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We show that the spin-wave spectrum in an elliptical helix
has a band character. The size of the first band gap calculated
using the perturbation theory is shown to scale as square root
of the eccentricity. Curved magnonic waveguides of the kind
considered here could be used as structural elements of future
three-dimensional magnonic architectures.

1. Introduction
The relation between topology and other properties of space
forms one of the key aspects in our understanding of nature,
including the remarkable connection between the curvature of
space and the strength of gravitational field [1]. In particular,
it has been shown that curvature plays an important role in
physics of low-dimensional systems, where it can be used to alter
their electronic and magnetic properties [2–10]. In the context of
magnonics (the study of spin waves) and magnonic devices, major
research efforts have been devoted to investigation of spin waves
[11,12] in curved (or otherwise shaped) magnonic waveguides
[13–25]—ubiquitous elements of any magnonic logic architecture
[26]—and more generally in non-uniform magnetic configurations
[27–38]. The growing variety of proposed magnonic devices and
architectures [39–44] ([45] and references therein) [46–48] requires
that the nature and diversity of mechanisms of scattering of
spin waves in topologically complex magnetic media and graded
magnonic landscapes [49–54] be properly understood.

The degree to which spin waves are scattered from a
waveguide’s bends and the nature of the scattering depends on
the character of the spin waves, which in turn depends on the
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Figure 1. Geometry of the problem and coordinate axes systems used are shown.

cross-sectional dimensions of the waveguide and the spin-wave frequency and wavelength. The early
reports of Bance et al. [13] and Dvornik et al. [17] suggested minimal scattering of magnetostatic and
dipole exchange spin waves from magnonic waveguide bends, which was in contrast to experimental
observations of Clausen et al. [14] who reported transformation of spin-wave modes propagating along
twisted waveguides. The latter experimental results found exhaustive theoretical support in works of
Xing et al. [18,24], who have offered more detailed numerical simulations of spin wave propagation
though bent magnonic waveguides, as compared to [13] and [17]. The role of the applied magnetic field
and the internal magnetic field profile was revealed by Sadovnikov et al. [55]. Yet, we are still to see
a rigorous theory (either analytical or numerical, e.g. based on the procedure devised for monomode
waveguides in [43]) of the spin-wave scattering in multimode magnonic waveguides with curved
regions. Recently, the spin-wave mode transformation was also observed in T-junctions of magnonic
waveguides [56], while the relevance of the graded magnonic index to the spin-wave beam propagation
in networks of magnonic waveguides was highlighted in [25].

For exchange spin waves, mostly monomode magnonic waveguides have been considered. No
scattering from bends was accounted for (e.g. [57] and references therein), while Tkachenko et al.
discovered a special kind of geometrical magnetic anisotropy originating from the exchange interaction
in curved magnetic nanowires of infinitely small thickness [6,7]. This anisotropy leads to scattering of
exchange spin waves from nanowire bends, while a periodic alternation of straight and curved nanowire
sections results in formation of a magnonic band spectrum [6,7]. The theory was put on a more rigorous
theoretical footing, with a proper account of the effects associated with torsion, by Sheka et al. [8,9], while
a numerical evidence of the curvature-induced modulation of the exchange field in curved multimode
magnonic waveguides was reported in [18].

Here, we develop a continuous medium theory of the dispersion of exchange spin waves in an
ultrathin magnetic nanowire wound so as to form an elliptical helix (figure 1) with an infinitely small
pitch. In contrast to a circular helix, the curvature of the elliptical helix is periodically modulated, which
in turn modulates the geometrical anisotropy from [6,7]. Using the perturbation theory (similar e.g. to
[58]), we show that this modulation leads to a band spectrum for propagating exchange spin waves, with
the elliptical helix thereby forming a special kind of a magnonic crystal [59].

2. Basic equations
Let us introduce orthogonal curvilinear coordinates of an elliptical cylinder with axes defined by the basis
unit vectors σ, τ, z and coordinates σ (σ ≥ 1), τ (1 ≥ τ ≥ −1), z (figure 1). The magnetic helix is formed
by winding a wire around an (imaginary) elliptical cylinder with fixed values of σ and parameter c, such
that cσ and 2c are equal to the long half-axis and the distance between the foci of the cylinder’s elliptical
cross-section. We assume the pitch of the helix to be negligible compared to both cσ and 2c. The turns
of the helix are orthogonal to the cylinder’s axis. The wire diameter is assumed to be much smaller than
the pitch of the helix, so that any interaction between neighbouring turns of the helix could be excluded.
The Cartesian coordinates x, y, z are expressed in terms of σ , τ , z as

x = cστ , y2 = c2(σ 2 − 1)(1 − τ 2), and z = z. (2.1)
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To describe dynamics of the magnetization M(r, t) in the helix, we will use the Landau–Lifshitz

equation [11,12]

∂M
∂t

= −g[M × (β(Mτ )τ + α�M)], (2.2)

where β is the uniaxial anisotropy constant, α is the exchange constant, and g is the gyromagnetic ratio.
There is no external magnetic field applied to the helix. The easy magnetization axis is always directed
along the nanowire axis, which coincides with τ. Indeed, as shown in [9,60,61], the angle of inclination
of the magnetization from the wire direction is proportional to the wire torsion, provided the radius
of curvature is greater than the exchange length, which is the case here. The torsion scales with the
helix pitch and is therefore approximately equal to zero under our assumptions. Our calculations are
performed in the exchange approximation, i.e. neglecting magnetostatic energy (except perhaps its part
that could be accounted for within the uniaxial anisotropy constant β). This is justified for spin waves
with wavelength of the order of the exchange length, which is also the length scale at which the exchange-
driven geometrical anisotropy from [6,7] becomes important.

Let us consider small deviations of the magnetization m(r,t) (|m| � M0, where M0 is the saturation
magnetization) from the ground state (i.e. the magnetization along the nanowire axis M0τ)

M(r, t) = M0τ + m(r, t), [M(r, t)]2 = M2
0, m ⊥ τ . (2.3)

Linearizing equation (2.2) using m(r,t) as a small parameter, we obtain

∂m
∂t

= −g[M0τ × α�m + m × βM0τ + m × αM0�τ ]. (2.4)

The infinitely small pitch of the helix (and so, the vanishing torsion of the wire) allows us to neglect z
derivatives in the Laplacian operator in equation (2.4), which therefore becomes [62]

�m = σ
1

c2(σ 2 − τ 2)2

⎡
⎢⎣ (σ 2 − τ 2)(1 − τ 2) d2

dτ 2 mσ (τ )

−τ (σ 2 − τ 2) d
dτ

mσ (τ ) − (τ 2 + σ 2 − 1)mσ (τ )

⎤
⎥⎦

+ τ
1

c2(σ 2 − τ 2)2

[
2σ

√
(σ 2 − 1)(1 − τ 2)

d
dτ

mσ (τ ) − (τ 2 + σ 2 − 1)M0

]

+ z
1

c2(σ 2 − τ 2)

[
(1 − τ 2)

d2

dτ 2 mz(τ ) − τ
d

dτ
mz(τ )

]
, (2.5)

where mσ (τ ) and mz(τ ) are the projections of the dynamic magnetization upon the basis vectors σ and z
of the curvilinear coordinate system

m = mσ (τ )σ + mz(τ )z, (2.6)

and mτ τ = 0.
Representing the dynamic magnetization as m(r, t) = m(r) exp{iωt}, substituting τ = cos ϕ

(−∞< ϕ < +∞) and taking into account equations (2.5) and (2.6), we can write equation (2.4) in the
elliptical coordinates as

z : α
d2mσ (ϕ)

dϕ2 = βc2(σ 2 − cos2ϕ)mσ (ϕ) + iΩc2(σ 2 − cos2ϕ)mz(ϕ)

and σ : α
d2mz(ϕ)

dϕ2 = βc2(σ 2 − cos2ϕ)mz(ϕ) − α
(σ 2 − 1 + cos2ϕ)

(σ 2 − cos2ϕ)
mz(ϕ) − iΩc2(σ 2 − cos2ϕ)mσ (ϕ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

where Ω = ω/gM0. The limiting case of a circular helix is obtained from (2.7) by allowing σ → ∞, c → 0,
cσ → ρ, so that

z : iΩmz(ϕ) = α

ρ2
d2mρ (ϕ)

dϕ2 − βmρ (ϕ)

and ρ : iΩmρ (ϕ) = − α

ρ2
d2mz(ϕ)

dϕ2 +
(

β − α

ρ2

)
mz(ϕ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

which coincides with the corresponding equations from [6].
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3. Calculation of the magnonic dispersion relation
To calculate the magnonic dispersion relation of spin waves in the nanowire, it is useful to rewrite
equations (2.7) in the matrix form

Ĥμ = 0, (3.1)

where the dynamic magnetization (2.6) is written as a two-component column-vector

μ =
(

mσ (ϕ)
mz(ϕ)

)
= (mσ (ϕ) mz(ϕ))T, (3.2)

and the matrix operator Ĥ is

Ĥ =

⎛
⎜⎜⎜⎝

βc2

α
(σ 2 − cos2ϕ) − d2

dϕ2
iΩc2(σ 2 − cos2ϕ)

α

− iΩc2(σ 2 − cos2ϕ)
α

βc2

α
(σ 2 − cos2ϕ) − (σ 2 − 1 + cos2ϕ)

(σ 2 − cos2ϕ)
− d2

dϕ2

⎞
⎟⎟⎟⎠ . (3.3)

In view of applying the perturbation theory, we represent the operator (3.3) as a sum of two
components

Ĥ = Ĥ
0 + V̂, (3.4)

where Ĥ
0

is the operator corresponding to a circular helix

Ĥ
0 =

⎛
⎜⎜⎜⎝

βc2σ 2

α
− d2

dϕ2
iΩc2σ 2

α

− iΩc2σ 2

α

(
βc2σ 2

α
− 1

)
− d2

dϕ2

⎞
⎟⎟⎟⎠ , (3.5)

and V̂ is a perturbation due to the ellipticity of the helix

V̂ = c2cos2ϕ

α

(
−β −iΩ
iΩ −β

)
+
⎛
⎝0 0

0 − 2cos2ϕ − 1
σ 2 − cos2ϕ

⎞
⎠ . (3.6)

Furthermore, instead of parameters c and σ from (2.1), we introduce parameters c and ρ that have
dimensions of length and are connected via relations

cσ = ρ,
(
σ = ρ

c

)
. (3.7)

Then, introducing notation

δβ = α

ρ2 , (3.8)

we obtain from (3.5) for Ĥ
0

Ĥ
0 =
⎛
⎝β − δβ d2

dϕ2 iΩ

−iΩ (β − δβ) − δβ d2

dϕ2

⎞
⎠ , (3.9)

and from (3.6) for V̂

V̂ = Ecos2ϕ

(
−β −iΩ
iΩ −β

)
+ δβ

⎛
⎝0 0

0 1 − 1 − Esin2ϕ

1 − Ecos2ϕ

⎞
⎠ , (3.10)

where E = c2/ρ2 = 1/σ 2.
As mentioned earlier, we aim to derive the spectrum of spin waves in an elliptical helix considering

its eccentricity as a perturbation relative to a circular helix. In this approach, quantity ε = E/2 � 1 is
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considered as a small parameter of the perturbation theory. The problem can then be reformulated as
one of finding the spectrum of equation (3.1) with Ĥ given by

Ĥ = Ĥ
0 − εV̂′, (3.11)

where with notations

K = β

δβ
, W = Ω

δβ
(3.12)

Ĥ
0

has form

Ĥ
0 =

⎛
⎜⎜⎝

K − d2

dϕ2 iW

−iW (K − 1) − d2

dϕ2

⎞
⎟⎟⎠ , (3.13)

and the perturbation operator in linear in ε approximation is obtained from (3.10) as

V̂′ = V̂0 + V̂1 cos(2ϕ), where V̂0 =
(

K iW
−iW K

)
and V̂1 =

(
K iW

−iW K + 2

)
. (3.14)

The eigenfunctions of Ĥ
0

have the form of plane waves

μ(0) =
(

m(0)
σ

m(0)
z

)
exp{ikϕ}, (3.15)

where m(0)
σ and m(0)

z are wave amplitudes that define the spin-wave polarization. The spectrum of the
spin waves is

W2 = (K + k2) (K − 1 + k2), (3.16)

which coincides with the corresponding results from [6,7].
Owing to the periodicity of the perturbation operator (the period of which is π), the spectrum and

eigenfunctions of the problem are also periodic. Hence, let us introduce a one-dimensional reciprocal
lattice kn = 2n, n is integer, so that the boundaries of the first Brillouin zone correspond to Q = ±1. The
following calculation is then performed using the standard perturbation theory from [63].

The states near the centre (small k values) and boundaries (k ≈ Q) of the Brillouin zone are affected
by the perturbation (3.14) differently. In the former case (Brillouin zone centre), the main contribution is
due to the constant term in (3.14), in which case we obtain from equation (3.16)

W2(1 − ε)2 = (K(1 − ε) + k2) (K(1 − ε) − 1 + k2) (3.16a)

or

W2 ≈ (K + k2) (K + k2 − 1) + ε

(
2k2(K + k2 − 1) − K

2

)
. (3.16b)

For the case of k ≈ Q, the eigenfunctions of operator Ĥ given by (3.11) (and therefore the solutions of

equation (3.1)) can be found via expansion in terms of eigenfunctions of the unperturbed operator Ĥ
0

given by (3.13)

μ =
(

m(k)
σ

m(k)
z

)
exp{ikϕ} +

(
m(k+q)

σ

m(k+q)
z

)
exp{i(k + q)ϕ}, (3.17)

where q = −2 is a reciprocal lattice vector. Following [63], we substitute expansion (3.17) into equation
(3.1), multiply the result by exp{−ikϕ} and then by exp{−i(k + q)ϕ}, and act on the result by integral
operator 1/π

∫π
0 . . . dϕ, to obtain the following system of equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
π

∫π

0
e−ikϕ(Ĥ

0 − εV̂′)eikϕdϕ ·
(

m(k)
σ

m(k)
z

)
+

∫π

0
e−ikϕ(Ĥ

0 − εV̂′)ei(k+q)ϕdϕ ·
(

m(k+q)
σ

m(k+q)
z

)
= 0

1
π

∫π

0
e−i(k+q)ϕ(Ĥ

0 − εV̂′)eikϕdϕ ·
(

m(k)
σ

m(k)
z

)
+

∫π

0
e−i(k+q)ϕ(Ĥ

0 − εV̂′)ei(k+q)ϕdϕ ·
(

m(k+q)
σ

m(k+q)
z

)
= 0.

(3.18)
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This is a homogeneous system of linear (with respect to spin-wave amplitudes m(k)

σ , m(k)
z , m(k+q)

σ ,

m(k+q)
z ) equations that can be written in matrix form as

T̂

⎛
⎜⎜⎜⎜⎜⎝

m(k)
σ

m(k)
z

m(k+q)
σ

m(k+q)
z

⎞
⎟⎟⎟⎟⎟⎠= 0. (3.19)

This system has non-trivial solutions if and only if its determinant is equal to zero

det T̂ = 0. (3.20)

Taking into account that the perturbation potential (3.14) is a periodic function with period π,
solutions of this equation for k = 1 (i.e. for the Brillouin zone boundary) and q = −2 (reciprocal lattice
vector) will define the frequency boundaries W± and size �W = W+ − W− of the magnonic band gap
in the spin-wave spectrum.

So, introducing notation

Ω̃ = W2

K(K + 1)
(3.21)

equation (3.20) becomes

Ω̃2 − 2BΩ̃ + C = 0, (3.22)

where the coefficients in linear in ε approximation are B ≈ 1 + (ε/(K + 1)), C ≈ 1 − (2Kε/(K + 1)).
Solutions of equation (3.22) in the lowest order in ε are

Ω̃± ≈ 1 ±
√

2ε. (3.23)

So, we finally obtain for the boundaries of the band gap

W± ≈
√

K(K + 1)
⌊

1 ±
√

ε

2

⌋
, (3.24)

and for the size of the magnonic band gap

�Ω =
√

β(β + δβ)
√

2ε, (3.25)

or taking into account notations introduced earlier in (2.7), (3.7), (2.8), (3.10),

�ω = gM0
c
ρ

√
β

(
β + α

ρ2

)
. (3.26)

4. Discussion
Owing to technological reasons, the radius of curvature of magnetic nanowires can hardly be made
comparable or smaller than the exchange length, which is of the order of 10 nm for most popular
magnonic materials, such as permalloy or yttrium-iron garnet (YIG). Moreover, the radius of curvature
is actually required to be greater than the exchange length to ensure stability of the magnetization along
the wire length [6,8,9]. So the curvature-induced anisotropy should always be δβ = α/ρ2 < 1. For the sake
of an estimate, we can take the uniaxial anisotropy strength to be β ≈ 2π, i.e. about the strength of the
shape anisotropy in a straight nanowire. Thus, we can see that δβ should generally be expected to be
much smaller than β. Then, equation (3.26) allows us to estimate the band gap size as

�ω = c
ρ

ω0, (4.1)

where ω0 = βgM0 is the frequency of the uniform ferromagnetic resonance in a straight nanowire.
Remarkably, this result does not depend on the exchange parameter but is only determined by the
aspect ratio of the helix. This suggests that the band gap is of topological origin, which is similar to
the topological modulation of the dispersion of a quantum-mechanical electron moving along a curved
path [3–5].
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The size of the first allowed magnonic band can be estimated as

ω1 = ω0

(√
1 + δβ

β
−
√

1 − δβ

β

)
≈ α

ρ2 ω0, (4.2)

which depends upon both the exchange parameter and the curvature of the nanowire. The ratio of the
first band gap to the first allowed band sizes is

�ω

ω1
≈ cρ

α
. (4.3)

The width ratio of the magnonic bands and band gaps is a key characteristic of magnonic crystals [64–66].
Equations (4.1–4.3) demonstrate that the magnonic band gap spectrum of elliptical helices studied here
can be tailored within a wide range, in accordance with conclusions of [6]. Both c and ρ either should or
can easily be imagined to exceed the exchange length. For the sake of an estimate, one could take 20 nm,
100 nm, 10 GHz and 100 nm2 for c, ρ, ω0/2π, and α, respectively. This would yield 2 and 0.1 GHz for the
first magnonic band gap and allowed band, respectively. The essentially flat first allowed band is due to
the relatively small group velocity of exchange spin waves of long wavelength, pointing to the lack of
the magneto-dipole field in our formalism.

In terms of experimental observation of the peculiar magnonic spectrum described above, one would
need to overcome the following two major obstacles. Firstly, the helix needs to be fabricated from a
magnetic material in which the spin-wave propagation length would exceed the length of a few turns
of the helix [64,66]. Secondly, the effects could be masked by those due to the inherent non-uniformity
of the micromagnetic configurations and associated magnonic index in realistic samples [25,55,67,68].
The experimental challenges are, however, common for the entire field of nano-magnonics [69] and
will hopefully be overcome eventually. On the theoretical side, it would be interesting to generalize the
calculations to the case of dipole-exchange spin waves [12] and to include the effects associated with the
torsion, e.g. following the approach laid out in [8,9,60,61,70].

5. Conclusion
In summary, we have shown that the spin-wave spectrum of an elliptical helix is characterized by the
presence of a magnonic band gap. The size of the band gap has been calculated using the perturbation
theory and shown to scale as the square root of the eccentricity, or the ratio of the inter-foci distance to
the long half-axis of the ellipses forming the helix. Curved magnonic waveguides of the kind considered
here could be used as structural elements of future three-dimensional magnonic architectures.
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