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Abstract

The debate between Anton Tedesko and Charles S. Whitney which

occurred from the 1930's through the 1950's typifies the confusion among

designers in the United States regarding thin shell concrete roof design. Each

man thought his method was correct and designed structures constructed in

America during the first half of the twentieth century. By taking a closer look at

their debate, we can gain some insight into their methods of design. To resolve

the conflict, we then apply modern methods of analysis to analyze a hangar

model Whitney had presented in his articles. A full span analysis is performed

using the finite element computer program P-FRAME. In addition, we address

concerns which were not incorporated into the original analysis. We employ the

methods of Milo S. Ketchum and Robert S. Rowe to compute deflection

moments for the structure. In addition, we use Ketchum and Rowe's work as

background for developing the Initial Deflection Method of computing buckling

safety factors. To validate the procedure, we compute buckling safety factors

for a variety of structures and compare them to classical formulations.
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Chapter One

Introduction

Over the last century, designers such as Eugene Freyssinet, Robert

Maillart, Pierre Luigi Nervi, Felix Candela and Heinz Isler have brought the art

of reinforced concrete design to its mature state.

Isler's thin shell concrete roofs cover many European structures. From

tennis courts to gas stations, his shells provide practical, yet interesting,

solutions to everyday roofing problems.

In the United States, however, reinforced concrete design has not

advanced as it has abroad. A reflection of this lack of progress can be seen in

the content of basic design texts. During the 1950's, in the well known text book

by George Winter and Arthur H. Nilson, Design of Concrete Structures, an

entire chapter was dedicated to arch and shell design. In the 1991 edition, the

words arch and shell do not even appear in the index. 1 Why has this type of

design disappeared from our basic text books?

A possible explanation is that a general confusion exists in America

regarding shell behavior and because of this, key safety questions still remain

unanswered.

This confusion is clearly demonstrated in the debate between Charles S.

Whitney (1902-1961) and Anton Tedesko (b. 1902) which took place in the

1940's and 1950's concerning concrete barrel shell roof design. The design is

a thin concrete barrel shaped shell with arch stiffeners spaced along the length.

The debate focused on how to position the shell in relation to the arches.

Tedesko's opinion was that the shell should be positioned at the rib

extremity. Whitney, on the other hand, believed that the shell should be located
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at the mid-height of the rib. They debated in many engineering publications, but

without resolution.

Tedesko was an Austrian born engineer who had studied civil

engineering at the Technological Institute in Vienna in the early 1920's, and had

learned thin-shell concrete roof design while working at the firm of Dyckerhoff

and Widmann in Weisbaden. In 1932, because of prior work experience in the

U.S., he was sent to work in America when his firm decided to expand its

operations. 2 Once there, he gained an affiliation with the Roberts and Schaefer

Company in Chicago, and stayed on with them to do extensive thin-shell design

work during the 1930's and 40's. Because of his effort in this capacity, he

introduced thin-shell concrete roof structures to the United States. 3 Examples

of his work are the Ice Hockey Arena in Hershey, Pennsylvania which opened in

1936 and the U.S. Navy Hangars at North Island in San Diego, California

designed in 1941.

Whitney was an American born designer who wrote two major articles on

arch design in the 1920's. In the 1940's, he developed a new desing method

for barrel shell roofs that he called "... a novel feature. . . . which has important

advantages." 4
In his method, he placed a great emphasis on volume change

moments, which are a function of the cross sectional moment of inertia. The

moments of inertia would be less if the shell was located in the middle of the rib,

thus, this was the better design.

Whitney also designed structures which were constructed in the United

States. An example of his work is the Field House at Syracuse University built

in the 1950's.

We can see, then, that two very different methods of design existed





simultaneously. The debate between Whitney and Tedesko which started in the

literature over 40 years ago, has not been resolved. In this thesis, we will first

examine the different design methods and then utilize modern engineering

tools to clarify the debate.

We look at Whitney's method by examining calculations which were

prepared for a hangar model and presented in articles published during the

1940's and 1950's. Tedesko's rebuttal to one of the articles is also scrutinized

to examine his ideas on the subject.

In our modern analysis, we use the finite element method to analyze

Whitney's hangar model. Additionally, we employ the methods of Robert S.

Rowe and Milo S. Ketchum to calculate stress amplification due to deflections in

arches. Using these as a starting point, we develop a method of predicting

buckling loads for arched structures.





Chapter Two

Whitney's "New Idea"

Whitney began writing about concrete arch design as early as 1925 with

his article, "Design of Symmetrical Concrete Arches" published in the American

Society of Civil Engineers (ASCE) Transactions. Between 1932 and 1940 he

was the Chairman of the American Concrete Institute (ACI) Committee 312

which was attempting to establish standards for reinforced concrete arch

design. His ideas appear in this committee's reports published in 1932 and

1940.

It wasn't until after this that he began writing about his method of

concrete barrel shell roof design. He presented his ideas in three articles

published between 1943 and 1955.

The structure Whitney analyzes in developing his claims is a 220 foot

clear span aircraft hangar model. The hangar roof is a parabolic barrel shell

comprised of a 4 inch thick reinforced concrete slab with ribs spaced 20 feet

center to center. The rib cross section varies from 1 8 x 32 inches at the crown to

18 x 40 inches at each springing. The height of the rib center line above the

supports at mid-span is 27.5 feet, and the roof is supported at each springing by

concrete A-frames. Whitney assumes that the A-frames act to fix the ends of the

barrel shell by restricting translational and rotational motion. Figure 1 is a

longitudinal and transverse section of Whitney's model. This structure was first

presented in his 1944 article "Aircraft Hangars of Reinforced Concrete". 5

The article that we will focus on was published in the ACI Journal in June





1950 under the title, "Cost of Long Span Concrete Roof Shells". In this article,

Whitney explains the advantages of his design method:

"An important feature of this type of construction is the placing of the shell

near the neutral axis of the ribs so that the ribs project about half above
and half below the shell. The principal effects of this arrangement

structurally are the elimination of edge stresses in the shell due to rib

flexure and the reduction of the stiffness of the combined rib and shell

with a corresponding reduction in volume change moments." 6

He also develops a chart which shows how his shell positioning reduces

required rib size and thus, construction cost.

l8" * Ao' aT spnw^iyv.

Hlj
£ibs 2o ft on center

|6" y 3Z" a\ crDWK

Figure 1 . Longitudinal and transverse sections of the 220 ft span hangar model

His chart, shown in Figure 2, presents three different crown cross

sections, each based on a 20 foot spacing of the arch ribs. The first cross

section has the shell located at the mid-height of the rib, the second has the

shell positioned at the top of a similar rib, and the third has the shell at the top of





an enlarged rib. The larger rib in the third cross section is necessary, according

to Whitney, to provide the equivalent strength of the first cross section.

To understand Whitney's method of design, we will examine the numbers

in his chart. Since Whitney did not publish detailed calculations, we must use

information from his other articles and reports to estimate his results.

As his first table entry, Whitney gives the moment of inertia at the crown.

For the first section, it is computed using the 20 foot width and including

reinforcing steel at the top and bottom of the rib. In the next two sections, he

only uses a 14 foot width in his calculations. He explains that with the slab at

the top of the rib, only 70% of the shell is effective. Whitney does not provide

any background for this assumption in any of his published material, but we can

verify it with a formula published in a 1990 textbook on concrete shell design. 7

The effective overhang of one side of the shell, be , is:

be = 0.76 (rhjz

r = ^
where: 8d with: L= Span

d = Rise

h = Shell thickness

Using Whitney's data for the hangar model:

be = 6.5 ft

This gives a total overhang of 13 ft. When the rib width is considered, the total

effective width becomes 14.5 ft, which compares very well with Whitney's 14 ft

assumption.

Using Whitney's data at the crown for the hangar model, our computed





moments of inertia for the three cross sections are:

Section 1 : 58,000 in
4

Section 2: 117,200 in
4

Section 3: 154,800 in
4

These compare very favorably to Whitney's numbers. Detailed calculations

appear in Appendix A.

ArcW Cross

SecViows

TT • • •

I
• • • •

1—
i

- •

n
. • • •

r
1

'

32'

J I
18' i«* IT

Moment of inertia

of crown section 58,000 in? 116,300 m 154,300 m

Moment due to

live load 1,710,000 in.lb. 1,710,000 in.lb. 1,710,000 in.lb.

Moment due to

volume change 1,026,000 in.lb. 2,042,000 in.lb. 2,670,000 in.lb.

Total moment 2,736,000 in.lb. 3,752,000 in.lb. 4,380,000 in.lb.

Maximum horiz-

ontal thrust 447,1201b. 450,1701b. 508,300 lb.

Figure 2. Whitney's Data Table

The second entry is live load bending moment. Whitney uses 30 psf as

the live load for all three cross sections. For a 20 foot width, this results in a

distributed load of:

30psf x 20ft = 600^





In his 1925 article, Whitney derives formulas to compute moments in concrete

arches for different loads with varying cross sections. From Figure 50 in the

1925 article, the maximum positive live load moment at the crown is:
8

Mi = Ki p L2

where: p = Uniformly distributed live load

L= Span length in feet

Kj = Factor from Figure 50 using entering

arguments N and m

m .. yo quarterpoint rise - midspan rise

wjth :

r midspan rise

m = with: c = crown values

Is cos 0s

s = springing values

L S VVJO \Z S

Using Whitney's data for the hangar model:

m = 0.59 and N = 0.25

With these as entering arguments for table 50:

Kj = 0.0049

The maximum positive live load moment at the crown is:

Mi = 142,300 ft-lb = 1,710,000 in-lb

Whitney presents this value in the table for all three cases. Even though the

cross sectional length for the second and third cases is less, he is assuming the

effective cross section carries the full live load.

To determine load positioning, Whitney uses influence lines. Figures 35-

39 in his 1925 article give influence lines for values of "m" ranging from 0.15 to

0.40 and "N" values ranging from 0.15 to 0.25. From these figures, we can

extrapolate the load positioning necessary to produce maximum positive

moment at the crown for m = 0.59 and N = 0.25, which is shown in figure 3.

8





The third value Whitney lists is the volume change moment. The values

are based on "rib shortening and a temperature drop of 40 degrees F including

the effect of shrinkage."9

i i i *

Figure 3. Load distribution to produce maximum positive crown moments

Rib shortening results from compressive axial forces in the structure, and

the 40 °F temperature drop accounts for the worst case combination of

temperature change and concrete shrinkage. Obviously, shrinkage produces

an outward thrust with corresponding negative moments at the supports. With a

temperature drop, these two effects would add together and make sense when

considered with the 30 psf live load Whitney is using, which is probably a snow

load.

In the "Aircraft Hangars of Reinforced Concrete" article, Whitney provides

insight to his choice of a 40 °F temperature drop. First of all, he states that

because plastic flow reduces temperature and shrinkage effects, 60% of the

maximum temperature range for a geographical area should be used for

concrete arch calculations. In the article, he presents a table of temperature

ranges for various locations in the United States. We will choose a value from





the table for a location in the south, since this is what Whitney implies he used.

The temperature range of 95 °F for New Orleans, Louisiana is chosen. The

design range is therefore:

95 °F x 60% = 57 °F

Assuming that it drops from the mean, our change in temperature will be half of

the design range, or 27 °F. Whitney suggests that the stress caused by

shrinkage in concrete can also be represented by a drop in temperature. Using

his shrinkage value of 15°F results in a total temperature drop 42 °F.
10

The volume change moments are computed by first calculating the

thrusts due to rib shortening and temperature changes. The thrusts are

multiplied by a function of the rise to compute moments. Using Whitney's 1925

article, Micalos derives formulas for hingeless (fixed) arches. If we assume a

secant variation in the cross section, the formula for computing thrust due to rib

shortening is:
11

H*s - f f- h4 Am h2

where: l
c
= Crown moment of inertia

h = Mid span rise

Am = Mean rib area

H = Dead and live load thrust

Using Whitney's data, the thrust due to rib shortening is:

HRS = 4,1801b

The thrust due to temperature changes is computed from:12

41 aTE-t
4 h2

HT = 45. aTE^

10





where: a = Coefficient of thermal expansion

T = Temperature change

Using Whitney's data and his recommended coefficient of thermal expansion of

5.5 x10~6 in/in/°F, the thrust due to temperature change is:
13

H
t
= 5270 lb

The crown moment due to the total volume change thrust is:

M = i h (HRS + H
t )

With Whitney's data, the crown moment due to volume changes is:

M = 1,039,000 in-lb

This value compares well with Whitney's value of 1,026,000 in-lb. Whitney does

not explain his assuming a secant variation in cross section for this calculation.

The table entries for the other two sections vary directly with the moments

of inertia. Thus, the volume change moment at the crown is nearly doubled

when the shell is shifted from the mid-height to the extremity, and it is increased

even more for the larger rib.

The next table entry, the total moment, is simply the addition of the two

previously calculated values. Since the live load moment is the same for all

three cross sections, the total moment varies only with the change in volume

change moments.

Finally, Whitney computes the maximum horizontal thrust caused by the

dead and live loads. Whitney's formula for computing thrust due to dead load

is:
14

11





Hd =
wc Lf (g-1)

r k2

where: g = The ratio of springing to crown weight

wc
= Crown weight in lb/ft

L
}
= One-half the span length

k = cosh
_1

(g)

Using 150 lb/ft
3 as the weight of concrete, the dead load thrust is:

Hd = 337,600 lb

The live load thrust for a load that produces the maximum positive moment at

the crown is:
15

where:

For Whitney's data:

Cj = A constant computed from Figure

51 using mand N
r = Midspan rise

p = Distributed live load

H! = 62,800 lb

The dead and live load total thrust is:

H = 400,4001b

This value is 46,720 lb lower than the table value of 447,120 lb. Whitney must be

considering the full span live load in his calculations. To compute the full span

live load thrust, we will use the previously defined formula with a Q value for

both maximum positive and negative crown moment live loads: 16

12





Hi = 132,0001b

The total thrust would then be:

H = 469,600 lb

This is 22,500 lb higher than the table value. Even if we consider the negative

thrust from the volume change calculations, the computed total thrust would still

be 13,000 lb higher than the table value. Whitney does not give any explanation

for this difference.

In summary, through his table, Whitney shows the importance of volume

change moments in concrete barrel shell roof design. According to his

conclusions, placing the shell at the mid-height of the rib cuts the volume

change moment in half and is the most efficient design. He also claims that with

the shell located at the extremity, the rib must be increased by 50% to give the

equivalent strength of a cross section with the shell at mid-height. He does not,

however, present any calculations to support this claim.

13





Chapter Three

Tedesko's Design Ideas

Whitney's ideas did not go unchallenged. The discussions of his papers

raised serious questions as to the validity of his claims. In presenting the

alternate viewpoint, we will focus on two papers in particular. The first is the

discussion of Whitney's 1950 paper "Cost of Long-Span Concrete Roof Shells",

and the second is the discussion of the 1940 report of ACI Committee 312,

"Plain and Reinforced Arches" . Both discussions were written by Structural

Engineers from the Roberts and Schaefer Company of New York City, who were

under the direction of Anton Tedesko at the time. 1 7 Therefore, we will consider

the alternate viewpoint as Tedesko's.

Tedesko does not agree with Whitney's claim regarding shell position.

Tedesko believes, instead, that the shell should be positioned at the rib

extremity. He develops an alternate chart which shows that the rib width can be

decreased if the shell is moved to the top or bottom. He supports his arguement

by looking at the stress distribution and by computing buckling safety factors.

We will examine Tedesko's chart, Figure 4, to gain more insight into his

argument. Tedesko uses four crown cross-sections which he calls cases one

through four. The first two cross sections are the same as presented in

Whitney's table. The third has the shell at the bottom of the 1 8 inch wide rib,

and the fourth has the reduced rib with the shell at the top.

The first five items are the same ones listed by Whitney. Tedesko carries

the calculations a bit farther, however, by computing stress distributions,

tension force taken by the reinforcing steel and a buckling safety factor.

14
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Case 2

It"

Case 3

1"

Case 4

Moment of inertia

of crown section,

in.

58,000 116300 116,300 69,700

Moment due to

live load, in. -lb 1,710,000 1,710,000 1,710,000 1,710,000

Moment due to

volume change,

in. -lb

1,026,000 2,042,000 2,042,000 1,230,000

Total moment,

in. -lb 2,736,000 3,752,000 3,752,000 2,940,000

Max. horizontal

Ithrust. lb 447,120 450,000 450,000 408,000

Concrete stress

at top of arch

psi

-1,096 -628 -1,091 -696

Concrete stress

at bottom or arch,

psi

413 404 -59 663

Total tension

force in concrete

to be taken by

reinf., lb

32,500

(min. reinf.-

2.9 sq. in.)

44,500

(rain, reinf.-

2.9 sq. in.)

(min. reinf.-

2.9 sq. in.)

46,000

(min. reinf.-

2.9 sq. in.)

Relative buckling

safety of arch —
proportional to I

(Dischinger's

method)

8.7 17.4 17.4 10.5

Figure 4. Tedesko's data chart

The moments of inertia for the first two crown sections are the same as

Whitney's. Tedesko apparently agrees with Whitney's use of the reduced

15





effective width when the shell is moved to the rib extremities. The moment of

inertia for the third cross section is the same as the second since the two are

mirror images. Their only differences will be in the section modulus for the top

and bottom fibers, but this will only affect the stress distribution. For the fourth

cross section, Tedesko computes the moment of inertia using the full 20 foot

width. Since the shell is positioned at the top of the rib, however, the reduced

effective width should be 14 feet. Using the reduced effective width, we

calculate the moment of inertia to be 65,300 in
4

; 4,400in4 lower than Tedesko's

table value.

The moment due to live load is the same as Whitney's and the same for

all four cases. Tedesko is not challenging Whitney's use of the full width loading

on the reduced effective width, the amount of load used, or his load position.

The moments due to volume changes vary directly with the crown

moment of inertia as in Whitney's table, and the values for the first three cross

sections are the same as before. Tedesko is not questioning the method of

computation. The moment for the fourth case is about 6% too high due to

Tedesko's full width moment of inertia. Using Whitney's volume change

moment as a starting point, we calculate the moment for the fourth cross section

to be 1,147,000 in-lb. This is 83,000 in-lb lower than Tedesko's value.

As in Whitney's table, the total moments are computed directly from the

live load and volume change moments. The total for case four using an

effective width of 14 ft is 2,857,000 in-lb.

Tedesko's table values for horizontal thrust for the first three cases are

the same as Whitney's. He apparently concurs with the calculations from

Whitney's 1925 article. The thrust for the fourth cross section is computed using

Whitney's formulas as well. We concur with this value as it is not affected by the

16





change in moment of inertia.

The next data entry in Tedesko's chart is the stress distribution across the

crown cross section. This is computed using standard formulas for axial and

bending stress and the appropriate section modulus. Tedesko assumes an

uncracked cross section, therefore, an elastic analysis is implied. Since the

horizontal thrusts are all compressive, and the bending moments at the crown

are all positive, general formulas for computing stresses at the extreme fibers

are:

ft= .P.M
fb= _P+M

top: A S
t bottom: A S b

where: P = Horizontal Thrust

A = Cross sectional Area

M= Total Bending Moment
S = Section Modulus (I /y)

Using Whitney's data for the cross section in case one:

ft = -1060 psi and fb = + 449 psi

Tedesko's values are 36 psi lower for both the top and bottom fibers for case

one. To arrive at the stresses listed in the table for the first cross section,

Tedesko is either using a total thrust value of 499,800 lb instead of the listed

value of 447,120 lbs or using a reduced cross sectional area. He does not

explain the change. The stress calculations for the other three cases also differ

from what would be expected from Whitney's data, but they do show the trend

Tedesko wants to demonstrate. In case four, the stresses are almost equally

distributed and even with the reduced rib, the stresses are still well within the

strength of concrete.

Next, Tedesko lists the total tension force to be taken by the reinforcing

17





steel. This is calculated assuming a linear stress distribution and assuming the

concrete does not carry tension. The first step in computing this value is to

determine the distance from the bottom fiber to the neutral axis. This can be

done using a ratio of the table stresses and the rib depth:

413 psi (~~ . . _. .

yb =
(413 + 1096) psi

,32 m| = 8 '75 '"

From this, the total tensile force is:

T= 1 (413psi)(18in)(8.75 in) = 32,5001b

This agrees exactly with the table value. With this value for tension, and

assuming a yield stress in the steel of 50ksi, the required reinforcing steel area

would be less than one square inch. The ACI code for minimum reinforcing

steel area would supersede, thus requiring a reinforcing steel area of:
18

Pmin = 0.005 = A-
bd

Solving for \ using the rib cross section yields:

A s = 0.005 (576 in2) = 2.88 in2

This explains the table reference to minimum required reinforcing steel and

agrees with Tedesko's recommended steel area. The tension force and

required steel areas are calculated similarly for the other cases. For case three,

the required tension force is zero since the entire cross section is in

compression at the crown.

Tedesko computes a safety factor against buckling as the last table value

for each cross section. The computations are based on Dischinger's formula: 19

18





v = 33.21 EI
Ha2

where: H = Horizontal Thrust

E = Effective Modulus of elasticity

a = One-half the Span Length

I = Moment of Inertia at the Crown

Using the data for the first cross section with Tedesko's thrust value of 499,820 lb

yields a buckling safety factor of:

Vs = 8.8

This value compares very well with the table value of 8.7. The safety factors for

the other cross sections are computed using this formula and show how the they

are increased when the shell is moved to the rib extremity. Even with the

reduced rib in case four, the safety factor against buckling is larger than when

the shell is positioned at mid-height.

Using the same hangar model and data as Whitney does, Tedesko has

reached the opposite conclusion. In his table, with the shell moved to the rib

extremity, the rib size can be reduced. Which conclusion is correct?

19





Chapter Four

Resolving the Conflict

Our examination thus far reveals questions which must be addressed to

resolve the shell positioning conflict. In addition to these, other items which

affect the issue are mentioned in the Whitney and Tedesko articles, but are not

incorporated into their tables.

First of all, Tedesko states that additional analysis is required:

".
. . the writers do not believe it justified to assume that an investigation

of the crown of the arch alone can determine the most economic cross

section. Not only do the maximum moments vary in sign and magnitude

along the arch axis, but also the relative importance of the volume
change moments varies. In the lower quarters of the arch the volume
change moments are only a small percentage of the total design

moments."20

Although this is a very serious discrepancy, he does not make the full span

analysis he claims is necessary.

Secondly, both sides mention arch deformation effects. And although

they both imply that the deflections are easily approximated, neither side

presents any relative data. Whitney even stresses the importance of

investigating the moments caused by deformations, especially at the crown

section where "the greatest increase in stress due to deflection occurs."21

Tedesko gives some justification for not investigating the additional moments:

".
. . deformation moments are of important influence only for arches of

small buckling safety and for arches which do not follow the pressure line

for dead load" 22

He obviously does not consider the deflection moments to be significant in this

design.

20





Also, the two factions address using a reduced Young's Modulus to

account for concrete creep when computing deflections. Whitney states that the

Young's Modulus value for concrete should be reduced by two-thirds to three-

quarters to calculate deflections under permanent load.23 Tedesko suggests

using a value of 2,000,000 psi for E
c
to account for creep.24

To resolve the question of shell position, we will use an approach that

incorporates analysis methods not available to Whitney and Tedesko and

addresses the additional points mentioned above. Using the four step process

outlined below, we will create a table for each of our three cross sections which

we can use to make comparisons between the two design methods. The

resulting tables are attached as appendix B.

REVISED FOUR STEP METHOD OF ANALYSIS

Step 1 Computing Forces. Moments and Deflections

We make a full span analysis of the barrel shell roof section utilizing the

Finite Element computer Program P-FRAME. From the finite element analysis,

we are able to determine dead load moments, positive and negative moments

due to different live load distributions, volume change moments due to

temperature change, axial thrusts at each section and deflections due to the

loadings. We model three different cross sections and create a table for each.

We model the arches using the 20 foot width and 4 inch shell thickness

Whitney specified. The first cross section has the shell at the mid-height of the

rib and will be referred to as the "Whitney Arch". The second is 1 4 feet long, has

the shell located at the lower rib extremity and will be referred to as the
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'Tedesko Arch". Both of these arches have ribs that vary from 1 8 / 32 at the

crown to 18 x 40 at the springing. The third section is 14 foot wide, has a

smaller rib and has the shell located at the lower extremity. It will be referred to

as the "Reduced Tedesko Arch". We chose to position the shell at the bottom of

the rib for the Reduced Tedesko Arch since this will result in a compressive

stress distribution through more of the arch span. Since we are designing in

concrete, this is an important consideration. The rib for this section varies from

9 x 32 at the crown to 9 x 40 at the springing. The three cross sections are

shown in Figure 7.

We used 29 nodes to model each arch, 23 of which are spaced

honzontally from zero to 220 feet at equaJ 10 foot intervals. The other six nodes

are placed to allow for the live loads necessary to make a full span analysis. To

ensure symmetry, we placed three nodes on each side of the mid-span. Vertical

positions for the nodes were computed using the equation for a parabola. A

one-line diagram of the model is shown in Figure 5.

The moments of inertia at the crown for the first two arches a re taken

directly from Whitney's table. We use the corrected moment of inertia from the

Tedesko table for the third. Moment of inertia at the springing is computed using

Whitney's dimensions. These calculations appear in Appe r s / A To represerti

the varying cross section, we use a linear interpolation between the crown and

springing, adjusting the value every 10 feet. The foung s Modulus for all cases

is 4 x l(j6 psi, the same as used by Whitney and Tedesko, and the coef* c s^
r

r of

thermal expansion we chose is 5.5 x 10"* in/iiV'F, the vaJue that Whitney

recommends. The end restrants for the arches are modeled as * xed against

both rotation and translation. For all three cases we chose a r ea r
e as' c
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analysis.

To compute dead loads, we input the normal density of concrete, 150

lh/ft3 i
and P-FRAME computes the weights based on cross sectional areas and

ia/HiTwEM:
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Figure 5. Crown cross sectons and One-line diagram for the computer mcdei
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lengths between the nodes. For the Tedesko arches, an additional externally

applied dead weight was added to account for the reduced effective width. This

was modeled as a uniformly distributed horizontal load. The values for this load

were computed as:

(20ft- i4ft)(4in)(-^-)(l50-^)= 300^

The live loads are modeled as uniformly distributed and externally

applied using Whitney's magnitude of 30 psf. For the full span analysis, we had

to load the arch with several different live load distributions to produce

maximum positive and negative moments at the points we wanted to

investigate. Although data is available through P-FRAME for every nodal point,

we concentrated our live load analysis on three significant points; the springing,

the quarter point, and the crown. Each arch is loaded using known distributions

to produce maximum positive and negative moments at the points of interest.
25

Load distributions used are shown in Figure 6.

To model the volume change moments, we applied a uniform

temperature change of -40 °F along the full span of each arch. The rib

shortening contribution to the volume change moments is computed directly by

P-FRAME. The program determines the axial deformations due to the applied

dead and live loads.

Step 2 Computing Deflection Moments

To compute the additional moments due to deflections,we applied the

theories of Robert S. Rowe and Milo S. Ketchum to the output data from P-
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FRAME. Both of these procedures are based on series approximations of the

deflections. To account for the affect of creep, we used a Young's modulus of

2,000,000 psi in the computer analysis.
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Figure 6. Live load distributions used for Arch analyses

Ketchum's procedure, published in the American Society of Civil

Engineers (ASCE) Transactions, provides a method for computing final

deflections as a function of initial deflection, moment and axial force.26 The

derivation is based on a beam which is loaded both axially and laterally as

shown in Figure 7. In the figure, Ml is the moment due to q, the lateral load, wj
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is the deflection caused by the lateral load, w a is the deflection due to the axial

load and w is the total deflection. Relating the deflections:

W = Wj + w a

Assuming the elastic deflection curves for both loads are similar to their bending

moment diagrams, a relationship is established between the ratios of the

deflections and moments at the midpoint of the beam:

wa P w

Solving for w
2

Wj Pw
ML

Since w a
= w - w

i:

,
Pw

1 M^

Regrouping:

-"-3—
Solving for w :

1 .
Pw

i

Ml

Thus, the final deflection, w , can be computed if the initial deflection, the axial

force and the moment are known. This formula is adapted for our use in

computing deflection moments for the tables in appendix B as follows:

26





Mo = Mi

1-
Mj_

ML

The deflection moment can be computed if the initial deflection, axial force and

moment at a section are known. The initial data (P, wv MJ is available from our

computer analysis.

Figure 7. Axially and Laterally loaded beam used in the Ketchum derivation.

Robert S. Rowe's procedure is derrived using a beam loaded both axially

and laterally as shown in Figure 8. Rowe's method expanded on Ketchum's

work by applying it to arches as well as beams.27 Rowe's procedure is once

again based on the idea of a series of moments. From Figure 8, the deflection,

Ab, due to the arbitrary lateral load can be expressed as:

where "n" is a bending moment diagram shape factor.

27





The moment caused by this deflection and the given axial load is:

Mtxaij = P»Ab

^

Figure 8. Loaded Beam used in the derivation of Robert S. Rowe's method

This moment causes an additional deflection of:

E I E I

Which, in turn, causes an additional moment:

Ma = Pa A«d= Pa n
P.AbL2

E I

Assuming the elastic curve maintains the same shape so the na 's
are similar, the

total moment equation becomes:
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M =Mb+Pa A b + P a A b n a
( ^) + Pa A b n2(^Y) +

Since EI', this becomes:

/ I P L2
\ IM = M b + P 4 A

t, j
1 + n a (

* + higher order terms which go to zero
)

(-— where A = n a
Multiplying through by ' l -A'

Pa_L^

E I

M =
Mb(l-A ) P,A b (l-A 2

)

1 -A

With A < 1, A2 goes to zero, therefore:

.
M b (l-A) ->• Pa A b

1 -A

Assuming the axial load and lateral load bending moment diagrams are similar,

A Mb L2

n -n Ab = " b pin
a ~ n

b, and since we know c J
, the moment equation becomes:

M =

1 . n 3 i _ _ r-4 L
1

"
a
EI

J

"
a
EI

29





M= —Mb
1

Pa L
2

1 - rig—3—
Therefore: E *

The total bending moment, including the deformation effects, can be computed

in terms of the bending moment at the section, the axial load at the section and

a bending moment diagram shape factor. This is very similar to Ketchum's final

result.

Rowe applies this to curved beams. He presents a chart that relates the

displacement ratios in straight and curved beams to the h/L value in the curved

beam. From his chart, we see that for arches with rise to span ratios of less

than 0.15, the deflection in an arch is less than 2% different from that in a

28
straight beam.

Step 3 Computing Cross Sectional Stresses

Stress distributions are computed using the total moments and axial

thrusts at each section and the standard P/A and My/I stress formulas. Results

from these calculations appear in each of the tables.

Step 4 Computing Buckling Safety Factors

A revised method of computing buckling safety factors, based on the

theories of Rowe and Ketchum, is presented in the following chapter. Data for

each arch is presented at the end of this chapter.
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EXPLANATION OF TABULAR DATA

General

We show a full span analysis in the three tables in appendix B. Data is

computed for the crown, the left and right springing and the left and right quarter

points. The data is displayed in columns from left to right along the arch length.

An explanation of each line, along with a sample calculation for the "Whitney

Arch" follows. The P-FRAME output file for the Whitney Arch is attached as

Appendix C.

Moment of Inertia. Line (A)

Moments of inertia for the first two tables are computed based on

Whitney's data for the crown and springing rib sizes. The quarter point value is

linearly interpolated. Data for the third table is calculated based on Tedesko's

reduced rib width, using Whitney's variation in rib height

.

For Whitney's Arch, the moment of inertia at the crown was previously

computed as 58,000 in
4

. For the given rib dimensions of 1 8 x 40 at the

springing, the moment of inertia is 110,000 in
4

. Using a linear interpolation

between the two to compute the quarter point value yields 84,000 in
4

.

Moments due to dead and live load. Line (B)

These values are taken from P-FRAME output for the cross sections with

positive moments acting clockwise at the left and counter-clockwise at the right

hand end of a segment. The dead load is calculated based on a linear

interpolation of cross section variation every 10 feet. Dead load for the full 20
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foot width is applied for all three arches. Load positions for moments due to live

loads are shown for the four cases in Figure 8. P-FRAME data is converted from

ft-kips to in-lb for easy comparison with Whitney and Tedesko data and is

rounded to four places. For the Whitney Arch at the crown (node 1 5):

Moment due to dead load = -30.20 ft-kips = -363,000 in-lb

Moment due to live load (1 ),

(Maximum positive crown Moment) = +136.4 ft-kips = +1,636,000 in-lb

Moment due to live load (2),

(Maximum negative crown Moment) = -133.7 ft-kips = -1,604,000 in-lb

Moment due to live load (3),

(Maximum positive moment at the

Left Quarter Point or Maximum
negative moment at the Left

Springing) = -64.48 ft-kips = -774,000 in-lb

Moment due to live load (4)

(Maximum negative moment at the

Left Quarter Point or Maximum
positive moment at the Left

Springing) = +67.10 ft-kips = +805,000 in-lb

Initial Displacements. Line (C)

These values are also taken from P-FRAME output and represent

displacement of the nodal points from their initial positions due to the indicated

loads. The displacements shown are in inches and do not include deformation

moment effects. The dead load displacements are computed using E =

2,000,000 psi to account for creep. For Whitney's Arch at the crown:

Initial Displacement due to Dead Load = -0.345 inches

Initial Displacement due to Live Load case (1) = -0.541 inches

Initial Displacement due to Live Load case (2) = +0.419 inches

Initial Displacement due to Live Load case (3) = +0.180 inches
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Initial Displacement due to Live Load case (4) = -0.302 inches

Axial Thrusts, Line (P)

Once again, the Values are taken directly from P-FRAME output. The

thrusts are normal to the indicated cross section and are listed in kips. For

Whitney's Arch at the crown:

Axial thrust for Dead Load =351.6 kips

Axial thrust for Live load Case (1 ) = 60.6 kips

Axial thrust for Live load Case (2) = 70.6 kips

Axial thrust for Live load Case (3) = 41.1 kips

Axial thrust for Live load Case (4) = 90.1 kips

This would give a total thrust of 412,200 lb for dead plus live load for maximum
positive moment at the crown, and a thrust of 482,800 lb for dead plus full span

live load. These values are 3% higher than the thrusts of 400,400 1b and
469,600 lb computed using Whitney's formulas.

Temperature Change Moments. Line (E)

These moments are computed based on the 40°F temperature drop used

by Whitney applied over the entire arch. The rib shortening contribution,

computed by Whitney for his volume change moments, is not included here

since it is computed as part of the Load Moment in line (B). The P-FRAME

output is once again adjusted from ft-kips to in-lb for comparison with Whitney

and Tedesko table values. For the crown section of Whitney's Arch:

Temperature Change Moment = 59.87 ft-kips = 718,000 in-lb

If our computed values of dead load, live load for maximum moment at
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the crown, and temperature change moments are added together, we can make

a comparison with the total moment value listed in Whitney's table. The P-

FRAME total moment would be 1,991,000 in-lb. This is 27% lower than

Whitney's table value of 2,736,000 in-lb.

Moments due to Deflection. Line IF)

As the h/L value for our arch is 0.1 25, according to Rowe, we can

compute the deflection moments using Ketchum's method. We use P-FRAME

output to compute the axial thrust, initial deflection and moment at the section for

each live load condition. The dead and temperature change loads will not

create deflection moments since they are uniformly distributed across the entire

arch span. The arch axis will not deflect from the funnicular line under these two

loads.

For Whitney's Arch at the crown, the deflection moment at the crown due

to live load case (1) is computed using:

M = PWj

j Pwi
ML

From P-RFRAME output

for Live load case (1) P= 60,600 lbs (compression)

wj = -0.541 in

ML = 1,636,000 in-lb

The deflection moment at the crown for live load case (1 ) is:

M = + 33,000 in-lbs

The moment sign is determined by the orientation of the deflection and axial

force. In this case, the arch is deflecting downward, and the axial force is
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compressive, thus, a positive moment results.

Worst Case Moments (G)

The worst case moments are totaled from Lines B, E and F for dead and

live loads. The live load case which produces the largest appropriate moment

is used in each computation. A circled number appears next to the worst case

moment value to indicate which live load was used. For the crown section of

Whitney's Arch:

Worst case total Moment = +2,024,000 in-lb

The worst case total moment for the crown results from a live load for maximum

positive moment.

Section Stress. Line (H)

Stresses are calculated based on worst case moments and associated

axial loads. Standard stress formulas are used with the computed cross

sectional areas and section moduli for the appropriate point in the arch. For the

crown section of Whitney's Arch:

Axial Load for Worst case Total Moment = 412,200 lb (compression)

Top and bottom fiber stresses:

f
t
= - 840 psi and fb = + 277 psi

Buckling Safety Factor

A safety factor against buckling is computed based on the Initial

Deflection Method for arches developed in Chapter 5. First, models of the
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Whitney Arch, the Tedesko Arch and the Reduced Tedesko Arch are given a

parabolic imperfection. We determine the critical load using the Initial

Deflection Method, and compute a buckling safety factor by comparing the

critical load to the dead load plus the 600 lb/ft live load used by Whitney. The

finite element analysis program P-FRAME is used to compute the initial

deflections.

For each arch, the initial imperfection is a parabola with a midspan rise of

0.625 ft. We compute the revised nodal coordinates using the transformation

described in Chapter 5. The revised coordinates are input to the P-FRAME

program, and we apply a uniformly distributed horizontal load across the entire

span. To compute the critical load, we must eliminate the rib shortening

contribution. A purely parabolic model of the arch is loaded with the same

uniform load, and the resulting deflections are subtracted from those computed

using the offset model. The final deflections are due to bending moment only.

The critical load occurs when the deflection is equal to the offset.

For Whitney's Arch, at a uniform load of 23.5 kips/ft, the deflections for the

offset model at the three-quarter point (node 23) are:

5x23 = -0.224 in and 8y23 = -2.49 in

The deflections for the parabolic model are:

5x2 3 = -2.76 in and 5y2 3 = -9.56 in

This results in a total deflection of:

5 = -7.51 in = -0.625 ft

To compute the buckling safety factor, we assume a uniformly distributed dead

load equal to the average cross sectional value. The buckling safety factor for

Whitney's arch is:
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Safety Factor = 23.5 /2.2 = 10.7

The P-FRAME input and putput used in this calculation are attached as

appendix D. Using the Initial Deflection Method for the other two arches yields

critical loads of:

Tedesko Arch = 47.5 kips/ft

Reduced Tedesko Arch = 27.2 kips/ft

The resulting Buckling Safety Factors are:

Tedesko Arch = 25.0

Reduced Tedesko Arch = 17.4

These values are higher than the Dischinger values listed in Tedesko's table,

but show the same trend. Even with a reduced rib, the Tedesko cross section

has a greater safety against buckling than Whitney's.
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Chapter Five

The Initial Deflection Method
For Computing Critical Buckling Loads

Using the ideas of Rowe and Ketchum, we will develop a relationship

between successive deflections and buckling. The general formula is

developed using an axially loaded column.

An axially loaded column which is perfectly straight theoretically will not

buckle, regardless of the applied load. It will only deform along its axis in

accordance with the well known formula:

° a AE

where: P = Axially applied load

L= Column length

A = Cross sectional area

E = Young's modulus

Given some type of initial imperfection, however, the column will buckle under

sufficient load. For the axially loaded column shown in Figure 11 that has an

initial parabolic offset with a value of 8 at mid-height, the initial moment at the

mid-span is:

M = P 5

This moment , in turn, causes an additional deflection, 8^

5 .. M«Li ..
(P 5 )

L

2

1

12EI 12EI
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B= pl2
Letting 12 E I, the additional moment due to the deflection 6-| is:

Mi= P61 = P5qB

i

I GO iV\

h"
0.^2.5 i K-

Figure 9. Axially loaded column with initial parabolic offset

This moment will create an additional deflection ,
5.

52= Mil! = 6oB 2
2 12EI

The total moment is:

MT = Mo+Mi + M2 +... = P8 + P8i + P52 +...= P5 (l +B + B 2 +. . . )

Thus, if B is greater than one, the series diverges, the moments will grow without

bound, and the column will buckle. The critical load occurs when B = 1 . When

B = 1, the original offset, 5 , and the initial deflection, 5 1( will be related as:
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5j = B 80 = 5

We have defined the critical point in terms of deflection. When the initial

deflection is equal to the original offset, the column is at the critical point. If the

initial deflection is greater than the original offset, the column will buckle. This

criteria is easily applied to output from finite element computer programs. To

check buckling, one only needs to compare the computer generated deflections

to chosen input imperfections.

As a check, we will compare the results from the "Initial Deflection

Method" with several well known buckling formulations.

Euler Column Buckling

We will check the initial deflection buckling criteria against the classic buckling

problem presented by Euler. His solution for the critical load of a column

hinged at both ends is:
29

Per = K2 E±
L2

where: P = Column axial load

L = Length between the supports

E = Young's Modulus

I = Minimum moment of inertia of the cross section

The physical model used is a 100 inch long steel beam with a 12 square inch

cross section which is 6" x 2 ". The beam is hinged at both ends.

Since the chosen cross section results in a minimum moment of inertia of

4 in
4

, the critical load using Euler's formula is:
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Pcr = 118 kips

To test the Initial Deflection Method, the beam is modeled on the finite

element computer program SAP-90 using frame elements with 11 equally

spaced vertical nodes. The horizontal offset for each node is calculated using a

parabolic equation with the chosen maximum offset as 0.625 inches at the mid-

span. The column is modeled with a pin at the bottom and a roller at the top.

Loads are applied in the negative vertical direction at the top node. The critical

load is one that produces a 0.625 inch deflection at the middle node. To

determine the critical point, we start at the theoretical critical load and perform

iterations until we read a deflection of 0.625 inches on the output.

Using the Initial Deflection Method with SAP-90, the critical load is :

Pcr = 116 kips

This is 1 .7% lower than Euler's theoretical value.

Plate Buckling

Next, we check the initial deflection buckling criteria against the theory for a

simply supported plate. The physical structure we model is a 100 inch by 100

inch steel plate which is one inch thick.

The general formula for critical load per length for a simply supported

plate uniformly compressed in one direction is:
30

where: a= Horizontal plate dimension

b = Vertical plate dimension

Nx
= Load per unit length along the horizontal

41





D= ^^
and: 12(l-v 2

)

where: E = Young's modulus
h = Plate thickness

v = Poisson's ratio

For a square plate, a = b, and this becomes:

(N x ) cr
=A4D

a2

For the chosen plate, with E = 30 x 106 psi and v = 0.3, the flexural rigidity is:

D = 2,747 in-kips

From the Timoshenko formula, the critical distributed load is:

(NJcr- 1084 ^Ei
in

The structure is modeled using the finite element computer program SAP-90

with 100 plate elements. The computer model is composed of 121 nodes with

11 nodes spaced equally along the horizontal, and 11 vertical nodes equally

spaced at each of these. Each vertical line of nodes has a parabolic offset with

a maximum of 0.625 inches at the middle node. The plate is simply supported

on all sides with a pin along the bottom edge and rollers along the other three.

We model the uniform load across the top of the plate as a pressure load.

As with the axially loaded column, the critical loading occurs when the

mid-span horizontal deflection equals the original offset. Using this criteria, we

load the plate at the theoretical critical load, and adjust as necessary until we

see a mid-span deflection of 0.625 inches in the computer output.

Using the Initial Deflection Method, the critical load is:
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(NJ.T- 911 '

in

This result is 1 5.6 % lower than the theoretical buckling load. This result is

suprising in light of the success with the column data.
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Arch Buckling

In a two hinged parabolic arch, uniformly distributed loads are carried

axially to the supports. Bending moments are zero throughout, and the arch

simply "squats" due to rib shortening. By introducing an initial imperfection as

we did with the axially loaded column, however, bending moments are created

(Figure 12 refers). The moments can be expressed as:

Mo= P5

where: P = Axial load at the section

5 = initial offset from the funicular line

The greatest moments will occur at the points where the largest offset is located.

These bending moments will, in turn, cause additional deflections. These

deflections are expressed as they were for the axially loaded column as:

5 ,. MolZ - (PSo)l2

1 " 12EI 12EI

Using the same derivation as in the case of the axially loaded column, we can

define the critical point of arch buckling in terms of deflection. When the initial

deflection is equal to the original offset, the arch is critically loaded. If the initial

deflection is greater than the original offset, the arch will buckle. To compute

buckling loads using the Initial Deflection Method, we need to compare

computer generated deflections to our chosen offsets.

To validate the Initial Deflection Method for arch buckling, we will

compare it with Timoshenko's theoretical results. The model we use is a 2

hinged steel arch with a constant 6" x 2" cross section. The arch spans 100

inches horizontally and has a rise of 10 inches.
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Timoshenko's general formula to compute critical loads for a uniformly

loaded parabolic arch with a constant cross section is:
31

where: E = Young's modulus
I Moment of inertia

L= Horizontal span length

XA = A factor depending on the height to span

ratio and the number of hinges
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Figure 10 Bending Moments in Arches caused by Inrtial Offset
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From Timoshenko's Table 7-5 with h/L = 0.1, X4 = 28.5. The critical load with E

= 30 x 106 is:

q CT
= 3.42 kips per inch of horizontal span

The Initial Deflection Method is tested using the finite element computer

program P-FRAME. We model the arch using 21 nodes equally spaced along

the horizontal and compute initial vertical coordinates for these nodes using a

parabolic equation with a rise of 10 inches at the middle node. The arch is free

to rotate and restricted from translating at both ends.

We will apply a parabolic offset to each half span as shown in Figure 11.

k\odz ©
£= 0.(oZ5.vt

Klodte © £ -- o.4>2£ ha

Figure 11 . Parabolic Offset used in the Computer Model

The maximum offset will be 0.625 inches at each quarter point. Since we want

the nodes to be offset from the initial parabolic curve, each node will have to be

adjusted both vertically and horizontally as shown for node 5 in Figure 12. The
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change in coordinates will be a function of the parabolic offset, 65, and the angle

6
5 as:

Sy5 = 55
(COs 5)

and 8,5 = 85
(
sin q5 )

Figure 1 2. Blown up view of the coordinate transformation at node 5

The arch is loaded using uniformly distributed horizontal loads. To

eliminate the affect of rib shortening from the computer output, a purely

parabolic arch model without initial offsets is loaded with a uniformly distributed

critical load. The rib shortening deflections are subtracted from the deflections

computed using the offset model. The resulting deflections are due to bending

moment only. Once again, the theoretical buckling load is chosen as a starting

point and iterations are performed until we see an adjusted deflection of 0.625

in either half of the arch. Using the Initial Deflection Method, the buckling load

for the arch model is:
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Pcr = 2.92 iHP
S

in

This is 14.6% lower than Timoshenko's theoretical value of 3.42 kips/in.
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Chapter Six

Conclusions

From the debate between Charles S. Whitney and Anton Tedesko we

can draw several conclusions. First of all, Whitney's 1925 article was a good

guideline for arch design. His formulas and charts give information which is

backed up by modern methods of analysis. Using only graphic statics and the

Calculus, he computed formulas and charts to determine thrusts and moments

for significant loads and load positions at several points in the arch. For

maximum positive moment at the crown, his distribution is less than 1% different

from accepted design guidelines used from the 1950's to today. His adjustment

factors allow quick computations for a very diverse range of arch designs.

Although his conclusions for thin shell design are vehemently challenged by

Tedesko, his method of calculating arch thrusts, live load moments and volume

change moments are not.

Secondly, Tedesko's claim that a full span analysis is necessary for arch

design is valid. By looking at our full span analysis, we can see that stress

distributions at the springing, quarter point and crown must all be investigated.

The crown analysis that Whitney and Tedesko both present is not sufficient to

design a barrel shell roof.

Next, both men were correct in their claim that the deflection moments

are not significant for Whitney's hangar model at the assumed live loads. We

can see, however, that the deflection moments and corresponding stresses

must be addressed in barrel shell roof design. As the factor of safety against

buckling is reduced, the deflection moments become more significant. The
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methods of Rowe and Ketchum are a reliable way to determine deflection

moments from data available from most finite element programs.

Additionally, Whitney's emphasis on volume change moments is valid.

His claim that the shell should be located at the mid-height of the rib to reduce

volume change moments is also valid. There is an irrefuteable relationship

between the moment of inertia and the volume change moment. When we look

at stress distributions over the full span and take all loads into account,

however, we see that the decreased moment of inertia has a drawback.

Reducing the moment of inertia increases the tensile stresses near the

supports. The tensile stress at the springing for Whitney's Arch is double that of

Tedesko's Arch.

Also, there is a significant advantage in placing the shell at the bottom of

the rib as opposed to the top. Because concrete is weak in tension and strong

in compression, we want to reduce tensile stresses as much as possible.

Placing the shell at the bottom of the rib does this. We can see from the stress

distributions for Tedesko's Arch and Tedesko's Reduced Arch that tension only

exists in upper part of the cross section for the first and last quarter of the arch.

The Initial Deflection Method is a tool which can be used with existing

finite element computer programs to compute buckling safety factors for a

variety of structures. Although longhand computations of initial offset values are

tedious, this could easily be written into a finite element computer program. The

critical loads computed with the Initial Deflection Method are conservative for

plates, but could provide a ready check for buckling capacity for arches during

an iterative design process.
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Moment of Inertia Calculations

Section 1 :
18" thick rib with shell located at mid-height

As = As' = 3.0 inches, n = 7

'o yt
Ay

t
d to na

Section 2: 18" thick rib with shell located at top (Flange 70% effective)

As = As' = 3.0 inches, n = 7

Ad^

Rib 49,200 576 16 9220

Left Shell 592 444 16 7100

Right Shell 592 444 16 7100

Top Steel 2 21 2.5 53 13.5 3830

Bottom Steel 2 21

y = 16.0 in

29.5 620

I = 58,000 in
4

13.5 3830

Rib

and Steel

56,800 618

Left Shell 400 300

Right Shell 400 300

yt

16

2

2

Ay
t

9890

dto na

6.9

y = 9.1in

600 7.1

600 7.1

1= 117,200 in
4

Adz

29,400

15,100

15,100
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Section 3: 27" thick rib with shell located at top (Flange 70% effective)

As = As' = 4.5 inches, n = 7

'o yt
Ay

t
d to na Ad'

Rib 73,700 864 16 13,800 5.3 24,300

Left Shell 376 282 2 564 8.7 21,300

Right Shell 376 282 2 564 8.7 21,300

Top Steel 3 32 2.5 80 8.2 2,150

Bottom Steel 3 32

y = 10.7 in

29.5 944

1= 154,800 in
4

18.8 11,300

Section 2: 9" thick rib with shell located at top (Flange 70% effective)

As = As' = 1 .5 inches, n = 7

'o yt
Ay

t
d to na Ad'

Rib 24,580 288 16 4608 9.6 26,740

Left Shell 450 318 30 9540 4.4 6160

Right Shell 450 318 30 9540 4.4 6160

Top Steel 1.5 2 3 21.6 700

Bottom Steel 1.5 30 15 4.4 30

y = 25.6 in I = 65,300 in
4
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Whitney Arch

Left Left Crown Right Riight

Springing QtrPt Qtr Pt Springing

A) Moment of Inertia 110,000 84,000 58,000 84,000 110,000

(in4)

B) Load Moment (xio6 in-lb)

Dead Load -1.936 +0.321 -0.363 +0.321 -1.936

Live Load 1 +2.575 -1.535 +1.636 -1.535 +2.576

Live Load 2 -2.812 +1 .492 -1.604 +1.492 -2.812

Live Load 3 -6.572 +2.996 -0.774 -1.686 +4.159

Live Load 4 +6.335 -3.010 +0.805 +1.643 -4.396

C) Initial Displacements (in)

Dead Load -0.476 -0.345 -0.476

Live Load 1 +0.196 -0.541 +0.196

Live Load 2 -0.260 +0.491 -0.259

Live Load 3 +1.155 +0.180 -0.917

Live Load 4 +1.092 -0.302 +0.980

D) Axial Thrust (kips)

Dead Load 397.4 362.3 351.6 362.3 397.4

Live Load 1 61.8 62.8 60.6 62.8 61.8

Live Load 2 85.0 72.5 70.6 72.5 85.0

Live Load 3 56.8 42.9 41.1 41.2 39.7

Live Load 4 89.9 92.4 90.1 94.0 107.1

E) Temperature Change -1 .774 +0.096 +0.718 +0.096 -1.774

Moment (xio6 in-ib)

F) Deflection Moments

Live Load 1 -0.012 +0.033 -0.012

Live Load 2 +0.019 -0.030 +0.019

Live Load 3 +0.050 -0.007 -0.039

Live Load 4 -0.104 +0.028 +0.098

G) Worst Case Total

Moment (xio6 in-lb) 10.38(3) +3.433(3) +2.024(1) +2.158(4) -8.106(4

H)Section Stress (psi)

Top +1593 -996 -840 -755 +1168
Bottom -2144 +475 +277 +169 -1780
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Tedesko Arch

Left

Springing

Left

QtrPt
Crown Right

QtrPt
Right

Springing

A) Moment of Inertia

(in4)

B) Load Moment (xio6 in-li

Dead Load

218,400 167,400 116,300 167,400 218,400

3)

-2.354 +0.268 +0.002 +0.268 -2.354

Live Load 1 +2.459 -1.527 + 1.687 -1.527 -2.459

Live Load 2 -2.941 +1.497 -1.555 + 1.497 +2.941

Live Load 3 -6.643 +2.972 -0.744 -1.685 +4.080

Live Load 4 +6.160 -3.002 +0.876 +1.655 -4.562

C) Initial Displacements (ii

Dead Load
i)

-0.474 -0.663 -0.474

Live Load 1 +0.078 -0.309 +0.078

Live Load 2 -0.155 +0.165 -0.155

Live Load 3 -0.595 +0.064 +0.446

Live Load 4 +0.518 -0.208 -0.524

D) Axial Thrust (kips)

Dead Load 400.5 365.5 354.5 365.5 400.5

Live Load 1 61.3 62.3 60.1 62.3 61.3

Live Load 2 84.5 71.9 70.0 71.9 84.5

Live Load 3 56.6 42.6 40.7 40.9 39.4

Live Load 4 89.3 91.7 89.4 93.3 106.4

E) Temperature Change -3.506 +0.193 +1.424 +0.193 -3.506

Moment (xio6 in-ib)

F) Deflection Moments

Live Load 1 -0.005 +0.019 -0.005

Live Load 2 +0.011 -0.012 +0.011

Live Load 3 +0.026 -0.003 -0.018

Live Load 4 -0.048 +0.019 +0.050

G) Worst Case Total

Moment (xio6 in-ib) -12.50(3) +3.481(3) +3.132(1) +2.166(4) -9.939(4)

H)Section Stress (psi)

Top +1261

Bottom -1028

-844

-96

958
-95

-684

-219

+897
-923
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Reduced Tedesko Arch

Left Left Crown Right Right

Springing Qtr Pt Qtr Pt Springing

A) Moment of Inertia 123,800 94,600 65,300 94,600 123,800

(in4)

B) Load Moment (xio6 in-lb)

Dead Load -1.506 +0.135 +0.001 +0.135 -1.505

Live Load 1 +2.509 -1.532 +1.663 -1.532 -2.509

Live Load 2 -2.891 +1.496 -1.573 +1.496 +2.891

Live Load 3 -6.617 +2.970 -0.755 -1.684 +4.113

Live Load 4 +6.235 -3.005 +0.846 +1.649 -4.495

C) Initial Displacements (in)

Dead Load -0.507 -0.715 -0.507

Live Load 1 +0.153 -0.520 +0.153

Live Load 2 -0.256 +0.325 -0.256

Live Load 3 -1.041 +0.132 +0.800

Live Load 4 +0.938 -0.327 -0.903

D) Axial Thrust (kips)

Dead Load

Live Load 1

Live Load 2

Live Load 3

Live Load 4 89.5 92.0 89.7 93.6 106.7

E) Temperature Change -1.989 +0.107 +0.805 +0.107 -1.989

Moment (xio6 in-lb)

318.9 291.7 282.9 291.7 318.9

61.5 62.5 60.3 62.5 61.5

84.7 72.2 70.2 72.1 84.7

56.7 42.7 40.9 41.0 39.6

Deflection Moments

Live Load 1 -0.010 +0.032 -0.010

Live Load 2 +0.019 -0.023 +0.019

Live Load 3 +0.045 -0.005 -0.033

Live Load 4 -0.089 +0.030 +0.089

G) Worst Case Total

Moment (xio6 in-lb) -10.11 (3) +3.257(3) +2.501(1) +1.980(4) -7.989(4)

H)Section Stress (psi)

Top +2189 -1355 -1350 -1001 +1600
Bottom -1074 -94 -126 -245 -978
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'507

.

i
.

• .
• •'

1

.

BM 3 GJ
'K-f

t

)

-77.882

;
<..'/7/.

l l

.

174

86 . 605

3 .7.14

26.7'-;

23.387

9 . E70
-5.0'^:

7.282

-14. 190

: 7.398

-29 . 092

70. 195

-29. -97

-16. 398

-14. 197

7.2BP
-5.0' -7

9 . 270

23.387
26.77:

E6

.

605

: : . 174

.

9 1 •7 7;

6.7
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DEAD LOAD ANALYSIS (CREEP INCLUDED)

WHITNEY'S ARCH

Zase Resu Its
jad
ase

Axial a) LJ
(kips)

Sh ear
( ki

S) LJ
ps)

BM S) LJ
(K-f

t

)

Ax i a 1 a) G J
( kips)

Sh ear S) GJ
(kips)

BM S) GJ
(K-f t

)

J 374- . 983 5. h<: 3 -11 . 174 -SSI ,48h i l . 400 -20.976

.1 33 1 . 641 3.37fc SO . 976 -383.975 1 3 .714 -77.822

1 3Sv.3i5 1 . 056 77. SEE —6V / .4-66' 16.1 33 —161. 355

|ME
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F i I n t e r B a nn& r Goes Here

DEAD LOAD ANALYSIS (CREEP INCLUDED)

WHITNEY'S ARCH

*** SUPPORT REACTIONS ***

Jase Resu It s
Joint
Number

"Load
Case

1 1

29 1

X-Reac t i on
( kips)

351 .633
-jtr 1 / r~i ^-*

Y-Reac t ion
(kips)

135.805

165.805

-Reac t i on
(K-f t

)

161

-161

E 1 a s t i c ana ). ys l 5 r esu Its

LLEY 1
)

Str No.

Sep 91 12:52 p
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EMPERATURE LOAD OF 40 DEGREES F

UHiThEY ' S ARCH

*** JOINT DISPLACEMENTS »»*

ZasB R BSul tS
Joint Load
dumber Case

1 I

£ I

3 1

4 I

C7
1

J. (J

1

1

1
r
-T

14

15

1 6

1 7

18

19

E

El

66

6>:

24

E5

WhE. Linear

..LEY

Blast

03546

ana 1 ys i s resu Its

'•-'o

'

06!

7 ]

06 --
. 874A6
—

> »-i c- .
-•

-'
. • CJ-+'.'

-
. 64642

•- .56608

-.A 0673

X-Displ . Y-Displ . Ro tat ion
( in) ( in) (rad )

. oOooo . UOUOO u . OooOu
- . 1 E 1

6

-
. 0AE1

1

-
„ 0O047

- . 00AE5 -
. 13E63 -.00083

. 1 A 1

7

- —i i=- f—c '-• — - . 00108

.03546 -
m 40673 - .00183

.0539E -
. 56608 -• .00128

. 06093 - .64642 -.00123

. 06586 - .72540 -. 00185

. 06906 - .87446 - . 001 13

.06871 - L . 003S5 ;'lr'UI 5H

.05966 ...
i . 03809 — . 00088

.051 £6 - 1 .06738 - . 00074
; ._,."?;.,.. •I 104 90 - ,,00068

. 0357a -1 -
, 00087

. 00000 -1 . 1 9E 72 . 00000
-

r Uc'j?'6 H .17004 00'"* '3 7

-
.
04""/ 64 -1 . 10490 . C '.""068

--.05126 —
.i .03736 . 000 "' +

'-' '-' '-' ' '

001 1.3

00185
.- ( "-, r-.

00 188

00183
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EMFERATURE LDAD OF 40 DEGREES F

WHITNEY'S ARCH

)ase R PSLll ts
Joint Load
Jumber Case

26 1

d"7 1

3 rj
1

PC 1

X-Displ .

( in)

-
, 0141

7

. 00425

. 1 E 1 6

. 00000

Y-Displ .

( in)

— . d5333

- « 1 dd.t>3

- .0421

1

C) ooooo

Ro tat i on
(rad )

. 001 OS

. 00083

. 00047

. 00000

^ME Linear Elastic analysis results
i r.'v
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TEMPERATURE LOAD OF 40 DEGREES F

WHITNEY'S ARCH

*** MEMBER FORCES *•**

:ase R
A
esul ts
x i a 1 o) LJ Shear 3 LJ BM S) LJ Ax i a 1 3 GJ

ise (kips) (k ips ) (K-f t

)

(k ips )

] -6. SIB O nctrO.CJJ 147.892 6.81 8

1 -6.936 2.994 111.816
A - 7 . 46 3 . 736 79 . 301 7 . 046

1 -7. 151 3.430 49.978 7.151

1
•—i i-i .• ,-

/ . c:Ho 3. 13S £4.215 7.24<b

I -7 .303 1.91

5

1 .933 7 . 3u3

1 -7 . 350 1 .749 -7 . 969 7 . 350
1 -7.401 1.51

7

-16.960 7 e .4 ;") i

1 -7.461 1 . 186 -33. 4 4

7

7.461
-< -7.49H . 959 -44 . 460
-i -7. 508 . B46 — Ll >-. '-"' *"''Q 7 . 508

1
'7 cr _j -i .715 — >_(]. . w' C -"." 7 , i52 1

I
«"i cr — ' ;

. 520 c -— r~ - r? r--. c^ ";r~.

1 -7.553 . 1 CD6 -58.210 ' rrcr'—i

1 -. 166 ~ ^J 7 • D / C.
t c; cr ~; r

1 -.520 — ..J C. . C- 1 '..'

-' cr '" •"-.

I -7.531 -.71 5 -52 . 997 *"7 E" r~*
I

-7 . 50B —
. 846 — _i 1 . ,_! DC 7 . 508

1 -7 . ii9ij. Q cr <~: —46. 6 7

S

7 . <4 - •'-!

i -7„-q1 -1 . i&6 —44 . 460 '? . 4 6 ]

i -7.401 -1.517 -32.447 . 4 1

• — •
. 3 ">-..' -'J . 74S: ._ 1 /., _ !y p. <

)

> -; '•jr-."-,

i

—7 Ti(">p -1.915 —7 - 969 f n 6 '-.-
' 6

H -7 .346 -2. 133 1 . 323 • "J •-. . . /

1 -7. 151 -3.433 24.315 "5 H t-<
/ . 1 J 1

^ME Li near Elast 3. c a r a .1 ysis rests 1 ts

_LEY

< kips)
3 GJ
s)

BM S> GJ
(K-f

t

)

3. nr cr -1 1 1 .816

.994 -79.201

.726 -49.978

.438 -24.215

. 133 -1 .928

. 9 i 5 7 . 969

h /T7 16.960

- _J .1. / 32.447
1 £ £j 44 . 460
.'-.i-j: —1

» 7 *._-
'7 46.878

. 846 51 .562

. 7 1

5

52

.

997

. 520 58.21

. 16::. 59 . 872

. 166 58.210

.. 520 52

.

997
r-1 -f L.'; 51 .562

46.878
qb;q 44.460

. J UJ 32.447

. 5 1 7 16.960

. 749 7 . 969

. 9 1 5 -1 .923

. . 3E -34.215

.4 33 -49.972
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Otrp 91 1 :00 p

nz





;
-. Printer Banner Goes Here >

'EMPERATURE LOAD OF 40 DEGREES F
::

WHITNEY'S ARO

ase Resu Its
a<3 Mx 1 a 1 37 LJ Shear 5) LJ
se ( k ips ) (kips)

1 / ;:.c

O 7JQ

BM S> LJ
(K-f t

)

4 9 . V / d

79 .SO 1

11 1 .Sit

Axial a) GJ Shear S) GJ
(kips) (kips)

7 .046

o.936

O . O i O

CT. ./CO

E . 994

BM 5) GJ
(K-f t

)

-79. SOI

-11 1 .816

-147.892

i E Li ne a r E I as t i c a na 1 ysis r e su 1 1

s

.LEY
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TEMPERATURE LOAD DF 40 DEGREES F

WHITNEY'S ARCH

*** SUPPORT REACTIONS ***

)ase Resu
Joint
Number

It s
Load
Case

X--React ion
(kips)

Y--Reac t ion
(kips)

Z-Reac t ion
(K-f t

)

1 I
1-7 crc-cr

. 000 147.89E

E9 1
*-j erirrc

. 000 -1 47.892

iME Linear Elastic, analysis results

.LEY

Str No.

05 Sep 91 1:02 p
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CHECK OF MOMENTS FOR VARIOUS LOADINGS
WHITNEY £5" F< SPAN ARCH

*** MEMBER LOAD DATA »»»

c a se 1 - member distributed
Men. Sloped UDL
No. K/ft slope

1 1

IE
13
J M

1 5
5 to

17
3 3

Proj. UDL
K/ft horiz

CD

6
to

6
6

6
6

loads
UDL Local UDLLoca 1 Tr

k/ft perp K/ft parll K/

>

o
o o

o o
o o

o
o o

o o t
')

Tr i angu lar
S> GJ

Therma

1

Change <F)

O

o

case 2 - member distributed loads
Mem Sloped UDL
No. K/ft slope

•a

-i o
E

»; )

6 i (

'-•
i :

S 1

9 • 1

•}

: ) o
d J

c^ ...

PA
»'... * -.*

E7
Eci

( .

(J

i I

Proj. UDL
K/ft horiz

-.6
- . 6
-.6
- . 6
- . 6
- .6
- .6
-

. 6

6

to

6

Local UDL
k/ft perp

o

o
o

o

o

Local UDL
K/ft pari 1

o

o
o
o
o
o
o

c

I 1

o
o
o

Tr i angu 1 ar Thi

K/ft S) GJ Ch,

(j

i o

1. ,

(

i

' / o

"0 o
l.<

1 /

o
o
1. 1 I.)

( *
"0

o o
< i

Change (F)

case 3 - member distributed loads
Mem Sloped UDL Proj. UDL Local UDl
No. K/ft slope K/ft horiz k/ft perp

Local UDL
K/ft parll

Tr i angu lar
K/ft S> GJ

Thermal
Change (F)

J

p »; *

M

to

o

'

)

'.

)

to

6
6

to

6
to

6

o
o

o
o
o

o
o
o

o

o
o
o

o
( I

o

o

o

o
o
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CHECK OF MOMENTS FOR VARIOUS LOALINGG
WHITNEY ESO FT SPAN ARCH

case 3 member distributed loads
Local UDlMem Sloped UDL

No. K/ft slope

1 1 (.)

Proj. UDL
K/ft horiz

- . 6

k/ft perp
Local UDL
K/ft parll

U

Tr i angu 1 ar
K/ft 5) GJ

o

Thermal
Change (F)

case ^ - member distributed loads
Mem Sloped UDl Proj. UDL Local UDL.

No. K/ft slope K/ft horiz k/ft perp
Local UDL
K/ft parll

Triangular Thermal
K/ft S> GJ Change <F>

JP o
J 3

_
'._)

lH o
J 5
16
17

13
_.

J *T i ,

SO
EJ o
/- r—
cr. •..'

*— #-

ctjl *_,

£•4

25
P6
/--

. r-. -

C 1 (J

pin o

6

6
6
•;•.>

<b

6
6
6
t>

&
,£

6
6

.6

<")

o

o

o

o

o
o
•0

i'i

o

o

.'/

o
o

I

)

o
o
o

>. )

(_>

o

o
o
o

("l

o

o

o

loped UDL, Projected UDL £ Point Loads act in the global coordinate system.
dc «3 Perpendicular, Local Parallel, Triangular Load?.: act in
he local member coordinate system.
• iangular Loads are1 at the lower joint with the magnitude specified at
he g rear ev j o int

.
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LIVE LOAD ANALYSIS (4 LOAD CASES

WHITNEY'S ARCH

*** MEMBER FORCES ***

Case
ad

ase

Resul ts
Axial i) LJ

(kips)
Shear o> LJ

(kips)
BM 3 LJ
(K-f t )

Axial a) GJ
(kips)

Shear S) GJ
(kips)

BM a) GJ
(K-f t

)

1

3
-'+

61 .793
85.031
56 . 633
89 . v36

- 1 1 .E3E
14.E56
Eh. 149

-21 .119

-814 . 668
664 . 368
547.655

— t) 1 . ,'7 O
—6 C . ***+ ,J

-54 . 306
—89 . 936

1 1 . 883
-8.637

-13.735
Ei . 119

9n . 309
-106.434
-310.045
893 . 920

C
3
4

63. 174
S3 .051
c •—

. crc —

,

90 .673

—
. n i f

~-

1 1 .959
80.738

-17.691

-9n . 309
106.4 34
310 .045

-8 C'6 .980

-68. 174
-79.673
-51 . 174
-90 .673

8.869
-6.451

-15.373
17.691

-6.291
-6. 174

-1 13.690
101 .EE5

8
3
4

63 . 469
79 . J66
5 q . 5 A-9
91 '. 386

— O . 4 •' C
i~\ cr .'

.

T . vJ-.-' T

17.88 9
-14. 198

6.891
6. 174

113. 690
-101. .885

—66 . 469
-77 . 201

-91 .23c

6 . 472
-3.913

-11 .633
14. 196

-75 . 68E
65.781
41 .043
-50.945

6
4

62.68C
76. 980
47 . 375
91 . 785

-3.941
7 . U3 i

-10^490

75.68E
-65.781
—4 1 . Om-S
50 . 945

-68 . 680
-75.043

-91.785

3 . 94 1
— 1 . o56
-7 ( 9,;

v:

16! 496

-1 17.3E0
1 10.066
154. SEE

-161 .775

1

E
6 3 , 790
/. 1

" C=' - t'•4 ..; . wic;n
93. 143

- 1 .33
4 . 4 i i

/ . o j. d
-e . 648

1 17.320
-1 1 .066
- 154.588
161 .775

-62.79
-73 . 884
—"8 6

r"'''"^

-92. 143

1 . 320
1. . 870
* . UvJQ
6 . 643

-131 .082
1S6.8S4
EE6.8E c;

-231 .087

1

a .71

^3 • 801

43 '. 736:

. 603

. '7 /C

6 . DC •+

131 .086
-12a . S'6h-
—226 . 66 9

-68 . 6' 6
— 7 c . 4 6
-4E.965
-92.303

- . 60

3

1 . 930
-2.497
3 . 66't

-187.965
134.350
647.83?

-850.851

1

8

"i

<;.>£ . 721
4 C' . a v b
9E . 3 ::: b

3 .'4^7

!-..' .7 CI _!

-184. 350
-847.235
850.851

— O C. . • / -i.

'-. " '•- nr.

—46 . C 6
-98 . 363

-2. 021

- . 548
1 . 736

-117.576
115.347
E57 . 55^

-259. 7E3

E
6E . 677
7 1 . 864
48, 165
r -. »-. --. - t-
7 ~_ . jj / ..

3 . 9 7 4
-.951
1 . 875
i . : 6 s

1 17. 5
r7

-1 15. 34"
-657 . 556
66V . 78 .->

-6c .677
-70 .659
—4 1.')

. 960
-98.375

-3.994
6.829
4 . >6

- 1 . 1 68

-76.801
75.636

846. 6^7
-847. 666

1 A --' 4 ~% r
7

1 U . C3 7 o
41 .096
9£ .333

6 . 780
-3.678
-6.1
5.27S

— / D . 6 ~>6
—846 . 67 2
64 '

. 806

-62.437
-69.951
-40. 156
-92.633

-6 .750
'

- . 60

6

! . 1 1

-3.151
8 . 39c

194.667
- 194 . 4SE

/

62.E02
7'. .210
40 . 383
93 . 0E9

8.673
-7.-V

'"

C5 rT H
3.076

8 .151
-8 . 396

-194.667
194 ,.486

-63.603
—70 . 080
-40. 1*3
-98.039

-3.673
6.763
cj . ,:j a a

1 3 . 70E
-IS. 313

-v 175.457
-174 . 067

AME .. i ne as r E 1 s s X 1. c: ana i ys 1 s resul ts Str No. C
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P r i n t e r 3 s. r ns r

LIVE LOAD ANALYSIS

^D&S

4 LOAD CASES'

WHITNEY '5 ARCH

)ase Resul ts
fa"3 Hxial 57 L

J

ise ( k ips )

Shear 5) LJ
(kips)

BM 3
(K-f t

LJ
)

1

62.064
70. 146
40.314
91 .397

6 J .574
70.274
40. 132
9 .. . 7 1

7

6 1 . 2S0
70 . 48 3
40 . 3B5
91 .318

60.715
70.574
40 . 777
90 - ? i

6

60.589

41 !063
90 .094

7(")
. OC3 /

. 4£3
4 . 680
90 . 1 I

61 .
- 6 1

70 9 7 1+

4*
— ' ) . 3 /u

61 >^ ^r
—

'

7U • i 46
41 .400
90 - 442

62 . E 02
7''

'

'- 9V8 i i*
""

-,

90 9799

4 J. . H- H d
90 .946

C. . fj / /

9 . 60S
-7.907
-7.760
9.461

7.41
-6.676
10.337
1 1 . 07 1

7. BOO
4 . 859

29-7
238

-9
12

4
-1

JO

666
crcr '—

394
SO7

^ME Linear Elast

_LEV

i c

I
c- cr —.

5 . 593
8 . 479

1 . 3 1 4
4 .8593 . 66::

-6.215
6.676
r-, cr —. c-— Li . _; v vj

3 . 056

—6 . 329
7 . 907

-1 .869
3.4- f 8

r-, / i— *—

,

—O . O / o
B. 968

-1 .8^6
1 . 5dt-

-6. 760
9 . i'iU'd

. J. 3
2.811

-3.994

ina lysis

7OS
3i 8

-Id .

12.
" 1 / -J . -t --J ,'

174 .067

-57.
5 (•

123!
121 .

-71 .

69 .

1 02 .

100 .

i i v .

1 IS.

812
084
43c

4 9 &
665
6dd

636
204
4

r '3

990

-136.
133.

-67.

- 119.
US.
120.

-121.

-71 .

69.
H CT"-J
1 w / .

- 1 59 .

*_; / »
cr >
_jt: ..

168.

18.
172.
1 "-/L.

— c .

i 7*=;

-5?d"

489
1 D4

bbt

91 9

/ c

resu 1 ts

140
143

812
i )y ;.(.

354
0S2

2' ;--s

8 1 8
70 ,

9 1

151
(• i 9 6
r -, / . i

D""t -'

036

801

Axial 3) GJ
( kips)

-61 .699
-70. 146
-37 .944
-91 .897

-61 .461
-70 . 274
—40 .132
-91 .603

-60, 867
-70.42
-40 . 385

, V . 7 U >_)

-60.583
-70.574
-40.777
-90 .680

-60.715
-70 .574
-41 .06 3
-90. 286

-61 . 280
-70.423
-4 1 . 2oU
-90.424

-70.274
-41 .360
-90.486

-62 .064
—70 . 196
-h 1 .400
-90. Si i

-68 .208
-70. £ i

-4 i . 423
-90 , 989

—tod. . h-o /

_7D go - 1

-41 .442—7 i .doc

—66 . 677

Shear S) GJ
( kips)

-6.389
7.907

11 .039
-7.461

-6.215
6 . 676

1 . 337
-9.376

-1.814
^.859
9 . 897

1 .333
i t_- cr —

>

.1 . ^.) w O

f . DOS

.!. . >j .j d
cr c:: — ,

- ,J. J7 "j

-8 . 480

7
' ^9' -4 . 859

3 . 66c
-.7£ 1

7 ^ 1 ("i

0.676
8 . 695

! .861

V . 606
7 . 9 9'

1 .96 9
•-

. 1 69

8.973
'•'.475
1 . c:46
-

. Oh-8

9 9730
.: .6
- .013
3. 115

9.994 -117.576

Str No.

05 Sep 91 1:55 p

BM S) GJ
(K-f t

)

57.
-56 .

1 £3
-121.

812
084
432
704

71 .

-69.
1 02

.

- 100 .

499
496
665
663

119.
-11s.

9.
-7.

,686
, 204
,473
, 990

136.
-133.
-64.
67,

"-jercr
, OJJ
.734
,483
. 104

119,
-113,
-120,
121 ,

.686

.204

.430

.913

71
,

-69,
- 1 57
159,

.499

.496

. 140

. 143

57
—56

-162
164

.812

. 084

.354

. 088

13
-12

-172
174

. 70S

.318

.701

.091

-8
8

-175
176

. 151

.396

.841

. 086

-76
75

-175
174

. 80 1

. 636

.714

.549
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LIVE LOAD ANALYSIS < 4 LOAD CASES)

WHITNEY'S ARCH

Case
ad

Resul ts
Hxial a) LJ Shear 3 LJ

ase (kips) ( kips )

E
3
/.

70 . 659
A J . 4<">0

91 .935

6.829
* r-\ cr *-?

X n QJ /

. 97S

1

E
62.771
71 .793
A 1 . 3 E i

t j . c. "4 a

-E.0E1
3 .Ell
3.158

-1 .968

1

4

6E . SO 1

7E . 468
41 .339
94.029

- . 603
1 . 930
4 . 090

-E.764

1 6S.790
73.224
41 .095
C". .. — -I o

1 . 3E0
1 .270
5 . 35 1

-E.761

O
H

6E.680
75.043

96 . SS8

3 „ 94 1

7.063
-4 . 474

1 6E.469
77.201

6 . 47E
-3.913
8 . 70S

- 6 . 1 4 v

if

2, 174
/ 9 • 67c

101 I 695

8.869
-6.451
10.359
-7.841

BN S> LJ
(K-f

t

)

i

E. u-»-

6 l

LiE
39. 734

1 04 .505

1 1 .PA

7 .JVI

17'
-17>

636
714
549

1 17.576
1 15.347
156.760
154.531

1E7.965
124.350
140.530
136.914

131 .083
1 26 . Ei_ 4
1 19 .383
1 15. 139

1 17.330
110. 066
6 3 . 5 '••/ 7

-56.344

75 . 6SE
~oj . / o

1

- 1 i . 033

O . C T I

6. 174
104 . ^8*
1 1 l; . CJ 1

106 "434
-216. J §|

Axial a) GJ
( kips)

-7 1 . S6-f
-41 .400
-93. 140

-62.771
-72.493
-41 .321
-93.943

-62 . 80 j

-73. EC'S
—41. E3 ;'

—94 . 790

-6E . 790
-74.9E1
-41 .095
-96,616
—6E . 6S'--"'

-40 I 835
-98 .824

-6E . 469
-79.366
-40 . 5 1

/

- 101 . 3 1

t

-62 . 1 74
— on. . Ow j

-40. 153
-

1 0< '.. / ,r

-61 .793

-107! 090

Shear 5) GJ
( kips)

-.951
— I . 0_J /
4 . 900

E . 02 1
-

. E9E
-3. 158
4.887

. 603

.97E
-4 . 090

cr t i 1

-i . 6 c (d

1 . 3d!.( \

8.516

-3.94

1

1 u
. Oa3
. 153

V

11

. ••;
"3

. 509

.708
•"V /. C

"

—
'd

11
- 1

-t '"
1

.369

[349

1

1

1

4

- i 1

1 4

. Bold.

,._j ^^
'. 805

BM S) GJ
(K-f t )

115. 347
-156.760
154.531

-127.965
1E4.350

- 1 40 . 530
136.914

-131 .082
1E6.8E4

-119.388
115. 1E9

- 1 1 7 . 320
1 10.066
-63.597
56.344

-75.68E
65.781
1 1 . 0SE

-E0 . 9E3

-6.E91
-6. 174
104.386

- 1 16.851

90

.

309
-106.434
E16. 1E8

- add. . a^jc

E14.66E
-E34 . 363
346.615

-366 .316

AML Linear

LLEY

Elastic a 1

y

s i s r esults Str No .
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P r i n t er B c* i 1 ne r G o t? s Here

LIVE LEAD ANALYSIS (4 LOAD CASES)

WHITNEY'S ARCH

*** JOINT DISPLACEMENTS ***

Case Results
LoadJoint

Number

a

10

Case

1

AME

LLE'

o
4

I

3

:E:&r

L

El ,e= + i c. s. na

.

X-Displ .

( in)

.

.

.

6

.

00'000
00000
ooouo
00000

1 9 1 E
0173b
04714
04839

05454
05406
14903
14952

OS60S
03730
E605£
25985

10238
i 0570
3522 7

10025
10531
40919

. 404 1

4

.0C E93

,42347
. 4 1 '774

... .08234

. 4EEk}3
—

. 4d2c>ci

--

'Oolcl
. 4 1 ".' 6 ::'

—
, 4o6 3 ../

. 38295

1 s result

Y- D isp 1 .

( in)

o
•

uOooo
l'i (') :'-. ("',

ooc
Oouoo

- •

3715
041 36
10133
09713

-
1 1 607
1 E9E5
33999
3268 i

-

• 194O0

O wl '..•' T

60545

-

233. 1

90290
86 'd. b '"

~ 1

1

E 2 p ^b

09901
04347

_ 1

1 VfcOb
"/ cr .—

. f- ^,

155El
09 1 76

1483-'

'.

'

-T (._ CD fc3

.1
'7 -+.-'

>.J ,;i -• L.-.'.

1
r_ ^

f J cr ....'

•. )
"; -,

o 1
r

i"',-
:

;

B ]
''-- erg

Ro tat i on
(rad )

o .. ouuoo
. 00000
00000
00000

5 5
00060
00154
00149

0O071
00079
00231
00223
.--i .-•, .-• cr cr

' >00 66
00243
00233

PQO 16

66262
00 i

90

00 1 20
(', ',

l Q 7

( I'.""' >67
6665E
C 6 7

"-"'673
I » I I . .1 i

(I 6662
, 1

--; r

00158

00221

Str No

05 Sep 91 1:28 p
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< Printer Banner Soes Here

LIVE LOAD ANALYSIS (4 LOAD CASE'

WHITNEY'S ARCH

Case Resul ts
Joint Load
Number Case

1 1 I

13

14

15

16

El

AME Line.

LLEY

X-Displ
( in)

02180
0S769
37379
36789

01107
01617
353 3 6

00804
OiESl
34o"-i-o
34169

0001 3
OiVj' 1

31900
3 1 637

Elastic

Y-Displ .

( in)

-.El 3-7 4
. 1 1537

-.84907
. 74570

-

.

jEuj4
.El 063

-.6717' '

. >_'Od oo

— . a-..!* j

d

. E4306
- . 60023
.48941

4909E

21478

1 ) 00000
OOOOfi
30949
3094 9

-.54154
.41960
. 17959

-.30153

-
00013

. 00250

.31631

.31894

- . 49092
O / 1 / •-;

- *? 6'c 1 9
—

. 64 /3 /

-
, OOB04
. 01281
'. 33855

- . 3545E
.24 206
. 79346

-
.01 107
.01617
.3375E
. 342<f: 6

— . 32004
!eTo63
„ £33453

-.9M-399

^21 80

. 3-4 ~3t

. 3532'/

--
. 21874
. 1 153 r"

.926 3

1

- 1 . 0294

3

-
. 02756

! 351 10
.3573„)

Vr - 7 %,

-1 ..05732

. 05503 . 00945

;na I ys is resu I ts

Ro
(

tat ion
rad )

.00158

.00148
00245
00255

00147
00 1 38
00289
00E9S

00140
00132
0030

1

003 io

00083
00073
0023d

I 0000
OOOC
003 1 6
.''">316

l \l M V—

'

ro
.HH

oo mo
00 3 33
00 i S 1

"'

001 7 3

00147
0C 138
00163
00154

00158
1)1 ! [.46,

00 114

>0091
>00B1

.00 3 37

Sep 9 1

Str No. C

1:28 p
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'. P r i n ter Bannar boes Here

LIVE LOAD ANALYSIS (4 LOAD CAGES'

WHITNEY'S ARCH

Zase Resul ts
Joint Load
dumber Case

Ed

C4

3
4

-Displ . Y-Displ . Ro tat i on
( in) ( in) (rad )

-.06181
.35931

-.36609

-.09668
1 .01375

- 1 . 10099

-.00125
. 00004
. 00008

. 08234
- . 03865
.34971

-.35602

. 1488v
-.22052
.97105

-1 .04269

. 0009c'
- . 00078
- . 00074

. 00087

. 09E93
-

. 09866

. 33640
—

. 342 1

4

. 1 9603
— . C _< 7 w.1 Ci

.
'7

3 690
-.98035

. 00065
-

. 00052
- .00106
.001 19

. 10025
- . 10531

. 31694
- . 3EE00

. 22648
— . 2b'2o2
.844E4a cv c; r? ~;'

. 00036
— . ! .". />. >c 't

-.00135
.00148

. 10238
- . 1 0570

". 36077
-

. 26403

.2381

1

-.278 L6
.65669

— i a i o / H

-
. 000

1

t
. 00028

—
. Q ("i i 7 4
', 66 1 So

. 0860S
-

. 08730

. .1 c ,.Jo 7
~

. lOO "' /

.
i 9400
<ri i r-,e —

.

^S906
-

. '-i-O^i-wlO

! 00066
-

. 00184

!')
Jjj Uf

c
, lii-

-"65406
. 1 03 1 6

-. 10267

. 11607
- . iEvdD

''"l -~ ""7O "
. cr. c: / 7 i.

- . 24 1 9

-
. 0007

1

. 000 79
-

. 0016E

.00170

. 1 9 1

E

-.01788
. 03c 2d

- . 0d09b

.03715
- .04136
.06561

— . i j6932

—
u 00055

-
c 00 i Oc
. 00107

. 00000

. 00000
I ) (j{ .'( li. i.. .1

i'; . 000OO

. 00000

. OOOO'O

. 00 J'-.'C'

. 00000

6 . 66666

. ("'0000

iML L i near Elastic ana 1 ys i 5 resu Its

.LEY

Btr No. C
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< F r i n t e r B a r. ne r bees He r e

LIVE LOAD ANALYSIS (4 LOAD CAGES)

WHITNEY'S ARCH

*** SUPPORT REACTIONS ***

Case Results
Joint Load
Number Case

1

c.

3

1

a
3
u

X--React ion Y--Reac t i on
(kips) (kips)

60.598 16.500
70.591 49.500
40.930 46.305
90.E59 19.695

-60.598 16.500
-70. 5°

1

hV . 500
—

Cjf n Q q f)
/ . f~>CT£s.n7 v.J

-96. £59 59.505

Z-React ion
(K-f

t

)

- £ 1

4

. 66E
ES4 . b'63
547

-527 .955

E14 .66E
-S3h . J63
3 *+6 .615

-366 . d 1 6

:AME Linear Elastic analysis results

LLEY

Btr No.

05 Sep 91 1 :EB p
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CRITICAL LOAD ON WHITNEY ARCH

*»* MEMBER LOAD DATA ***

;ase 1 - member distributed loads
im Sloped UDL Pro j . UDL Local UDL
[ K/ft slope K/ft horiz k/ft perp

1

2

3

4

5

6

7

8

9

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

:0

11

12

13

14

15

16

17

18

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23

Local UDL
K/ft parll

Triangular Thermal
K/ft @ GJ Change (F)

>ped UDL, Projected UDL & Point Loads act in the global coordinate system.
:al Perpendicular, Local Parallel, Triangular Loads act in
i local member coordinate system.
.angular Loads are at the lower joint with the magnitude specified at
i greater joint.
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CRITICAL LOAD ON PARABOLIC ARCH

WHITNEY'S ARCH

:ase Results
Joint Load
dumber Case

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 1

24 1

25 1

X-Displ. Y-Displ. Rotation
(in) (in) (rad)

0.00000 0.00000 0.00000

-.04866 -.16462 -.00183

-.01909 -.51629 -.00320

.05002 -.99971 -.00413

.12996 -1.56879 -.00470

.19793 -2.17521 -.00482

.22448 -2.48533 -.00506

.24696 -2.80579 -.00520

.26556 -3.41666 -.00460

.24262 -3.93464 -.00372

.23091 -4.04874 . -.00366

.20001 -4.28527 -.00331

.18682 -4.36562 -.00322

.10299 -4.66788 -.00171

0.00000 -4.77585 0.00000

-.10299 -4.66788 .00171

-.18682 -4.36562 .00322

-.20001 -4.28527 .00331

-.23091 -4.04874 .00366

-.24262 -3.93464 .00372

-.26556 -3.41666 .00460

-.24696 -2.80579 .00520

-.22448 -2.48533 .00506

-.19793 -2.17521 .00482

-.12996 -1.56879 .00470
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?ase Results
roint Load
dumber Case

26 1

27 1

28 1

29 1

CRITICAL LOAD OH PARABOLIC ARCH

WHITNEY'S ARCH

X-Displ. Y-Displ. Rotation
( in

)

( in

)

(rad)

-.05002 - .99971 .00413

.01909 -.51629 .00320

.04866 - .16462 .00183

0.00000 0.00000 0.00000
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CRITICAL LOAD ON WHITNEY ARCH

** JOINT DISPLACEMENTS ***

lase Results
oint Load X-Displ. Y-Displ. Rotation
[umber Case (in) (in) (rad)

1 1 0.00000 0.00000 0.00000

2 1 -.33012 .40387 .00688

3 1 -.89038 1.37969 .00962

4 1 -1.45051 2.48996 .00913

5 1 -1.87802 3.39780 .00628

6 1 -2.12684 3.87432 .00194

7 1 -2.18403 3.89519 -.00086

8 1 -2.19963 3.74565 -.00373

9 1 -2.14320 2.96761 -.00885

10 1 -2.03244 1.59980 -.01357

11 1 -2.00495 1.16961 • -.01479

12 1 -1.95114 .10760 -.01710

13 1 -1.93647 -.31791 -.01787

14 1 -1.91131 -2.61165 -.01989

15 1 -1.99977 -5.01194 -.01969

16 1 -2.18664 -7.23630 -.01708

17 1 -2.43349 -9.00986 -.01235

18 1 -2.48345 -9.29158 -.01129

19 1 -2.61526 -9.92319 -.00805

20 1 -2.66847 -10.13806 -.00654

21 1 -2.82642 -10.50458 .00018

22 1 -2.83337 -10.06358 .00679

23 1 -2.76211 -9.56067 .00969

24 1 -2.63772 -8.88741 .01237

25 1 -2.21944 -7.08717 .01691
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la.se Re<3llltS
roint Load
lumber Case

26 1

27 1

28 1

29 1

CRITICAL LOAD ON WHITNEY ARCH

X-Displ. Y-Displ. Rotation
(in) (in) (rad)

-1.59238 -4.85981 .01892

-.86867 -2.61023 .01736

-.23086 -.77844 .01128

0.00000 0.00000 0.00000

8&





CRITICAL LOAD ON WHITNEY ARCH

*** JOINT DATA ***

X - coord. Y - coord. X - Degree Y - Degree Z - Degree
(feet) (feet) of Freedom of Freedom of Freedom

9.919 4.963 1 1 1

19.87 9.438 1 1 1

29. 8<* 13.43 1 1 1

39.83 16.92 1 1 1

49.84 19.92 1 1 1

54.86 21.24 1 1 1

59.88 22.42 1 1 1

69.92 24.43 1 1 1

79.94 25.95 1 1 1

82.45 26.25 1 1 1

87.96 26.8 1 1 1

89.98 26.96 1 1 1

100 27.48 1 1 1

110 27.5 1 1 1

120 27.08 1 1 1

129.98 26.22 1 1 1

131.98 26 1 1 1

137.46 25.31 1 1 1

139.95 24.97 1 1 1

149.94 23.31 1 1 1

159.92 21.22 1 1 1

164.88 20.02 1 1 1

169.86 18.72 1 1 1

179.83 15.82 1 1 1

189.89 12.49 1 1 1

199.87 8.774 1 1 1

209.99 4.583 1 1 1

220

Degree of Freedom: 0=restrained l=free j=coupled to joint 'j'
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Thesis
K264 Kelley

Safety and stability inconcrete barrel shel/roof
structures.

c.l

Thesis
K264 Kelley
c.l Safety and stability in

concrete barrel shell roof

structures.




