A=

S S

i@/ Minh Nguyén
¥ of the Map U.S. 2019

© Alan Stark, CC BY-SA

Hi I’'m Minh Nguyen. Hope you’ve all enjoyed the conference so far. You’re going to see lots of photos of roads because I’'m a roadgeek, but this talk isn’t really about
roads, it’s about overpasses.

I’ve been mapping for a number of years, and Overpass is my favorite tool for understanding OSM. I’'m no expert at Overpass, just a practitioner who learned on the fly
through ample trial and error and help from others. Hopefully by the end of this talk, you’ll learn just enough that you’ll always keep an Overpass tab or two open in your

browser.

https://commons.wikimedia.org/wiki/File:Mini_Stack_Interchange_of_Interstate_10_-_Loop_202_-_State_Route_51-_at_Night.2010.jpg

Edit =~ | History Export GPS Traces User Diaries Copyright Help About

Map

——"

© OpenStreetMap contributors ¥ Make a Donation. Website and API terms

So what is Overpass? We often say that OSM is not just a map but also a database.

Edit v | History Export ’ GPS Traces User Diaries Copyright Help About

B N\ 7~ N

Map

AyIE
Salong{ &
Thefeak
ouse arb\g! D 'a Cy
& tef6 \4
La Sap Joge
[onfen§on
Ja Cqne Tra
.
RS O'Reilly
. m uto Part:)
A Nl School I Hu
I A0
e Philosophy | §e®
1';!6 S Enab)
the m
ookstor M
a M
Plescho
O P
N =
e Alame:
ArtWorks
Rixavox
, -
@0
Boutiki t}\

© OpenStreetMap contributors ¥ Make a Donation. Website and API terms

There’s a lot of data, more than meets the eye.

Connecticut
Delaware
District of Columbia

Florida
Georgia (US State)
Hawaii
Idaho
Lllinois

Indiana

Iowa

Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota

Mississippi

[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]
[.osm.pbf]

(27.4 MB)
(10.5 MB)
(15.8 MB)
(220 MB)
(175 MB)
(11.9 MB)
(62 MB)
(166 MB)
(69 MB)
(84 MB)
(58 MB)
(104 MB)
(99 MB)
(43.8 MB)
(132 MB)
(235 MB)
(128 MB)
(169 MB)
(68 MB)

[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]
[.shp.zip] [.osm.bz2]

So much of it that there are dedicated services to cutting the OSM planet down into smaller “extracts”, so that people can load just their area of interest into a GIS tool.
But what if you don’t need all the data in a given area, just the data that meets some criteria?

Overpass APl Query Form

A
out skel gt;

Query

Overpass API Convert Form

Every database has a way to query it. OSM has the Overpass API. It’s like a search engine for metadata. It’s also quite intimidating — this is what it looks like, with an

example of the cryptic query language, OverpassQL.

Overpass Turbo makes it a lot easier to create an Overpass query and make use of the results. By default, it shows results on an interactive map, and clicking a feature

inspects all its tags.

Run

Share Export Wizard Save Load

/*
This has been generated by the overpass-
turbo wizard.
The original search was:
“man_made=flagpole and type:node and
user:"Minh Nguyen"”
*/
[out:json][timeout:25];
// gather results
(

// query part for: “man_made=flagpole
and user:"Minh Nguyen"”

node["man_made"="flagpole"] (user:"Minh
Nguyen") ({{bbox}});
)i
// print results
out body;
>;

out skel qgt;

Logout

B

AN
= S,' / ‘) C Alexandria .
ISINY un L
.'9 Indey @ epse < Loaded — nodes: 966, ways: 0, relations: 0

orlpokm | ‘D O

Settings Help = Qverpass turbo @

Cin;nnati 7 21\ VWO @
o QO)
.U:ry ("‘ o
Node 6745673128
Tags:
country=US

flag:name=United States
flag:type=national
flag:wikidata=Q42537
man_made=flagpole
subject=United States
subject:wikidata=Q30

Coordinates:

39.1410791 / -84.7186463 (lat/lon)

Displayed — pois: 966, lines: 0, polygons: 0

© OSM contributors, ODbL

overpass-turbo.eu

Here’s the URL, please check out Overpass Turbo.

https://overpass-turbo.eu/

-
—~

3
B

N Y] R
Wizaliel=QUieres™=

Alan Levine, CCO

Before | walk you through OverpassQL, I’m going to walk you through a simpler “wizard” syntax that Overpass Turbo uses to generate OverpassQL. Yes, code that
generates code.

https://commons.wikimedia.org/wiki/File:Albuquerque_Overpassws_are_Made_of_Adone?_(2809831895).jpg

Run

N =

00

10

11
12
13
14
15

Share Expo Save Load Logout

/*
This has been generated by the overpass-
turbo wizard.
The original search was:
“traffic calming=bump and type:node and
user:"Minh Nguyen" global”
*/
[out:json][timeout:50];
// gather results
(
// query part for: “traffic calming=bump
and user: "Minh Nguyen"”
node["traffic calming"="bump"]
(user:"Minh Nguyen");
)
// print results
out body;
>3
out skel qt;

© b

-
@ \\
ST, s —

Settings

DIQUKVYI

To use the wizard, click the toolbar button, enter your wizard query, and click Build and Run.

- Search I'm Feeling -

Think of the wizard syntax as similar to a search engine whose map service shall not be named.

Loaded — nodes: 178, ways: 8, relations: 0
Displayed — pois: 2, lines: 0, polygons: 8

Ruth &
300 m

amenity=school

© OSM contributors, ODbL

At its core is the key=value syntax that mappers often use in conversation. This query finds schools that are tagged amenity=school.

Loaded — nodes: 176, ways: 8, relations: 0

amenity=school
and type:way

© OSM contributors, ODbL

This query filters the results down to just school campuses that have been mapped as closed ways. Notice the “and” operator as well as the “type:” operator. You can set
the type to node, way, or relation. Or you can omit it if you don’t care or don’t know.

Loaded - nodes: 327, ways: 10, relations: 1
Displayed — pois: 0, lines: 0, polygons: 9

(amenity=school or amenity=university)
and (type:way or type:relation)

© OSM contributors, ODbL

This query expands the results to include university campuses, even if they’re mapped as multipolygon relations.

S 22 2 2
SR3 Sl B HEH Loaded — nodes: 97, ways: 2, relations: 0
Hton' B L EHE i <s
v 5¢ {61420 A0 Displayed — pois: 0, lines: 0, polygons: 2

amenity=school
and name~"High School"

Regular expressions

© OSM contributors, ODbL

Sometimes you want to match a key but don’t know the exact value. This query matches schools with “High School” in the name. Notice how it says name tilde, not
name equals. The tilde means the subsequent string is a regular expression. Even if you aren’t comfortable writing a regular expression, this operator is pretty handy for
efficiently listing out multiple values or matching a substring.

Powderhorn

TEN
294N
N\
e
N
~
54 A
po——
Ry
\
A

Longfellow
e

Nokomis

CR152 ™

IR RN R SS E
%
- 238 2398 40. -
o g 0 -saiftha
K

3
ul % b Nl US 10 e
M | usen
> A\

[
show map bounds =

1068
’
CR51 105"

V 4 .

- R37

N pgatoie— R 3
7 p

Mendota Heights MN 62

Paul

-
-
-
-
A
>
MN S
S aplewood
24)C
2 247am24 70249 1494 p249
588
58(
58C
54 Woodbury
1
Minneapolis
b

Saint Paul, Minnesota

© OSM contributors, ODbL

Up to now, the queries have all defaulted to the current map viewport, which you can change at any time. But what if you want to search in a non-rectangular area? For

example, what if you want to search in St. Paul but not in W. St. Paul or S. St. Paul?

MN 36

Roseville /

Sk ’OO MN 5
@)

< 9O

4 Us 10 Toa]D/(I‘(aplewood
~\~U56| 2478024740249 14¢

| T ez ‘:-u(g2
¥ “SaintP.
hedling 027 <

S, o

\ St N \
\ °o® ® Nro.) e
| \,\ @) @ RS Btk creex \ 54 Wood
d 103E N Regional y
Nokomis 87 O lv\‘,‘da!e/l \{ 60
b 1038 / West Saint | \ B
1034 4 A€ Paul | \\
1) \ x
= MNS 7. 1 A
CR152 y 7 135€ { South Saint ‘
[7 Paul N LS
i \ 3\
‘)

4 \ S
n MN 62
/ plerticRiElEptS Loaded - nodes: 687, ways: 63, relations: 1

% /
2 km 4+ / | B Displayed — pois: 14, lines: 0, polygons: 60

amenity=school
in "Saint Paul, Minnesota"

© OSM contributors, ODbL

That’s what the “in” operator is for. Overpass Turbo searches Nominatim, the search engine on osm.org, gets the first place returned by Nominatim, and limits the query’s
results to within that place’s boundary.

8 e

| +lea LA
- R8s 7y G 135€ MN 36
" ¢ o Us 10
Rosevill
op Sevie. 23 W Us 6
AN i /1108 J
o P / MN 12
A 216N \ MN 120
‘ 2 714 Nl Latd L
52 S t A v L
N S0 \ i
{ "R o -
{e N

?’:‘\ \ I £
AR 301 - 2350 22 | e e e e A —‘7L i el
235 d b —_—
CELISE @ O 1078 V4
hillips =i o g B e T R e 20 194 Maplewood
238 38 2398 240 : ~N ’ us 10 194)46¢
'S O - O O Saint-P A t—_\ Us 61 290 s sy 8 Tam2 9% 14
\ E O s ~ '~ p
‘\Longwmw (D \ ® 3 { N sic
nderk \ % ’ﬂq & ~ VN CR68 s8¢
3 P 37 G \ N
\ % (R m()ao Q O N ,",b,‘_\ N \ /s
\ 9
Dewntonk [\
3 \ O O @ 104 \ {ipoct, SR |~ \ 55 Wood
LN u "”‘“O \ e e 5
Nokomis = Lilydale 4 X y
\ 1038 / West Saint \
1034 4 A Paul \\ \
102 \
7. A
— MNS 7 s
CR152 v 7 1358 South Saint l
7 \ 3
- Paul \ e
. Mendota Height MN 62 roieein
4 ;

! ENEOLEIE IS Loaded — nodes: 563, ways: 49, relations: 0

X /
2 km 4 | : Displayed — pois: 11, lines: 0, polygons: 49

amenity=school and operator!="
in "Saint Paul, Minnesota"

© OSM contributors, ODbL

Wildcards are also allowed. With the not-equals sign and asterisk, this query gives us schools that aren’t tagged with operators. Perhaps an opportunity for some
armchair school district tagging this weekend.

More wizardry

amenity=school and user:"Marvelous Mapper"

amenity=school newer:1day

~"(disused:|demolished:)?amenity" ~"school"

amenity=language_school global

The wizard supports several other operators, like filtering by who last touched a feature or when they touched it; or using regular expressions on the keys, not just the
tags; or searching globally.

> Dlssocun

Sk

Ovo: passQ

OK, we’ve looked at some examples of wizard queries, but wizard queries are fairly basic and you can’t tweak them very much. Now I’'m going to show you how these
wizard queries translate to OverpassQL, the actual language for querying Overpass.

https://commons.wikimedia.org/wiki/File:High_Five_Interchange_2007.jpg

“ylnd Avenue 7 0t 4,
e, a5 up;’ D e 7}\\&
% Fresy LGN
3 & 5 oy
% 815 3 >
3z Hoﬁkmmcnug% Norwood ,-:““
C?E ’c&' ‘:‘; Delaware Avence Cameron ool "ﬂ',.
AT s
+ ab5e 2 Wovery Aveng S | £
s % ue 2
r;“ ’ Williams Aye, 3
o Q will
. R c{"@b “j
. § Py & .43 g
i O Wayland Avenues € S .
amenity=school = - <
— i Hudson Avenye E ; T 3& Hudsan
3w 55 E
[out:json][timeout:25]; Slenesy Avenue
(Lexington Aver ot
Lo | N‘,m;t
node["amenity"="school"] wenue e a9
({{bbox}}); { Jai P Averue oy ?
way["amenity"="school"] N o of < PN
" v 3, Clarion Ayen, 8 A P
({{bbox}P); wi /i § o B
relation["amenity"="school"] MOt Bpressmay || T A
({{bbox}}); ol 1 8.7 7 -
alvary » < >
out body; comecery 131 ¢ 3
> P"y . “;:: > =
Huron Aven, -E ; g “1

out skel qt;

© OSM contributors, ODbL

Here’s that really basic amenity=school query again, and you can see why the wizard language exists — th

at’s a lot of gobbledygook for filtering on a single tag!

amenity=school

[out:json][timeout:25];

C
node["amenity"="school"]({{bbox}});
way["amenity"="school"]({{bbox}});
relation["amenity"="school"]

({{bbox}});
)
out body;
>3

out skel gt;

Let’s break it down and see what each part means.

amenity=school

[out:json][timeout:25];

The first part is the settings. Here it specifies the output format and timeout. Normally you can leave the settings alone.

amenity=school

> (
node["amenity"="school"]({{bbox}});

way["amenity"="school"]({{bbox}});
relation["amenity"="school"]
({{bbox}});
); <

The wizard generated one line for each kind of element: node, way, and relation. This first line says, “Get me the nodes that are tagged amenity=school and that are
located within this bounding box.” Notice how these lines are surrounded by parentheses. The parentheses group the lines, unioning their results into a single set. If not
for the parentheses, Overpass would look for all the nodes, then throw away the results and look for all the ways, and so on.

amenity=school

out body;
>3
out skel gt;

Finally, the wizard generates these lines that output the matching feature, then recurses down into the nodes that make up the feature and outputs those too. Depending
on the query, this can be overkill and just outputting the body is enough. Remember, Overpass Turbo’s wizard is generating all this code for you, so if it’s overwhelming,
don’t fret, you don’t have to muck with it normally.

@ -
Courtland Avenge et
o Aver
2 e o
W S
Weyer Avenue v}
4
! Ave, e

£
% ¥ N
3 H g
-4 5 t)
3 s v} > 4
™~ @ &
> & o
3 Hopkins Aven Norwood 5
2 ueg
- 2 4
o : 5,
% % S (5
% x - Delaware Ayer, SMEron Aven i :
8 % g ue .
@ ¥ 2 £
5 % > § 1
; 3 ,, S, Waverty Avenue s &
H 1 e ane Ay §
@ s % e ~
& Williams Aupnge 3
= T s will
Me D&
Mentor Avende Gl
Q5% ¥
v A s
2 & & 3 g
s P S & - 2
- < S H v v
o &0: Wayland Avenges € 3 o
— £ P S A [TAEE
— < < < Z @ g
Hudson Avenye " £ x < Hudson
ue & g z
A

[out:json][timeout:25]; o JH— Clenesy Avene
(otion (Lexington Avenye

node["amenity"="school"]
({{bbox}});
way["amenity"="school"] BN L S 53
({{bbox}}); B sy) T L
relation["amenity"="school"] '_"“..9'9*‘:_‘59"5?@—7[—~~ — ;7;"';55‘%'4 5§ A
L [— =
({{bbox}}); o\
DR S < sk 12
War SETEE & |
out body; cemcteny] £5 iA 2
€ Avenue C >
>3 < J: ¢ '
out skel qt; Huron Averiue « e

© OSM contributors, ODbL

So now that we’ve dissected the simplest possible query, let’s see what other generated queries look like.

amenity=school
¢ P I

and type:way

[out:json][timeout:25]; r nwersiy= o I

(- Lexington Avenue F.u,,x-*"wt oS

way["amenity"="school"] 2 %%

({{bbox}}); WP et ¥ N X\
); ' s #

out body; 171““3\?;‘&‘# 2)

> o //'2?[&t ;

out skel qt; | £
ST £ Bl

© OSM contributors, ODbL

If we add type:way, the node and relation lines disappear and the query runs faster. So if you know you only care about one type of element, you should add the type

operator.

=) . Norwood ¥ 5
(amenity=school or : e AL
amenity=university) - “’ =

5 2 :
" & < y
and (type:way or 7
type:relation) Ve ipl
[out:json][timeout:25];
(n Ave ! oS
way["amenity"="school"] w "
({{bbox}1}); 3 JEy i oY
relation["amenity"="school"] ’ DY L m 13 Lot N
({{bbox}}); e e L
way["amenity"="university"] MYt pressuay |- == ey A
({{bbox}}); it s Al
relation["amenity"="university"] - < r I
({{bbox}}); . Cemcrenyd B3 05
); i "
out body; >; out skel qt; e i, £ e e TE
© OSM contributors, ODbL

Here we see the “or” operator adds more lines to the query, which could potentially slow things down if there are a lot of “or”s.

School”

[out:json][timeout:25];
(

node["amenity"="school"]
"name"~"High School"]({{bbox}});

way["amenity"="school"]
["name"~"High School"J({{bbox}});

relation["amenity"="school"]
["name"~"High School"]({{bbox}});

DK
out body;

)

out skel qgt;

v -y
Bl | 2 Court
1+
- Asmann Avenue Weyer Avenie!
o - % By ey
SR4 % i |
]‘ yo) | Sarey ™ ¢ 1 o
o f o S 5 Hopkins Ay
3 = 3
| Bale F Avondale Aye [5 5
. i | : R
i BL 2! b1 1 8
— | 1« S Place ey plac < & 4 B
— £ & % z
G < R A%3
| @ | “_e‘ kvx
- - & & . Willi
nel; 4 S
G
dand hame~ | W
o Ayen, ~ 03 =
P e <5 & 8 @
% & S < '3
/) & 3 £
o i d P
g P
£ &

< '3
2 y a
: v F:
— Z 3 <
z g Evansto 2
— o BrEwster Aveniie £
WA
s Nt Expresoway
r ——
240 | Avenue -
Y g y H
= < £)
= £ S I
-1 3 < ¥
£ _E_'D"‘ ven Calvary g E
& S Cemetery. £2°+ =
Bl s =t wish Crane 2
i Avenye ~
emeter 4
us 22 Uy H
SR3 <
Ruth A g g5 £
U £s &
o5 18

© OSM contributors, ODbL

The tilde operator works the same way as the equals operator, but for regular expressions.

Roseville

amenity=school - o
. I . £
in "Saint Paul, -®,
. @ =
]
Minnesota |0
' . 2?1?\ “O‘i O.‘E‘JB
[out:json][timeout:25]; X
{{geocodeArea:Saint Paul, Minnesota}} 2] ‘Gﬁj 102
->.searchArea; , N ot
C O 7607
" © @ @
N\

node["amenity"="school"]
(area.searchArea);

way["amenity"="school"]
(area.searchArea);

relation["amenity"="school"]
(area.searchArea);
DK
out body; >; out skel qt;

1 4
w.tv?.'O }
Lilydale
1038 / /.
103A o

<
N

w

m

/
5 Mendota Heights

West Saint \
Paul X

MN 62

© OSM contributors, ODbL

Here’s that “in” operator. Notice the line towards the top that says “geocodeArea”. That’s a special Overpass Turbo syntax that searches Nominatim. That syntax is
replaced by the first Nominatim result’s area ID, like a way or relation ID, and the arrow operator (hyphen/greater-than) saves the St. Paul area as “searchArea” so it can
be referenced three times below.

amenity=school
and operator!="*

[out:json][timeout:25];
C
node["amenity"="school"]
["operator"!~" . *"]J({{bbox}});
way["amenity"="school"]
["operator"!~" . *"]({{bbox}});
relation["amenity"="school"]
["operator"!~" . *"]J({{bbox}});
D5
out body; >; out skel qt;

us 10
Roseville /o i e
/ 10¢
/
| 104
Heights O \
\ 1104
®
- —— l
Ny : 7oAl N 109 (‘2)
S i 1
‘MN!’] O o8
- ‘O CR49 '\"'5O 7
e G | 108 Lo o
= e C
@ O X
» » SR - - i, A -~
238 238 2398 240 ~ . us 10
= d o Saint P@) ”},\Usm
o X
\ O 1068 " S
\ ()
& \
® e a7\
P 37
T @ O\
@@ . @)
103
O lnydaIe/ 4
%8 / West Saint ‘\
i
1034 4 A€ Paul ' \
10 i \
7
NS 7/
7 135E Sol
y
-
/
r Mendota Heights MN 62

© OSM contributors, ODbL

The wizard translates wildcards into regular expression operators in OverpassQL.

© Jerome

Now that I’'ve bored you with all that programming minutiae, you might be wondering how to use the results beyond the interactive map that you get by default.

https://commons.wikimedia.org/wiki/File:Western_Hills_Viaduct.jpg

Export x

v Data
Share X
download/copy as GeoJSON
Permalink download/copy as GPX
Copy this link to share the current code: download/copy as KML

http://overpass-turbo.eu/s/M6V download/copy as raw OSM data

raw data directly from Overpass API

Options
load data into an OSM editor: JOSM,

include current map state Level0®
. . . . save GeoJSON to gist &
run this query immediately after loading st

» Map

done » Query

done

In the toolbar next to the Run button are Share and Export buttons. The Share button generates a permalink to the query. The Export button is a treasure trove. You can
export the results in several formats like GeoJSON and KML, or you can generate a static map for sharing.

N
MapRoulette Dashboard Find Challenges ~ Leaderboard Learn MY POINTS =@= Minh Nguyen v

San Jose crossing validation

South Bay OpenStreetMap

DIFFICULTY: Normal
TASKS FROM: last year

View Leaderboard

The San Jose sidewalk import added sidewalks and crosswalks throughout the City of San
Jose. Help us validate the imported sidewalks and add any crosswalks that are still missing.

1% FIXED (108/1 0% SKIPPED
0% ALREADY FIXED 0% TOO HARD (:
6% NOT AN ISSUE (758

0% 10% 20% 0% 40% 50%

Tasks Remaining: 11,887(93%) of 12,763

MapRoulette

Exported Overpass results can be imported into several tools. For example, you can query Overpass for bad tagging, then export the results to MapRoulette, which
makes it easy to coordinate a campaign to fix the bad tagging.

D\ AW
Kr“\\\ E
Saave

@
+

|
|

bl&
=

,}){
L

= SU"
ga B
o |
-
1]

4
§ iR
) |

N4
) A

tinyurl.com/sotmus18heatmaps?2

At last year’s State of the Map U.S., | gave a workshop about building a heat map in Mapbox Studio using Overpass results. The workshop wasn’t recorded, but a written
version is available at this URL.

[] [Download

& Download from OSM Download from Overpass AP

Overpass query: [out:json] [timeout:25];
(
node["man_made"="flagpole"] ["flag:name"="San José"];
)i
Query Wizard [out body;
-

out skel qgt;|

CEEXES Bookmarks Bounding Box Khu vurc xung quanh noi 56 Tile

D O RN Pt

M& hap thoai nay khi kh&i déng Zoom to downloaded data
Str dung tréi nhdp chust va kéo dé chon khu vrc, mili tén hodc chudt phai dé di chuyénBan d8, banh xe hodc +/- & phéng to.

& vownload & Taivédusitayermsi | @) Haybs 3 Hep

JOSM

Expert Mode

Did you know JOSM has an “expert mode”? If you go in Preferences and enable expert mode, the Download dialog gains a tab where you can download features
matching an Overpass query. This makes it easier to make systematic edits in an area of interest without ever leaving JOSM.

So far I’ve shown you what the wizard can generate, but the reason | showed you OverpassQL is that the language can do so much more.

https://commons.wikimedia.org/wiki/File:Interstate_10_and_Interstate_17_Interchange_at_Night.2012.jpg

3 ®
Wey, € &
eyer Avenue & Weyer -5
T ey, &
5 £ &
2 3 >
] &
Opkins Avenue, Norwood ¥
2 %
T N
2
& Dolaware Avenge Cameron Aveny,
3
L
O O Wa S I n Slane Avenyue 4
Williams 4 :
\“-‘
[] [Memt & o"’b §
Q¢ ¥
g
3 g
& :
). 4 v
& Wayland 5 .
P & g log
& Shdig
oad Ways - 5 e
r 3
b
£
Cles
ton Aw WO
\ R
gu""«

[out:json][timeout:25];

way["highway"!="footway"] .
({{bbox}1); 1

node(w); Mo pressuay |
way(bn)["highway"="footway"]; E)\ Elids

v(;ﬂvuv"f é ?
out body; oo Gy | el

retery. g

>; . o7 psnahatly

Uion Avere 28 g2 it ae
out skel qgt; Ry ECNE !

© OSM contributors, ODbL

For example, recursion statements and filters let you drill down into a way’s nodes or a relation’s members or drill up into the ways containing a node. This query finds

footways that intersect roadways, possibly candidates for crosswalk tagging.

First it finds roadways

Footways
intersecting
roadways

way["highway"!="footway"]
({{bbox}});

© OSM contributors, ODbL

Footways O
intersecting
roadways O)

node(w): O

© OSM contributors, ODbL

then recurses down to the nodes forming those ways

Footways
intersecting
roadways

way(bn)["highway"="footway"];

cocse

O

O

© OSM contributors, ODbL

then recurses back up to the footways that incorporate those nodes.

WiauBUIFLEWar ¥ & g
Historic District ~ Madisans ”
A] ! QE\ 0 #Madison i
= A i
3 b ” 3 ¥
5 7 ¥ i
G P Pl
£ =" - &€
S i Ene Aveny, A
AT S e Madist H,z\w v
e Avenue ¥ 2 £ 2
& = 3
By » Il
L 5
‘,‘o"e < Roe Strpe "= s
[] [] '-"4 :
< gair 3< A
~ ¥ ourel -
Buildings near e e
& SiLES g
- T i~ A
- &g Aelphi Streec £ g
tornado sirens : f
Bramble Aven,] .
é ‘0:% X Bramble Avenye - =
‘—gt.m—.ny Place "3 ‘E ,E y 2 Bramble ,
. . 8 & < W 2 o,
[out:json][timeout:25]; T R N
= £ £ E*| Park e
= s g =
= MUTHEY ROS.~= =% - >_ e X
n nwon_ n Frseaan .., T Sieme
node["emergency"="siren"]
Bedforg s
. Bancro) 3
({{bbox}}); St e i ol
" . . " YOh Sy) \ 29% 3
way(around:100)["building"]; R Y T RO B
¥ P LN O gy
: Faiffax {2 ok 25 st L8
B % RGP B e A
5 % o e
out body; :
S ol
> . 2 oos\e‘ \‘\
’ ﬁ“oq‘ Q¢
1'/ (4
. 9, % &% ~
out skel qgt; o QB friat
“1(0 €3 A er |
"’Vl‘ 53'
=3
© OSM contributors, ODbL

There’s an around filter for finding features within a certain radius of another set of features. This query finds buildings near tornado sirens.

First it finds the siren nodes

Buildings near
tornado sirens

node["emergency"="siren"]

({{bbox}});

© OSM contributors, ODbL

Buildings near \

[N NN AR |

tornado sirens

way(around:100)["building"];

© OSM contributors, ODbL

then finds the building ways within 100 meters of those nodes.

weIlsS

pans M
e CED]
fall

alo

1 street
: gast 13th 3
endletor
gureet

gast 13 ¥

Flagpoles not ;. - .=
In front of fire

»

Jaans

Cinc
Ca!
LSO
- :’3 } tast Court Street
tati TR
S a I o n S N "‘4 i =) ifm_‘hﬁ
£ast 9N SV “ e
[out:json][timeout:25]; ' YAY
node["man_made"="flagpole"]({{bbox}}) * ?“u =
->.flagpoles; nJ‘% A—"
(TN = .
node["amenity"="fire_station"] o
({{bbox}1); < P
way["amenity"="fire_station"] % + X e
({{bbox}}); I
node["man_made"="flagpole"] 42 Ganble =
(around:100)->.firepoles; = 20O Hamsnd
(node.flagpoles; - node.firepoles;); E . bt
out body; =

the other, surrounded by parentheses.

© OSM contributors, ODbL
There isn’t a “not near” filter, but we can achieve the same effect using a difference statement. This query finds flagpoles that are not in front of fire stations. First we find

all the flagpoles and save it as the flagpoles set. Then we find the fire stations, then the flagpoles near those fire stations, saving that set too. Then we subtract one from

Flagpoles not ‘- ‘- ‘-

In front of fire
stations

[out:json][timeout:25];
node["man_made"="flagpole"]J({{bbox}})
->.flagpoles;

(
node["amenity"="fire_station"]
({{bbox}});
way["amenity"="fire_station"]
({{bbox}});

node["man_made"="flagpole"]

(around:100)->.firepoles;
(node.flagpoles; - node.firepoles;);
out body;

© OSM contributors, ODbL

First we find all the flagpoles and save it as the flagpoles set.

Then we find the fire stations

Flagpoles not ‘- ‘- ‘-

In front of fire
stations [T

[out:json][timeout:25];
node["man_made"="flagpole"]J({{bbox}})
->.flagpoles;

(
node["amenity"="fire_station"]
({{bbox}});
way["amenity"="fire_station"]
({{bbox}1});

node["man_made"="flagpole"]

(around:100)->.firepoles;
(node.flagpoles; - node.firepoles;);
out body;

© OSM contributors, ODbL

Flagpoles not ‘- ‘- ‘-

In front of fire
stations

[out:json][timeout:25]; -

node["man_made"="flagpole"]J({{bbox}})
->.flagpoles;

(
node["amenity"="fire_station"]
({{bbox}});
way["amenity"="fire_station"]
({{bbox}});

node["man_made"="flagpole"]

(around:100)->.firepoles;
(node.flagpoles; - node.firepoles;);
out body;

© OSM contributors, ODbL

then the flagpoles near those fire stations, saving that set too.

Flagpoles not ‘- ‘-

In front of fire
stations

[out:json][timeout:25];
node["man_made"="flagpole"]J({{bbox}})
->.flagpoles;

(
node["amenity"="fire_station"]
({{bbox}});
way["amenity"="fire_station"]
({{bbox}});

node["man_made"="flagpole"]

(around:100)->.firepoles;
(node.flagpoles; - node.firepoles;);
out body;

© OSM contributors, ODbL

Then we subtract one from the other, surrounded by parentheses.

T
Long turn lanes

\ ()
\\ O O
[out:json][timeout:25]; \\\ 4
way[~"Aturn"~" *"J({{bbox}}) e r
(if: length(Q) > 300); N @) \
out body; \ ;?
>3 \ i\
out skel qt; = O \

42 164
\ o \
A @ [
S48 |
438 a s
ringdale

© OSM contributors, ODbL

An “if” evaluator syntax lets you decide whether features should be returned on an individual basis. This query finds turn lane ways but only returns those that are over
300 meters long. (It turns out most of them are center turn lanes.)

Total length of bike infrastructure

[out:json][timeout:25];
(

{{geocodeArea:Minneapolis}};
{{geocodeArea:Saint Paul, Minnesota}};
)->.searchArea;

(

way[~"cycleway"~"lanel trackloppositelshared_lanelshared|crossingl
opposite_lanelyes|share_busway"](area.searchArea);
way["highway"="cycleway"](area.searchArea);

way["bicycle"~"yes|permissiveldesignated"](area.searchArea);

¥

make stats length=sum(length());
out;

49072 centerline miles

Overpass has some built-in statistical features that are handy for alternate outputs. For example, instead of outputting the bike lanes and sharrows themselves, how
about summing up all their lengths and outputting that total in JSON format? Turns out there are just shy of 500 miles of bikeways mapped in the Twin Cities.

Performance

Avoid overspecifying filters

Increase timeout: [timeout:60] (1 minute)

Increase memory: [maxsize:1073741824] (1 GB)

Check the rate limiting status for your IP address:
overpass-api.de/api/status

A final note about performance. As you play with Overpass, you’ll quickly run into situations where it can’t respond to your request in a reasonable amount of time. There
are limits to ensure that no one user monopolizes the community service by accident. First, you should make sure your filters aren’t overly qualified with too many details.
Each additional filter creates more work for the server, not less. For example, if you want to find all the McDonald’s, just search for name=McDonald’s, not
name=McDonald’s and building=retail and amenity=fast_food and cuisine=burger.

If you know what you’re doing, you can increase the timeout beyond a minute. But pay attention to rate limits — your IP address will be throttled if you run too many large
queries in a short time span.

http://overpass-api.de/api/status

7?/«7an ou‘
b I

* Special thanks to Roland Olbricht, Martin_Raifer, mm

.
sslon @SM%!JISi’ Slack

—. iy a8

; . .cmcmnah.oh.us

= - > | 1,_1_1)3!11! B =) 6 ¢_ﬂ s
3“"

>
‘——— [

e @l1ech e e

© David Herrera, CC BY

| think that’s enough confusion for one day. Hopefully I’ve piqued your interest and you’ll all try your hands at using Overpass in your day-to-day mapping. | want to
extend a special thanks to Roland, Martin, mmd, and others who develop and maintain these tools. If you have any questions, please join OSMUS Slack and ask in the
#overpass channel, or feel free to reach out to me directly. Thank you!

http://osmlab.github.io/learnoverpass/
https://wiki.openstreetmap.org/wiki/Overpass_API
mailto:minh@mapbox.com
mailto:minh@nguyen.cincinnati.oh.us
https://en.wikipedia.org/wiki/File:High_Five_Interchange.jpg

