ormanentation it possesses features readily distingnishing it from the described species of the genus. The fragment here alluded to is a rare acquisition at the locality where it was found, which has thms far afforded very few specimens of ichthyodorulites.

Geolongical position and lucality: St. Louis formation, enlcareons shates; Pella, Iown.

Ctexachethes grachlames, N. and W.

PI. XXil. Fig. 1.
 Pi. XIII. f.3.

The above species is, perhaps, the most frequently met with of al! the ichthyodorulites occurring in the St. Lonis formation. The fine exumple now illustrated, and which was kindly loaned us for examination by Dr. George Ilambach, belongs to the Shmmard collection in Waslungton University at St. Lonis, and is unquestionably the finest specimen of the species as ret discovered.

It is interesting to note the wide distribution of this ichthyodorulite. We have been farored with the loan of a specimen frem equivalent deposits at Grand Rapids. Michigran. ly l'rof. L. A. Strongr, which madoubtedly is identieal with the present species.

The fin-hpine origimally described mader the name Ieptacanthus? orcidentalix, N. and W.. and smbisquently referred by the anthors to the genms Acomdylaconthus, we are all but convinced is not specitionlly distinct from the abose spectes. The latter spims are doubthes the worn upper portion of that species, in which the tuberalation of the anterior or dorsal heel and the first few latimal (e)ntor are olsolete; the cont:0 themsthes amt the character of the puaterior denticles are madistinginatable from that oltained in the two lime examples of Cet. gracillimus. nlose partientarly referred to.
(imbogical pmsition amd laralitics: St. Louis formation: Bit. Loms. Ahmouri, Altom, Illinois, (ifoud haphis, Ahehigan.

Ctenacanthus cannaliratus, St. J. and W.

1'1. XXI, Fig. 3.

Fin-spine long and slender, very gradually tapering, moderately arched along the dorsal edge, much compressed laterally, posteriorly truncated, wedge-shaped in transverse section, pulp cavity small, elongate oval in outline and confined within the posterior half of the diameter of the spine. Posterior face slightly depressed and traversed by a faint median keel, postero-lateral angles sharp, the slightly raised inner border showing indications of moderately spaced, minute, laterally compressed denticles. Lateral surfaces gently convex transversely and regularly converging toward the sharply rounded anterior edge, and occupied by more or less regularly rounded costæ, intercostal furrows deep, about half the breadth of the ridges. The posterior costæ are enveloped in a smooth enamel coating; toward the front they show delicate flexuous sharpcrested longitudinal lines, and the second or third rib from the dorsal ridge becomes distinctly interrupted by transverse carinæ, at the same time retaining the thread-like lines; the remaining ridges are more and more strongly marked by the transverse carinæ, the anterior one strongest of all. The carinæ cross the ribs obliquely, culminating above in delicate sharp crests, most prominent along the anterior margin where they are ornamented by a few sharp radiating lines producing a pectinated or notched appearance in that side; the anterior ridge is prominent, somewhat compressed laterally, and marked by similar slightly asymmetrical transverse ridges, which, however, are equally developed in either margin, producing a faint undulation along the rounded crest.

The collection of Dr. Hambach affords a small section of one of the long, slender spines of Ctenacanthus different from any form heretofore derived from the Chester formation. The spine is intimately related to Ct. gracillimus, N. and W., of the St. Tıouis limestone, for which indeed it might be mistaken on casual observation.

However, searching comparisons with the latter species discloses certain details in ornamentation which may indicate for the Chester form a specifically distinct, though closely allied, character. While the form and general appearance of the latter is strikingly like the St. Louis spine, there is a marked dissimilarity in the character of
the costar ridges or tubercles, which are very appreciably more regu. lar and delicate than is the case in the St. Louis form. The magnificent example of the latter spine belonging to the Shard collection of Washington University; afford usually satisfactory details relating to the ornamentation of the exposed parts, also the changes in the superficial characters toward the distal extremity attributable to wear, the careful examination of which has led to the belief that the spine under consideration belonged to a distinct species.

Geological position and locality: Chester limestone; Chester, Illinois.

Ctenacamthus Buttersi, St. J. and W.

Pl. XXII, File. 2.

Fin-spine of medium size, stout, slightly arched along the anterior edge, gradually tapering, subtriangular in cross section; the imbed del proximal extremity much more rapidly tapers, gently depressed below the anterior shoulder, relatively more expanded and triangular in section, the dorsal line making a broad curve, the concomitant plain space reaching high up toward the distal extremity even beyour the point of enclosure of the pulp earity. The pulp cavity is unclosed posteriorly for only a comparatively short distance from the apex, where it opens out, forming thence a deep mugular trench in posterior face reaching to the proximal extremity: its section approximate that of the external walls, its dimensions and position being shown in the section diagrams introduced with the illustrations of the type specimen. The posterior face appears to be slightly convex transversely mad sharply romped at the lateral angles, the specimens not showing denticles, if indeed such exist. The lateral surfed we gently convex and more or less obtusely romped along the anterior edge which bears a single longitudinal rib; the exposed surface is regularly and somewhat strongly riled, the costa of moderate prominence and convexity, with narrow internal furrow n, annul chin fly bifurcating near the poitero-lateral angles, where also short implanted costio necur somewhat suddenly deflected in the narrow, plain belt bordering either posterior margin, atone which they abruptly "ese. The minerior ridges are interrupted by strong,
 hachwnd mut upward, the crest culminating above with gentler inPrior slope, and delicately sculptured by rebating carina; the
tubercles of the posterior ribs are similarly beautifully ornamented and distinguishable by their more oval transverse outline, relatively smaller size and acuminate crest which rises abruptly over the superior margins. The plain surfaces are striato-punctate longitudinally. The type specimen attains a length of 11.5 centimetres, the proportions as also the form being well represented in the illustrations.

The species above noticed is one of the handsomest of the genus. The specimen figured is the most perfect, but other fragments have been obtained indicating larger-sized spines equally strongly marked by the distinctive features of the species, and which readily distinguish it from any allied form known to us. In the deflected costæ along the posterior margins it bears some resemblance to Ctenxcanthus deflexus of the St. Louis limestone, but is otherwise markedly distinct from that species, as will be apparent on comparing the illustrations given of each respectively. This is one of the many interesting discoveries of the remains of fishes in our Coal Measure strata made by Mr. Alexander Butters, in whose honor the specific name is given.

Geological position and locality: Lower Coal Measures (roof shales over coal No. 5, Illinois general section); Carlinville, Illinois.

Genus ACONDYLACANTHUS, St. J. and W.

Acondylacanthus rectus, St. J. and W.

PL. XXVI, Fig. 2.
Dorsal ray of small size, slightly arched along the sharply-rounded anterior edge, moderately compressed laterally, and very gradually tapering throughout its length. Posterior face deeply grooved and traversed by a faint median keel, striato-punctate, and bordered by the relatively thick walls of the postero-lateral angles, which latter are rounded and bear close along their inner edge a row of comparatively strong, closely approximate, laterally compressed, downwardhooked denticles, which extend apparently from the apex (where they are worn obsolete) to the dorsal line, below which the pulp cavity issues. Lateral surfaces moderately convex transversely, rounded into the postero-lateral angle, and occupied by eight or more close, rounded costro separated by narrow intercostal furrow, those
in front bearing two rows of minute punctures and a faint median filiform line, the costa enveloped in a smooth coating of enamel without transverse or tubercular elevation. Near the middle of the exposed right side of the type specimen, one of the costre attains double the breadth of those in front, and immediately along the beveled posterior edges occurs a plain space apparently destitute of longitudinal ridges. Pulp cavity compressed ovate in outline, confined within the posterior half, and inclosed between thick walls. A specimen preserving a length of 65 millimetres has a breadth at base of 6.5 mm ., and a thickness of 3 mm .

We have met with only a single example of the above described ichtiyodorulite, which presents the greater portion of a small spine extending from the acute distal extremity to a point near the dorsal line, above which it is broken off. The specimen is embedded in a limestone matrix in such manner as to allow of the exposure of the right side and the posterior face; it is slightly distorted and fiactured across at several places, revealing the small pulp-cavity, and somewhat worn especially along the posterior half of the lateral surfaces. The anterior coste, however, are uninjured, and their condition is as noted above. The striking characteristics of the spine are its slight curvature, rigid outline, and the deeply channeled posterior face and closely set large denticles. The specimen has no near ally in the Coal Measure strata, and so far as it is possible to determine to the contrary, it presents all the characteristics ascribable to Acomlylacunthus.

Geological pinsition aml licality: Upper Coal Measures, ahove conl No. 9, Ill. Gen'l Sec.; the upper limestone nt La Salle, Illinois.

Aconnflacintites nimats, St. J. and W.

II. AXVI, Fig. 3.

Dorsal spine of medium size, rather strongly arelied along the anterior edge and somewhat rapidly fapering, laterally emmpresed, transverse section cuncate; posterior face narrow, deeply chameled; pulp cavity relatively small, aublenticular or compressed ovoid in transverse outline. Lateral surfaces moderately convex transwersely; sharply rounded into the anterior keel, ulso gently rombded and compressed posteriorly to the postcro-lateral augles, which hear a row of laterally compressed, strongly dombari-hoohell dentieles oncircled ut the hase by a cincture, more or less regularly spaced by lese than their own greater diameter, and extending twothirds or more the length of the exposed potion of the posterior fince. The
lateral surfaces are occupied by more or less regular, prominent, rounded, smooth enamel-coated costæ separated by narrow intercostal furrows, the costr comprised within the narrow compressed belt along the postero-lateral margins being more slender, and toward the base those occupying the body of the spine bifurcate, the anterior ridge especially sending off frequent slender branches to the dorsal line. The lower part of the spine shows distinct lines of growth exactly corresponding in curvature to the dorsal line and forming faint oblique annular ridges crossing the costæ at irregular intervals; otherwise the costæ are destitute of ornamentation, the occurrence of the oblique ridges mentioned not producing an effect comparable with that of the tuberculated Ctenacanthi. The dorsal line makes an angle of 40°, and less, with the anterior edge, somewhat sigmoidal in curvature, rising well up the postero-lateral angles; inserted base deep, surface irregularly striato-punctate. Length of spine 12 centimetres; greatest transverse breadth 13 milimetres.

The above described species is represented by a unique and nearly perfect specimen, which was discovered by Mr. A. S. Tiffany, to whom we are indebted for the opportunity to examine many interesting fish-remains from our Carboniferous and Devonian formations. In accordance with our understanding of the values to be ascribed to external characters in determining the limits of genera as represented by the fin-defenses of these early Selachians, the present spine does not reveal any feature markedly at variance with those ascribed to Acondylacanthus, with which we have identified it. Specifically, however, it offers tangible and most pronounced peculiarities, such indeed as may not readily escape notice even in fragmentary material, when sufficient remains to show its peculiar superficial features and the outline of its transverse section. Were it possible to decide the association of teeth and fin spines, we might in many instances find much less dissimilarity in the fin defenses of different genera than that indicated by their respective dentition. But lacking these facts relating to generic identity, we must seek to discover such characteristics as seem to have a common significance and by which these varied remains may be brought into such natural groups as appear most consistent with the features they possess in common.

Geological position and locality: Upper Coal Measures; upper limestone at Peru, Illinois.

Acondylacanthus? Mudgianes, St. J. and W.
PI. XXIV, Fig. 3.

A fragment from the Upper Coal Measures of Kansas represent. ing a medium-size ichthyodorulite is provisionally referred to the above genus. The specimen preserves a length of about 7 centimetres, apparently of the middle or lower portion of the spine, of which the entire anterior border is broken away, revealing the deeply excavated posterior face or the pulp cavity, bordered by a strip of the thick lateral walls near the postero-lateral angles. The transverse section of the spine is subtriangular, moderately arched along the anterior edge, lateral surfaces evidently gently convex transversely, and, so far as revealed by the remaining walls, ornamented by simple, angularly rounded longitudinal costar, separated by dcep, narrow intercostal grooves; the costio enveloped in the smooth enamel layer throughout. Beyond this the superficial fentures are not disclosed, and so little remains that the moderately rapid tapering of the spine is hardly more than an inference.
While the generic relations of the specimen above referred to wre by no means satisfactorily authenticated by the meagre characters that remain, its specific distinctness from any form occurring in the Coal Measures as yet discovered is unmistakable. The specifie designation is given in honor of the late Professor Bunjamin F. Mudge, the distinguislied educationist and director of the first State geological survey of Kansas.

Geological position and locality: Upper Coal Measures; llock Creck, Pottawattumie county, Kansas.

Acomylacanthes? xhuas, St. J. and W.

PI. XXVI, rise 1.

The uniquo exumple here ruferred to presents the larger portion of a large dorsal spine, probably between 20) and 23 centimetres in leugth, of which perhaps 5 centimetres of the distal extremity are broken short off, while the inserted portion shows widences of enrtuilment in the ronnded anterior margin. Besides, the snrface of the exposed portion of the spine is evidently much worn, the corta for the most part destitute of enamel, diselosing the irregularly pitted bony atructure in common "ith that of the intereostal groures, so that it is impossible to arrive at a satisfuctory conclusion in regard to the chmracter of the superficial ornamentation, npon which
even depends the determination of the generic relation of the spine. Specifically, however, the specimen is clearly distinct from any form heretofore obtained from the same formation, and, judging from such of the superficial characters as are actually discernible, the spine might be provisionally identified with Acondylacanthus.

The spine gradually tapers, and is moderately arched along the anterior edge, the inclination making an angle of about 45° with line of insertion, lateral surfaces gently convex transversely, and very gradually converging toward the obtusely-rounded anterior edge, slightly compressed to the postero-lateral angles, the posterior wall broken away, exposing the oval-shaped pulp cavity lying within the posterior half of the spine. The exposed lateral surfaces of the spine are quite uniformly fluted longitudinally, the costæ presenting comparatively narrow rounded ridges, rarely bifurcating or implanted, and spaced by about their own width by the shallow intercostal grooves, the anterior edge apparently occupied by a wider ridge, vestiges of the usual enamel layer are discernible but not accompanied by visible nodose ornamentation. The base was deeply embedded in the integument, and channeled behind by the continuation of the pulp cavity. The spine preserves a length of 14 centimetres; the antero-posterior diameter, just above the dorsal line, 2.5 centim., which, however, does not represent the actual diameter on account of the imperfect condition of the posterior face; lateral diameter at same point, 9 millimetres.

The typical forms of Acondylacanthus are more slender, and proportionately narrower, than the above described form, and should the latter prove to possess nodose costæ, it should be transferred to the genus Ctenacanthus. But as has been already remarked, in the absence of any such ornamentation and the apparent smooth plain costæ, its affinities are clearly with the above genus.
Geological position and locality: Keokuk limestone; government canal excavations at Keokuk rapids, near Keokuk, Iowa.

Gexes EUNEMACANTHUS. ${ }^{1}$ St. J. and W.

Fin-spines arched backward, laterally eompressed. Dorral border rounded and oceupied by a single plain, smooth ridge enameled throughout, and perhaps inbeveled along the lateral edges, which may be delicately seulptured. Lateral surfaces bearing longitudinal costie interrupted by transverse ridges. Inter-costal furrows plain, or occupied by irregularly dispersed tubercles. Posterior face truncated, the lateral angles bearing a row of denticles whose apices are direeted upward. Pulp earity npparently inclosed throughout the greater length of the exposed portion of the spine.

The typical and sole representative of the genus here recognized. is the dorsal spine, originally described hy Messrs. Newberry and Worthen, under the name Ctcuacunthus? costatus, from the Saint Louis limestone. Allied to Ctenacanthus, the genus is especially characterized by the presence of the plain dorsal ridge, the tubereulated inter-costal sulci, and the upward direction of the denticles arming the angles of the posterior face. The interrupted character of the costae of the lateral surfaces is preeisely of the same nature so prevalent amongst thougli not restricted to the species of Ctenwouthus; the tuberculose inter-costal grooves and the direction of the apices of the posterior denticles recall a relationslip with Asterontychins, Agass., from which, however, it is distinguished ly the transversely ridged and perhaps tuberculose character of the costie.

Jicnemacastin's costatles, (N. and W. ep.)
FI. XXIII. Fig. 2
 PI. XIl, \&.
Spine of mediun size, moderately arelaed aloug the dursal netge and somewhat rapidly fapering, laterally compressed, presenting a welge-nhapert transerse section. The anterior or dorsal ridge arehed transwerwely in about a quarter of a circle, hateral edges inherebed and marked with delientr, slary raised lines directed whiquly downward, the superior surface cuveloped in a polinhed smonth cmanel layer, oecupying a space about cqual to two of the aljoneat laterat costue. The lattor irregnlarly diminished in size

[^15]posteriorly, and are quite uniformly marked by slightly oblique transverse ridges slightly raised and culminating above in a low crest, the unworn slopes and depressions being beautifully sculptured logitudinally by delicate thread-like lines crossed by extremely fine transverse or oblique rugæ, the lateral edges similarly ornamented as noticed in the dorsal ridge; the nodose character of the transverse ridges increases toward the postero-lateral angles, however, retaining the details described, and in worn specimens the lateral costæ show more or less smooth crests, the extremities of the tubercles producing the pectinated or crenulated lateral borders observed in abraded specimens, like the original or type example of the species; the costæ increase by bifurcation and implantation below at frequent intervals. The intercostal sulci are perhaps one-half the diameter of the ribs, presenting a furrow of moderate depth, striato-punctate, that on either side of the dorsal ridge and others showing occasional irregularly dispersed tubercles ornamented precisely after the style observed in the costal tuberculations. Postero-lateral angles sharply defined, skirted by a narrow, faintly depressed outer belt of the posterior face, which rises into a low angular ridge defining the regularly transversely concave, moderately deep median furrow occupying more than half the lateral area, and which is coarsely pitted or striato-punctate; immediately along the outer side of the lateral crests occur a row of depressed, obovate, closely arranged tubercles, spaced by less than half their longer or longitudinal diameter, constricted basally and culminating in a low crest overhanging the upper border, similarly marked by delicate thread-like lines already remarked. The pulp cavity is of moderate capacity, compressed-oval in transverse section, and in an example of at least 150 millimetres in length it extends to within 20 mm . of the distal extremity, apparently opening out in the posterior face little if any above the dorsal line, which latter has a rather oblique upward course from the anterior dorsal angle, inserted base longitudinally striato-punctate, proportionately of considerable depth, perhaps equal to a fourth of the entire length of the spine.

The above description is founded upon two specimens: one, the original examined by Messrs. Newberry and Worthen, representing a small-size spine about 60 millimetres in length, showing one side with patches of the worn costr and dorsal ridge which apparently terminate at the oblique dorsal line; the posterior face is broken away. The other specimen preserves nearly 111 millimetres of a
spine, which probably attained a length of at least 150 mm ., and though somewhat distorted by pressure, it presents in a very satisfactory mamer the details of the surface ornamentation of a very handsome fin-defense, of which illustrations are given in the plate eited. 'Toward the tip in the older portions of the spine the lateral costie are worn nearly smooth along their crests, though retaining restiges of the transverse tubereulations in the peetinated lateral borders. Toward the base the coste show uniformly less effects from wear, where the transverse ridges are beautifully preserved. But throughout its entire length the dorsal ridge presents the same uniform plain, smooth surface, an effect which it would seem inconsistent to attribute to abrasion. The specimen also clearly shows the form of the posterior dentieles, as described, and which offer altogether an anomalous feature compared with the downwardlooked dentieles oecurring in the borders of the posterior face of typieal Ctenacanthus.

Gcological position and locality: St. Louis limestone: Alton, Illinois.

Gents Asteroptychilus, Agassiz.

Asterortychics teneldus, St. J. and W. PI. XXI, Fif. 4.

Fin spine small, gradually tapering and moderately arehed along the anterior edge, mueh compressed laterally, giving the transverse section a thin wedge-shaped outline, posterior face unknown. Lateral surfaces gently convex transversely, oceupied by regular, delicate rounded cosite, intercostal furrows, increasing in width toward the anterior edge, the posterior furrows ocenpied by in single striatopmetate line, the middle and anterior ones showing two or more such lines separated by thread-like earina, the wide depression heside the miterior keel bearing several of these intercostal striar and filiform ridges; the anterior keel, like the lateral costu, is enveloped in a smooth enamel layer. The pulp eavity occupies about half the diameter of the spine, presenting mn angular-ovate section, from which may the inferred the keeled eondition of the posterior face.

The above species is represented by a fragment apparently belonging to the middle portion of a small delieate spine, which shows tho anterior keel nud the lateral surface nearly to the postero-lateral angles; lut the posterior walls are broken nwny, exposing to view
the pulp cavity, the carinate matrix of which would indicate, perhaps, a rather prominent median angularity in the contour of the posterior face of the spine. Although we have no evidence of the denticles arming the postero-lateral angles, and even the wide furrow immediately adjacent the anterior keel is destitute of the characteristic tubercles, nevertheless the character of the striato-punctate intercostal furrows, as also the general facies of the specimen, leave little room to doubt its generic identity with Asteroptychius. It is at the same time readily distinguished specifically by its extremely compressed, slender form, in which respects it presents marked contrast with the congeneric form Asteroptychius bellulus, St. J. and W., from the Lower Coal Measures.

Geological position and locality.--Upper Coal Measures; calcareous shales overlying the coal at Topeka, Kansas.

Genus GLYMMATACANTHUS, St. J. and W.

Glymmatacanthus rudis, St. J. and W.

Pl. XXV, Fig. 1.

Dorsal spine large, slightly curved and somewhat rapidly tapering. Transverse section wedge-shaped, lateral surfaces slightly convex, meeting in the sharply rounded anterior edge, posterior face not shown. The lateral surfaces diverge at an angle of 30° to 35°, occupied by widish, rounded costæ, bifurcating below, separated by sharp impressed lines, and bearing along their crests irregularlyshaped, compressed, conical, closely arranged tubercles, which produce an exceedingly rough, rudely sculptured effect. The anterior angle of the spine is flanked by a pair of costæ, which support approximately opposite tubercles. The tuberculation more or less distinctly ranged in slightly oblique rows, ascending from the pos-tero-lateral angle to the anterior border, and rudely sculptured by radiating carinæ. Pulp cavity large, apparently confined within the posterior half of the spine, lateral walls thick.

The unique example described above represents a fragment from the middle of a large spine, both extremities and the posterior face being broken away. The superficial costation and tuberculation, as also the general form of the spine, accord well with the distinctive characteristics of Glymmatacanthus. The specinen further shows the
important character, not so clearly discernible in the fragment of spine upon which the existence of the genus was based, of the backward curvature, which removes it from the Drepanacanthi, with which it bears some resemblance in the character and disposition of the longitudinal ribs and tubereles occupying the exposed parts. Unfortunately the entire section of the spine is not preserved, so that we are still uninformed in regard to the contour of the posterior face. Specifically allied to the Kinderhook Glymmatacanthus Irishii, St. J. and W., it is readily distinguished ly the more rapilly tapering. smaller, transversely elongate, and much more prominent or eonical tubercles, which are also more closely ranged along the coste, and more widely spaced laterally than observed in the unique example of the earlier species just mentioned.

Geological position and locality: hcokuk limestone; Government canal exearations around the lieokuk rapids on the Mississippi, above Keokuk, Iowr.

Glymmatacastiles petrodoider, St. J. and W.

PI. XXV. Fig. 2.

A mere fragment of an ichthyodorulite, hardly a centimetre square, in the collection of Dr. Hambach, is probably referable to the above genus. The superficial ornamentation is so well preserved as to enable very satisfactory comparisons with other species of the genus, as also to show its distinctive features so far as they depend on the character of the surface ormamentation. The fragment represents a bit from the lateral walls inclosing the pulp cavity, and probably pertained to a spine of medium size. The longitudinal costit show only moderate convexty with the unal clongate irregular puncter; closely arranged nlong their crests are rows of strong comeal tubereles which crowd the surface, and which are deeply graven with sharp, strong carina, radiating from the uper and constricted at the base. The latter character, which, on account of the resemblance to the vertical plication of the eones of l'etrodus, suggests the specifie designation, ulso offers a marked and tangible contrast with the tubereular ornamentation ohserved in connection with the previously described species.

Geolngical pusition and locality: Chester limentone; Chester. Illinois.

Genus GYRACANTHUS, Agassiz.

Gyracanthus? cordatus, St. J. and W.

PI. XXVI, Fig. 4.

Spine of small size, very slightly arched along the anterior angle and gradually tapering, transversely triangular or cordate in section, Lateral surfaces broadly convex transversely, meeting in a narrow ridge forming an acute angle at the anterior edge; postero-lateral angles rounded and merging into the broad, moderately excavated posterior face. Exposed portion of the lateral surfaces ornamented with stellate tubercles closely set longitudinally, but showing a more or less distinct arrangement in oblique rows, with a forward and upward course. Pulp cavity relatively large, nearly circular in section, with a thin wall in the axis of the posterior face and thickened at the lateral angles, opening below in a deep furrow extending to the proximal extremity.

The description is based upon a single specimen, which shows about 5.5 centimetres of the length of a small spine. Both extrem. ities have been broken away, and the specimen is otherwise disfigured by abrasion, so much so, indeed, as to render the surface features indistinct over the greater part of the lateral surfaces, which appears to be closely covered with minute tubercles; however, these latter on one side reveal the oblique disposition characteristic, or at least prevalent, in Gyracanthus, and which, together with the contour of the posterior face, seem to warrant its reference to that genus. In the more abraded surface areas, where the tubercules are worn away and preserving only their bases, the obliquity is even more readily traced in exactly opposite direction to that characteristic of Gyracanthus; again, they have the appearance of irregular disposition, which, in connection with the rather marked keeled condition of the anterior edge, suggested resemblance to Geisacanthus. But the posterior face is quite unlike that of the latter genus, being simply excavated or channeled longitudinally and without the median angle or ridge characteristic of both Gyracanthus and Geisacanthus. In the distal half of the best preserved side, near the postero-lateral angle, the tubercles are laterally compressed and closely impacted at their sides, while considerably spaced ${ }^{\top}$ longitudinally, with a nearly transverse disposition; but. alse-
where, as already moted, they appear to have the oblique arrangement common to the genus to which the species represented by the abore specimen is provisionally referred, and of whieh it is, at the present time, the sole representative from the Carboniferous formations of the Upper Mississippi region. Principal Dawson has noticed representatives of the genus from the Carboniferous of Nova Seotin, and Dr. Newbery las deseribed some interesting species from the Lower Carboniferous of Ohio.

Gcological position and locality: Keokuk limestone; Keokuk, Iowa.

Genus PHYSONEMMEA. Agassiz.

Physonemus falcatus, St. J. and W.

P1. XXIV, Fľ. 6.

Dorsal spine of small size, comparatively marrow, gradually tapering, and very strongly arched along the posterior face, the tip reaching a point nearly vertical to the inferior extremity. Transverse section wedge-shaped, anterior edge making an acutely rounded angle, expanding below into the inferior shoulder, which is sharply constrieted at the dorsal line to the plain base. Lateral surfaces slightly convex, the bony surface showing an impressed line parallel with the posterior edge as usually observed under similar conditions of surface exfolintion.

The description refers to a unique example belonging to the enllection of Washington University. It represents nearly the entire outline, but as so frequently occurs with the small specimens of the genus, the posterior faee is worn away, the pulp eavity making a groove throughout its exposed extent. The exposed portion of the spine, also, is demuded of the original longitudinal costa and tuberculation, of which not a restige remains from which to infer the character of the superficial ornamentation. The strong eurvature of the spine recalls the forms to which the names Physoucmus purvulus, and Ph. Cestricusis, derived respectively from the lieokuk and Chester formations, have been given. It is, however, a much more slender form, not attaining near the breadth of the above named spines. It is, indeed, possible that it prove to be a young individual of the species Ph. Altonensis, St. J. and W., of the same formation, though the latter identity seems highly improbable.

Cicolomical prosition and locality: St. Lamis limestone: Sit. Louis, Missouri.

Genus DREPANACANTHUS, N. and W.

Drepanacanthus reversus, St. J. and W.
Pl. XXIV, Fig. 5.
Drepanacanthus reversus, St. John and Worthen, 1875. Ill. Geol. Surv., VI, p. 456, Pl. XIX., f. $5,6$.

A nearly perfect specimen of the above named species has lately been obtained at Alton. The specimen shows nearly the complete outline, but it is, unfortunately, too abraded to distinctly display the ornamentation, which was very clearly made out from the fragments upon which the original description was based. The specimen here referred to is reproduced in the illustrations. With the exception of the tip and the extreme end of the base, it is perfect, and is readily distinguished from the Keokuk species previously described by its stronger curvature, while the tuberculation is quite different, as has been already pointed out.

Geological position and localities: St. Louis limestone; Alton, Illinois, and St. Louis, Missouri.

Genus BATACANTHUS, St. John and Worthen.

Batacanthus? necis, St. J. and W.

Pl. XXV, Fig. 4.

The collection of Mr. Cox from the Keokulk limestone affords an example showing a length of some 7 centimetres from the distal extremity of a medium-size spine, the uncertain relations of which suggested the above specific designation. In size and general form, as displayed bedded in the limestone matrix, the spine is not unlike Drepanacanthus gemmatus, N. and W., of the same formation. It gradually tapers and is moderately curved to a point within a short distance of the extremity, where it is more rapidly narrowed and suddenly bent forward. But here the resemblance to Drepanacanthus ceases; instead of the wedge-shaped transverse section and defined posterior face, the present spine is elliptic or lenticular in section, anterior and posterior angles sharply rounded, the pulp cavity occupying the entire posterior half of the antero-posterior diameter of the spine, as indicated by the crushed-in thin lateral
walls, and in which respects intimate relationship with Batacanthus is disclosed. The lateral surfaces display numerous narrow longitudinal ridges, spaced by intervening shallow sulci, in width a little more than the diameter of the ridges, and irregularly, coarsely pitted. The costre apparently occupy the entire surface, save a belt extending along either side of the posterior angle, where they are obsolete, or at least less marked. Perhaps the most interesting fenture is that observed in connection with the tuberculation: The carina along the anterior edge sends off at irregular, ulternate intervals a strong low tubercle, which fills the adjacent sulcus, even crowding over upon or enveloping the next parallel ridge; similar, somewhat smaller tumid tubercles are dispersed with greater or less irregularity over the body of the spine, where, in the worn condition of the specimen, they often lave the appearance of occupsing the sulci, and toward the apex becoming confluent and stretcbing across two or more coste. The tubercles in the belt along the pusterior edge are relatively large, irregularly subconical, and ranged in two or three irregular rows; they are mostly worn quite smooth, but there are restiges of radiate ormamentation still visible.

Compared with previously described spines, the present form, perhaps, finds its nearest ally in the Batacanthus stellatus, of the lieokuk limestone. It is distinguished, however, from that species by its moro compressed lenticular transterse section and the distinct angulation of tho anterior and posterior edges; also, the distinct character and disposition of the tuberculation; the anterior edge, also, does not preserve the large, claw-like kenticles that appear in the above species,-hut these may have been lroken off, and even their bases obliterated lyabrasion. The distinct angulation of the anterior, and especinlly the posterior edge, presents an anomalous claracter. in contrast with the rounded borders of Batucanthus, as represented liy the species R. stcllatus (N. and W., sp., and R. laculiformis, St. J. and W.; lant the mique example before us is not sufficiently entire to permit comparisons necessary in order to determine its exact generic relationship, while such characters as are discernible bear marked resemblance to those attributed to Batacanthus.

Gcological position and lamalit!: lienkink limestone, upper beds; lieokuk, lowi.

Genus ORACANTHUS, Agassiz.

Oracanthus vetustus, Leidy.
Pl. XXIV, Fig. 2.
Oracanthus vetustus, Leidx, 1856. Jour. Acad. Nat. Sci., Phila., id series, ill. p. 161, Pl. 16, f. 1, 2, 3 .

Oracanthus consimilis, St.J. and W., 1875. Ill. Geol, Surv. VI, p. 476, PI. XXII, 1. 15.
The cabinet of Washington University, of St. Louis, contains a fine large spine, which, we have no doubt, is specifically identical with the form originally described by Dr. Leidy under the above designation, and which was subsequently noticed by the authors under the name Oracanthus consimilis. This specimen, however, affords a much more satisfactory idea of the superficial characteristics of the spine than it was possible to gain from the fragmentary material accessidle to us at the time the latter notice was prepared, and we are thankful for the opportunity of correcting and extending the notice of the species, which we owe to Dr. Hambach, of that institution, and to Dr. Leidy, who kindly secured the loan of the type specimen from the museum of the Academy of Natural Science.

The above mentioned specimen preserves a length of 15 centimetres, and a width of above $6 \mathrm{c} . \mathrm{m}$., the basal margin and a portion of the left side being broken away, exposing the large pulp cavity. The outline is that of a moderately backward-curved, rapidly-tapering, laterally-compressed cone, terminating in a sharp point; the anterior edge broadly and regularly rounded into the gently-convex lateral surfaces; the concave posterior border somewhat flattened and more sharply rounded, but without defined postero-lateral angles. The walls of the pulp cavity are moderately thick, presenting the greatest thickness along the convex anterior border, the lateral walls more or less crushed in by pressure. The exposed surfaces of the spine show obscure, irregular longitudinal costa, and are thickly studded with tubercles, which assume a variety of shapes, according to their position, and ranged in distinct, though interrupted obliquely transverse rows, which, in the right side, rise from the anterior edge upward and backward to a point near the middle, where they meet similar rows rising obliquely from the concave border in the opposite direction; but toward the base, where the tubercles are more crowded and larger, this oblique course is less conspicuous, while their longitudinal disposition is more or less distinctly marked throughout. Over
the lateral surface of this side the tubercles consist of simple, irreg-ularly-conical, radiately-sculptured prominences, their apices directed upward, sometimes coalescing in the oblique rows, forming irregular, sharp crests spanning two or more of the obscure costa. Similarly conflnent, larger tubercles ure met with in either border, where they form asymmetrically-oblique rows, with indications of a curving upward on gaining the left side, but presenting individual variation in the latter respect-no two specimens actually agrecing.

In regard to the correspondence of the characters of opposite tlanks of these spines, the fine example described by Dr. Leidy offers most conclusive evidence bearing on their dissimilarity, and which might readily confuse identifications based on unique specimens, showing opposite sides of the spine. The latter shows an individual of about the same dimensions as the example above alluded to, free from the matrix of "iron-gray limestone," revealing both sides of the spine, the anterior border of which, unfortunately, has been worn smooth obliterating the tuberculation. Compared with the St. Louis specimen, the right-side tuberculation shows approximately the same disposition in oblique rows ascending from either border and meeting in the middle where their continuity is interrupted. In the left side "the tubereles are arranged more regularly in longitudinal rows, and they evince a tendeney to become contuent in short transverse rows, which pursue an irregular waving course across the ray," with a general slight obliquity ascending from near the anterior border where the large contluent tubercles are rather suddenly deflected upward and cross the edge obliquely, diminishing as they approach the right tlank, precisely as shown in the fragment origmally described ly the authors (O. comsimitis, vol. VI, Pl. X.XII, f. lije). The posterior border is occupied by three or more longitudinal rows of tubercles, laterally compressed, the margin in the left side being occupied by a row of confluent tubereles obliquely cursed upward exnetly in the opposite direction to the similar row in the same side at the anterior border. The example noticed by Dr. Leidy is reported as laving been derived from the Carboniferous limestone of Missouri Territory: the exact formation and locality. however, are manown.

It may well be questioned whether theso spines occupied a dorsal rather than a Interal pesition on the body of the fish. Their tlanks. instead of presenting that absolnte nymmetry characteristic of dorsal rays, at lenst so far us relates in the tubereulose omamentation, show marked asymmetrical fentures which may be more in necord
with the latter interpretation of their relative position, or in pairs at the lateral line. We are, however, not sufficiently familiar with the species of the genus to be able to decide to what extent this asymmetrical character may be relied upon or whether it is persistent alike in all representatives of the genus. Oracanthus has already been compared with the dermal scutes of the Rays, and a rather heterogeneous variety of forms have been generically identified. In some particulars, as the oblique course of the tuberculation, they recall a resemblance to the Gyracanthi, but no vestige exists of the strong implanted base accompanying Gyracanthus, while their general proportions and outline are widely different. Neither are we prepared to affirm relationship with forms of teeth occurring in the same deposits, although their supposed affinities naturally suggest possible relations with Psammodus.

Geological position and localities: St. Louis limestone ; St. Louis, Mo., Alton, Ill., Pella, Iowa, \&c.

Oracanthus rectus, St. J. and W.

Pl. XXV, Fig. 3.

Dr. Hamback has obtained from the Chester formation a mere fragment of a spine, showing a narrow section of what appears to have formed part of the dorsal or anterior edge, which certainly possesses congeneric relations with the fossils from the Keokuk limestone, to which we gave the name Oracanthus ? obliquus (Ill. Geol. Surv., VI, p. 477, Pl. 12, f. 16), although they are respectively distinguished by well-marked specific characters.

The Chester specimen shows a spine with a very obtusely angular, nearly straight anterior (?) edge, the lateral surfaces diverging at a moderate angle therefrom, and studded with rudely sculptured, irregular-shaped conical tubercles, ranged in closely approximated vertical lines and more or less regular oblique rows, on the left side rising from left to right; along the anterior ridge the tubercles become transversely elongated, showing the same strong radiating plicæ and wide vertical spacing; the right side preserves a few small, scattered tubercles, belonging to two or three rows, and which appear to form oblique rows ascending in the opposite direction to that observed in the left side. The tubercles present a more abrupt slope above, and at one part of the fragment they appear to become confluent along one of the lateral costæ, forming an irregular,

Jagged crest; their worn apices show distinct punctate structure. intimately resembling the eroded coronal surfaces of Orolus and other teeth occurring in these deposits, the intertubereular spaces showing the ordinary striato-punctate markings of ichthyodoruhtes. The fragment does not reveal the thickness of the walls nor any part of the pulp eavity; it evidently belonged to a medium-size spine.

Compared with Orucanthus obliquus of the Feokuk limestone, the present form is distinguished by its more rigid outline and the more regular distribution of the tubercles. In both forms the oblique transversely elongate tubercles are asymmetrical; in other words, the crest culminates in a submedian apex along the angularly romnded horder, from which the longer lateral crest declines obliquely upward and backward in the keokuk spine on the right side of the anterior angle, and in the present form on the left side of the less angularly rounded anterior border. We are, however, inclined to regard the unique example of the keokul species as pertaining to the anterior edge of the spine, and the Chester form here alluded to as possibly belonging to the opposite or posterior edge. Examined in the relative positions thus indicated, the direction of the obliquity of the transverse rows of tubercles in the unique represintatives of the species mentioned, merely indicate the opposed positions of the respective fragments, in both of which the oblique transwerse disposition of the tubercles is essentially the same. If the relative position of the fragment of the present spine is correctly inferred, it differs from the form occurring in the St. Louis limestone, O. cetustus. Leidy, in the much less marlied obliquity of the transersly elongate tubercles near the anterior border, in which latter respeet. however, the latter species shows rariations approaching the condition observed in the present spine. But the relations of these spines can only be determined from the exmmination of more complete and better preserved individuals in the case of the present species and that foom the licohuh formation.
cicolopical pesition and locality: Chester limestone; Chestur, Illinois.

Genus PNIGEACANTHUS, St. J. and W.

Pnigeacanthus trigonalis, St. J. and W.

Pl. XXIV, Fig. 4.
Dormal defense as seen from the side trigonal in outline, laterally much compressed, walls thin, terminating in an obtuse apex projecting backward about 10° past a point vertical to the posteroinferior angle, exceedingly attenuated inferiorly with signs of a plain marginal border that was buried in the integument. Anterior edge gently arched, slightly curved toward the inferior angle, rounded into the gently convex lateral surfaces; posterior border apparently a little more compressed, gently concave vertically, and studded with relatively strong, irregular, rudely sculptured tubercles. The anterior border is armed with large irregular vertically elongate depressed tubercles, which seem to lie immediately on the left flank of the border, forming a nearly continuous undulating ridge. The tubercles, so far as may be determined by the specimen, are markedly asymmetrical, the slope facing the anterior edge being abrupt and obscurely vertically sculptured, the opposite side presenting a wider gentle declivity. The lateral surfaces show more or less distinct longitudinal costr, irregularly striato-punctate, and studded with irregular stellate tubercles whose apices are directed upward; the tubercles, as seen in the left side, vary in size and present a rude sort of transverse disposition, especially toward the anterior border where occasional large tubercles occur, but irregularly dispersed as relates to the longitudinal costro. The inner surface of the lateral walls is smooth with a fine wavy striato-punctate structure. The spine may not show the perfect outline of the inferior margin, but the preserved portion in the flattened condition of the specimen measures about 25 millimetres from the antero-to the postero-inferior angle; height of posterior border, 20 mm . ; ditto of anterior border at least 33 mm .

The collection of Mr. Alexander Butters contains the unique and nearly entire example upon which the above description is based. The specimen is embedded in a limestone matrix in such manner as to reveal only the one side, and part of this is broken away exposing a corresponding area of the inner side of the opposite wall, the thin inferior portions of the walls being brought into cluse contact by pressure. 'l'he specinien is unquestionably closely allied to
the Keokuk form, Pnigeacanthus prigeus ${ }^{1}$ (N. and W., sp.), from which it is distinguished by its somewhat stouter proportions, less deeply concare posterior border, and the peculiar tuberculation of the borders. The general character of the tuberculation of the lateral surfaces is much the same in hoth forms, lut in the present one the tubercles are relatively smaller and less crowded.

Geological position and locality: St. Lonis limestone; Alton, Illinois.

[^16]
SYSTEMATIC AND CHRONOLOGICAL LIST

OF FOSSIL FISHES DESCRIBED IN THE PRESENT VOLUME.

COCHLIODONTID Æ゙, Owen.
Page.
Psephodus, Agassiz, 62

- obliquus, St. J. and W., Kinderdook, 66
- placenta, (N. and W. sp.), Kinderhook, 69
- symmetricus, St. J. and W., Kinderhook, 71
-- latus, St. J. and W., St. Louis, 72
- lunulatus, St. J. and W., Chester, 74
Teniodus, L. de Koninck, 75
- fasciatus? (N. and W.sp.) Keokuk, Warsaw, St. Louis, 76
- regularis, St. J. and W., Warsaw, 77
- obliquus, St. J. and W., Chester, 78
Vaticinodus, St. John and Worthen, 80
- vetustus, St. J. and W., Kinderhook, 82
- discrepans, St. J. and W. Upper Burlington, 83
- ? simplex, St. J. and W., St. Louis, 84
- ? similis, St. J. and W., Chester, 86
- ? carbonarius, St. J. and W., Coal Measures, 88
- ? lepis, St. J. and W., U. Coal Measures, - 88
Deltoptychius, Agassiz, 89
- primus, St. J. and W., Upper Burlington, 93
- Wachsmuthi, St. J. and W., Keokuk, 93
- Varsoviensis, St. J. and W., Warsaw, 96
- expansus, St. J. and W., St. Louis, 98
- nitidus, (Leidy sp.), Chester, 99
Page.
Stexorrenopts, St. Johm and Worthen, 100
- planus, Sit. J. and W., LPper Burlington, 1 (r)
- sp. undet., Keokul. 105
- clongatus, St. J. and W., Warsaw, 10;
- partulus, (N. and W. sp.), St. Louis, 107
Cimronones, St. John and Worthen. 109
- Springeri, St. J. and W., Upper Burlington, 11:
- antiquus, St. J. and W., Lower Burlington. 116
- tribulis, St. J. and W.., Kicokuk, 117
- liralus, St. J. aud W.. St. Louis. 119
Cochlamos, Agassiz, 1:3
- I'an Hornii, St. J. and W.. St. Louis, 120
- obliquus. St. J. and W.. St. Louis, 126
- Leidyi, St. J. and W.. Chester. 127
DeZtocZopsis - ? Uiulicutus, St. J. and W... Upper Burlington. 169
- ? Kcoluk, St. J. and W., Keokink, $16: 9$ $16: 9$
- ? contexus, St. J. and W., I. B. and Kecokuk, $16!9$
Tomonus, Agassi\%, 171
- ? limitaris, St. J. and W.. l'pper Burlington, 173
Xistroncts, Agassiz, 17.5
- simpler. St. J. and W.., Upper Burlington, 1is
- inconditus, St. J. and W... lieohuk. $17!1$
- imilutus, St. J. and W., St. Louis. 181
- rerus, St. J. and II., Chester. 1.1
- bellulus, St. J. and W., Coal Measures. $15: 3$
Sampabous, Newberry and Worthen. 144
- complamatus. (N. and W. ap.). Upper Burlington, 1 N
- lercissinurs. N. und W.. Keokink, 1ani
- sp.? Warsaw. $18 i$
- spatulutus, N. and W.. St. Lonis. 18:
Orthorlambobes, St. J. and II.. 1! (1
- curtmarius. (N. and W. sp.). Coal Measmres, $1!+1$
- concerus, St. J. and W.. Coal Measures. $1!!3$
- Noro Mexicanus, St. J. and W., Lower Carb. $1!5$
Po:chains. Agasm\%. 131
- Voarsmbichsis, St. J. and W... Wiarsaw. 1:31
- Sit. Intentici, St. J. and W.. St. Lomis, 13:
- Crstriensis, St. J. and W., Chester. $1: 3$
- Wortheni, St. J., Chester, $1: 3 i$
- Springeri, St. J. and IV.. L. Carboniferons. 1is.
- curlmurius. St. J. and W., Coal Measures, $13!!$

VERTEBRATES.

Page.
Deltodus, Agassiz, 141

- latior, St. J. and W., Keokuk, 145
- cinctulus, St. J. and W., Warsaw, 146
- trilobus, St. J. and W., Warsaw, 148
- occidentalis, (Leidy sp.), Keokuk, 150
- parvus, St. J. and W., St. Louis, 151
- internedius, St. J. and W., St. Louis, 153
- Powellii, St. J. and W., Upper Carboniferous, 154
- propinquus, St. J. and W., Coal Measures, 156
Deltodopsis, St. John and Worthen, 158
- afinis, St. J. and W., Warsaw, 160
- St. Ludovici, St. J. and W., St. Louis, - 161
- angustus, (N. and W. sp.), Chester, 163
- ? convolutus, St. J. and W., Upper Burlington, 165
- ? inflexus, St. J. and W., Keokuk, 167
- ? exornatus, St. J. and W., Warsaw, 168
- Biestreatwo sigion, Wh, Bealush/6 169
- ? Keoluek, S69.\% M, 26.13. mod loertuale, 1,62
PSAMMODONTID \mathbb{E}, L. de Koninck.
Psammodus, Agassiz, 197
- Springeri, St. J. and W., Upper Burlington, 202
- tumidus, St. J. and W., Upper Burlington, 205
- turgidus, St. J. and W., Upper Burlington, 206
- Lovianus, St. J. and W., L. and U. Burlington, 207
- glyptus, St. J. and W., Upper Burlington, 209
- grandis, St. J. and W., Keokuk, 211
- plemus, St. J. and W., St. Louis, 213
- calatus, St. J. and W., St. Louis, 217
- crassidens, St. J. and W., St. Louis, 218
- angularis, N. and W.. Chester, 222
- reticulatus, N. and W., Chester, 224
Copodus, Agassiz, 227
- Van Hornii, St. J. and W., St. Louis, 229
- pusillus, St. J. and W., Chester, 231

ICHTHYODORULITES.

page
Ctenacanthus, Agassiz, 233

- Corianus, St. J. and W., Keokuk, 233
- deflexus, St. J. and W., St. Louis, 234
- Harrisoni, St. J. and W.. St. Louis, 236
- P'ellensis, St. J. and W'., St. Louis, 237
- gracillimus, N. and W., St. Louis, 238
- camnalirotus, St. J. and W., Chester, 239
- Buttersi. St. J, and W., Coal Measures, 240
Acondyacantues, St. Jolin and Worthen, 211
- rectus, St. J. and W., U. Coal Measures, 241
- nuperus, St. J. and W., Coal Measures, 212
- ? Mud!!ianus, St. J. and W., Coal Measures, 244
- ? xiphias, St. J. and W., Keokuk, 24
Evemacastues, St. John and Worthen, 211
- costutus, (N. and W. sp.), St. Louis, 2.46
Asteropticues, Agassiz, 245
- tencllus, St. J. nnd W., U. Coal Measures, 248
Ghmmatacanthus, St. John and Worthen, $24!$
- rmlis. St. J. and W., Keokuk, $24!$
- petrodoides, St. J. and W., Chester, 250
Gybacastues, Agassiz, 2.51
-- ? cordutus, St. J. nud W., Keokuk, 2.51
Puysonemus. Agassiz. 29
- fulcutus, St. J. and W., St. Louis, cris
Dhepasacanturs, Newberry and Worthen. 253
- rewersu, St. J. and W., St. Lonis, $2 \mathrm{Q}: 3$
Batacasties, St. John and Worthen, 2.3
- ? uccis. St. J. nud W., Keokuk, 2.53
Obacantines, Agassiz, 2.55
- vitustus, Leidy, St. Louis. 255
- rectus, St. J. and W.., Chester. 2.5
Psugacastins, St. John mid Worthen. 2 25!
- trigomalis, St. J. and W.. St. Loulis, 259

PALEONTOLOGY OF ILLINOIS.

SECTIONII.
DESCRIPTION 0F F0SSIL INVERTEBRATES.

By A. H. Worthen
AND
A. H. Worthen and S. A. Miller.

INTRODUCTORY REMARKS.

For the use of several of the crinoids described and figured in this volume, I am indebted to the liberality of Mr. L. A. Cox, of Keokuk, Iowa, who, by his zeal and indefatigable industry as a collector, has brought together one of the finest collections of these beautiful fossils ever obtained from the Keokuk limestone, and a part of them were found in a higher position in the Keokuk group than that from which this class of fossils has usually been obtained. These came from a sandy stratum only a few inches in thickness, situated near the dividing line between the geodiferous shales of the Keokuk group and the overlying Warsaw beds, which form the upper part of the river bluff about a mile below the steamboat landing, where the fossils were obtained.

Another very interesting and productive locality was found by Mr. N. K. Burket, of Keokuk, in the Keokuk limestone at Hamilton, Illinois, and from this a part of the following species were obtained. These came from a cherty layer some three or four inches in thickness, intercalated near the top of the quarry rock at Hamilton, some five or six feet below the base of the geodiferous shales. These two very limited horizons have furnished all the Keokuk species, with one or two exceptions, that are described and illustrated in the following pages.
The species from the St. Louis and Chester groups were all collected by the author, and form a part of the Illinois State Collection.
A. H. W.

PAL.FOCRINOIDEA.

Genus Poteriocrinus, Miller.

Poteriocrinus coxanus, Worthen.

PI. XXVII, Fig. 1.
Poteriocrinus Coxanus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 4.
Body above the medium size, obconic, gradually swelling from a truncated base to the summit of the radial plates, where it is about one-fourth wider than high. Basal plates as wide, or a little wider, than high, forming by themselves a low pentagonal cup, about twice as wide as high. One subradial on the anterior side is longer than wide, the others about as wide as long, all pentagonal, there being but two distinct angles on their lower margins.
Radials nearly once and a half as wide as high on the anterior rays, curving in on their lateral borders so as to give a pentalobate character to the upper part of the body.
Brachials two, the first quadrangular, and the second pentangular, and both more than twice as wide as long, the second supporting on their sloping sides the first divisions of the rays. Only two of the rays and a part of the third are to be seen, the others being concealed in the rock. In one of these, probably the anterior ray, a second bifurcation takes place on the fifth plate in each division, and the outer branch is seen to divide once more about the tenth plate, and the inner division on the twenty-fourth to the twentysixth plate, beyond which the arms of this ray are not preserved.
On the right antero-lateral ray the second bifurcation takes place on the fourth plate in each division, the outer branch dividing twice more on the eighth and twenty-second plate, and the inner one twice on the twenty-fourth to the twenty-sixth plate, beyond which they are not preserred. This gives twelve visible arms to this ray, and it is yuite possible there were other divisions beyond, as the arms extended about two inches beyond the last divisions that are pre-
served. The arms are stout, and composed of rommded, short, nearly parnllel plates, that give off delicate pinnules from the ir inner margins. The upper part of the ventral tube is exposed by the partinl removal of the arms, showing that this organ was trumpet-shaped. and crowned with heary hexagonal plates, produced at the center into rather sharp nodes, while below the plates are thinner, and crossed by about three sharp ridges, that are most prominent in the center of the plate. Similar ridges are also visible on the margins of some of the summit plates. Anal plates untinown. Cohmm round and rather stont, composed of thin, even plates. Length of body and arms 5 s inches, breadth at the summit of the ventral tube 23 inches, length of colnmn 75 inches.

This magnifieent specimen of Poteriocrinus, the finest ever obtained from the Kenkink limestone, I take pleasure in ledieating to Mr. I. A. Cox, of Keokuk, Iowa, to whom it belongs, in recugnition of his zeal and mutiring industry in collecting the erinoids and fishes of that vieinity.

Position and locality: Upper part of the Kenkuk limestone, Hamilton, Ill.

Mr. J. A. Cox's eollection.

Potcriozninus burketi, Worthen.
FI. Kifill Fig. 8.
Poteriocrinus Burketi, Whituen, Yeloruars, 1 Nse.
Liblifitn No, 1 , of the Imnois stato Musemon of Natural Hinlors, p. 3.
Body small, enp-shaped betow the summit of the first radial plates. Basals small amd concealed by the first joints of the colmm. Subradial plates slightly protuberant from the depression of their upper angles, curving below into the basal concavity.
liadials prutagonal, about once and a half as wide as long. Brachials two to each ray, the first quadrangular, and the secomb the same form as the rulinls, and supporting on their upper, sloping sides the first division of the arms. The arms after the first division on the second brachial plate, divide again on the sisth to the nintly plate, beyond which they contime simple to their extromitien, making four urms to each ray. Arms composed of slightly wedgeformed plates, about as long as whe below the last bifureation, but proportimately longer and more zigzag in their arrangement whore. giving off ntroug pimmles ultermitely from their longest sides. Anal plates small, the first one apparently resting hetween fwo of the fulh-
radials, and this is succeeded by a double series of minute plates that form the lower extremity of the ventral tube. This organ is composed of minute plates, is balloon shaped, and shows a small opening about two-thirds the distance from the base to the summit. Column at the top composed of round, nearly uniform plates, but a short distance below thicker joints are intercalated at irregular intervals. It decreases in diameter nearly one-half in a distance of two inches from the top, and has delicate cyrrhi attached on either side at irregular intervals.

The depressions at the angles of the body plates, give to the exterior of the cup-shaped body a somewhat rough appearance.

This species is named in honor of Mr. N. K. Burket, of Keokuk, Iowa, who discovered the interesting locality at Hamilton where this and several other new forms have been obtained.

Position and locality: Top of the Keokuk limestone, Hamilton, Illinois.

Nos. 260 and 402 of Mr. L. A. Cox's collection.

Poteriocrinus tenuidactylus, Worthen.

Pl. XXVIII, Fig. 13.
Poieriocrinus tenuidactylus, Worthen, February, 1882. Bulletin No. 1, of the Illinois State Museum of Natural History, p. 6.

Body obconical, length and breadth to the top of the radial plates about equal. Basals well developed, expanding upward from the column, forming a pentagonal cup rather wider than long. Subradials about as wide as high, the one on the posterior side supporting in part two quadrangular anal plates, that are succeeded by a double series of smaller plates of the same form, forming the base of the ventral tube.

Radials pentagonal, wider than high. Brachials four to each of the posterior rays, three of them quadrangular and the fourth pentangular, supporting on its upper sloping sides the first divisions of the rays. The arms in the left posterior ray, after dividing on the last brachial, give off a branch from each division, about the twelfth to the twentieth plate, beyond which they are simple as far as can be seen, giving four arms to this ray.
The arms are long and slender, composed of rather long, rounded joints, slightly zigzag in their arrangement, and give off rounded pinnules from their projecting sides.

The rentral tube, of which some traces can be scen an inch above the base, nppears to have been cylndrical, starting with the two long quadrangular anal plates that rest on the posterior subradial plate, the succeeding plates decreasing upwarl in size.

Column at its upper extremity rather large, and composed of extremely short joints, elosely ancyblosed together.

Position and locality: Upper part of the geode bed, one mile below Keokuk.

No. 202 of Mr. L. A. Cox's colleetion.
Poteriocminc: Lowensis, Worthen.
Poteriocrinus Ioremsis. Wontame. February, IWh
Bulletla No. I, of the Illinols State Museum of Naturai Histors, r. 6.
Body short, alout once and a half as wide as high. Basal plates small and hidden liy the first colummar joints. Subradials small, slightly protuberant at the center and depressed at the angles. Radials twice as wide as long, pentagomal, depressed on their lower lateral borders, with a tolerably well defined suture between them and the brachials.

Brachials two, the lirst quadrangular, twice as wide as long, the second pentagomal, giving support on their sloping angles to the first divisions of the rays, and slightly protulierant at their upper angles.

Arins after the first division on the secomd brachial in two of the rays, the left posterior and right antero-lateral rays divide again on the fifth to the seventh plate, beyond which they are simple as far as they have been preserved. On another ray, which may be the anterior one, the first bifureation takes place apparently on the fifth brachial, and the second one on the third plate above, as near as can be letermined from the crushed condition of this ray. Anal plates muknown.

Colmm romm, eomposed of rather thick joints near the boty, becoming altemately thinmer below.

This species is related to Pot. (Scaph.) Gibsoni of White, but differs from it in the number and mode of bifurcation of the arms. and also in the form and proportion of the phates composing the booly.

Prasition and locality: Upper shates of the geode bed, one mile thelow limhuk. Jown.
No. iti of Mr. L. A. Cos's cullection.
F'rom an owersight this specimen was not figured.

Poteriocrinus hamiltonensis, Worthen.
Pl. XXVII, Fig. 9.
Poteriocrinus Hamiltonensis, Worthen, Feb. 1882. Bulletin No. 1, of the Illinois State Museum of Natural History, p. 7.
Body short, forming a low, shallow cup about twice as wide as high. Base concave, the basal plates being hidden by the first columnar joints. Subradials of nearly uniform size, four hexagonal and one heptagonal, all curving below into the basal concavity. Radials, four of them nearly twice as wide as long, pentagonal, the one on the anterior side smaller, and all indented at their lower angles to correspond with the similar indentations of the upper angles of the subradials. A somewhat gaping suture exists between the radial and brachial series. Brachials, one to each ray, longer than the radials, and four of them sharply angular above for the support of the arms. On the anterior ray the brachial is constricted above to about onehalf its width below, and on its upper truncated margin supports the plates of a single arm, making nine arms altogether for this species. Four or five anal plates can be seen arranged as usual in this genus. Arms composed of short quadrangular plates, that give off strong pinnules, the joints of which are twice or more as long as wide. Column, unknown.
This species is nearly related to the little form to which we have given the name P. penicilliformis, but differs from that in its more broadly cup-shaped body, shorter brachials and arm-plates, and also in the pit-like depressions at the angles of the body-plates. The body alone could not be easily distinguished from Pot. (Scaph.) unicus of Hall, while it is entirely unlike that in the number and arrangement of the arms.

Geological position and locality: Upper part of the Keokuk limestone, Hamilton, Illinois.

No. 176, Mr. L. A. Cox's collection.
Poteriocrinus Orestes, Worthen.

$$
\text { Pl. XXVII, Fig. } 3 .
$$

Poteriocrinus Orestes, Worthen. Feb. 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 7.
Body depressed, cup-shaped, about twice as wide as high. Base concave, basals small and concealed under the first columnar joints. Subradials as wide or a little wider than high, three hexagonal and two on the posterior side heptagonal, all curving into the cavity
below. Radials about twice as large as the smaller subradials, four of them pentagonal and one on the right posterior side heptagonal, counting three angles below.

Brachials, five to the anturior ray, the first one of which is as wide below as the first radial, but constricted abowe to correspond with the narrow, succeeding plates, which are quadrangular and narrowly rounded on their external surfaces. The fifth brachinl is angular above, a little wider than those below, and gives smport on its upper sloping sides to the first divisions of the ray, which thence continue simple to their extremities.

The four other radials have each a single brachial, which is as wide as the radial on which it rests, with a gaping suture between, all pentangular, and supporting on their sloping upper angles the first divisions of the rays.

The left antero-lateral ray, after its first bifureation on the brachial phate, divides again on the sixth plate above, and the outer division twice more on the seventh or eighth plate, while in the right antero-lateral both divisions bifureate on the sixth plate, and the outer division again on the sevently or eighth phate, making five divisions to this ray, which is probably the mormal mumber in all the rays except the anterior one, or twenty-two in the complete orgamism. The arms are composed of rounded, wedere-formed joints, giviag off strong pimules alternately from their longest sides: pinnules composed of rounded joints alout twice as long as wide.

Anal plates, five visible. 'The first one is pentagonal, and reats between the upper angles of the two subradials and partly under the lower angle of the right posterior radial. The seomd anal is larger than the first, hexagomal, and rests upon one of the sulbradials, and extends alove the top of the left posterior radial. The third anal is hexagomal, about as large as the first, on which it rests, and it extents nearly half its length alove the top of the poterior radial on the right. The fourth and fifth amals are smaller, the one resting on top of the secomd ambl and the other on the third. Column unknown.
(icolonical pusition and lucalit!: Top of the geoheferons shates of the liwohnk kromp, one mile below kenkuk. Inwa.

Nos. 181 : 1 ad 213 of Mr . I., A. Cox's collection.
I tahe pleasnre in dodieating this beantiful species to mes worthy fricud and co-laborer, Mr. Orestes St. John.

Poteriocrinus latidactylus, Worthen.
Pl. XXVIII, Fig. 6.
Poteriocrinus latidactylus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 8.
This interesting species is only represented by a single imperfect specimen, showing the posterior side of the body, and a part of three of the rays.

Body mamillæform, once and a half as wide as high to the top of the first radials, and composed of smooth, closely joined plates. Basals unknown. Subradials nearly as large as the radials, length and breadth about equal, four of them hexagonal counting three angles below, the left posterior one larger than those on the anterior side and heptagonal. Radials pentagonal, once and a half as wide as high, and truncated straight across their upper margins for the reception of the brachials. These are of the same form and a little larger than the radials, and support on their upper sloping sides the first divisions of the rays. The arms are composed of broad, short, quadrangular plates, resembling closely the arms of Woodocrinus and Bursacrinus. In two of the rays which are partly preserved in the specimen before me, a second bifurcation takes place on the fourth plate above the brachials, beyond which the arm structure is unknown. The first arm-plates in the two posterior rays are about twice as long as the succeeding ones.

Three anal plates are visible; the first one is larger than the others, and rests between the upper angles of the two posterior subradials. The second rests on top of the left posterior subradial, and the third, which is smaller than either of the others, rests upon the first, and above this the lower margins of two or more succeeding plates can be seen.
Column stout, covering the entire width of the base, and composed at first of nearly equal joints that decrease in diameter below, and pass into a series of alternately thick and thinner joints as the distance from the base increases.
Position and locality: Upper part of the Keokuk limestone, Hamilton, Illinois.

No. 401 of Mr. L. A. Cox's collection.

Pothriocrines renichlifohme, Worthen.

1'l. XXVIII, Fig. s.

I'oleriocrinus penicillif rmis, WCrthen, February. Ihed Bulletin Nu. 1. of the lllinols State Nuseum of Natural lllst ory. P. §.

Body small, forming below the summit of the radial plates a low cup, ubout twice as wide as ligh. Basals, and the lower angle of the subradials, concealed under the first eolumnar joints.

Subradials about as long as wide, exeept the one on the poste rior side, whieln is a little longer than the others. Indials about twice as large as the hasals, wider than long, and truncated squarely across their upper margins for the reception of the hrachials. Brachials twice as long as wide, four of them pentagonal, constricted in the middle, and supporting two arms which continue simple to their extremities. The anterior ray has a long quadrangular brachial plate supporting a single arm, making nine arms altogether for this species.

Arms composed of rounded joints that are generally longer than wide, but slightly wedge-shaped, giving off strong pinnules from their longest sides.

Column slightly larger at its junction with the body than below, composed of alternately thicker and thimer joints.

First anal plate longer than wide, pentagonal, and rests partly between two of the subradials and mider the right posterior radial. Above this a double series of small anal plates can be seen. the first of which rests on top of the left posterior subradial, and the second on the first anal.

This little erinoid is related to that described by Meck and Worthen in the second rolume of the Geol. Survey of lllineis, p. 2ist, p1. 17. fig. 6, muder the name of Scaphiocrinus dicadactylus, hint differs from it in the proportions of the body plates, and especially in its hrachials and arm plates.

Pusition and locality: Upper part of the licolnk limestone. Hamiton, Illinnis.

No. 26. of Mr. 1. A. Cor's cullection.

Poteriocrinus tentaculatus, Worthen.

PI. XXVIII, Fig. 11.

Peteriocrinus tentaculatus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 10.
Body of medium size, depressed cup-shaped, more than twice as wide as high. Base depressed, basal plates small and concealed in the basal cavity. Subradials as long or longer than wide, three hexagonal and two on the anal side heptagonal.

Radials about twice as wide as long ; heptagonal, and truncated squarely across their upper margins for the reception of the brachial series.

Brachials two, the first quadrangular, and the second pentangular, both as wide or a little wider than the radials; the second supporting on its upper angles the first divisions of the arms. The arms are composed of wide, short, quadrangular joints, and bifurcate the second time on the fourth and sixth plates above the brachials, beyond which they are all simple to their extremities, making four arms to each ray. Above the second bifurcation the plates of the arms gradually diminish in width, and become slightly wedge-formed, giving off strong pinnules from their longest sides.

Anal area proportionately large, with nine small anal plates visible. The first is pentagonal, and rests between two of the subradials and partly under one side of the right posterior radial. 'I'ke two succeeding anals are larger, placed side by side, their lower margins resting, the left one on the truncated margin of one of the subradials, and the other between the upper angle of the first anal and the left margin of the first radial to the right. The next series of anals consists of three smaller plates placed side by side, and these are succeeded by three more that are not fully exposed.

Column unknown.
Position and locality: Upper shales of the geode bed, one mile below Keokuk, Iowa.

No. 403 of Mr. L. A. Cox's collection.

Potehocrine's occhentadis, Worthen.

11. XXYII. Fig. 2.

Polerincrinus, occideutalis, Wonthes. Fehruars. 1 tion.
Dullifln No. I, of the Illinols state 3luseum of Satural Illitors, finke 10.
Body cup-shaped, about twice as wide as high. Base depressed, the basals small and hidden under the first columnar joints. Subradials hexagonal and heptagonal, the lower angle curving under to form a part of the basal concavity.
Radials pentangular, nearly twice as wide as long, with a gaping suture between them and the brachials.
Brachials on four of the rays pentangular, widest below, slightly constricted in the middle, and angular aloove, supporting on their sloping sides the first division of the rays. Another hifureation takes place on the tenth plate alove the brachinls in these four rays. beyond which they are simple to their extremitits. The anterior brachial is quadrangular, constricted above, and supports a single arm, making 17 arms altogether for this species.
The anal side of the specimen is distorted an that the mumber and form of the anal plates camot be clearly determined; lut three can be seen; the second one much larger than the others, and apparently arrangel as usual in this genus.

Column moderately stont, round and eomposed at the summit of evenly-sized plates, that alternate with thimer of es helow.

This species is nearly related to Pof. (Scapho.) unicus, of IIall, lunt differs essentially from that in the number and lifureation of the arms.

I'rsition and luculit!: Tpreer heds of the kionkik limestone. Hamilton, Illinois.

N゙ゥ. 170 of Mr. I. A. Cox's collection.

Potmocmits ashim, Worthem.
II. XXVII. IIE *

Bocly of medimm size. basim-shaped, hase slightly depressed, the busal plates being concented hy the columuar joints. Snloradials prominent, longth mad bremith about equal. the lower angles forming
a part of the basal concavity, and the upper angles depressed to correspond with similar depressions in the lower margins of the radial plates.

Radials short, about as wide as long, pentagonal, depressed at their lower angles, with a gaping suture between them and the succeeding brachials.
Brachials two, the first quadrangular, the second sharply angular above, and but little narrower than the radial series. A slight angular prominence extends lengthwise across the brachial plates, and the same may be seen on the lower portion of the arms under a good glass.
Arms on the anterior ray, after the first division on the second brachial, divide again on the fourth and sixth plate, and both the outer divisions again on the eighth plate, while the inner one appears to be simple after the second division, thus giving six arms to this ray. The antero-lateral rays appear to divide once more, giving eight arms to those rays.

Arm pieces rounded, moderately wedge-shaped, and diminish rather rapidly in width toward their extremities. Delicate pinnules are given off from their longest sides. Anal plates and column unknown.
The depressions at the angles of the body plates, give a rugged appearance to the body of this species, and will serve to distinguish it from the other forms with which it is associated.

Position and locality: Upper part of the geodiferous shales of the Keokuk group, one mile below Keokuk.
No. 191, Mr. L. A. Cox's collection.

Poteriocrinus briterius, Worthen.

Pl. XXVII, Fig. 4.

Poteriocrinus briœrius, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 12.
Body of medium size, cup-shaped, base depressed; the basal plates small, not extending beyond the columnar facet. Subradials prominent in the center and depressed at the angles, three hexagonal and two on the posterior side rather larger than the others, and heptagonal.
ladials pentagonal, nearly twice as wide as long, depressed on their lower margins to correspond with the depressions in the subradial plates. They are constrieted aeross the middle, and projecting on their upper margins, with a distinet suture between them and the brachial plates.

First brachial quadrangular, the second pentangular, sharply angular abore, giving support on its upper sloping angles to the first division of the rays.

The arms on the three anterior rays, after their first division on the second radials, divide at least four times, and one of them. the left antero-lateral ray five times, the division in every ease taking place on the outer branch, as in Zcacrinus, while the inner branches continue single to their extremities. The divisions generally occur on the sixth, eighth, twelfth or sixteentl plate, making ten arms to two of these rays, which is probably the normal number, and cleven to the other. On the posterior rays, these divisions take place on the fourth, sixtl and eighth plates. This gires an arm formula of fifty arms, as the normal number for this species.

First anal plate hexagonal, about as large as the smallest sub)radials, second and third rather smaller than the first, and all arranged as usual in this genus. They are all depressed at the angles, though not quite so muela as the other plates of the body. Column unknown.
Position and locality: Upper part of the geodiferous shales of the keokuk group, one mile below keokink.

Nos. 1100 and 185 of Mr. L. A. Cox's colleetion.

Puthememsis asplistis, Worthen.
II. AXPLII, Ftg. :

Poterion rinus asperalus, Wonthes, Vebruars, 1Ne.

Pody depressed, forming a low saucer-like eup lelow the summit of the radial plates. Base depressed, and hasal plates concealed by the upper colummar joints. Subradials small, their lower angles concealed in the hasal concavity.

Badials abont twiee ats wide as long, pentagonal, without any woil defined suture between them and the first lirachial plates.

Brachials two, ahout the same size as the radials. the first quadrangular, and the seeond pentangular, giving support above to the first divisions of the rays.

Arms composed of rounded, nearly quadrangular joints, and after the first division on the second brachial they divide twice more in the posterior rays, first on the seventh, and each division again on the tenth plate, making eight arms to each of these rays. The other rays are partially embedded in the matrix, minute projections are visible with a good glass on the outer side of the arm plates, that give a roughened aspect to the whole specimen, and has suggested the specific name, and will also serve to distinguish it from nearly related species.

Anal plates so closely anchylosed that their forms cannot be clearly determined, but the first one rests between two of the subradials, and is succeeded by a double series of smaller plates that apparently go to form the base of the ventral tube. Traces of coarse striæ, or rows of granules, extending across the brachial plates, as well as the radials, can be seen with a good glass.

Column round, composed of rather even joints, with numerous delicate cirrhi attached to it at short intervals.

Position and locality: Upper part of the geodiferous shales of the Keokuk group; one mile below Keokulk.

No. 234 of Mr. L. A. Cox's collection.

Poteriocrinus arachneformis, Worthen.

Pl. XXVIII. Fig. 12.

Poteriocrinus arachnceformis, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 13.
Body small, obronical, length and breadth about equal, gradually swelling from the base to the summit of the radial series. Basals projecting more than half their length beyond the column, and forming by themselves a low, pentagonal cup. Subradials comparatively large, three hexagonal, and two heptagonal. Radials smaller than the subradials, the articulating scar semi-circular, and occupying only about half the width of the plate, with a projecting rim around its outer margin.

Only one anal plate is preserved in the specimen under description, which is about half as large as the largest of the subradials between which it rests, and it extends up to the summit of the right posterior radial. The left posterior subradial is truncated at the summit for the support of the second anal, which is not preserved.

Only one of the rays is partially preserved. In this there are five brachials, the last one of which is an axillary plate, and supports the first divisions of the ray, one of which divides again on the third plate, beyond which the arms are not preserved. The arms are composed of long, slender, rounded joints, generally twice as long as wide.

Colmmn unknown.
P'osition and locality: Keukuk limestone, Warsaw; III.
No. 2.46., Illinois State collection.

Potermocrisis Nactoomsis, Worthen.
Pl. XXtill. Fig. 10.
I'olerincrinus Nanmonensis, Wonturs, February, 18:L.
Bulletin No. I. of the Illnol- Stato Museum of Natural Hi-tory, p. 13.
Hody small, cup-shaped; the plates being displaced somewhat hy crushing, prevents a complete diagnosis.

Basals small, and hidden by the first columar joints. Subradials as ligh or higher than wide, and sharply angular mhove. Radials pentagonal, wider than long. First brachial quadramgnar. second brachial pentagonal, and both as wide or a little wider than the radials below.
'The arms of only one of the rays, the left antero-lateral, is preserved so that its structure can be made ont. This ray divides on the serond brachial, and the left branch twice more on the sixth and eighth plate above, while the right branch divides at least four times on the sixth and eighth plates, making at leas eight arma to this ray. Anal series cannot he seen clearly mongh to le fully determmed; they are apparently arranged as usital in this femm.

Cohmm ronnd, and composed of thin. mequal joints.
This species is evidently marly related to Hall's Por. (Scolph) mpulis, bint differs from that in the relative size of its sulumatial plates, and in the number and mode of bifureation of the urms.

I'oxition und localit!! Keoknk limestonn. Nnuvon. III.
No. 2,16 in, 2 Illinois State colle tion.

Poteriocrinus Otterensis, Worthen.

Pl. XXVIII, Fig. 4.
Poteriocrinus Otterensis, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 14.
Body above the medium size, basin-shaped, about once and a half as wide as high, base depressed and the basal plates hidden by the column, which is quite stout and pentalobate where it joins the body.

Subradials about one-fourth wider than long, the lower angle curving inward to form a part of the basal concavity. The center of these plates is smooth and a little protuberant, with four deep indentations on their borders, two of which are lateral, to meet those of the adjacent subradials, and two directed obliquely upward to meet similar depressions in the radial plates.

Radials wider than long, constricted across the middle, and projecting on their upper margins, with two slightly oblique depressions below, that meet two of those in the subradial plates. They are pentagonal in form and support on their upper truncated margins the brachial series.

Brachials one to each of the postero-lateral rays, smaller than the radials, slightly constricted, and sharply angular above, giving support to the first divisions of the rays. Arm structure unknown.

Three anal plates are visible, the first nearly as large as the subradials, the others a little smaller, and all having from four to six depressions around their borders that correspond to similar depressions on adjacent plates. The anal plates have been shoved out of their true position by the crushing of the specimen, so that their relation to the adjacent plates cannot be clearly determined.

Position and locality: This unique form was obtained from the Keokuk limestone, on Otter Creek, Jersey county, 111.

No. 2,466, Illinois State collection.

Poteriocmines subramuloses, Worthen.

PI XXVI, FIg 6.

I'oterincrinus sul,ramulosux, Wobtuen, Feb. 12*2.
Iulletin No. 1. of the Illinois State Museum of Natural History, p. 14.
Body turtinato or obconical, higher than wide to the top of the radial series, and composed of very thin, sinooth plates. Basals trmente below, about as high as wide, and forming by themselses a small patagonal cup a little more than half as high as wide.

Subradials about twice as large as the hasals, four of them hexag. onal, and two on the posterior side larger than the others and heptagonal. Only two of the rays are preserved in the specimen before me, and in one of these, the right posterior one, the radial plate appears to be quadrangular, and rests directly upon the upper margin of the large posterior subradial below. In the left antero-lateral ray the radial is pentangular, its lower angle fitting in between two of the subradials, as is usually the case in this genus.

Brachials two, the first quadrangular. and the second pentangular. both wider than long, and the last supporting on its sloping silles the first divisions of the rays. The arms in the right posterior ray divide again two or three times, first on the seventh plate, and the onter branch twice more on the eighth and twentieth plate, and the inner division at least once more about the twentieth plate, making as many as ten arms to this ray. The left antero-lateral ray, after its first division on the last hrachial plate, gives off braches in each division on the eighth plate, the outer division dividing twise more on the eighth and twentr-second plate, and the immer division once more on the twenty-sceond plate, which is as far as the arms can be traced. There are at least ten arms each to these fwo rays, and possibly more. 'llo anterior ray is but partially cexpoed, and seems to have m axillary plate about the twelfth series above the lant brachial. The first anal plate is nearly an lage as the smallest sulmodial, and rests between t wo of them, and a simaller necond anal rests upon the first, alove which a double series of small plates may be seen that probably form the base of a ventral tube. Colman rnther stout, the first plates covering the whole diameter of the trmeated luse.

This species is closely rolatod to Pot. concimms, of Meck and Worthen, (icol. Surv. of Ill., Vol. 5, pago 4!0, pl. 14. fig. 3, lint
differs from that in its more elongate body, the very thin plates of which it is composed, as well as in the number and mode of bifurcation of the arms.

Position and locality: Keokuk limestone, Keokuk, Iowa.
Collection of the author.

Poteriocrinus Richfieldensis, Worthen.
Pl. XXX, Fig. 5.
Puteriocrinus Richfieldensis, Worthen, Feb., 1882.
Bulletin No. 1; of the Illinois State Museum of Natural History, p. 15.

Body small, turbinate, length and breadth about equal. Basals moderately large in proportion to the entire body, projecting above the columnar facet so as to form a shallow pentagonal cup.

Subradials larger than the basals, the two on the posterior side the longest, and hexagonal.

Radials wider than long, pentagonal, with a well defined and rather gaping suture between them and the succeeding brachials. In the right posterior ray the brachial is twice as long as wide, pentagonal, supporting on its upper sloping sides the first divisions of the ray. In the left posterior ray the brachial is divided, making two brachials in this ray, the first quadrangular, and the second short and pentangular, but I am inclined to regard this as accidental, and to believe that one brachial to each ray is the normal number.

The first anal plate is a little longer than wide, hexagonal, and rests between the sloping sides of the two posterior subradials, and partly under the left side of the right posterior radial. The second anal is a little larger than the tirst, and rests on the upper margin of the left posterior subradial. The third annal is smaller than the others, and rests upon the first.

Arms composed of rounded joints, not wedge-shaped, and divide the second time on the eighth plate above the brachials, beyond which they are simple in the posterior rays, the only ones visible in our specimen.

Column round, composed of short joints, and rather thicker at the base of the calyx than below.

Position and locality: Shaly sandstones of the Kinderhook group, near Richfield, Ohio.

No. 2,474, Illinois State collection.

Poteriocrinus Foustanexsis, Worthen.

PI. XXX, Fig. 11.

I'olerictinus Founlainmasis, Wobthen, February, 1-ng.
Bulletin No. 1, of the Illinuls State Musum of Natural Hilacory, g. 1\%.
Body under medium size, rapidly spreading from the base to the top of the radial series, where it is about twice as wide as high. laasals small and concealed by the first columnar joints. Subradials luxagonal and heptagonal, length and breadth about equal. Radials once and a half as wide as long, pentagonal, with a well defined suture between them and the brachial plates. Brachials abont twice as long as wide, pentagonal, and narrower in the midtle than at the ends and supporting two arms on their upper sloping sides, the brachial on the anterior ray being longer and more constricted than the others. Arms apparently but two to the ray, and composed of long zigzag joints, constricted in the middle and giving off on alteruate siles from their upper angles strong pimmes, that are about half as larye in diameter as the arms.

The first anal plate is nearly yuadrangular in form, and rests leetween two of the subradials and under the left side of the right posterior radial. The second and third are a little smaller than the first, and above these there is a doulle series of small plates that extend up to the base of the rentral tube.

This species is rather closely related to For. (scaph.) internorlius. of Hall, Lowa Report, part 2, lut differs from that in the form and proportions of the plates of the hody, and in the zigzag arrangement of the arms.

Position and locality: St. Louis limestone, lountain creck, Monroe comety, Illinois.

No. 2,455, Illinos State collection.

[^17]Poteriocrinus Talboti, Worthen.

Pl. XXX, Fig. 7.

Poteriocrinus Talboti, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 17.
Body very short, basin-shaped, base depressed, and the basals hidden in the basal concavity.
Subradials short, curving inward below to form by their lower angles part of the basal depression.

Radials pantagonal, twice as wide as high, widest at their upper margins, and truncated squarely across fur the reception of the brachial plates.

On the anterior ray, there are six or seven brachials, all becoming narrower upward so that the last is only about half as wide as the first. The last one is an axillary plate, and supports two arms that continue simple to their extremities. The other rays have but a single brachial, which is as large or larger than the radials on which they rest, pentagonal in form, and give support on their upper sloping sides to the first division of the rays. On the left antero-lateral ray the arms divide on the sixth plate, beyond which they appear to be simple, which would give four arms to this ray. If the posterior rays, which are concealed in the rock in our specimen, correspond with the antero-lateral ray, it would give eighteen arms to the entire animal. Anal area and column unknown.

I take pleasure in dedicating this species to my esteemed friend, Henry Talbot, Esq., of Waterloo, to whom I am indebted for many acts of personal kindness, and for some interesting fossils.

Position and locality: St. Louis limestone, Monroe county, 111.
No. 2,470, Illinois State collection.
Poteriocrinus validus, Worthen.

$$
\text { Pl. XXVIII, Fig. } 16 .
$$

Poteriocrinus validus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 18.
Body more than twice as wide as high, forming a low, shallow cup. Basals small and concealed by the first columnar joints. Subradials hexagonal on the anterior side, strongly protuberant in the middle and depressed at the angles, giving a very rugged ap-
pearance to the outer surface of the body. Radials pentagonal, about twice as wide as long, depressed at their lower angles to correspond with the depressions of the subradial plates.
Brachials two, the first quadrangular, and the second pentangular, supporting on their upper sloping sides the first divisions of the rays. All the plates to the top of the second brachials possess the rugged character mentioned above. Anal series unknown. Arms not preserved on the anterior ray, but from the partial preservation of those on the posterior side there seems to be not more than two to each ray. Column round and rather delicate, composed, near the body, of joints of unequal size.

Geolngical position and locality: Warsaw beds of the St. Louis group, Warsaw, Ill.

No. $2,46:$, Illinois State collection.

Pctemochints Claftonensis, Worthen.
PI. XXX, Fis. G.
Potriocrinus Claytonphsis, Wonthen, Fobruary, INE.
Bulletin No. 1, of the Illnols slate Museum of Natural Histors. Ir. 小.
Body of medium size, basin-shaped, about once nud a half as wide as high to the top of the radial series.

Banals small and entirely concealed in the hasal concavity by the first columnar joints. Suhradials nearly or quite as long as wide, their lower angles curving into the basal concavity.
liadials once and Ω half as wide as long, pentagomal, and truncated squarely across the upper margins for the reception of the brachial stries.

Brachials on three of the rass about the same size and form as the radials, nut give support on their upper sloping sides to the first divisions of the rays.
'the arrangement and number of the arms camot be determined from tho specinen in hand, lat in the right metero-lateral ray a bifuration takes place on the sixth plate above the brachial, begomd which the divisions are mbinown. The arms are comperad of wide, short quadrangula plates, as in Coucrinus, and wonld be cosel! joined when folded as in that gemus. There anal plates are presored in the specimen mimer tanmmation, the first one pentare onnl, resting letween two of the subradials, and partly moder the
sliping side of the right posterior radial, the second and third are smaller, one resting on the top of the left posterior subradial, and the other on the first anal.

Column rather stout, the upper joints filling nearly the whole concavity of the base, and composed of thick and thinner joints alternately arranged.

Position and locality: Warsaw beds of the St. Louis group, near Clayton, Adams county, Ill.

No. 2,460, Illinois State collection.
Poteriocrinus Illinoiensis, Worthen.

Pl. XXVIII, Fig. 17.

Poteriocrinus Illinoiensis, Worthen, Feb. 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 19.
Body of medium size, obconical, gradually tapering from the summit of the radials to the base.

Basal plates of moderate size, projecting more than half their length beyond the column, and forming by themselves a low, pentagonal cup.

Subradials as large or larger than the radials, two on the posterior side heptagonal, the others hexagonal.

Radials rather wider than long, pentagonal, and truncated squarely across their upper margins for the reception of the brachial series.

Brachials rather smaller than the radials, pentagonal, a little constricted above, the upper angle obtuse, and giving support to the first divisions of the rays. The arms are not preserved, in the only specimen yet forund of this species, but from the very narrow plates that are to be seen in one of the rays, they probably continue simple above the first division on the brachial series.

First anal plate longer than wide, pentagonal, and resting between two of the subradials, and partly under the right posterior radial. Second anal larger than the first, hexagonal, and resting on the summit of the left posterior subradial. Third anal smaller than the first, on which it rests, and above this a double series of small plates are partly visible, that probably formed the base of the ventral tube.

Column round, and near the base composed of joints nearly equal in thickness.

Geological position and locality: Warsaw beds of the St. Louis group, Warsaw, Illinois.

No. 2,457 , Illinois State collection.

Potemocminus Valsomensis, Worthen.
Pl. XXIIII, Fle 15.
Joteriancinus liarsoriensis, Worthex, Feb. 1wes.
Bulletin No. 1, of the IIlmols State Museum of Natural History, i. 19.
Body below the medium size, basiu-shaped, a little more than twice as wide as high to the top of the radial series.

Base depressed, the basal plates and the lower angles of the subradials forming the basnl depression.

Subradials on the auterior side hexagonal, sharply augular abowe and extending up about half the length of the radial plates.

Radials pentagoual, wider than ligh, the articulating sear occupying the cutire width of the plate, with a well-lefined suture between the radial and brachial series.

Brachials, two to the ray ou the anterior side, the first quadrangular and the second pentagonal, sharply ungular above, and sup. porting on their sloping sides the tirst divisions of the rays. Ou two of the rays the arms bifureate again on the sixth plate above the brachial series, beyond which they are maknown. All the plates of the body are finely rugose. Aual series unkinown.

Columu slightly pentagonal where it joins the body, and composed of alternate thin and thicker joints, but below more massive joints are interealated at short intervals.

Geolugical pmsition and loculit!: Warsaw beds of the St. Lutuls group, Warsaw, Illinois.

No. 2,458, Illinois State collection.

l'oteriocines sinommomites, Worthem.

II. XNIN, Fis. 1.

Poberincrimus spincobrachiafus, Wohthex, Feliruars, 1at-
Bulletan No. 1, of the Illinole Stath Museum of Satural History. p.ist.
Borly of medium size, hasin-hhaped, about twice as wide as hiph to the top of the radinl series. Base slightly depressed, the under basuls minall aud concealed by the first cohmmar joints.

Subrmbinds about as wido as high, the lower angles curved inward. forming a part of the banal concavity.

Barlials about onn-fourth wider than lous. pentagomal, the upper margins concase, leasing a gaping suture between the and the hrachinl plates.

Brachials pentagonal, about as long as the radials, compressed laterally, so as to form a rather prominent ridge across the middle of the plate, ending at the upper angle in a rather obtuse point. All the body plates, including the second radials, are marked with rugose striations directed from above downward to the base, giving a rugose appearance to the surface of the body. The brachials are sharply angular above, and support the first arm plates, which are triangular, and one on each brachial is produced in front into a little node that corers the projection at the summit of the brachial plates. The succeeding arm plates are short, wedge-shaped, except the axillary plates, which are longer than wide, and produced outwardly into an obtuse point. All the other plates of the arms, where well preserved, show short spiniferous nodes on their outer margins.

The arms, after their first division on the brachials, divide again on the eighth or tenth plate, and the outer division once or twice more on the sixteenth to the twentieth plate, while the inner branches continue single to their extremities.

Column round, and near the top composed of short plates, the alternate ones projecting beyond the others.

Anal plates unknown.
This species is evidently related to the crinoid figured by Yandell and Shumard in their "Contributions to the Geology of Kentucky," without a description, but if their figure is correct, our speecis differs from their "Cyathocrinus florealis," in the form and relative proportion of the body plates, as well as in the bifurcations of the arms.

Position and locality: Chester limestone; Monroe county, Ill. No. 2,436, Illinois State collection.

Poteriocrinus Salteri, Worthen.

PI. XXIX, Fig. 18.

Poteriocrinus Salteri, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 21.
Body small, basin-shaped, rather more than twice as wide as high. Base depressed, and basal plates concealed in its concavity.

Subradials about as long as wide, those on the anterior side hexagonal, the lower angles curving into the basal depression, protuberant and slightly depressed at their upper angles.

Radials pentangular, about once and a half as wide as long, slightly depressed at their sides and lower angles, and showing a distinct suture above, where they join the brachial plates.

Brachials two to the anterior ray, the first one of which is quadrangular, and wider than ligh. The seconl is pentagonal, longer than wide, its upper anglo produced into an obtuse node, and supporting on its upper sloping sides the first divisions of the arms. The two antero-lateral rays have a single brachial, about the famo size and form of the second brachial on the anterior ray, and support on their upper sides the first divisions of the rays.

The arms are composed of rounded, quadrangular joints, and all divido again on the sixth plato above the brachials, which is nodose like tho brachials, and boyond this they appear to be single to their extremities, giving four arms to each ray. Pinnules rather strong, and are given off on alternate sides from the upper margins of the arm plates. Anal plates unlinown.

Column round, composed near the body of thick and thinner joints alternately arranged.

Position and locality: Chester limestone, Chester, 111.
No. 2,449, Illinois State collection.
I take pleasure in dedicating this pretty species to Mrs. J. C. Salter, of Chester, in recognition of her enthusiastic labors in collecting the fossils of that very interesting locality.

Pothracrivts sethiptis, Worthen.

II. XiNIX, Fis. K.

 Bulfetn No. 1. of the Illlnofs statio Museum of Natural History. 1. 21.
Body of medium size, hasin-shaped, about twice as wide as high to the top of the radial series.

Base depressed, mad the hasals mearly concealed by the mper joints of a large pentabobate colnmm, composed of thin plates with cremiated margins. The outer angles of the basals are harely visibow in the pentalobate depressions of the collam. The column decreases rather mpilly in sizo below its junetion with the boily.

Sulmadials a little witer than high, the two posterior plates a little larger than the others, and all aronsed hef wo or three rommded ridges that colminate in the center of the plate in a slarp node.

Radials pentagonal, nearly twice as wide as high, with a sharp node in the center corresponding with those on the subradials, with distinct ridges extending obliquely from the nodes to meet those on the subradial plates.

Brachials two, the first quadrangular, half as long as wide, the second pentagonal, about as long as wide, and sharply angular above, supporting on its upper sloping sides the first arm plates, which are only preserved to the seventh plate above the last brachial in our specimen. The brachials and the arm plates as far as they are preserved are spine-bearing.

Two anals are preserved, the first is about half as large as the large subradials between which it rests, the second is smaller and rests on the truncated upper margin of the left posterior subradial, and both ornamented like the subradials.

This species is apparently related to Z. Stimpsoni of S. S. Lyon, but differs conspicuously from that, in the number of its brachials, as well as in minor details.

Position and locality: Chester limestone, Monroe county, Ill.
No. 2,445, Illinois State collection.

Poteriocrinus Columbiensis, Worthen.

$$
\text { Pl. XXIX, Fig. } 6 .
$$

Poteriocrinus Columbiensis, Worthen, February, 1882. Bulletin No. 1, of the Illinois State Museum of Natural History, p. 22.

Body small, turbinate, rapidly spreading from the base to the summit of the radial plates.

Basal plates small, projecting about half their length beyond the column. Subradials about as high as wide, three hexagonal, and two on the posterior side a little larger and heptagonal.

Radials pentagonal, a little wider than long, except the one on the right posterior ray, which is narrower and nearly quadrangular. Brachials about twice as wide as long, rounded and constricted in the middle, pentagonal, supporting on their upper sloping sides two arms that continue single to their extremities.

Arms composed at their base of long, rounded joints, twice as long as wide, but decreasing in length above, the joints projecting laterally for the support of strong pinnules which are given off from each plate on alternate sides. Arm plates slightly cuneate in form, and the lateral projections give a zigzag appearance to the arms. Pinnules composed of round joints that are twice as long as wide where they join the arms.

The first anal is rather smaller than the recomd, and rests hetween two of the sulmadials and against the right posterior radial. and extends to the summit of that phate. The second radial rents on the upper margin of the left posterior suliradial, and the third, which is smaller than the first, rests mpon it, and extemts up to the midale of the lirachial on the right.
Colmmin romed, but only a few joints are attached to the specimen.
This species is closely allied to Pot. (Scaph.) internotius of Hall, tont differs from that in the form of its radials, hat more enpecinlly in its long zigzag arms.
Position and locality: Chester limestone, nemr Columbia, Monroe comnty, Ill.

No. 2, 138, Illinuis State collection.

Porenimehists chaths, Worthen.

M. XXX, Fle. 10.

Poteriucrinus clytis, Wobturs, Februsry, 16e.
Boiletin No. 1. if the Ilifnols siate Muqeun of Natural Hintory, pr. lit.
Boty small, wheonieal, lemoth athl hreatth at the the of the radial plates about equal. Base trmeated, the hasal plates formine ly themselves a low protagomal cup. Suloradials alout as wide an high. Hadials pentagunal, length and width alparanty almont ulual. and sulpent on their mper margins a single serich of long shader arm plates, making lant five mome to the ontire minal.

The first arm plates on the two rass that are shown in the sherimon hofore me, ate thred or four times as lous eis wide, and abow thene a mries of tell or twatie shorter plates ime preartal. all fommled esternally mad getmembly longer than wide. The mand,
 charly socus. It is pentamgular, and rate letweon two smbmadials.

 min phates.

Cohlmen rather font, thicker at ite junction with the bedy than
 ames le lons.

This species differs in its arm formula from all other Poteriocrinide known at this time, and its depature from the normal structure may prove of generic importance.

Position and locality: St. Louis limestone, Monroe county, Ill. No. 2,456, Illinois State collection.

Poteriocrinus similis, Worthen.

Pl. XXX, Fig. 12.

Poleriocrinus similis, Worthen, February, 1882.
Bulletin No. 1, of the Cllinois State Museum of Natural History, p, 23.
Body small, basin-shaped, twice as wide as high to the top of the radial series. The plates of the body are all slightly protuberant in the center, and depressed at the angles.

Base slightly depressed and basals concealed by the first columnar joints.

Subradials about as wide as ligh, hexagonal and heptagonal.
Radials wider than high, with a well-defined suture between them and the brachials. Brachials on the two posterior rays nearly three times as long as wide, constricted in the middle and angular above, supporting on their sloping sides the two divisions of the rays. In the right antero-lateral ray the brachial is only about twice as wide as high, its upper angle projecting so as to form a short node.

Arms two to each ray on the three rays visible, composed of rounded joints that, at first, are nearly twice as long as wide, but they gradually become shorter above. They all project laterally, and support strong pinnules, that are given off alternately from the longest side of the arm joints. The lateral projections of the joints give a zigzag arrangement to the arms.

Only one anal plate is visible in the specimen, and this is placed, as is usual in this genus, between two of the subradials, and under the left side of the right posterior radial.

Column round, and at its upper extremity composed of joints of nearly equal thickness.

This little crinoid is related to Pot. Columbiensis, from the same locality, but differs from that in its more depressed base, and in the slightly protuberant character of its body plates.

Position and locality: Chester limestone, Monroe county, Ill. No. 2,446, Illinois State collection.

Potmocmates Popinsis, Worthen.

PI. XXIX. Fin. I2.

Poterincrimus Popensis, Worthen, February. 1ss-
Bullulln Niu. I, of the Illinols Stata Museum of Natural Ilibtors, D. 23.
Boby small, obsonic, gradually swelling from the base to the summit of the radial plates, where it is about once and a half as wide as long, composed of smooth, slightly protuberant plates. The basals project about one-half their length beyond the colum, and form a low pentagonal cup.

Subradials on the anterior side hexagonal, ahout as wide as long. Radials pentagonal, once and a half as wide as long, and truncated squarely across their upper margins for the reception of the lirachial plates.

Brachials pentagonal, length and breadth about equal, rounded externally, and sharply angular above, supporting on their sloping sides the first divisions of the rays. All the arms on the anterior side divide again on the seventh, eighth or ninth plate above the brachials, and one of them gives off a second hranch on the eighth plate, white the others are not preserved beyond the second division above the brachials. The arms are composed of short wide plates, the two first above the brachials being about twiee as long as the succeeding ones, and all a little wedge-shaped. The arms are only ahout half as wide above the second bifurcation as below. Anal plates unknown.

Colnmn round, composed near the hase of thick and thimer plates altwonaty arranged.
This species is related to Por. (Scaph.) Randolphensis, (ienl. Surv. of II1., Vol. 5, !nge 551, but differs in its wider and more nearly parallel arm plates, as well as in the hifureation of the arms.

Position and locality: Choster linestone, Pope comnty, 111 .
No. 2, $2=51$, Illinois State collection.
Potmbocminus Okawinsis, Worthen.
M, XVIX, FH :

Body of medium aize, wider than lught to the top of the radial serios, comporal of mmooth, whighty conver plates.

Base truncated, the basal plates extending above and beyond the columnar facet, so as to form a low pentagonal cup. Subradials about as long as wide, three of them hexagonal, and two on the posterior side larger than the others and heptagonal.

Radials nearly or quite twice as wide as long, pentagonal, and truncated squarely across the entire length of their upper margins for the reception of the brachial plates.

Brachials one to the ray on the two rays visible, about the same size as the radials, supporting on their upper sloping sides the first divisions of the rays.

The arms are composed throughout of short, wide, quadrangular plates, and after the first division on the radials, divide again in the left posterior ray on the ninth or tenth plates and on the right antero-lateral, on the seventh and eleventh plate, beyond which they are simple as far as can be seen, making four arms to each of these rays.

The anal side of the specimen is distorted, but six small anal plates are partially exposed, arranged in two rows.

This species is related to Pot. (Scaph.) Randolphensis from the same horizon, but differs essentially from that, in the mode of bifurcation, and the wide, short plates of the arms.

Position and locality: Chester limestone, bluffs of the Okaw river above Chester, Randolph county, Ill.

No. 2,441, Illinois State collection.

Poteriocrinus venustus, Worthen.
PI. XXIX, Fig. 13.
Poteriocrinus venustus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 24.
Body small, obconical, gradually swelling from the base to the top of the radial plates, where it is about once and a half as wide as long.

Basals extending about half their length above the first columnar joints, forming a low pentagonal cup.

Subradials nearly equal in size, three hexagonal, and two on the posterior side heptagonal.

Radials four, a little wider than long, the right posterior one rather narrower than the others, and all pentagonal.

Brachials one to each ray, nearly as wide below as the radials, constricted above, about once and a half as long as their greatest width, sharply angular above, and supporting on their sloping sides the first divisions of the arms.
Arms composed of rounded joints, the first nearly twice as long as wide, searely wedge-shaped below the second hifurcation, and dividing the second time on the ninth plate nbove the brachials, beyond which they continue simple, making four arms to the ray. liather stont pinnules are given off from the longest side of the arm joints on alternate sides.

The first anal plate is rather more than half the size of the subradials, pentagonal, and rests between two of the posterior subradials, and under the lower side of the right posterior radinl plate. The second and third are smaller than the first, the second resting partly on the summit of the left subradinl, and the third on the summit of the first aual. Column unknown.

Position and heality: Chester limestone, Mouroe county, Illinois. No. 24 50 (, Illinois Stato collection.

Potermocrincs pectlaris, Worthen.

PI. XXIX, Fig. In.

Polevoerinus gecularis. Worthrs, Vebruars, 15s‥
Bullotin Nin. 1 of the Illinots Stato Muacum if Natural Illstors, p. 25.
Borly below the medium size, ohconic; the basals being broken away from the specimen, its relative proportions cannot lie exmetly determined. Fragments of two of the basals that still remain attached show that they extended whove and beyond the cohmmar fateed.
Sinbradials abont as high as wide, three of them hesagomal, and two heptagomal.

Radials pentagonal, somewhat irregular in size, the left posterior and the left antero- lateml ones being a little larger than the others. und all ulout onee and a half as wide as long.

Brachials one fo the ray, that on the anterior ray rather the longest. the wthere nhout as long as wide, cometricted in the medto. and sharply angular above, supporting on their sloping upper sides the first arm plates.

The arms, after their first division on the brachials, divide aeain at megnal distances from the sisth to the tenth plate above the lirachials onf four of the rays risible in the specimen moter camin-
ation, beyond which they continue simple to their extremities, making four arms to each ray. The arm joints are all slightly wedge-formed, and quite short above the second division, and support strong pinnules, which are given off from the longest sides of the joints.
The anal side presents an anomalous feature that I have not observed in any other species of Poteriocrinus. In addition to the ordinary anals placed as is usual in this genus, there is a pentagonal plate about as long as the radials, intercalcated between the right posterior radial and the subradial below, elevating the lower angle of this radial to a level with the summit of the other radial plates. This may be only an abnormal development, and I was at first inclined to regard this as only a variety of P. venustus, but its shorter brachials and arm-plates, and different mode of bifurcation of the arms, seems to afford good grounds for considering it as a distinct species.

Position and locality: Chester limestone, Monroe county, Ill.
No. 2,448, Illinois State collection.

Poteriocrinus propinquus, Worthen.

Pl. XXIX, Fig. 9.

Poteriocrinus propinquus, Worthen, Feb., 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 26.
Body below medium size, obconic or bell-shaped, spreading rather rapidly from its truncated base to the su...mit of the radial plates, where it is nearly twice as wide as high.

Basals about half as long as wide above their junction with the column, forming a shallow, pentagonal cup.

Subradials on the anterior side hexagonal, length and breadth about equal, their upper angles extending up about half the length of the radial plates. Radials one-fourth to one-third wider than high, pentagonal, with their upper margins squarely truncated for the reception of the brachial plates.

Brachials widest at their lower margins, not quite as long as wide, constricted in the middle, and sharply angular above, where they support the first divisions of the rays. Arms four to eight to the ray, so far as can be seen from the specimen under examination. The left posterior ray divides the second time on the eighth or ninth plate above the brachial, beyond which the arms appear to be simple to their extremities. The right antero-lateral arm bifur-
cates the second tine on the eight or ninth plate, the right branch sending off two additional arms on the seventh, and again on the fourteenth plate, while the left branch gives off another arm on the eighth or ninth plate, beyond which it is not preserved. There are probably eight arms to this ray. The other rays are not preserved beyond the second bifureation. The arms are composed of rather short, wedge-formed joints, that give off strong pinnules from the ir longest sides.
Anal area unknown. Column round, composed at first of rather even joints, with in thicker one interealated at short intervals below. The calyx of this species could not be readily distinguished from several others that are found in the Chester limestone, bint its long. slender arms, and their mode of bifureation, are its distinctive characters.

I'osition and locality: Chester limestone, Mouroe county, Ill.
No. $\because, 437$, Illinois State collection.

Pothriocrinus Kaskaskiensis, Worthen.

FI. XXIX, Fig. 15.
Poterincrinus Kaskzskiensis, Wontaen, Feb., lese.
Ibulletin No. I. of the Illinoles slate Museum of Natural Ilicfors, r. ©
Body small, bell-shaped, nearly twice as wide as long to the summit of the radials, composed of rather thin, smonth plates, so closely anchylosed together that their relative size and form camot be determined. The radials are nearly as long as wide, pentagonal, thetened on their upper margins with a lip-like suture between the m and the first brachinl plates.

Brachials two, the first quadrangular, the second pentagonal; length and breadh about equal, both rommed externally, and eonstricted, the second sharply angular above, and supporting on its sloping sides the first divisions of the rays.

Arins composed of rather long, wedge-shaped joints, that project slightly on their onter margins, giving them a somewhat zigzag mpearance, and after their first division on the second brachials they all divide again on the eighth to the tonth plate above the hrachials. giving four arms to each ray us the nomal mumber. In one of our spuecime ns, howeser, one arm gives off a branch mar its extremity. making five arms to that ray.

Pimules rather strong and attached to the lougest side of the arm plates. Amel plates manown. Ventral tule cylindrical, and almut twice the diamoter of the ndjacent arms.

Column round, composed of short, even joints, with numerous cirrhi attached at short intervals on opposite sides, which are composed of rounded joints about half the diameter of those composing the column.

This species may be readily distinguished from P. venustus and P. clytis, by the bell-shaped form of its body and zigzag arrangement of the arms.

Position and locality: Chester limestone, bluffs of the Kaskaskia river, four miles above Chester, Ill.

No. 2,452, Illinois State collection.

> Poteriocrinus cultidactylus, Hall.

Pl. XXX, Fig. 1.
Poteriocrinus cullidactyius. Hall, 1859.
Supplementary report on the Palæontology of Iowa, p. 62.
"Body elongato-turbinate and slightly expanding at the base of the arms, which are regularly bifurcating and but slightly spreading. Basal and subradial plates unknown. Radial series consisting of three plates in each ray, the upper one of which is a bifurcating plate. First radial plates pentagonal, besides the truncated angles. Second radials about as long as wide, quadrangular with truncated angles. Third radials pentagonal, obtusely wedge-formed above, and supporting on each side a series of eight arm-plates, the upper one of which is a bifurcating plate; above this, on the outer side, there is a bifurcation on the twelfth to the sixteenth plate, while the division on the other side remains simple so far as can be traced in the specimen. This character applies to all except the anterior ray, where the bifurcation takes place on the twentieth plate above the first division.

The anal series consists of a number of small usually hexagonal plates.

The plates of the arms are round upon the exterior face, a little wider on one side than the other in alternating order. The surface is finely granulose, without peculiar markings."

The above description was not drawn from the specimen figured, but from one found many years ago, and now in the writer's collection, but was not accessible when the figures for this volume were drawn.

Position and loculity: Tho specimen originally described was obtaind from the Burlington limestone, near Hamburg, in Calloun comety, and the one figured from the same lorizon at Monte\%uma, in like county, Illinois.

The latter is number 2,271 of the Illinois State collection.

Gimut /ZEACRINUS, Troust.

Zeacmints Coxases, Worthell.
11. XXVIII. Fig 1.
\%eacrinus Cofanus, Worthen, Foliruary, 1ste.
Iballetin No. 1, of the Illinuls Stato Musoum of Sutural Hishors. 1. 2:.
Body of medium size, basin-shaped, more than twice as wide as hight to the top of the radial series. Base depressed, and the basals, which aro small, are concealed by the first columar joints. Subratials hexagonal, once and a half as wide as the ir height above the basal concavity, which is in part formed by the upward curvature of their lower angles, their upper angles extending up nearly one-balf the length of the radial series.
ladials nearly twice as wide as long. pentagonal, and trumeated sturarely across their upper margins for the support of the hrachial series. The anterior ray has two brachials, the first one ynadiangular, once and a half as wide as long, and the second short. pentangular, and supporting the first divisions of the ray. Each division of this ray bifureates again on fourtecnth or sixtecenth plate. the onter division dividing again about the same distance abore, making six arms to this ray.

The other rays, so far as can be seen from the only specimen we. have seen, have only a single brachial plate, whieh is a little longer than the rudial blow, pentagonal, and supports on its upper angles two stont arms, which divide first on the sisth or sircmth plate, the inner division contiming simple to its extremity, while the onter one divides twice more on the tenth to the twelfth plate, mahing right arms to each of these rays, or thinty-eight to the entire mativilual.

Arms composed of short imadrangnlar joints, romeded exterionly, giving off rather delicate pinmbes from their inner margins. Anal series maknown. Cohmm ruther slender, composed of round plates.
arranged in alternate series of thick and thinner joints. This beautiful species, the first discovered in the Keokuk limestone in Illinois, I take pleasure in dedicating to its discoverer, Mr. L. A. Cox, of Keokuk, to whom I am indebted for the use of the typical specimen.

Position and locality: Upper beds of the Keokuk limestone, Hamilton, Illinois.
No. 400 of Mr. Cox's collection.

Zeacrinus Keokuk, Worthen.
PI. XXVIII. Fig. 3.
Zeacrinus Keokuk, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 23.
Body of medium size, shallow, basin-shaped, about twice as wide as high. Base depressed and basal plates concealed by the first columnar joints.

Subradials on the anterior side hexagonal, curving below into the basal concavity, their upper angles extending up about half the length of the radial plates.

Radials pentagonal, nearly once and a half as wide as long. Brachials single on four of the rays, pentagonal, a little larger than the radial below, and supporting the first divisions of the rays. The anterior ray has four brachials, the first as long as both the succeeding ones, quadrangular and as wide below as the radial on which it rests. The two succeeding brachial plates are short and quadrangular, a little narrower than the first. The fourth is also short, subtriangular, and supports the first divisions of this ray. Both branches of the anterior ray divide again on the tenth plate, and the outer division the second time on the tenth plate above, making six arms to this ray. One of the antero-lateral rays, after its first division on the brachial plate, sends off an arm from each division on the sixth plate, the outer branches dividing again on the eighth to the tenth plate, making eight arms to this ray. The arm plates are but slightly rounded exteriorly, and nearly quadrangular in form. Anal plates unknown.

Column round, and composed near the body of rather thick, alternating with very thin plates.

Position and locality: Upper part of the geodiferous shales of the Keokuk group, one mile below Keokuk.

No. 217 of Mr. L. A. Cox's collection.

Zeachinus Pinensis, Worthen.
11. XXX, Fig. 3.
Bulletin of the Illnofs State Museum of Situral History, p. 29.

Zpacrinus Pikehsis, Worthen. Feb. Ine.

Body of mediun size, short, forming below the summit of the radiat] scries a shallow cup about three times as wide as high. Basals small and entirely concealed in the basal concavity. Subradials rather longer than wide, and curving below so as to form a part of the concarity of the base.

Padials pentagonal once and it half, and tho anterior one probably twice as wide as long, and truncated squarely across their upper margins for the reception of the brachial series.
The anterior ray has three brachinls, the first one of which is as large as the radial below, the second one very short, and both quadrangular ; the third is also slort, but pentangular, supporting on its sloping sides the first divisions of the ray. One of these divisions lifureates again on the eighth plate, and the other on the tenth, beyond which they appear to be simple to the ir extremities, making but four arms to this ray. The right antero-lateral ray and the left posterior ray have each a singlo brachial, which is nearly as long as wide, supporting on its sloping angles the first divinions of the rays. The two divisions of the right antero-lateral ray divide again on the sixth plate, and at least one of these divisions, and probnbly both the outer ones, divide again on tho tenth plate, waking six arms to this ray. If the other rays correspond with this, it would give twenty-eight arms as the full series for this species. Anal plater maknown. Colum slender, and composed of round joints of unequal thichness.

Goolegical position and lucality: Lower part of the Burlington limestone, Montezmina, Pike connty, Illinois.

No. 2, 16:2, Illinois State collection.

Genus RHODOCRINUS, Miller.
Rhodocrinus Coxanus, Worthen.
Pl. XXVIII, Fig. 7.
Rhodocrinus Coxanus, Worthen, Feb. 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 30.
Body of medium size, subglobose, base slightly depressed, the basal plates concealed by the first columnar joints. Subradials a little wider than long, their lower angles curved in to form a part of the basal concavity.

The first radials mucl larger than the succeeding ones, heptagonal in form ; second radials nearly quadrangular, and the third hexagonal, supporting above the secondary radial plates, of which there is but one to each division of the ray.

Brachials, four to five, short, widening above, the upper one with a slightly-projecting angle in the middle, separating the first divisions of the arms. From two to five single, wedge-formed pieces succeed the brachials, above which the arms are composed of a double series of short, interlocking pieces, each one of which gives off a moder-ately-strong pinnule. In one of the specimens under examination the arms on the two rays visible continue single after the first bifurcation, making four arms to each ray; but in another specimen, apparently of the same species, a third branch is given off from the third plate above the first division, making six arms to these two rays.

From four to six inter-radials can be seen, the first of which is larger than the others, but owing to the crushed condition of the specimens, the exact form and number of these plates cannot be determined.

Column round, rather stout, and composed of alternately thin and thicker joints.

The specimen showing six arms to the ray also shows a marked prominence in the central portion of the body-plates, which is not seen in the other, and this we take as the type of R. Coxanus, and if these differences should be regarded as of specific importance, the name R. polydactylus might be used to designate the other variety.

Geological position and locality: Upper part of the geode bed, one mile below Keokuk.

Nos. 197 and 223 of Mr. L. A. Cox's collection.

Genus PLATYCRINUS，Miller．

Phatycrinus Monroessis，Worthen．

Pi．XXX．Fig． 9.
I＇alucrinus Morroensis。W゚nmtnes，Februars，1sど．
Jullotin No．1，of the Illinols Stalo Musum of Natural Illalors．p． 30 ．
Body small，cup－shaped，about once and a half as wide as high． Basal plates extending about one－half their length beyond the first columnar joints，the lower margin projecting so as to form a mar－ row rim to the base．Radials wider than high，the articulating scar occupsing only about one－third to one－half of their entire width．
Brachials singlo，narrow，subtriangular，sharply cuneate ahove， and supporting on their upper sides the first arm plates．On the two rays visible in the specimen under examination，the arms， after their first division on the brachinhs，divide again，both divisions once on the second plate above the brachials，and one of them the second time on tho second arm plate nlove，giving five arms to each ray．
Arms composed at first of long，rounled joints，that are somu． what zigzag and projecting on their margins，where they give off strong pimmles．but towards their extremities they are composed of short，triangular pieces that also fustnin pimmules on their longeat margins．Pimnules quite stout，their diameter being abont cyual to one－flird of the width of the phates to whieh they are attached．

I＇rsition and localitics：St．Louis limestone，Monroe county Ill．，and Bloment county．＇T＇em．

No．2，461，Illinois State collection．

GENUS ERETMOCRINした，I．and C．

Emetmocming Varsomisxals，Worthen．

F．XXMII．Fば． 14.

Body smull and turbinate helow the hase of the arms．Basals short，flighty projertang on their lower margins，forming a wrll defined rim aronned the base．

Primary radials three, the first comparatively large, hexagonal or heptagonal, the succeeding ones small, one quadrangular and the other subtriangular, supporting on its upper angles the secondary radial series.

Secondary radials two, the first quadrangular and the second pentangular, supporting above the two divisions of the arms, giving four arms to each ray.

The two first arm plates are nearly quadrangular, and longer than those above. The third and fourth are nearly triangular, and are succeeded by a double series of slightly interlocking plates that spread out towards their extremities in the manner peculiar to this genus.

Interradials three, the first about twice as large as the succeeding ones. Anal series unknown.
Column at its junction with the body composed of thick, round joints that, a short distance below, are separated by thinner ones arranged alternately.

Surface of the body plates finely granulose, with a slightly elevated ridge crossing the plates, and extending to the top of the secondary series.
This species, minus the arms, closely resembles Batocrinus caroli (Hall's sp.) from the same beds, but differs in the number and structure of the arms, that having but sixteen while this has twenty.

Position and locality: Warsaw beds of the St. Louis group, Warsaw, 111.

No. 2,459, Illinois State collection.

Genus ONYCIIOCRINUS, L. and C.
Onychocrinus distensus, Worthen.
PI. XXIX, Fig. 5.
Onychocrinus distensus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 31.
Body of medium size, composed of smooth, massive plates. Basals concealed by the column.

Subradials on the anterior side sharply angular beyond the columnar facet, forming a low, pentagonal cup.
Radials five, the first pentagonal, about one-fourth wider than
long; the second, third and fourth, cquadrangular, and nearly as wide as the first, their width being equal to about once and a half their length. The fifth radial is pentagonal, and supports upon its upper sloping sides the divisions of the rays. The arms, bevond the first division, throw off armlets at intervals of five or six plates to their extremities on the only rays that are preserved in the specimens obtained.

None of the specimens show more than two or three inter-radial plates. The first of these is hexagomal, about as wide as long, and this was apparently succeeded by a series of three smaller plates that are lont partially preserved. Anal plates unlinown.

Column round, largest at its junction with the body, and composed of very thin, even joints.

P'oxition and lucality: Chester limestone, Monroe county, Ih.
No. 2,442 , Illinois State collection.

GENL: TAXOCRINUS, Philhips.

 Tasocmates Fletchim, Worthen.II. XXX, Flg. a.

Taswerinus Flelelieri, Wortnen, Februars, lun.
Bullotin of the Illinols State Museum of Natural History. p. 31.
Boly, with arms complete, ovate in ontline, lobate, composed of thick, massive plates. Basals small, and concealed by the column. Subadials extending nearly half their length beyond the colummar facet, forming by themselves a low, pentagonal cup. Primary radiats three in each ray, gradually widening from the first to the third, Which is an axillary plate, fiving support to the first plates of the second series. Sceondary radials three, more thmn hulf as wide as the first, the last one supporting the first plates in the Tertary series. Above the secondary series some of the arms, if not all, divide again om the fifth plate, above which they become guite slemer.

On the anal side of the specimen two series of plates are preserved. The first one is hexagonal in form, and rests between the upper angles of two of the sulmadinls. In the next series there are three plates, beth about half as barge nes the first, the midde one resting direetly upon it, and the others resting between the upper anglen of the first mals mul the adjacent first radinks. Abore this
second row of anal plates another series is only partly visible. Interradials, one or more to each space, but their form and number can not be clearly determined from the specimen in hand.

Column round, larger at its junction with the body than below, and composed at first of thin, even joints, but below thicker plates are intercalcated at irregular intervals.

Position and locality: Kinderhook group of the Lower Carboniferous series, Marshalltown, Iowa.

Dedicated to Mr. Thos. Fletclier, of Keokuk, Iowa, to whom I am indebted for this and other interesting fossils.

The author's collection.

Genus CYATHOCRINUS, Miller.
Cyathocrinus parvibrachiatus, Hall. Pt. XXVIII, Fig. 5.

Cyathocrinus parvibrachiatus, Hall, 1861. Desc. New Crinoidea. Cyathocrinus Hamiltonensis, Worthen, February, 1882.
Bulietin No. 1, of the Illinois State Museum of Natural History, p. 32.
Body of medium size, basin-shaped, base deeply impressed, width of body about twice as great as the height to the top of the first radial series. Basals small and concealed in the basal concavity by the upper joints of the column.

Subradials hexagonal, counting three angles on the under side, and curve into the basal concavity; width and length nearly equal; slightly convex, the greatest convexity being a little below the center of the plate.

Radials about twice as wide as long, those on the anterior side pentagonal, the articulating facet for the reception of the brachials occupying about one-half the width of the plate. In the anterior ray the first bifurcation takes place on the fourth brachial, and in one of the antero-lateral rays on the third, and a second bifurcation on each division of this ray takes place on the third plate above the first. The arms diminish rapidly in size beyond the first bifurcation. Anal side unknown.

Column rather slender, and composed of short, round, even joints.
I'osition and locality: Upper beds of licokuk limestone, Hamilton, 111.

No. 174 of Mr. L. A. Cox's collection.
Note-After publishing a descripton of thl form $\ln 1$ at, I ascerlained that the error In fis dlaknosis, as bublished lu the Buston Juarnat of Natural Mintry, Wis due to a i) pographeal error, and therefure restore the name adepted by Hall in lew.

Cyathocrines Marsiallensis, Worthen.
P1. XXX. Flg. 4.
Cyalhocrinus Marshallensis, Wortgex, Felbraars, 1 des.
Eulletln No. 1, of the Illnols State Museum of Natural Histors; fo. :
Diagnosis: Body mamillate, length and breadth about equal, and truncated at the base where it joins the column. Basal plates small, longest on the anterior side, angular above, and forming by themselves a shallow pentagonal cup. Subradials about as ligh as wide, four of them of equal size and hexagonal, the fifth on the anterior side nearly twice as large as the others and heptagonal. The radials on four of the rays are about the same size as the smallest subradials, pentagonal in form, their lower angles fitting into depressions between the subradials, constricted from the lower lateral angles upward, so that the upper margins, which support the hrachials, are only about half as wide as the greatest width below.

Brachials three on these fom rays, narrower than the radials, two of them quadrangular, and the third angular above, supporting the first divisions of the arms. The lateral spaces between the lracheials, and extending below to the middle of the radials, appears to have been tilled by a caleareous integument, or with minute plates that are too small to present definte forms under an ordinary glass.

On the anterior side of the specimen, the large anterior subradina is suceeeded loy a quadrangular radial resting directly upon its trumcated upper margin, and this is succeeded by two or more quadringular hrachials, beyond which its structure camot he made out.

The arms after the first bifureation on the third trechial, divide ugain on the sixtly or seventh plate, and some of the lrmeless one or twice more, higher up. They are composed of rather lomg, rombled quadramgular joints, decreasing grudually in wize to their extremities. Amul plates unknown.

Column round, very strong at the base of the calyx, decreasing about one-half in diameter a half inch below, and composed of rather thin, even joints.

Position and locality: Kinderhook group, Marshalltown, Iowa. The author's collection.

Genus EUPACHYCRINUS, Meek and Worthen.

Eupachycrinus asperatus, Worthen.

Pl. XXIX, Fig. 4.
Eupachycrinus asperatus, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 34.
Body of medium size, basin-shaped, composed of very massive angular plates. Base deeply concave and basals concealed by the column.

Subradials very massive, projecting outward and downward, slightly excavated below from their outer sides to the point where they join the basals, and forming five prominent angular nodes on which the body would rest when divested of its column.

Radials nearly twice as wide as long, four of them pentagonal, the right posterior one quadrangular, and all produced into obtuse nodes or ridges that on three of them extend nearly across the plate, nearer to the lower than the upper margin, leaving a broad, sloping surface between the ridges and the upper margin of the radial plates.

Brachials on each of the anterior and the antero-lateral rays, shorter and about the same width as the radials, and like them produced into a distinct ridge on their upper margins.

The right posterior brachial supports two shorter brachials, and these support above two arms each, making four arms to this ray. The left posterior brachial supports an additional brachial on one side, that gives support to two arms, while a single arm is supported on the other side, making three arms to this ray. The other brachials give support to two arms each, making thirteen altogether for this species. The first three or four plates of each arm are quadrangular, but they soon pass into a series of wedge-formed interlocking pieces, gradually becoming narrower toward their extremities.

Three anal plates are visible, the lirst is pentagonal, larger than both the others, nodose like the subradials between which it rests, while its upper angle extends a little above the radial on the right. The second anal rests upon the upper trumeated margin of the left posterior subradial, and the third between the first and second anals.

Column round and rather small for the size of the body:
This species is related to Lyons' E. quator-decimbrachialis, but differs in its less massive form, and in the number of its arms.

Position and lucality: Chester limestone, Monroe county, 111.
No. 2,443, Illinois State collection.

Eupachycrinus Monroensis, Worthen.

PI. Xild. Fig. 16.

Fiupachperimus Monvoersis. Wohthen. February, 1Ns:-
Bullotin No. I, of tho Illhois Stato Museum of Natural History. 1r. 34.
Body of medium size, low, basin-shaped, composed of massive plates.

Basals small, triangular above and below, the inner angles bent downward mider the colnmn, and the outer ones bent shoghty upward between the subradials.
Subradials protnberant, sub-hemispheric externally, generally pentangular, the one ou the anal side a little larger than the others. aud truncated on its upper margin for the support of the amal plate.

Radials pentagonal, about twice as wide as long, and trmeatel entirely across their upper margins for the reception of the radial series.

Anals one, quadrangular, length and width abont equal, extending ahove to a level with the summit of the aljacent ralials, and resting below on the truncated upper margin of the right posterior sul). radial.

Arms and column minown.
This species is related to Eiupach. formosus, (ieol. Surv. Ill., Vol. 5, page 519, but differs from that in the proportions of its radial plates and the subglobose charnuter of its subradials.
Position and berlit!!: Chestor limestome, Momroo county, Ill.
No. 2,117, Illinois sitate collection.

Genus DICHOCRINUS, Munster.

Dichocrinus Hamiltonensis, Worthen.

Pl. XXVII., Fig. 10.
Dichocrinus Hamiltonensis, Worthen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 35.
Body small, length and breadth apparently about equal, though from the crushed condition of the body plates the exact proportions of the body can not be accurately determined. Basals about half as long as the radials, forming by themselves a low, shallow cup.
Radials quadrangular, nearly once and a half as long as wide, with a narrow, articulating scar at the summit for the reception of the brachial series.
Brachials three, the last one longer than those below, and supporting on its upper sloping sides the first arm plates.
Arms two to each ray, as far as can be seen in the specimen before me, composed of short, wedge-shaped pieces, rounded exteriorly, and giving off from their longest sides rather strong pinnules.
Column unknown.
This species is nearly related to D. ficus, of Lyon and Casseday, but differs from that in the shorter form of the body and in the number of its brachial pieces, which in their species is only two to each ray.
Position and locality: Upper part of the Keokuk limestone, Hamilton, III.
No. 257 of Mr. L. A Cox's collection.

> Dichocrinus Coxanus, Worthen. Pl. XXVII, Fig. 7. Dichocrinus Coxanus, Worthen, February, 1882. Bulletin No. 1 of the Illinois State Museum of Natural History, p. 35.

Dichocrinus Coxanus, Worthen, February, 1882.

Body small, ovate in outline, pointed at the base and contracted at the summit of the radial series, so that its greatest diameter is near the base of the radial plates.
Basal plates nearly three-fourths as long as the radials, forming by themselves a rather deep cup.

Radials longer than wide, lateral borders nearly straight, slightly contracted at their summits, the articulating sear for the reception of the brachial series ocenpying about one third of the width of their upper margins.

Brachial plates sinall, apparently two in number, the second one leing the longest, and supporting on its upper sloping sides the first arm plates.

Arms two to each ray, composed of short, rounded joints, which give off strong pinnules from their inner borders. Anal side and column unknown. The surfaces of the body plates are marked by obscure longitudinal ridges that will serve to distiuruish the species from any other heretufore described from this horizon.

Position and locality: Upper part of the lieokuk limestone, Hamilton, Ill.

No. 14 of Mr. L. A. Cox's collection.

Gexus Taldarocrinus, Wachs. \& spr.

Talanocrines ovatcs, Worthen.
II. XXIN, Fig. 11.

Talarnerinus oralus, Wortien, Feb., 1w2.
Bulletin No 1, of the Illinols Stato Muscum of Natural Mistors, p. Ma.
Body thove the medium size, ovate in general ontline, lobate as siewed from alove or helow.
Basals about half as high as wide, impressed below, and pentag. onal above, with a slight depression at their lateral looders.

First radials abont one-third longer than wide, the anterior one pentangular, the others quadrangular, and all protuberant. The succeeding radials not visible.

The first anal is as large or a little larger than the first modials, heptagomal, having fonr distinet angles above and threo below. It is suceceded ly three small anals, the centrul one of which is pretagomal, and rests on the truncated summit of the firat amal, white tho other two, the form of which can mot be clearly seen, rest upon its upper lateral angles. Above this there is one or two series of rery monll plates surromeling the amal opening.

Tho voult is composed of very smoll, smooth phates, except the central one, which is largor, and prodneed into a pointed spine. In one of our specimens there is aspine-bearng plate, betwen the arm
openings and the central spine on two of the rays. Arm openings two to each ray. Arms and column unknown.

This species is related to T. sexlobatus, (Shumard's sp.) but differs from that in its more symmetrical form, its less protuberant radial and anal plates, and less nodose summit.

Position and locality: Chester, limestone, Monroe county, Illinois• No. 2,453, Illinois State collection.

Genus AGASSIZOCRINUS, Troost.

Agassizocrinus papillatus, Worthen.

$$
\text { Pl. XXIX, Fig. } 17 .
$$

Agassizocrinus papillatus, Worthen, Feb., 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 36.
Body rather below the medium size, subovate, width at the summit of the radials a little more than the length, composed of massive, slightly rounded plates that are separated by well-defined and deep sutures.

Basals pentangular, about as wide as long, and rounded below, where their inner margins form the walls of a very small pentapetalous opening for the attachment of a very delicate round column, two or three joints of which remain attached to one of our specimens.

Subradials, three hexagonal, counting three angles below, and two on the posterior side heptagonal, length and breadth about equal.

Radials pentangular, nearly twice as wide as long, except the two posterior ones, which are rather narrower than the others.

Brachials about the same size and form as the radials, and support on their upper sloping sides the first arm plates. Arms two to each ray, composed of quadrangular joints that gradually diminish in width to their extremities.

Anals, three visible; the first is nearly as large as the radial plates, pentagonal and situated as in Poteriocrinus, between two of the subradials, and partly under the left side of the right posterior radial. The second is about half as large as the first, and rests on the upper truncated margin of the left posterior subradial. The third is very small, and rests upon the upper angle of the first anal.

Position and locality: Chester limestone, Monroe county, Illinois. No. 2,444, Illinois State collection.

Agassizocrinus hemispuericus, Worthen. PI. XXIX, Fig. z .
A gassizocrinus hemisphericus, Worthen, Feb, 15\$2.
Bulletin No. 1 , of the Illinols State Muscum of Natural Illstors. 11. 37.

Body small, bowl-shaped, or hemispherical in outline, about once and a half as wide as high to the summit of the radial suries, rounded at the base, and composed of massive, protuberant plates.

Basals small, projecting but slightly below the subradials, forming a little pentagonal star. No columuar facet is visible.

Subradials a little longer than wide, strongly protuberant, three of them pentagonal, and two on the posterior side hexagomal.

Radials pentagonal, three of them rather more than once and a half as wide as long, the two on the posterior side rather narrower than the others, and all truncated squarely across their summits for the reception of the brachials. Sutures between all the plates of the body distinct.

Brachials as wide below as the radials, but strongly constricted and sharply angular above, where they give support to the two divisions of the rays. The arm-phites attached are three in number, the first nearly twice as long as the succeeding ones, and all quadrangular in form.

Four anal plates are visible, the first is protuberant, pentangular. about half as large as the largest madials, and rests squarty upon the trumeated upper margin of the right posterior subradial and under the left side of the right posterior radial. The second amal is about half as large as the first, longer than wide, and rests on the upper margin of the left subradial. The other anals are smatler: the third rests between the first and second, and the fourth on the summit of the second. Column unknown.
(icological position and locality: Chester limestone, Randolph county. Illinois.

No. 2,451, Illinnis State collection.

Genus LECYTHIOCRINUS, White.

Lecythiocrinus Adamsi, Worthen.
PI. XXXI, Fig. 8.
Lecythiocrinus Adamsi, Worthen, Feb. 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 37.
Body of medium size, irregularly subovoid, slightly pentalobate, as seen from above or below, from the protuberance of the radial plates, and composed of smooth and rather thin plates. The base is convex, and occupies about one-fourth the entire length of the body.
Subradials a little longer than wide, with an angular promineuce just above the middle of each plate, extending from the center to the upper margins.

Radials about half as large as the subradials, length and width about equal, triangular below, the angles fitting into the depressions between the subradials. They are all surmounted by a small semicircular arm-facet, from which a shallow groove extends to a central opening in the summit.
Just above the summit of one of the subradials, and in the lateral angles of two of the radial plates, there appears to have been a circular opening, rather larger than the arm-facets, which is now filled with stony matter,-and whether this is an anal opening, or an accidental break in the test of the body, is a question to be determined from additional material. Columnar facet scarcely larger than that for the reception of the arms. Arms and column unknown.
We take pleasure in dedicating this unique fossil to Mr . W. H. Adams, of Elmore, Peoria county, who found it on section 13, township 11 north, range 6 east, Peoria county.
It is from about the horizon of Coal No. 8 of the Lower Coal Measures.

No. 2,468 of Illinois State collection.

MOLLUSCA.

BRACHIOPODA.

Genus Camerophoria, King.

Camerorhorla Giffordi, Worthen.
th, View of dorsal valer: h, ventral valve; e, pronle view.)
Cameroghoria Giffordi, Winatues, February, lsne.
Bulletin No. 1, of the 1 llinols stite Museum of Natural Histors. p. $\$ 9$.

Shell above the medimm size, broadly orate or fulbcircular in general ontline. Dorsal valve nearly circular, moderately convex, the greatest convexity being about one-third the distance from the heak to the front part of the shell, umbo depressed. Ventral valve much more convex, and the beak
 produced begond that of the dorsal valie, and strongly recurved.

The only sperimen we have seen of this fine shell is an internal cast, with a fragment of the test adhering to the beaks. Traces of ten or twelve hroad shallow plications can be set al we front portion

$\overbrace{8}^{2}$of the shell, two or three of which probially extended to the beak on the ventral valve, while the others liecame obsolete before rathing the cardimal border. Traces of fino longitudinal striations are also visible with a good glass. Lengeth from the beak to the front w, breadth $2:$, heighth 14 millimeters.
Dedicated to the momory of Mr. Wim. (iifford, of Peoria coment. III. from whom the specimen was receised.
l'ontion and lecality. Middle Coal Mensures near Alta, Pionia coumty, Ill.
lllinois State collection.

LAMELLIBRANCHIATA.

Genus CHA AOMYA, Meek.

CHÆNOMYA MARIA, Worthen.

a Side view. b Dorsal view, nat. size. Uluenomya Maria, Wormen, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 39.

Shell elongate, sub-cylindrical, anterior side much compressed and aperture entirely closed; posterior side truncated and widely gaping. Base slightly convex in outline, rounding up gradually in front and abruptly behind, dorsal side a little concave from the beaks to the posterior extremity. Beaks depressed, incurved, and located about onefifth the entire length of the shell from the anterior side.

Two conspicuous furrows commence at the beak, the anterior one crossing the valve obliquely to the base of the shell at a point about two-fifths of its entire length from the anterior side; the posterior one crossing the shell much more obliquely, and terminating at the base of the shell, near its posterior extremity.

In addition to these furrows each ralve is marked by alout thirty-two longitudinal ridges that are a little wider than the spaces between them. These commence at the dorsal margin near the beak, and when they cross the posterior furrow already described, they are deflected abruptly forward to Ω right angle with their former course, about two out of every three ending at the anterior furrow, while the uthers are continuous across that to the anterior border of the shell.

A small fragment of the shell, attached to the cast, shows that the surface was finely striated obliquely from the beak to the front, and with a good lens the stri:e are seen to consist of rows of minute granules.

Dedicated to Mrs. Orestes St. John, by whom this fine specimen was discovered, and to whom I am indebted for the use of it.

Position and locality: Upper Coal Measures, Shawnee county, Kian.

Genus AVICULOPECTEN, McCoy.

Aviculopecten Varsoviensis, Sp. nov.

View of left valve, Natural size.
Shell large, suborbicular, linge-line rather shorter than the greatest breadth of the valves below. Left valve nearly flat, posterior ear short, and forming a rather acute triangle, which is clearly defined from the posterior margin below.

Anterior ear nearly twice as long as the posterior, not so distinctly angular in outline, the outer margin curving into a deep indentation where it joins the lateral border of the shell. Both ears show traces of raised lines or costre, corresponding to those on the body of the shell, and on the anterior ear, faint transverse lines of growth are visible.

Surface of the valves marked by numerous raised lines or costat, that increase towards the base by implantation, and are about as wide as tho spaces between them. From 80 to 90 of these costate may be counted on the borders of the shell.

Greatest width of the valves 4 inches. Length from beak to base ${ }_{3}{ }_{1}{ }^{\prime \prime}$ inches. Length of hinge-line $3 \frac{1}{2}$ inches.

Locality and position: Upper beds of the Kiokuk limestone, near Warsaw, Ill. The author's collection.

This is a very rare species, only one valie, and part of another. having been found in $2 \overline{5}$ years collections from this horizon.

LOWER CARBONIFEROUS LIMESTONES

AND

COAL MEASURES OF ILLINOIS. ${ }^{1}$

By A. H. Worthen.

Orthoceras Illinoiensis, Sp. nov.
Shell of medium size, gradually enlarging from the apex; section slightly ovate, siphuncle rather large, and placed near the margin of the shell.

Septa moderately convex and oblique to the axis, being arched strongly upward about twice their width on the siphuncular side, and equaling in width about one-fifth of the shortest diameter of the shell. Surface markings unknown.

Length of the largest specimen seen, about 6 inches; greatest diameter of the outer chamber, $2 \frac{1}{2}$ inches; greatest width at the apex, $\frac{7}{8}$ inch.

This rare shell is only known from three imperfect specimens obtained from the upper limestone at Chester.

No. 2,484, of the Illinois State collection.

[^18]
Orthoceras Ofawesils, Sp. nov.

Shell elongate, slender, very gradually tapering to the apex; septa concure, about 4 of them usually in the fpace of one diameter. Siphuncle subeentral, surface markings unknown.
'This fhell has a general resemblance to O. Rushensis of the l'pper Coal Measures, but differs from that in the position of the siphmeale, which in our species is decidedly subeentral.

Position and localit!: Chester limestone, vicinity of the Olaw bluffs, near Red Bud, Randulph coment, Illinois.

No. 2,485 , of the Illinois State collection.

Ortioceias LaSalleisis, Sp. not.

Shell small, gradmally tapering. Surface ormamented with transverse ridges or clevations; sitnated at irregular distances from each other, and with delicate thread-like stria which cover the transvere ridges as well as the spaces between them. The ridges and strial will serve to distingnish this spectis from any hitherto fomen in the Coal Measmes, its omamentation rombling that of the 1 . unduletum of the Niagara limestome more closely than any other hown American species. The fragment preserved seems to belong to the non-septate portion of the shell.

P'osition and locality: Reof of the midalle coal. Lasialle, 16 .
No. $2,48 \mathrm{f}$, of the Illinois State collection.

Ple:choronarta Moxthzzema, Sp. unt.

This fine shell is only known from an imperfect east of the last whorl, which may be deseribed as follows:

Shell attaining a large size broadly coucal in ontline; whorls three or more, rapidly diminishing in size towards the npes. Last whorl obliquely flattened, showing on surface atont two inches ill bradth, which is traversed by alout cight rather strong revols. ing strise, separnted by shallow depressims that are nbont $\frac{3}{}$ of an inch wide ne:u the aperture. The memer side of this whorl was alsen triversed hy mmerons revolving striat, abont half as far apart as those ont the npper side, but their mumer ean not be fully determind by the specimen in hand. A raised line aromat the nomer side of the whorl inderaten the preatace of a rather whde med dep numbilicun.

Greatest width of the specimen in hand, $4 \frac{5}{8}$ inches; height of the outer whorl, $1 \frac{1}{8}$ inches.

Position and locality: The only specimen seen was obtained at Montezuma, Pike county, Illinois, from near the base of the Burlington limestone.

No. 2,487 , of the Illinois State collection.

Dentalium Illinoiensis, Sp. nov.

Shell above the medium size, long, straight cylindrical, slightly tapering, and scarcely inflated at the aperture. Surface originally smooth, but slightly roughened from weathering in the specimen under examination.

Length, $5 \frac{7}{8}$ inches; width near the aperture, 7-16 in.
This species differs from D. Missouriense of Swallow, in its larger size, smooth surface and straight form.

Position and locality: Lowest beds of the Chester limestone, Chester, Illinois.

No, 2,488, of the Illinois State collection.

Conularia Chesterensis, Sp. nov.

Shell attaining a medium size, long and rather slender, gradually tapering, nearly equally four sided, the four angles being distinctly and rather deeply furrowed, while a slight furrow marks the median line on each side. The sides are crossed by numerous raised costæ, which arch slightly forward from the angles to the median line, making an angle with that line of about 14°. They do not cross the angular furrows, but are alternately arranged so that those on one side terminate at the intervening space between those on the opposite side. These spaces are about twice as wide as the costæ, and are widest at the median line.

The aperture is not well preserved in any of our specimens, but the shell was notched at the angles and probably contracted at the aperture.

Length of a rather large individual, 5 inches; breadth between the angles near the aperture, 1 inch; number of costæ in the space of an inch near the aperture, 20 ; near the apex, 30.

Position and locality: Chester limestone, Chester, Illinois.
No. 2,489, of the Illinois State collection.

Pinga St. Ledocici, Sp. nov.

Shell comparatively short, lanceolate; length about twice as much as the greatest width. Section ovate-elliptical, valves traversed longitudinally by about twelve to fifteen rather strong ribs that are most prominent on the middle portion of the shell, and become obsolete towards the vental and dorsal margins. Spaces between the ribs narrow, leak unknown. Angle formed by the dorsal and vental margins about 40°.
This rare species is only known from a single specimen preserved in chert, with both extremities wanting. It may be readily distintinguished from P. Missouriensis of the Chester group, and from any other species known in our Carboniferous rocks, by its shorter form and greater proportional width.

I'sition and locality: St. Lonis limestone, Monroe county, Ill.
No. 2,490 Illinois State collection.

Cypricarda? Randolphensis, Sp. nov.

This shell is only known from some casts in limestone, which may be briefly described as follows:

Shell oblong, beight from the beak to the ventral margin about half the length, valves moderately convex on the anterior portion of the shell, and depressed towards the posterior end, where the valves were apparently closely joined. Beaks rather large, depressed and incurved beyond the dorsal margin, and situated about twofifthe the distance from the anterior to the posterior extremities. A hroad and slightly flattened depression appears on some of the casts, extending from the beak to the veutral margin of the shell. Dorsal margin nearly straight, ventral margin parallel with the dorsal for about two-thirds of its length, eurving abmutly upward on the anterior, and more gently on the posterior end. Lamme ovate; surface markings makown.

Length of an arerage specimen, 2 inches; height, 13 inches: thickness, $15 \cdot 16$ inch.

I'usition and lecalit!. Chestor limentone. Ramdolph comnty, 111.
No. 2, 1971 llinois state collection.

CLASS ECHINODERMATA. ORDER ASTEROIDEA.

Family PALÆASTERID风.

Compsaster, n. gen.

(Ety. Kompsos, elegant; aster, a star.)

Body stellate ; central area or disc comparatively small; rays large, long, more or less fusiform; grooves deep and bordered by numerous thin, subcircular, adambulacral plates. The ventral side of the typical species shows about six rows of plates upon each side of the ambulacral furrows, which have a regular, transverse, as well as longitudinal arrangement.
This genus is distinguished from all others in the family by the number and form of the adambulacral plates, by the great number of disc plates upon each side of the ambulacral furrows, and by the general form of the body and rays.

$$
\text { Compsaster formosus, } \mathrm{Sp} \text {. nov. }
$$

Pl. XXXI: Fig. $2 a$, ventral side, natural size; fig. $2 b$, section of a ray enlarged two diameters.

Body deeply stellate ; central dise comparatively small ; rays rigid, large, fusiform, more than twice as long as the diameter of the central dise, and terminating abruptly in an obtuse point. The typical specimen furmishes the following measurements: Diameter of the
 diameter of the ray at its junction with the body, 4_{170}^{40} inch.
Ambulacral grooves deep; ossicles rather small; adambulacral plates very numerous, and consisting of a series of thin plates upon
each side of the ambulacmal furrows, whith are rommded upen the exterior, probonged lulow, and cach bear a short, sharp fpine on the urper part of the inmer side, directed toward the ajex of the my. There are about sighty adambulucral upon each side of the furrow. and they diminish very slowly in size fowarel the aper, after fassing the fusiform enlargement of the ray.
The dise-plates abut upon the adambulareale in a straight line; they are subquadrangular. wr polywhal, and wach hears a short, strong centrul spine. Six longitudimal ron- appear on the fintral side on cach side of the umbulacral furows; they are somewhat miform in size, arranged in transeree as well as longitudinal urder. med are about two-thirds as mmerous in a longitndinal row as the plates in an ambulacral strics.

Oral plates, madreporifurn thherele, and dorsal ride moknown, iscept so far as we may jodge of the spinom- charache of the phate from those visible on the ventral side.

This large and beantiful species is so distinct from any hithorto described, that no comparison is necunary for the pmpee of itentification.

Position and loculity: Oknw bluffs, between Chenter and liahasslia, Randolph county, Illinois; from the seennd division of the Chester limestone.

Illinnis State collection of 1841, hy A. H. Worthen, No. 2, Tifi.

Cholasteli n. gen.

1'is. chates, difuctive: aster, amar.
Body truncated pentagonal, control aria cirenlar. deep and lurge in proportion to the nuys: rays distant, small, short mud abruptly truncated.

Porsal side possessing a rather horge centro-lomal plate, which is surromeded by five plates occupying the position of radials, while the other part is covered with mumenous smmll dise plates.

This gemms being foumded on a specimen showing the dorsal cide only: further partienlars will be found in the definition of the spectic. This fossil is so widely different from those heretofore disenserel that we think it belonge to a distinct famil!, which might, rery uppropriately, be desigunted the Chelasiorider. lint mathl other spectmons have been fomm showing other parts of the hody, we firfer (o) lot the fanily remain medefined.

INVERTEBRATES.

> Cholaster pecullaris, Sp. nov.

Pl. XXXI. Fig. 4. a. Dorsal view, natural size; b. Section of a ray enlarged, showing the arrangement of the plates.
The general form of the body is that of a truncated pentagonal star, with a large circular disc. A centro-dorsal plate is surrounded by five others, all of which are much larger than other plates of the body, and occupy a centro-dorsal depression. The position of these five plates is that of radials, resting upon a basal, and therefore, all other plates of the body might be regarded as radials and interradials, the latter being very numerous, because of the wide separation of the rays at their junction with the body. The interradials are polygonal, convex, or subspinous plates, without much variation in size whether filling the larger or smaller interradial spaces. The plates following the larger radial plates, as above defined, in the direction of the rays, are not, however, by their form or arrangement to be distinguished from the interradials, though differing from those forming the rays. The plates covering the dorsal side are thus divided into three kinds, viz. : First, the larger plates filling the centro-dorsal depression; second, the disc plates which cover all other parts of the body except the rays, and, third, the plates which cover the rays proper, which in this species are easily distinguished from the central dise plates.

The rays are short, abruptly truncated, and slightly expanded at the apices by reason of an enlargement of the terminal plates. They are widely separated from each other, though not at uniform distances, and present the appearance of having been stuck on the central disc, instead of having grown from it, an appearance more marked, by reason of the change in the form of the plates, from the disc to the rays.

One of the interradial spaces is much greater than the others, so that a line may be drawn across the disc, leaving three entire rays upon the smaller half. The back of each ray is covered by a series of transversely elongated plates separated from the side series by a longitudinally impressed line. A single series of plates covers either side of a ray, interlocking with the transverse dorsal series and directed backward toward the disc.

The oral plates are unknown, and no madreporiform tubercle has been detected.

Position and locality: Same as the last.
No. 2,480 Illinois State collection of 1880.

Ohder OPHIUROIDEA.

Tremataster, n. gen.

(Ctj. (rema, fulu openlog: aster, a flar.)
Body stellate, cential part discoid, rays long, tlexuous and gradually tapering. lays consisting of a double series of ambulacral plates, forming, together, a sulncunciform series with the tapering ends directed toward the apices of the rays and uniting with the larger ends of the succeeding double plates, upon each side of which there is a series of curved adambulacral plates, which form the margins of the rays. The pores are large and situated between the contracting sides of the ambulacral plates and the concave sides of the curving adambulacrals. Four plates border upon each pore though nearly surrounded by two of them. Plates ten. Dorsal surface unknown.

This genus is distinguished by the parallel arrangement of the ambulacrals and adambulacrals, instead of the alternate order, and liy the large pores.

> Tremataster mfficile, Sp. nor.
 the arrangement of the mates magnthed four diametern.
Body stellate, dise small, rays long, flexnous and grudually tapering.
Ambulacral plates subtrigomal, elongated. and united upon the ir straight faces in parallel order, so as to form a series of sulncumeiform sections at the bottom of the ambulacral groove, with the tapering end of each directed towad the :pex of the ray, and unting with the larger end of the next succeeding double plate.

Alambulacral plates parallel with the ambulacrals, and cach forms a curve from the lager end of an ambulacral toward the aper of the ray, to mite with the next succeeding adambulacral as it curves away from its attachment to the ambulacral. By this order of construction the adambulacrals are fixed, at one cold, to the ambulacrals, white the other end moves upen the curved surface of an adambulacral so as to allow the same lateral thexilility of the rays. secured in other genern ly the atternate mrangement of the plates.
'Tha pores are largo and situated between the contracting sides of
the ambulacral plates, the concave sides of the adambulacrals, and the attaching ends of the succeeding plates, so that they are bounded by four plates while nearly surrounded by two.

The oral plates form, in pairs, elongated triangles, with the acute angle directed toward the center of the visceral cavity. The apices are joined by a suture with the basal portions, which are partly separated by a dividing furrow. A single genital pore perforates each basal section of the oral plates. Dorsal side unknown.

Locality and position; Prairie du Long cieek, Monroe county, Chester limestone.

No. 2479, Illinois State collection of 1878.

ORDER PERISCHCECHINIDÆ.

Family LEPIDECHINID A.

Hybochinus, n. gen.
(Ety hubos, hump-backed; echinus, the sea urchin.)

Test flexible subspheroidal, and consisting of five (?) ambulacral, and the same number of interambulacral areas. Ambulacral areas composed of numerous ranges of interlocking and overlapping plates, each of which is perforated in the central part, by a single pair of pores. The plates imbricate from below upward. Interambulacral areas narrower, and consisting in the equatorial region of five or more ranges of overlapping plates some of which disappear before reaching the poles. The plates imbricate from above downward and from the central range outward. Surface covered with small gran-ules-not large tubercles-for the articulation of minute spines. Jaws consisting of large, subtriangular, truncated conical pieces, deeply furrowed towards the ends, and perforated in the central part.

This genus is related in many respects to Lepidesthes, but"differs in the important particular of having the imbrication of the plates in the opposite direction, as in the Eehinothuride or more modern family of flexible Eehinoids. The humps and protuberances of the upper end of the type specimen, which suggested the generic name, are supposed to indicate the great flexibility of the test, and an abnormal development of the number of ambulacral plates. An ab-
normal development of the plates in Lepidesthes, howerer, could not produce such protuberances at the npieal end, hecanse the imbrieation of the plates is downard and would not permit it. Had we other specimens showing an irregular development of the ambulacral areas and great inerease in the mmber of phates towards the apical emi, we would comple this feature with the remarkally developed jaws, and refer the genus to a new and distinct family under the name of Hyluchinidu. It present we leave it in a family where it fuems to have at lenst some affinity. It is quite mmecessary to compare it with any other genus, or for the purposes of ilentification to continue the comparison with other characters possessed by Lepidesthes.

Hybochinus spectamlis, Sp. nor.

Abstract

 parts of four ambuharal, and three Interambuheral arens, n geepular hort-lthe provel- r - ranges of an buhacrals on each wide near the ableat end, magnifled two dametora, at who view of the andulacral or nther phates at they are thrus: ont in the horn-1 ke ir ther- a kiadred speales.

Gencral form subspheroidal, modified, howerer, hy the extreme flexibility of the test, and as it appears, in the type, at the apienl end, hy peculiar protubernees, one of which projects hhe n horn. 'Ten ranges of plates may be counted in an ambulacral area in the type specinen, but this number may be, mad prohally is, exceuled in the equatorial region, for ten ranges may ho dintinguished in the horn-like projection from one of them, where all the ranges are certanly not exposed. The ambulacral plates imbricate from lelow ирward, each exposing a some what regularly hevagomal area, transversely chongated, in the central part of wheh there are two pores. As the plates inhricate upward the lower part of rach is eoverei. so that. in fact, the pores ocenpy an upper ecntral position in each plate, passing through at the lower inmer edge of the sumeceling one. The plates are so beveled as in form a smonthexterior to the bouly. Tho interambularal arets are laneenate. a little more than half as wide as the ambinacral areas, and emsisting. as fhown 1 m (mir specimen, ut a point ahose the equaturial region, of tive ranges of plates. The ranges decrense in mmber toward the poles and the phates slightly diminish in wize. The phates imbriente downward, and from the central range ontware, so that they overlap the
ambulacral plates upon either side. The exposed surface of each plate is quadrangular, and usually square, or nearly so. The surface is covered with small granules for the articulation of minute needle-like spines, the articular ends of which are marked by a slight swelling. The jaws are remarkably large, and seem to have formed an ovate body of ten or twelve pieces, each of which is deeply furrowed at the ends, and perforated in the central region.

Other openings and characters of this species cannot be correctly defined from our specimens. Those represented by figures 5 and 6 show only the crushed apical regions and the parts described, and were collected from the Chester limestone on Prairie du Long creek, in Monroe county, by A. H. Worthen. The one represented by fig. 7 was obtained from the same horizon in Pope county, and may or may not belong to this species. The jaws seem to be smaller than they are in the other two specimens, but this may result from their being more fragmentary. One genital plate, however, appears upon this specimen having four pores, and if it belongs to this species it will of course add that additional character.

No. 2,481. Illinois State collection.

Genss PERISHODOMUS, McCoy.

Perischodomus Ililinotensis, Sp. nov.
 PI. XXXI. fig. 8, view of the apicad end of a distorted specimen, natural size.

General form apparently subspheroidal, and as there are five ambulacral and five interambulacral areas, and the former are so narrow, it probably has a subpentagonal outline as noticed by McCoy in diagnosing the genus.

Ambulacral areas narrow, depressed, over-lapped on either side by interambulacral plates, and consisting of a double series of interlocking transversely elongated plates, each one of which is pierced by a single pair of pores. These plates are not uniform in size nor shape, though most of them seem to have imperfectly defined subpentagonal outlines. They slightly overlap from above downward.

Interambulacral areas covering nearly the entire surface, but as the equatorial region is not preserved, it is impossible to state the number of ranges of plates in each area. There may be five and there may be seven only five can be distinctly determined from the apical view of our specimen. The plates are very irregular in size,
imbrieate upward, and the two rows adjoining the ambulacral areas imbricate outward, but whether the imbrication is from the central range outward, as is usual in such cases, camnot be determined, for the central range seems to bo depressed, which may hawe resulted from the crushing the fossil has received.

The plates bore two kinds of spines; those bearing the larger kind possessed a single central spine, but those bearing the sinaller hind possessed two or more submarginal ones. The central supporting tubercle is a moderately large smooth hemispherical nipple with a central perforation. Only one plate of this kind is shown upon the typical specimen, and it is in the second range from the ambulacral area at about the sixth plate from the genitals. The secondary spines were borne by both rows of plates on each side of the ambulacrals, as indicated by small, more or less conical elevations, some of which show a minute perforation, and indeed mity have ben borne by the plates in the other ranges. Other characters of the species unknown.

The plates, in the interambulacral areas of this species, correspond in number, order of arrangement, and spinous character so much more nearly with Perischodomus than with Lepidechinus, the most nearly approximating genus in other known respects, that we have little doubt of the correctness of the generic reference, though it would be unnecessary to point out how it differs from the European forms for the purpose of specific distinction.

Collected ly A. II. Worthen from the Chester limestone at Bay City, lope county, Illinois.

No. 2. 483 Illinois State collection.

ORDER AGELACRINOIDEA.

FAMILY AGELACRINID $\mathbb{\text { I. }}$

Echinodiscus, n. gen.

(Ety, echinus, sea urchin: diskos, a round plate.)
Body discoid, depressed convex, the smaller plates being found in the border and ambulacra adjacent thereto, and the larger plates occupying the central part of the interradial spaces, none of them imbricating. The border consists of narrow plates elongated in the direction of the circumference, and passing around upon the under side, forming a cylindrical nonsessile rim. Ambulacra five, connected near the central area, but not arising from a common point, consisting of narrow, curving angular arches, sharply defined on either side, and composed of numerous interlocking or dove-tailing plates. Mouth or ovarian pyramid central or subcentral.
This genus is distinguished from Agelacrinus, with which it seems to be most nearly related, by many important characters. First, it is not composed of imbricating plates. Second, the manner of attachment to other objects was different, as in this genus the margin was free. Third, the ambulacra do not arise from a pyramidal elevation or common point, but, one may be said to arise on one side of the mouth, and to connect, by an ambulacral series of plates, with the points, at which two arise, on either side of it, or that two series bifurcate, if it is considered that three series originate on one side of the mouth, in the first instance. Fourth, the mouth or ovarian pyramid is subcentral, while in Agelacrinus it is submarginal. This elevation would seem to be homologous with the mouth in the echinoids, for below it, within the visceral cavity, there occur several pieces, which were evidently connected with the digestive functions, and therefore homologous with the jaws in the latter order.

Ecminodiscus ortatus, Sp. nov.

1'I. XXXI. Fig. 9, Niw of part of the lower side of a sprecimen ehowlug the plat a near the marcin.

Borly discoid, rather large, being more than an inch in diameter. and having large plates in the interambulacral areas, atd smaller ones on other parts of the test. The margin is composed of smull plates elongated in the direction of the circumference, and forming a semi-cylindrical or romuded rim, lint not attaching to other objects, showing that if the species was sessile it did not unite by the whole underside, as in Ayclacrinus.

Interambulacral areas depressed, concave, covered with polygonal plates, those in the central part large, while thoed in the margin are smaller, and appear as if trimmed to a straight edge for the reception of the ambulacra.

The ambulacera are long, slender, curving, angular arehes, set within the face of the dise, and joined with the interambulacral plates ly straight lines, without interlocling or imbrienting plates. They me composed on each side of alternately longer und shortor plates which interlock at the angular arch, with each other and with smaller intercalated plates, so as to give a zigzag outline to the dovetailing union of the plates on the surface of each ambulnerum. 'lise ambulaera do not mrise, as in Agilacrinus. from a central pyramid, but the divisions take place near the central part of the dise, separated by numerons ambulacral plates, and on different sides of the moutl. The mamer of hifmention may be describel in this way: a division takes place on one side of the month, from whence two ambulacra eurve over the face of the dise, and an mmmaneral series of plates is directed past the mouth: at the distance of one-tenth of an inch it throws off, in the direetion opposite the mouth, a curving umbulucrum and continuing to pass the month, at the distance of another tenth of an inel it divides intu two momblacra. 'This lemes the month in the wider intermmblaceral area.

The month would seem. from the eondition of our specimens, to he rentrol, but it may be klightly mbentral. It comsiste, on the axterior, of meloneated elevation eovired by momerous plates of lurver and smather sige, Wheh mbe kitported on the intertur ley a fewer mmber of plates, some of whelt are theted. but the colet order, arrangement mad purpeses of whith are not defommed.

Collected by A. H. Worthen from the Chester limestone in Monroe and Pope counties.

No. 2,478, Illinois State collection.

Archeocidaris Edgarensis, Sp. nov.
Pl. XXX, Fig. 15. a.b. c.
Primary spines long, gradually tapering, cylindrical; articulating end perforated with a round aperture, and enlarged in a space of about a quarter of an inch into a strongly striated ring, from which it rapidly decreases above to its normal diameter at the articulating extremity. The upper portion of the primary spines for about three-fourths of their entire length are rather thickly set with short lateral spinules, that project upwards towards the extremity of the spine, where the latter terminates in a mucronate point.

Interambulacral plates hexagonal, length and breadth nearly equal, with a single row of granules on the rim of the smaller plates, while on the larger ones two or more rows of small granules may be seen.

This species bears some resemblance to A. mucronatus, Meek and Worthen, described and figured in Volume 2 of these reports, page 295 , Pl. 23, fig. 3, a. b. c. That species was obtained from the Chester limestone, and the A. Edgarense may be readily distinguished from that by its shorter and more numerous spinules, its strongly striated ring, and the less robust character of its primary spines.
Position and locality: Upper Coal Measures, one mile east of Baldwinsville, Edgar county, Ill.
No. 2,447, Illinois State collection.

Archeocidaris spino-clavatús, Sp. nov.
Pl. XXX , fig. 14. a, b, c, d, e, and Vol. 5, Pl. XXIV, fig. 13, a, b, c, d, e
Primary spines rather long, moderately stout, cylindrical at the base and gradually increasing in diameter toward the upper extremity to twice or three times the diameter below, and then rapidly diminishing to an obtuse termination.
The enlarged upper portions of the spines are sometimes subtriangular in section and thickly covered with nodose spinules, which are longest on the angles, and directed upward toward the apex of
the spine. These nodose spinules continue down over the middle portion of the spine, but they are smaller and less numerous than on the clavate portion above. The lower part of the long spines are nearly or quito destitute of spinules, but on the shorter ones they continue nearly to the basal ring. This ring is nearly twice the diameter of the articulating extremity, and smooth.

Interambulacral plates hexagonal, with a nodose rim aromed their margins, and there are indications of low granules seattered sparingly over the outer surface of some of them, but they are highly silicified, and their external markings thereby obscured.

Central tubercle strongly elevated, papilliform, with a rather deep space between it and the annulation, the latter forming a distinct and slightly projecting rim for its support.

This species may le readily distinguished from other Coal Mensure species by the spino-clavate character of its spines.

Position and localities: Middle nnd lower Coal Measures. St. Chair and Mnrshall counties, Illinois.

No. 2,404 Illinois State collection.

Archeocidaris Illinohensis, Sp. nor.

Pl. XXXI, Fig. l, n. b.

Primary spines rather stout, eylindrieal, tapering very gradually above the articulating ring to their extromities. Artionlating ring subangular, and from this the spines contract rapidly to the artienlating extremity. Just abore the articulating ring the spines are slightly curved, and above the cursature they are studded with short sharp spimeses that are directed outward amd slighty upward towards the extremity of the spine. The artienlating end is perforated ly a rombl aperture, which cextends about to the artienlating ring.
The cmly specinens of this species yet ohtamed consist of primary spines, and some fragments of the inter-ambulacral plates, the latter ton imperfert for an aceurnte deseription.

Position and locality: From the hack beds of the St. Louis linestone, near the Illinois Furnace, Harlin comer, Illinois.

No. 2,475 , of the Illinuis state collections.

PALFONTOLOGY OF ILLINOIS.

SECTION III.

DESCRIPTION OF FOSSIL INVERTEBRATES.

By Charles Wachsmuth
and
W. H. Barris.

PALÆOCRINOIDEA.

Genus ALLAGECRINUS, Carp. and Ether.

Allagecrinus Carpenteri, Wachsmuth.
Pl. XXIX, Fig. 14.
Allagecrinus Carpenteri, Wachsmuth, February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 40.
The unique specimen upon which this species is founded is from the collection of Prof. Worthen, who kindly permitted me to describe it. It is partly imbedded in the rock, but only a small portion is covered by the matrix. It consists of a two-inch column, the calyx and arms. The calyx is somewhat pressed out of shape, but with this exception is excellently preserved. The specimen is small, its length measuring from the basal disk to the tips of the arms 80.100 parts of an inch, to the arm bases 16.100 parts, of which the basal disk occupies only 4.100 parts.

Specific Diagnosis: The calyx is of small size, the form is cylin-dro-conical; it is composed of two rings of plates, the upper supporting the arms. There are no interradials, and no azygous side. Plates strong, without ornamentation.
Basal disk undivided, at least without visible suture lines; it is short, three times wider than high, saucer-shaped-the upper side but little wider than the bottom part, with very obtuse upper angles.
Radials 1x5, differing somewhat in width,-wider at the top,quadrangular in outline, but actually pentangular; axillary, with very obtuse upper angles, the sloping sides slightly excavated and supporting the free arms.
Arms two from each ray, simple throughout, unequal in size,some of them one-half thicker than others-not tapering; nearly as thick at the distal end as at the base. The arms are constructed
of from eight to ten simple joints, the first joint one-half higher than wide, and differing from the others by being flattened at the dorsal side, all succeeding ones rounded at the outer side, with slightly expanded ends; upper and lower sides almust parallel. The length of the joints is somewhat irregular, varying from three to four times their width, but in proportion to the width of the arms; vertral groove wide and deep. No pimules have been observed, and the construction of the vault is unknown.

Column circular very strong at the basal disk, but tapering su rapidly in its course downward that at about one-fourth of an inch it is reduced to less than one-third its greatest width, whence it remains stathonary as far as it is preserved in the specimen. The segments of the upper or conical part are short, sharply edged, and of the same height, but as soon as the column atlaine its ordinary size, the joints become abruptly higher, more cylindrical, and thicker and thinner joints alternate in the usual way. Central perforation small.

The specific name is given in honor of P. Herbert Carpenter, Assistant Master at Eaton College, England, one of the foumlers of the gemus Allagecrinus.*

Geological pasition, etc: l'rom the Chester or liaskaskia limestone, Monroe county, Illinois.

Illinois State collection.

[^19]
Genus ACROCRINUS, Yandell.

Acrocrinus Wortheni, Wachsmuth.
Pl. XXX, Fig. 13.
Acrocrinus Wortheni, Wachsmuth. February, 1882.
Bulletin No. 1, of the Illinois State Museum of Natural History, p. 40.

This species is described from a single specimen, of which only the calyx is preserved; the vault, the arms and the columns are so far unknown. The calyx, however, is in excellent preservation, and, notwithstanding its small size, exposes plainly every plate. The form is calyculate, broadly truncate at the bottom, abruptly bending upward toward the base of the first radials, whence it gradually decreases in width to the arms. Its length is 40.100 of an inch, its greates width 42.100 , the width at the arm bases 34.100 . The plates are plain, without ornamentation, but sufficiently convex to point out the sutures.

Tho genins Acrocrimus departs from most Palwocrinoidea in two important points. The plates of the calyx, which in all species with a large number of plates decrease in size from the hasals to the top of the ealyx, in Acrucrinus deededly increase in the same direction. Another striking departure is that the radials are not -eomected with tho basals, and partly not even among each other, but are separated by several rings of plates, which in their position are partly radial, partly interradial, and whieh have apparently no representation in other genera of the Palancrinoidea. t

The specimen under consideration is composed of $8 G$ plates some of them extremely minute. There are two comparatively large hasals, equal in size, the suture passing from the anterior to the posterior side, whieh together form a concavity within the truncate part of the calyx. The basal disk is surrounded by a ring of twelve very small triangular pieces, and these in turn are succeeded by a second series of seven plates each, arranged like the former, oceupyine the azegons side, and are separated, in place by radials, by a row of four hexagonal special anal plates, which, with the exception that the upper side of the upper plate is not excarated, have exaetly the form and size of the four radial plates at the anterior ray. Thiray has execptionally four radials, hexagonal like the anals, which. with their truncate side, are comnected anong each other, and with the heptagonal piece of the seeond ring heretofore described. The four lateral rays not only consist of bit three plates, but these radials have also a very different form, and are partly discomectel. The first is hexagonal, with npper and lower sides angnlar, the second pentangular, angular below. Only in a single ray of the speeimen do the angles of the two plates toneh each other; in the fonr others they are separated by plates from different interradial areas, which join here, there suture forming a line between the angles of the two radials. The first and second radials are all comected by a trumeate side. The third radials are one-latf wider than high, lexagomal, contrary to the first and second. which are a little higher.

[^20]The interradials of the four lateral rays, toward the anterior side, consist of seven plates in four series, $2,2,2,1$; at the anterior side of only six pieces, $2,1,2,1$. The plates of the first series rest with their lower sloping sides against two of the intercalated piecesthose composing the second ring around the basals; they are placed with their lateral side against the sides of their fellows of the adjoining interradial area, except toward the anterior and posterior side, where they abut, at the former against the first radial, at the latter against one of the special anal plates. The plates of the succeeding series rest with their outer sides within the angle between two radials, with the other side against the adjoining interradials. The plates of the interradial areas are either hexagonal or pentagonal, and their increase in size in an upward direction is even greater in that same direction among the radials, the upper one being fully three times larger than the two interradials of the first series. The same is true with regard to the azygous side.

The anal side is very wide, and is composed of a median row of four hexagonal pieces, longitudinally arranged, and of a series of seven plates at each side of it. The latter are arranged like the seven plates of the two interradial areas adjoining the anterior ray, and as the radials of that side, as already stated, are arranged and constructed like the special anal plates, the anterior side, with its two interradial series, is almost a perfect counterpart of the anal area. The uppermost anal plate is hexagonal or, perhaps, octagonal, its upper side truncate; its size is equal to, if not larger than, that of the first radials.

Acrocrinus Wortheni differs from the two previously described species of this genus most conspicuously in the form of the basal plates. The construction of the other plates is so imperfectly known that a comparison of other parts is impossible. There is also a great difference in the form of the body.

The specific name is given in honor of Prof. A. H. Worthen, the able director of the Illinois geological survey.

Geological position and locality: From the Coal Measures of Peoria county, Ill.

The type is in the Illinois State collection.

ON A NEW GENUS AND SPECIES or
 BLASTOIDS,

WITH OMSERVATIONS UVON

THE STRUCTURE OF THE BASAL PLATES IN CODASTER AND PENTREMITES.

BY CHIARIES WACHSMUTHI.

Among some interesting new Blastoids, lately sent to me for investigation by Lev. W. H. Barris, of Davenport, Iowa, collected by him in Northern Michigan, I found one type, which seemed to me of unusual interest as representing a form intermediate between Conlaster. MeCoy, and the new genus Phenoschisma, Ether. and Corp. At my request, Mr. Barris not only kindly permitted me to describe the species, but he very liberally furnished me a number of specimens, which he allowed to be cut for sections. Before giving the description of the form, I wish to make a few remarks upon the terminology employed in this und the succoding paper by Mr. Barris.

Sinco the appearance of Prof. F . lhocmer's classienl work upon the Blastuiden, his terms, with slight variations, were used, both in this conntry uml in Europe. by all the leading palaontologists. Poemer's terms are no donht appropriate, but they have the great dismdvantage of giving new names to certain parts which in allied gromps had previonsly received a proper ilesignation. All purts that are foumded upon idntity of plan, or which are analogons in their finctions, should alwhes be called by the same name. Spacial troms, umecesarily introduced, lead to the impression that the differences among the groups are greater than they really are, and they form a kirious obstache to an ensy perusal of the works of dif. ferent writers.

Messrs. Etheridge and Carpenter have lately published through the Ann. and Mag. Nat. Hist., April, 1882, an interesting paper, "On certain points in the Morphology of the Blastoidea, with descriptions of some new Genera and Species," in which they explain the terms which they propose to use in their writings. Their terms are in conformity with those now in use for the Crinoids and other Echinoderms, and it would be of great advantage to science if they were universally adopted by future writers upon Blastoids. In order to give this terminology a wider circulation, and for the better comprehension of the succeeding descriptions, I give here an abstract of their principal terms.
The "calyx," according to Etheridge and Carpenter, is composed of the "basals" the "radials" or forked pieces, and the "orals" or deltoid pieces. The suture between basals and radials is the "basiradial suture;" the more or less strongly marked ridge at the median line of each oral is the "oral ridge." In the forked-shaped radials, the handle of the fork is the "body" of the radial, the two prongs are the "limbs;" between the limbs is the "radial sinus," which is occupied by the "ambulacrum." Of the ambulacral structures, which together fill up the radial sinus to a greater or less extent, the most important is the "lancet-piece," which is excavated lengthwise by the "food-groove or ambulacrum proper." Upon or against it rest the "side-plates," pore-pieces of Roemer; they are marked by minute pits, the "pinnule pits or sockets," which must not be confounded with the marginal pores or "hydrospire-pores." The supplementary pore-pieces of Roemer are the "outer side plates." Beneath the ambulacral fields are the "interradial systems of lamellar tubes or hydrospires." The openings of these tubes, if directly on the ventral surface of the calyx as in Codaster, are called the "hydrospire-slits;" if they are concentrated beneath the ambulacra as in Orophocrinus,* the gap between the edge of the lancet-plate and the sides of the radial sinus is the "hydrospire cleft." This leads downward into the "hydrospire canal." The canals open externally by the "spiracles," formerly called ovarian openings. The spiracle or spiracles of the anal interradius may be confluent with the anal opening to form the "anal spiracle." The plates covering the mouth and peristome, and which are sometimes continued down the ambulacra covering the food grooves, are the "summit plates or the vault."

[^21]They further use the term "oro-chal side" for the upper truncate regions of the body, and they include herein the ambulacra.

It has been asserted by Mr. Lyon (Owen's Kentucky Rep. Vol. III, p. 16 S), that in the general Coldaster and I'meromites the plates, gencrally known as hasals, comsisted of two successive series of pieces, and upon this gromed he proposed a new furmula for the two gemera. Only to the "lower series" of plates he applied the term basals, the "upper series" he called first radials. He explains the deficiency from five to three in the number of the latter plates, and the irregularity which he found in their form and position, compared with other radials, that the two equal hexatgonal pieces were perfect plates, and the third smaller pentagonal one, imperfect. According to his theory, there were no first radials in two of the rays, and the rays commenced with a second ratial. This curious interpretation of the plates, as might be expected, found no followers, hut his view that in some of the Blastods the plates formerly called basals were composed of two series of three pieces each, was afterwards accepted by Billings (Amer. Journ. Sci. and Arts, July, 1su!t), and also by Meek and Worthen (Geol. Rep. Ill., Vol. V, p. 461). The former regarded the "lower pieces" as hasals, the "upper ones" as suhradials: While Meek and Worthen in redescrbing (Wophocrinus (Codonites) stelliformis, U. nnd Shum., distinguished the two series as hasals and supplementary basals, the latter to be applied to the "lower series." They objected to the mame subradials from the fact that the plates do not alternate with each other. In the course of their remarks they made the peculiar statement, that the lower series or supplementary basals "were in ulult specimens of Combatics stelliformis as soliel as ue flud them in l'entremites, youn! individuals. houever, show clearly that they are actually composed of fier or siar of the upper joints of the column, collarged and anchylosed temether." Meek and Worthen mudertook to prove this by a moderately small specimen, in which five or six joints of the colnmen were preserved. and in the same direction divided longitudinally into there sections. It should be stated that the specimen, which was formerly in my collection-now in the Mascum of Compantive Zoology at Cam-bridge-is not much below medimm size, and, therefore, can not ly any means be called a very gomg specimen. The colnmm, as for as presersed, comsists as in most blastoids of remarkably short joints with elarpe edges, nud the joints are separuted by rather detp unteles; the longitudimal sutures are not shown distinctly, hat probnbly do exist in the specimen.

If it were true, as Meek and Worthen asserted, that in "Codonites" the five or six upper joints became anchylosed in more adult specimens, and were transformed into solid plates, it is very singular that no transition forms have ever been found in this or any other allied species. I think a metamorphosis like this would have undoubtedly left traces of the columnar joints in the growing animal, especially since the modification, as we may safely suggest, must have taken place gradually, and joint by joint; but although I have examined more than fifty specimens of this species, I could not find the remotest traces of former stem joints, or of a suture; all that I have been able to discover is a slight angular depression around the lower end of the cup. This depression, which has somewhat the appearance of a suture, is caused simply by the more rapid spreading of the upper portions of the basals. Such at least is the case in some species of Codonites, Codaster and Troostocrinus, in which the base appears as if it might be bicyclic, but actually is monocyclic, and in which the lower part is almost cylindrical, and resembles an elongate columnar joint, while the upper part is conical.

It seems to me that this upward spreading of the basals can be naturally explained by the growth of the animal. The form generally throughout the Blastoids is in a young specimen more elongate than in the adult, and after attaining a certain growth, the calyx increases in height comparatively little, while the ambulacra still grow considerably longer. This disproportion in the growth of the different parts is equalized by the increase of the body in width, by which the ambulacra attain a greater curvature, pushing the basals and partly the radials, from a fairly sloping position to a more horizontal one, as shown in the following species, of which I have examined a large number of specimens in all stages of growth.

In the young Orophocrinus stelliformis, the ambulacra occupy only the upper truncate side of the body, the lower portions are turbinate with nearly straight sides; in very old specimens, however, the ambulacra curves so strongly, and reach down so deeply, that the radial lips were brought into a horizontal position, almost to the level of the basals, and the sides of the body became concave, thereby pushing the upper portions of the radials in a more outward direction.

Schizoblastus (Granatocrinus) melo O. \& Shum. is, in its younger stages, elongate-ovate, in medium sized specimens subglobose to globose, and in large specimens depressed globose. The same modifi-
cations, but perhaps not quite no marked, take place in Gramatucrimus Noruovedi O. \& Shum., and in Schizublastus (Granatocrinus) suyi Shum.

Pentremites Godoni De Frame, in its earlier stages, is pyriform, and resembles P. piriformis Say, later on it is globose. The lower portions, from the basals to the radial lins, are broadly furlimate and decidedly longer than the summit portions. Afterwards they become ahmost horizontal, and weenpy, in large specimens, more than three-fourths the height of the body; at a time when the ambulacra, which at first were searcely longer than wide, attain a lengila of more than three times their greatest width.
The modifications which here talie place in the basals and radials are mainly produced by the increase in the length of the ambulacra. These plates, and particularly the basals, had acquirel already at an early age a comparatively large size; later on the botly of the radials increased much less in length than in width, as shown he the lines of growth, which are sometimes exposed. The basals, however, which had attained almost their full height, and now had to accommodate themselves to the increasing width of the radials, bend outward, producing therely the angularity at the outer side of the ralial cup, by leaving the lower thickened portions, which were less pliable, in their former position. This explains fully the case as we find it in Codonites, C'onlaster, ete., in P'eniremites, however, under similar conditions additional modifications have taken place.

Restrieting the genus Pentremites to species with large petaloid anbulacra, most of them have at the lower end, at the junction with the colnmn, a little projection in form of a cone, which is almost as prominent in small specimens as in the larger ones. This cone constitntes the lower part of what appears to he a tri-partite plate, in form of a clover leaf, necupying the central portion of the basal dise, into which it entends for some distance, following its cerrature. It is ferquently somewhat clemated above the general surface of the hasals, abld ean be olserved in most specimens with the maked eye. The sutures which separate the hasals hy their shorter sides in the usnal way. divide the lower leaves lengthwise. From oxternal appearance, one feds very mond inclinel to taho the inner part of the basals to be ant indupemdent series of plates, but on gribding the surfuce there is no intermediate suture. In one of my specimens, which I take to be an extremely laree specimen of I'rn. fremites Gestoni, I find within the clover-leaf another leaf-like strnefire, bit of less width. and be neath it eiph joints of the column.
divided longitudinally in the same direction as the basals. The inner leaf is at its border as distinctly marked as the outer one; it extends not far beyond the column, but is considerably wider, and very much higher than the stem joints, which are so extremely short that there are eight joints to a length of half a line. 'I'he structure is such that there can be but little doubt that the inner leaf, although differing considerably in its dimensions from the succeeding stemjoints, is actually nothing else but the proximal joint, which had become enlarged and gradually anchylosed with the basals. It is quite evident that the outer clover-leaf had a similar origin. At the outer leaf the sides of the anchylosed joint were more extended, and became almost entirely absorbed into the basal plates, leaving only external marks, while at the inner ones the column structure can yet be recognized, although the joint has here actually become a part of the basal plates. This is the only specimen in which I have observed a second series of plate-like marks, and I do not know whether this instance represents an abnormal case or is owing to the extreme size of the specimen; at any rate it gives an explanation how similar marks were produced.

In corroboration of these views I will further direct attention to Pentremites abbreviatus, Hambach, a very depressed species, in which the basals, even in young specimens, have an almost horizontal position, and in which as might be expected, there is no conical projection at the end of the basals. In this specimen, the leaf-like marks are very large and conspicuous, they form a somewhat triangular, clover-leaf shaped disc, with rounded extremities directed to the basal sutures. The sutures are always slightly depressed, and the parts covering these depressions, stand out so prominent, that it appears almost as if in this case, exceptionally, the anchylosis had not been completed, and in fact I found two specimens in which the upper structure apparently had partly fallen out, leaving in its place, at the surface of the basal plates, a clover-leaf-like impression. The place to which the column was attached is generally well marked, and in one specimen I found remains of the proximal segment which is exceedingly thin and delicate, and like the anchylosed joint triangular in form, but the points of the angles directed toward the sides of the upper one.
I think this fully sufficient to prove that the so-called supplementary basals in Pentremites consist of a columnar joint, anchylosed with the basals and more or less completely absorbed into the
plate, and that the basals in the Blastoids generally were monocyelic and not bicyclic. This seems to be also the opinion of Etheridge and Carpenter, although they state distinctly that they wish to leave the grestion for further consideration.

Heteroschisma, W’achsmuth, Nov. gen.
The form under consideration is closely allied to Conduster, and approaches Huchoschisma, Ether and Carp. The latter, according to Ftheridge and Carpenter, differs from Coduster in the following points: "In the partial exposure of the hydrospire slits, and in their presence in the anal interradius, as well as in the four others. Phenoschismu in conseguence possesses ten groups of hydrospires, whilst Codaster has only cight. Further the former genus has relatively smaller orals than the latter, and it may possess onter sideplates to the ambulacra." (Amm. and Mag. Mat. Hist., April, 18s?, p. 2.27.)

Heteroschisma stands intermediate between the two forms, it agrees in the above characters with Phenoschisma except that it has but eight groups of hydrospires in place of ten.

Admitting that the difference in the number of hidrospiral groups alone is sufficient for a separation from Conduster, the intermediate form must be placed either together with that genus, or be arranged under a new name. I follow the hatter eourse, as I consider the structural differences in the oral phates as important as the mmerical difference in the hydrospires, the more as they involve other important structural complications. In the typical form of Condaster. including the more flat-topped species with small orats, the latter plates cover almost the whole of the trmeate upper face of the hody: resting with their lateral sides against the intlected uppr part of the limbs. The oral ridges consint of more or less strongly marked edges or eluvated ridges. Which ocempy nearly the full width of the boly. To both sides of the ridges are placed the hyitrospires, all focated within the limits of the ornl plates, only small portions of them being contimed along the sides of the limbe. In the more clavate form with small orals, for which I propose the name Ifteroschisma, the omals are partly only exposed to wew; the visible part wecnpies a small spabe aromed the mouth: the conceateal portions. Which molermeath give origin to the two immer lyatrospires, are overlapped ly the ends of two contignoms limbs.

There is in Heteroschisma in the proper sense of the word, exteriorly no oral ridge; the part representing it, is concealed from view by the overlapping limbs. The limbs are formed interradially into high pyramids with steep sides, of which two of the lateral-walls form the sides of the radial sinus. The pyramids enclose all but the two inner hydrospires, and are, with the exception of these, exposed along the sides of the sinus, but neither their slits nor their folds connect externally with the oral plates. The pyramids produce also important modifications in the form and position of the hydrospires; in Codaster these organs enter the body nearly at right-angles, and the walls are placed almost parallel to each other ; in Hetcroschisma the hydrospires stand obliquely to the sides of the sinus, and are much wider at the outer side than at the inner. Contrary to the adjoining folds which connect with the slits, these increase in width at the inner end. The hydrospires of Hetcroschisma are arranged closely around the mouth, while those of Codaster are placed away from the mouth. The differences between these two genera and the allied Phœnoschisma are well seen in the accompanying table:

GENERA.	Hydrospires.		ambulacra.		orals		Oral-ridge.	
$\overline{\text { Codaster. }}$	*			*	*		*	
Heteroschisma	*		*					
Phænoschisma		*	*					

Hetcroschisma includes the following species: Hcteroschisma gracilc, the type of the genus; Heteroschisma alternatum, and H. alternatum, var. clongatum, Wachsmuth, ${ }^{1}$ all from the lower part of the Hamilton group, Devonian.

[^22]Hetehoschisma gracile, Wachsmuth, Nor. Sp.

Heteroschisma gracile. Wacnsmutn.
Fig. 1 , side view of a specimen. Fig. is horizontal section of tho hidrospires. The frst figure enlargod threo diameters, the other five.

Body subclavate or irregularly pyriform, pointed at the base, dueply excarated in the direction of the rays. From the foot of the hasals to the radial simus the form is elongate-obconical, the sides at the outer surface being straight or nearly so. The radials are arched, with an angularity along the median line, which culmmates in the lips, but almost disappears on approacling the basi-radial suture. Intermedinte between the ambulacra there are five pyramids, formed by the junction of the adjacent limbs of two contiguous radials, without the assistance of oral plates. Four of them are sharply pointed, projecting conspicuously above the level of the summit; the fifth, the one containing the amal oritice, is a little lower nud truncate. Ambulacra, placed at the hottom of a deep sinus; curving gently in an upward direction. The greatest width

[^23]of the body is across the lips, where the section is strictly pentagonal, while across the basals it is obscurely triangular. Average length and width, as taken from eleven specimens, as eight to five, actual length from three to six-tenths of an inch. The surface of the test is perfectly smooth, without ornamentation.
Basals long, in form of an elongate cup; column-like, extended at the lower end; upper face somewhat excavated for the reception of the radials, with an obtuse angle beneath their juncture.

Radials moderately increasing in width to the sinus. The length of the radial body equal to or surpassing its greatest length, and equal to the length of the basals. The limbs occcupy less than one-third the entire length of the plate, they are slightly bent inward, those of two contiguous radials forming a triangle, of which the horizontal side (between the lips of the adjoining radials), is but little longer than the two lateral sides. At the anal interadius. the upper angle is truncated by the anal aperture, and the outer side of the pyramid is more sloping. Sinus short, and remarkably deep.
The oral plates are small, and are only partly exposed to view, one half or more of each one being hidden beneath the radials. The exposed part, which consists of barely more than what might be called the lips of the mouth, is slightly projecting along the margin; it is in form rhomboidal, but the angle toward the radials is covered by the tips of the overlapping limbs. The concealed portions are at the four lateral interradii placed beneath the large pyramids which have been described; they are longer than wide, and their distal end is somewhat extended outward and downward. The median portion of the plate is provided longitudinally with a canal, which from its position may have connected the hydropires with the outer vascular ring. The description of the oral plates is made principally from a specimen, in which the greatest part of the radial limbs had weathered away, thereby exposing the parts below. As seen in this specimen, the lateral sides of the concealed oral plates give off the two inner hydrospires for each group, the first of which, at several places, is preserved to its full length; the second, however, is recognized only by a stump, and there is a notch for the intermediate slit. The oral plate of the anal interradius is constructed near the mouth somewhat different from the orals of the four regular sides; the parts which there are covered by the limbs, and form the oral ridges, take here a more inward direction, and compose the sides and inner floor of a little cavity, which forms the
entrance to the amal aperture. The opening into this cavity is large, somewhat broadly smbtriangular, and there is a passage in a downward course, which enters the imner body at the end of the oral plate.

The ambulacra are almost linear, rounded at the distal end : they rest deeply between the steep sides, the side-plates meeting the sides of the simus bint are rarely touching them. The ambulacra connect with the lody through the lower side of the lancet-piece, close to its middle line. The surface of the ambulacra is divided by the food groove only, there being no other indented lines toward the sides, snch as seen in the Lonisville species. The laneet piece is entirely covered by the side pieces, it is lanceolate, and rents with its proximal end, which is angular, between-and partly upon -adjoining oral plates. The number of side pieces varies from 16 to each side in the smallest specimens to 22 or 23 in the largent ones, each one with a socket, probably for the reception of a pinnnle. There are also outer-side picces bit no liydrospire pores. The oral aperture is pentagonal and comparatively large.

The hydrospires are arranged in eight groups, of from is to ! to each set, and there are as many slits along the sloping sides of the radial simus. The two inner slits which are longer than my of the rest, are concealed from view by the overhanging sides of the lan-cet-piece. The succeeding ones are visible externally and decrease in length with the decreasing width of the sides of the sinus. Not all, however, decrease in that proportion, this is only the case with the fonr or five outer ones, of which the memtermst is bit little longer than wide; the preceding three. from the fonrth inward, are nearly of equal length. It should also be remarhed that the wits have an irregular outline even in the best preserved fpecimens, and it appears as if there had been pores in place of the slits. Bach slit opens into a sac. This, however, is so narrow, that the walls ahmost tonch each other, except at the lower end, where it attains almost tho width of the altemating folds of the hydrospires. There is a great difference in the depth of the sacs: the two mener mes atend into the body for a comparatively short distance, all fatecending ontes increase their depth in the same proportion at they grow thorter upon the surface of the body.

Remarls: Heteroschisma aracile is in its form and general hahits almost ilentical with Ihuruschisma Virmeulli Eth. and Carp, lint it has eight gromps of hydrospires and mot ten. It duffers from both

Heteroschisma alternatum and H. elongatum, but the summit of the pyramids extends considerably above the crests of the oral plates, while in the two others the summit scarcely reaches the level of the peristome; it also has narrower, almost linear ambulacra, against slightly petaloid ones in the others, and these are divided by the food groove only, while the Louisville species have three indented lines along their surface. It further differs from H. alternatum in having straight, and not convex sides along the calyx, and a conical, more sharply pointed basal cup.

It is barely possible that Pentremites subtruncatus, Hall (Geol. Rep. Iowa, Vol. I, Pt. II, p. 435), is identical with this species. A comparison is impossible as Hall's description is so indistinct, that not even the genus can be identified. He refers it to forms like Pentremites Rheinwardti, and mentions "ovarian openings," which if present suggest a very different thing. Should, however, hereafter, the identity be proved, the name must be placed as a synonym under Heteroschisma gracile.

Position and locality, etc.: Found near the top of the Hamilton group, Alpena, Mich.
(The type specimens are in the collections of Prof. Barris, and Charles Wachsmuth.)

Description of some new Blastoids from the Hamilton Group, by W. H. Barris.

> Elefacrinus, Roemer.*

Syn.-Pentremites Troost, 1841, 6th Rep. Geol. Tennessee,
Nucleocrinus Conrad, 1843, Jour. Acad. Nat. Sci. Phila. Vol. VIII, p. 280. Olivanites Troost, 1850. Cat. name.
Elæacrinus Roemer, 1851, Monog. Blastoidea, p. 55.
Olivanites Lyon, 1857. Geol. Sur. Kent, Vol. III, p. 490.
Nucleocrinus Lyon end Cass, 1859; Hall, 1862; Shumard, 1862.
Elæacrinus Shumard, 1866, Irans. St. L. Acad. Sci., p. 368.
Nucleocrinus, Canadensis? Montgomery, 1881; Can. Nat. Vol. X, No. 2.

[^24]Elleacrines obovates, Barris., Nov. Sp.

Body obovate or elongate-baloon shaped. more than onco and a half as long as wide ; upper half wider than the lower, semiovoid: greatest width at about two-thirds from the base; lower half gradually increasing in width to the distal end of the ambulacra; base truncate with a deep concarity which is filled by the colnmu. Cross section pen-

Fig. 3. eross section of the hriarospires of Filuracrinus oborafus. Barris. Enlarged :wo liameters. tangular, with straight or very slightly conthe sides are somewhat concave, and the section more stellate.

Basals deeply imbedded within tho columnar cavity, the outer angles barely reaching tho margin. liadials comparatively small; length twice their width at the basi-radial suture, gradually inereasing upward, so that the forks or limbs at their mpper side are about equal in width to the body of the plate at its lower side. The lateral sides aro somewhat thickened at the upper face of the edse, more particularly toward tho lower end of the plate, where they produce indistinct ridges at the suture lines. The upper side of the limbs is gracefully curved in an upward direction, with re-entering angles toward the lateral sutures, and deeper ones toward the radial sinuses. From the bottom of the plate there extends to the radial sinus (which in this species is abont half way to the top of the limbs), a conspicuous rounded ridge, ending in a very prominent lip, and it is this structure mainly which produces the trumeation toward the basal region, which otherwise would not be very perceptille.

Oral or deltoid pieces large, measuring ahmost four-fifths the length of the body; broad lanceolate. The four regular ornls have a length equal to twico their greatest width. The fifth, that of the posterior side, which in thas genns is divided throughont its full length by a large anal plate, occupies, including the latter piece, no greater width than the four regular orals, and the two hatres are narrower at any place thm the interposed anal plate. The latter is lanceolate, of nearly equal width throughout, slighty tapering at the upper end. Its lowir side rests on the same snrface with the other plate, but grmdually rises nbove the general hevel and at the
top is highly elevated, standing out conspicuously over the adjoining parts. Even in height it extends beyond the limits of the other parts of the body.

Anal aperture large, oval in form, horizontal in position. Toward the outer side the opening is formed by the wall of the anal plate, which at the upper end is bulging outward without being excavated. The lateral sides of the aperture are formed by the upper curved ends of the oral side-plates, which are connected by two or three small anal vault pieces, and these constitute the upper boundary of the aperture.
Ambulacra long, narrow, linear, raised above the general level of the body, except close to the oral pole, near which they curve abruply toward the oral opening, and the ambulacrum becomes located below the abutting surface. The lancet-piece is deeply grooved along the median line, and when the side-pieces (pore-pieces of Roemer) are not in place, there is at the suture, along each side of the plate, a deep sulcus, penetrated by the hydrospire-pores. This sulcus, however, when the side-pieces are in situ is totally filled, and tho sides of the ambulacrum rise abruptly above the abutting edges. The side-pieces rest against the upper face of the deeply crenulated ridges of the lancet-piece. They are strongly wedgeshaped and placed obliquely to the ambulacral or food-groove, with the smaller angle directed to the ab-oral side. Their number is from about sixty to nearly ninety in very large specimens. The outer side-pieces (supplementary pore-pieces of Roemer) are comparatively large, their longer side being about two-thirds, their shorter sides fully one-half of the corresponding sides in the pore-pieces.

The summit is a flat disc, somewhat depressed in the middle, sub-pentangular in outline, the angles resting against the slightly truncated upper part of the oral plates, leaving in the direction of each ambulacrum a good sized passage. The central aperture is pentangular, rather deeply depressed.

Spiracles ten, one to each side of the ambularrum, those of the posterior side not in contact with the anal aperture. They are in this species not easily detected, being placed laterally within the projecting edges of the orals, which for their reception are at this place more prominent, and somewhat excavated. The hydrospires are arranged in ten groups, with two in each group; they are in form similar to those of Granatocrinus Norwoodi, but comparatively a little larger. Hydrospire-pores small, and more or less hidden.

Column of medium size, ronnd, composed at the upper end of high joints.

The ornamentation of the radials consists of indistinct concentric curves sub-parallel with the arched upper surface of the plate. The ornamentation of the oral plates, as in inost species of Elacocrinus, is sharply divided by two longitndinal lines, the median part (which in position and somewhat in form, at the four lateral sides of the body, corresponds to the large anal plate of the posterior side) is more or less destitnte of ormament. The two sides, however, are crowded with rows of small gramules, arranged so as to divide the field into uarrow parallel spaces, which are transversely arranged, and of the width of the pore-pieces.

Obsertations.-Eleacrinus oloratus differs from Elerarriuns (Ňucleocrinus) ungularis, Lyon, in the greater length of the hody, and in having straight and not concave sides. It resembles, perbaps, closest Elicarrinus (Nucleocrinus) lucinu Hall, and may be identical with the larger form noticed in the same paper, and which Hall considered a variety or more adult phase of the above species. Hall describes the latter as more expanded in tho upper part of the hody. with the base proportionally narrower, and this agrees with our species; lut the borly is comparatively longer than in Hall's smaller type; while it should, if representing the adult form of the other. (nccording to Wachsmuth; see the preceding paper), on the contrary bo wider and not higher. In Elancrinus lucinu the hasals are almost on a plane with the radials, and the ambulacra tonch the bottom, which is not the ease in E. olvoratus; in the former the lower truncate portions are much wider, and the basals instead of being deeply coneave, are provided with an clungate node in the center.

The above description was made from ten sperimens of all sizes. the largest one measuring one inch and threr quartors in length, the smallest seven eighthe of an inch.

Goological jositon, ctre: Found in the shales of the Hamilton group at Buffalo, in limestone of the same bge at Iowa City. and at the top of the Hamilton group in the Thumder Bay renion of Nurthern Michignu.

The original specimens are in the collection of Mr. Charks Wachsmuth and in my own.

Eleacrinus meloniformis, Barris, Nov. sp.

Body small, ovoid, height nearly one-half more than the width; greatest width through the median part, or a little above; curvature toward the two poles nearly equal, but the pole itself at the abactinal side abruptly depressed, and the concavity perfectly filled by the column. Surface of the ambulacra raised but little above the general plane of the body. The plates along the sides of the ambulacra are marked with obscure transverse grooves, bordered at each side by a sharp ridge, which forms along the median portions of the plate a deltoid-like figure. The ridges which join with one end at the summit, with the other at the radial lips, form together around the body a well marked penta-petaloid figure in which the ambulacra are placed along the median line; and as the ridges in this species happen to be more conspicuous than the margins of the ambulacra, the ridges appear as the boundaries of the latter. Cross-section along the upper half of the body obscurely decagonal, almost circular, decidedly pentagonal across the lips of the radials.

Basals small, entirely hidden within the columnar cavity.
Radials small, body part longer than usual in this genus, their lower portions resting within the concavity, whence they bend abruptly in an opposite direction, forming a sharp edge at the end of the body. Length more than twice the width at the basi-radial suture, which is about equal to the width of a limb at its upper side. Sinus very short enclosing buti little more than the lip, which is strongly protruding, and from which a very prominent rounded ridge proceeds to the lower edge of the plate. 'lhe upper sides of the limbs are convex, with a re-entering angle above the lateral sutures.

Oral plates large, occupying four-fifths of the length of the entire body, divided by two raised lines into three parts, the inner or deltoid part provided with fine granules, the outer part witl transverse grooves, which are equal to the number of side plates in the ambulacra. The anal plate which divides the oral piece of the posterior interradius, differs in form but little from the deltoid-shaped portions of the other four interradial sides; it is however a little wider, and at the upper end protruding outward. The anal-aperture is large, rhomboidal, the opening in an upward direction. It is bordered towards the peristome by two summit plates which rest against the upper ends of the two sections of the oral plate.

Ambulicera linear, comparatively shorter and probably wider than in any other species of liluracrinus; lancet-picee expoed within the food groove, but only at the upper end of the plate, its lower half is perfectly covered by the side-plates. There are 36 to 38 side pieces, (outer side pieces cannot be distinguished in the specimens) with a deep socket to each plate. The Lydrospire-pores are only seen when the side plates are broken awry.

Spiracles ten, one to each side of the ambulacrum; slit-shaped, placed like those of the preceding species within the projecting lateral edges of the orals: those of the anal side non-contluent with the anal aperture. The hyirospires are unknown.

The summit (which in both type specimens has been prestrved) is composed of but few comparatively thick pieces which are similarly arranged as in Eleacrinus obovatus. Column round, centml perforation very small.

Ohsertutions: This species has its closest aftinity with Electerinus (Noclcocrinus) cleguns Conrad, from which it differs in the more clongate form, in the mode of ormamentation, in laving almost straight in place of concare interradial sides, and in the less protruding and comparatively shoter ambuliterit. The latter, in Conrall's species, reach to the truncate purtion of the body, while in L. melemiformis they occupy only five-sixths of that length. It differs from $E \therefore$. Firncuilli in being a much smaller specios, and in the entirely different ornamentation; from Eilcucrinus angularis Lyonn, E. lucinu Hall und our E. whentus as laching that murhed menglarity of the body so conspicuous in each of these specios. There is a general resemblance to the figure given by Montgomery of Nuchurcinus Comalensis but no direct comparison can be made as his paper deals in generic rather than specilic descriptons. The only specilic characteristic clearly brought ont, "the prominently arched radia!s" are totally inapplienlle to our spectes.

Geondogical porsition, etc:: In the shales of the Hamilton (iroup, Buftalo, Iowa, and at the fop of the same group in the Thmader Bay region of Northern Michigan.

PENTREMITIDEA*, D'Orbigny.

1819. D'Orbigny, Prodrome de Palæont, p. 102.
1820. D`Orbigny, Cours Elementaire, p. 139.
1821. Etheridge and Carp., Ann. and Mag, Nat. Hist., p. $2: 20$.

Pentremitidea americana, Barris, Nov. Sp.
Body small pyriform, height twice the greatest width, which is across the radial lips. Ab-oral side in form of a cone with slightly convex sides, triangular at the end, but gradually assuming a strongly marked pentalobate aspect, actinal side of the body equal in length to the ab-actinal side; curving gently in an upward direction; broadly truncate and somewhat depressed at the oro-anal regions.

Basals forming a triangular vase, with rounded angles, and of a leight greater than the width at the top, upper edges slightly concave.

Radials two-thirds the length of the body, a little more sloping than the basals; width at basi-radial suture equal to the width of the plates at the opposite side. The forks occupy two-thirds the length of the plates, are comparatively narrow, and end in a sharp point which constitutes the uppermost part of the entire body. The sides toward the sinus are elevated and formed into sharp edges which stand out at right angles above the ambulacra. Radial lips prominent.

The oral plates are not observed in a side view, they are extremely small, and are placed against the tips of two adjoining limbs, within the truncation of the peristome, where they form a narrow rim around the spiracles.

Ambulacra broadly linear, the lateral sides depressed, and forming a deep sulcus; the inner portions almost on a level with the forked plates, except near the mouth, where the whole ambulacrum lies deeper than the surrounding plates.

Spiracles ovate, drawn out in a sharp angle, pointing to and situate close to, the mouth. They are placed within the oral plates, taking up almost their whole surface, leaving exposed a very narrow

[^25]rim ; four of them are equal, the posterior one is larger, and conthent with the anal aperture. Hydrospircs and summit plates unknown.

The ornamentation consists in tine concentric lines following the seneral contour of the plates.
Of the two speeimens from whieh this species is described, one is nearly perfeet and larger than the other. On one side of the smaller one is a crushed mass of slender arms, composed of pieces of about equal width and height, which possibly may be some of the pimmules.
Pentremitidea Americuna resembles very closely Pentremites chatatus, Schultze-l'entremitidea clatita, Eth. and Carp.; so closely, indect, that it might almust be taken for it; the latter, however, has comparatively longer basals, is more pentalubate, has wider limbs, with decidedly convex sides in place of almost straight ones, and the ambulacra extend beyond the general surface.
Geological position, etc.: In the upper portion of the Hamilton group in the Thunder Bay region of Northern Michigan. The typers are in my own collection.

I N DEX

Page.
Acondylacanthus 241
" Mudgianus 244
.. nuperus 242
". rectus. 241
xiphias 244
Acrocrinus 34

- Wortheni. 343
Agassizocrinus 315
. hemisphericus 316
papillatus 315
Agelacrinoidea 335
Alumina 40
Allagecrinus 341
Carpenteri 341
Ancient soils 23
Anticlinal axis 39,41
Archæocidaris 337
" Edgarensis 337
" Illinoiensis 338
" spino-clavatus 337
Area of Coal Measures in Illinois 1
Artasian, boring
. at Canton 5
." '. at Marsailles 50
" " at Olney 5, 7, 40
.. '. at Streator 40, 49
Asteroidea 327
Asterontychius 248
tenellus 248
Atkinson, coal in 4
Aviculopecten 321
Varsoviensis 321
Batacanthus 25
" necis. 25
Battery Rock coal 3
Blastoides 36
Bloomington, coal in 4
Boring for coal
" " at Chapin 32
. " Charleston, section of 29
" " Danville, section of. 23
". " Farmer City 16
Pacor.
Borlng for coal at Harsel, sertion of $:$
Lemonton 31
Litchifeld Coal Co 37
Marissa, sfetion of 31
Marsailles, secton of 4
Milfurl 3
I'ana, section of :2
Peru, section of. 43
Pralrlo Cits 3
Itiverton 4
St. Johns sis
Streator (11. 4.3. 49
Brecse, coal at $!$
Briek, clay for 1ㄴ․․․ 40
Irock's Ford, fimestone at 14
Luilding stone 41
Camarophorla Giffordi 46
Canton, boring at s
Carionlferous formation, Uper Mississippi 5s
Carlunvile limestone 19
Cass county horling, section of 15
Coment, hydraulle. 39
Centruila, coni at 6
Charnomsa 119
Marla 819
Chester group 14
Chitonoder 16
antictus 116
Ilratus 119
Surlugerl 112
tril,ulls 118
Cholastor $3:$
pecuilaris

2.

Clay for pottory 14
Cliss, flack
(11)
Clay. fira (41)
ronil uriofl. 1
(ont all. $\$$
('onsi, nutcron of $!$
Conl Mensures of Illlnols 1
anction of 2
in Sulthern llilnola 8
('onl produrita
1.3.12. 16
1.3.12. 16
('onl No. 1.
('onl No. 1. -12 3.
Page.
Coal at Breese 9
" Brock's Ford 44

- Centralia 6
. Danville 7
". Decatur 6
" Fulton Co 6
. Gallatin. 7
- Hodges Creek 12
- La Salle 40
. Nashville. 10
". Okawville 11
- Peoria ${ }^{6}$
- Roodhouse. 3,12
. Saline county 7
.. Sandoval. 6,9
" Springfield 6
" Trenton. 10
" Troy. 10
" Williamson county. 7
" Manchester 11
Cochliodontidæ 62
Cochliodus. 120
? bialveatus 169
." ? convexus. 169
-. ? Keokuk 169
". Leidyi. 127
". obliqquus 126
Van Hornii. 120
Compsaster 327
formosus 327
Conuleria 325
Chesterensis 325
Copodus. 227
" Van Horniì. 229
pusillus 231
Ctenacanthus. 233
Buttersi 240
cannaliratus 239
Coxianus 233
.. deflexus. 234
" gracillimus 238
. Harrisoni 236
Pellensis. 237
Cyathocrinus 309
- Marshallensis 310
parvibrachiatus. 309
Cypricardia 326
? Randolphensis 326
Danville, boring at, section of 24
Danville, coal at. 7
Decatur, coal at. 6
Deltodus. 141
cinctuius 146
intermedius 153

Inimex．

Pasif
15
Deltorlus latior
13
13
oreidentalls：
151
151
Powellif 1.5
uroninguus $1: 5$
trllobus 14
Deitolopsis 15
Aflinis 101
angustus 16
conrolutus 145
exornatus 103
inflexus． 16
St．Ladovici 11.1
expansus g
nitldus $\%$
irimus 3
Varsovionsis an
Wachsmuthi 风
Dentnlinm 13
Illinolensis es
Deronian llmestone，in Rock Island county 2
Dingram lllustrating the stratigiapheal distribution，and the refathon－of the genern of Cochiliodont （i）
Dlchocrinus 813
Coxanus 313
Hamiltonensis ：1．3
Dimenslonstone for the monument of Governer Lond a
Drain tile 4． 6
Drepamacanthus 2π
Echlnoulermatr． 5.
Echinodiscus Kis
กアtutur ： 5
Eennomicai Goolegy 1
EdL゙のwool siるaft，record of π
l：flingitam comats，cual in．Ih：morluus．
ankutarla clegans
me
lncina $\ldots 1$
meinulformls
meinulformls E．
limtmoerlnus
Varsorlensia
liummneauthas． 4． 24
Raparigerlmus 311
naproth 11
Munronneis 11.
livanavilio dunary： 1
Fiarstew，enailu

Forrant lonisu 1． 68
Fone ila In fasalu nounes trat．．
Page.
Fossil shells L. Carb. limestone 323
Fulton county, coal in 3
Fusulina limestone 27
Gallatin county, coal in 4,7
Glassware, sandstone for 40
Glymmatacanthus 249
" petrodoides 249
rudis. 249
Gyracanthus. 251
? cordatus 251
Greene county, coal in 3,12
section at Roodhouse 3
Grindstono grit 37
Harvel, boring at, section of 37
Heteroschisma 352
-. alternatum 357
gracile 354
Hybochinus 331
spectabilis 332
Hydraulic cement 39
Ichthyodorulites 233
Illinois Coal Fields 1
Invertebrates, description of 270
Introduction to Palæontology 56
Iroquois county, boring, section of 25
Irving, oil wells at. 38
Jackson county, coal in 4
Jersey county, coal in 12
Keokuk limestone 16
Kirkpatrick's ford, outerop of coal 42
LaSalle, coal in 4
LaSalle courty, notes on 39
Lecythiocrinus 317
Adamsi 317
Lemonton, boring at 31
Lepidechinidæ 331
Lime, materials for 40
Litchfield, shaft at 28
". conl oil in 37
Lower Magnesian limestone 39
Macoupin county, coal in 12
Madison county, coal in 10
Magnesia 40
Marissa, boring at 30
Marietti, quarry at 37
Marsailles, boring for water 50
Marshall county, shaft in 29
McDonough county, coal in soction of 3. 24
Montgomery county, shaft in 28
l'age
Muryhesboro, coal in 4
Nashvilie, shaft, section of 10
Neolosville, coal in 35
Orireby, shaft in, section of 4
Oif wails 34
Ok:LWvilia, slaift in 11
Oines, coal at 5. $\%$
Onsehoerinus. 30:
distensus 30
Obininroflear :รи
Orimintius 205
rectus 24
vetustus 4
Ortioceras 33
Hilinoicnses : 3

- La Sallensis 324
Oknwensio 24
Orthoplourodus 140
. carbonitrius
$1: 2$
$1: 2$
convexus. 14.3
Nova Mexicanus. 18
Outerop of coal. $1:$
Painasterida: :
rahoorinoldea ril
Pitieontology of Illinois 3.1
Pana, boring at 21
Pattorson's shaft 12
P'ollifeord's weli $\stackrel{5}{5}$
Penrla counts; coal mines in 6
Pantremites 25:
subtruncatus 85%
I'mitremitiden 0
Americana 3
ciavata 3
l'arischuchinidu : $: 1$
l口rischujomus : x 5
IIİnoleusi- (cs
l'erry counts, boring in 32
['hu-nosehísma x.6
Vernoutil Nori
1'iss-sonounua
fulcutus 02
I'ınna SK
St. Imblovel $3 x$
- latyerinus. sro
Munroenala an
l'burotomaria 321
Moutu\%!1: 8.4
i'uigoncлutinus 59
Irigowaila 50Page.
Pœecilodus 131
" carbonarius 139
. Cestriensis 135
- Springeri 139
". St. Ludovici 131
". Varsoviensis 131
Wortheni. 136
Poteriocrinus 269
arachnæformis 281
". asper 278
" asperatus 280
". briærius 279
.. Burketi 270
". Claytonensis 288
". clytis 294
Columbiensis 293
". Coxanus 269
.. cultidactylus 301
". Fountainensis 286
. Hamiltonensis 273
.. Illinoiensis 289
". Iowensis 272
" Kaskaskiensis 300
". latidactylus 275
Nauvooensis. 282
.. occidentalis 278
". Okawensis 296
-. Orestes 273
. Otterensis 283
". peculiaris 298
." penicilliformis 276
" Popensis 296
". propinquus. 299
.. Richfieldensis. 285
" Salteri 291
". sculptus 292
". similis 295
. spinobrachiatus 290
." subramulosus. 284
" Talboti 287
. tentaculatus 277
.. tenuidactylus 271
". validus 287
". Varsoviensis 290
". venustus 297
Prairie City, shaft, section of 24
Psammodontidre 197
Psammodus. 197
" angularis 292
". cælatus. 217
". crassidens 218
". glyptus 209
. grandis 211
Lovianus 207

Index.
Page.
Prammodus winus 213
Springerl ?
tumldus 205
turgldus 40
Psobhodus 12
lattus. id
lunulatus. is
obliguus G6
Hacenta 6
fymmetrleus il
Quarry
at Evansville. 3
Marletta 3
Rock ville 3
Rhodocrinus 345
Coxanus 315
Rlehland counts, conl In s
niverton, coal at and boring 1
Rock Island. coallo 1
Rork ville, duarry at :
Roorthouse, shaft, section of 11
Sallne counts, coalln 4.:
Sandalodus 18
clongatus lewi
parvulus 110
manus W2
Sp? 103
Shaft
at Athens 14
Auhurn 14
Calodonla Cool co. th
Dıเพ 3
Ineratur 1%
bigewond
Farmer Clty: 16
Gillespla $1:$
(ilraril 18
Gremnvilew 18
Lasialle. 45
Nattoon gn
Ninsmill. 10
Silanite 19
Ong ales 4
Okaw:lla 11
l'attrrsoli !:
[口гII 4.3
Pralria ('its 3.26
Bonothnuan 12
Sandoval. ?
Swortmater 14
Tallula 14
 10
Truy 11
Page.
Shaft at Winchester 11
Winona. 29
St. Louis beds 16
St. Peters Sandstone 39, 50
Streator boring for Artesian water 40

- coal, outcrop of. 42
T'able of Carboniferous formations, Upper Mississippi 58
Twniodus 75
.. fasciatus? 76
". obliquus. 78
. regularis. 77
Talarocrinus 314
". ovatus. 314
Taxocrinus. 308
Fletcheri 308
Tile, clay for $12,25,40,51$
Tomodus 171
? limitaris. 173
Tremataster. 330
difficilis 330
Trenton limestone 40, 41
Trenton, shaft at 10
Troy. 10
Vaticinodus 80
-. ? carbonarius 88
". ? discrepans 83
-. ? lepsis. 88
" ? similis 86
- ? simplex 84
? vetustus 82
Vermilion county, coal in 7
Warsaw beds 16
Washington county, coal in 10
Water, salt 31
Wells, artesian 5, 7, 40, 50
./ oil 38
" salt 38
Williamson county, coal in 7
Winona, shaft at 29
Xystrodus. 175
. bellulus 183
. imitatus 180
". inconditus 179
.. simplex 178
verus. 183
Zeacrinus 302
". Coxanus 302
.. Keokuk 303
". Pikensis. 34

Lliinois Geological Survey Vol VII, 1883.

(ERRATA-SUPlementary.)

In the unavoidable absence of the writers when the section relating to the Fossil-Fishes of the above report was passing through the press, many errors were, unfortunately, overlooked in the proof, and which came to notice only when it was too late to introduce a list of errata at the end of the volume, the issue, in the meantime, having been bound and partially distributed. Therefore the following list is published with the present issue of Bulletin No. 2, of the Illinois State Museum of Natural History, and the authors respectfully request recipients to transfer the list nerein to their copies.

[^26]Page 117, bottom llne, omlt comma after "angle."
Puse lix, tof line, omlt comina after "Inner."
Pase 119, 19th line from thotion, orntit comma after "prominence" and add "of."
Page 1:1, sth line from top, for "boriber termlna od." ete., read "burder terminating. ot .
PaKo 1:1, ith hau from bettom, for "panctuaton" read "punctaton."

Page 1:2. :d Hne from buttum, fur "enrollment" read "Inrollment."
l'age 132, 13th line from bottom, omit "uf" after "front"
Page 131, sth line from bottom, for "more" read "were."
Prure 140, sth line frum top, for "border" read "broader,"
Page 140, 18th Ilne from bottom, for "medulary" read "medlan."
Page 14, th line from toll, for "Faurre" read "Faune."
Page 141, sith line from tops, for "these" read "three."
fuge liw, 1th line from top, for "below" toad "the luw."
lase 159, th line from botiom, fur "the greater famillarity." ete., radi "ithe more fambliar one becomes." ure.

Pake 159, 3u line from bottom for "group, the" read "grollw. The."
Page 16:, 4th llue from toln, substitute comma for merlod ater "shurt," nad for "The" read "ihe."

Page 169, 10th Inne from top, for "jolnt" ruad "polnt."
Pake low. lath llae from bottom, for "north" read "mouth."

Page 173. buttom llace for "Belstgue" read "Belgleguc."
Page 1se, 1sth line from lottom, for "postero-" read "potierlor."
P'une 18t, Hith line from top, after "Iateral" udd "hutder,"
Page 1s. 7 th Ine from botwia, for "postero-lateral hurider." read "iransverse dhamuter:" audith ilne frombotiom. for "trancverse dlameter." rend "posterv-later.al border."

Pace 193, 6ith line from top, for "mandlble" read "uppor gaw."
Page 197. 1thh line from top, for "evterlur of" read "exteriur or."
Page 209, 1:utillue from bothom, for "these" reat "thetr."
Page 2ns. llit the from bottom. for "resemble," read "resembies."
Page :21, th line from tob, fur "affurd" reat: "affords."
Puge :l6, seth ine from ton, for "contour" read "ernture."
Pase els. 17th ithe from ton. for "atvolar" read "alveolar."
Pase ald, ilat llne from bottom, for "llmer" remil "lliner."
Page 2ll, bottom lline, for "furruw" real "furrows."
Irabeste, sd line from ion, for "clovathen" read "elevatons."
 oth llne frow bottom, for "tentamem rend "dentlelene"

ERRATA.

Page 11-20th line from bottom, for "Winchester" read "Manchester."
Page 35-4th line from top, for "sandstone" read "limestone."
Page 36-13th line from bottom, for "No. 2" read "Coal No. 2."
Page $46-3 \mathrm{~d}$ line from top, for "fussels" read "fossils."
Page 49-21st line from top, for "locality" read "locality."
Page 74-3d line from top, for "cunulatus," read "lunulatus."
Page 77-8th line from bottom, for "subhromboidal" read "subrhomboidal."
Page 80-15th line from bottom, for "anterior-lateral" read "antero-lateral."
Page 91-15th line from top, for "obliquity cuneate" read "obliquity and cuneate."
Page 108-10th line from top, for "situated a" read situated."
Page 120- th line from bottom, for "Cochiliodus" read "Cochliodus."
Page 139-14th line from bottom, for "antero-latera" read "antero-lateral."
Page 157-Bottom line, for "porterior" read "posterior."
Page 163-17th line from top, for "contracts" read "contrasts."
Page 187-Top line, for "escribed" read "described."
Page 210-2d line from top, and page 211, 10th line from top, for "crassidus" read "erassidens.
Page 240-Top line, for "coste" read "costal."
Page 251-12th line from bottom, for "tenticles" read " "es:"
denticlear.
Page 255-13th line from bottom, for "snarply" read "sharply."
Page 259-Top line of diagnosis, for "Dormer" read Dermal."
Page 285-11th line about from botton, for "annal" read "anal."
Page 299-Top line, for "sliping" read "sloping."
Page 333-In head line "Perishodomus," for "Gers" read "Genus."

PLATE:I.

FIg. 1. Psephodus obliques, St. J. and W..
1a. Large median tooth, right ramus of lowerjaw, wiewed from above: 1 b . dc., from Inner margin: 1 c do., outer margin; $1 d$ do., antero-lateral border. showing crenulated eoronal fold; 1 e do., nostero-lateral border, showIne brond undulations, lifnderhook; Burlington, Iowa. Coll. Prof. Worthen.
Fig. 2a, b, c, d, e, similar views of a largo median tooth, referred to the right ramus of upper jatr. Samo formation, locally and eollection.
Fig. 3 a, b, c, d, e. Same rlews of tooth, left ramus of upper jaw. Same formation. locality and eollection.
Fig. $4 a, b, c, d$. Similar views of an elongate. more convex tooth, identifed with the preceding form. Kinderhook upper fish beds; Burlington, Lowa. Call. Mr. Wachemuth.
Fig. is a, b, c, d, e. Similar views of a very small, longitudialis abbrerlated tooth, reforred to the same position upon the jaw a the last. With which it is provislonalis identifed. Sume furmation, locality and colloetion.
Fig. 6. Psephonus ? srametmicus, St. J. and W
6 a. Madibular touth, right ramus, seen from above: 6 ido., outline from Inaer margin; 6 c do., omter mariln: $6 \mathrm{~d} d \mathrm{~d}$. . jronle outline from antero-lateral border, foroshortened. Kinderhook lower fish bed; Burlington, Iowa. Coll. Mr. Waehamuth.
Fig. i a. A very small, nearly entire tooth of the left ramus of lower jaw, nmvisionally ldentfled with the fast. rlew from above, enlarged: is do. Inner margin: ic do., showing outer inrolled marcin: : d do., profle from antero-Interal border. Kinderhook, unper Ash-bed; Durlington, Iown. Coll. Mr. Wachsmuth.

FOSSM FISETES ,
(Lower Cari

PLATE II.

1a. A small mandibular medlan tooth, sien from above, part of the coronal burface borderingtio Inner margin broken awas: 1 l . do., iransverse prufle from Inner margin: 1 c . do. from outer margin: 1 d. do.. peistero-laicral border: $1 e . d o .$, antero-fateral border, shoming longltudlaal prosle. St. Louls llmestone: Alton, Illnols: Mr. Van Horne.
Fig. a, a, b.c. d.e. Similar vlems of a vers suall example of the same form, left ramus, enlarged: $2 f$. do. Inferior surface. Same furmation. locallts and collection.
 do.. from the nostero-lateral (?) border, longitudianl wrofle. St, L.: St. Louls, Missourl. O. St. John.
Fig. 4. Pereodes lunulatus, St. J. and W \qquad
Fig. fa. Vilevs of toothfrom abore: 4 b. do., from the laterni border: i c. do. faner margin: f d. lo.. from the outermargln. Chester llmestone; Chester. III. Dr. George Mambaeb.

Psephodua placenta. St. J. and W
Fls. 5 n. A mature tooth roferred 10 rikht ramus of manalble, from above; 5 2. do.. from Innormarsin: 5 c . do., views from the anterior an 1 the posterfor border. Cipper flab-bed. lilnderhook; Burlincton. Jowa. Mr. Wachs. mutn.
Flg. 6 a, c.c.d. Slmilar views of a smaller tonth, oenupsing the fame posithon upon tho jat as the last. Same horizon and localts. Prof. Wortina.
Fig. 7 a, l, c. d. Slmilar vlews of an elongate individual of left ramus ef upper jam. Same furmation, loenlity and collecilon.
Flg. \&a, b.c.d. The same vlows of a emall. short median tooth, refurred to the rlight ramus of upper jaw, the eoronal recion much morn fa front the orlglasi of Helodus placeufal. Same horizon, localits and collee:lon.

FDSSLL FISTEIES.
(Lower Carb.,
TPSEIPIECOTDI.

PLATE III.

Vaticinodu's retustes, St. J. and W

page
Flg. 1 a. Marllary rosterlor tooth luft ramus, seen from above, the mutlated anterlor burder and posierlorexiremlty restored la cutline; $1 \mathbf{4}$, do.. Inner margin; l c, do., from the outer Inrolled margin: 1 d. du. nrofle from nustertor extremlty. Kinderhook: DesMolnes county. lowr. O. St. John.

Vaticisobl's dibchepans, St. J. aud W
Flg. 2 a. Maxillary posterlor woth. left ramus, from above, out Ine restored: 2 b. do., transverse profle from Inaer margla: $2 c$, do.. fore-shortened view from antero-lateral horder. Bumagton creek. Mr. sbringer.
Fig. $8 a, b, c$. Strmar vilews of the same form, right ramus. Augusta. O. St. John.

PLATE IV.

Fig. 1-3. Stenopterodus elongatus, St. J. and W................................ 106
1 a. Maxillary posterior tooth, right ramus, a medium size, somewhat worn specimen, seen from above. Warsaw limestone; Warsaw Ill. Coli. Prof: Worthen
2 a. A smaller tooth of the same form, left ramus, view from above, showing oblique direction of antero-lateral border, etc.; $2 b$, do., inner margin; $2 c$, do.; profle from the posterior extremity, Same formation, locality and collection.
3 a. Mandibular posterior tooth, left ramus, an imperfect example, seen from above; $3 b$, do., inner margin; $3 c$, do., profle from anterior border. Same formation, locality and collection.
Fig. 4-8. Stenopterodus parvulus, St. iJ. and W 107
$4 a$. Maxillary posterior tooth, right ramus, from above. (The form originally described under Scandalodus parvulus, N. and W.) St. Louis limestone; St. Louis, Mo. O. St. John.
5 a. Maxillary posterior tooth, left ramus, view from above of a nearly perfect individual. St. Louis limestone; St. Louis, Mo. O. St. John.
6 a. Mandibular posterior tooth, right ramus, from above. Same formation; Alton, Ill. Mr. Van Horne.
7 a. The same form, left ramus, view from above. St. Louis; Alton; Mr. Van Horne.
8 a. Mandibular median tooth, left ramus, seen from above; enlarged; $8 b$, do., antero-lateral border; $8 c$, do., inner margin! $8 d$, do., outer inrolled margin. St. Louis limestone; St. Louis, Mo. Mr. Van Horne.
Fig. 9-14. Stenopterodus plands, st. J. and W
9 a. Maxillary posterior tooth, left ramus, from above; $8 b$, do.. inner margin; $8 c$, do., outer inrolled margin; $8 d$, do., foreshortened viev from the posterior extremity. Upper Burlington fish-bed; Louisa county, Iowa. Coll. Mr . Springer.
$10 a$. The same form of right ramus, seen from above, outline restored. Same formation and locality. O. St. John.
$11 a$. Mandibular posterior tooth, left ramus, seen from above; $11 b$, do., inner margin; $11 c$, do., outer inrolled margin; $11 d$, do., foreshortened. View from anterior border. Same formation and locality. Mr. Springer
12 a. Same form of opposite ramus, from above. Same formation, locality and collection.
У $13 a$. Mandibular median tooth, left ramus, view from above, enlarged; $13 b$, do., inner margin; $13 c$, do., outer inrolled margin; $13 d$, do., antero-lateral border; 13 e, do., postero-lateral border. Upper Burlington; Augusta. Iowa. O. St. John.
$14 a$. A large example of the same form, right ramus, view from above, borders restored; $14 b$, do., inner margin; $14 c$, do., outer inrolled margin; $14 d$, do., antero-lateral border; $14 e$, do., postero-lateral border. Upper Burlington; Louisa county, Iowa. Mr. Springer.
Fig. 15-16. Stenopterodus Sp?.. 10
15 a. Maxillary posterior tooth, left ramus, a woin specimen seen from above; 15 b , do., inner margin; 15 c , do., outer inrolled margin. Keokuk limestone; W arsaw, Ill. Prof. Worthen.

Plate IV-Continucl.

Page.

16 a. Mandliular josterlor tooth, left ramus, an imperfect example, seen from above: 16 b do.. Inner margln: 16 c , 10. pronlo from anterior border. Keokuk limestone: Hamllton, Ill. Yrof. Worthen.

Fig. Vī-19. Vaticisodés? bimilis, St J. and W.
$17 a$. A mature perfect posterlor tooth of the right ramus of upper jaw. Vew from above; 17 U , do., innermarkin; 17 c. do., outer Inrolled margin: $1 \% \mathrm{~d}$. do.. foreshortened, from posterlor extremity. Chester llmestone; Evangville, Illnols. Dr. George Hambach.

- $51 / \sqrt{18}$ a. An lmperfect specimen of the same form, from left ramus, seen from above: 18 b. do., Inner maryln. Chester; Chester. Ill. Mr. Van Horne,
19 a. Mandibular pusterlor tooth. left ramus, seen from above, enlarsed; 19 b do.. inner marcln: 19 c. do., antero-lateral torder. Chester: Chester. lll. Prof. Worthen.

Fig. 20.
Fiaticinodur? Cabb-sabiub, fit. J. nad W.
:30 a. Maxillary posterlor tooth, left ramus, fien from above, outine restored: © 6. do., from lnner marsln. Lower Coal Measures; Carlinville, Ill. Prol. Worthen.
Flg. 21. Vaticinodus? Lepis, SL J. and W.
80
21 a. Maxillary fosturlor tooth, rigit ramus, flew from above, cullese restored: 2l U. do. from Innermarsin, transverse proale. Cipper Coal Measures: LaSalle, Iil. Irof. Worthom.
Fig. 22-2i. Viaficinodus? simplex, St. J. and W
$12,3 \sqrt[2]{2}$ a. Maxllars posterior tooth. right ramus, an lmperfect apeciment showlag the posterlor coronal contour. from abore, enlarged; al b. do., Inner markiv: $22 c$ do., Outer margln. St. Louls limestone: Pella, Iowa. O. hí John,
$1=05 \geqslant \sqrt{ }$
a. Same lorm. left ramus, whowiug an entire tooti, coronal surface mued wern. seen from above; wi l. do.. Inner margin. Bt. L.ouls, Mc. O. St. John.
24 a. A slmllar example, showing busal rim oxtendlag besond coronal llmits. St. Louls llmestone: St. Louls, Jo. Prof. Worthen.
25 a. Mandibular nosterlor tooth. left ramus, view from above outer extremity restored in outilne. St. Ioulsllmestone: Pelln, Iowa. O. St. John.
$26 a$. A nearly cntirecample of sumeform. right ramus. sece from above: 264. do., Innermargin; 26 c. do. antero-lnteral border. Bt. Louls llmestono: Pella. O. St. John.

B

FOSSII FISIEIES.

(L. and U. C'arb

PLATE V.

1a. Yosterlor tooth of the left ramus of the mandible. viewed from above. Lrohen extromlty restored in outine: 16 do., seen from the anterv-laferal border: le do., showligg lnner marain. Keokuk llmestoue. Waraar. Iif. Coll. Prof. Worthen.
J Flg. 2a. A slathar and more perfect tooth of the rlaht ramus of the mandlble, seen from above; 24 do., antero-lateral border; 2 e do., postero-lateral luorder, Same formatlon, locallty and collection.
Fig. 3 a. Posterlor twoth of the left ramus of the upper jam. Irom above: 31, do., firn. fle from the laner marcin. Same formation, localits and collectina.
Fig. 4 a. Maxillars posterlor tooth, right ramus, view from abore: ib do. outer inrolled markin. Same formation. localits aud collecton.
Fig. $5 a$. Maxillary fosterlor tooth and median series of tecth: 56 do., risht ramus. secn from above, outllne restored. Keokuk limesione. Danville. Iuwa Coll. Mr. Wiachsmuth.

DELTOPTYCHER PBIMCHS, St. J. and W
$1^{\text {ac }}$ Th Fig. 6 a. Mandibular nosterlor tooth. left ramita, seen from above, outline retiorce. Ćprer Burllngton fish-bed: Loulsa Co., Jown. Mr. Springer.
zolll Flg. i a. Maxillarg posterlor tooth, richt ramus, whod from above, onfline rebiured. Same horlzon and locallty. O. St. John.
Fls. 8 a. Maxllary nosterlor tooth. left ramus. from above. Sime formation and lecalles: Mr. Syrlacer.

Deltoptrceivis expasiges, St. J. and Wi

Fig. 9 a. An imfierfoct posterlor tuoth of left ramus of mandible, showlog cornal contour. seen from above, outlne restored. St. Louls llmestone: A: n. III. Coll. Mr. Van Hurue.

Fis. l $^{\prime \prime}$ a, Mandibular wosterlor tooth, rlight ramus, seen from abore. Si. Louls limestone: St. 1,oula, Mo. Coll. I'rof. Woriben.
Fils. 11 a. A larme manlitular bosperlor footh. Prum above, the coronal eoutour obscured lis wear. Si. Louls llmestone: llaterion, Ill Cell- Prof. Worthen.
Filg. 12 a. Maxllary bosterfor tooth, rlabi ramus, from abore, cuthine restored. sit Lotid IImestone: Alsou, III. Coll. Mr. Vau Ilorne.
fig. bs a. blomartuoth, left ramus of upher faw, vew from above same trmat or, locallis and collecilou.

Del.tortycinich vasmorienals. Sio J. and W°. \qquad
Flig. 16 a. Mandlbular bowterlor fooh. left ramum, vew from nbove, a at pontert t borler rentoral In outinc: It 1 do.. entaried: itr do., whowing antero lateral boriler, emfarsmit: 11 d do.. neen from the niter Inrelle 1 maratn. Warsaw formailon; above Alton. Ill. Mr. Vati Horne.
Fige i: a. Ma.illary bonthilor sooth. flaht ramum, foen from n! we. Warmm forma tlon: Warraw. III.

 inso-laioral lurder, 16 I do.. niter Inrillel axtremits. 16 e di.. inutr marisln. Cliomer liment ne. Cbenter. IIl. Coll. Prol. Wurthen.
fosstu fecsines.
(Lower i=rb.
CDCFEUTDIWDSTS,

PLATE VI.

Chitonodus Liratus, St. J. and W

[^27]Chitonodus antiquus, St. J. and W.
Fig. 2a. Mandibular posterior tooth, left ramus, view from above, outline partially restored; $2 b$, do., transverse profile from inner margin; $2 c$, do., outer inrolled margin; $2 d$, do.. from the antero-lateral border. Lower Burlington, Iowa. Prof. Worthen.

Chitonodus Springeri, St. J. and W
Fig. $3 a$. Maxillary posterior tooth, left ramus, view from above of a worn example, outline partially restored; $3 b$, do., from inner margin; $3 c$, do., outer inrolled margin: $3 d$, do., from the anterior border, foreshortened. Upper Burlington; Augusta, Iowa. Mr. Wachsmuth.
Fig. $4 a$. Same form, right ramus, a worn specimen, seen from above; $4 b$, do., inner margin; $4 c$, do., outer inrolled margin; $4 d$, do., from anterior border, foreshortened. Upper Burlington; Louisa county, Iowa. Mr. Springer.
Fig. 5 a. Mandibular posterior tooth, left ramus, view from above; $5 b$, do., inner margin; $5 e$, do., from antero-lateral border; a worn example, showing merely a trace of transverse imbrications. Upper Burlington; Augusta, Iowa. O. St. John.
$13003 \checkmark$ Fig. 6 a. A worn, medium-size example of the same form, seen from above; 6 b, do., inner margin; $6 c$, do., outer inrolled margin; $6 d$, do., from the anterior border. Upper Burlington; Augusta, Iowa. Mr. Springer.
Fig. 7 a. Mandibular median tooth, left ramus, a worn specimen, seen from above, outer extremity restored in outline; $7 b$, do., inner margin, transverse proflle; $7 c$, do., outer margin; $7 d$, do., from antero-lateral border; $7 e$, do., postero-lateral border. Upper Burlington; Louisa county, Iowa. Mr. Springer.
Fig. $8 a, b, c, d, e$. Similar views of a more prominently rigid, worn example of the same form, outline partially restored. Upper Burlington; Augusta, Ioma.
Fig. 9 a. Maxillary posterior tooth, left ramus, a medium-size example, preserving the transverse imbrications over a portion of the anterior neck, seen from above, outline partially restored; $9 b$, do, inner margin, transverse profile; $9 c$, do., from anterior border; $9 d$, from posterior extremity. Upper Burlington; Louisa county. Iowa. O. St. John.
Fig, $10 a$. A large, robust example of the same form, from above, partially restored in outline; $10 b$, do., inner margin; $10 c$, do., outer inrolled margin; $10 d$, do., from anterior border, foreshortened. Upper Burlington; Augusta, Iowa.
Fig. $\mathbf{1 1} a$. A similar example of the same form, seen from above, outline restored. Upper Burlington; Pleasant Grove, Inwa. Prof. Worthen.
Fig. 12a. Mandibular posterior tnoth, right ramus, showing transverse imbrications, view from above, outline restored. Upper Burlington; Louisa county, Iowa. O. St. John.

Plate VI-C'ontinued.

Fig. 13 a. A small example of the same form, left ramus, seen from above representod too oblinuely lnrolled); 13 b . do., Inner margln. iransverse pro-日le: 13 c . do., vuter lnrolled margln: 13 d , do.. from anterior border. U'pper Burlington: Pleasant Grove, Iowa,
Fis. Ifa. Manditular median lootis, Iff ramus, fhowlag fmbricatlons, seen from above, outilne restored; $14 b$, do., luner markin, transverse profile: $14 c$. do., outer markin: $14 d$, do., from antero-lateral bordar: 14 e, do., pris. tero-lateral border and longltudinal proßle. C'wper Burlington; Burlinklon. Iowr. O. St. John.
Flg, isa. A farger, worn examplo of the same form, from above, outllne restored; 15 l. c. do. vlews from the antero and postero-lateral borderk. Luper Burlington: Louisa county, Iowa. Mr. Sprlneer.

FOSAML PLAHEDES.
(Icwer Corb)
COCHCHODDEASS.

PLATE VII.

\checkmark Fig. 1-10 Cochliodus Van Hornit, St. J. and W.

$13466 \quad 1 a$. Maxillary posterior tooth, left ramus, view from above; 13 do., inuer margin; $1 c$ do., outer margin; $1 d$ do., foreshortened view from anterior border; $1 e$ do., inferior surface. St. Louis, Alton, Ill. Mr. W. C. Van Horne.
$13 \rho 62$ Fig. $2 a$. Same form, right ramus, anterior portion broken away, showing impression of inferior surface in the limestone matrix. Same formation, locality and collection.
$\sqrt{30} 33$ Fig. 3 a. Transverse coronal ridges of the maxillary medium series of left ramus, upon a common basal support, seen from above, enlarged; $3 b$ do., from the inner margin; $3 c$ do., outer margin; $3 d$ do., from the antero-lateral border: 3 e do.. showing the undivided inferior surface of the base. St. Louis, Pella, Iowa. Mr. Van Horne.
Fig. $4 a, b, c$. Inner, outer and profile views of a fore tooth of the maxillary median or anterior series, enlarged. Same formation, locality and collection.
Fig. $5 a, b, c$. Similar views of another example of the same form, enlarged. Same formation, locality and collection.
Fig $6 a, b, c, d$. Another specimen of the same form, seen from above, inner, outer and proflle views. Same formation, locality, and collection.
Fig. 7 a. Mandible, with the teeth of the rami in natural position, as seen from below; the specimen represented as discovered in the limestone matrix. St. Louis; Alton, Ill. Mr. Van Horne.
1306 d Fig. 8 a. Mandibular posterior and median teeth of the right ramus of the foregoing specimen, seen from above.
$1306 / \sqrt{ }$ Fig. $9 a$. The posterior tooth of left ramus of above example, seen from above; $9 b$ do., profle outline from antero-lateral border.
Fig. $10 a$. Mandibular median tooth, associateJ with $9 a$, seen from above; $10 b$ do., profile and outline from postero-lateral border.

Cochliodus Leidyi, St. J. and W.
Fig. 11 a. Maxiliary posterior tooth, right ramus, views from above. Chester limestone; Chester, Ill. Prof. Worthen.
Fig. $12 a$. Same form, left ramus, from above; $12 b$ do., from inner margin; $12 c$ do., outer inrolled mairgin; 12 d do., foreshortened view from antero-lateral border. Chester limestone; Evansville, Ill. Dr. Hambach.
Fig. $13 a$, Maxillary median series of left ramus, seen from above; $13 b$ do., from inner margin; $13 c$ do., outer margin; $13 d$ do., profle from antero-lateral border; $13 e$ do., inferior surface, showing basal support without transverse sutures. Chester; Chester, Ill. Prof. Worthen.
Fig. 14 a. Mandibular posterior tooth, left ramus, a large, imperfect example, from above. Chester limestone; Prairie du Long, Ill. Prof. Worthen.
13059.

Fig. 15 a. A smaller perfect example of same form, right ramus, viewed from above; " $15 b$ do., from inner margin; $15 c$ do., outer margin; $15 d$ do., from anterolateral border, foreshortened. Chester; Chester, Ill. Mr. Van Horne.
Fig. 16 a. Mandibular median tooth, right ramus, view from above, outline restored; 16 b do., from inner margin; 16 c do., outer inrolled margin; 16 d do., from postero-lateral border. Chester limestone; Chester, Ill. Prof. Worthen. Cochliodus obliquus, St. J. and W
\checkmark Fig. 17 a. Maxillary posterior tooth, left ramus, viewed from above, enlarged; 17 b do., from the antero-lateral border; $17 c$ do., postero-lateral border. St. Louis limestone; St. Louis, Mo. Mr. St. John.

Ylate Vil-C'ontinued.

Pacee.

Chitunodus tribulis, St. J. and w.
$11:$
Fig. is a. Maxllary fusterlor 1,0 ots. loft ramu* a larke and wearls gertmet examide. suea from above: to 6 do.. from twe lamer marclis: is c do. outer laroled margla: In d do.. from autero lateral burder. furemborteced. Frokuk: Keoliuk, Lowa. Mr. C'ox.
Fig. 15 a. A small maxllary fosterlor tooth, lef: ragus, frcu above. lieokut llme.
γ Flg. yo a. A medlum-slze iooth of the same form. right ramus, frum abura outhee restored. Same formation. Jeputusport. Iowa. Mr. St. Johia.
Fig. 21 a. Mandibular posterior tooth, left rumus, a omall examyle, scen from alove: 216 do.. from lnner margln: 21 c do., outer larolied tuarkin: 21 d du..irum antero-lateral border. Leokuk: knokuk. Lowa. MI. Cox.

FOSSIII FISARES.
(Iower Carb.)

PLATE VIII.

\qquad
Xystrodus inconditus, St. J. and W
Fig. 1 a. Maxillary posterior tooth, left ramos, view from above, outline restored; 1 b, do., profile from antero-lateral border; $1 c$, do., transverse section. Keokuk limestone; Warsaw, Illinois. Professor Worthen.

Xystrodus imitates, St. J. and W.

Fig. 2 a. Maxillary posterior tooth, right ramus, from above; 2 b, do., longitudinal profile from antero-lateral border; $2 c$, do., transverse section. St. Louis formation; Monroe county, Illinois. Professor Worthen.

Xystrodus bellulus, St. J. and W

Fig. 3 a. Maxillary posterior tooth, left remus, from above, outline restored; $3 b$, do., longitudinal profile from the antero-lateral border; $3 c$. do., transverse section. Coal No. 7, Ill. Gen'l. Sec; Danville, Illinois. Mr. Wm. Gurley.

Xystrodus simplex, St. J. and W

\qquad
Fig. 4 a. Mandibular posterior tooth, left ramps, view from above; $4 b$, do., anterolateral border; $4 c$, do., from postero-lateral border; $4 d$, do., inner margin; $4 e$, do., outer inrolled margin. Upper Burlington limestone fishbed; Monmouth, Illinois. Mr. Springer.
Fig. 5 a. Maxillary posterior tooth, right remus, from above, outline restored; $5 b$, do., from the antero-lateral border; $5 c$, do., postero-lateral border; $5 d$, do., transverse profile from inner margin; $5 e$, do., outer inrolled extremity. Upper Burlington limestone, fish-bed; Louisa county, Iowa. Mr. Springer.

Xystrodus vertus, St. J. and W

Fig. 6 a. Mandibular posterior teeth, left ramps, view from above; $6 b$, do., anterolateral border, longitudinal profile; $6 c$, do., transverse profile from inner margin; Chester limestone; Chester, Illinois. Professor Worthen.
Fig. 7 a. Maxillary posterior tooth, left ramps, from above; $7 b$, do.. longitudinal profile from the antero-lateral border: $7 c$, do., from the postero-lateral border; $7 d$, do., transverse profile from the inner margin. Same formetimon, locality and collection.

Pectiodus St. Ludovici, St. J. and W

Fig. 8 a. Mandible, with the pair of posterior teeth occupying their natural position, resting upon the granular osseus support, the right ramps showing the articular processes at the extremity. The anterior extremity of the jaw is mutilated, butit is evident whatever teeth it bore were extremely small; St. Louis limestone; Alton, Illinois. Mr. W. C. Van Horne.
Fig. 9 a. Mānđibular posterior tooth, right ramos, view from above. Same formaion, locality and collection.
Fig. $10 a$. The same form, left remus, view from above; 10 b , do., outer in rolled margin; $10 c$, do., from inner margin. Same formation, locality and collection.
Fig. 11 a. Maxillary posterior tooth, right ramos, from above; 11 b , do., from the outer margin. St. Louis formation; Pella, Iowa. Mr. St. John.
Fig. $12 a$. Same form, left ramps, from above; $12 b$, do., from inner margin; $12 c$, do., from antero-lateral border, foreshortened: St. Louis; Alton, Illinois. Professor Worthen.

Plate VIII-Comtinued

Pacilonus Vaitsoviensis, St. J. and W
-AGE
.................................

Fig. 13a. Љaxiliary posterlor tootb. left ramus, seen from above anterlor border restored in outilne, onlarked one diameter: Wharsaw; above Alton, Illlnols. Mr. Van Horne.
Fig.ta. A farger oxampla of the same form, fiew from above, naterlor portion of crown mutilated; 146 do., transverse profle from inner margla. Same formatlon, loeality and collection.

Pacilonue Cestbienbis, St. J. and \mathbb{W}
Fig. 15 a. Maxilary posterior tooth, rlaht ramue, from aloove, outline partally restored; 15 l , du., from the Inner margin: $15 c$, do., outer Inrolled marcin: Chester: Chester, Illinols. Mr. Van Horne.
Fig. $16 a$. Mandlbuiar posterior tooth. Ieft ramus, vlew from above: 16 b , do., Inner margin; $16 c$, do., outer inrollod margin: 16 d . do., froflo from anterolateral border: Chester: Chester, Ilinols. Professor Worthen.
Fig. 17a. A small example of the sumo form, rlght ramus, from above, showing the transversecorrugations: Chester: Chenter. Illinols. Professur Worthen.

Pectlodus Worthent, St. Jolin.
Fig. Isa. Mandibular posterior twoth, left ramus, vlew from abovo, outino jartially restored: is b, do., transverse profle from Inner marain: is c, do., outer inrolled margin: $18 d$, do., longitudinal profle antero-lateral border: Chester: Chester, lilinols.

1'fecilodus Springem, si. J. and W.
Flg. ly a. Mandibular posterlor tooth, left ramus, vew from abnve, oatine fartally restured: 19 l . do., iransverse prollle from inner markin: 19 c , do., outer Inrolled margin; Lower Carboniferous; Santa Fo. New Mexleo. Mesers. Sprlager and St. John.

Perilonus cambonabiug, St. J. and w°
Fig. sua. Mandlbuiar justorior tooth, right ramus, vew frem above, outine wartially
 do., outer inrolled marsin: 20 d , do., outine profle from antero-lateral border: Luper Coal Mensures: Lasalle, IIlinols. I'rofessor Worthen.
Mí. 21 a, Maxillary posterlor tooth, right ramus, seen from above, outine restored: $21 ~ U$. do., profile from Inner margin; $21 c$, do., outer inrolied marmin. Same formation, locally and eolsectlon. P'rofessor Wurthen.

Fosscr exsmes,

PLATE IN.

Page.
Deltodes parvers. St. J. aul \mathbb{W}.
151
7 Fig. 1a. Mandibular nosteriar tooth. left ramuc, from above, et.lnraed: 1% do., rirolite from antero-Interal border: i c. do., from posiero-lateral worder. st. Louls; Pella, Iown. Mr. St. John.
F Fla. $2 a$. Same form, rlight ramue, enlarged. Same formation, localits and collecifon.
Fig. 3 a. Outline of a mandlbular medin wooth, left ramuf, from nliove, enlarged. St. Lnuls; St. Louls, Mo. Mr. St. John.
Flif. ta. Maxillary pasterior tooth, richt ramus, from above, enlarced: \& b. do.. tranoverse frofle from inner margin: \& c. do. iongltudinal profle from ante-ro-interal border, extremits restored in outline. St. Louls. Pella, Lowa. Mr. Van Horne.
\checkmark Fig. 5 a. b.c. Simllar views of the same form, left ramus. showing a perfect examale. sume formatlon and localits. Mr. St. John.
Deltodes cinctiles, St. J. and w
Fig. 6 a. Mandibular pusterlor tooth, left ramus, viem from above, extremits resiored In outline: 6 \%. do., from Inner margin, transverse mralle: bic. do., ante-ro-Interal boriler, fongltudinal prollle. Warsar beds: Madson counts. III. Prof. Wurthen.

Flg. ía.b.c. Similar views of a maxilars posterior tooth, left ramus. Darrett's siathon, Mo. Prof. Worthen.
Deltodest thlobus. St. J. and Wi
Flı. 8 a. Mandlbular median tooth. left ramus, vlew from nbave; a lo. do., from inder marglu: 8 c . do., from outer margin, extremits broken awas: * d. do., longltudinal profle from antero-lateral horder: 8 e. do.. from proseroInteral barder: 8 f . transverse section, showing prominent defaiton of the auterior and posterior labec. Warsaw llmentone; Jermy cunats. III. Prof. Worthen.

Deitodus occidentalis (Lelds. ap.)
FIg. 9a. Maxillary nosterior woth, lefl ramus, from above. Si. Louls llmontone: Monroe counts. Ill. Prof. Worthen.
Flg. 10 a. Mandibular modlan'tooth, right ramus, fromaliove, outer extremlis troken asus: 10 b . do., from antero-lateral border; $10 \times$. do.. nosturo-fati ral border: 10 d.do., transverse section. Warmw beds; Warsaw, III. I'rif. Worthen.
Deltones latior. si. J. and W
Fir. 11 a. Medlum-8izo tooth of the manilihular loosterlor furd, rleh: rameng, frcm above. licokuk: Ilamilton, III. Prof. Worthen.
Fia. $12 a$. A smalier indivitual of the same form: sume locallts.
Fls. 13 a. b, C. Deltodns cinouratiog, N. and W. \qquad

13 a. Maxillary monterior tonth, Lefl ramus from above: is he from antro ro-interal bordor: 13 c , outline from inner marking trausire firoflo. Chmater llacoutone: Cheazer. Ill. Irof. Werthen.
Deitedisintenamedic. Sit. J. nod W.

 Mr. Sl. John.
Fig. 15 a. b. f.it. Similar viown of amall exaurie of the same firm. right ramua, whewing n marked undulated coronal nurfane. Sis. L.OUls: Clumbla. Monroe countr. Ill. I'rif. Worthen.

IFOSSIE IFISIEIES.
(Lower Carb.)
CDCTHUIDD DETTS,

PLATE .

Page.

Deltodés Potrllif, St. J. and π
154
Flg. 1 a. Mandibular posterlor tooth, left ramus, vlen from alove; 1 b . do., trans:verse profle, outlne from funer margin; $1 c$, do., from outer marglt, outline: 1 d , do., outlife from antero-lateral border; 1 c , do. from los-tero-lateral border; 1% showing character of puuctation of coronal surface, enlarbed. Carbonlferous Ilmestone: [tah. Natlonal Museum.
Fig. 2a, b, c, d. Mellodus Mercurii, Newb. Lomer Carb.: Santa Fe, Ner Mexico, U. St. John.

Deltoder reopinqu've, St. J. and W

Fig. 3a. Mandlbular nosterlor tooth, rlafit ramus, vew from above: s b, do.. iransverse profle from lnaer marsin: $\$ \mathrm{c}$, do., fron outer marifin: $\$ \mathrm{~d}$, 10. longitudinal urofle from antero-lateral border; 3 e. do. nostero-lateral furder. Conl No. 3, Carllaville, Ill.
Fig. fa, b, c, d, e. Slmilar views of a maxillars posterlor tooth, right ramus. C'onl So. S. Carllaville, Ill., Mr. Alex. Butters.

IFOSSIU FISTHES. (U. and L. Carb.) CDCIEOLIDIDDNTS.

PLATE XI.

Deltodopsis affinis, St. J. and W
 Page.

Fig. 1 a. Mandibular posterior tooth, left ramus, view from above; $1 b$, do., showing antero-lateral border: $1 c$, do., transverse profle from inner margin. Warsaw limestone; Warsaiv, Ill., Prof. Worthen.
Deltodopsis St. Ludorici, St. J and W.
$13012 \xrightarrow{\checkmark}$ Fig. 2 a. Mandibular posterior tooth, left ramus, view from above. outer extremity restored in outline; $2 b$, do., longitudinal profile from antero-lateral border; $\check{z} c$, do., postero-lateral border; $2 d$, do., transverse profle from inner margin: $2 e$, do., inferior surface. St. Louis formation; Pella, Iowa, O. St. John.
$13013 \xrightarrow{\longrightarrow}$ Fig. $2 f$. Tooth of the same form, right ramus. Same formation, locality and collection.
?. Fig. 3 a. A smaller perfect example of the same form, right ramus, from above; 3 b , do., antero-lateral border. Alton, Ill., Prof. Worthen.
$13011 \checkmark$ Fig. 4a. Maxillary posterior tooth, right ramus, view from above, inrolled extremity restored in outline; $4 b$, do., antero-lateral border; $4 c$, do., the same in longitudinal profle; $4 d$, do., postero-lateral border; $4 e$, do., transverse profle from inner margin; $4 f$, do., inferior surface. St. Louis formation; Pella, Iowa, Mr. St. John.
Fig. 5 a. Same form, left ramus, seen from above; $5 b$, do., antero-lateral border. Alton, Ill., Mr. Van Horne.
$?$ Fig. 6 a. Mandibular median tooth, left ramus, view from above, enlarged and partially restored at the outer extremity; 6 b , do., postero-lateral border; $6 c$, do., antero-lateral border. Pella, Iowa, Mr. St. John.
Deltodopsis angustus, (N. and W. sp.)
Fig. 7 a. Maxillary posterior tooth, left ramus, view from above; $7 b$, do., longitudinal proflle from antero-lateral border; $7 c$, do., transverse profle from inner margin. Chester limestone; Chester, Prof. Worthen.
Fig. 8 a. Same form, right ramus, from above; 8 l , d^., antero-lateral border. Same formation, locality and collection.
Fig. 9 a, Mandibular posterior tooth, right ramus, from above, outer margin restored in outline; $9 b$, do., antero-lateral border; $9 c$, do., transverse profile from inner margin. Same formation, locality and collection.
Fig. 10 a. Same form, left ramus, from above, restored in outline. Same formation, locality and collection.
Deltodopsis? convolutus, St. J. and W
13018 -Fig. $11 a$. Mandibular posterior tooth, left ramus, view from above; 11 b , do.............. dinal profile from the antero-lateral border; 11 c , do., postero-lateral border; $11 d$, do., inferior surface; $11 e$, do., transverse profle from the inner margin. Upper Burlington llmestone, flsh-bed; Louisa county, Iowa, Mr. Springer.
130 N -Fig. $12 a, b, c, d$, e. Similar views of a small example of the same form, right ramus. Same formation, locality and collection.
Deltodopsis? inflexus, St. J. and W
Eig. 13 a. Mandibular posterior tonth, right ramus, from above, outline restored; 13 b , do., transverse profle from inner margin; 13 c , do., outer margin; $13 d$, do., longitudinal profle from the antero-lateral border, articular edge mutilated; 13 e , do., postero-lateral border. Keokuk limestone; Warsam, Ill., Prof. Worthen.

Plate XI -Cominted.

DELTODOPsib EXOBNATLE, st. J. and W
Fig. If a. Nisndiular posterior ivib. right ramus. view frum alove, ou:line of ala:d posierior border restored; If \%, de. longivulinal s rollde from ins anterj. lateral border. Warsaw: abovo Alion, Mr. Van liorno.
$13^{619}=$ Fl. 15.
DELTOHOPEIS? B\&LVEATL'S, SL. J, and Vi
\checkmark Fig. Is a. Mandibularmedian tooth, loft ramus, view from above; 15) , do., transverse Froffe from inner marsin; lic. do., from the ouier exiremits: $15 \mathrm{~d}, \mathrm{do}$. Inferlor surface: $15 \mathrm{\mu}$ dq., antero-lateral border; 15 f . do. porierolateral border. C'. Burlineton: Loulsa counts. Iuwa, Mr. Si. Johas

Fig. 16.
D. : ǨoEUr, St. J. and W
 Keokuk llmestone.
\checkmark Fig. 1\%̈. 11. ? convexus. If a, Mandlbularmeilian tooih. Juft ramus, fromabove: 17 U, do., frow Inner marain; 17 c , do., anteriv-lateral border, untal rim restored in outline. L. Burlington: Loulsa counts, lown, Mr. Siprinser. 130 E-Fig. 1. D.? concesus, is a, Mandibular median toolh. right ramus, seea írom above: 18 l . do., trangverse profle from inner margin; is c, d , outer exiremits; is J. do.. Inferior surface; is e. foantero-and posiero-iainral borders. Ci. B.: Loulsa countr, Iowe, O. S\%. J.
(2)

FOSSIRT FISHETES.
(Lower Carb.)
CDCHETMOUDNTS.

PLATE XII.

Fig. I a. Mandibular posterlor tooth, left rawus, outer extremity and posterfor border rentorod in outline: I 4 do., antero-lateral border; is do., Inner maralu and transverse profle. C'pDer Burllaktou: Burlideton, Lowa Mr. Wachsmuth.
Fig. 2 a. Maxillary posterior tooth, right ramus, from atone, partially restored in outline: 26 do., longltudinal prolle from antero-lateral Lorder. t'rier Burlington: Pleasant Grovis, Lowa. Prot. Worthen.
Fig. 3 a. Mandilubar median tooth, left ramus, a large example from nbove: 36 d .. postero-lateral horder and longitudinal profle: 3 c do., antero-lateral burder: $3 d$ do., inner-margin and trausverse profle: 3 e do. onter ex tremits, muthated: 35 do.. showing the coneave infertor surface. lifer Burlington: Loulsa Co., Lown Mr. Sprlager
Fig. i a, A small example of the same furm, neen from above: 18 do., lomstrudtab irofle from bostern-fateral border. Same f rmation, loeallty ard! ix. tion.

Sasdalodus, sp?
Fig. 5a. Mandibular mesterine tooth, left ramus, fram blove, parthaly re=ered in outline: 5 , do., longltudinal wrolle from atiern lateral lierder: so de. Irom the posiero-lateral border. Waram llmesone; Warsint I. Irct. Wiorthen.
Fig. 6 a. Maxilars norterfor twoth, lefi ramus, sten from al ove, outhine iartizier restored: 6 b do. lonsitudlual irofle frum antero-lateral Lorderíc c . from outur extremits. Warsar limenitm: liasa ereck aloce A.tou. Mr. Yina lbarno.

Savinamders rfatilati - is and. W. ar
 muthated from war: it do., I Eikltudinal tionle form trster-hatral
 Inner markin: if ilo., outer marbint if de. Interiot antan. Et. lowis Hntentoue: Alton, Ill. Mr. Vanllorne.

 Mr. Cor.

 Ven Ilito
 H0ssicl Fatshans.

PLATE IIII．

Page．
OhtBGPLECBUDLS NOTO MExtCANL゙ー．Si．J．A W
105

 restored： 1 b．do．profle frum the miralght border．Lower Carl onif－ eruan；sunta F\＆．Dew Mexleo．Mewrr．Sirlager and st．Juhn．
－Fló．2 a，b．Slmilar views of the same form of right ramus．Same iormuton，duealis and ealloectou．
f Fig． 3 a．Mandibular nosterlor 100 b ，left rumus．seen from above outlone resiored： 3 b．do．．Inner margia．truaverso srofle： 3 c．do．longltudinal prafle from the unturn－lateral horder．Sume formailon．locality and collect n．

Fig．t a．Mandllulur nosterfor quoth，rlabi rumur，view from above，ouline resicre？：
 verse protle frum inner margin．sirntit abure the Maboniag Sandsivec Conl－Measures：Morgantown，West Virglnla．Pro！．Wurtben．
Fig． 5 a．Maxlliary fosterlor tooth．left ramur，view from above，rentured in outllne； 54．do．profle from the stralght border．Same formution．locallis and eollection．

ORTHOPLEVBODU＇S CABBONARILG，N．and W\％．sp．
＊Fig． 6 a．Masillars posterlor ；ooth，leli ramus，a small，Tell－preserved example，been from above，outline purtally restored．
Flg．i a．Mandlbular posterlor 100 tb ，left ramus，a slmllarly preserved speclmen． from above．
Flg． 8 a．Mandlbular medlan iooth．leli ramus．viet from aliove，outlae partails remiorcd．Lower Coal．Measurea，ruof of Cual No．s：Bloomlns：n Ilis． Mr．L．A．Fuller．
Note：The three aliove specimens were n－snefatid on a bli of enrbounce us shate in sueb a manner as to leave scarcels a doutif bat ibes fertajned to che ind the samefudivilual．St．Juhn．

TESIODt＇s Façatis．（N，adi WH－F．．

 rulled marsin：？d，du．．from ine antern－lateral border：9e．do．， $1=-\quad$ ra． Lateral border．Provimloatbly fientan．I mith tbe alwo snecles．Whrantr Ilméotone：nbove Alicn，Ill．Mr．Van liorne．

 Hincsionc：（ nee ier．Illa．Hr．Hant in lis．

JENTODL＇S BEWTLAR：I4．Si．J．MAI W゙．

 （），太i．Jbil．

Sisucub
FOS:MGMMELUES.
(L. and U. Carb.)

CODSTEUAIOIDODNTS ,

PLATE XIV.

FSAMMODV's IUMIDCRE, St. J. and W

\qquad
Fig. Ia. Maxillary tooth, right slide, view from above, outline partially restored: ib, do., posterior marin: ic. do., inner articular border: 1 d, do., from the interior border. Upper Burlington; Bunngton reek. Mr. St. John.
Fig. : a similar views of a smaller example of the same form, left side, partially restored outline. Same locality and calleetiou.
Fit. 3 a. A larger, irregular example of the fame form, right aide, seen from above. outline restored, crown surface worn smooth: 8 b , do., Inner articular border: 3 c , do., anterior margin. Same formation and locality. Mr. Surbase.
Fig. I a. A brander tooth. referred to the mandible, right side, view from above, showing rugose belt along the nosterlor margin: 4 , do., from the nosterlormargin: fec, do., inter articular border. Same formation, locally and collection.

Psammodes glypters, St. J. and \mathfrak{W}.................................... cornel surface: 5 l . do.. from the anterior margin: 5 c , from the artleular or Inner margin. Lopper Burilngton limestone, main lish-bed; Cedar creek, Illinols. Mr. Surlier.
Fig. lid. Maxillary tooth. right (?) side, from above, the dotted line may nossibiy represent the proper restoration of the tooth; $6 u$, do., nosterlor ? ? margin: if du. profile section, showing the silatit longltudian convexity of the coronalsurfaee. Upper Burlington limestone: Quines. Illinols. Prof. Worthen.

Psammodes Loviantes, St. J. and W
Fig. ia. Maxiling tooth, view from above: ib, do., from posterior margin: ic o do., anterior margin: ; d, do.. from the inner articular border: ie. do. exturior border. Under Burlington: Burlington, Down. Mr. Wachsmuth.
Fin. Aa. A small, narrow example of the same form, view from above, outline mar. :ally restored: $s b$, do., from the posterior marifin: solo., prole seethe. Under lsurlington: Quincy, Illinole. I'rof. Worthen.

 Lin: ! d, do., urdnalar border: 3 e. do., from the exterior border. Low nr L:urilngton: Burifngton. Iowa. Mr. St. John

(Lower. Carb.)
PASAWINTODDOEYTSS.

PLATE X「.

PsaMMODL's GRANDIS, Si.J. and W'
Fig. I a. Mandibular fuoth, from above, showing a fragment of a very larcu example, the irliuathg surface but slightly worn, reatored la outli, e: i \% do.. from the posterlor margla; ic. do., anterlur mareln: I d. do., profic fecHon. Keokuk: Keokuk, Ioma. Iruf. Worthen.
Flg. 2 a. Maxllars toohh, vhw from Rhove, outline rostored, corenal surface wurn
 lienkuk: Keokuk. Iowa. Mr. Cox.
Fls. 3 a. A small worn example of the same form, ver from above, outhme partinlls restored: 3^{\prime}. do., from the posterior markin; 3 c . do. from the inner artleular lionder. Limekuk: Bentousport. Luwn. Mr. Sprlamer.

Prammones turaidés. St. J. and Wi
 the bonserfor margin: 1 c . do., allerlor marchls: $1 d$ do., Inder articular horifer; fe. do, from the experter berd t. L. B. llmestome fivi-lied. De a Moluen counts, l-wa.

PLATE XVI.

Fig. 1-4 Psamiodus plenus, St. J. and W.. 213
$1 a$. Mandibular tooth, view from above; $1 b$, do., from the articular border; $1 c$, do., exterior border; 1 d, do., posterior margin; 1 e, do., anterior margin; f, do., inferior surface. St. Louis limestone; Alton, Ills. Mr. Van Horne.
2 a. A similar example of the same form, from above, outline partially restored; 2 b. do., inferior surface; $2 c$, do., showing the channeled exterior border. St. Louis limestone: Monroe county, Ills. Prof, Worthen.
$3 a, b$. A nearly perfect specimen of the same form, view from above and the articular border, showing a faint marginal sulcation round the articular, posterior and anterior margins of the crown. St. Louis limestone; Alton. Ills. Mr. Van Horne.
$4 a$. View from above of a fragment of a very large maxillary tooth, partially restored in outline; $4 b$, do., from the posterior margin; $4 c$, do., articular inner horder. St. Louis limestone: Alton. Mr. Alex. Butters.

[^28]
PLATE X゙VII.

Psasmsodés plesus, St. J. and W.

Flg. 1 a. Vlew from above of a small maxllary touth: 1 l . do., nosterlor marglu: 1 c do., anterlor margln, 1 d. do., Inner artlcular burder: 1 e. do., exterior border: 1 f . do., Inferlor surface. St. Louls llmestone: Alton. Mr. Van Horne.
Flg. 2 a, b.c.d. e.f. Slmilar vlews of a medlum-slze example of the same form, outllne partally restored. Alton; Mr. Van Horne.
$130^{\circ} \mathrm{V}^{2}$ Flg.sa. A larger spectmen of the same form. vlew from abore, showing more produced basal rim along the exterlor horder; 36 . do., from fosterior margln; 3 c. do., artlcular border: 3 d. do., exterlor horder. St. Lirula limestone: Alton. Mr. Van Horne.
Fig. ta. A very whe mandibular tonth, from alove: 4 d. do., from the posterlor margin: $4 c$ c. do., anterlor marglı: $4 d$. do., longltudinal profle from the exterior border: fe. do., artleular horder. St. Louls limentone: St. Louls. Mr. SL. John.

BEDEDRTR
FOSSICL FISTAES.
(Lower. Carb.)
PSAENCIDDDDYES.

PLATE XVIII.

Psammodus cerates. St. J. and \boldsymbol{T}
Page.
21%
Fig. 1 a. Maxillary tooth, view of triturnting surface, inner articular border restored In outline: 1 b. do., exterior border; 1 c . de., posterior margin: 1 d . do., outIfnefromanterior margin; 1 e. do. longitudinal nronle section. St. Louts: Pella, Iowa. Mr. Van Horne.

Pyammodu's crabsinens, St. J. and \mathbb{W} \qquad
Fig. ia. A small tooth, showing the coronal surface worn smooth, view from above: 2 4. do., Inner articular border: \& c. do, exterior border: : d. do., nokterior

Fig. $3 a$. A relatively shorter tooth of the same form, from above, preserving traces of the rugose coronal surface; 3 l . do., artheular border: Bc, do., exterior horder: 3 d. do., artleular border: 3 e. do., posterior margin; 3 \%. do., inferior surface; the dense externallayerexfollated. Original of "Ps, rupusus." Ill.

Fig. 4 a. A more elongate example of the same form, the triturating surface preserveIng traces of the transverse raga: 4 b . do., articular border: \& c. do., exterior horior: f d. do., posterior margin. Si. Louis; Alton. Mr. Ijutiers.
Fig. 5 a. Alarge entire example of the anne form, the coronal region worn month, and showing the prominently developed basal rim of the exterior border: 5 ८, do., articular border; 5 c . loo., from the exterior border: 3 d. do..pmatertir margin; 5 e. do., anterior margin. Sr. Lolls: Alton. Mr. Van Horne.
Fig. 6 a. An immature large tooth of the same form, the inner half of the corennl surfief presenting beautiful rugose markings; 6 b. do., artieuln border. St. Louts: Alton. Mr. Butters.
[fess
TRDSSICL IFISIBIIES.
(Lower Carb.)
HRSAMMITDPDUVTSS.

PLATE XIN.

PsamModés angularis, St. J. nud \mathbb{W}
Proe.
Fig. 1 a. Mandifuiar tooth, seen from nlove: 1 h, do., from jomerior murgin: 1 c. do.. transverse profle frum the anterior margin; ld, do., longitudinai profle frum the articular forder: le. lu. from the exisior forider, outifee parlialiy restored. Orlginal specimen l'i. X1. 8. 2, 2a, 21, Vol. I1. IIL. Guol. Surves. Chester: Chenter. Iil. Prof. Wiorthen.
Fig. 2 a. Jaxiliary foath. showlag the irlturnting surfisce, outline partaly rentorel: $\because 6$, do., transverse jrufian from tite nocterlor marglu; : r, di.. anterior markin: : d. do., longitadinal proble frem lnner arlicular loordir: if e.
 Surley, Il. Chester. Cilorier, lll. I'rof. Ẅurhers.

Fig. 3a, Mandibiar fuoth. Vlew frum ahove, the tri urathe coronal surfac much

 dur. fugitudinal proile: 8 e . do., from the exteriur forter, Cbevier: Chester, Ili. I'rus. Wortisen.

 1il. Gmaf. Surves, II. Cheater: Chester, III, Vref. W, rifen.
Fig. 5 a. Maxilary tooth, showing a worn trisurathe al ria e: 3 . frum the antorter marein: is c, do., artlcular Inner forter. Chester, (be⿻ier, IJ. Ir.

FOSSNG FITSHIES.
(Lower Carb.)
PSANLVTDDOYMTS.

Chas.K.Worthen, del.

PLATE XX.

Prge.
Copoder pusirlus. St. J. and W:
$\$ 31$

Fig. 1a. Maxillars tocth, vew from above, outline partially restored, enlarsed; $1 b$. do., transverso profle from inner margin: 1 c . do., lougitudinal brofle from the lateral border. Chester: Chester, Illinols. Dr. Geo. Hambach. Copodus Vas Horsir. St. J. and Wi.
Fig. 2a. Mandibular tooth, vilew from above, outline partinlis restored: 2\%, do., from the outer margin: $2 c$, do., longitudinal nrofle from the right border; $2 d$, do., Inferior surface. St. Louls: Alton, Ill. Mr. Van Horne.
Fig. 3a. Maxillary tooth. from abore: $\$$ l. do., from the anterior margin: 3 c. do.. transverse profle from the posterior margin; $\$ \mathrm{~d}$, do. "longitudinat profle froin the left border: 3 P , do., laterfor surface. St . Louls: SL Louls. Missourt. Mr. Si. John.

Psammodus Sprisigeri. St. J. and W
d Fig. Aa, Maxiliary tooth, risht shle, Viow from above; \& b do., transrerse proble from inner margin: \& c, do., anterior margin: \& d, exterior boricer: outline showing probable dispostiton of teeth upon the jaw. Eipper Burlington limestone fish-bed: Burlificton. Mr. St. Joliu.

- Fig. sa,b,c. Similar vilews of a left sifle tooth of the same form: 5 d. do, arileutar border. Upper Burlington limestone: Loulsa eriunts. Iowa Mr. St. John.
Fig. $6 a$. Vlew from abovo of a larce example of the same form, outline partalls restorod; 6 b, do., transverse profle from posterior markin: 6 C , do., artleular border. Linger Burifigion Ash-bed: Loulsa counts. Lown. Mr. Spriager.
Fig. 7 a. A similar example of the opposite slde, from above; ; do. exterlor border: i c, do.. arlicular border: id. do., anterlormarkln. Sano forma. tlon, locality and colleetlon.
Fig. ४a. Mandibuiar tooth. left Bide. Irom ahove; $s b$, do., postertormargin. trans-
 tudinai nrolile; $x p$, do., exterior border. Üper Burllagton diviston bods: Quines. I'rofeswor Worthen.
Fig. $9 a, 1, c$. Similar view of a spectmen of the samz form, risht whe: 9 d. do. artleular hordor, mal outife showing inrollment of tho mandibular series of temin from within nutwarla. Üper Burliagton limestonne: Burlington. Mr. St. John.
 sin: 10 c . 10. from anteriormarsin: 10 d Jrom articular borider: 10 e do.. extorlor border. CPiner Iurilnston limentone: Loulsn county, Iown. Mr. Apringer.
Fig. 11 a, b, c, d, e. Similar vlown of a large, proporfinnatels benad mandibular 'tooth. rigist mide. Snme formation, inenifis ame collecilon.

FDSSML TELSHEIES
(Tower Carb.)
PSAKGYOLDTE AK,

PLATE XXI.

Ctexacanthes conanes, St J. and Wi.

Page.
283
Fig. $1 a$. Side vlew of spine, outine restored: 1 b , do., showing anterior edge: 1 c . do., posterior face, the wail broken away exposting the ruin oavits: 1 d , do., transverse section nearmiddic. Keokuk; Montrose, Iowa Mr. Cus.
Ctenacasthus Pellensis.
23
Fig. 2 a. Fragment of spine, showing the dorsal or anterlor edge; 2 b. do., side view. outline parthatis restored: : c. do., nosterior face, showing beveled lateral ediges and the deen trough of the nuip cavits: 2 d, do., eniarsement of surface, showing variabie character of superfciai ornamentation: ? e do., cross section. Si. Louis formation; Pelia, Iowh. Mr. Vian Ilorne.
Ctenacanthés cansalmates, St. J. and π.
Fig. sa. Side view of fragment of apine: $s \%$, do., anterior or dorsal edke: 3 c, do., posferin face: 3 d, do.. transversesection. Chester; Chester, Iil. Dr. IZnmbach.
Asteroptychics tenelzes, st. J. and W.

Fig. fa. Fragment of spine, view of feft side: 4 h, do., enlargement of surface: if. do., iransverse section. Lpner. Coal Mensures: Toneka. Mr. S. John.

Bfore
FOSSITL IFISIRES.
(L. and U. Carb.)

PLATE K.II.

Ctenacanthu's deflexus, St. J. and W°

Fig. la. Side-view of spine, outline partialls restored: 18 , do., showing the anterfor edge: I c, do., posterior face; I $d_{\text {, }}$, do., transverse seetions near tho inferlor angle of the posterior face and near the broken upperextremfts. St. Louls: Alton, Ill., Mr. Alex. Butters.
Ctenacasteus Buttersi, Si. J. and Wi.
20
Fig. 2a. Dorsal vew of spine: 2 4. do.. vlew of right side: ac, do., showing posterior face; $2 d$. do., eross sections from the middie and sear the extremities: $2 e, d o .$, eniargement showing tuhereuiated costa in the basal angie in front, somewhat worn. Lower Conl Measures, Coal No. 5: Carifnvilie, III., Mr. Butters.

M品

HOSSMA TFISHES.

(I. and U. Carb.).

MCFCMFOXDOROTLTES

PLATE X.NII.

Ctenacantal's Harbisoni, Si. J. and \mathbb{W}

\qquad Page. W of right side of spine, outine partially restored: 14 , do., from the dorsal edge: 1 c , do., nosterior face: $1 d, \ldots, f$, sections at broken distal end, at opening of ruin eavity, and the inferior dorsal angle. St. Louls: Alton, Mr. St. John.
Eunemacasthu's costarés, (N. and W. sp.)
Flg. :2 a. Side view of spine, somewhat distorted, and showing in eonsequence nearlr the entire breath of the dorsal ridge towards the hase; $2 l$, do., vew of the dorsal ancle; $2 c$. du., showing posterlor face, with the lateral wallerusbed together below; :2 d, do., tramsverse sections just below middle and near tho. St. Louls limestone; Alton, Ill, Mr. Butters.
[40 B D B

PLATE XXIV.

Ctenacanteus gracillimús, \mathcal{N}. and \mathbb{W}

Page

of a neariy entire dorsal snlne. St. Louis limestone; Shumard collection of Winshington U"nlversits;. St. Louls, Missouri.

Oracastrees veturtus, Lelds
Fig. 2 a. Tiew of right slde of snlne: 2 U, c, do., transverse sections toward tip and near middlo, showing thiekness of the walls Inelosing puip eavits: : d, do., eniargoment of tuberele. St. Louls limestone, St. Louls, Missourl. Musoum Wrashington Cniversity.

Acondrlacanthus? Mudgiasus, St. J. and W \qquad24

Fig. 3 a. View of fragment, showing a strin of the right cide near the postero-iateral border with the fongitudinal costa, and fint of the onjosite slde embedded in the limestone matrix, with the pulp eavity exposed to view: 3 b, do. transrerse seetion of крlue. Upuer Coal Measures: Dock creek, near Manhattan, Kiansas. Mr. St. John.

Giracantius? cordates, St. J. and W
Fig. 4 a. Vilow of right slde of sflue, portion of iuferior wall broken away exposing to view Inner surface of the opposito wall: $4 b$, do.. transverse section near middie, the antertor border unnermost. St. Louls: Alton. Illinds. Mr. Butters.

Drepanacasthús beversus, St. J. and W゙
Fig. $5 a$. View of right sldo of spine: 5 b, c, do., transverse sections toward tip and near dorsal line. St. Louls: Aiton, Ililnois. Mr. Butters.

Puxhonemus falcatus, St. J. and W°.
 verso soction townrd if. Sit. Louis; St. Louls, Missourl. Winshington Cindersits.

PLATE XXV.

Glimmatacantiev budis, st. and Wi

Page.

219
Fig. $1 a$. Vlew of frngment of spine from the richt side, outline partially restored: 1 l , do., from the anterior border: 1 c , do., transrerse section; lieukuk; Keokuk, Iowa. Mr. Cox.

Glimmatacanthus petrododee, sh. J. and Wh 250
Fig. 2a. View of fragment of spine, showing part of lnteral surface tuberculation: 2 b, do., restored outline of transverse seetion; 2c, do.. enlarkement. showing radiateiy-sculptured tubercles, as seen in profle. Chester: Cbester, Illnois. Dr. Hambnel.

Oracanthus hectus, St. J. and W
Flg. 3 a. View of fragment of spiue, showing fortion of the nosterior ? border: 3 b, do., from the rimht (?) side: 3 c . do., in transverse section. restored. Chester: Chester, Illinols. Dr. Hambneh.

Batacantaus? secis, St. J. and W
Fig. $t a$. View of spine from the left side, bnse restored in outline; 4 . do., transverse sections near tip and at middle, the latter erushed in over the pulp envity, mith a restored section. Keokuk: Keokuk. Iowa. Mr. Cox.

PLATE XXVI.

Acondylacantaus? xiphias, St. J. and iv.

of right side of spine, the extremities and nosterior border restored in outine: 1 l , do., transverse section near middle posterior face restored in outilne. Keokuk: Keokuk, Iowa. Mr. Cox.

Acondrlacanthus bectus, St. J. and w
Fig. 2, a. View of spine from right side; $2 b$ do., section of posterfor face enlarged: \boldsymbol{z} c. do., enfargement from mildde of spine. Cipper Coal Measures: LaSalfe, III. Prof. Worthen..

Acondrlacantaus nuperve, St. J. and W.
Fig. 3, a. View of spine from left side: $\$ 4$, do.. enfargement above middle of spine: 3 e. do., transverse seetion. C'pper Coal Measures: Peru, Ill. Mr. Tiffans.

Gybacantales? cordates. St. J. and W
Fig. 4 a. Viets of spine from the anterior edge, outine restored: 4 d do. from the posterior face: $t c$, do., from the right side; $4 d$. do., feft sfife: f e, do., transverse sections at different marts of the srlace, the misterlor wall destrosed at buth extremfles, as shown in flgure 4%. Keokuk; Keokuk, Iowa Mr. Cox.

PLATE XXVII.

Page.
Fig. b. Potehiocrinus Cosanus 0∞
Anterior view of the bods, aud the upper part of the ventral tube: nuturel size.
Fig. .. Poteriocrint's occidentalis 275
Side vew of the type specimen, showing the anal plates, arms, and a part of the column: uaturai size.
Fig. 3. Potemocrinus Orestes 273
Auterdor view, showing the arm- and tenticnia.
3 a. Poterior view of the same; naturaisize.
Fig. 4. Poteriocminus briertés 279
Posterior shde, showing the arms and tentacuia.
$f a$. Anterior viev of anotiterindivduad: natural size.
Fig. 5. Rhonochines polydactylu's s
losteriur view: unturai size.
Flg. 6. Poteriocmines subramilonves 24
Auterfor view of body and arms: natural size.
Fig. 7. Dichocrint's Coxastes 813Anterior view of hody and arms: nataraf size.
Fig. 8. POTERIOCMINC゚S ASPER Si
Anterlor view of body and arma: natural size.
Fig. 9. Poterioctivth 13amllt Nenris $: 3$fosierior vow of the body, ame amb ientacula: matural alze.
 813Anterior rinw: naturalaize.

PLATE XXVIII.

Fig. 1. Zeacrinus Coxanus
Page. 302Anterior view of the body, arms and tentacula, and a portion of the column,natural size.
Fig. 2. Poteriocrivus asperatus 280Posterior view of the body, arms and tentacula, and a portion of thecolumn, natural size.
Fiz. 3. Zeacrinus Keokuk 303
Anterior view of body and arms, natural size.Fig. 4. Poteriocrinus Otterensis283
Side view of a crushed specimen, aud a part of the pentagonal column.
Fig. 5. Cyathocrinus paryibrachiatus 309
Anterior view of the body, arms, and a part of the column, natural size.
Fig. 6. Poteriocrinus latidactylus 275
Side view of the body, a part of the arms, and upper portion of the column,natural size.
Fig. 7. Reodocrinus Coxanus 305
Posterior view, natural size.
Fig. 8. Poteriocrinus Burieeti 270
Anterior view of body aud arms.
8 a. Posterior view of another individual showing the ventral tube and column.
Fig. 9. Poteriocrinus penicilliformis $2 \pi 6$
Posterior view of a nearly perfectiudividual, uatural size.
Fig. 10. Poteriocrinus Nauyooensis 28:
Side view of a crushed specimen, natural size.
Fig. 11. Poteriocrinus tentaculatus 277Posterior view, națural size.
Fig. 12. Poteriocrinus arachneformis 281
Posterior view of the body and a portion of one of the arms, natural size
Fig. 13. Poteriocrinus tenuidactylus 271Anterior view of the body and a part of the arms, natural size.
Fig. 14. Eretmocrinus Varsoviensis 306Side view of the body with arms complete, and a part of the column, natu-ral size.
Fig. 15. Poteriocrinus Varsotiensis 290Side riew of the body and a part of the arms and column, natural size.Fig. 16. Poteriocrinus validus287
Anterior view of the body and a part of the arms and column, natural size289Posterior view of the body aud part of the arms, natural size.

PLATE XXIX.

page
Fig. 1. Poteriocmines spinobraceiatus. 23(n)
Anterior vlew of a nearly perfeet specimen.
Fig. 2. Poteriocrincts Okawensis. (:4)
Slde view showlag bods and tro of the arms.
Fig. 3. Evpachicninub Botdi.Side view of a nearly perfeet speeimen.For deserfption of this specles see Tol. F. of these lleports, p. 554.
Fig. 4. Eupachichinut asperatus. 311
4 a. Side viem of the budy and forer part of the arms.4 b. Basal vietr of the same specimen.
Flg. 5. Onfchocrinus distensus 317
Side vier of the body and lower part of the arms.
Fig. 6. Poteriocrinus Columbiensis. 2
Side view of a neariy perfect individual.
Fig. 7. Agassizocrinc's aemispaericl's. $31 i$
$7 a$ and $i b$. Opposite sides of the same speeimen.
7c. Basal view of the same.
Fig. 8. Poteriocrinus scurptes. 202
Side view of the body and fower part of the arms.
Fig. 9. Poteriocrinus prorinquevg. 20
Bide view of the bods and a portion of the arms and column.
Fig. 10. Poteriocininu peculiatis. \Re
10a. Anterior side, with the arms nearls complete.10 b . Posterlor side of another specimen.
Fig. 11. Talarochinus ovatus. 314
11 a. Side view. 11% Basal viem.
Fig. 12. Poteriocrinus Popensis. $24 i$Slde view of the bods and arms.
Fig. 13. Potemiocrinub venustús. 2713 a. Iosterior side of a nearis perfect Individual.13 \%. Anterfor vies of the fanse specimen.
Fig. 14. Allagecrinus Carpestemi 841
She vinw of a nearls perfect Individual.
Fic. 15. Poteriochinúh Kaskiskiencis. sink
Sldo vow of a nearls jerferi indivhlual.
Fik. 16. Eupachychnus Monroensia 312
Basal view.
 313Slels viow of the bods abil arms.
Fig. 18. Potemochinves Saluteri 291stile viow of a wenrls perfect mpesimen.

PLATE K…

PAGE.
Fig. 1. Poterincminus cultidactilus 3011
Vitew of the anal side.
Fig. 2. Taxocaines Fretcheri आッ
Vew of a nearis perfect indivilual. 34Fig. 3. Zeacrinus Pikensis
Side view of a nearis perfect individual.
Fig. f. Cyathocrinus Marshallensis $81^{\prime \prime}$
Slife view of n nearls perlect individual.
Fig. 5. Peterisicrinus lichfieldensi- 23
View of the unal slde of the body and the arms complete.Fig. b. l'oteriocrinu's Claytonensis24
Side view of the body with furt of the arms and column.
Flg. 7. D'uteriocrinus Talboil $29:$
Side vew of the body and part of the arms.
Fig. s. Lecythiocrinus Adamsl 31%
$8 a_{0}$ and $s b$. Upposite shles of the same specimen.$8 c$. Virw of the summit. $8 d$. View uf the base.34
Slde riew of body and arms.
Fig. 10. Poteriorrines clitib. 291
side vew of a nearly nerfect fndivjlual.
Fig. 11. Potehiocrisu's Fountainensis $2-6$Vew of tha abal side and part of the arms.Fig. 12. POTERIOCMAUS कIMILIB.2
Sido view of a nearls perfect specharan.
Fig. 13. Achochisug Wobtheni 313
13 a and 13 \%. Oppuadte flden of the Lods.
Fig. 11. Allehizocidalis silio-clatiates : $2:$It a, b, c. Primary spines.11 d, e. Interambuiacral Nitien,
Fig. 15. Ahchatocidathe Eduai exsis $33:$lo a. U. J'rimary splnen.15 r. Interambularral pates.

From the C"pper Conl-Menauren. Lasaile. Ill.

PLATE XXII.

Fis. 1. Archizocidaris Illinoiensis Page. 333
1 a, 4 . Primary splnes natural size.
Fig. 2. COMPSASTER FORMOSU'S 327-a. Ventral fide natural size.
2 b. Section of ray enlarged two diameters.
Fig. 3. Tremataster difficilis 330
3 a. Ventrai side magnifled two diameters.3 b. Section of ray magnifled four dameters.
Fif. 4 . Cholaster peculiaris 33
\& a. Dorsal view natural sizo.
\& b. Section of ray magnifled two diameters.
Fľ. 5. Hybochinus apectabilis 332
5 a. Vew of a depressed specimen natural size.5 6. d. Views of ambulacrai and adambuiacrai piates, eniarged two diameters.5 c. Magnifled view of horn-like protuberunce.
Fig. 6. Vew of a crushed speclmen. showing the jaws.
Fig. 7. Jaws, belonging to this or a kiadred species.
Fig. 8. Perischodomús Illinoiensis. 33View of the apleal end of a distorted specimen, natural size.
Fig. 9. Echinodiscus ortates View of part of the lower slife of a specimen, showing the plates nearthe margir, naturai slze.

Chas.K.Werthen, del.
 "(Lodi,Lazu out Xridy);

 A Kenviailo..

 74,1 is "

它, sishlin $8016 \ln -z 2$, th

"91,15-" "1 for "PElipeci pemingo,

4, ,

 athout of aly und in?
\square
Solei
\qquad
为

" 207115
$\therefore \therefore 1+7-1+0$
4.
$2162 a^{\prime \prime}$

1) $2-19 \times 17$
$8-7$

42421
π

$=-6, \vdots$ 家, 院 \qquad

-45, nip imu
 \qquad

[^0]: Bottom of conl．．

 İmestone ．．．

 Conl 久iv．f（？）．．．
 Flrv 円ィy．．

[^1]: Ft. In.

[^3]: Ft. In.

 Clay shale... 34
 Coal No. 2... 1
 Fire-clay... 2

[^4]: ("houlur lime ntorno.
 Warmatw limmat. 16.

 1, 11)
 hinderlowh beda.

[^5]: the Cowhltorionte.

[^6]: (Note.) ${ }^{1}$ Faune calcaire Carbonifòre de la Belgique, II, p. 55, P. VI, f. 13.

[^7]: ${ }^{1}$ Trans. Am. Phil. Soc,, vol, xI, p. 87, Pl. v, f. 2.

[^8]:

[^9]: - In alluston fo a rememblanen to Imeluives.

[^10]: This

[^11]: *Faune du calcaire carbonifère de la Belgísue, Première partie, 1878, p. 60.

[^12]: ral horder of the maxillary loo ferfor toolh.)

[^13]: *Faune du Calcaire Carbonifère de la Belgique, 11, p. 38, 1878.
 tReport on the Geology of Londonderry, etc. by J. E. Portlock, F. R.S., F. G. S., etc., 1843, p. 462.

[^14]: ${ }^{1}$ British Palæozoic Fossils, 1855, p. 643, Pl. 3 G, f. 12.

[^15]:

[^16]: 1. Wreare under obligations io K. A. Miller, Esi, for reminding us of our remisaness In noedlessly adaling to the already burdensome complieations of nomenciatare. whioh we rerpmented in abandonfge the originni specifle designation applied to this fussil when we transferred it to a distinct genus, of whith it is the type.
[^17]:
 atal were all from thes 8 . looula limestith and not from the 'lige ter eroul as fat that it
 lucnltilus.

[^18]: I Note. These brief descriptions are published with the hope that the species may be properly illustrated in a subsequent volume of these reports. The originals, all of which belong to the State Museum of Natural History, will be found properly catalogued in the cases of the Museum, where they will be accessible to those who may desire to compare them with similar forms from other localities.

[^19]: *The genus was proposed by I. Herb. Carpentar and Dr. I. E:theridge, Jun.. Lur a small sperdes from the Carhonfferous of seolingd. Anmals ami Magazine Nint. Illot., April 1asl, 1. 2it.

[^20]:

 n flsed eharmeler.

[^21]: *MEek and Worthex in deffing, in 1869. (Geol. Rep. Ill., Vol. V, p. 464) the genus Yodon. ites, were evidently not aware that Von Seebach had proposed, in 1864, (Nachr. K. Geselloch. zu Goettingen, p. 110) fur Pentremil s stelliformis Owen and Shum. the genus Orophocrinus. The latter has since been adopted by Ludwig, Zittel and by Etheridge and Carpenter.

[^22]: ${ }_{1}$ Dr. Knapp, of Louisville, Ky., had the kindness to send me for examination and study, his large eollection of Louisville Codasters, consisting of nearly 40 specimens in all stages of growth, and embracing at least two well-marked species. Lyon, in describing his Codaster allernatus (Owen's Geol. Rep. Vol. III., p. 493), evidently took all Louisville Blastoids containing hydrospire slits to belong to only one speeies, and this makes it difficult to ascertain now to whieh of the two forms the name should be applied. His difncuit to ascertain. now wig. where represents undoubtedly the form which afterwards was described by Shumard as Codaster pyramidatus (Aead. Sei.. St. Louis. Vol. I., No. 2), described by shumard as calaster pyramidatus (Aead. Sei. © his. Lours, Vol. i., No. ${ }^{2}$), Lyon's figure 3 gives asmal specimen of the same species; his migure ap however. is form represented by the first flgure should reeeive Lyon's name, but this would do injustieo to Shumard, the more as Lyon's descriptions are fitted for neither the one form nor the other. It must be further considered that the latter form, whieh like ITeteroschisma gracile, has small orals ovorlapped by the limbs, and large pyramids between the ambu-

[^23]:

[^24]: *At the suggestion of Mr. Charles Wachsmuth, and in conformity with the views of the late Dr. Shumard (Cat. Palaeoz. Foss., in the Trans. St. L. Acad. Sci., 1866, p. 368), I give Roemer's later name Elcacrinus preference over Nucleocrinus, Conryd. Conrad's give Roemer's later name Elcacrinus preterence over Nucleocrinus, conryd.
 entire description is as follows: "Nucleocrinus Conrad. The genus differs from Pentreentire description is as follows: "Nucleocrinus Cnnrad. The genus differs from Pentremites, Say, in having only ole perforation, which is central. "In this description, the only
 distinguishing character is erroneons, the accompanying figure poor and incorrect, and Hall's excellent descriptions of Nucleocrinus were published ten years later than those of Elaeacrinus. Roemer, in proposing the latter name, gave a good deflnition of the genus. He found the central aperture which Conrad had pronounced "the only perforation at the top," closed in perfect specimens, and surrounding it he discovered one large and ton smaller openings.

[^25]: *The genus Pentremitidea differs from Troostocrinus, Shumard, its nearest allied form, in having quite inconspicuous oral plates, always placed within the truncate upper face of the body, and only five spiracles; which are strietly interradial; while in Troostocrinus the orals are always visible in a side view of the specimen, and there are ten slitcriuus the orals are always visible in a side view of the specimen, and the are are tensitlike indebted to Mr. Wachsmuth for the reeognition of tho above specics as Pentremitidea, and who elaims that it is the first one that has beon discoverod in America.

[^26]: Page 64, 4th line from bottom, for "cestration" read "cestracion."
 Page 65, 17th line from top. for "representations" read "representatives."
 Page 67, luth line from top, for "teeth" read "tooth."
 Page 74, l2th line from top, for "outer" read "antero."
 Page 7.5, bottom line, for "Vesi" read "Visé."
 Page 76, th line from top, for "samples" read "examples."
 Page 76, 17th and 19th lines from bottom, for "fariatus" read "fasciatus."
 Page 76, 16th liue from bottom, for "subhrhomboidal" read "subrhomboidal."
 Page 80. 16th line from top, for "designations" read "designation."
 Page Sz, 11th line from bottom, for "border" read "broader."
 Page 85. 20th line from top, for "more" read "worn."
 Page 87, top line, after "border;" add "converging toward the frout at an angle of 500° with the opposite." ete.

 Page 89, top line, for "positively" read "posteriorly."
 Page 90, 19th tine from bottom, omit "the" after "from."
 Page 91, 6th line from top. for "material" read "natural."
 Page 91, 7th line from top, for "others" read "other."
 Page 91, 20th line from bottom, for "vari-" read "various."
 Page 94. 18th line from top, after "strongly," add "arched,"
 Page 94, 3 line from bottom, for "borders" read "border."
 Page 1112. 7th live from top, for "borders" read "border."
 Page 105, 10th line from top, for "medium-size" read "medium size."
 Page 105, 11 th line from top, omit eomma after "arched."
 Page 109, 5th line from top, for "borders" read "border:"
 Page 110, 18tb line from top. for "miner" real "inner:"

[^27]: 13104 \rightarrow Fig. 1a. Maxillary posterior tooth, right ramus, view from above of an imperfect example, posterior extremity restored in outline; $1 b$, do., from the inner margin. St. Louis limestone; Alton, Ill.

[^28]: J. Mayer \& Co. Iith Boston.

