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An essential ability of many cell types is to detect stimuli in the
form of shallow chemical gradients. Such cues may indicate the
direction that new growth should occur, or the location of a mate.
Amplification of these faint signals is due to intra-cellular
mechanisms, while the cue itself is generated by the noisy
arrival of signalling molecules to surface bound membrane
receptors. We employ a new hybrid numerical-asymptotic
technique coupling matched asymptotic analysis and numerical
inverse Laplace transform to rapidly and accurately solve the
parabolic exterior problem describing the dynamic diffusive
fluxes to receptors. We observe that equilibration occurs on
long timescales, potentially limiting the usefulness of steady-
state quantities for localization at practical biological timescales.
We demonstrate that directional information is encoded
primarily in early arrivals to the receptors, while equilibrium
quantities inform on source distance. We develop a new
homogenization result showing that complex receptor
configurations can be replaced by a uniform effective
condition. In the extreme scenario where the cell adopts the
angular direction of the first impact, we show this estimate to
be surprisingly accurate.
1. Introduction
In a variety of cell types, the ability to locate external stimuli is
essential to normal function. Some important examples include
eukaryotic gradient-directed cell migration (chemotaxis) [1–3],
directional growth (chemotropism) in neurons [4], yeast [5,6]
and airinemes in zebrafish [7]. A unifying feature of these
systems is that they must infer the spatial location of the
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Figure 1. Planar diffusion from a source x0 to receptors arranged on a disc representing a cell. The non-overlapping receptors have
centres fxkgNk¼1 and spatial extent f1‘kgNk¼1. Source inference is the task of recovering x0 [ R2nV from the statistics of
particles incident to the receptors.
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external source through the noisy arrivals of diffusing particles to membrane receptors. Many authors
have sought to understand how complex downstream machinery, activated by noisy receptor input,
enables cells to accomplish this feat of triangulation so robustly [8–16]. In the present work, we focus
on the most upstream component of this mechanism, the dynamics of the signal to the receptors.

Signalling molecules undergoing planar diffusive transport will eventually arrive at a receptor (cf.
figure 1) and the distribution of arrivals across the set of receptors, known as the splitting probabilities
[17], encodes information on the source location. In the scenario of planar diffusion, or three-
dimensional diffusion to a spherical cell with surface receptors, Dobramysl & Holcman [18,19]
demonstrated that a unique source location can be inferred from the splitting probabilities, provided
the number of receptors is at least N = 3. Biological receptor numbers vary considerably between
systems with examples including N≈ 104 in budding yeast [5] and N≈ 104−105 in lymphocytes [20].
In [21], a maximum-likelihood estimation (MLE) method was developed which enables robust source
inference from splitting probabilities for large receptor numbers N. Interestingly, clustered receptor
configurations can exhibit improved source inference over homogeneous arrangements.

While these works indicate plausible approaches to infer the direction and possibly the distance of
signalling sources, mechanisms for their implementation at a cellular level are challenging to account
for due to several factors. First, both the splitting probabilities and the derived MLE are global
quantities—their use in source detection implies that a cell has knowledge of its geometry, the spatial
configuration of its receptors, together with an ability to store and integrate signals. Second, as we
shall demonstrate, the two-dimensional splitting probabilities in the small receptor limit are all equal
and independent of the source location. Finally, in the scenario of an unbounded domain, the mean
arrival time for an individual signalling molecule to arrive at a receptor is infinite [22], suggesting
equilibration to the splitting probabilities may occur on a long timescale. The timescale of this
equilibration may or may not be matched by those observed biologically. We note that in contrast to
the bounded domain scenario, the timescale for equilibration in the unbounded domain case does not
reduce to evaluation of the principal eigenvalue [23]. Furthermore, an equilibrium state may not be
applicable if the source location is mobile or its signal dynamic in nature [6,24–26].

In this paper, we suggest that much more information can be gleaned by considering the dynamic
problem and that source directionality is most easily inferred from short-time receptor arrivals.

The mathematical formulation for the splitting probabilities draws from the conceptual framework of
Berg & Purcell [27]. For a cell represented by V , R2, the splitting probabilities ffkðxÞgNk¼1 encode the
likelihood that a particle originating at x [ R2nV reaches the kth receptor @Vk before any others. This
satisfies the exterior Laplace mixed boundary value problem

Dfk ¼ 0, x [ R2nV; fk bounded as jxj ! 1 ð1:1aÞ

and

fk ¼ d jk, x [ @Vj, j ¼ 1, . . . , N; rfk � n ¼ 0, x [ @Vr: ð1:1bÞ
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We define @Va :¼ <N

j¼1@Vj as the portion of @V covered in receptors and @Vr :¼ @Vn@Va as the
remaining portion. Here, δjk is the Kronecker delta function. As discussed above, we consider the
dynamic receptor signal described through the probability density p = p(x, t) satisfying

@p
@t

¼ DDp, x [ R2nV, t . 0; p ¼ dðx� x0Þ, x [ R2nV, t ¼ 0; ð1:2aÞ

and

p ¼ 0, x [ @Va, t . 0; Drp � n ¼ 0, x [ @Vr, t . 0: ð1:2bÞ
Here, D > 0 is the diffusivity of the signalling molecule. For the purposes of inferring source location, the
quantities most relevant are the individual receptor fluxes fJ kgNk¼1 and the combined receptor flux for the
cell, ρ(t), satisfying

J kðtÞ ¼ �D
ð
@Vk

rp � ndS and rðtÞ :¼ �D
ð
@Va

rp � ndS ¼
XN
k¼1

J kðtÞ: ð1:3Þ

The models (1.1) and (1.2) are well-studied conceptual models of receptor activation [13,27–30].
Extensions to this canonical system have studied to account for more intricate biological features such
as receptor binding dynamics [31], receptor diffusion [32] and receptor gating [33,34].

In the present work, we develop solutions to (1.1) and (1.2) by means of matched asymptotic
expansions in the limit of vanishing receptor size. For the dynamic problem (1.2), we obtain fluxes by
first applying a Laplace transform, solving the modified Helmholtz transform equation by matched
asymptotic methods, and finally applying numerical inverse Laplace transform. Throughout the
analysis of the static and dynamic problems, we adopt the notation that the N receptors are centred at
fxkgNk¼1 and occupy a segment of the boundary with arclength f1‘kgNk¼1. The receptors are assumed to
be well separated from each other and the source x0, specifically jxj � xkj ¼ Oð1Þ as 1 ! 0 for j≠ k and
0≤ j, k≤N. Our analysis is valid for general cellular geometries V in terms of certain Green’s
functions (discussed below); however, our exposition will focus on a circular cell of radius rcell = 1
with a source at distance |x0| = rsource (cf. figure 1). The applicability of this work to a half plane
scenario, which has previously been studied in source localization [18], is demonstrated in
appendix D. To corroborate results from the hybrid numerical-asymptotic approach, we employ a
recently developed kinetic Monte Carlo (KMC) method, which can rapidly and accurately sample all
relevant arrival statistics [35].

To perform inference on the source location, we develop in §3 a MLE that connects the receptor
arrival counts fckgNk¼1 to the cumulative fractional fluxes qk(x; t) through each receptor. This approach
leads to the optimization problem

bxMLEðtÞ ¼ argmax
x

Lðx; tÞ, Lðx; tÞ ¼ �
XN
k¼1

ck log½qkðx; tÞ�, qkðx; tÞ ¼
Ð t
0 J kðtÞdtÐ t
0 rðtÞdt

: ð1:4Þ

The cumulative fractional fluxes have limiting behaviour ϕk(x) = limt→∞ qk(x; t) and therefore provide a
natural comparison to the splitting probabilities. We observe that short-time fluxes yield a more
accurate directional estimate bxMLEðtÞ on the source compared with longer time fluxes or splitting
probabilities. Motivated by this observation, we investigate simple recovery algorithms that use the
directional information content in early receptor arrivals. One such mechanism is a simple polar
averaging of receptor inputs, which provides an accurate estimate of source direction at short times.
At later times, for which the signalling molecules have diffused far from the source, the estimate is no
longer reliable.

To explain the accuracy of short-time estimates, we obtain in the case of equally space receptors a
homogenization result in which the mixed boundary conditions (1.2b) are replaced by a uniform
Robin condition Drp � n ¼ kp for N≫ 1. The obtained homogenization parameter

Dk�1 ¼ � 2
N
log

1N
4

� �
ð1:5Þ

results in a very accurate representation of the solution in the regime 1 � ffiffiffiffiffiffi
Dt

p � 1. The homogenized
solution allows for identification of the timescale at which particle density becomes radially
symmetric—the time after which no directional information is incident to the receptors.

Finally, as a theoretical limit on the directional information of short-time arrivals, we apply extreme
value theory [36–38] to obtain the arrival time ta and arrival angle θa of the first impact among M
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independent particles released from the source. For a circular cell of radius rcell = 1 centred at the origin

and source at x0 =R(cosθ0, sinθ0), we obtain that for M≫ 1, the arrival angle is normally distributed
N ðu0, s2

ua
Þ where

s2
ua
ðM, RÞ/ Rð1� ð1=RÞÞ2

logM
: ð1:6Þ

The implication of (1.6) is that a single particle, travelling along a ballistic path from the source to a cell
receptor [36,37], can yield an accurate estimate on the direction of the source. Moreover, this estimate can
be formed without a cell integrating receptor fluxes as required in the use of splitting probabilities or
MLE. Finally, in §5, we conclude by discussing some potential extensions.
 rnal/rsos
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2. Asymptotic construction of splitting probabilities and dynamic fluxes
In this section, we obtain an asymptotic representation [17,23,35,39–41] of the solution of (1.1) and (1.2) as
1 ! 0. This analysis requires knowledge of the solution vc(y) to a rescaled form of the governing
equations in a stretched region y ¼ ðx� xkÞ=1 in the vicinity of each receptor. The details of this
solution are provided in appendix A. We consider the static and dynamic problems separately.
:221619
2.1. Splitting probabilities: the static problem
The splitting probabilities have previously been calculated for closed geometries ([17], Section 5) and here
we modify the analysis for the exterior setting. The absorbers satisfy @Vj ! xj as 1 ! 0. In terms of the
local problem with stretched variable y ¼ ðx� xjÞ=1, we establish that fkðxj þ 1yÞ � d jk þ AjknjvcðyÞ
where vc solves (A 2). This forms the local condition

fkðxÞ � d jk þ Ajknj log jx� xjj þ Ajk þ � � � , x ! xj, j ¼ 1, . . . , N; nj ¼ �1
logð1‘j=4Þ :

In order to evaluate the limiting behaviour of (1.1) as 1 ! 0, we may formally expand the solution in an
asymptotic expansion of the small parameter 1=j log 1j as

fkðxÞ ¼ f
ð0Þ
k ðxÞ þ 1

j log 1jf
ð1Þ
k ðxÞ þO 1

j log 1j2
� �

and dAjk ¼ Að0Þ
jk þ 1

j log 1jA
ð1Þ
jk þO 1

j log 1j2
� �

:

9>=>; ð2:1Þ

After collecting terms, we have a series of problems. At leading order term, fð0Þ
k ðxÞ satisfies

Df
ð0Þ
k ¼ 0, x [ R2nV; f

ð0Þ
k ðxÞ bounded as jxj ! 1; ð2:2aÞ

rf
ð0Þ
k � n ¼ 0, x [ @Vn<N

j¼1fxjg ð2:2bÞ
and f

ð0Þ
k ðxÞ � d jk þ Að0Þ

jk as x ! xj, j ¼ 1, . . . , N, ð2:2cÞ

while the correction problem for fð1Þ
k ðxÞ satisfies

Df
ð1Þ
k ¼ 0, x [ R2nV; f

ð1Þ
k ðxÞ bounded as jxj ! 1; ð2:3aÞ

rf
ð1Þ
k � n ¼ 0, x [ @Vn<N

j¼1fxjg ð2:3bÞ

and f
ð1Þ
k ðxÞ � Að0Þ

jk log jx� xjj þ Að1Þ
jk � log

‘j

4
as x ! xj, j ¼ 1, . . . , N, ð2:3cÞ

where the constants Að0Þ
jk and Að1Þ

jk are to be determined. We define the surface Green’s function Gs(x; ξ) for
the Laplacian, which solves

DGs ¼ 0, x [ R2nV; �rGs � n ¼ dðx� jÞ, x [ @Vnfjg ð2:4aÞ
and

Gs �
�1
p

log jx� jj þ RsðjÞ þ oð1Þ, as x ! j: ð2:4bÞ
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The leading order problem (2.2) has a constant solution while f

ð1Þ
k ðxÞ is expressed as

f
ð1Þ
k ðxÞ ¼ �p

XN
j¼1

Að0Þ
jk Gsðx; xjÞ þ �f

ð1Þ
k , ð2:5Þ

for constant �f ð1Þ
k . So that there is no growth as |x|→∞, we have that

PN
j¼1 Að0Þ

jk ¼ 0. This boundedness
criteria is analogous to the Fredholm solvability condition used in the splitting problem on a finite
domain [17]. Summing (2.2c) and applying

PN
j¼1 Að0Þ

jk ¼ 0 yields that

f
ð0Þ
k ¼ 1

N
, Að0Þ

jk ¼ 1
N

1�N j ¼ k
1 j = k

�
: ð2:6Þ

The equality of the splitting probabilities in the limit 1 ! 0 means that the finite receptor size is necessary
to perform source inference in two dimensions. This is in contrast to the three-dimensional equivalent
[21]. Matching the solution (2.5) to local behaviour (2.3c) yields (N + 1) linear equations for the values
of the constants ðAð1Þ

1k , . . . , A
ð1Þ
Nk , �f

ð1Þ
k Þ,

XN
j¼1

Að1Þ
jk ¼ 0, �f

ð1Þ
k � p Að0Þ

jk RsðxjÞ þ
XN

i¼1i=j

Að0Þ
ik Gsðxi, xjÞ

24 35 ¼ Að1Þ
jk � log

‘j

4
, j ¼ 1, . . . , N:

This completes the expansion to Oðj log 1j�1Þ. Further terms of the expansion can be calculated to
improve the accuracy of the series; however, these additional terms cannot mitigate the fact that
1=j log 1jnþ1 � 1=j log 1jn only when 1 is exceedingly small. This well-known issue of logarithmic
expansions in two-dimensional singularly perturbed problems [39,42] can be resolved by obtaining
the so-called ‘sums-of-logs’ solution to (1.1). This involves positing the expansion

fkðxÞ ¼ f�
kðx; nÞ þ oð1Þ, as 1 ! 0,

where the correction terms are smaller than any power of 1=j log 1j. Here, ϕ�k(x; ν) satisfies

Df�
k ¼ 0, x [ R2nV; f�

kðxÞ bounded as jxj ! 1; ð2:7aÞ
rf�

k � n ¼ 0, x [ @Vn<N
j¼1fxjg ð2:7bÞ

and f�
kðxÞ � djk þ Ajknj log jx� xjj þ Ajk, as x ! xj, j ¼ 1, . . . , N: ð2:7cÞ

In terms of the surface Green’s function, the solution of (2.7) is expressed as the linear combination

f�
kðxÞ ¼ �p

XN
j¼1

AjknjGsðx; xjÞ þ �fk, ð2:8Þ

where �fk ¼ limjxj!1 f�
kðxÞ is a constant arising from the homogeneous solution which reflects the

splitting probability independent of the initial location. The solution (2.8) must not contribute
a monopole as |x|→∞ and so the strength terms fnj A jkgNj¼1 sum to zero, which enforces that
ϕ�k (x)∈ (0, 1) for all x [ R2nV. The additional constraints for the unknowns ðA1k, . . . , ANk, �fkÞ arise
from matching the solution (2.8) to the local behaviour (2.7c). In total, the system of (N + 1) linear
equations becomes

XN
j¼1

nj A jk ¼ 0, �fk � p AjknjRsðxjÞ þ
XN
i ¼ 1

i = j

AikniGsðxi, xjÞ

26664
37775 ¼ Ajk þ d jk, j ¼ 1, . . . , N:

This system is compactly represented in matrix form as

I þ pGs V �eT

n 0

� 	
Ak
�fk

� 	
¼ � ek

0

� 	
, Ak ¼ ðA1k, . . . , ANkÞ,

n ¼ ðn1, . . . , nNÞ ð2:9aÞ

and

e ¼ ð1, 1, . . . , 1Þ,
ek ¼ ð0, . . . 1|{z}

kth

. . . , 0Þ, ½Gs�i,j ¼
RsðxiÞ i ¼ j
Gsðxi; xjÞ i = j

�
½V�i,j ¼

ni i ¼ j
0 i = j

�
ð2:9bÞ

and I is the N ×N identity matrix. This linear system is solved and the full solution obtained from (2.8).
In appendix B, we give derivations of Green’s functions Gs(x; ξ) for the disc and half-plane geometries.
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2.2. Receptor arrival statistics: the dynamic problem

To obtain the dynamic quantities (1.3), we proceed by applying a ‘hybrid numerical-asymptotic’ method
[35,41] to the parabolic problem (1.2). The steps of this method are to first apply a Laplace transform to
the underlying parabolic equation, following by matched asymptotic solution of the elliptic transform
problem. Finally, the Laplace transform is inverted numerically in terms of an efficient quadrature of
the Bromwich contour. Our goal is to obtain the dynamic quantities

J kðtÞ ¼ �D
ð
@Vk

rp � ndS, qkðtÞ ¼
Ð t
0 J kðtÞdtÐ t
0 rðtÞ, dt

, k ¼ 1, . . . , N: ð2:10Þ

Accordingly, we define the Laplace transform of p(x, t)

p̂ðx; sÞ ¼
ð1
t¼0

pðx, tÞ e�st dt, ð2:11Þ

where p(x, t) satisfies (1.2) and the transform p̂ðx; sÞ solves the modified Helmholtz equation

DD p̂� sp̂ ¼ �dðx� x0Þ, x [ R2nV; ð2:12aÞ
p̂ ¼ 0, x [ @Va; Dr p̂ � n ¼ 0, x [ @Vr: ð2:12bÞ

Following the hybrid-asymptotic approach [35,43], we solve (2.12) by means of matched asymptotic
expansion in the limit 1 ! 0 and as such, replace each absorbing site @Vj with the local behaviour
p̂ � AjðsÞnj log jx� xjj þ AjðsÞ as x→ xj. In this boundary layer analysis for the dynamic problem, we
assume that 12s � 1. Therefore, our results are not uniformly valid as s→∞, or correspondingly t→ 0.
The expansion p̂ðxÞ ¼ p̂�ðx; n, sÞ þ oð1Þ results in a problem which again ‘sums-the-logs’ where p̂� solves

DD p̂� � s p̂� ¼ �dðx� x0Þ, x [ R2nV; Dr p̂� � n ¼ 0, x [ @Vn<N
j¼1fxjg ð2:13aÞ

and

p̂�ðxÞ � AjðsÞnj log jx� xjj þ AjðsÞ, as x ! xj, j ¼ 1, . . . , N: ð2:13bÞ

The general solution of (2.13) is developed as

p̂�ðxÞ ¼ Ghðx; x0, sÞ � pD
XN
j¼1

AjðsÞnjGhðx; xj, sÞ, ð2:14Þ

where Gh(x; ξ, s) is Green’s function of the modified Helmholtz equation satisfying

DDGh � sGh ¼ 0, x [ R2nV; �DrGh � n ¼ dðx� jÞ, x [ @Vnfjg ð2:15aÞ
and

Gh �
�1
pD

log jx� jj þ Rhðj; sÞ þ oð1Þ, as x ! j: ð2:15bÞ

In appendix B, we derive expressions for solutions of (2.15) in the upper half-plane and the disc exterior
geometries. Matching (2.14) to the local condition (2.13b) as x→ xk yields the conditions

Ghðxk; x0, sÞ ¼ AkðsÞ þ pD AkðsÞRhðxkÞ þ
XN
j ¼ 1

j = k

AjðsÞnjGhðxk; xj, sÞ

26664
37775, ð2:16aÞ

for k = 1,…, PON. In terms of the strength vector A(s) = [A1(s),…, AN(s)]
T, equations (2.16a) can be

represented in matrix equation form where the strengths satisfy the linear system,

ðI þ pDGhVÞAðsÞ ¼ g0, ½Gh�i,j ¼
Rhðxi; sÞ i ¼ j
Ghðxi; xj, sÞ i = j

�
, g0 ¼

Ghðx1; x0, sÞ
..
.

GhðxN ; x0, sÞ

264
375: ð2:16bÞ

In the system (2.16b), the vector g0 describes the interaction between the source location and each receptor
while the matrix Gh encodes global information on the receptor configuration. We remark that in the
vector g0, Green’s function is evaluated for a source in the bulk, while for the entries of Gh each source
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is on the surface @V. Therefore, we must obtain Gh(x; ξ, s) for both j [ @V and j [ R2nV separately. The
geometric information of each receptor (e.g. size) is encoded solely through the diagonal matrix V,
defined in (2.9b).

In this section, we show how to extend this asymptotic analysis to obtain the full time-dependent
arrival statistics. After applying the Laplace transform p̂ðx; sÞ ¼ Ð1t¼0 e�stpðx; tÞdt to (1.2), we obtain the
modified Helmholtz problem (2.12). We now discuss the inversion from Laplace space to physical
time. One quantity of interest is the flux (1.3) through each of the receptors. In the transform
variables, these quantities are

bJ kðsÞ ¼ pDAkðsÞnk: ð2:17Þ
From the solution of the linear system (2.16b), we then apply a numerical inverse Laplace transform
[44–46] to obtain the fluxes over each receptor (2.17). Numerical inverse Laplace transform is based on
quadrature of the Bromwich integral, specifically

J kðtÞ ¼ 1
2pi

ð
GB

estbJ kðsÞds, ð2:18Þ

where GB is the complex contour GB ¼ fgþ iy j �1 , y , 1g. The parameter γ is chosen so that all
singularities of bJ kðsÞ lie to the left of Re(s) = γ. In the present scenario associated with diffusion, the
singularities of bJ kðsÞ lie along the negative real axis arising from the branch cut of

ffiffi
s

p
. Rapid and

effective numerical evaluation of (2.18) is achieved by deforming the contour around Re(s) = 0 such
that the integrand of (2.18) decays very rapidly for Re(s) < 0. The Talbot contour GT is a family of
deformations (figure 2) to GB given parametrically by

GT ¼ fsþ mðu cot uþ bi uÞ j � p , u , pg, ð2:19Þ
where σ, μ and β are shape parameters [44,47]. To achieve rapid and accurate evaluation of the inverse
Laplace transform, we apply the midpoint rule to the integral (2.18) along the curve (2.19).
2.3. Homogenization
In this section, we identify a boundary homogenization limit as N→∞ that replaces the mixed Neumann
and Dirichlet boundary conditions by a single condition Drph � n ¼ k ph for a permeability parameter
κ > 0 [31,48–53]. For a circular cell V of radius rcell = 1 centred at the origin with source x0 ¼ R eiu0 , the
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homogenized problem ph(r, θ, t; R) solves

@ph
@t

¼ D
@2ph
@r2

þ 1
r
@ph
@r

þ 1
r2
@2ph
@u2

� 	
, r . 1, u [ ð0, 2pÞ, t . 0; ð2:20aÞ

ph ¼ 1
r
dðr� RÞdðu� u0Þ, r . 1, u [ ð0, 2pÞ, t ¼ 0; ð2:20bÞ

phðr, uþ 2p, tÞ ¼ phðr, u, tÞ, r . 1, u [ ð0, 2pÞ, t . 0 ð2:20cÞ

and D
@ph
@r

¼ k ph, r ¼ 1, u [ ð0, 2pÞ, t . 0: ð2:20dÞ

We find in appendix B that the surface flux J ðu, tÞ ¼ D@rph jr¼1 of (2.20) has Laplace transform

bJ ðu, sÞ ¼ 1
2p

x0ðaÞ þ
1
p

X1
m¼1

xmðaÞ cosmðu� u0Þ, xmðaÞ ¼
KmðaRÞ

KmðaÞ �Dk�1aK0
mðaÞ

, ð2:21Þ

where Km(z) is the modified Bessel function of order m and a ¼ ffiffiffiffiffiffiffiffi
s=D

p
is the scaled Laplace parameter. To

derive a formula for κ, we consider N equally spaced receptors of common angular extent 1with complex
coordinates xj ¼ eiuj for θj = 2πj/N and j = 1,…, N. For the strength vector A(s) = [A1(s),…, AN(s)]

T, we
define the surface flux

bJNðu, sÞ¼
XN
j¼1

bJ kðsÞdðu� ujÞ ¼ pDn
XN
j¼1

AjðsÞdðu� ujÞ:

The flux, bJ Nðu, sÞ, in this asymptotic limit is a sum of N δ-functions, one for each receptor, and we wish
to study how this measure converges to the homogenized flux bJ ðu, sÞ. What we will demonstrate is that
as N→∞ the coefficients in the Fourier series of bJ Nðu, sÞ converge to those of the Fourier cosine series forbJ ðu, sÞ given by (2.21). We now solve for the fluxes explicitly using ideas from the discrete Fourier
transform [54].

The Green’s function matrix Gh defined in (2.16a) is circulant, therefore we can find an eigenbasis
{u1,…, uN} such that

um ; ½1, vm, v2
m, . . . , v

N�1
m �T ¼ ½1, vm, v2m, . . . , vðN�1Þm�T , vk ¼ e2pik=M: ð2:22Þ

Expanding the strength vector as

AðsÞ ¼
XN
m¼1

cmum,

guarantees due to orthogonality that cq = (1/N )u�
q ·A(s), which we expand for later use as

eiqu0cq ¼ eiqu0
1
N

XN
j¼1

AjðsÞ e�iquj ¼ 1
N

XN
j¼1

AjðsÞ[ cos qðuj � u0Þ � i sin qðuj � u0Þ]: ð2:23Þ

Taking the inner-product of (2.16b) with uq� yields that

cq ¼
u�
q � g0

N þ pDn u�
q Gh uq

: ð2:24Þ

For the terms u�
q Gh uq, we need the surface Green’s function (appendix B)

Ghðx; j, sÞ ¼ � 1
pD

log jx� jj þ Rhðx; j, sÞ ð2:25aÞ

and

Rhðx; j, sÞ ¼ 1
pD

� 1
2
K0ðaÞ
aK0

0ðaÞ
�
X1
m¼1

KmðaÞ
aK0

mðaÞ
þ 1
m

� 	
cosmðu� u0Þ

 !
: ð2:25bÞ
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where x = eiθ and j ¼ eiu0 . We decompose u�

q Gh uq ¼ S þR where the regular term R is

R ¼
XN
m¼1

XN
n¼1

e�iqðum�u0ÞRhðxm; xnÞ eiqðun�u0Þ

¼ N
2p

� �2ð2p
u¼0

ð2p
�u¼0

e�iqðu�u0ÞRhðxðuÞ; xð�uÞÞ eiqðu��uÞ dud�uþH.O.T.

ð2:26Þ

¼ � N2

2pD

K0ðaÞ
aK0

0ðaÞ , q ¼ 0;
KqðaÞ
aK0

qðaÞ þ 1
q , q ¼ 1, 2, 3, . . .

8<: ð2:27Þ

The singular term S is calculated as

S ¼ � 1
pD

XN
m¼1

XN
n¼1n=m

e�iqðum�unÞ log jxm � xnj ¼ � N
pD

XN
n¼2

cosðqunÞ log jxn � 1j

¼ � N
pD

logN � N
pD

XN
n¼1

cosðqunÞ � 1ð Þ log jxn � 1j

¼ � N
pD

logN þ N2

2p2D

ð2p
u¼0

1� cosðquÞð Þ log 2 sin
u

2

� �
duþH.O.T.

¼ � N
pD

logN þ N2

2pD

0, q ¼ 0;
1
q , q ¼ 1, 2, 3, . . .

(
ð2:28Þ

In the above calculations, higher-order terms (H.O.T.) arise by interpreting summations as quadratures
and replacing with the equivalent integrals, a technique familiar from the discrete Fourier transform [54].
In practice, for a fixed wavenumber (here q) as N increases the error drops exponentially in 1/N for C∞

integrands.
Combining (2.27) and (2.28) gives

u�
q Gh uq ¼ Rþ S ¼ �N logN

pD
� N2

2pD
KqðaÞ
aK0

qðaÞ
: ð2:29Þ

To calculate the term u�
q · g0, we need the bulk Green’s function (B 8)

Ghðu; R, u0, sÞ ¼ � 1
2pD

K0ðaRÞ
aK0

0ðaÞ
� 1
pD

X1
m¼1

KmðaRÞ
aK0

mðaÞ
cosmðu� u0Þ, ð2:30Þ

for x = (cos θ, sin θ) and ξ =R(cos θ0, sin θ0). We calculate that

u�
q � g0 ¼

XN
k¼1

e�iqukGhðxk, x0, sÞ � e�iqu0 N
2p

ð2p
u¼0

cos qðu� u0ÞGhðu; R, u0Þdu

¼ �e�iqu0 N
2pD

KqðaRÞ
aK0

qðaÞ
þH.O.T.

ð2:31Þ

Combining equations (2.24), (2.29) and (2.31), we determine that

cq ¼
u�
q � g0

N þ pDnu�
q Gh uq

� e�iqu0

pDnN

ðKqðaRÞ=aK0
qðaÞÞ:

ð2=NÞ logð1N=4Þ þ ðKqðaÞ=aK0
qðaÞÞ

: ð2:32Þ

If we now formally expand bJ Nðu, sÞ as a Fourier series,

bJNðu, sÞ ¼ 1
2p

x0ðaÞ þ
1
p

X1
m¼1

xmðaÞ cosmðu� u0Þ þ cmðaÞ sinmðu� u0Þ, ð2:33Þ
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we find that for m = 0, 1, 2,…,

xmðaÞ ¼
ð2p
0

bJ Nðu, sÞ cosmðu� u0Þdu ¼
ð2p
0

XN
j¼1

bJ kðsÞdðu� ujÞ
24 35 cosmðu� u0Þdu,

¼
XN
j¼1

bJ kðsÞ cosmðuj � u0Þ,

¼ pDn
XN
j¼1

AjðsÞ cosmðuj � u0Þ:

A similar calculation yields for m = 1, 2,… that cmðaÞ ¼ pDn
PN

j¼1 AjðsÞ sinmðuj � u0Þ. Now combining
this calculation with (2.23) yields

eiqu0cq ¼ 1
N

XN
j¼1

Aj [ cos qðuj � u0Þ � i sin qðuj � u0Þ] ¼ 1
pDnN

[xmðaÞ � icmðaÞ], ð2:34Þ

but from (2.32) this yields in the limit of large N (and fixed q) that

xqðaÞ � icqðaÞ �
KqðaRÞ=aK0

qðaÞ
ð2=NÞ logð1N=4Þ þ ðKqðaÞ=aK0

qðaÞÞ
,

and as the right-hand side is real, we conclude that cqðaÞ tends to zero in the limit of large N. This can be
interpreted physically as an approximately symmetric response to the source at θ0 in the limit of large N.
A direct comparison with the Robin surface flux (2.21) reveals that xqðaÞ ¼ xqðaÞ (again in the limit of
large N) if one chooses the homogenization parameter to be

Dk�1 ¼ � 2
N
log

1N
4

� �
: ð2:35Þ

This result is in agreement with those previously determined for steady state [55,56] quantities,
but is obtained here for all dynamic modes, demonstrating that homogenization has much broader
efficacy. This has been recently observed in the first passage time distribution of capture to planar
absorbers [35].
2.4. Short-time asymptotics via the method of moments
In this section, we obtain the short-time asymptotics for the solution of (2.20) which will be used to
describe the source detection for very early arrivals to the cellular surface. This is a familiar problem
from stochastic processes; the earliest arrivals are concentrated at the point closest to the source.
Heuristically, this can be viewed as a boundary layer calculation. The outer solution is just the free
space Green’s function and the inner solution is confined to a boundary layer of width

ffiffiffiffiffiffi
Dt

p
at the

edge of the disc. Specifically, we will consider the problem when 1 � ffiffiffiffiffiffi
Dt

p � 1, that is where the
diffusion length is much longer than the typical receptor size (so the homogenization approximation
is valid) but much smaller that the disc radius. We expect that the arrivals will be concentrated near
the point on the disc closest to the source.

The homogenized problem derived in the previous section allows a straightforward characterization
of the fluxes at short times via the method of moments. Our starting point is the expansion of the Laplace
transform of the flux density (B 10) as a Fourier cosine series (reflecting the even symmetry of the
distribution). For convenience, we take θ0 = 0 and calculate from (2.21) and the orthogonality of the
Fourier modes that

xnðaÞ ¼
ðp
u¼�p

bJ ðu, aÞ cos nudu: ð2:36Þ

Next, we exploit the exponential localization of the distribution to treat the interval θ∈ [− π, π] as
effectively infinite and define the centred moments of the distribution, Mn(t) and their Laplace
transform bMnðaÞ ¼ L½MnðtÞ�, where as usual a ¼ ffiffiffiffiffiffiffiffi

s=D
p

,

MnðtÞ ¼
ðp
u¼�p

J ðu, tÞun du and bMnðaÞ ¼
ðp
u¼�p

bJ ðu, aÞun du: ð2:37Þ
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The linearity of the moments implies that the Laplace transform of the moments are the moments of the

Laplace transform. The even symmetry guarantees that the odd moments will vanish, as does the mean
and the skewness of the distribution.

The first moment is exactly χ0(α) which we will expand for a ¼ ffiffiffiffiffiffiffiffi
s=D

p � 1 corresponding
to

ffiffiffiffiffiffi
Dt

p � 1. In addition, we will make an assumption about the homogenization parameter that 0 <
Dκ−1≪ 1. This can be thought of as having a fixed receptor fraction on the surface, 1N , 4 (to ensure
positivity of the log term), and letting N increase to infinity.

bM0ðaÞ ¼ x0ðaÞ ¼
K0ðaRÞ

K0ðaÞ �Dk�1aK0
0ðaÞ

� k e�aðR�1Þffiffiffiffi
R

p ðaDþ kÞ 1þO 1
a

� �� 	
,

whose inverse transform is

M0ðtÞ ¼ kffiffiffiffi
R

p e�ððR�1Þ2=4DtÞ 1ffiffiffiffiffiffiffiffiffi
pDt

p � k

D
erfcðbÞ eb2

� 	
� 1þOð

ffiffiffiffiffiffi
Dt

p
Þ

h i
b ¼ 2ktþ ðR� 1Þ

2
ffiffiffiffiffiffi
Dt

p :

Note that b . ðR� 1Þ=2 ffiffiffiffiffiffi
Dt

p � 1 and expanding in the limit of large β yields

M0ðtÞ ¼ kðR� 1Þffiffiffiffi
R

p e�ðR�1Þ2=4Dtffiffiffiffiffiffiffiffiffi
pDt

p 1
2ktþ ðR� 1Þ
� 	

� 1þOð
ffiffiffiffiffiffi
Dt

p
Þ

h i
,

which is a uniform approximation independent of the relative sizes of κt and (R− 1).
Expanding cos nθ = 1− (nθ)2/2 + (nθ)4/24 + · · · as a Taylor series yields

xnðaÞ ¼
ð2p
u¼0

bJ ðu, aÞ cos nudu ¼ bM0ðaÞ � n2

2
bM2ðaÞ þ n4

24
bM4ðaÞ þ � � � : ð2:38Þ

We now expand χn(α) for fixed n and α≫ 1, a limit for which uniform approximations are well known for
the modified Bessel functions. First, we rewrite χn(α) as

xnðaÞ ¼
KnðaRÞ=K0

nðaÞ
KnðaÞ=K0

nðaÞ �Dk�1 :

Asymptotically the ratios of Bessel functions for fixed n and α≫ 1 yields

KnðaRÞ
K0
nðaÞ

� e�aðR�1Þ

R
�1þ ð4n2 þ 3ÞðR� 1Þ þ 4

8R
a�1

�

þð�16n4 þ 8n2 � 33ÞðR� 1Þ2 þ ð3n2 � 72ÞðR� 1Þ þ ð64n2 � 48Þ
128

a�2 þO(a�3)

#
,

where the denominator Kn(α)/K0
n(α) can be expanded by setting R = 1 in this expression. The jth term for

the expression in the square bracket is a polynomial in n of degree 2( j− 1) times α−( j−1). Substituting into
the expression for χn(α) and expanding for α≫ 1 while allowing the relative size of α and D/κ to be
arbitrary allows us to identify the Laplace transforms of the moments in (2.38),

bM0ðaÞ � k e�aðR�1Þffiffiffiffi
R

p ðaDþ kÞ 1þO 1
a

� �� 	
,

bM2ðaÞ � kðR� 1Þ e�aðR�1Þ

aR3=2ðaDþ kÞ 1þO 1
a

� �� 	

and bM4ðaÞ � 3kðR� 1Þ2 e�aðR�1Þ

a2R5=2ðaDþ kÞ 1þO 1
a

� �� 	
:

The inverse transform bM2ðaÞ can be approximated for α, β≫ 1 as

M2ðtÞ ¼ M0ðtÞ 2Dt
R

� 	
� 1þOð

ffiffiffiffiffiffi
Dt

p
Þ

h i
:

This allows us to compute the variance

Var½J ðu, tÞ� ; M2ðtÞ
M0ðtÞ �

2Dt
R

:
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A similar tedious calculation yields the result that

M4ðtÞ ¼ M0ðtÞ 12ðDtÞ2
R2

" #
� 1þOð

ffiffiffiffiffiffi
Dt

p
Þ

h i
,

and shows that the kurtosis satisfies

Kur½J ðu, tÞ� ; M4ðtÞ �M0ðtÞ
½M2ðtÞ�2

� 3þOð
ffiffiffiffiffiffi
Dt

p
Þ:

This is consistent with a Gaussian distribution, specifically, we have in the limit t→ 0+ that

J ðu, tÞ � M
s
ffiffiffiffiffiffi
2p

p e�ðu2=2s2Þ; s2 ¼ Var½J ðu, tÞ� � 2Dt
R

ð2:39aÞ

and

M ¼ M0ðtÞ � kðR� 1Þffiffiffiffiffiffiffiffiffiffiffiffi
pRDt

p e�ððR�1Þ2=4DtÞ 1
2ktþ ðR� 1Þ
� 	

: ð2:39bÞ

We remark that the limiting behaviour of (2.39b) as t→ 0+ is consistent with the short-time asymptotic of
the survival probability derived in (B 12).
 .10:221619
3. Source recovery
In this section, we investigate source inference using both dynamics fluxes (4.2) and splitting
probabilities. We consider the situation where M particles are released from a location x0. The particles
arrive at one of the N receptors with centres fxkgNk¼1 and the counts at each being fckgNk¼1 so thatPN

k¼1 ck ¼ M.
One potential avenue for formulating a problem for the source location x0 uses the discrete splitting

probabilities ck/M together with the asymptotic formulation (2.8). Assuming ϕk≈ ck/M for M sufficiently
large, and source location x0, this yields the system

�fk �
ck
M

¼ p
XN
j¼1

AjnjGsðx0; xjÞ, k ¼ 1, . . . , N: ð3:1Þ

For the circular cellular geometry (cf. figure 1), it was shown in [18] that the system (3.1) generates a
unique solution provided N≥ 3. In practice, the number of receptors may be large so that (3.1) is
highly overdetermined thus limiting the practicality in source inference. We therefore consider the
maximum-likelihood approach of [21] which adopts a probabilistic viewpoint to obtain a distribution
for the source location given splitting probabilities and the receptor counts fckgNk¼1. The multinomial
likelihood function is given by

ðq1Þc1 	 ðq2Þc2 	 � � � 	 ðqNÞcN ¼
YN
k¼1

ðqkÞck ,

where qk : = qk(x; t) are the dynamic signals or, alternatively, the splitting probabilities ϕk(x) = lim t→∞

qk(x, t). For convenience, the negative log-likelihood is considered giving the estimator

bxMLEðtÞ ¼ argmax
x

Lðx; tÞ and Lðx; tÞ ¼ �
XN
k¼1

ck log½qkðx; tÞ�: ð3:2Þ

The use of a finite number of signalling particles (M <∞) reflects a low concentration of chemoattractant
and simultaneously the numberM serves as a parameter for controlling noise of the receptor signal in the
source inference process. To more precisely quantify the role of noise in the inference process, we
consider the ‘exact’ landscape L� defined as

L�ðx; x0, tÞ ¼ �
XN
k¼1

qkðx0, tÞ log½qkðx, tÞ�: ð3:3Þ

In (3.3), the finite receptor counts ck have been replaced by the exact relative fluxes qk (x0, t). While it may
be feasible to implement MLE on the cellular level [57], here we use this methodology only as a map from
the receptor configuration and input signal to a source estimate.
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Figure 3. Validation of the hybrid asymptotic method for example 4.1 and parameters (4.1). Panels (a,b) feature numerical results
from the series method described in appendix C while (c–f ) feature M = 106 arrival times obtained from a kinetic Monte Carlo
(KMC) method [35]. (a) Numerical validation of the asymptotic splitting probabilities. (b) Numerical solution of the splitting
probability ϕ3(x) for 1 ¼ 0:3. (c) Full distribution of first passage times from asymptotics (4.2) and KMC data. (d )
Convergence of the accumulated signals (4.2) to the asymptotic splitting probabilities {ϕ1, ϕ2, ϕ3} for 1 ¼ 0:1. (e) Fluxes
J kðtÞ against time to individual receptors. ( f ) Relative fluxes �J kðtÞ ¼ J kðtÞ=rðtÞ against time to individual receptors
with convergence to f�f1, �f2, �f3g.
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4. Results
In this section, we provide validation of our results. We cross-verify where possible the different
approaches to obtaining the static splitting probabilities and the dynamic receptor fluxes. In the static
case of the splitting probabilities, we develop (see appendix C) a highly accurate numerical solution
based on a least-squared fitting approach of (1.1). In all scenarios, a particle-based KMC method [35]
is employed to rapidly and accurately sample all static and dynamic quantities while providing noisy
receptor inputs for source reconstruction.
4.1. Example: asymptotic verification in disc geometry with three receptors
In this test case, we validate in figure 3 the asymptotic approximation on the disc geometry with three
receptors given by parameters

‘ ¼ 1‘c ¼ 1
p

3
,
p

3
,
2p
3

� 	
, xj ¼ ½cos uj, sin uj�, uj ¼ p

4
, p,

3p
2

� 	
, x0 ¼ ½2, 0�: ð4:1Þ

In figure 3a, we show that the splitting probabilities ff1ð1Þ, f2ð1Þ, f3ð1Þg obtained from asymptotics and
numerics are in very close agreement for a wide range of 1 values. As 1 ! 0, we observe that
fkð1Þ ! 1=N in agreement with equation (2.6). For the splitting probability ϕ3(0.3), we show in
figure 3b contours indicating equal likelihood of arriving first at receptor k = 3.

To validate the time-dependent arrival statistics, we calculate from (2.18) the full arrival density ρ(t),
the fractional cumulative signal qk(t) and the fractional fluxes �J kðtÞ satisfying

rðtÞ ¼
XN
j¼1

J jðtÞ, qkðtÞ ¼
Ð t
0 J kðtÞdtÐ t
0 rðtÞdt

and �J kðtÞ ¼ J kðtÞ
rðtÞ : ð4:2Þ

In figure 3c, we demonstrate that the asymptotic approximation of the full arrival data is in close
agreement with times generated from a KMC method (described in [35]). In figure 3d, we see that



Table 1. Cumulative count data for arrival for M = 104 particles at individual receptors for given times. Receptor configuration
given in (4.1) with 1 ¼ 0:1.

time c1 c2 c3 ð1=MÞP3
k¼1 ck

t = 100 580 0 153 0.07

t = 101 1741 183 973 0.29

t = 103 2765 929 2070 0.58

t =∞ 4192 2194 3614 1.00
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qk(t)→ ϕk as t→∞, and in particular we note that this convergence occurs on a long timescale. In figure
3e, we show the instantaneous fluxes into the receptors with the location and height of the peaks
indicating the prominence of signal to the receptors. If a cell needs to make a quick (t≈ 100) decision
on the source location, then the k = 1 receptor is the primary recipient of signal and gives the best
information to make an inference on the source direction. In figure 3f, we show the instantaneous
relative fluxes �J kðtÞ and observe that �J kðtÞ ! �fk as t→∞. The quantities �fk (see equation (2.8))
reflect the component of the splitting probabilities that are independent of the source location.
Therefore, figure 3f provides an estimate of the time (t≈ 102) beyond which particles attain thermal
equilibrium and no longer contain source information.

We now demonstrate source inference in this scenario (parameters (4.1) with 1 ¼ 0:1). This
configuration of receptors is not representative of a real cell; however, this is an informative test case
since N = 3 is the minimum required to uniquely locate (triangulate) the source [18]. In this test case,
we generated M = 104 arrival times with the particle approach [35] and took receptor counts at times
t = 100, t = 101, t = 103 and t =∞. The count measurements (table 1) demonstrate that short-time data
have much richer information on the source direction.

When surveying the counts in table 1, we clearly see the importance of short-time arrival data. For
example, by t ¼ 100, 7% of the particles have been captured yet none have arrived at receptor k = 2.
This strongly suggests the source is not to the left of the cell and that the signal through receptors k =
1, 3 convey richer information on the source location. However, the splitting probabilities, which arise
once all particles have been absorbed (t =∞), do not give such a clear conclusion that the source is to
the right. Indeed, the smaller deviation in counts across the receptors may diminish the quality of the
inference.

To examine further the role of dynamics on source inference, for each time t = 101, t = 103 and t =∞
(splitting probabilities), we form 20 MLE estimates bxMLE (figure 4, solid white dots) fromM = 104 arrivals,
as defined in (3.2). Simultaneously we plot contours of the exact landscape L�ðx; x0, tÞ defined in (3.3),
where the shown regions are within ð0:125%, 0:25%, 0:5%, 1:0%Þ of the minimum of L�. The contours
are shown to correctly envelop the source x0 while the estimates bxMLE form a cloud surrounding the
source x0. The results in figure 4 demonstrate the robustness of this method under noisy perturbations
and corroborate the data in table 1, indicating that the short-time flux yields a tight and clear
direction for the source, but a poor estimate on the distance. At the later time t = 103, and for the
splitting probabilities (t =∞), the estimate on the distance is markedly improved.
4.2. Example: circular cell with homogeneous receptor covering
In this example, we consider the scenario of a circular cell of radius rcell = 1 centred at the origin and with
N = 10 homogeneously spaced receptors of common extent parametrized by

xk ¼ cos
2pk
N

, sin
2pk
N

� �
, ‘k ¼ 1‘c, k ¼ 1, . . . , N: ð4:3Þ

The parameters used are 1 ¼ p=20, ℓc = 1 and the simulations are initiated with M = 104 particles at the
source x0 = [R, 0] for R > 1. In particular, we examine the inference landscape L�ðx; x0, tÞ and source
estimates bxMLE as the source distance R and cumulative signal CðtÞ ¼ Ð tt¼0 rðtÞdt varies.

In figure 5, we plot contours of the exact landscape L�ðx; x0, tÞ and 20 MLE estimates bxMLE over
source distances R = {2, 5, 10, 20} and absorbed fractions CðtÞ ¼ f2%, 10%, 20%, 100%g. We draw three
main conclusions from figure 5. First, the quality of inferred source direction decreases as R increases,
which is to be expected when identifying a more distant source. Second, and somewhat
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counterintuitively, the precision of the angular estimate on the source direction is reduced as the acquired
signal increases. Indeed, at each source distance, the strongest angular signal is acquired from the
early arrival data (CðtÞ ¼ 2%). Third, the effect of noise, shown through the cloud of 20 estimatesbxMLE, confirms predictions of the inference landscape L�ðx; x0, tÞ. Namely that when the acquired
signal is low, the directional estimate is accurate. For large acquired signals, the source distance is
correctly inferred.
4.3. Example: homogenization and polar momentum
In the above example, MLE inference revealed that early receptor arrivals contained rich information on
the source direction. We now explore the efficacy of a simple inference mechanism based on a polar
average θpa of angular receptor positions θk weighted by arrival numbers ck. Specifically, we sort
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arrival times and calculate an average θpa for each batch of Ms arrivals

upa ¼ 1
Ms

XN
k¼1

ckuk,
XN
k¼1

ck ¼ Ms:

In figure 6, we show results for N = 100 homogeneously spaced receptors occupying half the cellular
surface for Ms = 1001. The KMC simulations are initiated by M = 105 particles at location x0 = (5, 0)
with diffusivity D = 1. Figure 6a shows that a simple average of receptor input gives an excellent
estimate of source direction for short times ðt ⪅ 103Þ. At larger times ðt ⪆ 103Þ, the directional
information in the signal vanishes and the polar average becomes uniform U½�p, p�, as shown by the
p-value of a Kolmogorov–Smirnov (KS) test with 5% significance. To explain this sharp transition, we
use the homogenized solution and calculate from (2.35) that κ = 206.98. We show the arrival time
distribution (figure 6b) and the ratio of the first to zeroth modes (figure 6c) of the homogenized
surface flux L�1ðx1ðsÞÞ=L�1ðx0ðsÞÞ derived in (B 10). The transition coincides with the amplitude of
this ratio diminishing. This corresponds to the surface flux becoming more radially symmetric so that
the remaining free particles carry no directional information on the source. The associated
homogenized cumulative distribution function (CDF) for this example predicts that at the transition
time (t≈ 103), the remaining approximately 60% of free particles have no angular information
corresponding to their initial position (figure 6c).
4.4. Example: extreme arrivals to an all-absorbing cell
In the preceding examples, we have observed that early arrivals give significant directional information
on the source. To establish a theoretical bound of the accuracy on source detection based the first of M
independent arrivals, we consider the time and impact distribution to a homogenized circular cell of
radius rcell = 1. The arrival times are T M ¼ ft1, t2, . . . , tMg with corresponding arrival angles
QM ¼ fu1, u2, . . . , uMg. We remark that the arrival times T M and associated angles QM are not
independent and in general longer times give rise to uniform angles, while at shorter times the
angular distribution is centred on the source direction. The random variable ta ¼ minT M is known as
the extreme arrival time and θa is the polar coordinate of the associated arrival location. The
distribution of ta for M≫ 1 was recently found (see [38], Theorem 1) to satisfy

ta � bM
aM

! X, as M ! 1, ð4:4Þ

where X follows the Gumbel distribution PðX . xÞ ¼ expð�exÞ. The quantities aM, bM are determined in
terms of the short-time asymptotics of the probability PðtÞ ¼ Pðt1 . tÞ of a single walker. For a given q,
A≠ 0 and B > 0, we have that

1� PðtÞ � Atq e�B=t, as t ! 0þ ð4:5aÞ
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and

aM ¼ bM
qð1þWMÞ , bM ¼ B

qWM
, WM ¼ W�

B
q
ðAMÞ1=q

� �
, ð4:5bÞ

where W∗(z) is the principal branch of the LambertW function, defined as the inverse function of f(z) =
z ez. The mean and variance of the Gumbel distribution are

E½ta� ¼ bM � geaM and Var½ta� ¼ p2

6
a2M, ð4:6Þ

where γe≈ 0.5772 is the Euler–Mascheroni constant. We are able to identify in the homogenized scenario
that the relevant parameters (B 13) are

q ¼ 3
2
, A ¼

ffiffiffiffi
D

pffiffiffiffiffiffiffi
pR

p 4k

ðR� 1Þ2 , B ¼ ðR� 1Þ2
4D

: ð4:7Þ

In terms of the expectation, we have that as M→∞

E½ta� � ðR� 1Þ2
6DWM

1� 2ge
3ð1þWMÞ

� 	
: ð4:8Þ

For the arrival time ta, the associated arrival location θa in polar coordinates is calculated as

P½ua ¼ h � ¼
ð1
t¼0

P½u ¼ hjt ¼ t�P½ta ¼ t�dt ð4:9Þ

¼ 1
aM

ð1
t¼0

P½u ¼ hjt ¼ t� e�z�ez dt, z ¼ t� bM
aM

� �
: ð4:10Þ

To approximate this integral, consider that −z− ez has a critical point at z = 0 (t = bM) and so

e�z�ez � exp �1� ðt� bMÞ2
2a2M

" #
, ðt� bMÞ2 � 1:

Therefore, we see that applying Laplace’s method yields

P½ua ¼ h� � e�1
ð1
t¼0

P½u ¼ hjt ¼ t� 1
aM

exp �ðt� bMÞ2
2a2M

" #
dt

�
ffiffiffiffiffiffi
2p

p
e�1 P½u ¼ hjt ¼ bM�: ð4:11Þ

We note that t = bM is the mode of the Gumbel distribution and the factor
ffiffiffiffiffiffi
2p

p
e�1 � 0:922 is an error

induced by the Laplace approximation that we normalize to unity. For bM≪ 1, the result (2.39)
indicates that P½u ¼ hjt ¼ bM� � N ðu0, 2DbM=RÞ. After algebra, we conclude that as M→∞, the arrival
angle is distributed ua � N ðu0, s2

ua
Þ with variance s2

ua
given by

s2
ua
ðM, RÞ ¼ gðRÞ

WM
, gðRÞ ¼ ðR� 1Þ2

3R
, WM ¼ W�

2k2M2

9pD2 gðRÞ
� �1=3
" #

:

We remark that W∗(z)∼ log z as z→∞ giving the leading order behaviour as M→∞

s2
ua
ðM, RÞ/ R 1� ð1=RÞð Þ2

logM
: ð4:12Þ

The relationship (4.12) implies that provided the signal strength M is large enough and the source is not
too distant, the first arrival yields the source direction with reasonable accuracy.

As a demonstration of this theory, we consider the scenario of a cell of radius rcell = 1 centred at the origin
withN = 100homogeneouslyspaced receptors occupying10%of the surface.Wecalculate ta from(4.8) and the
associatedarrival angle θa.Weplot in figure 7 comparisons between the extremevalue statistics andnumerical
data based on 1000KMCsimulations eachwithM = 106 particles.We observe in figure 7a that the distribution
of ta is well predicted by the extreme value theory over six orders of magnitude. The distribution of angular
arrivals ua is also very well predicted by (4.12) as shown in figure 7b. Remarkably, this result shows that a cell
can make an informed decision on the source direction based on just a single arriving signalling molecule,
provided the source distance R is not too large.
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We now provide a rough comparison between the timescales predicted by extreme statistics (4.8) and
those observed in experiments. We consider an example of directional sensing in neutrophils where a
cellular reaction was observed after approximately 5 s when exposed to a point source of
chemoattractant (10 μM, fMLP) placed by pipette [58]. This response combines the time to acquire
receptor input and to complete downstream signalling dynamics. To approximate the former of these
two timescales, we assume N≈ 104 fMLP receptors [59] of individual radius roughly ra = 5 nm [60],
which lies in the validity of the homogenization limit (2.35). If we assume a volume 1 μl is released
from a micropipette, this yields an effective particle number M≈ 1012. The diffusivity of the
chemoattractant fMLP has been estimated at D = 1.2 × 10−6 cm2 s−1 [61]. If we consider cell radii in the
range rcell = 5–10 μm and sources in the range rsource = 5–10 rcell, the first extreme arrival time in light of
these parameters is E½ta� � 0:05–1 s. The predictions of extreme statistics are of roughly the same order
of magnitude as those observed experimentally and provide a minimum time for a cell to respond to a
diffusive signal.
5. Discussion
In this paper, we have explored source inference from the dynamics of the diffusive fluxes to localized
surface receptors. A key ingredient in our analysis is the application of a new hybrid asymptotic-
numerical method that allows for the rapid and accurate determination of the time-dependent
solution to an exterior parabolic problem. These quantities give a more detailed understanding of
cellular response to external signals than previously available through static quantities (e.g. the
splitting probabilities). The full arrival statistics describe both the equilibration timescale and the
short-time dynamics of the signal to the cell. As an application of these newly obtained dynamic
quantities, we explored their use in source inference.

This work leads to several conjectures that may have biological implications. First, we observe that the
equilibration timescale is long and therefore steady-state quantities may not be useful for understanding
cellular responses, particularly in dynamic environments. Second, we observe that the earliest arrivals to
the surface receptors contain the most directional information. Therefore, a cell can make a quick and
accurate directional decision, at the cost of accuracy in source distance, by heavily weighting the
earliest signal it receives.

In the extreme scenario where the cell chooses a direction based on just one arrival to its membrane, we
find that the accuracy is surprisingly good provided the source distance is not large. An important
characteristic of simplistic directional inference methods is that they make minimal biological assumptions
regarding cellular computing abilities, memory of previous receptor engagements, knowledge of cellular
geometry and receptor configurations. This work suggests that a cell can take simple averages over a small
number of signalling receptors to accurately infer the location of nearby signalling sources.
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Appendix A. Inner solution at a receptor
A key ingredient in the asymptotic analysis of both the static splitting probabilities (1.1) and the Laplace
transform problem (2.12), is knowledge of the solution to a rescaled version of (1.1) in the Oð1Þ
neighbourhood of each receptor. This inner solution is a half-plane problem where the curvature of
the cell is negligible, the receptor is replaced by an absorbing segment, and the response to the
externally varying probability density is quasi-static. In the unrescaled outer problem, the receptor is
replaced by a δ-function and the response can be analysed via a surface Green’s function.

In an Oð1Þ neighbourhood of the jth receptor centred at xj = (xj, yj), the solution is described in terms
of a local arc-length coordinate system (η, σ) where η represents the distance from x [ R2nV to @V and σ
denotes arc-length along @V. In this system, the Laplacian becomes

D :¼ @2

@h2 �
�k

1� �kh

@

@h
þ 1
1� �kh

@

@s

1
1� �kh

@

@s

� �
: ðA 1Þ

Here, �k ¼ �kðsÞ is the curvature along @V. In the arc-length coordinate system, the receptor centre
becomes (η, σ) = (0, σj). Rescaling in the receptor neighbourhood with ĥ ¼ h=1 and ŝ ¼ ðs� sjÞ=1, the
Laplacian becomes D ! 1�2ð@2

ĥĥ þ @2
ŝŝÞ þOð1�1Þ and we have the half-plane problem

@2vc
@ĥ2 þ @2vc

@ŝ2 ¼ 0, ŝ [ ð�1, 1Þ, ĥ . 0; ðA 2aÞ

vc ¼ 0, jŝj , ‘j=2, ĥ ¼ 0; @ĥvc ¼ 0, jŝj . ‘j

2
, ĥ ¼ 0 ðA 2bÞ

and vc ¼ log½ĥ2 þ ŝ2�1=2 � log dj þ � � � , as ĥ2 þ ŝ2 ! 1, dj ¼
‘j

4
: ðA 2cÞ

The solution of (A 2) can be obtained by use of the elliptical coordinate system [55] and is used to
construct solutions of (1.1) and (2.12). We remark that when applying this boundary layer analysis to
the Helmholtz problem (2.11), we assume that s12 � 1 and consequently cannot expect a valid
expansion near the receptors for arbitrarily short times. In §2.4, we consider separately the short-time
surface fluxes in the limit t→ 0+.
Appendix B. Green’s functions
In this appendix, we tabulate the various Green’s functions for Laplace’s equation and the Helmholtz
equation that arise from the Laplace transform of the heat equation.
B.1. Half-plane

In the case of the half-plane (V :¼ fx ¼ ðx, yÞ [ R2 j y . 0g) with a Neumann boundary condition, we
have the following exact Green’s functions satisfying Laplace’s equation (2.4) and the Helmholtz
equation (2.15), respectively,

Gsðx; jÞ ¼ �1
2p

log jx� jj þ log jx� j0j, j2 . 0;
2 log jx� jj, j2 ¼ 0

�
ðB 1aÞ

and

Ghðx; j, sÞ ¼ 1
2pD

K0(ajx� jj)þ K0(ajx� j0j), j2 . 0;
2K0(ajx� jj), j2 ¼ 0

�
, ðB 1bÞ

where ξ = (ξ1, ξ2) is the location of the source in the bulk, ξ0 = (ξ1,− ξ2) is the source’s image in the half-
plane, K0(z) is a modified Bessel function, and a ¼ ffiffiffiffiffiffiffiffi

s=D
p

.
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B.2. Unit disc

In the case of a unit disc (V :¼ fx ¼ ðx, yÞ [ R2 j x2 þ y2 , 1g), we first solve for Green’s function Gs for
the Laplacian (2.4). In terms of polar variables (r, θ) and j ¼ eiu0 , the problem to be solved is

@2Gs

@r2
þ 1

r
@Gs

@r
þ 1
r2
@2Gs

@u2
¼ 0, r . 1, u [ ð0, 2pÞ; ðB 2aÞ

Gsðr, u; u0Þ ¼ Gsðr, uþ 2p, u0Þ, r . 1, u [ ð0, 2pÞ ðB 2bÞ

and � @Gs

@r
¼ dðu� u0Þ, r ¼ 1, u [ ð0, 2pÞ: ðB 2cÞ

The separable solution of (B 2) can be expressed in the cosine series

Gsðr, u; u0Þ ¼ �1
2p

log rþ 1
p

X1
n¼1

cos nðu� u0Þ
nrn

:

The series can be summed directly by defining x = reiθ and specifying that

X1
n¼1

cos nðu� u0Þ
nrn

¼ Re
X1
n¼1

1
n

x

jxj2j

 !n" #
¼ � log 1� x

jxj2j












 ¼ � 1

2
log

x� j

x





 



2: ðB 3Þ

After rearranging, we obtain that

Gsðx; jÞ ¼ � 1
p
log jx� jj þ Rsðx; jÞ and Rsðx; jÞ ¼ 1

2p
log jxj:

For Helmholtz Green’s function exterior to the disc with source j ¼ Reiu0 , we examine the form of the
series for R = 1 and R > 1 separately.
B.2.1. Unit disc with a source on the surface
In this scenario, the surface Helmholtz Green’s function satisfies

D
@2Gh

@r2
þ 1

r
@Gh

@r
þ 1
r2
@2Gh

@u2

� 	
� sGh ¼ 0, r . 1, u [ ð0, 2pÞ; ðB 4aÞ

Ghðr, u; u0Þ ¼ Ghðr, uþ 2p, u0Þ, r . 1, u [ ð0, 2pÞ ðB 4bÞ

and �D
@Gh

@r
¼ dðu� u0Þ, r ¼ 1, u [ ð0, 2pÞ: ðB 4cÞ

The appropriate separable solution is then the Bessel cosine series

Ghðr, u; u0Þ ¼ �1
2pD

K0ðarÞ
aK0

0ðaÞ
� 1
pD

X1
n¼1

KnðarÞ
aK0

nðaÞ
cos nðu� u0Þ:

To isolate the singular and regular parts, we add and subtract a term (1/πD)log|x− ξ|) and replace one
with the identity (B 3). This reveals that for x = reiθ and j ¼ eiu0

Ghðx; jÞ ¼ � 1
pD

log jx� jj þ Rhðx; jÞ ðB 5aÞ

and

Rhðx; jÞ ¼ 1
pD

log r� 1
2
K0ðarÞ
aK0

0ðaÞ
�
X1
n¼1

KnðarÞ
aK0

nðaÞ
þ 1
nrn

� 	
cosnðu� u0Þ

 !
: ðB 5bÞ

Using the well-known large order asymptotics (https://dlmf.nist.gov/10.41) of KnðzÞ �
ffiffiffiffiffiffiffiffiffiffiffi
p=2n

p ½ez=2n��n

as n→∞, we observe that

KnðarÞ
aK0

nðaÞ
� �1

nrn
, n ! 1,

and therefore the series in (B 5b) is convergent, including as r→ 1.

https://dlmf.nist.gov/10.41
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B.2.2. Unit disc with a source in the bulk

Here, the Helmholtz Green’s function satisfies

D
@2Gh

@r2
þ 1

r
@Gh

@r
þ 1
r2
@2Gh

@u2

� 	
� sGh ¼ � 1

r
dðr� RÞdðu� u0Þ, r . 1, u [ ð0, 2pÞ; ðB 6aÞ

Ghðr, u; u0Þ ¼ Ghðr, uþ 2p, u0Þ, r . 1, u [ ð0, 2pÞ ðB 6bÞ

and
@Gh

@r
¼ 0, r ¼ 1, u [ ð0, 2pÞ: ðB 6cÞ

The separable solution which is continuous and satisfies ∂r Gh = 0 on r = 1 is given by

Gh ¼
P1

n¼0 An InðarÞK0
nðaÞ � I0nðaÞKnðarÞ

� � KnðaRÞ
K0
nðaÞ cos nðu� u0Þ, 1 , r , R;P1

n¼0 An InðaRÞK0
nðaÞ � I0nðaÞKnðaRÞ

� � KnðarÞ
K0
nðaÞ cos nðu� u0Þ, r . R:

8<: ðB 7Þ

Applying the jump condition and the orthogonality of the functions fcosmðu� u0Þg1m¼0 yields

D lim
d!0

ðr¼Rþd

r¼R�d

ð2p
u¼0

cosmðu� u0Þ 1r
@

@r
r
@Gh

@r

� �
rdrdu ¼ �1,

which fixes the constants

A0 ¼ 1
2pD

, An ¼ 1
pD

, n 
 1:

Finally, our interest is in Gh|r=1, which is written as the series

Gh jr¼1 ðu; R, u0Þ ¼ � 1
2pD

K0ðaRÞ
aK0

0ðaÞ
� 1
pD

X1
n¼1

KnðaRÞ
aK0

nðaÞ
cosnðu� u0Þ: ðB 8Þ

In the above calculations, we have used the Wronskian Identity In0(z)Kn(z)− In(z)Kn
0(z) = z−1. We apply

(B 8) only in the situation |ξ| =R > 1 such that the series converges rapidly.
B.2.3. Unit disc with a homogenized surface (Robin condition)
We are interested in the solution ph(r, θ, t; R) of the heat equation with Robin condition, defined by (2.20).
We consider the problem exterior to the disc of radius rcell = 1 with a source at R(cosθ0, sinθ0). We apply
the Laplace transform Ghðr, u; sÞ ¼

Ð1
t¼0 phðr, u, tÞ est dt, and find that Gh solves the Helmholtz Green’s

function

D
@2Gh

@r2
þ 1

r
@Gh

@r
þ 1
r2
@2Gh

@u2

� 	
� sGh ¼ � 1

r
dðr� RÞdðu� u0Þ, r . 1, u [ ð0, 2pÞ; ðB 9aÞ

Ghðr, u; u0Þ ¼ Ghðr, uþ 2p, u0Þ, r . 1, u [ ð0, 2pÞ ðB 9bÞ

and D
@Gh

@r
¼ kGh, r ¼ 1, u [ ð0, 2pÞ: ðB 9cÞ

Similar to the Neumann case above, we obtain a continuous separable solution satisfying a jump
condition at r =R and the Robin condition at r = 1. Our interest is in the surface flux given by

D@rGh jr¼1¼ 1
2p

x0ðaÞ þ
1
p

X1
n¼1

xnðaÞ cos nðu� u0Þ and xnðaÞ ¼
KnðaRÞ

KnðaÞ �Dk�1aK0
nðaÞ

, ðB 10Þ

where zKn
0(z) = n Kn(z)− zKn+1(z) and a ¼ ffiffiffis

D

p
. The total flux through the disc is

bJ ðsÞ ¼
ð2p
0

D@rGh jr¼1 du ¼ x0ðaÞ ¼
K0ðaRÞ

K0ðaÞ �Dk�1aK0
0ðaÞ

: ðB 11Þ

One of our goals is to find the limiting behaviour of the survival probability
PðtÞ ¼ Ð1r¼1

Ð 2p
u¼0 phðr, u, tÞrdudr as t→ 0. Here again ph(r, θ, t) solves (2.20). The relationship

P0ðtÞ ¼ �J ðtÞ connects the survival probability with surface flux and therefore in transform spacebJ ðsÞ ¼ 1� sbPðsÞ. The limit as t→ 0+ corresponds to s→∞ in transform space yielding

bPðsÞ ¼ 1
s
� k

s3=2
ffiffiffiffiffiffiffi
RD

p e�
ffiffi
s

p ðR�1Þ= ffiffiffiDp½ �, s ! 1 ðB 12aÞ
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Figure 8. Flux dynamics and source recovery for the half-plane example (D 1). (a) The full distribution of first passage times from
(4.2) and M = 105 arrival times obtained with kinetic Monte Carlo (KMC). (b) Time-dependent signals (4.2) with asymptotic splitting
probabilities {ϕ1, ϕ2, ϕ3} for parameters (D 1) and 1 ¼ 0:1. (c) Dynamics of individual receptor fluxes. (d–f ) Inference landscape
Lðx; tÞ for the half-plane example with parameters specified in (D 1). Inference performed using cumulative receptor signal at
times t = 101 (d ), t = 103 (e) and t =∞ ( f ).
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and

PðtÞ ¼ 1� 4kffiffiffiffiffiffiffi
pR

p
ffiffiffiffi
D

p

ðR� 1Þ2 t
3=2 eð�ðR�1Þ2Þ=4tD, t ! 0þ: ðB 12bÞ

The limiting form identified in (B 12b) is consistent with the short-time asymptotics (2.39b), after
evaluating

Ð t
0 M0ðtÞdt as t→ 0+. From (B 12b), we identify the coefficients P(t) = 1−A tq e−(B/t) as

q ¼ 3
2
, A ¼

ffiffiffiffi
D

pffiffiffiffiffiffiffi
pR

p 4k

ðR� 1Þ2 and B ¼ ðR� 1Þ2
4D

: ðB 13Þ
Appendix C. Least-squared solution of splitting problem
Here, we describe a numerical technique for the solution of (1.1) exterior to the unit disc. In polar
coordinates (r, θ), the solution (subscript of distinguished receptor omitted) has separable form

fðr, uÞ ¼ a0
2
þ
X1
n¼1

r�nðan cos nuþ bn sin nuÞ: ðC 1aÞ

The coefficients are found by applying the Neumann and Dirichlet conditions to arrive at the following
dual trigonometric series:

a0
2
þ
X1
n¼1

ðan cos nuþ bn sin nuÞ ¼
1 distinguished receptor,

0 other receptors;

�
ðC 1bÞ

and X1
n¼1

nðan cos nuþ bn sin nuÞ ¼ 0, reflecting portion: ðC 1cÞ

Progress can be made on analytical solutions of this dual series [56]; however, in the present scenario, it is
more convenient to access the solution numerically. The series (C 1a) is truncated at a finite number of
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modes M and a linear system for the (2M + 1) coefficients formed by introducing a grid of θ values.

At each value of θ, the entries of the system are filled according to the conditions (C 1b) and (C 1c),
resulting in an overdetermined system that is solved by least-squared solutions. We find (figure 3)
that this solution approach is robust and accurate for moderately small receptor extents; however, the
number of modes M is prohibitive for very small receptors. See [56,62,63] for more details on this
solution procedure.
lishing.org/journal/rsos
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Appendix D. Half-plane with three receptors
As a supplemental example, we consider a three-receptor scenario in the upper half-plane. In this
geometry, the cell V does not have a finite area so it is necessarily a simplification of the biological
setting. However, it can be useful [18] to examine both the asymptotic formulations and the source
inference approach. In this context, the specific parameters used in this example are

‘ ¼ 1
1
2
, 1, 2

� 	
, x1 ¼ ½�3, 0�, x2 ¼ ½0, 0�, x3 ¼ ½3, 0�, D ¼ 4, 1 ¼ 0:1, x0 ¼ ½2, 3�: ðD 1Þ

In figure 8, we show that the asymptotic formulations of both the splitting probabilities and the arrival
time distribution agree very well with Monte Carlo data. As with the disc case, the convergence qk(t)→ ϕk
as t→∞ is observed on a long timescale.

In the upper half-plane geometry, we do not have a ‘shielding effect’ in which the geometry itself
delays the arrival of particles to the distant receptors. We observe in figure 8a that the short-time data
provide only rough directional information and reflecting that the source is to the right of the origin.
At moderate time t = 103, we observe in figure 8e a stronger angular signal (with respect to the origin)
while the splitting probabilities show recovery of source distance and angle (figure 8f ).
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