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Biofilms offer an excellent example of ecological interaction
among bacteria. Temporal and spatial oscillations in biofilms
are an emerging topic. In this paper, we describe the
metabolic oscillations in Bacillus subtilis biofilms by applying
the smallest theoretical chemical reaction system showing
Hopf bifurcation proposed by Wilhelm and Heinrich in 1995.
The system involves three differential equations and a single
bilinear term. We specifically select parameters that are
suitable for the biological scenario of biofilm oscillations. We
perform computer simulations and a detailed analysis of the
system including bifurcation analysis and quasi-steady-state
approximation. We also discuss the feedback structure of the
system and the correspondence of the simulations to
biological observations. Our theoretical work suggests
potential scenarios about the oscillatory behaviour of biofilms
and also serves as an application of a previously described
chemical oscillator to a biological system.
1. Introduction
Development of a complex biofilm provides several benefits to
bacteria, including efficient nutrient distribution, defence from
chemical attacks or, in the case of a floating pellicle on the
surface of liquids, better gaseous exchange [1]. Biofilms are thus
complex communities of bacteria and as such, many types of
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social dynamics come into play [2,3]. One of these is the division of labour [4,5]. The core of the biofilm

growing on a solid surface shows a different metabolic state than the periphery. The periphery can freely
access the nutrients from the surrounding environment. The interior, however, faces hindrance in
obtaining a stable inflow of nutrients because the peripheral cells use up the nutrients that diffuse
towards the interior. An experimental set-up to simulate that situation is provided by a microfluidics
chamber [4].

An example of such a nutrient gradient is the production and diffusion of ammonia in the biofilm.
Every cell in the biofilm has the ability to produce ammonia [4,6]. However, this small chemical
compound is highly diffusive and therefore escapes into the environment as soon as it is produced by
the cells in the periphery, thus leading to waste of nitrogen. In the interior, the ammonia produced
by the cells diffuses out into the periphery. Thus, the interior cells monopolize ammonia production
for the entire biofilm. Ammonia being an essential component of glutamine metabolism could be
used to control the growth rate of the periphery by limiting its supply. The interplay between the
inner and outer cells is required for glutamine synthesis and therefore the growth of the biofilm [4,6,7].

To understand biofilms more closely and make predictions based on empirical data, several models
have been developed [4,7–12]. Liu et al. [4] observed oscillations in the biofilm, which they explained by
different metabolic roles performed by the different compartments in the biofilm. They also established a
model based on six differential equations. They defined two regions: the interior and periphery. Each of
the regions has a variable representing glutamate and another representing the concentration of
housekeeping proteins like ribosomal proteins. Ammonia and the active form of the enzyme
glutamate dehydrogenase are also variables of the model.

Since many biological oscillators have been described by less than six variables [13,14], a simpler
model could be established for biofilm oscillations as well. Our ultimate aim was to develop a
minimal model to describe the metabolic oscillations happening in a biofilm. Minimal models are the
simplest way to describe a certain phenomenon with the least number of parameters [15] and this is
in agreement with Occam’s razor. For example, minimal models were established for glycolytic
oscillations by Higgins [16] and Sel’kov [17] and for calcium oscillations by Somogyi & Stucki [18].

Here, we employ the smallest chemical reaction system showing a Hopf bifurcation [19], which was
further analysed [20,21] and used to describe p53 oscillations [22]. At a Hopf bifurcation, damped
oscillations turn into undamped oscillations [15,23]. In particular, Wilhelm & Heinrich [19,20]
performed a thorough stability analysis of the model. We test to what extent the terms in this model
match the processes in a biofilm system. In this analysis, we focus on the Hopf bifurcation, discuss the
feedback structure and point out the correspondence of the simulations to biological observations.

In our model, we use three variables only: ammonia, and interior and peripheral glutamate. Besides
the quest for minimality, a reason for not considering the concentrations of housekeeping proteins as
variables is that they change on a longer time-scale than metabolites. A similarity to the larger Liu
model [4] is that, among the various amino acids, we focus on the metabolism of glutamate since
glutamate and ammonia are both involved in the production of various amino acids through
trans-amination, which is then equated to growth.

To study the effect and possible benefit of oscillations, it is of interest to compute the average values
of variables, as was done for several oscillators [24–29]. For linear differential equation systems showing
oscillations (such as the system describing the harmonic pendulum), the average values equal the values
at the marginally stable steady state. For nonlinear differential equation systems, the average values often
differ from the values at the unstable steady state surrounded by the oscillations. However, there are
some types of nonlinear systems for which equality holds, for example, Lotka–Volterra systems of any
dimension [25]. The equality property has also been proved for some models of calcium oscillations
[27,30] and the Higgins–Selkov oscillator [27]. Here, we probe the model employed for describing
biofilm oscillations for the above-mentioned property.
2. Material and methods
2.1. The model
Based on the scenario described by Liu et al. [4], the biofilm was separated into two compartments—the
interior and the periphery. Here, we use a minimalist approach and try to model biofilm oscillations with
the simplest model possible. Accordingly, we use the smallest chemical reaction system with Hopf
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Figure 1. Schematic of the biofilm metabolic oscillation model. (a) The five reactions with rate constants k1 through k5 between the
substances Gi, Gp, A having variable concentrations and GE considered to be constant. The final result is the production of biomass.
(b) Feedback structure of the model. Gp is self-amplifying while all three variables are self-degrading. Gp positively influences Gi,
which positively influences A which negatively influences Gp, thus, the overall feedback is negative.
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bifurcation [19]. The term chemical system mathematically means that only up to bilinear terms are
involved. It turns out that this model matches the biological set-up.

The model includes five reactions (figure 1) and three species with variable concentrations. The
general variables X, Y and Z from the Wilhelm and Heinrich model can be assigned for the biofilm
system to: peripheral glutamate (Gp), ammonia (A) and internal glutamate (Gi), respectively. Based on
mass-action kinetics, the reactions have been translated as follows into a system of ordinary
differential equations (ODEs):

dGp

dt
¼ k1GEGp� k4Gp � k2AGp, ð2:1aÞ
dA
dt

¼ �k3Aþ k5Gi ð2:1bÞ

and
dGi

dt
¼ k4Gp � k5Gi: ð2:1cÞ

Model assumptions and interpretation of terms in the model:

— k1GEGp: The uptake of glutamate from the environment (GE) by the periphery of the biofilm. GE is
supplied in a large excess, hence considered constant. The uptake of glutamate (Gp) is dependent
on itself because glutamate represents the total amino acid and thus protein concentration in
the biofilm periphery and can be assumed, in rough approximation, to be proportional to the
concentration of various transport proteins embedded in the cell membranes. The greater
the concentration of these proteins, the higher is the glutamate uptake rate. Without this
self-amplification of glutamate, the system would not oscillate by construction of the minimal model.

— k4Gp: Diffusion of glutamate from the periphery of the biofilm into its interior. We do not consider
self-amplification by Gi in the main text. We analysed the effect of self-amplification of Gi using
the term k4GiGp (electronic supplementary material, figure S4).

— k2AGp: Consumption of glutamate and ammonia to produce biomass. As a simplification, we
assumed that only the interior cells produce ammonia since that produced by the peripheral cells
is rapidly lost to the environment.

— k5Gi: Consumption of glutamate to produce ammonia.
— k3A: Diffusion of ammonia into the surroundings. The loss of ammonia due to diffusion is much

larger than that taken up by the periphery to produce biomass. Therefore, the term k2AGp does not
appear in equation (2.1b).



Table 1. List of parameters used in the model. For explanations, see text.

parameter symbol value with unit

rate constant of glutamate diffusion from environment to biofilm k1 0.3426 (mmol l−1 h)−1

biomass formation coefficient k2 5.3 (mmol l−1 h)−1

rate constant of ammonia diffusion [32] k3 4 h−1

rate constant of glutamate diffusion within biofilm [33,34] k4 2 h−1

ammonia production coefficient k5 2.3 h−1

glutamate concentration in the environment [4] GE 30 mmol l−1

conversion factor for biomass production b 0.1 ((mmol l−1)2 h)−1
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2.2. Simulation
For computer simulations, we used the software COPASI v. 4.16 and 4.24 [31] and its LSODA
deterministic solver. The simulations were double-checked using the Matlab ode15s (MathWorks)
function. The figures of the simulations were produced using COPASI, and the three-dimensional (3D)
phase plot was generated using the lines3D function of R plot3D library. The biomass plot was
generated using the R function ggplot.

Parameter values are given in table 1. They are obtained by rescaling the parameter values from the
Wilhelm & Heinrich paper [19] such that the oscillation period observed in the experimental work by Liu
et al. [4] is matched. The glutamate concentration in the environment was adopted from the Liu et al.
paper [4]. We have chosen the rate constant of diffusion of ammonia, k3, to be twice as high as that of
glutamate, k4. This is because the diffusion coefficient for ammonia [32] is about 1.6 × 10−5 cm2 s−1,
while that for glutamate [33,34] is about 8 × 10−6 cm2 s−1. k1 and k2 had to be increased in order to
obtain undamped oscillations and to match the same period. Overall, the parameters allow a good
comparison to the results by Wilhelm & Heinrich [19], while also being realistic from a physico-
chemical point of view.

The predicted doubling time was calculated by averaging the relative increase in biomass at four
consecutive time points of the maxima of ammonia concentration.
3. Results
3.1. Steady states
The steady states of the system can be calculated analytically. This gives a trivial steady state (TSS)

Gp ¼ A ¼ Gi ¼ 0 ð3:1Þ
and a non-trivial steady state (NTSS)

Gp,ss ¼ k1GE � k4
k2k4

� �
k3 ð3:2aÞ

Ass ¼ k1GE � k4
k2

ð3:2bÞ

and Gi,ss ¼ k1GE � k4
k2k5

� �
k3: ð3:2cÞ

It is worth noting that the concentrations at the latter state are linear functions of GE. The TSS and
NTSS are stable if k1GE – k4 is negative or positive, respectively [19]. At the threshold, a transcritical
bifurcation [35] occurs; that is, the two steady states interchange their stability. At a further threshold,
k1GE = k3 + k4 + k5, the stable NTSS turns unstable in a Hopf bifurcation [19].

3.2. Time course shows oscillations
We run the time course calculation of the system (2.1a–c) for 25 simulation hours with 1000 steps each of
size 0.025 h (1.5 min). The period for oscillations is about 126 min (2 h 6 min), which is in agreement with
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Figure 2. Time course of ammonia (yellow) and interior (red) and peripheral (blue) glutamate as computed by the minimal model.
Parameter values: refer to table 1.
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Hopf bifurcation (GE = 24.41). For parameter values except GE, see table 1.
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the experimental observations [4], because the parameters have been rescaled accordingly (see above).
The amplitude of oscillations is observed to be 3.0 mmol l−1 for ammonia, 7.1 mmol l−1 for interior
glutamate and 14.9 mmol l−1 for peripheral glutamate (figure 2). It can be seen that the three variables
oscillate with phase shifts, i.e. asynchronously.

In order to see the interdependence between the variables of our model, we plot the phase portrait of
all three variables for various values of GE (figure 3). GE is an appropriate bifurcation parameter because
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the external glutamate concentration can be changed in experiment. Wilhelm & Heinrich [19] presented a
similar figure for the vicinity of the Hopf bifurcation. In our figure 3, also the non-oscillatory relaxation
towards the TSS and NTSS for appropriate parameter values is shown. GE values below 15 mmol l−1

eliminate the oscillations (even damped ones).
As per the assumptions of our model, k2AGp is a proxy for the input for the synthesis of biomass from

ammonia and glutamate and is thus related to the growth of the biofilm. Biomass production can be
described by the following differential equation:

dB
dt

¼ bAGpB, ð3:3Þ

where b is a conversion factor and was tuned to 0.1 ((mmol l−1)2 h)−1 so that the doubling time is in
agreement with the experimental values [36]. The number of cells can be converted to biomass by
taking the volume of a typical B. subtils cell of about 0.85 ± 0.38 µm3 [37] and the average density of
1 g ml−1 which results in 8.5 ± 0.38 × 10−13 g cell−1. The numerical solution of equation (3.3) for various
initial values of Gp is shown in figure 4. It can be seen that there is periodic retardation in growth.

Figure 4 also displays the growth curve in the hypothetical case where Gp and A subsisted at steady
state (black curve).

The initial value of Gp for the growth with constant growth rate (black monotonic curve) was chosen
such that biomass is comparable to that for oscillating growth in the first 10 h. If the same initial values as
for the growth with varying growth rate were chosen, biomass would grow to higher values right from
the beginning. Thus, the numerical calculations suggest that oscillating growth for this system is not in
favour of increasing growth rate. As can be seen from electronic supplementary material, figure S5, the
steady-state growth rate overtakes the oscillating growth rate at about 10.5 h.

It is an important result that biofilm oscillations can be described by considering a few processes only,
which are listed below equation (2.1). They include considerably less processes than the Liu model [4].
However, they do include the diffusion of ammonia to the surroundings, unlike that model. Thus, it is
plausible to assume that these are the most relevant processes for the phenomenon of oscillations.
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All other processes (such as the diffusion of glutamate from the interior of the biofilm to its periphery and

from there to the environment) can be neglected.

3.3. Average concentrations and average growth rate
Motivated by the reasoning in the Introduction, we now compare the average concentrations with the
steady-state concentrations. As the model under study is a mixture of a Lotka–Volterra equation,
equation (2.1a) and two linear equations (2.1b,c), it can be assumed that the values are equal. To
demonstrate this, we divide equation (2.1a) by Gp

1
Gp

dGp

dt
¼ d

dt
(ln Gp) ¼ k � k2A where k ¼ k1GE � k4:

We integrate over one oscillation period, TðT
0

d
dt

(ln Gp) dt ¼ 0 ¼
ðT
0
(k � k2A) dt

¼ kT � k2
ðT
0
A dt,

where the integral is zero because Gp(T ) =Gp(0)

1
T

ðT
0
A dt ¼ hAi ¼ k

k2
¼ Ass:

Now, we calculate the integral of dA=dt:ðT
0

dA
dt

dt ¼ 0 ¼
ðT
0
(k5Gi � k3A)dt

¼ k5
ðT
0
Gi dt� k3

ðT
0
A dt

k5 hGii ¼ k3Ass ¼ k k3
k2

hGii ¼ k k3
k2k5

¼ Gi,ss:

Now, we calculate the integral of dGi=dt and derive, analogously

hGpi ¼ Gp,ss:

Thus, the average concentrations are equal to the steady-state concentrations.
The question arises whether the oscillations have an effect on the average of the bilinear term k2AGp.

This is not immediately clear, although figure 4 suggests that the average growth rate is slower than that
at the metabolic steady state. Note that the growth term bAGpB is trilinear.

To check whether hA Gpi ¼ Ass: Gp,ss, we integrate dGp=dt over one period, TðT
0

dGp

dt
dt ¼ 0 ¼

ðT
0
kGpdt�

ðT
0
k2AGpdt

¼ khGpiT � k2A GpT:

Since hGpi ¼ Gp,ss and hAi ¼ Ass ¼ k
k2
, dividing by k2 and T gives

hA Gpi ¼ Ass: Gp,ss:

Thus, the average of the bilinear term, which can be interpreted as the input to biomass, is indeed
unaffected by oscillations, although the ammonia and peripheral glutamate levels oscillate
asynchronously. For two-dimensional Lotka–Volterra systems, this property was shown earlier [24].

3.4. Bifurcations
Figure 5 shows the two bifurcations: the transcritical bifurcation occurring at GE = 5.88 mmol l−1 and the
Hopf bifurcation at GE = 24.41 mmol l−1, i.e. the transition from stable steady state to stable limit cycle.
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These values can also be calculated from the general formulae for the bifurcations [19]. The steady-state
value of Gp is a linear function of the bifurcation parameter GE, as shown in equation (3.2a). It can be seen
that the Hopf bifurcation is supercritical; that is, the amplitude grows gradually starting from zero and
the limit cycle is stable right from the beginning.

Near the Hopf bifurcation, the obtained time course curve (figure 2) is sinusoidal. For GE≫
24.41 mmol l−1 the oscillations get spike-like and are no longer sinusoidal. It is of interest to speculate
about the physiological advantage of spike-like oscillations. This question has been discussed earlier
in the context of calcium oscillations [26,38,39]. Whenever the kinetic effect of the oscillating variable
(e.g. in activating a protein or in a biochemical conversion) is nonlinear and follows a convex
function, the spikes contribute more than proportionately to the effect. Thus, spike-like oscillations can
lead to a high average effect even at low average value of the variable. In order that oscillations really
enable division of labour in the case of biofilms, it can be expected that they should not be sinusoidal.
This deserves further studies. A biological explanation of the bifurcations is given in the Discussion.

We checked the parameter sensitivity in two ways. First, we performed a bifurcation analysis for all
parameters (except k1 since it is equivalent to GE), see figures 5 and 6 and electronic supplementary
material, figures S1–S3. We see a steep increase in the oscillation amplitude with respect to GE and
k3, a moderately steep increase for k4, whereas the other parameters show a very gradual increase in
the vicinity of the bifurcation. Second, we applied local parameter sensitivity analysis to the steady-
state concentrations, which are equal to the average values. This can be done in an analytical way by
differentiating the steady-state values given in equation (3.2) consecutively with respect to all
parameters. The resulting unscaled sensitivities for the parameter values from table 1 are given in
electronic supplementary material, table S1a. Thereafter, we computed the scaled sensitivities by
multiplying by the parameter and dividing by the concentration (electronic supplementary material,
table S1b). The obtained values for all sensitivities were confirmed by numerical computation using
COPASI [40].

The results show that A is not sensitive at all to k3 and k5, nor is Gp to k5. This is counterintuitive
because increasing k5 corresponds to over-expression of glutamate dehydrogenase, which produces
ammonia. However, in our model, increasing k5 leads to a decrease in Gi, so that the term k5Gi stays
constant. It deserves further study whether a more realistic kinetics leads to non-zero sensitivity for
these cases.

Scaled sensitivities are equal to unity if the parameter enters the formula for the steady value in a
multiplicative way (that is, as a factor in the numerator) and equal to minus unity if it is a factor in
the denominator. Examples are provided by the scaled sensitivities of Gi and Gp with respect to k3
and of all concentrations with respect to k2, respectively. The highest scaled sensitivity, 1.24, is found
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for all concentrations with respect to k1. That value means that a 1% increase in a parameter value leads to
a 1.24% increase in the concentration.

3.5. Quasi-steady-state approximation
To ascertain the cause of oscillations, which could be a negative feedback with a delay or a positive
feedback, we can study a subsystem by eliminating a variable. This can be done by the quasi-steady-
state approximation (QSSA) [15]. In our system, we see that Gp exerts a positive feedback on itself
which is linear and, thus, quite weak. For example, in the Higgins–Selkov oscillator involving two
variables, the feedback is quadratic [16,17]. Moreover, the above system involves a negative feedback:
Gp is converted to Gi, Gi is converted to A and A promotes the degradation of Gp (figure 1). In the
Goodwin oscillator, which also consists of three variables, a negative feedback is the cause of
oscillation [41,42].

Inspired by the observation in figure 5 that the oscillations vanish at high k5 values, we apply the
QSSA for Gi. This corresponds to the special case where glutamate dehydrogenase is overexpressed.
In that case, indeed quenching of oscillations was observed in experiment and also predicted by the
Liu model [4]. The variable Gi then attains a quasi-steady state

dGi

dt
¼ k4Gp � k5Gi ¼ 0: ð3:4Þ

This leads to

Gi ¼ k4
k5

Gp: ð3:5Þ

Substituting this into the above model equations (2.1a–c) yields a simplified system

dGp

dt
¼ (k1GE � k4)Gp � k2GpA ð3:6aÞ

and

dA
dt

¼ �k3Aþ k4Gp: ð3:6bÞ

It is of interest to analyse its dynamics. It follows from the general result by Hanusse [43,44] that it
cannot give rise to a limit cycle because it involves two variables and only linear and bilinear terms.
However, the question still remains whether it gives rise to a stable or unstable steady state, whether
damped oscillations are possible, etc.
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System (3.6) shows two steady states

Gp1 ¼ A1 ¼ 0, ð3:7a,bÞ

which is the TSS, and

Gp2 ¼ k1GE � k4
k2k4

k3, A2 ¼ k1GE � k4
k2

, ð3:8a,bÞ

which is the NTSS (see equations (3.2a,b)). The Jacobian matrix reads

M ¼ k1GE � k4 � k2A �k2Gp
k4 �k3

� �
, ð3:9Þ

while for the TSS, it reads

M ¼ k1GE � k4 0
k4 �k3

� �
: ð3:10Þ

For matrices with such a triangular structure, the eigenvalues are given by the diagonal elements. In
our case

l1 ¼ k1GE � k4, l2 ¼ �k3: ð3:11Þ
In any case, the eigenvalues are real, so that not even damped oscillations are possible. For k1GE < k4, both
eigenvalues are negative, so that the TSS is a stable node. For k1GE > k4, one eigenvalue is negative and
the other one positive. The steady state then is unstable, it is a saddle point.

For the NTSS (3.8), the Jacobian matrix becomes

M ¼ 0 � k1GE � k4
k4

k3

k4 �k3

0
@

1
A: ð3:12Þ

The characteristic equation reads

l2 þ k3lþ (k1GE � k4)k3 ¼ 0 : ð3:13Þ

This has the solutions

l1=2 ¼ � k3
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23
4
� (k1GE � k4)k3

s
: ð3:14Þ

Now, we distinguish three cases:

(a) For k1GE < k4, the term under the square root is positive, so that the root is real. Moreover, it is larger
than k3/2. Thus, one eigenvalue is negative and the other one positive. The steady state then is
unstable, it is a saddle point.

(b) For 0 < k1GE− k4 < k3/4, the root is again real. It is less than k5/2, though. Both eigenvalues are
negative; the steady state is a stable node.

(c) For k1GE− k4 > k3/4, the root is imaginary. Both eigenvalues are complex numbers, with the same
negative real part −k3/2. The steady state is a stable focus. This state is, thus, reached by damped
oscillations.

From these calculations, the following conclusions can be drawn. At k1GE = k4, the two steady states of the
simplified system (3.6) coincide, as in the complete system (2.1). Since the TSS and NTSS interchange
their stability at that point, it is a transcritical bifurcation.

There is a second transition point where the qualitative behaviour changes, at k1GE− k4 = k3/4. This is
another point than the Hopf bifurcation in the complete system, which is at k1GE− k4 = k3 + k5. At this
transition in the simplified system, a stable node turns into a stable focus. Such a transition must also
occur in the complete system between the transcritical bifurcation, where an unstable node turns into
a stable node, and the Hopf bifurcation, where a stable focus gets unstable. It is difficult to find it
exactly in the three-dimensional system. Beyond this transition, the simplified system shows damped
oscillations. This implies that the positive feedback of Gp on itself can be considered as a cause of
oscillation, yet not as a cause of a limit cycle. The ‘inflation’ of the oscillation to a limit cycle in the
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complete system appears to be brought about by the negative feedback via Gi. The loop via Gi can,

moreover, be interpreted as a delay.
In this subsection, we have considered the special case of high k5. This corresponds to a situation

realized in experiments by Liu et al. where they overexpress the glutamate dehydrogenase leading to
an excessive production of ammonia [4]. In that situation, indeed no oscillations were observed. We
have proved analytically that the limit cycle disappears in that case. This generalizes the numerical
finding shown in figure 6. Thus, to model limit cycle oscillations in biofilms by equation (2.1), we
need the full three-dimensional system with values of k5 that are not too high.

The QSSA for the rate constant k3 is given in the electronic supplementary material.
/journal/rsos
R.Soc.open

sci.7:190810
4. Discussion
Here, we have used the smallest chemical system showing a Hopf bifurcation to model metabolic
oscillations in B. subtilis biofilms. That model had been used earlier to describe p53 oscillations [22].
Here, we have applied the model to describe another biological phenomenon. We have specifically
selected the parameter values to describe biofilm dynamics, which makes the model more relevant in
the light of the biological observation. In our system, the diffusion of ammonia is critical for biofilm
oscillations. All the terms in the model are linear, except k2AGp, which is bilinear. The model describes
metabolic and diffusion processes as outlined above. As an output, the growth of the biofilm
(consisting of incremental and halting phases) was also computed (figure 4).

A major reason of the observed oscillations was demonstrated to be the division of labour between
the central and peripheral zones of the biofilm. While the release of usable ammonia is mainly delimited
to the former, the production of biomass and, thus, growth, is mainly delimited to the latter.

We have presented bifurcation diagrams, which clearly show supercritical Hopf bifurcations (figure 5
and 6, electronic supplementary material, figures S1–S3). Earlier, Wilhelm & Heinrich [19,20] had
analysed that bifurcation and had presented one bifurcation diagram. Here, we have added some
mathematical analysis. For example, we show the maxima and minima of oscillations, the knowledge
of which gives us a quantitative insight into the biofilm dynamics. Moreover, we performed a QSSA
and probed for the equality property of the average values. We analysed the Hopf bifurcation by
changing not only the external glutamate GE but alternatively also all the rate constants except k1,
since changing k1 has the same effect as changing GE. Interestingly, a recent model [7] has shown a
subcritical bifurcation in describing the behaviour of the stress levels in the biofilm periphery.
However, they modelled the stress with a single delay differential equation and did not consider other
molecular details, while we do not consider stress. Using a single differential equation meets the quest
for minimality. However, a delay differential equation (meaning that the time derivative of a variable
depends on that variable at a previous time point) is, from a mathematical point of view, very
complex because it requires infinitely many initial values (from zero to the delay period, with a
simplifying assumption being that they are all equal). Moreover, stability analysis is then considerably
more complicated. Our model is complementary to their model. It is closer to Liu’s original model [4]
but much simpler because it involves only three rather than six variables, and thus only requires three
initial values. We chose the parameters of the model such that they are in agreement with Liu’s
experimental results, namely the period and the amplitude of oscillations.

In our model, peripheral glutamate exerts a positive feedback on itself. Mathematically, this has the
form of a bilinear term involving peripheral and external glutamate concentrations. At very low values
of GE, the feedback is not strong enough to enable a positive steady state. The system then tends to the
TSS. In that state, Gp is zero, so that growth is impossible. Biologically, this can be interpreted that the
biofilm is too small to be viable. This is in agreement with observations in the recent study from the Suel
group [7]. At a certain threshold value of GE (5.88 mmol l−1), the NTSS turns stable in a transcritical
bifurcation. Beyond that value, the feedback is strong enough to enable growth. At high values of GE,
the feedback becomes so strong that an overshoot occurs: more glutamate is taken up than needed,
so that the Gp level transiently exceeds the steady-state value. Then, more peripheral glutamate is
consumed for release of ammonia or for growth, so that the concentration decreases again. This leads
to oscillations.

From a functional point of view, a steady state is quite appropriate [29]. Growth of the biofilm does
not require oscillations. However, in this system, oscillations help in mitigating the chemical attack that
challenges the biofilm [4]. This may have interesting clinical implications in view of treatment of biofilm-
forming bacteria by antibiotics. Furthermore, another study [9] indicates that oscillations in growth
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actually help in sharing the nutrients among several biofilms more efficiently. However, not all biofilms

show oscillations, indicating that it is not critical for biofilms. Our numerical calculations suggest that the
average growth rate is lower when compared with growth at the metabolic steady state.

By contrast, the individual concentration variables (ammonia, peripheral glutamate etc. but not
biomass) show the equality property that their average during oscillations equals the value at the
unstable state, as usual for Lotka–Volterra systems [25]. Here, we have shown that the bilinear input
term k2AGp exhibits this equality property as well. This may come as a surprise because the ammonia
and peripheral glutamate levels oscillate with a phase shift.

In the paper by Liu et al. [4], the oscillations computed by their model have a sinusoidal shape. In our
model, such a shape only occurs in the neighbourhood of the Hopf bifurcation. Further beyond it, the
shape is more spike-like with the crests being sharper than the troughs.

The question arises whether the model used and analysed here is minimal. On the basis of ODE
systems (without delays), at least two variables are needed to generate oscillations [13,14]. However,
when only linear and bilinear terms are included, at least three variables are needed, as was proved
by Hanusse by an analysis of the Jacobian matrix [43,44]. As shown by Wilhelm & Heinrich [19], such
a model requires at least five reactions. Thus, the above model is minimal in terms of the number of
variables (criterion with highest priority) and number of reactions, given the type of kinetics. The
famous two-variable Brusselator model [45] and the Higgins–Selkov oscillator involve a term of
degree three each [16,17]. If the number of reactions is granted the highest priority, the model may
look different. Thus, it depends on the criteria what a minimal model is. Note that a delay differential
equation [7] is, from the viewpoint of the number of initial values, of infinite dimension. While our
model is not necessarily the simplest, it provides a trade-off between simplicity and adequacy to
match the observed oscillation in biofilms.

As for any oscillatory system, it is interesting to elucidate the feedback structure. The term k1GEGp

represents a positive feedback because peripheral glutamate stimulates its own uptake. This is because
glutamate is a proxy for the concentration of various transport proteins embedded in the cell
membranes. The higher the concentration of these proteins, the higher is the glutamate uptake rate.
Since this positive feedback is the driving force for oscillations, at low values of k1GE, we observe a
steady state rather than oscillations. In glycolytic and calcium oscillations, the cause of oscillations is
also a positive feedback [13,14,17,46], while in a Goodwin oscillator, it is a negative feedback [41,42].

In addition to the positive feedback, there is also a negative feedback loop in the system (figure 1). As
seen from the differential equations, peripheral glutamate positively influences internal glutamate, which
positively affects ammonia, which then negatively influences peripheral glutamate. Thus, the overall
effect is inhibitory. This feedback structure of the Wilhelm–Heinrich model has been highlighted
earlier [22].

By applying the QSSA, we have proved analytically that the limit cycle disappears if glutamate is
degraded very fast or ammonia diffuses very easily. As mentioned in the Results section, the former
case corresponds to a situation realized in experiments by overexpressing the glutamate
dehydrogenase [4]. In that situation, no oscillations were observed. By contrast, in the case where
oscillations occur, a description by a simple mass-action system requires three variables. Analyses in
this direction may be relevant for clinical interventions via inhibition or activation of bacterial
enzymes or changing diffusivity in the biofilm.

The model analysed here has several pros and cons. In view of the mathematical analysis, its
simplicity is certainly an advantage. In view of an adequate description of the biological and
biochemical processes involved, the model may appear oversimplified. For example, describing
growth by trilinear term is quite simplistic; usually, it is described by saturation kinetics (e.g.
Michaelis–Menten kinetics). In addition, the assumption that glutamate uptake by the periphery is
proportional to the glutamate concentration as explained above could be refined in future studies.
Moreover, diffusion processes are usually reversible. In the above model, we neglected the backward
processes in diffusion, which is justified if concentration differences are high.

Many theoretical and experimental studies have been published on glycolytic oscillations
[13,16,17,47,48]. However, these oscillations only occur under very special or even artificial conditions.
In living cells, metabolic oscillations are rare, while being quite frequent in signalling systems
[13,14,49,50]. The lights of a car are a helpful analogy: the headlights illuminate the street in a
permanent way; there is no point in oscillations. By contrast, the side indicators (as signalling device)
flash; that is, they emit oscillating light. Interestingly, in the case of biofilms, metabolic oscillations
could provide advantages. While the work described here is quite theoretical, we consider it to be an
appropriate basis for refined and more sophisticated models of biofilm oscillations.
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