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INTRODUCTION.

Tur present Supplement contains the integration of some partial
differential equations, to which I have been conducted by the view
of mathematical optics, proposed in my former memoirs. Accord-
ing to that view, the geometrical properties of an optical system of
rays, may be deduced by analytic methods, from the form of one
characteristic function; of which the partial differential coeffi-
cients of the first order, taken with respect to the three rectangular
coordinates of any proposed point of the system, are, in the case of
ordinary light, equal to the index of refraction of the medium, mul-
tiplied by the cosines of the angles which the ray passing through
the point makes with the axes of coordinates: and as these cosines
are connected by the known relation that the sum of their squares 1s
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unity, there results a corresponding connexion between the partial
differential coefficients to which they are proportional. This con-
nexion is expressed by an equation which it is interesting to study
and to integrate, because it contains a general property of ordinary
systems of rays, and because its integral is a general form for the
characteristic function of such a system. The integral which I have
given in the present memoir, is deduced from equations assigned in
my former Supplement; an elimination which had been before
supposed, being now effected, by the theorems which Laplace has
established in the second Book of the Mécanique Céleste, for the
development of functions into series. The development thus ob-
tained, proceeds according to the ascending powers of the perpendi-
cular distances of a variable point from the tangent planes of the
two rectangular developable pencils which pass through an assumed
ray of the system, and according to the descending powers of the
distances of the projection of the variable point upon the assumed
ray, from the points in which that ray touches the two caustic sur-
faces. In the case of rays contained in one plane, or symmetric
about one axis, the partial differential equation takes simpler forms,
of which I have assigned the integrals, and have given an example of
their optical use, by briefly shewing their connexion with the longi-
tudinal aberrations of curvature. I hope, in a future memoir, to

point out other methods of integrating the general equation for the



95

characteristic function of ordinary systems of rays, and other ap-
plications of the resulting expressions, to the solution of optical pro-

blems.

WILLIAM R. HAMILTON.

OBSERVATORY, October, 1830.

P2



SECOND SUPPLEMENT.

Statement and Integration of the Partial Differential Equation, which
determines the Characteristic Function of Ordinary Systems of Rays,
produced by any Number of successive Reflexions or Refractions.

1. Suprosk that rays of a given colour diverge from a given
luminous origin, and undergo any number of successive changes of
direction, according to the known laws of ordinary reflexion and
refraction, at surfaces having any given shapes and positions, and
enclosing media of any given refractive indices. Let a, 8, ¥, be the
cosines of the angles which the direction of a final ray makes with
three rectangular axes, and let z, y, 2, be the three rectangular
coordinates, referred to the same axes, of a point upon this final ray ;
then @, 8, ¥, will in general be functions of «, y, z, such, that if w
denote the refractive index of the final medium, for rays of the given
colour, the expression

p(wdx 4 B dy + vy dz)

1s equal to the differential of a certain function V, of which I have
shewn the existence and the meaning in former memoirs, and which
I have called the characteristic function of the final system. The de-
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sign of the present Supplement, is to point out some new properties
and uses of this function, resulting from the partial differential

equation
)+ @+ @)=

which we obtain by eliminating the three cosines «, 3, ¥, between
the three equations

av av dv
o = ke Ti;"""-"'ﬁ’ 7 =Y (B)

by the help of the known relation
@+ B+ y=1.

2. The equation (A4), is a particular case of a more general
differential equation, for all optical systems of rays ordinary or
extraordinary, obtained by eliminating the same three cosines, «,8, ,
by the same known relation between the three following equations,
assigned in my former memoirs,

dV__3P_ ggzau av __ v,
dr ~ %’ dg T B & T %’

in which ¥V is the characteristic function of the system, and v is a
homogeneous function of «, B, ¥, of the first dimension, Tepresenting
the velocity of the light, estimated on the hypothesis of emission,
and differentiated as if &, 8, ¥, were three independent variables.
And the integral of (4), is a particular case of a more general inte-
gral, extending to. all optical systems of straight rays, and consist-
ing of the following combination of equations, assigned in my for-
mer Supplement :
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b1.4 ¥
—-=W+?3:s-+=r§7

W+V=x

3W *v
= w--i-!/;ﬁz-l-z—;;

W M Sv + Fo

Ty TV T

between which the three quantities «, B, 7, are to be eliminated ; W
being an arbitrary but homogeneous function of these three quanti-
ties, of the dimension zero ; and the partial differential coefficients in
which the sign 3 occurs, being formed by differentiating the homoge-
neous functions W, v, as if «, 8, 7, were three independent variables.
In applying these general results to ordinary systems of rays, we are
to put
v=p (& 4 B 4 V)
v pla v y. 23 v ﬂ

&'—-“—': 8/3 ’ 37-—

y"’ 2 2 2 2 2 v 2
3¢ (U—'Vo )) ’pg—vs(”'_p‘ ﬁ)lv‘—( —!"7)
3“_0___51.-‘_41_3_ Fv =__;A",B'y Qv ___‘u.‘yu:

dad8 — v 38 w7 dyda T v’

or, (making after the differentiations &* + £* 4 o* = 1,)

& v
VE e o=, 55 = =8, F-—p-'y,
* ¥ >
}I}-—-#(l—a*), 7£;=#(1—ﬁ’)’§;g=ﬂ(l—7’),

v Xv v .
m:—uuﬁ, W:—[&ﬂy, W = - uya;
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and therefore,

W V= (az + 8y + 72),

-33;!=M—M(u‘+ﬂy+72)’

3w <
o = by — ph ez + By + %),

b1 4
Ty = #E—wy (ax 4 8y + 72).

This system of equations (C) is one form for the integral of the
partial differential equation (4); the quantities a, 3, ¥, being sup-
posed to be eliminated, and ¥ being an arbitrary function of these
quantities, of the kind already mentioned. |

Transformation and Development of the Integral.

3. The system of equations (C) may be transformed into the
following :

dU

du du au
=g =g VHUSeT e )

in which U is a function of .the three independent variables a, £, z,
obtained from the function # by putting

U= W —uyz, (E)

and by considering ¥ as a function of @, 8. Let us now proceed to
eliminate «, 3, between the three equations (D), by the theorems
which Laplace has given in the second Book of the Mécanique
Céleste, for the development of functions into series.

This elimination may be simplified by a proper choice of the
coordinates. The rays of an ordinary system being perpendicular to
to the surfaces which have for equation

V = const.,
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compose in general two series of rectangular developable pencils, and
are tangents to two caustic surfaces. Let us therefore denote by
x,, Y, %,, three rectangular coordinates so chosen, that the axis of 2,
coincides with some given ray, and that the planes of z, z, and y, z,
are the tangent planes of the two developable pencils to which that
ray belongs ; and let « 8 ¥ denote, for any proposed ray of the sys-
tem, the cosines of the angles which the ray makes with the axes of
z,y,z,. The equations (4) (B) (C) (D) (E) will apply to the
coordinates thus chosen, by simply changing z y 2 to z,¥, 2,; and
by changing v to its value

«* 4 g

7=V_m=l— )

_— 'y(*) — 'y(s) -— &, ,

in which

1.3.6. ... (20 + 1) (a® 4 8Y)°+°2
2.4.6....(2 +2) 244

>

7(95 +4) =

the function ¥ will in general admit of being thus developed,

W= a0 4 & (dat + BE) 4 pWO + uW® + &e., ()

W, A, B, being constants, and W, W*, W, being rational
homogeneous functions of the two small variables «, 3, of the dimen-
sions 3, 4, i, respectively. The constants 4, B, are here the dis-
tances upon the ray, from the points in which it touches the two
caustic surfaces, to the origin of the coordinates ,y, 2,; and the
terms proportional to «, 3, #3, disappear from the development of /¥,
by the choice which we have made of these coordinates, and by the
principles of the former Supplement. In this manner the function
U becomes

U= pW® — uz, 4 %{@ + )k @+ B) B} pUO + uUO 4 &e, (6)
VOL. XVI. Q
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i which
U(9‘+3) - W%+ 3); U% 4+ ¢) = W@Ei+4) + z/y(ei-l-i) 5

and the two first of the equations (D) become

e ARy e+ B "" (H)

if we put for abridgment

ll = Y = — (U® ) , I
ey B ® (U9 + U® 4 &c.) (H

z, 4+ B’

do d ..

On account of the smallness of d-:» ﬁ, the quantities «,, 3,, are
approximate values of «, 8; and to develope «, 8, themselves, or any
function of them, F (a, 8), in a series of ascending powers of these
approximate values, we have, by the theorems of Laplace before re-
ferred to,

d~ (dF, ¢ dg, )-+l) d* (dF, (do, )u+1)
F(«,8) = F, + E(,.)o { ;i:/_ ( (d“/ 1 dﬁ" d.B/ dﬁ, } (K)
TP+ G+ AP T Tn 4 IPF1 G Br et

dr +n d@,)""'l d@ )u'+1 dF d¢,)“+’d d¢ n41 dF’ d¢ n+1 d d¢ #'4-1
w, o da,"dB,™ gda,dﬁ, da (dp, du dg, da, da d,s, ,) da, dp, %
st [n 4+ 1P+ [0 4 1+ (5, 4 AP+ (5 4 B +!

the functions F,, ¢,, being formed from F, ¢, by changing «, 3, to
@, B,, and [n + 1]"*', [n"+ 1]"*', being known factorial symbols ;

we have therefore,
d_" (d@' )n-[-l
- dap’ \dx,

CEE T e LI Ay

drtw (d’q), d@,) )'+1
©m da d8 ™ \dz, dB, ds, / \ds, )

F w0l G g 11 (3, 4 APFI (s, 4 B
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ar  do, )n-]- 1

d'B/ a8,
=48+ 32,7 (r + 1°+1(z, 3 ByrH?

dri» d!¢’ do, ni-1 d@[
$5 o da* dg> (d; dp,(dT,) (d;s, )
(™ n')o 0 [n + l]u-{ l[nl]u (z + A)n+l (z + B)"'“ . (L)

Now, if we differentiate ¥ as a function of the three independent
variables &, 3, z,, we have by (B) and (I),
% = ez, + 4), —V—p-ﬁ(z,+B), T O Y U PR

we have also V = wz,— uW , when a,, 3,, vanish ; and therefore,
Vi=ps, — pWO 4 p (3, + 4) fads, + p (2, + B)/Rdg,, (N)

z, being considered as constant in the integrations, and the integrals
being so determined as to vanish with @, B,. Substituting in this
expression (N), the developments of «, 8, and performing the inte-

grations, we find the following development for Ea

%___,,__ wo +§{(z/ + A)a? + (z, + B) ﬁ’z}

a  (do, )-+2 d~  ,do, )~+i
+ 0+, "% i a (& }
g "0 " +
v+ 202 &+ AFFT T [0 4 2P FE(z + BPF

dntn dtq, de, )s-] 1 a1
o, o da dB» (da dp, \ da, dp, )

TR om0 TP i U P e AP G+ B

(0)

which 1s another form for the integral of the partial differential
equation (4), obtained from the elimination (D). And if we wish
to introduce any other rectangular coordinates z, y, 2, into the ex-
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pression of this integral (0), instead of z,, y,, 2,, we may do so by
the known methods, by putting

Z, = (& — x,) cos. xx, + (y — y,) cos. yx, } (z — z,) cos. zz,
¥, = (z— ) cos. 2y, + (y — y,) cos. gy, + (z — 2,) cos. zy, (P)

z = (z — x,) cos. 2z, - (y — y,) cos. yz, 4 (2 — z,) cos. 22, _:

2,9, %, being the values of # y z that belong to the point upon the
ray which had been taken for origin.

Verifications of the foregoing Developments.

4. We may verify the form (O) which we have thus found for
the integral of (4), by the following condition, resulting from (M),

avv « 4V 2V _
A w5+ Ade, u i+ Bdg, p =V 1 —F—F (@

ot which each member is an expression for the cosine y of the
small angle which a near ray makes with the ray that we have
taken for the axis of 2,. The condition (Q) may be put under
the form

d v .
A ad Gl D R ey (R)

in which, by (0),

d 1 4 — “/2 -+ ﬁlg d¢
e
i"_(i‘fi)""'l d!@,) d_n«@)n+1 d?@)
+ 2(':):{ da \\ da, du,dz, + L, S }
o 1771 (z, 4 AP FT [n+ 17"+ (z, + By i1
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) i (3" 1

& (dp,
—_ 2(.):{ dzp" \da,
GratEr A T Fe+ 26+ e

dr w1 (d’(p, (d@,)» +1 dq)‘ a'+l)

da”dﬁ,"l dz \d“ldpl da
]]n+l [n + l]" +l(z’ + A)"‘l‘l (z -+ B)" +1

-, A .+ B d:+" d*p, (do,\» +1rde, \n+1
it (zni Y :,-:- l) dEn]"i‘BEn ]z‘(zdﬁ-llgdzl)a)+2 (z(flg)a £ 2) ; (8)

@,

+ (nu')o 0 [n+

anda by (L)a
d do,\e+1 & (do,\n+1
“e dc da,) . d/S, d,B) (

w4 A8, =, +ﬂ, + (n)O{ [n+ ]]"1‘1(2 +A)"+1 + [» + ]]ull(z + B)’+l

b (g, (d¢,) (dcp, '+ l)
das ®, da" dgp du dg \da,
z, (') 0 0 L”]" [n + l]u 1—1 (z + A)n-t—l (z + B)n +1

dniw (d%, d@ ni 1 d@) )
+ 8,3 o, de d,B, de,dB, dn ds, . (T)
/ “n, 80 0,0 [” + l]n-i-l [”I]ll (z + A)n-{«l (z + B)n -1 >

while the development of

VI—&=¢

may be deduced from the general formula (K) by changing
Fa,B)toy =4/ 1 —af = £,

and
Ftoy,=4/1— 4,5 B

To compare these several developments, and to examine whether
they satisfy the condition (R), we are to observe, that from the
nature of the function @, we have by the foregoing number,

d.
0, =0+ rOf &)=y, =1 f 55— i L + & H
(U)
&9, d’/l. d'@: L8 4 +d'}’;. a9, &y, |
T dg,’ du,d,e,dz, da,dg, ’

y Py ik M Pal B

VOL. XVI. B
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and therefore

el G I O M B ) B ) A

HEr B @) e @ (B (@) @)

by which means the difference of the developments (8) and (T)

becomes
d de, u+ld7, ﬂ do\» +ld/4
17; ——(“/ +88)= =v,+ E(u) 0 g de (( da, dﬁ:"( (dﬁl) dﬁ, ) %
o F 171G, A+t T Ta F 11 (5, F B8

arim d"y, w1 d¢ Wil dy d¢l)»'+ld ,1¢, n1 d.},/ (d¢ )n-l-l d 44,,) ./.H}
_I_S o mdu]'d,s g dz,dﬁ, da) (dﬁl dp’ ds,’ dﬂ/ de de, dﬁ,
,n")0, 0 [n4- 1]»—{ A’ ¥ l]al-j-l G A)n-l—l &+ B)"’+1

5(V)

and the series in this second member being exactly that which would
result as the development of

v=4s1—a*—g,

from the formula (K), we see that the condition (Q) or (R) is satis-
fied, and the sought verification is obtained.

Another verification of the foregoing developments may be
obtained by applying the general expresssion in series (K), for any
function F of the cosines «, 8, to the case where this function is =
Z: - We find, first

@0 do,\nr1 T, "1 o,
2 = %l+z(,,;°§ (@) "' &) " (3 Zds)
' (o G ariT g v Bt

dni» d%, d,p‘)ﬂ-l ( w1 d’cp do\v+ d 12’. + d"P, ,14) w1 g d¢ w1
+3 o cndalndﬂ Ngh!dpl(du, d,B, dﬂ, de; dadp, da d‘ ) z
el CEias [n PG, AP, F By g
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which may be put under the form

L gl& =41 driw ( ) ( n’+1)
d(p =3 ® da’ (da, e ® 0 da"dﬁ"’ dadﬂ de, , (X)
de~ ™0 [a 4 1] 1(z, + AP 0’0 TTA[w + 1]~'+l(z -|-A)"(z -|-B)' 1

that 1s, by (L),

Bt M) (=), (¥)

which agrees with the conditions (H). A similar verification may
be obtained from the same conditions (H), by considering the deve-

lopment of :—:-

Finally, we may observe that the condition

4 U
T A s — ek g (2)

becomes, by (G) and (I),
14 e A . ,
=5 — WOt 4 A) (e—F) + @t B (8= ) 405 W

mn which, by (K) and (L),

nt1 an d¢')n+2
- =% _ s o nt2dar\ds,
272 OO T I (s 4 Ay

w, df”j,;,' (dadﬁ de, ).+l Z: )"+l)

T e O TP T+ (s, + AFE G, F By T

41 de )n+2
%: s @ n+2dp"

o — &
e 2 = (») 0 [” + l]""l (’ + B)n—l—-?

drtv (&g, (dp, \»+1 d¢,) +1)
—_ dardg™ dx,ds, \ds, ds,
(-w)o 0 [n + 1 FI W (z, 4 Ayt (z,+ B™ z
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d@) + 2 a @l)"""
¢ = % + 2(,)(?{ dd-, dd, + dB," dﬁ, %
[n+4 11311 (z, 4 A1 fn 4 11 (z, 4+ Byr+1

artv ¢ &9, (do, \x+1 (de, \¥+1
e M) e (T s, dT,) d,s,) )

+3z, ., . (B
o) 0,0 L TPFT [ 4 171 (z,+ Ayp¥FT(z, 4 By i H

so that we are conducted by this other method to the same expres-
sion (O) for the characteristic function of an ordinary optical sys-
tem, as that which we before obtained by performing the integra-
tions (N). In all these expressions the sign 3»00 denotes a sum-
mation with reference to the variable integers n, ', from zero to
infinty.

Case of a Plane System.
5. A similar analysis may be applied to integrate the partial dif-

ferential equation
dV\% dV\2
=)+ (&) =w ()

to which the equation (4) of this Supplement reduces itself, when
we consider a system of rays of ordinary light, contained in the plane
of xz. In this case, if we put
&, = (% —z,) cos. xx, 4 (2 — 2,) cos. 2z,
} )

z, = (T~ z,) cos. 2z, + (% = 2,) Cos. 2z,

we may suppose &, %, to be new rectangular coordinates, in the same
plane as 23, and such that the axis of 3, coincides with the direction
of some given ray of the system: and we may denote by «, 9, the
cosines of the angles which any near ray makes with these new axes,

so that
vy=a1—=4d.

We shall then have for one form of the integral of the partial diffe-
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rential equation (C”), the following combination of equations:
d
pn= 2, v+ U=ugl, (®)

between which « is conceived to be eliminated, and in which

2
U= W —pyz = pWO — pz, +i"—(’-‘ii24?)1— —uds

—o=z 5 (Wots 4 2 ymr9); (F)

. 135... (2i4 1) a%+4
i1 8) = 413 g, H +4) = . = H
WEED = 12 w4 55 v 246...(2iF2) 24’

W), wi 4 s, being constant coefficients in the development of the
function W, according to the powers of «, and 4 being another con-
stant in that development, namely, the distance upon the given ray,
from the point where it touches the caustic curve of the plane sys-
tem, to the origin of z, and z,. The first of the two equations (E’)
becomes

o =a 4+ ;I—_:-_——Z :—g s

when we put

=t .
‘T 44’

and gives therefore, by the well-known theorem of Lagrange, for
functions of a single variable,

e dr,(do Yok
de’ du, \de,
T IFF1G, 4 AP0

(G')

F(«) denoting any function of @, which admits of being developed
according to positive integer powers of &,, and F,, @,, being formed

VOL. XVI. S
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from F, ¢, by changing « to @,. The cosines a, 7, may therefore be
thus developed,

d» do, )a-]—l
da?" \da,
“= a4t Zwo Tag 1P+ (s, F AP+

&y, d¢,)~+l
dap’ das de,
Y=Y+ 30 In + l]'+1(z + ApF1T

(H)

if we put
v, =l —a’,

And since ¥V may be thus expressed,
Vmps,— WOt s+ A) [ e, )
because
dV = p (adz, + ydz) = pa (2, 4 A4) da, + & (am, 4 7) dz,,
and because V becomes wz, — pH(®) when «, = 0, we find, finally,
dn (d¢’ n-2

V_ (2 +vq)¢,2 ® d
-[:_z,—W(O).l.. _’-_2T_+¢l+2(.)o [ L2

du, Lo
TR A

This form (K") for the integral of the partial differential equation
(C’), may be verified by observing that it satisfies the condition

ldV
® dz —““/+')’: (L)

V being differentiated for 2, and «, as two independent variables ;
because

de, — @ (“+.) &) dz?l d‘}’:
Pt Y7 —1+3. Tadz, = du, T %7
dr+1 rdp, \n+2 { d@/ r 1 le )}
Zards, d‘,) =(+2zs d¢, ta)g
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% ﬁ)nﬂ-" di‘:rll (da')+ + (» +l)d¢ (dO') - 0

and therefore, differentiating (K") as if «, were constant,

: (@)
14V _ d.l du
_’:dz__ + @, +¢/ (,.)o [n+l]a+1/(z +A)’l+l

& d_v_:d_&)““
dar (a2

+ z(n): TN VER (2,’+'-A)"+‘ ’

N9

that is by (H’),

1 av _
m 3;—“,4'7-

Case of a System of Revolution.

6. Another particular case of the partial differential equation
(A), deserves to be considered specially ; namely the case of sys-
tems of revolution, symmetric about some single ray. In this case,
if we take for the axis of z, the ray which 1s the axis of the system,
7 will be a function of 2 and of 2* + y*; and if we put

24y =, (0)

we may in general suppose V developed according to positive integer
powers of 2, in a seres satisfying the condition,

(&) + (@) =

To integrate this partial differential equation (P’), which 1s a
particular case of (4), we may employ the corresponding case of
the general system of equations (D), (E), putting for abridgment

=, Q)
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and considering the quantities 7, U, as functions of s, which we
shall suppose capable of being developed according to positive inte-
ger powers of that variable. In this manner we shall obtain

avu _,,4U dU av (R")

and therefore by (D),

dU\? au
— et =2 —= . s’
fla’n_4s(d.),7+U._2s % (8"

We huve also by (E),

— —— dU_dW ﬁ rlv\
in which
y=#1l—s;
and we may put
W= f"W(o)_'l‘ &g—‘ + f"z(;):'“'g Weigs 5
dw A o /s X
E‘=P—2‘+.‘"2(Oo(‘+2)"+1“’2-'+45
(U

aUu A .
Z = “—(1—24:—2—#4'3 —¥=2,7 Uy1d+;

. 352041
Uits = (i + 2) ways + ;::((22:1—2; —;‘5

in which W(®, ws; 4.4, A, are constants of the same kind as be-
fore, A denoting the distance of the origin from the focus of central
rays. Hence, if we put for abridgment,

- ” —_ z‘+.'l’- /
EEFAE T Gr A V)
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¢, 1s an approximate value of s, and we have the following relation
between ¢, and s, ,

4¢¢ 4:4? ’
‘="+z+A-(z+A)” (W)

which gives, by the theorems before referred to,
df, 5y yn+1
SO =S, 4 52 4-+ld., dn("’—zq-d }
' [n + 1F1 (= 3 AP
S (&) being a function of s, and f, 4, being formed from f, 4, by
changing ¢ tos,. We have also, by (S") (T") (U"),
—_z—-W(")-l- (&fo (dl + 2 7? o

=z o 4 EE A ~ 2t f7 qa, (¥)

X

and therefore, by (X%,
vV (z + A)‘l s
—E,— =z WO + —-§—-— —_ 2!;4/, —':/; "P, d‘,

4wt dr + A d‘l‘; '/“’/2 nf-1 R v
+ 2(,.)0 [n ¥ 11*F (z F Ay ds" ( F) —2, ""’r)(‘:‘l’,“m) }: (%)

in which,

- oH &y ® fs
Yo=—Z4,0 Uga ;EI"=-'2(I)0 (’+1)U£+1‘/ ’

‘I\bd —-——3 ® [ ’I“H . — ”
./‘o =T R0 Tt T3 YT AR

The development (2") is one form of the integral of the partial
differential equation (P') ; another form of the same integral, may
be obtained from the expression (K’) for the characteristic function

of a plane system, by changing «, to ;‘f—:lz , and 2, to 2, and 1is,

VOL. XVI. T



114

v_ , o (e AT B (142 deyebny
RO O el e (o (@) ) A0

in which
L e 135..2i4 1) =z
d=—=24p W(wsi1-4+2.4.6...(25 +2) 244 (B%)

Each of these forms gives, when we neglect #*, the following
approximate expression for the characteristic function ¥V of a system
of ordinary rays, symmetric about the axis of z,

V 1 (48w (24 16w’ | (24 8w,)% . .,
7‘___z"_Ww)-'-2’(3-{-14)- 8(z 4 A4)* 16(z+26'4758'+m’ (8]

in which, » = 2* 4+ g*, and W), 4, w,, w,, are constants in the
development of the connected function W, such that when we neglect
the eighth power of the sine of the angle contained between a near
ray, and the axis of revolution of the system, we have

%: m0)+ ﬂ%’t_ﬁf) + w, (‘e +pz):- + w, (“2 + 52)3, (D”)

, 3, being, as before, the cosines of the angles that the near ray
makes with the axes of 2 and y, to which it is nearly perpendi-
cular.

Verification of the approximate Integral for Systems of Revolution.

7. THE approximate expression (C”) for the characteristic function
of an optical system of revolution, admits of extensive ‘apl?lications:
it is therefore useful to consider other methods, by which it may be
obtained or venfied. An immediate verification may be derived
from the partial differential equation (P’) of which (C”) ought 'to be
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an approximate integral ; namely, by computing from (C") the ap-
proximate expressions of

EEY e ()
I;?(gz—) and ’:?(dﬂ >

and trying whether their sum is unity, when »* is neglected. Putting
for this purpose the expression (C") under the form

2 3

] L "
=IOt e T Se AP T 6+ AF
(A—Sw) | (32w,—16w,—3A4)® | (4— 8w ) "
+ S ar + 16(:‘+’A)6 + 8z 4) (F)
we find, by differentiation,
rar _, kd 3 8¢
wd - Ty AF TEe+ A 1664 A7
(4—8w )it 3(32w, — 16w, —3d)®  7(4— 8w, ).
TEEAF T 8EFAT S kA F1)
24V _ 1 4 3 (4 — 8w, )
v = ir AW Ar YT ey apt SpT Ay
3(32w, — 16w, — 3A4)° | 3(A— 8w Fst
8z + A7 Mg A
and therefore, neglecting »*,
LI Ly SO TR RO A N € o)
AV Y Rl CE ) S PRyl P S PR
4 (Fd—N2w, 44800 TA—8w)r
4z + AV T A+ 4
(G")
49 fdV 2__ 7 n” 7’ (4 — 8w 1
I 3;) (AT (z+4)° + (z+ Ay + (z 4+ A

(114 — 112w, 4 48w )# 4 HA— 8w, )4
- iz F A) G=F4F
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expressions of which the sum is unity, as it ought to be. We may
remark that the former of these two expressions represents the square
of the cosine, and the latter the square of the sine, of the angle
which a near ray makes with the axis of revolution of the system.

Other Method of obtaining the Approximate Integral.

8. Again, the approximate integral (C”) of the partial differen-
tial equation (P’), may be obtained in the following manner. Since
V is supposed capable of being developed according to positive inte-
ger powers of 7, let us assume

Yo vosvo,prvoe+ vo,s, (H)
2
neglecting #¢, and considering V®, V®, V®, V©, as functions of z, of
which the forms are to be determined. To determine these forms,
we have, when » = 0,

av a¥wv azyv
V= ,I-V(o);—"l-n— = ‘I.V(l); d—”2 = 2[}."(2); W = BP'V(S);
l’l
AV dve @y _ AP BV dv® @V dp®) ()
TN e M Td Wt M Tl T N T

: , av av

The equation (P’) shews that = = + w, when » = 0; and

is positive, if we suppose the motion of the light directed from the
negative towards the positive part of the axis of z; we have there-

fore, by (1”),

dvo
T: 1. (KI/)

The equation (P’) gives also, by differentiating it with respect

to »,
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o AV AV av &V (dV)e_

= ZanTvgo wt2g) s W

dn
AV &V (V2 av v 2 V\2 dv &V
o=Gamnt () te G T+ (d—,,*‘) 8
(L")
_dV d'V &V &V dvav VSV 1
'=zwat ot ranam t e

av d&*vV d2V\?
+12 T T 12 F)’

and, making 1 = 0, we find by (I") the following equations in ordi-
nary differentials, from which ¥®, 7®, V', are to be deduced :
0= ‘!%;l + ovae;

_dre arm )z

O_T+8V(l) V(’)+§ _Zz— H (MII)

_dre drmave
0= T 4 12O Ve 4 ST o syer,

These three differential equations, when divided respectively by
oz, Poi, P08 can easily be integrated, and give, when combined

with the integral of (K"),

0, = VO —z; )

1
vl=—l7-(-i-)~-2z;

| 4¢ > (N")
v, = Faw + 2z;

LA . L9

va"—"__.———

vae 240, ’

.J

Uo» Uy Uy, Vs, being the four arbitrary constants introduced by the
four integrations. The functions V@, V® ¥V® V@ are therefore
of the form

VOL. XVI. v
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v, — 2z
3 V@ 2

1
" = s P = =D —2
FO=2 4 w; FO= +7, Rz 4 v,)*’

2z
(0"
4z 4 v, 4("1 o)

Y= m¥er T wmrey

and these forms for the coefficients ef the development (H”), agree
perfectly with the development (C”) or (E”), when we establish the
following relations between the constants :

v, = — W50, =245 v, =— 16w, ; v, = 8 (16w, — 8w, — 4): 00

we see, therefore, that the present method of integration confirms the
former results,

Connexion of the Longitudinal Aberratim in a System of Revolution,
with the Development of the Characteristic Function V.

9. To give now an example of the optical use of the development
which has been thus obtained, let.us consider its connexion with the
aberrations of the near rays, from the principal or qentral focus. We
have already remarked that the constant 4 denotes the distance of
the origin of coordinates, upon the central ray, beyond this principal
focus, in such a manner that the focal ordinate is = — 4. For the
ordinate Z, of intersection of any near ray with the central ray, we
have by the fourth of the equations (C), of the present Supplement,

1 w
R wEEA @

if we form the coefficient %V- by putting # under the form of a homo-
geneous function of «, B, 7, of the dimension zero, with the help of

the relation «* + B + 9* = 1, and by then differentiating this
function, and if &, B, were constant, and 9 the only variable.
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Employing therefore for % the development

L A= + B TR U of -
“ W(°)+2(-‘+B‘.+'y’) + 2(.)0 T E T T’ (R")

which is of the homogeneous form required, and, after differentiafing

for o, making &* + 8* 4+ 9> = 1, we find for the ordinate 2,

Z=—A44(1 —'y)—yz(i):(2i+4)wﬁ+4(a’ + BT, (8")

a series of which the term — A4 being the ordinate of the central
focus, the remainder is the longitudinal aberration: ¥ is the cosine
of the angle which the near ray makes with- the central ray, and
o + B is the square of the sine of that angle. If therefore we de-
note the aberration £ + 4 by A, we may develope A in a series of
the form

A=L (& +8) + L, (¢ + 8 + &e. (T")
in which
L=34d—4w,, L, =54+ 2w, —6w,. (Un

And if by these relations (U”), we eliminate w, @; from the ap-
proximate expression (E”), we find the following formula :

- : o g L
V=pE=WO) + T+ iGx A)’(z+ ,r-*)

w (2L, —5L 6Lt ,
YA A Y agar i) V)

which shews the connexion in a system of revolution between the
development of the longitudinal aberration A, and that of the cha-
racteristic function V.
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Changes of a System of Revolution produced by Ordinary Refraction.

10. Suppose now that the rays of this system of revolution fall
upon a refracting surface of revolution, having for axis the axis of
the system, and having for equation

=:°+z,n+z,n + z, * 4 &e. (W)

w

in which 5 isstill = a* + y* = the square of the perpendicular distance
of a point zyz from the axis; and let ' be the refracting index of
the new medium into which the rays pass after refraction. It is evi-
dent that in this new medium, the rays will compose a new sysem of
revolution, symmetric about the same axis as before ; and we may in
general suppose the characteristic function 7’ of this new system,
which is analogous to ¥ of the old, developed in a series similar

to (V)

w'n® L
P (z = WO) + 2(z+A) tiFor\eix 7 _4)

e 2L, — 6L’ 6L”? - ,}. ,
+l2(z+A)5{ i+ A4 T egaptig: (X"

the constants 4" L' L, being similar to A L L,, in such a manner
that the ordinate 2’ of intersection of the axis with a near ray, is

Z=—A 4 L' (") + L', («* + 87), (Y")

if &’ 4 8 denote the square of the sine of the angle which the near
ray makes with the axis, and if we neglect the sixth power of this
sine. To connect the new and old constants in the development of
the characteristic function, we have, by the nature of this funetion,
and by the principles of my former memoirs, the condition

O=AV=V —=VF; (z"
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which is to be satisfied for all the points of the refracting surface, and
which may therefore be differentiated, considering AV as a function
of z, n, namely the difference of the developments (V" (X”), and
considering z as itself a function of #, assigned by the equation of the
refracting surface (#/”). In this manner we find, transposing the
symbols A, d,

dv .
0= d "'d., & ]
N4
0=Ad_q’+QEA dzdn +(d_u) dz*+ dn’ %=
. L (A")
2
O—A-El_’-—*-ai; a dZdn’+3 %) dz’dn+ da) rd
dz gdz du &V &z, dV.
R & )
and, making after the differentiations » = 0, we have
d ds ds \
. dz . du 2
z=zo’£=zl’ 2‘7_2 d"3-623)
av av &V
AE_A[L,AEF 0; A@— 0;

d—z— “' M ﬂ— | —F’ d3V — ‘L . 1"
ag=ta Ao a g =ia Tl a g =a s >(B)
&V —2uL 3w .

AT _A{2(z+A)‘ 4(z+A)3} Adzd’—A{(z+A)5 4(z+d)‘}’
v L, —5L 3L
s =4 (z+A)5(2(z+A) + EFay '*‘%) )

We have therefore, I, for the change of — 4, the ordinate of the
central focus,
VOL. XVI. x
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o:ax_:4+2z, Aw: (C7)

II*, for the change of L the first or principal coefficient of aber-
ration,

— 2”'1'__ [od _ ____F‘___ . "
o=a T Ay Ay T ()

I, for the change of L, the coefficient of the fourth power of the
sine of the angular aberration, in the expresssion of the longitu-
dinal,

_ » f2L, =6L 3L w —2L
0=a. (z+A)5 2(&"}‘) + (z+A)2+*)+-3zlA’ (z+_A-)‘ ;—‘I'A_ +- 4)

2 [ d - m
-+ 3z, A.m—az,A-(T_ﬁT-'-ﬁzsAp, (E™)

z being the ordinate of the point of central incidence. With respect
to the present meaning of the sign A, we may remark, that the
first of the three equations (C*) (D”) (E") is equivalent to the
following :

1

and the two others are to be similarly interpreted.

Example ; Spheric Refraction ; Mr. Herschel’s Formuda for Aberration
of a thin Lens.

11. These general equations for refracting surfaces of revolu-
tion may be adapted to the case of a refracting spheric surface, by
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1

1 1
2 B pr A = a5 2 T s (G™)
the two first, for example, becoming
0=A(-—L i). (Hm)
=44 )]’
=af(- 2L __ & 2
‘=o (T rm— Ayt ) ()

which contain under a convenient form, the known theorems for the
change of the central focus, and of the principal coefficient of aber-
ration, by refraction of a spheric surface ; 7 being the radius of this
surface, and being considered as positive or negative, according as the
convexity or concavity is turned towards the incident rays.

If, for instance, we consider an infinitely thin lens in vacuo, hav-
ing w for its refractive index, and having r, ¢/, for the radii of its two
spheric surfaces, (positive when those surfaces are convex towards
the incident rays,) we may take the point of central incidence for
origin, and the equation (H"™) will become,
Crermloecdogalze

r

0=

M'F

— A4,— 4’, — 4”, being the ordinates of the central focus in the
three successive states of the system ; and similarly, (I") will give

O__2{.¢L’ 2L o 1 2u 2)+p.—l.
-‘A'4'“T"'(4'3"7F) (rA' r& r ’8

(LIII)
oL L (1 1—p s
Y L (AT" A”) (r’A”' M")"" IECl

L, L', L”, being the three successive values of the principal coeffi-
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cient of aberration. Adding the two equations (L), the interme
diate coefficient L’ disappears, and we find,

0=?4£—”11_2AL—‘_ (ﬁ";!)"'m (,., ,.)
= (7w = 77) + =0 (3= 7). (M)

in which, by (K"),

I 1 p—1 1 1 1 1
7= oa— " =g te—0(3- 3); (")

and therefore,

S [ [N I SR

if we put for abridgment

2
- 2%+
0 = l* 1+ 2 — 2 2 .
M + o + = ;
i+3—3,» L (P)
mo =1t ;
r r
MO=2+3.
# J

It is easy to see that the formula (O”) agrees with the expression
for the spherical aberration of an infinitely thin lens, which MRr.
HrrscueL has deduced by reasonings of a different kind, in his Me-
moir *‘On Aberrations of Compound Lenses and Objeet-glasses,” pub-
lished in the second part of the Philosophical Transactions for the
year 1821 ; and in his excellent ¢ Treatise on Light,” published in

the Encyclopedia Metropolitana.
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The elegance of this formula of Mr. Herschel, and the important
consequences which he has obtained from it, have induced us to
shew how the same expression may be derived from the develop-
ment of the characteristic function of an ordinary system of revolu-
tion, assigned in the present Supplement. The same form of deve-
lopment, and those other forms which we have assigned in the same
Supplement, for systems not of revolution, contain the solution of
other optical problems, of which we hope to treat hereafter.
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The Reader is requested to make the following Corrections :
In formula(N), read V= pz, — u WO + uf {(,+ A)ade,+(z, + B) £d8,}
In (V). for 2* 4 y* read 2* + y*
Before (A"), for “and is” read “and supposing w,, .= 0, and is”

In formula (B") of First Supplement, for z read .



