

$$
19533 / 3
$$

Digitized by the Internet Archive in 2017 with funding from Wellcome Library

\cdot

$a^{2} \mathrm{~F}=$

ANIMAL IMO GM,
ARRANGED ACCORDING TO ITS ORGANIZATION. Hfumbation for the

(Tamslater from the latest fimble) (FAction.

IMroveyouovass.
サ曰I, TIT

$$
1,1) \times 110 \times
$$

$$
18 \because 1
$$

4

$1+4$

Thery
$+4$

ANIMALKINGDOM,

ARRANGED ACCORDING TO ITS ORGANIZATION, SERVING AS A

FOUNDATION FOR THE

NATURAL HISTORY OF ANHMALS,

AND $A N$
INTRODUCTION TO COMPARATIVE ANATOMY.

BY

BARON CUVIER,

Great Olicer of the Legion of Honour, Comsellor of State, and Mcmber of the Royal Council of Public Iustruction; One of the Forty of the French Academy; Perpetual Secretary to the Academy of Scicnces; Member of the Academies and Royal Societics
of Loudon, Berlin, Petersburgh, Stockholm, Turin, Edinburgh, Copeniagen, Gottiugen, Bavaria, Modena, the Netherlands, and Calcutta ; and of the Limmean Society of London.

WITH FIGURES DESIGNED AFTER NATURE :
THE
CROM R Mre By
\section*{M. LATREILLE,}
Chevalicr of the Legion of Honour, Mcmber of the Institute (Royal Açademy of Sciences), and of the greater portion of other learncd Societies in Europe and America.

Cuamiatey from the latest firmet entime.

WITH

ADDITIONAL NOTES,

AND
1LLUSTRATED BY NEARLY 500 ADDITIONAL PLATES.

> IN FOUR VOLUMES.

VOL. III.

LONDON.
G. HENDERSON, 2, OLD BAILEY, LUDGATE-HILL, AND SOLD BY ALL BOOKSELLERS.

LONDON：

PREFACE**

OVERWHELMED with scientific labours, and yielding, perhaps too easily, to the impulse of friendship and to my desire to serve him, M. Cuvier has confided to me that portion of this work which treats of Insects.

These animals were the objects of his earliest zoulogical studies, and the cause of his connexion with one of the most celebrated pupils of Linnæus, Fabricius, who in his writings gives him frequent assurance of his high esteem. It was ẹven by various interesting cbservations on several of these animals--Journal d'Hist. Nat.-that M. Cuvier commenced his career in natural history. Entomology, in common with all the other branches of Zoology, has derived the greatest advantage from his anatomical researches, and the happy changes he has effected in the basis of our classification. The internal organization of Insects is now better known, and this study is no longer neglected as was previously the case. He has placed us on the way to the Natural System \dagger, and greatly will the public regret that his

[^0]numerous occupations did not allow bin to superintend this portion of his treatise on animals.

Perhaps the desire of associating my name with his in a work like this, which, by the multitude of researches on which it rests, and by their application, has become a precious literary monument of the age, has deceived me, and thrown me into an enterprize beyond my powers to accomplish. The responsibility is great, and I have imposed upon myself a task, in which the boldness of the plan is only equalled by the difficulty of its execution. To unite within a very limited space the most interesting facts in the history of Insects, to arrange them with precision and clearness in a natural series, to pourtray with a bold pencil the physiognomy of these animals, trace their distinguishing characters with trutl and brevity, in a way proportioned to the successive progress of the science and that of the pupil, to indicate useful or noxious species, and those whose mode of life interests our curiosity, to point out the best sources from which the knowledge of others may be obtained, to restore to Entomology the amiable simplicity which it possessed in the days of Linnæus, Geoffroy, and of the carly writings of Fabricius, but still to present it as it now is, or with all the wealth of observation it has since acquired, yet without overloading it; in a word, to conform to the model before me , the work of M. Cuvier, is the end I have striven to attain.

This savant, in his "T'ableau Elémentaire de l'Histoire Naturelle des Animaux," did not restrict the extent given by Linnæus to his class of Insects; he however made some necessary ameliorations, which have since served as the foundation of other systems. He distinguishes Insects, in the first place, from other invertebrate animals, by much more rigorous characters than those previously employedviz., a knotied medullary spinal marrou, and arliculaled limbs. Linnecus terminates his class of Insects with those which are apterous, although most of them, such as the Crustacea and the Arancides, with respect to their organization, are the most perfect of their class, or are the most closely approximated to the Mollusca. His method, in this respect, is then exactly the inverse of the natural system, and, by transporting the Crustacea to the head of the class, and by placing almost all the Aptera of Linneus directly after them, Cuvier rectified the method in a point where the series was in direct opposition to the seale formed by Nature.

In his Leçons d'Anaiomic Comparée, the class of Insects, from which he now separates the Crustacea, is divided into mine orders, fommed on the nature and finctions of the organs of manducation, the presence or absence of wings, their number, consistence, and the
mamer in which they are reticulated. It is in fact a union of the system of Fabricius with that of Linnæus perfected.

The divisions made by our savant in his first order, that of the Gnathaptera, are nearly similar to those I had established in a Memoir presentcd to the Société Philomatique, April, 1795, and in my Précis des Caractères Génériques des Insectes*.
M. de Lamarck, whose name is so dear to the friends of natural science, has ably profited by these various labours. His systematic arrangement of the Linnæan Aptera appears to us to be that which approaches nearest to the natural order, and, with some modifications of which we arc about to speak, is the one we have followed.

I divide the Insects of Linnæus, with him, into three classes: the Crustacea, Arachnides and Insecta; but in the cssential characters which I assign to them, I abstract all the changes experienced by these animals, prior to their adult statc. This consideration, although natural, and previously cmployed by De Geer in his arrangement of the Aptcra, is not classical, inasmuch as it supposes the observation of the animal in its different ages; it is, besides, liable to many cxceptions \dagger.

The situation and form of the branchiæ, the manner in which the head is united to the thorax, and the organs of manducation, have furnished me the means of cstablishing seven orders in the class of the Crustacea, all of which appear to me to be natural. I terminate it, with M. de Lamarck, by the Branchiopoda, which are a sort of Crustacea Arachnides.

In the following class, that of the Arachnides, I only include the species which in the system of Lamarck compose the order of his Arachnides palpistes, or those which have no antennæ. Bcyond this, the organization of these animals, cxternal as well as internal, furnishes us with a simple and rigorous rule that is susceptible of a gencral application.

[^1]Their organs of respiration are always internal，receiving air through coneentrated stigmata，sometimes possessing functions ana－ logous to those of lungs，and consisting at others of radiated tracheæ， or such as ramify from their base；the antennæ are wanting，and they are usually furnished with eight feet．I divide this class into two orders：the Pulmonarice and the Trachearia．

Two parallel tracheæ，extending longitudinally through the body， furnished at intervals with eentres of branehes corresponding to the stigmata，and two antennæ，characterize the class of Insects．Its primary divisions are founded on the three following considerations：

1．Apterous Insects which either undergo no metamorphoses，or but imperfect ones；the three first orders．

2．Apterous Insects which experience complete trunsformations； the fourth．

3．Insects having wings which they acquire by metamorphoses， either complete or incomplete；the last eight．
I begin with the Arachnides antennistes of M．de Lamarck，which are comprised in this first division，and which form our three first orders．The second is composed of the fourth order，and contains but a single genus，that of Pulex：it would appear，in some respects， to be allied to the Diptera by means of the Hippoboscce；other cha－ racters，however，and the nature of its metamorphoses，remove this genus from that of the Hippoboscre．It is very difficult in some eases to distinguish these natural filiations，and when we are fortunate enough to discover them，we are frequently compelled to sacrifice them to the perspieuity and faeility of the system．

To the known order of winged Insects，I have added that of the Stresiptera of Kirby，but under a new denomination－viz．，that of Rhipiptera，as the former appears to me to be founded on a false idea．Perhaps we should even suppress this order，aeeording to the opinion of Lamarck，and unite it with that of the Diptera．
For reasons elsewhere developed＊，and which I eould easily strengthen by additional proof，I attach more consequenee to eha－ raeters drawn from the aerial loeomotive organs of Insects，and to the general composition of their body，than to the modifications of the parts of the mouth，at least when their structure is essentially referable to the same type．Thus 1 do not commence by dividing these animals into Grinders and Suckers，but into those which have wings and wing－cases，and such as have four or two wings of the

[^2]same consistence. The form and uses of the organs of manducation are viewed in a secondary light. My series of Orders relative to the winged Insects is, consequently, nearly similar to that of Linnæus.

Fabricius, Cuvier, Lamarck, Clairville and Dumeril, considering the difference of the functions of the parts of the mouth of primary consequence, have arranged those divisions otherwise.

In accordance with the plan of M. Cuvier, I have reduced the number of families which I established in my previous works, and have converted into subgenera the numerous divisions that have been made of the genera of Linnæus, notwithstanding their characters may otherwise be very distinct.

Such also was the intention of Gmelin in his edition of the Systema Naturce. This method is simple, historical and convenient, as it enables the student to proportion his instruction to his age, his capacity, or to the end he has in view.

All my groups are founded on a comparative examination of all the parts of the animals I wish to describe, and on the observation of their habits. Most Naturalists stray from the natural system by being too exclusive in their considerations. To the facts collected by Réaumur, Rœsel, De Geer, Bonnet, the Hubers, \&c., respecting the instinct of .Insects, I have added several ascertained by myself, some of which were hitherto unknown. M. Cuvier has added to them an extract of his anatomical observations *; he has even devoted himself to fresh rescarches, among which I will mention those whose object was the organization of the Limuli, a very singular genus of the Crustacea.

Being necessarily restricted in the description of specics, I have always selected for that purpose the most interesting and common ones, and particularly those mentioned by M. Cuvier in his Tableau Elémentaire de l'Histoire Naturelle des Animaux.

LATREILLE.

[^3]
INDEX.

SYSTEMATICALLY ARRANGED.

SECOND GREAT DIVISION OF THE ANIMAL KINDGOM.
 animalia mollusca.
 General Characters of the Division, 1.
 Division of Mollusca into Classes, 4.

CLASSES.

I. Cephalopoda.
 II. Pteropoda.
 III. Gasteropoda.
 IV. Acephala.
 V. Brachiopoda.
 Vi. Cirrhopoda. ORDERS, GENERA, AND OTHER DIVISIONS.

CLASS I.-CEPHALOPODA.

Sepia, 7
Octopus, 7
Polypus of Aristotle, 9
Eledon of Aristotle, 10
Argonauta, 10
Bellerophon, 11
Loligo, 11
Luligopsis, 12
Loligo proper, 12
Onychotheuthis, 11
Scpiola, 12
Chondrosepia, 12
Sepia proper, 12
Nautilus, 13
Spirula, 13
Nautilus proper, 14
Lituus, 14
Belemnites, 15
Actinocamax, 15

Ammonites, 16
Ammonites proper, 16
Planites, 16
Ceratites, 16
Orbulites, 16
Scaphites, 16
Baculites, 16
Hamites, 16
Turrilites, 16
Camerines, 17
Siderolithes, 17
Helicustega, 18
Helicostega nautiloidea, 18
Helicostega ammonoida, 18
Helicostega turbinoida, 18
Stycostega, 18
Enallostega, 19
Agathistega, 19
Entomostega, 19
CLASS II.-PTEROPODA
Clio, 20
Cymbulia, 20
Pneumodermon, 20
Limacina, 20
Hyalea, 20
Cleodora, 21
Cleodora proper, 22
Creseis, 22
Cuvieria, 22
Psyche, 22
Eurybia, 22
Pyrgo, 22
CLASS III.-GASTEROPODÅ.
Order I.-PULMONEA, 27
Pulmonea Terrestria.
Limax, 29
Limax proper, 23
Arion, 31
Lima, 32
Vaginulus, 32
T'estacella, 33
Parmacella, 33
Helix, 33
Helix proper, 33
Vitrina, 34
Bulimus, 34
Bulimus proper, 34

Order I.-PULMONIA- (continued).
Pupa, 35
Chondrus, 35
Succinca, 35
Clausilia, 36
Achatina, 36
Pulmonea Aquatica.
Onchidium, 37
Planorbis, 37
Limnæus, 38
Physa, 38
Scarabæus, 38
Auricula, 39
Conovulus, 39
Order II.-NUDIBRANCHIATA, 39
Doris, 40
Onchidora, 40
Plocamoceros, 40
Polycera, 40
Tritonia, 41
Thethys, 41
Scyllæa, 41
Glaucus, 42
Laniogerus, 42
Eolidia, 42
Cavolina, 42
Flabellina, 43
Tergipes, 43
Busiris, 43
Placobranchus, 43
Order HIL-INFEROBRANCHIATA, 43
Phyllidia, 44
Diphyllidia, 44
Order IV.-TECTIBRANCHIATA, 44
Pleurobranchus, 44
Pleurobranchæa, 45
Aplysia, 45
Dolabella, 46
Notarchus, 46
Bursatella, 47
Akera, 47
Bullæa, 47
Bulla, 48
Akera proper, 48
Gastropteron, 48
Gastroplax, 49
Order V.-HETEROPODA, 49
Petrotrachea, 50Carinaria, 50Atlanta, 51Firola, 51
'Timorienna, 51
Monophora, 51
Phylliroc, 52
Order VI.-PECTINIBRANCHIATA, 52
Fam. 1.-Trochoida, 53
'I'rochus, 53
'Tectarium, 53Calcar, 54
Rotella, 54
Cantharis, 54
Infundibulum, 54
Telescopium, 54
Trochus, 54
Solarium, 55
Evomphalus, 55Turbo, 55
Turbo proper', 55
Delphinula, 55
Pleurotoma, 56
Turritella, 56
Scalaria, 56
Cyclostoma, 57
Valvata, 57
Paludina, 58
Littorina, 58
Monodon, 58
Phasianella, 5?
Ampullaria, 59
Lanista, 5.9
Helicina, 59
Ampullina, 59
Olygira, 59
Melania, 60
Rissoa, 60
Melanopsis, 60
Pirena, 60
Actæon, 61
Pyramidella, 61
Janthina, 61
Nerita, 61
Natica, 62
Nerida proper, 62
Velata, 62
Neritina, 62
Clithon, 62

Order VI.-PECTINIBRANCHIA'IA - (continued).
Fam. 2.-Capuloida, 62
Capsulas, 63
Hipponyx, 63
Crepidula, 63
Pileolus, 63
Septaria, 63
Calyptræ, 64
Siphonaria, 64
Sigaretus, 64
Coriocella, 65
Cryptostoma, 65
Fim, 3.-Buccinoida, 65
Conus, 65
Cypræa, 66
Ovula, 66
Ooula proper, 67
Volva, 67
Terebellum, 67
Voluta, 67
Oliva, 67
Volvaria, 67
Voluta proper, 68
Cymbium, 68
Voluta, 68
Marginella, 68
Colombella, 68
Mitra, 69
Cancellaria, 69
Buccinum, 69
Buccinum proper, 69
Nassa, 70
Eburna, 70
Aucillaria, 70
Dolium, 70
Dolium proper, 70
Perdix, 70
Harpa, 70
Perpura, 71
Monoceros, 71
Sistra, 71
Ricinula, 71
Concholepas, 71
Casis, 71
Morio, 72
Terabra, 72
Cerithium, 72
Potamida, 72
Murex, 73
Order Vi.-PEC'TINIBRANCHIA'TA-(continued).
Murex, 73
Murex proper, 73
Brontis, 73
Typhis, 73
Chicoracea, 73
Aquilla, 73
Lotorium, 73
Tritonium, 74
Trophona, 74
Ranclla, 7
Apolles, 74
Fusus, 74
Fusus proper, 74
Lathira, 74
Pleurotoma, 74Pyrula, 75Fulgur, 75
Fasciolaria, 75
Turbinella, 75
Strombus, 75
Strombus, 75
Pterocera, 76
Rostellaria, 76
Hippocrenes, 76
Order VII.-TUBULIBRANCHIATA, 76
Vermetus, 76
Magilus, 77Siliquaria, 77
Order VIII.-SCUTIBRANCHIATA, 78
Halyotis, 78
Halyotis proper, 78
Pastollie, 78
Stromatia, 79
Fissurella, 79
Emarginula, 79
Parmophorus, 79
Order IX.-CYCLOBRANCHIATA, 80
Patella, 80
Chiton, 80
CLASS IV.-ACEPHALA.
Order I.-ACEPHALA TES'I'ACEA, 82
Frm. 1,-Oitracea, 83
Ostracita, 83

Order I.-ACEPHALA TESTACEA-(continued).
Rudista, 83
Radiolites, 83
Sphærulites, 84
Calceola, 84
Hippurites, 84
Batolithes, 84
Ostrea, 84
Ostrea proper, 84
Peloris, 84
Gryphæa, 85
Pectens, 85
Lima, 86
Pedum, 86
Hinnita, 86
Plagiostoma, 87
Pachytes, 87
Dianchora, 87
Podopsis, 87
Anomia, 87
Echion, 87
Placuna, 88
Spondylus, 88
Plicatula, 88
Malleus,88
Vulsella, 89
Perna, 89
Crenatula, 89
Gervilia, 89
Inoceramus, 90
Castillus, 90
Pulvinites, 90
Etheria, 90
Avicula, 90
Pintadinæ, 90
Margaritze, 90
Pinna, 91
Chimæra, 91
Arca, 91
Arca proper, 92
Cucullæa, 92
Pectunculus, 92
Aximea, 92
Nucula, 92
'Irigonia, 93
Fam. 2.-My'rilacea, 93
Mytilus, 93
Mytilus proper, 93
Modiolus, 94.
Lithodomus, 94
Order I.-ACEPHALA TESTACEA-(continued)
Anoduntea, 91
Iridina, 95
Dipsada, 9.5Unio, 95Hyria, 95
Castalia, 95
Cardita, 96
Cypricardia, 96
Coralliophagia, 96
Venericardia, 96
Paphia, 96
lam. 3.-C'hamacea, 97
Chama, 97
'Tridacna, 97
Tridacna proper, 97
Hippopus, 98
Chama, 98
Diceras, 98
Isocardia, 98
Fum. 4.-Cardiacea, 99
Cardium, 99
Hemicardium, 99
Donax, 99
Cyclas, 100
Cyrena, 100
Cyprina, 100
Galathæa, 101
Corbis, 101
Tellina, 101
Loripes, 102
Lucina, 102
Ungulinæa, 102
Venus, 102
Astartie, 103
Crassinæa, 103
Cytheræ, 103
Capsa, 104
Petricula, 101
Corbula, 104
Mactra, 104
Mactra proper, 104
Lavignons, 105
Fam. 5.-Inclusa, 105
Mya, 105
Lutraria, 105
Mya proper, 106
Anatina, 106
Solemya, 106

Order I.-ACEPHALA TESTACEA-(conlinued).
Cyrtudaria, 106
Panopea, 107
Pandora, 107
Byssomia, 10^{-}
Hiatella, 107
Solen, 108
Eolen proper, 108
Sanguinolaria, 108
Psammobia, 108
Psammothea, 108
Pholas, 108
Teredo, 109
Fistulana, 109
Gastrochæna, 110
Teredina, 110
Clavagella, 110
Aspergillum, 110
Order II.-ACEPHALA NUDA, 111
Fam. 1.-Segregata, 111
Salpa, 111
Thaliæ, 112
Salpa proper, 113
Ascidia, 113
'Theyton of Aristotle, 113
Fam. 2.-Aggregata, 114
Botryllus, 114
Pyrosoma, 115
Polyclinum, 115
Escharie, 116
CLASS V.-BRANCHIOPODA.
Ligula, 116
Terebratula, 117
Spirifer, 117
Thecidea, 117
Orbicula, 118
Discinæ, 118
Crania, 118
CLASS VI.-CIRRHOPODA.
Lepas, 119
Anatifa, 119
Pollicipes, 120
Cineras, 120
Otion, 120
Tetralasmis, 120
Balanus, 120

Order II.-ACEPHALA NUDA-(continued).
Balanus proper, 120
Acastæ, 121
Coniæ, 121
Asemæ, 121
Pyrgomx, 121
Octhosise, 121
Creusire, 121
Coronulæ, 121
Tubicinellæ, 121
Daidema, 122
THIRD GREAT DIVISION OF THE ANIMAL KINDGOM.
ANIMALIA ARTICULATA.
Distribution of the Articulata into four Classes, 124.

CLASSES.

I. Annelides.

II. Crustacea.

> III. Arachnides. IV. Insecta.

CLASS I.-ANNELIDES.
Division of the Annelides into three Orders, 127.
Oruer I.-TUBICOLE, 128
Serpula, 128
Spirorbis, 129
Sabella, 129
Terebella, 130
Phyzelix, 131
Idaliæ, 131
Amphitrite, 131
Syphostoma, 132
Dentalium, 132
Order II.—DORSIBRaNCHIATA, 132
Arenicola, 133
Amphinome, 133
Chloeia, 134
Pleione, 134
Euphrosine, 134
Hipponea, 134
Eunice, 134
Marphise, 135
Lysidice, 135
Agula, 135
Nereis, 135
Nereiphylia, 136

Order II.-DORSIBRANCHIA'TA-(continued).
Phyllodoce, 136
Alciopa, 136
Spio, 136
Syllis, 136
Glycera, 137
Nephthys, 137
Lumbrinera, 137
Aricia, 137
Hesione, 137
Ophelina, 138
Cirrhatulas, 138
Palmyra, 138
Aphrodita, 138
Halithea, 139
Eumolpe, 139
Polynoe, 139
Sigaliones, 139
Acoetes, 139
Chætopterus, 140

Fam. 1.-Abranchiate Setigere, 141
Lumbricus, 141
Lumbricus proper, 141
Enteriones, 141
Hypogæones, 142
'Trophoniæ, 142
Nais, 142
Clymena, 142
Fam. 2.-Abranchiate asetigere, 143
Hirudo, 143
Sanguisuga, 143
Hæmopsis, 144
Bdella, 144
Nephelis, 144
'Trochetia, 144
Aulastoma, 144
Branchiobdella, 145
Hæmocharis, 145
Albiona, 145
Branchellion, 145
Clespine, 146
Phylline, 146
Malacobdella, 146
Gor dius, 146

ARTICULATA WITH ARTICULATED FLET． CLASS II．－CRUSTACEA．

Division of Crustacea into Sections and Orders， 153.

SECTIONS．

1．MALACOSTRACA．

II．ENTOMOSTRACA．

ORDEFS． Decapoda． Stomapoda．
Liemodipoda． Amphipoda． Isopoda．
\｛ Branchiopoda． Pæcilopoda．

SECTION I．－MALACOSTRACA．
a．Eyes placed on a moveable and articulated Pedicle．
Order I．－DECAPODA， 156
Fum．1．－Brachyura， 161
Cancer， 162
Pinnipedes， 163
Matuta， 163
Polybius， 163
Orythyia， 164
Podopthalmus， 164
Portunus， 164
Platyonichus， 166°
Arcuata， $\mathbf{3} 66$
Cancer proper， 166
Clorodius， 167
Carpilius， 167
Xantho，167＊
Pirimela， 167
Atelecyclus， 168
Thia， 168
Mursia， 168
Hepatus， 168
Enadrilatera， 169
Eriphia， 169
Trapezia， 170
Pilumnus， 170
Thelphusa， 170
Gonoplax， 171
Macropthalmus， 172
Gelasimus， 172
Ocypode， 173
Mictyris， 174
Pinnotheres， 174
Uca， 175

[^4]Order I.-DECAPODA-(continued).
Cardisoma, 175
Gecarcinus, 175
Plagusia, 176
Grapsus, 176
Orbiculata, 177
Corystes, 177
Leucosia, 178
Ixa, 178
Iphis, 178
Nursia, 178
Arcania, 178
Ilia, 178
Persephona, 178
Myra, 178
Leucosia, 178
Phylira, 179
Ebalia, 179
Trigona, 179
Parthenope, 179
Lambrus, 180
Mithrax, 180
Acanthonyx, 180
Pisa, 181
Pericera, 181
Maia, 181
Micippe, 182
Stenocionops, 182
Camposcia, 182
Halimus, 182
Hyas, 183
Libinia, 183
Dockea, 183
Egeria, 183
Leptopus, 184
Hymenosoma, 184
Inachus, 184
Achæus, 185
Stenorhynchus, 185
Leptopodia, 185
Pactolus, 185
Lithodes, 185
Cryptopoda, 186
Calappa, 186
Athra, 187
Notopoda, 187
Homola, 187
Dorippe, 187
Dromia, 188
Dynomene, 188
Ranina, 189

Order I.-DECAPODA - (continued).
Fam. 2.-Macroura, 189
Astacus, 190
Anomala, 190
Albunea, 191
Hippa, 191
Remipes, 192
Birgus, 192
Pagurus, 193
Canobita, 194
Pagurus, 194
Proplyylax, 194
Locustæ, 194
Scyllarus, 195
Thenus, 195
Ibacus, 195
Palinurus, 196
Astacini, 196
Galathea, 197
Grimotea, 197
Munida, 198
Aglea, 198
Janira, 198
Porcellana, 198
Monolepis, 198
Megalopus, 199
Gebia, 199
Thalassina, 199
Callianassa, 200
Axius, 200
Eryon, 201
Astacus proper, 201
Nephrops, 201
Carides, 202
Penæus, 203
Stenopus, 204
Atya, 204
Crangon, 204
Processa, 205
Hymenocera, 205
Gnathophyllum, 206
Pontonia, 206
Alpheus, 206
Hyppolite, 206
Autonomera, 206
Pandalus, 206
Palæmon, 207
Sysmata, 208
Athanas, 208
Pasiphæa, 208
Mysis, 208

Order I.-DECAPODA-(continued).
Cryptopus, 209
Mulcion, 209
Order II.-STOMAPODA, 209
Fam. 1.-Unipeltata, 212
Squilla, 212
Squilla proper, 213
Gonodactylus, 213
Coronis, 214
Erichthus, 214
Alima, 214
Fam. 2.-Bipeltata, 214
Phyllosoma, 215
b. Eyes sessile and immoveable.

Order III.-AMPHIPODA, 217
Gammarus, 217
Phronima, 218
Hyperia, 218
Phrosine, 218
Dactylocera, 219
Ione, 219
Orchestia, 220
Taliprus, 220
Atylus, 220
Gammarus proper, 220
Melita, 221
Mæra, 221
Amphithoe, 221
Pherusa, 221
Dexamine, 221
Lencothoe, 221
Cerapus, 222
Podocerus, 222
Jassa, 222
Corophium, 222
Pterygocera, 223
Apseudes, 223
Typhis, 223
Anceus, 224
Praniza, 224
Ergine, 224
Order IV.-LeEMODIPODA, 224
Cyamus, 225
Leptomera, 225
Naupredia, 226
Caprella, 226
Cyamus proper', 226

Order V.—ISOPODA, 226
Oniscus, 228
Bopyrus, 228
Serolis, 229
Cymothoa, 229
Ichthyophilus, 229
Nerocila, 229
Livoneca, 22?
Canolira, 229
※ga, 230
Rocincla, 230
Conilira, 230
Synudus, 230
Nelocira, 230
Eurydice, 230
Limnoria, 231
Sphæromides, 231
Zuzara, 231
Sphreroma, 232
Næsa, 232
Campecopea, 232
Cilicæa, 232
Cymodocea, 232
Dynamene, 23:2
Anthura, 232
Idoteides, 233
Idotea, 233
Stenusoma, 233
Arcturus, 233
Asellota, 233
Asellus, 233
Oniscoda, 234
Jera, 234
Oniscides, 234
'Tylos, 234
Ligia, 235
Philusci:, 235
Oniscus proper, 235
Porcellio, 236
Armadillo, 236
SECTION II.-ENTOMOSTRACA.
Order I.-Branchiopoda, 238
Monoculus, 239
Lophyropa, 239
Zoea, 240
Nebalia, 24. 1
Condyhura, 241
Cyclops, 242
Cythere, 24.5

Order I.-BRANCHIOPODA-(continued).
Cypris, 245
Sida, 247
Latona, 247
Polyphemus, 248
Daphnia, 248
Lynceus, 253
Phyllopa, 253
Limnadia, 254
Artemia, 255
Branchipus, 255
Eulimene, 257
Apus, 258
Order II.—PexCILOPODA, 261
Fam. 1.-Xyphosura, 261
Limulus, 262
Tachypleus, 264
Fam. 2.-Siphonostoma, 264
Tribe 1.-Caligides, 264
Argulus, 265
Caligus, 268
Caligus proper, 269
Pterygopoda, 269
Pandarus, 269
Dinemoura, 269
Anthosoma, 269
Cecrops, 270
Tribe 2.--Lerneiformes, 270
Dichelestium, 270
Nicothoe, 271
TRILOBITES, 273.
Agnostus, 274
Calymene, 274
Asaphus, 274
Ogygia, 274
Paradoxides, 274
CLASS II.-ARACHNIDES.
Order I.—PULMONARIÆ, 277
Fam. 4.-Araneides, 279
Mygale, 286
Mygale proper, 286
Cteniza, 289
Atypus, 289
Eriodon, 290

Orner I.—PULMONARIA-(continued).
Dysdera, 291
Filistata, 291
Aranea, 291
'Tubitelæ, 291
Clotho, 291
Drassus, 293
Segrestria, 204
Clubiona, 29%
Aranea proper, 295
Argyroneta proper, 29:
Inequitelæ, 295
Scytodes, 296
Theridion, 296
Episinus, 296
Pholcus, 296
Orbitelæ, 297
Linyphia, 297
Uloborus, 298
Tetragnatha, 298
Epeira, 298
Laterigradæ, 301
Micrommata, 301
Senelops, 302
Philodromus, 303
Thomisus, 304
Sturena, 305
Citigradxe, 305
Oxyopes, 305
Ctenus, 306
Dolomedes, 306
Lycosa, 306
Myrmecia, 307
Saltigradæ, 308
Tessarops, 308
Palpimanus, 309
Eresus, 309
Salticus, 309
Fam. 2.-Pedipalpi, 310
Tarantula, 310
Phrynus, 311
Thelyphonus, 315
Scorpio, 311
Order II.-TRACHEARI $\neq 313$
Fam. 1.-Pseudo-scorpiones, 315
Galeodes, 315
Chelifer, 315
Frm, 2.-Pycnogonioes, 317
Pycnogonum, 318

Drober II.-TRACHEARIE— (continued
Phoxichilus, 318
Nymphon, 318
Ammothea, 318
Fam. 1.-Holetra, 318
Tribe 1.-Phalangite, 318
Phalangium, 313
Gonoleptes, 319
Siro, 320
Macrocheles, 320
Trogulus, 320
Tribe 2.-Acarides, 320
Acarus, 320
Trombidium, 321
Erythraus, 321
Gamasus, 321
Cheyletus, 322
Oribata, 322
Uropoda, 322
Acarus proper, 322
Bdella, 322
Smaridia, 323
Ixodes, 323
Argas, 324
Eylais, 325
Hydrachna, 325
Limnochares, 325
Caris, 325
Leptus, 325
Aclysia, 325
Atoma, 326
Ocypete, 326
CLASS III-INSECTA.
Order I.-MyRIOPODA, 345
Fam. 1.-Chilognatha, 347
Iulus, 349
Glomeris, 349
Iulus broper, 949
Polydesmus, 350
Pollyxenus, 350
Fam. 2.-Chilopoda, 350
Scolopendra, 351
Scutigera, 352
Lithobius, 352
Scolopendra proper, 352

Order II.-THYSANOURA, 353
Fam.].-Lepismene, 353
Lepisma, 353
Machilis, 354
Lepisma proper, 354
Fam. 2.-Podurelle, 355
Podura, 355
Podura proper, 355
Smynthurus, 355
Order III.-PARASITA, 356
Pediculus, 356
Pediculus proper, 356
Hæmatopinus, 357
Ricinus, 357
Trichodectes, 358
Gyropus, 358
Liotheum, 358
Philopterus, 35 S
Goniodes, 358
Triongulin, 358
Order IV.-SUCTORIA, 359
Pulex, 360
Order V.-COLEOPTERA, 361

PENTAMERA.

Fam. 1.-Carnivora, 363
Tribe 1.-Cicindeleta, 365
Cicindela, 365
Manticora, 365
Megacephala, 366
Oxycheila, 366
Euprosopus, 366
Cicindela proper, 366
Ctenostoma, 367
Therates, 368
Colliuris, 368
'Tricondyla, 369
Tribe 2.-Carabici, 369
Carabus, 369
Truncatipennes, 369
Anthia, 370
Graphipterus, 370
Aptinus, 370
Brachinus, 371
Corsyra, 372
Casnonia, 373

Order V.-COLEOPTERA-(continued).
Leptotrachelus, 373
Odacantha, 373
Zuphium, 373
Polistichus, 374
Helluo, 374
Drypta, 374
Trichognatha, 375
Galerita, 375
Cordistes, 375
Ctenodactyla, 376
Agra, 376
Cymindis, 376
Calleida, 376
Demetrias, 276
Dromias, 377
Lebia, 377
Plochionus, 377
Orthogonius, 377
Coptodera, 377
Bipartiti, 378
Enceladus, 378
Siagona, 378
Carenum, 379
Pasimachus, 380
Acanthoscelis, 380
Scarites, 380
Oxygnathus, 381
Oxystomus, 382
Camptodontus, 382
Clivina, 382
Dischirius, 382
Mirio, 383
Ozæna, 383
Ditomus, 383
Aristus, 383
Apotomus, 383
Quadrimani, 384
Acinopus, 384
Daptus, 385
Harpalus, 385
Ophonus, 385
Stenolophus, 386
Acupalpus, 386
Simplicimani, 386
Zabrus, 387
Pogonus, 387
Tetragonoderus, 388
Feronia, 388
Amara, 388
Pacilus, 389

Order Y.-COLEOPTERA-(continued).
Argutor, 389
Omaseus, 389
Platysma, 389
Pterostichens, 389
Abax, 389
Steropus, 389
Percus, 389
Molops, 390
Cophosus, 390
Cheporus, 390
Myas, 391
Trigonomota, 381
Psendo-morpha, 391
Cephalotes, 391
Stomis, 391
Catascopus, 391
Colpodes, 392
Pericalus, 392
Mormolyce, 392
Sphodrus, 392
Ctenipus, 393
Calathus, 393
Taphria, 393
Patellimani, 393
Dolichus, 394
Platynus, 394
Agonum, 394
Anchomenus, 395
Callistus, 395
Oodes, 395
Chlænius, 395
Epomis, 395
Dinodes, 395
Lissauchenus, 395
Rembus, 396
Dicrelus, 396
Licinus, 396
Badister, 396
Pelecium, 397
Cynthia, 397
Panagæus, 397
Loricera, 398
Patrobus, 398
Grandipalpi, 398
Pamborus, 399
Cychrus, 399
Scaphinotus, 399
Sphroroderus, 399
Teftlus, 400
Procerus, 400

Order V.-COLEOPTERA-(continued).
Procrustes, 400
Carabus proper, 400
Plectes, 400
Cechenus, 400
Calosoma, 402
Pogonophorus, 403
Nebria, 403
Alpreus, 403
Omophron, 403
Elaphrus, 404
Blethist, 404
Pelopliilus, 404
Notiophilus, 405
Subulipalpi, 405
Bembidium, 405
Tachypus, 405
Lopha, 405
Notaphus, 406
Peryphus, 406
Leja, 406
Trechus, 406
Blemus, 406
'l'ribe 3.-Hydrocenthari, 406
Dytiscus, 4:3
Dytiscus proper, 409
Colymbetes, 410
Hygrobia, 410
Hydroporus, 410
Noterus, 411
Haliplus, 411
Gyrinus, 411
Fam. 2,-Brachelytra, 413
Staphylinus, 413
Fissilabra, 414
Oxyporus, 414
Astrapres, 415
Staphylinus proper, 41.5
Xentholinus, 415
Pinophilus, 416
Lathrobium, 416
Longipalpi, 416
Pæderus, 416
Procirrus, 416
Stilicus, 416
Erresthetus, 417
Stenus, 417
Denticrura, 417
Oxytclus, 417
Osorius, 417

Order V.-COLEOPTERA-(continued).
Zyrophorus, 418
Prognatha, 418
Coprophilus, 418
Depressa, 418
Oınalium, 418
Lesteva, 418
Micropeplus, 418
Proteinus, 419
Aleochara, 419
Microcephala, 419
Lomechusa, 419
Tachinus, 419
Tacliyporus, 420
Fum. 3.-Serricornes, 420
SECTION I.-S'TERNOXI.
Tribe 1.-Buprestides, 421
Buprestis, 421
Buprestis proper, 422
Trachys, 423
Aphanisticus, 423
Melasis, 423
Tribe 2.-Elaterides, 424
Elater, 424
Galba, 425
Eucnemis, 425
Adelocera, 425
Lissomus, 426
Chelonarium, 426
Throscus, 426
Cerophytum, 427
Cryptostoma, 427
Nematodes, 427
Hemirhipus, 427
Stenicera, 427
Elater proper, 428
Campylus, 429
Phyllocerus, 429
SECTION II.-MALACODERMI.
Tribe 1.-Cerbrionites, 429
Cebrio, 429
Physodactylus, 430
Cebrio proper, 430
Anelastes, 430
Callirhips, 431
Sandalus, 431

Order Y.-COLEOPTERA-(continued).
Rhipicera, 4.31
Ptilodactyla, 432
Dascillus, 4.32
Elodes, 432
Scyrtes, 432
Nycteus, 432
Eubria, 433
Tribe 2.-Lampyrides, 433
Lampyris, 433
Lycus, 433
Dictyoptera, 434
Omalisus, 434.
Amydetes, 436
Phengodes, 436
Lampyris proper, 436
Drilus, 437
Cochleoctonus, 437
Telephorus, 438
Silis, 439
Malthinus, 439
Tribe 3.-Melyrides, 439
Melyris, 439
Malachins, 439
Dasytes, 440
Zygia, 440
Melyris, 440
Pelocophorus, 441
Diglohicerus, 441
Tribe 4.-Clerii, 441
Clerus, 441
Cylidrus, 441
Tillus, 442
Priocera, 442
Axina, 442
Eurypus, 442
Thanasimus, 443
Opilo, 443
Clerus proper, 443
Necrobia, 443
Enoplium, 444
Tribe 5-Priniores, 444
Ptinus, 445
Ptinus proper, 445
Gibbium, 445
Ptilinus, 446
Xyletinus, 446
Dorcatoma, 446
Anobium, 446

Order V.-Coleoptera-(continued).
SECTION III.
Tribe 1.-Kylotrogi, 447
Lymexylon, 447
Atractocerus, 447
Hylecxtus, 448
Lymexylon proper, 448
Cupes, 448
Rhysodes, 448
Fum. 4.-Clavicornes, 449

SECTION 1.

Tribe 1.-Palpatores, 450
Mastigus, 450
Mastigus, 450
Scydmæenus, 450
Tribe 2.-Histeroides, 451
Hister, 451
Hololepta, 45
Hister proper, 452
Platysoma, 452
Dendrophilus, 452
Abraus, 452
Onthophilus, 452
Tribe 3.-Silphales, 453
Silpha, 453
Sphærites, 4.53
Necrophorus, 454
Necrodes, 45.5
Silpha proper, 455
Thanatophilus, 456
Oiceploma, 456
Phosphuga, 456
Necrophilus, 456
Argyrtes, 4.5 T
Tribe 4.—Scaphidiles, 457
Scaphidium, 457
Scaphidium proper, 457
Choleva, 458
Tribe 5.-Nitidularia, 458
Nitidula, 458
Colobicus, 458
Thymalus, 459
Ips, 449
Nitidula proper, 4.59
Cercus, 46°)
Byturus. 460

Order V.-COLEOPTERA-(comlinurel).
'Tribe 6.-Engiclites, 460
Dacne, 460
Dacne proper, 460
Cryptopliagus, 461
'Tribe 7.-Dermestini, 461
Dermestes, 461
Aspidiphorus, 461
Dermestes proper, 462
Megatoma, 462
Limnichms, 462
Attagenus, 463
'I'rogoderma, 463
Anthrenus, 463
Globicomis, 463
Tribe 8.—Byrrkï, 464
Byrrhus, 464
: osodendron, 464
Byrrlus proper, 464
Trinodes, 164
SECTION II.
Tribe 1.-Acanthopoda, 465
Heterocerus, 466
Tribe 2.-Macrodactyla, 466
Diyops, 466
Potamophilus, 466
Dryops proper, 467
Elmis, 467
Macronychus, 467
Georissus, 467
Fam. 5.-Palipicornes, 167
'Tribe 1.-Myalrophilii, 468
Hydrophilus, 468
Elophorus, 468
Hydrochus, 468
Ochthebius, 469
Hydræna, 469
Spercheus, 469
Globaria, 469
Hydrophilus proper. 470
Limnebius, 471
Hydrobius, 471
Berosus, 472
Tribe 2.-Spharidiota, 472
Sphwridium, 472
Cercydion. 472

SECOND

GREAT DIVISION

OF THE

ANIMAL KINGDOM.(a)

—相相

ANIMALIA MOLLUSCA.*

The Mollusca have neither an articulated skeleton nor a vertebral canal. Their nervous system is not united into a spinal marrow, but merely into a certain number of medullary masses distributed in differ-

[^5][SF (a) It is proper to inform our readers that in placing this Division of the Animal Kingdom after the Fishes, we have made a correction of the confused arrangement which exists in the volumes of the French Original, and by which the Mollusea and the Zoophytes were plaeed in juxta position, whilst the Inscets followed the latter. Cuvier was under the necessity of yielding to the circumstances which imposed upon him the ineonvenient plan pursuci hy him in these volnmes; and they arose from his wish to devote the whole of the last two volumes of the original to the labours of M. Latreille, who has supplied the description of the Inscets. In his preface to the third volume the author explains his motires, and as they have been above substantially stated, we will incerely add the remainder of the remarks contained in this preface. He states the reasons which delayed the pmblica-
ent points of the body, the clief of which, termed the brain, is situated transversely on the œesophagus, and envelopes it with a nervous collar. Their organs of motion and of the sensations have not the same uniformity as to number and position, as in the Vertebrata, and the irregularity is still more striking in the viscera, partieularly as respects the position of the heart and respiratory organs, and even as regards the structure of the latter; for some of them respire elastic air, and others salt or fresh water. Their external organs, however, and those of locomotion, are generally arranged symmetrieally on the two sides of an axis.

The eireulation of the Mollusea is always double ; that is, their pulmonary circulation describes a distinet and perfect circle. This function is also always aided by at least one fleshy ventricle, situated between the veins of the lungs and the arteries of the body, and not as in fishes between the veins of the body and the arteries of the lungs. It is then an aortie ventricle. The family of Cephalopoda alone are provided besides with a pulmonary ventricle, whieh is even divided into two. The aortic ventriele is also divided in some genera, as in Arca and Lingula; at uthers, as in other bivalves, its auricle unly is divided.

When there is more than one ventriele they are not joined in a single mass, as in the warm-blooded animals, but are frequently placed at a considerable distanee from cach other, and in this case the animal may be said to liave several hearts.

The blood of the Mollusea is white or bluish, and it appears to contain a smaller proportionate quantity of fibrine than that of the Vertebrata. There are reasons for beliering that their viens fulfil the functions of absorbent vessels.
Their museles are attached to various points of their skin, forming tissues there, which are more or less complex and dense. Their motions consist of varions contractions varying in their direction, which produce inflexious and prolongations together with relaxations

[^6]of their different parts, by means of which they creep, swim, and seize upon various objects, just as the form of these parts may permit; but as the limbs are not supported by articulated and solid levers, they cannot perform very rapid advances in progression.

The irritability of most of them is extremely great, and remains for a long time after they are divided. Their skin is naked, very sensible, and usually covered with a humour that oozes from its pores ; no particular organ of smell has ever been detected in them, although they enjoy that sense; it may possibly reside in the entire skin, for it greatly resembles a pituitary membrane. All the Cephala, Brachiopoda, Cirrhopoda, and part of the Gasteropoda and Pteropoda, are deprived of eyes; the Cephalopoda on the contrary have them at least as complicated as those of the warm-blooded animals. They are the only ones in which the organ of hearing has been discovered, and whose brain is enclosed with a particular cartilaginous box.

Nearly all the Mollusca have a development of the skin which covers their body, and which bears more or less resemblance to a mantle; it is often howe ver narrowed into a simple disk, or is formed into a pipe, or hallowed into a sac, or lastly is extended and divided in the form of fins.

The Naked Mollusca are those in which the mantle is simply membranous or fleshy; most frequently however one or several laminæ, of a substance more or less hard, is formed in its thickness, deposited in layers, and increasing in extent as well as in thickness, because the recent layers always overlap the old ones.

When this substance remains concealed in the thickness of the mantle, it is still customary to style the animals Naked Mollusca. Most generally, however, it becomes so much developed, that the contracted animal finds shelter beneath it; it is then termed a shell, and the animal is said to be testaceous; the epidermis which covers it is thin, and sometimes desiccated;* it is called drapmarin(a).

The variety in the form, colour, surface, substance and brilliancy

[^7][^8]of shells, is infinite; most of them are calcareous; some are simply horny, but they always consist of matters deposited in layers, or exuded from the skin under the cpidermis, like the mucous covering, nails, hairs, horns, scales, and even teeth. The tissue of shells differs according as this transudation is depusited either in parallel laminæ or in crowded vertical filaments.

All the modes of mastication and deglutition are illustrated in the Mollusea; here the stomachs are simple, there they are complicated, and frequently provided with a peculiar armature; their intestines are variously prolonged. They most generally have salivary glands, and always a large liver, but neither pancreas nor mesentery: several liave secretions which are peculiar to them.
They also present examples of all the varieties of the process of generation. Several of them possess the faculty of self-impregnation ; other's, although hermaphrodites, require a reciprocal coitus, while in many the sexes are scparated. The first are viviparous, and the others oviparous; the eggs of the latter are sometimes enveloped with a harder or softer shell, and sometimes with a simple viscosity.

These varieties of the digestive and generative processes are found in the same order, and sometimes in the same family.

The Mollusea in general appear to be animals that are but slightly developed, possessed of but little industry, and which are only preserved by their fecundity and their tenacity of life.

Division of the Mollusca into Six Classes.*

The general form of the body of the Mollusca, being in proportion to the complication of their internal organization, indicates their natural division. \dagger

The body of some resembles a sac open in front, containing the branchiæ, whence issues a well developed head crowned with long and strong fleshy productions, by means of which they crawl, and seize various oljjects. These we term the Cephalopoda.

That of others is closed; the appendages of the head are either wanting or are extremely reduced; the principal organs of locomotion are two wings or membranous fins, situated on the sides of the neck,

[^9]and which frequently support the branchial tissuc. They constitute the Pteropoda.

Others again crawl by means of a fleshy disk on their belly, sometimes, though rarely, compressed into a fin, and have almost always a distinet head before. We call these the Gusteropoda.

A fourth class is composed of those in which, the mouth remains hidden in the bottom of the mantle, which also encloses the branchiæ and viscera, and is open either throughout its length, at both ends, or at one extremity only. Such are our Acephala.

A fifth comprises those, which, also inclosed in a mantle and without an apparent head, have fleshy or membranous arms, furnished with cilia of the same nature. We term these Brachiopoda.

Finally, there are some, which, although similar to the other Mollusca in the mantle, branchiæ, \&c., differ from them in numerous horny and articulated limbs, and in, a nervous system more nearly allicd to that of the Articulata. They will constitute onr last class, or that of the Cirrhopoda.

CLASS I.

CEPHALOPODA.*

Their mantle unites muder the body, forming a muscular sac which envelopes all the viscera. In several, its sides are extended into fleshy fins. The head projects from the opening of the sac; it is rounded, furnished with two large eyes, and crowned with longer or shorter conical and fleshy arms or fect, capable of being flexed in every direction, and extremely vigorous, the surface of which is armed with suckers or cup.s (a) which enable them to adhere with great tenacity to every body they embrace. These feet are their instruments of prehension, natation, and walking. They swim with the head backwards, and crawl in all directions with the head beneath and the body above.

A fleshy funnel placed at the opening of the sae, before the neck, affords a passage to the excretions.

The Cephalopoda have two branchix within the sac, one on each

[^10]side, resembling a lighly complicated fern leaf; the great vena cava, having arrived between them, divides into two branches, which pour their contents into two fleshy ventricles, eaeh of which is placed at the base of the branchix on its own side, and propels the blood into it.

The two branchial veins communicate with a third ventricle, situated near the bottom of the sac, which, by means of various arteries, distributes the blood to every part of the body.

Respiration is effected by the water which flows into the sac and issues through the funnel. It appears that it can even penetrate into two cavities of the peritoneum, traversed by the vena cava in their passage to the branchix, and act upon the venous blood by means of a glandular apparatus attached to those veins.

Between the bases of the feet we find the mouth armed with two stout horny jaws, resembling the beak of a parrot.

Between the two jaws is a tongue bristling with horny points ; the œesophagus swells into a crop, and then communicates with a gizzard as fleshy as that of a bird, to which succeeds a third membranous and spiral stomach, which receives the bile from the two ducts of the very large liver. The intestine is simple and short. The rectum terminates in the funnel.

These animals are remarkable for a peculiar and intensely black excretion, with which they darken the surrounding water when they wish to conceal themselves. It is produced by a gland, and retained in a sac, variously situated, according to the species.

Their brain, which is contained in a cartilaginous carity of the head, gives off a cord on each side which produces a large ganglion in each orbit, whence are derived innumerable optic filanents; the cye consists of several mombranes, and is covered by the skin which becomes diaphanous in that particular spot, sometimes forming folds which supply the want of eyelids. The ear is merely a slight cavity, on each side near the brain, without semicircular canals or an external meatus, where a membranous sac is suspended which contains a little stone.

The skin of these animals, of the Octopi particularly, changes colour in places, by spots, with a rapidity which greatly surpasses that of the camcleon.*

The sexes are separated. The ovary of the female is in the bottom of the sac: two oriducts take up the ova and pass them out through

[^11]two large glands which envelope them in a viscid matter, and collect them into clusters. The testis of the male, placed like the ovary, communicates with a vas deferens which terminates in a fleshy penis, situated on the left of the anus. A bladder and prostate terminate there likewise. There is reason to believe that fecundation is effected by sprinkling, as is the case with most fishes. In the spawning season the bladder contains a multitude of little filiform bodies, which, by means of a peculiar mechanism, are ruptured the moment they reach the water, where they move about with great rapidity, and diffuse a humour with which they are filled.

These animals are voracious and crucl; possessed both of agility and numerous modes of seizing their prey, they destroy immense quantities of fish and crustacea. Their flesh is caten; their ink is employed in painting, and the Indian, or China ink is supposed to be made from it.*

The Cephalopoda comprise but a single order, which is divided into genera, according to the nature of the shell.

Those which have no external shell, according to Linnæus, formed but the single genus, (a)

> SepiA, Lin.*

Which is now divided as follows:

> Octopus, Lam.-Polypus of the ancients,

Have but two small conical granules of a horny substance, on the

[^12]iर (a) Of course this gemns in not included is the Testacca, although it is customary for certain amatcur naturalists to regard the cuttle-fish (scpia officinalis) as a shellfish. In the system of Lamarck, the Céphalopoda constitute the fourth order of his Twelfth Class of Invertebrated Animals. He has arranged the genera, (some of which are noticed in the present scetion by Cuvier), in the following manner, for which we are indebted to C. Dubois, Esq.

> TWELFTH CLASS.
> Mollusca.
> Order IV.-Céphalopodes.

Character of the order:-Mantle of the animal in the form of a sack, containing the lower part of the body; hcad projccting above the sack, crowned with arms not articulated, furnished with suckers, which surround the mouth; two sessile eyes; two corncous mandibles at the mouth; threc licarts; the scxes scparated. They live in the sea, floating at large, attaching themselves to marine bodies at will : others only drag themselves along, by means of their arms, at the bottom of the water, or on its banks; the greater part of these are generally secluded in the
two sides, of the thickness of the back; the sac, having no fins, resembles an oval purse; eight foet, all of which are about equal, very large in proportion to the Fody, and mited at the base by a membrane; they are employed by the animal in swimming, crawling, and scizing its prey. The length and strength of these limbs render them fearful weapons, which it twines round animals ; in this way it has even destroyed men while bathing. The eyes are small in proportion, and the skin contracts over them so tightly as to cover them
hollows of rocks. They are all earnivorous, living on crals or any other marine animals which they are able to catch, the singular position of their arms greatly facilitating the necessity they are under of lringing their prey to their mouths, where the two strong mandibles enable them to break and crush the hard bodies with which some of their food is covered. Some of them are entirely naked; others live in a thin unilocular shell, which envelopes them, and in which they foat on the surface of the water ; and there are others which have a multilocular shell, cither completcly or partially internal.

First Division-Céphalopodes-polythalames. (Immeryés)

Testaceous Cephalopodes-Shell multilocular, enveloped completely, or only partially enclosed in the posterior part of the animal's body, often closely adhering.

$\left.\begin{array}{ll}\text {.... Spirula } \\ \text {... Spirolina }\end{array}\right\}$ Second Family.-Les Lituolées

「Shell multilocular, with septa plain and sinple at the edges, the divisions of them not cxhiliting any sutures on the internal thickness of the substance: shell straight or ncarly so; not in a spiral form. The greater number of these shells are only known in a fossil state.
Shell party in a spiral form, the whorls separated or connected with each other, the last continued in a right linc. The septa are generally traversed by a syphon, which in some species bcing continted in a straight line, oceasions the last one to have from three to six perforations. The first gemus is known in a recent state only; and Péron has ascortained that the body of the animal is contained in the last septum only, and the shell enveloped by its postcrior part.
entirely at the will of the animal. The receptacle of the ink is seated in the liver; the glands of the oviducts are small. Some of them

Polypus, Aristotle.

Have two altcrnate rows of cups along each foot.
The common species, Sepia octopodia, Lin,, with a slightly

rough skin, arms six times the length of its body, and arnished with one hundred and twenty pairs of cups, infests the coasts of Europe in summer, and destroys immense numbers of fishes and crustacea.

The seas of hot climates produce another, Sepia rugosa, Bose.; Sch., III, i1. 2, 3, whose body is rougher; arms somewhat longer than the body, furnished with ninety pairs of cups. It is from this species that some authors suppose the Indian Ink is procured. Others again,

Elenon, Aristolle,

Have but a single row of cups along each foot.
One of them, the Poulpe musque, Lam., Mém. de la Soc. d^{3} Hist. Nat. 4to, pl. ii ; Rondelet, 515*, is found in the Mediterranean, which is remarkable for its musky odour.

Argonauta, Lin.

These are Octopi with two rows of cups, the pair of feet which are nearest to the back being dilated at the extremity into a

> Fiflh Order.-Les Hélćropodes.

Body frec, elongated, swimming horizontally; lead distinet; two eyes; the arms not in the form of a crown on the summit of the head; no foot beneath the belly or under the throat for the purpose of crawling; one or more fins, not disposed in pairs, or any regular order of distribution. These animals, though allied to the Cephatopodes, may be considered as the first restiges of a series of marine animals, intermediate between them and the fishes, they probably are very numerous and much diversified, but have at present escaped observation, or their examination has been neglected.

[^13]broad membrane. The two cartilaginous granules of the common Octopus are wanted, but these mollusea are always found in a very thin shell, symmetrically fluted and spirally convoluted, the last whorl of which is so large, that it bears some resemblance to a galley of which the spine is the poop. The animal makes a consequent use of it, and in calm weather whole fleets of them may be observed navigrating the surface of the ocean, employing six of their tentacula as oars, and clevating the two membranous ones by way of a sail. If the sea becomes rough, or they perceive any danger, the Argonaut withdraws all its arms, coneentrates itself in its shell, and deseends to the bottom. 'The body of the animal does not penetrate to the bottom of the spires of the shell, and it appears that it does not adhere to it, at least, there is no muscular attachment, a circumstance which has induced some authors to believe, that its residence there is that of a parasite*, like the Pagurus Bernhardus, for instance. As it is always found in the same shell, however, and as no other animal is ever seen there \dagger, althongh it is very common and so formed as to show itself frequently on the surface, and as the germ of it is visible even in the ovum of the Argonautt, this opinion must be considered as highly problematical, to say nothing more of it.

The ancients were well acquainted with this singular animal and its manœuvres. It is their Nautilus and their Pompilus, Pliny, IX, c. xxix.

Several species are known, closely resembling cach other both in the animal and the shell, which were united by Linnæus under the name of Argonauta argo, or the Paper Nautilus§.

Bellerophon, Montf.

Certain fossil shells, so called, the animal of which is supposed to have been analogous to the Argonauts. They are spirally and symmetrically convoluted, without seyta, but thick, and not fluted; the last whorl proportionably shorter\|.

Loligo, Lam.

The Cahnars have an ensiform lamina of horn in the back in lieu of a shell; the sac has two fins, and besides the eight feet promiscuously loaded with litle cups on short pedicles, the head is furnished with two much longer arms, provided with cups near the end only, which is widened. The animal uses these latter to keep itself immovable, as if at anchor. The receptacle of the colouring matter is

[^14]lodged in the liver, and the glands of the oviducts are rery large. The coalescing eggs are deposited in narrow garlands, and in two rows.

They are now subdivided according to the number and armature of the fect and the form of the fins.

Loligopsis, Lam.

Or the Calmarets, should have but cight fect as in Octopus; they are only known, however, hy drawings of but little authority*.

In the true Loligo the long arms are furnished with cups like the other tentacula, and the fins are placed near the point of the sac. Three species are fomed in the European scas.
L. vulgaris; Sepia loligo, L.; Rondel.,506; Salv. 169. The common Calmar. Fins forming a rhomb at the bottom of the sac.
L. sagittata, Lam. ; Scb., JII, iv. The great Calmar. Fins forming a triangle at the bottom of the sac ; arms shorter than the body, and loaded with cups for about half their length.
L. Media; Sep. media, L.; Rondel, 508. The little Calmar. Fins forming an ellipsis at the bottom of the sac, which terminate in a sharp point ψ.

Onykia, Lesucur.-Onychotheuthis, Lichenst.

Have the long arms furnished with cups terminating in hooks; in other respects the form is the samet.

Seplola, Cur.

Have the rounded fins attached to the sides of the sac and not to its point. One species,
S. vulgaris; S. sepiola, L.; Rondel., 519, inhabits European seas. The sac is short and obtuse, and the fins sinall and circular. It seldom excecds three inches in length, and its horny lamina is as slender and sharp as a stilet.

Chondrosepia. Leukard.-Sepiotheutes, Blainv.

The whole margin of the sac, on cach side, bordered with the fins, as in Sepia; but the shell horny, as in Loligo§.

[^15]
Sepia, Lam.

The Sepix, properly so called, have the two long arms of a Loligo, and a fleshy fin cxtending along the whole length of each side of the sac. The shell is oval, thick, convex, and composed of numerous and parallel calcarcous lamina, united by thousands of little hollow columns, rumning perpendieularly from one to the other. This structure rendering it friable, causes it to be employed, under the name of cuttle-bone, for polishing various kinds of work; it is also given to small birds in aviaries, for the purpose of whetting their bills.

The ink-poueh of the Sapix is detached from the liver and situated more deeply in the abdomen. The glands of the oviducts are enormous. The eggs are produced attached to each other in branching clusters resembling those of grapes, and are commonly termed seagrapes.

The species most commonly found in the seas of Enrope, Sepia officinalis, L.; Rondel., 498, Scb., III., iii, attains the length of a foot and more. Its skin is smooth, whitish, and dotted with red.

The Indian Ocean produees another, Sepia tuberculata, Lam. Soc. d'Hist. Nat., 4to. pl. i, f. 1*.

Nautilus, Iin.

In this genus Linnæns united all spiral, symmetrical and chambered shells, that is to say, such as are divided by scpta into several cavities; their inhabitants he supposed to be Cephalopoda. One of them, in fact, belongs to a Cephalopode that strongly resembles a Sepia, but it has shorter arms-it forms the genus,

Spirula, Lam.

In the hind part of the body, which is that of a Scpia, is an interior shell, which, although very different from the bone of that animal as to figure, differs but little in its formation. A correct idea of the latter may be obtained by imagining the successive lamine, instead of remaining parallel and approximated, to be concave towards the body, more distant, increasing but little in breadth, and forming an angle between them, thus producing an elongated cone, spirally convoluted in one plane and divided transversely into chambers. Such is the shell of the Spirula, which has additional characters consisting of a single hollow column that occupies the internal side of each chamber, continuing its tube with those of the other chambers to the very

[^16]extremity of the shell-this column is termed the siphon. The turns of the spire do not come into contact.

But a single species, Nautilus spirula, L.; List., 550, 2, is known. The

Nautilus, properly so called,

Has a shell which differs from the Spirula in the sudden crossing of the laminre, and in the last turns of the spire, which not only touch the preceding ones but envelope them. The siphon occupies the centre of each septum.
N. pompilius, L. ; List. 551, the most common species; it is very large, formed internally of a beautiful mother-of-pearl, and covered externally with a white crust varied with fawn-coloured bands or streaks (a).

The animal, according to Rumphius, is partly contained within the last cell, has the sac, eyes, parrot-beak, and funnel of the other Ceplaalopoda; but its mouth, instead of having their large feet and arms, is surrounded by several circles of numerous small tentacula without cups. A ligament arising from the back traverses the whole siphon and fastens it there*. It is also probable that the epidermis is cxtended over the outside of the shell, though we may presume it is very thin over the parts that are coloured.

Individuals are sometimes found,-Naut. pompilius, B, Gmel.; List., 552 ; Ammonie, Montf., 74, in which the last whorl does not envelope and conceal the others, but where all of them, though in contact, are exposed, a circumstance which approximates them to the Ammonites; they so closely resemble the common species, however, in all the rest of the shell, that it is scarcely possible to believe them to be any thing more than a variety of it.

Fossil Nautili are found of a large or moderate size, and much more various, as to form, than those now taken in the ocean \dagger.
Chambered shells are also found among fossils, furnished with simple septa and a siphon, the body of which, at first arcuated, or even spirally convoluted, remains straight in the more recent parts; they are the Lituus of Breyn, in which the whorls are sometimes contiguoust, and sometimes distinct-the Hortoles of Montfort.

[^17]$\sqrt{3}$ (a) See a very beautiful illustration of a specimen of Nautilus, by Richard Owen, Esq.-ENg. Ev.

In others, the Orthoceratites*, it is altogether straight. It is not improbable that the animals belonging to these shells, resembled that of Nautilus or of the Spirula. Tlie

Belemnites

Probably belong also to this family, but it is impossible to ascertain the fact, as they are only found among fossils; every thing, however, proves them to have been internal shells; thin and double, that is, composed of two cones united at the base, the inner one much shorter than the other, and divided into chambers by parallel septa, which are concave on the side next to the base. A siphon extends from the summit of the external cone to that of the internal one, and continues thence, sometimes along the margin of the septa and sometimes through their centre. The interval between the two testaceous cones is filled with a solid substance, in some composed of radiating fibres, and in others, of self-involving conical layers, the base of each being on the margin of one of the septa of the inner conc. Sometimes we only find this solid portion, and at another we also find the nuclei of the chambers of the inner cone, or what are termed the honeycomb cells. Most commonly these nuclei and the chambers themselves have left no other traces than some projecting circles on the inside of the internal cone. In other specimens again we find more or fewer of the muclei, and still in piles, but detached from the double conical sheath that enveloped them.

Of all fossils the Belemnites are the most abundant, particularly in chalk and compact limestone. \dagger
M. de Blainville divides them according to the greater or less depth to which the internal cone or chambered portion penetrates, or as the edges of the external cone have a small fissure or not, or as the external surface is marked on one side by a longitudinal furrow, or by two or more furrows towards the sumnit, or finally as that surface is smooth and without furrows.

Bodies very similar to Belemnites, but without a cavity and with a rather prominent base, form the genus actinncamax of Miller.(a) It

[^18]03 ((1) Mr. Miller gives the following description of the genus Actinocamax which he has established and separated from the Belcmnites.

Gen. Chur. A club-shaped Spathose coneretion, consisting of two nearly equal, longitudinal adhering portions. Apex pointed: base a convex, but obtuse conc. The whole formedof a serics of enveloping fibrous lanine.

Specific charecter. Act, verus. A club-shaped Spathose scmi-transparcnt horn coloured concretion; base convex, obtuse, conical; apex submamillar. Sides depressed towards the lower end, showing two longitudinal, towards the apex branehing, impressions of blood vessels.

The species was found in the Chalk: Strata in IVent, Wiltshire, and Sussex, in the strata which contain marinc animals, so that Mr. Miller does not hesitate to consider it as in inhabitant of the sea.-EsG. Ed.
is also upon conjectures of a similar nature that reposes the classification of the

Ammonites, Brug.

Or the Cornua-Ammoni, or horns of Ammon*, for they no longer exist except among fossils. They are distinguished from the Nautili, by their septa, which, instead of being plane or simply concave, are aingular and sometimes undulated, but most frequently slashed on the edge like the leaf of an acanthus. The smallness of their last cell scems to indicate that like the spirula they were internal shells. They are very abundant in the strata of secondary mountains, where they are found varying from the size of a lentil to that of a coach wheel. Their subdivisions are based upon the variation of their volutes and siphons.

The name of Ammonites Lam., (Simplegades, Montf., 82) is particularly restricted to those species in which all the whorls are visible, and their siphon near the margin \dagger.

They have lately been divided into the Ammonites planites, of Haan, where the edge of the septa is foliaceous, and in to the ceratites of Haan, where it is simply angular and undulated.

Those in which the last whorl envelopes all the others form the Orbitulites, Lam., or the Globites, and Goniatites of Haan, or the Pelaguses, Montf., 62 , in all of which the siphon is situated as in the preceding ones.

The Scaplites Sowerb., are those in which the whorls are contiguous and in the same plane, the last one excepted, which is detached and reflexed on itself. +

Some, Baculites, Lam., are entirely straight without any spiral portion whatever.

Some of them are round, \S and others compressed.|| The last sometimes have a lateral siphon.

The first cells of some of them-the Hamites Sowerb., are arcuated.
Finally, those which vary most from the usual form of this family are the Turrilites, Montf., 118, where the whorls, so far from rumning

[^19]in the same plane, suddenly descend, giving to the shell that form of an obelisk which is called turreted.*

It is also thought, and from similar considerations, that we should refer to the Cephalopoda, and consider as internal shells the

Camerines, Brug.-Numulltes, Lam.

Commonly called Nummulites, Numesmalites, lenticular stones, \&c. which also are only found among fossils, and present, externally, a lenticular figure without any apparent opening, and a spiral carity internally, divided by septa into numerous small chambers, but without a siphon. It is one of the most universally diffused of all fossils, forming, by itself alone, entire chains of calcareous hills and immense bodies of building stone \dagger.

The most cominon, and those which attain the greatest size, form a complete disk, and have only a single range of chambers in each whorlt.

Some very small species are also found in certain seas $\|$.
'The margin of other small species, (the siderolithes,, Lam.,) both fossil and living, sre bristled with points which give them a stellated appearance§.

The labours and researches, fruits of an infinite patience, of Bianchi (or Janus Plancus), Soldani, Fichtel, and Moll, Alc, and D'Orbigny, have ascertained an astonishing number of these chambered sleells without a siphon, like the Nummulites, that are extremely small and frequently microscopical, both in the sea, among the sand, fucus, \&c, and in a fossil state in the sand formations of various countries. They vary in a remarkable degree as to their general form, the mumber and relative position of the chambers, \&c. In one or two species, the only ones whose animals lave been observerl, there appears to be a small oblong body crowned by numerous and red tentacula, which, added to the septa of the shell, have caused them to be placed immediately after the Cephalopoda, like the genera just mentioned, an arrangement, howerer, which requires to be confirmed by more numerous observations before we can consider it as conclusive.

Such of these species as were known in the time of Linnæus and Grnelin were placed by those naturalists among the Nautili.

[^20]M. D'Orbigny, who has exceeded every other person in attention to this subject, forms them into an order which he calls Foraminifera, on account of the only communication between the cells being by means of holes, and divides them into families according to the manner in which the cells are disposed.

When the colls are simple and spirally arranged, they constitute his Helicosteyua, which are again subdivided. If the whorls are enveloped, as is particularly the case in the Nummulites, they become his Helicostegra nauliloida*.

If the whorls do not envelope each other, they are the Helicostegua ammonoida. \dagger

If the whorls are elevated as in most Univalres, they are the Helicostegua turbinoida. \ddagger

Simple cells may also be strung upon a single, straight or slightly curved axis, constituting the family of the Slycostegua.§

[^21]Or they may be arranged in two alternate series, when they become the Enallostegua*.

Or a few of them may be collected and united as in a pellet, forming the Ayalliestegua. \dagger

Finally in the Entomostegua \ddagger the cells are not simple as in the other families, but are subdivided by transverse septa in such a way that a section of the shell exhibit a sort of trellis.

Vaginulina, to whieh belongs the Nuutilus legremen, Gm. Planc., I, f. 7 ; Eneycl., pl. 465, f. 3.

Marginulina, where we find the Noutihes raphanus, Gm. Soldan., II, xeiv.
Planularia, such as the Nautihes crepidulus, Fich., and Moll., XIX, g, lı, i.
Pavonina.

* M. D'Orbigny has seven genera of Enallostegæ:

Bigenerina,
Textularia,
Vulvulifa,
Dimorphina,
Polymorpifina,
Virgulina,
Spheroidina.

+ The Agathistegua or Milliola of authors, which compose inmense banks of calcarcous stone, in the arrangement of M. D'Orbigny, only form six genera :

Biloculina,
Spiroloculina,
Triloculina,
Articuliva,
Quinqueloculina,
Adelosina,
M. de Blainvillc assures us that he has ascertained, from observation, that their animal has no tentacula : should this he the case, they are at once greatly removed from the Cephalopoda.
\ddagger The Entomostegua resemble, externally, several of the Helicostegna. M. D'Orb. divides them into five genera :

Amphistegina,
Heterostegy_h,
Orbicurina.
Alveolina,
Fabularia.
Those who are desirous of penetrating more deeply into the study of this curious portion of Conchyliology, on which our limits forbid us to expatiate, but which may be useful in the investigation of fossil strata, will find an excellent guide in the 'Table Method. des C'fphalopodes, inserted ljy M. D'Orbigny the Ann. des Sc. Nat. 2 1826 , tome VII, 1. 95 and 245 , and may profit by the large models ponstructed by this able observer.

CLASSII.

PTEROPODA*.

The Pteropoda, like the Cephalopoda, swim in the ocean, but they can neither fix themselves at all, nor crawl, because they have no feet. Their organs of locomotion consist of fins placedlike wings on the two sides of the mouth. But few and small species are known, all of them hermaphrodites.
Clio, Lin.-Clione, P'all.

Have the body oblong, membranous, without a mantle; head formed of two rounded lobes, whence originate small tentacula; two small fleshy lips, and a little tongue in front of the mouth; the fins covered with a vascular net-work which acts as branchice, the anus and genital orifice under the right one. Some authors consider them as possessing eyes.

The external envelope is far from being filled with the riscera; the stomach is wide, the intestine short, and the liver voluminous.

Clio borealis, L. This species, which is the most celebrated, is found in astonishing numbers in the arctic seas, furnishing, by its abundance, food for the whales, although each individual is hardly an inch long t.

Brugière has observed a larger and not less abundant species in the Indian Ocean; it is distinguished by its rose colour, emar ginated tail, and the division of the body, by grooves, into six Iobes, Encycl. Meth., Pl. of the Molluse., pl. Ixxy, f. 1, 2.

We must place also here the

Crubutha, of Peron.

Which have a cartilaginous or gelatinons envelope resembling a galley, or rather a sabot or clog, bristling with small points disposed in longitudinal rows. The animal has two large wings composed of a rascular tissue, which are its branchire and fins; between them, on the open side, is a third and smaller lobe with

[^22]three points. The mouth with two small tentaeula is situated between the wings towards the closed side of the shell and above two small eyes, and the genital aperture, whenee issues a small penis in the slape of a little proboseis. It is so diaphanous, that the heart, brain, and viscera can be distinguished through the envelopes*.

Pneumodermon, Cuv.

The Pneumoderma begin to be a little further removed from the Clios. 'Their body is oval, without a mantle and without a shell; the branchix are attaehed to the surface, and eomposed of little lamine, arranged in two or three lines so disposed as to form an H on the jart opposite to the head The fins are small; the mouth whieh is furnished with two small lips and two bundles of numerous tentacula, each terminated by a sueker, has a little lobe or fleshy tantaeulum beneath \dagger.

Pneumodermon Peronii, Cuv. Ann. du Mus., IV, pl. 59; and Peron, Ib., XV, pl. 2. Not more than an inch long. The species known was captured in the Oeean by Peron.

> Limacina, Cuv.

The Limacinr, aceording to the deseription of Fabrieius, should have been closely related to the Pneumoderma; but their body terminates in a spirally eonvoluted tail, and is lodged in a very thin shell formed by one whorl and a half. unbilicated on one side, and flattened on the other. The animal uses its shell as a boat, and its wings as oars, whenever it wishes to navigate the surfaee of the deep.

The speeies known Clio helicina, Phips and Gmel. ; Argonauta arclica, Fab., Faun. Grocnl., 387 , is almost as eommon on the Aretic seas as the Clio borealis, and is considered as forming one of the chief sourees of food for the Whale \ddagger.
Hyalea, Lam.,-Cavolina, Abildg.

Have two large wings; no tentacula; a mantle cleft ou the sides, lodging the hranehize in the bottom of its fissures, and invested by a shell also eleft latcrally, the ventral faec of whieh is arehed, and the dorsal flat and longer than the other; the transverse line whieh unites them behind, is furnished with three sharp dentations. When alive, the animal thrusts several appendages, that are more or less

[^23]long, through the lateral fissures of its shell; they are productions of the mantle.

The species most known Anomia tridentata, Forskahl. ; Carolina natans, Abilgaard; H. cornea, Lam.; Cuv., Ann. du Mus., 1V. pl. 59; and Péron, Ib., XV, pl. 3, f. 13. has a small, vellowish, semi-diaphanous shell. found in the Mediterrancan and the Atlantic Ocean*.

Cleonora, Peron.

The Cleodore, for which Brown originally created the genus Clio, appear to resemble the Hyalex in the simplicity of their wings, and in the absence of tentacula between them; it is also probable that their branchise are concealed in the mantle; their conical or pyramidal shell, howerer, is not cleft on the sides. 11. Ray distinguishes

Cliodora, properly so called, with a pyramidal shell.
Cresers, with a conical and elongated shellt.
Cuviers, with a cylindrical shell.
Psyche, with a globular shell, and
Eurybia, with a hemispherical shell. ($(+)$
It is thought that we may approximate to the Hyalex

Pirgo,

A very small fossil shell discovered by M. Defrance; very thin, globular, and divided by a very narrow tranverse cleft. except before, where it becomes a little widened (a).

[^24]
CLASS III.

GASTEROPODA.

The Gasteropoda constitute a very numerous class of the Mollusca, an idea of whieh is afforded by the Slug.

They generally erawl upon a fleshy disk, situated under the abdomen, which sometimes however, assumes the shape of a furrow, or that of a vertieal lamina. The baek is furnished with a mantle whieh is more or less extended, takes various forms, and in the greater number of genera, produces a shell. Their head plaeed anteriorly, is more or less visible, as it is the more or less involved under the mantle; its tentaeula are very small, they are situated above the mouth but do not surround it, varying in number from two to six ; sometimes they are wanted; their funetion is that of toueh, or at most that of smell. The eyes are very small in some species, adhering to the head, in others to the base, side, or point of the tentaenlum; sometimes they are wanted. The position, strueture, and nature of their respiratory organs vary, and afford the means of dividing them into several families; they never, however, have more than a single aortie heart, that is to say, one plaeed between the pulmonary vein and the aorta.

The position of the apertures, through whieh the genital organs, and that of the anus projeet, varies; they are almost always, however, on the right side of the body.

Several are entirely naked; others have merely a concealed shell, but most of them are furnished with one that is large enough to reecive and shelter them.

The shell is formed in the thiekness of the mantle. Some of them are symmetrieal and consist of a single piece; others are non-symmetrieal, whieh, in those speeies where they are very concave, and where they eontinuc to grow for a long time, become necessarily obliquely spiral.

If we figure to ourselves an oblique eone, in whieh other eones, always wider in one direetion than in the others, are sueecssively plaeed, it will be easily seen that the convolution of the whole takes plaec on the side which enlarges the least.

This part, on which the eone is rolled, is termed the columella; it is sometimes solid, and sometimes hollow. When hollow, its aperture is ealled the umbilicus.

The whorls of the shell may either remain in one plane, or incline towards the base of the columella.

In this last case, the preceding whorls rise above each other, forming the spire, which is so much the more acute, as the whorls descend more rapidly, and the less they increase in width. These shells with a salient spine, are said to be turbinated.

When, on the contrary, the whorls remain nearly in the same place, and do not envelope each other, the spine is flat, or even concave. 'These shells are said to be discoidal.

When the top of each whorl envelopes the preceding ones, the spire is hidden.

The part through which the animal appears to come out is named the aperture.

When the whorls remain nearly in the same plane, while the animal crawls, it has its shell placed vertically, the columella crosswise on the hind part of its back, and its head passes under the edge of the opening opposite to the columella.

When the spire is salient, it inclines from the right side in almost every species; in a very fow only does it project from the left when they are in motion; these are said to be reversed.

It is observed that the heart is always on the side opposite to that to which the spire is directed. Thus it is usually on the left, and in the reversed on the right. This relation is exactly inverted with respect of the organs of generation.

The organs of respiration, which are always situated in the last whorl of the shell, receive the ambient element from under its edge, sometimes because the mantle is entirely detached from the body along this edge, and sometimes because it is perfurated there by a hole.

It sometimes happens that the margin of the mantle is prolonged in the form of a canal, in order to allow the animal to seek the ambient element without exposing its head and foot beyond its shell. In such a case as this, the shell has also in its margin, near the extremity of the columella, opposite that to which the spire inclines, a fissure or canal, for the purpose of lodging that of the mantle. The canal, consequently, in ordinary species, is on the left; and in the reversed, on the right.

The animal, however, being very flexible, can vary the direction of the shell, and most commonly when there is a fissure or canal, it directs the latter forwards, which throws the spine behind, the columella to the left, and the opposite margin to the right. It is the contrary in the reversed, for which reason their shell is said to be contorted to the left.

The aperture of the shell, and consequently the last whorl, are more or less large, in proportion to the other whorls, as the head or foot of the animal, which is constantly protruding from and retracting within them, is more or less voluminous compared to the mass of the viscera which remain fixed in the shell.

This aperture is wider or narrower in proportion to the greater or less degree of thiekness of these same parts. The aperture of some shells is narrow and long-this is beeause the foot is thin, and becomes double by being folded in order to enter.

Most of the aquatic Gasteropoda, with a spiral shell, have an operculum, a part sometimes horny, sometimes calcareous, attached to the posterior part of the foot, which closes the shell when its occupant is withdrawn into it and folded up.

In others of the Gasteropoda the sexes are separate ; others which are hermaphrodite, and some of whieh possess the faeulty of selfimpregnation, while others require a reciprocal coitus.

Their organs of digestion vary as much as those of respiration.
This class is so numerous that we have been compelled to divide it into a certain number of orders, which we have founded upon the position and form of the branchiee. The

Pulmonea

Respire the natural air in a cavity, the narrow orifice of which they open and shut at pleasure. Some of them have no shell, others have one which is even very often completely turbinated, but the operculum is always wanted. The

Nudibranchiata

Have no shell, and are furnished with naked branchire, of various forms, on some part of their back. The

Inferobranchiata,

Similar in other respeets to the Nudibranchiata, have their branchiæ in the margin of their mantlc. The

'Tectibranchiata

Have branehixe on the back and side, covered by the lamina of the mantle, which almost always contains a shell more or less developed, or sometimes only enveloped in a recurved margin of the foot.

These four orders are hermaphrodites, requiring a reciprocal coitus. The

Heteropoda

Have their branchix on the back, where they form a transverse range of small panaches, protected, as well as part of the viscera, in some species, by a symmetrical shell. They are particularly distinguished, however, by the foot, which is compressed into a thin vertical fin, on whose margin is frequently observed a small cup (ventouse), the only restige of the horizontal foot of the rest of the class. In the

Pectinibranchiata

The sexes are scparated ; the respiratory organs almost always consist of branchie, composed of lancllæ, united in the form of combs, and are concealed in a dorsal cavity, widely open above the head.

Nearly all of them had a turbinated shell, a mouth sometimes entire, sometimes fissured, and at other times furnished with a siphon, but most generally susceptible of being more or less perfectly closed by an operculum attached to the foot of the animal behind*. The

Tubulibranchita(a)

Have a shell resembling a more or less irregularly pointed tube, which attaches itself to various bodies. Their branchix consist of a single range along the left side of the roof of the branchial cavity. The

Scutibrinchiata

Have branchiæ similar to those of Pectinibranchiata; but the scxes are united, so that fecundation takes place without a mutual copulation, as in the Acephala. Their shell is very open, and in several forms a non-turbinated shield; the operculum is always wanting. The

Cyclobranchiata,

Hermaphrodites, like the Scutibranchiata, have a shell composed of onc or several pieces, but never turbinated nor with an operculum ;

[^25]their branchix are attacherl under the margin of their mantle, as in the Inferobranchiata (a).

ORDER I.

PULMONEA*。

The Pulmonia are distinguished from the other Mollusca by respiring: elastic air through a hole opening under the margin of the mantle, and which they dilate and contract at will; and accordingly have no

[^26](of his

TWELFTH CLASS.

Mollusca.

Order H.-Lés Gustéropodes.

Animals with the body straight, never in a spiral form, nor enveloped in a shell eapable of containing the whole of it; they have beneath the belly a foot or muscular disk, united nearly to the whole length of the body, and serving them to crawl with. Some are naked, others are sereened by it dorsal shell, not sheathed in the body; and others again, have a shell more or less concealed in their mantle.

First Section.-Les Hydrolranchia.

Animals only breathing water.

Genus	Glaueus	
	Eolis	
.	Tritonia	First Family.
	Seyllæa	Les Tritoniens.
....	Tetliys	
	Doris	

$\left.\left.\begin{array}{ll}\ldots . . & \text { Phyllidia } \\ \ldots & \text { Chitonellus } \\ \ldots . . \\ \ldots & \text { Chiton } \\ \ldots . . . & \text { Patella }\end{array}\right\} \quad \begin{array}{c}\text {...... }\end{array}\right\} \quad \begin{gathered}\text { Second Family. } \\ \text { Les Phyllidiens. }\end{gathered}$
.... Pleurobranchus.
.... Umbrella. ...
Third Family.
.... Parmophora ..
.... Fissurella
.... Pileopsis
.... Calyptræa
.... Crepidula
.... Ancylus J
$\left.\begin{array}{ll}\text {.... } & \text { Aeera } \\ \ldots . . & \text { Bullaca } \\ \ldots \\ \text {.... Bulla }\end{array}\right\} \quad \begin{gathered}\text { Fifth Family. } \\ \text { Bulléens. }\end{gathered}$

The respiratory organs, in whatever part they are situated, are always elevated, either in filets, laminæ, tufts, or like a comb; they are placed above the mantle, either ou the back or on the sides, and not in any partieular cavity.
CRespiratory organs placed beneath the border or edge of the mantle, and disposed in a longitudinal series round the body, or on one side, not being plaeed in any particular. eavity.
Gills as above, but placed on the right side of the body only.
Respiratory organs placed in a eavity appropriated to them on the back of the animal, near the neck, projeeting either within the eavity or above it. Shell always external and eovering the animal, whieh is without tentaculæ.
Gills placed in a particular cavity near the posterior part of the baek, and eovered by the mantle or by an opercu. lary shield.-No tentaculæ.
branchix, but a mere net-work of pulmonary vessels which creep over the parietes of the respiratory cavity and chiefly on its ceiling.

Some of them are terrestrial; others are aquatic, but are compelled to visit the surface from time to time for the purpose of open-

Second Seclion.-Les Pneumobranchia.

Third Order.-Les Trachélipodes.
The bodies of the animals spirally eontorted at their posterior part, which is separated from the foot, and always enveloped in a shell; the foot frec, flattened, attached to the lower base of the neck or at the anterior part of the body, and uscful to assist the animal in crawling : a spiral shell covering the body.

First Section.-Les Phyliphages.
Animals feeding on vegetable substanees.

Traehélipodes without a projecting syplion, breathing generally by a holc. The greater number feed on regetable substances, and are furnished with jaws: apcrturc of the shells cntirc, not laving at the base any dorsal notch, or canal; they only breathe air. Shell spirivalve, smooth or with strixe, the right margin often reflected outwardly; smooth and not distinctly nacrous. This family is terrestrial; they have cylindrical tentaculx, with eyes at their summits with or without an opereu. lum. They all live out of the water.
Amphibious Trachélipodes, with two tentacule without eyes at their summit; gencrally no operculum, their tentaculx flattened; they inhabit fresh water, and rise to breathe the air on its surface. - Shell spirivalye, most frequently smooth on its external surface, and having the right margin of its aperture always sharp, and not reflected.
ing the orifice of their pectoral cavity in order to respire. They are all hermaphrodite. The

PULMONEA TERRESTRIA

Have generally four tentacula, in two or three only, of a very small size, the lower pair are not to be seen.

Those which possess no apparent shell, form in the Linnæan system the genus

Limax, Lin.
Which we divide as follows:

Limax, properly so called, Lam

Have the body elongated, and the mantle, a dense fleshy disk which is confined to the forepart of the back, merely covering the pulmonary

Genus 	$\left.\begin{array}{l} \text { Melania } \\ \text { Mrelanopsis. . } \\ \text { Pirena } \end{array}\right\}$	Third Family. Les Mélaniens.	$\left\{\begin{array}{l} \text { Fluviatile Traehelipodes with } \\ \text { two tentaeule and an oper- } \\ \text { enlum, and only breathing } \\ \text { water. The shells have the } \\ \text { margin of the aperture dis- } \\ \text { mited, the right side always } \\ \text { sharp: with an epidermis. } \end{array}\right.$
	$\left.\begin{array}{l}\text { Valvata } \\ \text { Paludina..... } \\ \text { Ampullaria.... }\end{array}\right\}$	Fourth Family. Les Péristomiens.	$\left\{\begin{array}{l} \text { Animal the same as the preced- } \\ \text { ing family; shell conoid or } \\ \text { subdiscoid; the margins of } \\ \text { the aperture united. } \end{array}\right.$
	$\left.\begin{array}{ll} \text { Vavieella } & . . . \\ \text { Neritina. } \\ \text { Nerita- } \\ \text { Natiea } & . . . \\ . . . \end{array}\right\}$	Fifth Family. Les Néritacés.	$\left\{\begin{array}{l} \text { Operculated Trachelipoles, and } \\ \text { breathing water only; some } \\ \text { inhabit fresh water, others } \\ \text { are marine. Shells seni- } \\ \text { globular or a flattened oval, } \\ \text { without a eolumella, and the } \\ \text { left margin of the aperture } \\ \text { forming a eover half over the } \\ \text { anerture of the shell, like the } \\ \text { deek of aboat. } \end{array}\right.$
-	Jantwina	Sisth Family. Les Janthines.	Shell marine, its aperture lint at all elosed, flonting on the surfaee of the water; breath ing water only. The animal has a bladder attaehed to its font, by whiel, when it is inflated, the shell is suspenderl.
	$\left.\begin{array}{lll} \text { Sigaretus } & . . . \\ \text { Stomatolla } & . . \\ \text { Stomatia } & . . . \\ \text { Halinti. } \end{array}\right\}$	Scventh Family. Les Macrostomes.	$\left\{\begin{array}{l} \text { Shell not floating, aperture very } \\ \text { much widencd, margin dis- } \\ \text { united, no enlumella or oper- } \\ \text { eulum. The animal breath- } \\ \text { ing water only. } \end{array}\right.$
1	$\left.\begin{array}{l} \text { Tornatella } \\ \text { I'yramidelsa . . } \end{array}\right\}$	Eighth Family. Les Plicaeŕs.	$\left\{\begin{array}{l} \text { Aperture of the shell not widen- } \\ \text { ed, and plaits on the colu- } \\ \text { mella: the anmal breathing } \\ \text { water only. } \end{array}\right.$

cavity; in several species it contains a small, flat, and oblong shell, or at least a calcareous concretion in place of it. The respiratory

Sccond Section.-Les Zoophayes. Animales feeding on animal substances only.

Trachelipodos with a projecting or salient syphon, breathing water only, conveyed to the branchix or gills by that syphon; they feed upon animal substances only, are marine, without jaws, and provided with a retractile proboscis. Shell spirivalve, inclosing the amimal; the aperture cither canaliculated or notelied at the base; the richt lip not changing it, form by age, the canal more or less long ; all lating opercula. In the first division of this family, the additional growth is but slightly marked, in the scoond, it is distinguished by thickened bands or varices, which remain on the extcrial whorls, except in the genus Struthiolaria, which has only a thickened lij.
Shell having a canal more or lese loneg at the base of the aplerture, the right side of which changes its form with age, and becomes wing shapeci ; a sims at the lower part of the lip. These shell. present the romarkable fact of being totally different in form in an adult state, from that in the roung; a fact only obscrvalbe in the G. Cyprea hesides this family. The operculum of the animals of this family is horny, long, and straight.
orifice is on the right side of this species of shield, and the anus on the margin of that orifice. The four tentacula are protruded and retracted, evolving themselyes like the inverted fingers of a glove, and the head itself can be partly withdrawn under the disk of the mantle. The genital organs open under the upper right tentaculum. The mouth has only an upper jaw, resembling a dentated cresent, which enables these animals to gnaw fruits and herbs, which they do with so much voracity as to effect considerable injury. The stomach is clongated, simple and membranous.
M. de Férussac distinguishes

Arion, Fer.,

In which the respiratory orifice is towards the anterior part of the shield, which merely contains a few calcareous granules. Such is

Limax Rufus, L. (the Red Limax;) Férussac, Moll. Terr. et Fluv., pl. i. and iii. It is evcrywhere to be met with in wet weather, and is sometimes entirely black, Ib. II, i, 2. A decoc-

tion of this species is sometimes used in France for pulmonary disorders*.

Lima, Féruss.
The respiratory opening towards the posterior part of their shell, and frequently much larger: Such is
L. antiquorum, Féruss., pl. iv and viii, A, f. 1; L. maximus, L. ; L. sylvalicus, Drap., Moll., IX, x. Frequently spotted or streaked with grey; found in caves and dark forests.
L. agrestis, L.; Féruss., pl. v, f. 5-10. Small, without spots; and one of the most ahmodant and destructive animals. \dagger

Vaginulus, Féruss.

Have a dense mantle without shell, stretching over the whole length of the Lody; four tentacula, the lower ones slightly forked: the anus at the extreme posterior extremity, between the point of the mantle and that of the foot, the same orifice leading to the pulmonary cavity situated along the right flank; orifice of the male organ of generation under the right inferior tentaculum, and that of the female under the middle of the right side. These organs, as well as those of digestion, are very similar to the same parts in the Slug.

These Mollusea are found in both Indies, and closely resembe the common Limaces \ddagger.

'Testacelia, Lam.

Have the respiratory crific and the anus at the posteriou extremity; the mantle very small, and placed on the same extremity; it contains a small oval shell, with an exremely wide aperture and a very small spine, which is not one tenth of the length of the body; otherwise these animals resemble the Limaces.

Test. haliotoidea, Drap.; Cuv., Ann. du Mus., V, xxri, 6, 11. A common species is found in the southern departments of France;

[^27]it lives sunder gromed，and feeds chefly on Lumbrici．N．de Fé－ russac has ohserved，that when aceidentally phaed in loo diy a situation，the mantle experiences a singular development，and furnishes it with a sort of shelter．

Parmaceila，Cur．

Have a membranous mantle with loose margins placed on the mid－ dle of the back，and containing in its posterior portion an oblong，flat shell，the hind part of which exhibits a slight rudiment of a spine； the respiratory orifice and the anus，under the right side of the mid－ dle of the mantle．

Parm．Olivieri，Cur．Ann．du Mus．，V，xxix，12－15．The first species known；fiom Mesopotamia．

Parm．palliolum，Feruss．，pl．vii，A．Inhabits Brazil．Some others are found in India．
In the terrestrial Pulmonea with complete and apparent shells，the edges of the aperture in the adult are usually timid．

Helli，Lin．

＇i＇o this gemus Linnerus refored all these species in which the aper－ ture of the shell，somewhat incroached upon by the projection of the penultimate whorl，assumes a crescent－like figure．

When this crescent of the aperture is as wide as it is high，or wider，it hecomes the

Helix，Brug．and Lam．

Some of them have a globular shell．
Of this number is the Helix pomatia，L．，common in the gar－ dens and rineyards of France，with a reddish shell marked with paler bands，an animal which in some places is considered a deli－ cious riticle of food．The Hel．nemoralis，L．，is another；whose shell is variously and rivilly coloured；in wet seasons it is very injurious to espalices＊：There are but few persons who have not heard of the cmrious facts respecting the reproduction of their amputated parts \dagger ．
In others the shell is depressed，that is，the spire is flattenedt．

[^28]Some of these lave ribs projecting internally*, and there are others in which the last whorl is suddenly recurved, (in the adult,) assuming an irregular and plaited form \dagger.

Vitrina, Drap.-Helico-Limax, Féruss.

The Vitrinæ are Helices with a very thin flattened shell, without an umbilicus; the aperture large, but its margin not tumid; the body too large to be completely drawn into the shell; the mantle has a double border \ddagger, the upper one, which is divided into several lobes, extends considerably beyond the shell, and being reflected over it, polishes it by friction.

The known European species inhabit wet places, and are very small§. Hot climates produce larger ones.
There are some species of Helix, in which the body can hardly enter the shell, although not furnished with this double border, which should be approximated to them $\|$.

When the crescent of the aperture is higher than it is wide, a disposition which always obtains when the spire is oblong or elongated, it constitutes the

Bulimus Terrestris, Brug.

Which requires a still further subdivision :

Bulimus, Lam.

Margin of the aperture tumid in the adult, but without denta tions.

Hot climates produce large and beautiful species, some of which are remarkable for the volume of their ova, the shell of which is of a stony hardness; and others for their left shell.

Several moderate-sized or small species are found in France, one of which, the Helix decollata, Gm.; Chemn., cxxvi, 1254, 1257 , has the singular habit of successively fracturing the whorls of the summit of the spire. This is the example referred to, as a proof that the muscles of the animal can be detached from

[^29]the shell; for at a particular epoch, of all the whorls of the spire originally possessed by this Bulimus, not a single one remains*.

Pupa, Lam.

Have the summit of the shell very obtuse; the last whorl, in the adult, becoming again narrower than the others, giving it the form of an ellipsoid, or sometimes almost that of a cylinder; the surrounding margin of the apertute tumid and emarginated on the side next to the spire by the preceding whorl. Small species, inhabiting wet places, among mosses, \&c.

Sometimes there is no dentation \dagger.
More commonly there is one in that portion of the aperture which is closed by the penultimate whorl \ddagger.

It is frequently observed inside of the cxternal edgell.

Chondrus, Cuv.

Have the aperture, as in the last mentioned Pupre, indented on the side next to the spine by the preceding whorl, and bordered with salient lamine or teeth; but the form is more ovoid, like that of a common Bulimus.

Some of them have teeth on the margin of the aperture §.
Others are furnished with more deeply seated laminæ 9
Here terminates that series of terrestrial Helices, the adult shells of which have a tumid margin round the aperture.

Succinea, Drap.

Have the shell oval, and the aperture higher than it is broad, as in Bulimus, but larger in proportion, and the margin of the aperture

[^30]not tumid ; the side of the columella is almost concave. The shell will not receive the cntire animal, and it might almost be considered as a large-shelled Testacella. Its inferior tentacula are very small, and it lives on the plants and shrubs which line the banks of rivulets, a circumstance which has caused the genus to be considered as amphibious*.

It is necessary to separate from the genus Turbo of Linn. and refer. to the genus of terrestrial Helices the following:

Chaveitia, Drán.

The shell is long, slender, and pointed, the last whorl, in the adult, narrowed, compressed, slightly detached, and terminated by a complete aperture with a tumid margin, frequently dentated or furnished with lamine. In the contraction of the last whorl we usually find a little plate bent into an S, the use of which to the living animal is nonknown.

The species are very small, living in mosses at the foot of trees, \&c. A great many of them are reversedt.
It is also necessary to separate from the Bulla of Linn. and place here

Achatina, Lam.

In which the aperture of the oval or obleng shell is higher than it is broad, as in the Bulimi, but it wants the tumid margin; the extremity of the columella also is truncated, the first indication of the emarginations which we shall find in so many marine Gasteropoda. These Achatina are large Helices, which devour trees and shrubs in hot countries ${ }_{+}$.

Montfort distinguishes those, in the last whorl of which we find a callus or peculiar thickening,-Liguns, Montf.|l ; this whorl is proportionably lower in them than in the others:

And those in which the extremity of the colmmella is curved towards the inside of the aperture,-Polyphemus, Montf.§; the last whorl is higher. 'The

[^31]
PULMONEA AQUATICA,

Have only two tentacula, as already stated; they are continually compelled to rise to the surface for the purpose of breathing, so that they cannot inhabit very decp water; they are usually found in fresh water or salt ponds, or at least in the vicinity of the seacoast and of the mouths of rivers. Some of them have no shell, such as

Onchidilas, Buchan*.

A broad, fleshy mantle, in the form of a shield, overlapping the foot at all points, and even covering the head when it contracts. It has two long retractile tentacula, and on the mouth an emarginated veil, formed of two triangular and depressed lobes.

The anus and respiratory orifice are under the posterior edge of the mantle, where, a little more deeply, we also find the pulmonary carity. Close to them, on the right, opens the female organ of generation; that of the male, on the contrary, is under the right great tentaculum, the two openings keing united by a furrow, which extends along the under part of the whole of the right margin of the mantle. These animals, destitute of jaws, have a muscular gizzard, followed by two membranous stomachs. Several of them inhabit the seashore, but in places where the ebb leaves them uncovered, so that they can readily breathe the natural air \dagger.

The acquatic Pulmonea, with complete shells, were also placed by Linneus in his genera Helix, Bulla and Voluia, from which it has been found necessary to separate them.

In the first were comprised the two following genera, where we find the internal edge of the aperture crescent-shaped, as in Helix.

$$
\text { Plavorbis, Brug. } \ddagger
$$

The Planorbes had already been distinguished from the Helices by Brugières, and even previously by Gucttard, on account of the slight

[^32]increase of the whorls of their shell, the convolutions of which are nearly in one plane, and because the aperture is wider than it is high. It contains an animal with long, thin, filiform tentacula, at the inner base of which are the eyes, and from the margin of whose mantle exudes a quantity of a red fluid, which is not, however, its blood. Its stomach is muscular and its food vegetable, like that of the Limnæi, of which, in all our stagnant waters, it it the faithful companion. The

Limneus, Lam.*

Separated from the Bulimi of Brugière by M. Delamark, have, like a Bulimi, an oblong spire and the aperture higher than it is wide; but the margin, like that of a Succinea, is not reflected, and there is a longitudinal fold in the columella, which runs obliquely into the cavity. The shell is thick ; the animal has two compressed, broad, triangular tentacula, near the base of whose inner edge are the eyes. They feed on plants and seeds, and their stomach is a very muscular gizzard, preceded by a crop. Like all the Pulmonea, they are hermaphrodites, and the female organ of generation being far from the other, they are compelled so to copulate, that the individual which acts as a male for one, serves as a female for a third; long strings of them may be observed in this position.

They inhabit stagnant waters in great numlers; they also abound with the Planorbes in certain layers of marl or calcareous strata, which they evidently prove were deposited in fresh water \dagger.

Physa, Drap.

The Physæ, which were placed without any just motive anong the Bullæ, have a shell very similar to that of a Lymnæa. but without the fold in the columella and reflecterl edge, and very thin. When the animal swims or crawls, it covers its shell with the two notched lobes of its mantle, and has two long, slender and pointed tentacula, on the greatly enlarged intermal base of which are the eyes. These are the small mollusca of our fountains.

One of them, Bulla fontinalis, L., which is sinistral, is found in France \dagger.
According to the observations of Van Hasselt, we should place here the

> Scarabeus, Montf.

Which has an oval shell, the aperture narrowed by projecting and stout dentations on the side next to the columella, as well as towards

[^33]the external margin; this margin is enlarged, and as the animal renews it after each semi-whorl, the shell projects most on two opposite lines, and has a compressed appearance.

They feed on aquatic plants in the Archipelago of India*.
The two following genera were among the Volutæ.

Auricula, Lam.

Differing from all the preceding aquatic Pulmonea in the columella, which is marked with wide and oblique flutings. Their shell is oval or oblong, the aperture elevated as in Bulimus, and the margin tumid. Several are large; we are not certain whether they inhabit marshes like the Lymnæi, or their borders like the Succineæ.

Auricula myosotis. Drap. III, 16, 17; Carychium myosotis, Féruss. The only species in France; the animal has but two tentacula, and the eyes are at their base; from the shores of the Mediterranean \dagger.

Convovulus, Lam.-Melanpes, Montf f.

Projecting folds on the columella, as in the Auriculæ, but the margin of the aperture is not tumid, and the internal lip is finely striated; the general form of the shell is that of a cone, of which the spire forms the base. They inhabit the rivers of the Antillest.

ORDER II.

NUDIBRANCHIATA $\|$.

The Nudibranchiata have neither shell nor pulmonary cavity, their branchire being exposed on some part of the back. They all are hermaphroditical and marine animals, frequently swimming in a reversed position, with the foot on the surface, concave like a boat, and using the assistance of the margin of their mantle and then tentacula as oars. In the

[^34]
Dokis*, ('mr.

Have the anus open on the posterior part of the back, the branchiee being arranged in a circle round it, under the form of a little tuft, the whole resembling a sort of flower. The mouth is a small proboscis, situated under the anterior margin of the mantle, and furnished with two little conieal tentacula. 'Two other claviform tentacula arise from the anterior superior part of the mantle. The openings of the genital organs are approximated under its right margin. The stomach is membranous. A gland interlaced with the liver excretes a peculiar fluid through a hole near the anus. The species are numerous, and some of them large. They are found in every sea, where their ova, resembling gelatinous bands, are diffused over stones, sea-weed, \&e. \dagger 'The

Onchidok., Iluint.

Only differ from Doris in the separation of the genital organs, the orifice of which communicates by a furrow ruming along the right side as in Onchidium.t In the

Plocamocieros, Leuck.

Have all the characters of the Onchidores, in aridition to which the anterior margin of their mante is ornamented with numerous branched tentaculal.

Polyceri, Ćar.

Have the branchir, as in Doris, on the hind part of the body, but more simple, and followed by two membranous lamine, which cover them in moments of cianger; anterior to the claviform tentacula,

[^35]similar to those in Doris, are four, and sometimes six others, simply pointed*.

Thitonia, (uv.

Have the body, the superior tentacula and genital organs as in Duris; but the anus and the orifice through which the peculiar liquid is excreted, are pierced on the right behind the organs of generation; the branchie, which resemble little trees, are arranged along the sides of the back, and the mouth, provided with broad membranous lips, is armed inside with two horny and trenchant lateral jaws, which may be compared to a pair of sheep-shears.

Trit. Hombergii, Cuv., Ann. du Mus., I, xxxi, 1, 2, and the Journ. de Phys., 1785, October, pl. ii. A large species of a copper colour, from the coast of France.

The same locality produces many others which vary greatly in size and the form of their branchiet; several of them are very small \dagger.

> Thernys§, Lin.

Have all two rows of branchix resembling brauching tufts along the back, and a very large membranous and fringed veil on the head, which shortens as it curves under the mouth; this latter is a membranous proboscis without jaws; on the base of the veil are two compressed tentacula, from whose margin projects a small conical point. The orifices of the genital organs, of the anus, and of the peculiar fluid are situated as in the Tritonire. The stomach is membranous and the intestine very short,

T'. fimbria, L.,; Cuv., Ann. du Mus., XII. xxiv\|. Grey sported with white; a beautiful species from the Mediterranean.

Scyllma, Lin.

Have the body compressed ; the foot narrow and marked with a furrow which enables it to clasp the stems of the fuci; no veil; the

[^36]mouth resembling a little proboscis ; orifices as in Thethys; the compressed tentacula terminated by a cavity, from which issues a little uneven point, and two pairs of membranous crests on the back, the internal surface of which is furnished with pencils of filaments, which are the branchice. The middle of the stomach is invested with a lleshy ring, internally armed with horny and trenchant laminr, like knives.
S. pelagica, L.; Cuv., Ann. du Mus., VI, 1xi, 1, 3, 4. Common on the floating focus of almost every sea.

Glauces, Forster.

Hare the body elongated, and the orifices of the anus and of the genital organs as in the preceding; four very small conical tentacula, and on cach side three branchix, each of which is formed of long slips arranged like the sticks of a fan, which also aid them in swimming. They are beautiful little animals, that inhabit the Mediterranean and the Atlantic, prettily coloured with blue and mother-ofpearl; they swim on their back with great swiftness. Their anatomical structure is very similar to that of the Tritonia, but the species are not yet well ascertained*.

Laniogerus, Blainv.

Have on each side two scries, of small and finely pectinated laminæ, which are the branchiæ; the body shorter and thicker than that of a Glaucus, but there are four small similar tentacula. \dagger

Eolidia, Cuv.

Have the form of a small Limax, with four tentacula above, and two on the sides of the mouth; the branchiæ are composed of laminæ, ar, ranged like scales, more or less crowded, on each side of the back. Found in every seat.

Cavolina, Brug.

Have the tentacula of the Eolidix, with radicating retiform brauchix, arranged in transverse rows on the back $\|$.

[^37]
Flabellina, Cuv.

The tentacula of the Eolidiæ, with radiating rectiform branchir, supported by five or six pedicles on each side; they are closely allied to the Glauci, and in fact to all the Nudibranchiata, whose branchire are situated on the sides of the back*.

Tergipes, Cuv.

The form of the Eolidix, but only two tentacula, with a range of cylindrical branchiæe on both sides of the back, each of which is terminated by a little sucker or cup, and which are used by the animal as feet, to walk on its back. The species known are very small \dagger.

Busiris, Risso.

The body oblong, and back convex; two filiform tentacula, and behind them, on the nape, two plumiform branchiæぁ.

Placobranchus, Van Hasselt.

Two tentacula and as many labial lobes; the whole back, widened by its margin, is covered with numerous radiating strix, which are the branchiæ. In its ordinary condition the widened borders of the mantle are turned up, and cross each other to form an envelope for the branchix, which are thus enclosed, as in a cylindrical case.

They are small Mollusca, from the Indian Ocean\|.

ORDER III.

INFEROBRANCHIATA.

The Inferobranchiata have nearly the same form and organization as are observed in Doris and Tritonia, but their branchix, instead of being placed on the back, resemble two long series of lamine, situated on the two sides of the body, under the projecting margin of the mantle.

[^38]
Pitylidia, filu.

The mantle naked, nsually coriaecous, and without any shell; the mouth, a small proboseis, each side of which is furnished with a tentaculum; two others project from above two small eavities in the mantle. The anus is on the hind part of the mantle, and the genital orifiees forward, under the right side; the heart near the middle of the baek; the stomach simple and membranous, and the intestine short.

Several species inhabit the Indian Ocean*.

Diphyllidia,

The branchice similar to those of the Plyllidix, but the posterior part of the mantle more pointed; on each side of the semicireular heid a pointed tentaculum and a slight tuberele; the anus on the right side \dagger.

ORDER IV.

TECTIBRANCHIATA \ddagger.

Have the branehiæ attaehed along the right side or on the baek, in the form of leaflets, more or less divided, but not symmetrical ; they are more or less covered by the mantle, in the thickness of whieh a small shell is generally contained. They are approximated to the Pcetinibranchiata by the form of the organs of respiration, and like them inhabit the ocean; but they are all hermaphrodites like the Nudibranchiata and the Pulmonea.
Plelrobarches, Couv.

Have the body equally overl pped by the mantle and by the foot, as if it were between two shields. In some species a little oval ealcarcous lamina is contained in the mantle, and a horny one in that of others; the mantle is emarginated above the head. The branehie.

[^39]are attached along the right side in the furrow, between the mantle and the foot, forming a series of pyramids divided into triangular laminuke. The mouth in the form of a small proboscis, is surmounted by an emarginated lip, and by two tubular and cleft tentacula; the genital orifices are before, and the anus behind the branchiæ. There are four stomachs, the second of which is fleshy and sometimes armed with bony appendages, and the third, furnished internally with salient longitudinal laminæ; the intestine is short.

Various species inhabit both the Mediterranean and the Atlantic, some of which are large and marked with the most beautiful colours*.

Preurobirancerea, Meckel.-Pleurobranchidium, Bl.

Have the branchire and genital orifices situated as in Pleurolranchus; but the anus is above the branchix, the margins of the mantle and foot project but little, and on the fore-part of the former are four short, distant tentacula, forming a square, which reminds the observer of the anterior disk of the Aceræ. I can find but one stomach, which is merely a dilatation of the canal, with thin parietes. A multifidous glandular organ opens behind the genital orifices ; there is no vestige of a shell.

Pleurob. Meckelii, Leve, Diss. de Pleur., 1813†. The only species known; from the Mediterranean.

Aplysia, Lin. \ddagger

Have the margins of the foot turned up into flexible crests, surrounding the back in all its $p^{7} \mathrm{rts}$, and even susceptible of being reflected over it; the heaṣ supported by a neck more or less long; two superior tentacula excavated like the ears of a quadruped, with two flattened ones on the edge of the lower lip; the eyes above the former. The branchiæ are on the back, and consists of highly complicated leaflets attached to a broad membranous pedicle, covered by a sinall mantle also membranous, in the thickness of which is a flat

[^40]and horny shell. The anus opens behind the branchix, and is frequently concealed under the lateral crests; the vulva is before on the right, and the penis projects from under the right tentaculum. The seminal fluid is conducted in coitu, from the penis to the vulva: by a groove, which extends from one to the other. An enormous membranous crop leads to a inuscular gizzard, armed internally with cartilaginous and pyramidal corpuscles, which is' followed by a third stomach sown with sharp hooks, and by a fourth in the form of a crecum. The intestine is voluminous, and the animal feeds on fucus. A limpid humour, secreted by a peculiar gland, and which in certain species is said to be extremely acrid, is exuded through an orifice near the vulva, and from the edges of the mantle oozes an abundant liquid of a deep purple colour, with which, when in danger, the animal tinges the water for a considerable extent. The ova are dejosited in a kind of long, interlaced, glairy net work, of extreme tenuity. In the seas of Europe we liave :

Apl. fasciata, Poiret ; Rang. Apl., pl. vi, vii. Black; margined with lateral red crests : one of the large species.

Apl. punctata, Cuv.; Ann. du Mus., tome II, p. 287, pl. 1, f. 2-4; Rang, Apl., pl. xviii, f. 2. Lilac, sprinkled with greenish points.

Apl. depilants, L.; Bohatsch., Anim. Mar. pl. i and ii ; Rang., pl. xvi. Blackish, with large greyish, clouded spots.

Several other species are found in distant seas*.

Dolabelea, Lam.

The Dolabellæ only differ from the Aplysiæ in the position of the branchiæ and their surrounding envelope; they are at the posterior extremity of the body; which resembles a truncated conc. Their lateral crest presses closely on their branchial apparatus, merely leaving a narrow furrow; their cell is calcareous. They are found in the Mediterranean and in the Indian Ocean. \dagger

Notarchus, Cuv.

Have their lateral crests united and covering the back, a longitu-

[^41]dinal emargination excepted, that leads to the branchiax, which have no mantle to cover them, but are otherwise like those of the Aplysix as well as the rest of their organization \ddagger. In the,

Bursatella, Blainv.

The lateral crests are united in front in such a manner as only to leave an oval aperture for the transmission of water to the branchiæ, which are also deprived of a protecting mantle*.

These two genera, however, probably form but one.

Akera, Muller.

Have their branchir covered, as in the preceding genera, but their tentacula are so shortened, widened, and separated, that they seem to be totally wanting, or rather to form a large, fleshy, and nearly rectangular shield, under which are the cyes. Independently of this, the hermaphroditism of these animals, the position of their genital organs, the complication and armature of their stomach, and the purple liquid effused by several of their species, approximate them to the Aplysiæ. The shell, of such as have any, is more or less convoluted, but with little obliquity, and is without a projecting spire, emargination, or canal ; the columella, projecting convexly, gives a crescent-like figure to the aperture, the part opposite to the spire being' always the broadest and most rounded.
M. de Lamarck names those in which the shell is concealed in the thickness of the mantle, Bullea (a). It has but very few whorls, and the animal is much too large to be drawn into it.

Bullaa aperta, Lam.; Bulla aperta and Lobaria quadriloba, Gm. ; Phyline quadripartita, Ascan.; Müll., Zool. Dan., III, pl. ci. ; Blanc., Conch. Min. Not., pl. xi ; Cuv., Ann. du Mus. t. I, pl. xii, $6 \dagger$. (The Sea Wafer), the animal is whitish, and about an inch long; the fleshy shield, formed by the vestiges of its tentacula, the lateral swellings of its foot, and the mantle occupied by the shell, seem to divide its upper surface into four lobes. Its thin, white, semi-diaphanous shell, is nearly all aperture, and its gizzard is armed with thrce very thick rhomboidal

[^42]pieces of hons. It is found in almost every sea, where it lives on cozy bottome.
M. de Jamarek leares the name of Bulla* to those species whose shell, meroly covered with a slight epidermis, is large enough to sholter the animal. It is somewhat more convoluted than in Bullæa.

Bulla lignaria, L.; Martini, I, xxi, 194, 95; Cuv., Ann. du Mus., XVI, I ; Pol. Test. Neip., III, pl, xlvi. ('The Wafer'.) The oblong shell with its concealed spire and ample aperture, very wide anteriorly, resembles a loosely rolled lamina, streaked in the direction of its whorls. The stomael of the animal is armed with two large semi-c,val osseuus picees, and with a small eompressed one \dagger.

Bulla ampulla. L,; Martini, I, xxii, 20, 204; Cuv., Ann. du Mus., XVI, 1. (The Nutmeg). The shell oval, thick, clouded with grey and brown: the stomach furnished with three black, very convex, rhombuidal pieces.

Bulla Hydatis, L, Chemn. IX, cxviii, 1019; Cuv., Ann. dı Mus., XVI, I. (The Water Drop.) Shell round, thin, and semidiaphanous; the last whorl, and consequently the aperture, higher than the spire; three small scutelliform pieces in the gizzard \ddagger.
We reserve the name of Anera, properly so called, Dorinium, Mech., Lobaria, Blainv., for those species whieh have no shell whatever, or only a vestige of one behind, although their mantle has its external form.

A small speeies, Bulla camosa, Cuv., Ann. du Mus., XVI, 1; Meek., Anat. Compar., II, vii, 1, 3 ; Blainv. Malac., pl. xlv, f. 3 , is found in the Mediterranean. The only armature of the stomach is the mantle; its fleshy œsophagus is extremely thick.

A tuberculous species, Doridium Meckelii, Delle Chiaie, Memor., pl. x, f. l-5, inhabits the same sea. The

Gastropteron, Mecticl.

Appear to he Akerx, the margin of whose foot is cxtended into broad wings, used in natation, whieh the effect on their back. It has no shell, nor lias the stomaeh any armature; a slight fold of skin is the only vestige of branchial operculum that is perceptible.

[^43]G. Meckelii ; Rosse, Diss. de Pteropodum Ordine, Halx, 1813, f. $11-13$; and Blainv. Malacol., pl. xlv, f. 5; or Clio amati, Delle Chiaie, Memor., pl. ii, f. 1-8. A small animal an inch long, and two broad, the wings being extended. From the Mcditerranean.
For the present, and until our anatomical studies are more extinded, we are under the necessity of placing in this order of Tectibranchiata, and even very close to the pleurobranchus, the singular genus.

Gisthorlax, Mlaine-Ombrelees, of Lam.

'The animal is a large and circular mollusea, whose foot projects considerably beyond the mantle, and its upper surface is studded with tubereles. The risecra are in a round, superior, and central part. The mantle is only visible by its slightly projecting and trenchant edges, along the whole of the front and of the right side. The lamellated pyranidal branchix, like those of the Pleurobranehus, are under this slight margin, and behind them is a tubular anus. Under this same margin and forwide, we two tentacula, longitudinally cleft, as in Plemobranchus, at whose internal base are the eyes; between them is a kind of proboscis, which may possibly be the organ of generation. There is a large concave space in the anterior margin of the foot, the edges of which are susceptible of being drawn up like the mouth of a purse, and at the bottom of which is a tuberele, pierced by an orifice, which perhaps is the month, and surmounted by a fringed membrane. The interior surface of the foot is smooth, and serves the animal to crawl on, as in the other Gasteropoda.

The animal carries is shell which is stony, flat, irregularly rounded, thickest in the middle, with trenchant edges, and marked with slightly concentric strix. It was at first thought to be attached to the foot, but more recent observation has proved that it is on the mantle, and in the usual place*.

ORDER V.
 HETEROPODA, Lamı.

The Heteropoda are distinguished from all other mollusea by

[^44]YCL. III.
their foot, which, instead of forming a horizontal disk, is compressed into a vertical muscular lamina, which they use as a fin, and on the edge of whieh, in several species, is a dilatation forming a hollow cone, that represents the disk of the other orders. Their branchize, composed of plumiform lobes, are situated on the hind part of the back, directed forwards, and immediately in their rear are the heart and a small liver, with part of the viscera and the internal organs of gencration. 'Their body, a gelatinous and translarent substance lined with a museular layer, is elongated and usually terminated by a compressed tail. There is a muscular mass helonging to the mouth, and a tongue furnished with little hooks; the oesophagus is very long; their stomaeh thin; two prominent tubes on the right side of the risceral bundle afford a passage to the fieces, semen or ova. 'They usually swim on their back with the foot upwards". They have the faculty of distending their borly by filling it with water, in a way not well understood. Forskahl comprised them all in his genus.

Pterotriches, Forsli.

But we have been compelled to subdivide them.

Cakinaria, Lam. \dagger

Have the nucleus formed of the heart, liver and organs of generation, covered by a slender, symmetrical and conical shell, the point of which is bent baekwards and frequently relieved by a erest, under whose anterior edge float the feathers of the branchise: two tentacula on the head, and the cyes behind their base.

One species, Carinaria cymbium, Lam.; Peron, Ann. du Mus., XV, iii, 15 ; Poli, III, xliv; Amn. des Sc. Nat., tome XVI, pl. 1, inhabits the Mediterranean.

Another, the Carinarin fragilis, Bory Saint-Vincent. Voy. aux Isles d'Afr., I, vi, 4 , is found in the Indian Occan.

[^45]The Aigonauta vilrea of author's, Faramne, vii, c, 2; Martini, 1, xiii, 163 , must be the shell of a large Carinaria, but the animal is not yet known.
Itlanta, Lesucur.

The Atlante of Lesucur, according to the recent observations of M. Rang, are animals of this order, the shell of which, instead of being well opened like that of a Carinaria, has a narrow cavity, spirally convoluted on one plane; its contour is relieved by a thin crest.

They are extremely small Mollusca from the Indian Ocean, in one of which Lamanon thought he had discovered the original Cornu Ammonis \dagger-Allanta Peronii and Allanla Treraudrenii, Lesueur, Journ. de Phys., lxxxv, Novemb. 1817; and Rang, Mem. de la Soc. d'Hist. Nat., tome III, p. 373, and pl. ix.

Tirola, Péron.

The body, tail, foot, branchiæ and visceral mass as in the Carinaria, but no shell has ever been observed; the snout is elongated into a recurved proboscis, and the eyes are not preceded by tentacula. From the end of the tail is frequently observed to proceed a long articulated fillet, which Forskahl took for a 'Trnia, and whose nature is not yet rery clearly ascertained.

One species, the Peterotrachea coronata, Forsk.; Péron., Ann. du Mus., XV, ii, 8 , is very common in the Mediterranean, and M. Lesucur describes several from the same sea, which he considers as different.-Journ. Acad. Nat. Sc. Philad., Vol. I, p. 3, but which require further comparisont.
M. Lesueur distinguishes the Firoloida, where the body, instead of terminating in a compressed tail, is abruptly truncated behind the visceral bundle, Ib. p. 37 §.

I'o these two, now well known genera, I presume we must add, when better understood, the

Timoriensi, Quoy and Gaym.

Voy. de Freycin., Zool. pl. lxxxvii, f. 1, which appears to be a Firola divested of its foot and bundle of viseera; and the

Monophora, Id.||

Voy. de Freycin., Zool. pl. lxxxvii, f. 4,5, which has nearly the form of a Carinaria, but is without a foot, distinct bundle of viscera, and shell.

[^46]Wre are not so certain that we should place there the

Phylifioe, Péron.,

An du Mus., XV, pl. ii, f. 1, where the transparent and strongly compressed body has a snout before, surmounted by two long tentacula without cyes, a truncated tail behind, and which allows the heart, nervous system, genital organs of both sexes to be seen through the integuments. The genital orifices and that of the anus are on the right side, and sometimes a tolerably long penis is visible; I can find no other organ of respiration than its thin and rascular skin*.

ORDER Y.

PECTINIBRANCHIATA \dagger.

This order forms, beyond all comparison, the most numerons divi sion, inasmuch as it comprises the whole of the suiral umivalves, and several that are simply conical. Their branchiæ, cumposed of numerous lamella or strips laid parallel with each other, like the tecth of a comb, are attached on one, two, or three lines, according to the genus, to the ceiling of the pulmonary carity, which oceupies the last whorl of a shell, and which has a large opening between the edge of the mantle and the body.

In two gencra only, Cyclosioma and Helicina, do we find, instead of branchix, a vascular network, covering the ceiling of a cavity, in other respects very similar; they are the only ones that respire the natural air; all the others respire water.

All the Pectinibranchiata have two tentacula and two eyes, sometimes placed on particular pedicles, and a mouth resembling a more or less elungated proboscis; the sexes are separated. The penis of the male, attached to the right side of the neck, camnot usually be retracted within the body, but is reflected into the cavity of the branchiec; it is sometimes very stout, and the Paludina is the only une which can retract it through an orifice perfurated in its right tentaculum. The rectum and oviduct of the female also creep along the right side of the eavity, between them and the branchire is a feculiar organ composed of cells, from which exudes an extremely viscid fluid; this forms a common envelope which contains the ora, and which is

[^47]deposited with them. The figure of this envelope is often very complex and singular*.

Their tongue is armed with little hooks, and by slow and repeated mibbing acts upon the hardest bodies.

The greatest difference in these animals consists in the presence or absence of the little canal formed by a prolongation of the edge of the pulmonary cavity of the left side, and which passes through it similar canal or emargination in the shell, to enalle the animal to hreathe without leaving its shelter. There is also this distinction between the genera-some of them have no operculum; the species differ from each other by the filaments, fringes, and other ornaments of the head, foot, or mantle.

These Mollusea are arranged in several families according to the forms of their shells, which appear to bear a constant relation to that of the animal.

FAMILY I.

TROCHOIDA.

This family is known by the shell, the aperture of which is entire, without an emargination or canal for a siphon of the mantle, as the animal has none, and is furnished with an operculum or some organ in place of it \dagger.

Trochus, Lin. \ddagger

Have shells, the angular aperture of whose external border approaches more or less to a perfect quadrangular figure, and in an oblique plane, with respect to the axis of the shell, because the part of the margin next to the spire projects more than the rest. Most of these animals liave three filaments on each edge of the mantle, or at least some appendages to the sides of the feet.

Of those that have no unbilicus, there are some in which the columellia, that lias the form of a concave arch, is continuons with the external margin, without any projection. It is the angle and projection of this margin which distinguishes them from Turbo-Tectarium, Montf. §

[^48]Several are flattened, with a trenchant edge, which has caused thems to be compared to the rowel of a spur-Calcar, Montf.*

Some again are slightly depressed, orbicular and shining, with a semi-round aperture, the columella convex and callons-Rolella, Lam. \dagger

The columella of others is distinguished near the base by a little prominence, or vestige of a tooth, similar to that of the Monodontes, from which these Trochi only differ in the angle of their aperture, and the projection of their margin. The aperture is usually about as high as it is wide-Cantharis, Montf. +
In some of them, on the contrary, the aperture in much wider than it is high, and their convex base approsimates them to the Calyp-tracea-Infundiluhum, Montf.§
In others again, where the aperture is also much wider than it is high, the columella forms a spiral canall|.

Those which have a turreted shell approach Cerithium-Telescopium, Montf. \cdot T

Among the umbilicated Trochi, there are some in which there is no projection in the columella; most of them are flattened, and have the external angle trenchant. Of this number is

Tr.agglutinans, L.; Chemn., V, clxxii, 1688,9. Remarkable for the habit of glucing to its shell, and cren incorporating with it, as fast as it increases in size, various forcign bodies, such as little pebbles, fragments of other shells, \&cc.; it frequently covers its umbilicus with a testaccous plate**.
The margin of others, however, is rounded, such as
Tr. cinerarius, L.; Chemn., V. clxxi, 1686. A small species, and the most common on the coast of France; greenish, obliquely streaked with violet.
Some umbilicated Trochi lave a prominence near the bottom of the columella \dagger.

And, finally, there are others in which it is longitudinally crenate $\ddagger \ddagger$ The

* Turbo calcar, L., Chemn., V. clxir, $1552 ;-$ T. slellaris, Id., 1553; T. acmlealus, Id., $1554-57$;-T. imperialis, Id., 1714.
+ Tr. restiarius, L., Chemn., V. clvvi, 1601
具 \ddagger Tr. iris, Chemm., 1522-23;-Tr. granulum, I1)., $1654-55 ;-T i$. zyzyphinus, Ib., clxvi, 1592-98;-Tr. comus, clxvii, 1610;-Tr. maculalus, clxviii, $1617-18$;Ti. americanus, clxii, $1534-35$;-Ti. cmmens, Gualt., LXX, M.
§ Trochus concarus, Chemn., V, clxxviii, $1620,21$.
If Trochus forcolutus, Chemn., TV, clxi, 1516-19;-Tr. mauriticmus, Id., clxiii, 1547-48;-Tr. fonestralus, Ib., 1549-50;-Tr. obetiscus, clx, 1510-12.

T Trochus telescopium, Chemn., V, clx, 1507-9.
** Ald, Trochus Iudicus, Chemn., V, clxxii, 1697-98;-Tr. Imperialis, clxxiii, 1714, and clxxiv, 1715 ;-Tr. solaris, Ib., 1701-1702, and $1716-1717$;-Tr. planus, Ib., 1721, 1722.
tt Tr. virgalus, Chemn., V. elx, $151+-15 ;-T$. nilolicus, Chemn., V. clxvii, 1605-7, clxviii, 1614;-Tr. rernus, Id., clxix, 1625-26;-Tr. incequalis, clxx, 1636-37;-Tr. magmus, clxxi, $1656-57$;-Tr. conspersus, Gualt., lxx. B.;-Tr. jujubinus, clxrii, 1612-13.
$\ddagger \ddagger$ Tr. maculalus, clxviii, $1615-1616$;-Tr. costatus, clxix, 163 ; - Tr. viridis, clxx, 1644;-Tr. radiulus, Ib., 1640-42.

Solarium, Lam.

Is distinguished from all other 'Trochi by a very broad conical spire, at the base of which is an extremely wide umbilicus in which may be seen the internal edges of all the whorls, marked by a crenated cord ${ }^{*}$.

Evomphalus, Soucrby.

Fossil shells resembling a Solarium, but wanting the dentations on the internal whorls of the umbilicust. The genus

$$
\text { Turbo, Lin. } \ddagger
$$

Comprehends all the species with a completely and regularly turbinated shell, and a perfectly round aperture. Close obserration has caused them to be greatly subdivided. In the

Turbo, Lam. Properly so called,

Have the shell round or oval, and thick; the aperture completed on the side next to the spire, by the penultimate whorl. The animal has two long tentacula, and the eyes placed on pedicles at their external base ; the sides of the foot are provided with membranous wings, sometimes simple, at others fringed, and occasionally furnished with one or two filaments. It is to some of these that belong those petrous and thick opereula observed in cabinets, which were formerly employed in medicine under the name of Unguis odoratus.

Some of them,-Meleager, Montf.§ are umbilicated, and others, -Turbo, Montf., || are not.

Delphinula, Lam.

Have the shell thick, as in Turbo, but convoluted in nearly the same plane; the aperture completely formed by the last whorl, and the margin not tumid; the animal similar to that of a Turbo.

[^49]The most common species, Turbo delp/iinu.s, L.; List., 608, 45, takes its name from the ramous and convoluted spines, which lave caused it to be compared to a dried fish*.

Pleurotoma, Defi.

Fossil shells with a round aperture, on the external margin of which is a narrow incision which ascends considerably; it is probable that it corresponded, like that of the Siliquarix, to some cleft in tlie branchial part of the mantle.
M. Deshayes already makes upwards of twenty fossil species. The Scissumelefe of M. d'Orbigny are.living specties of the same.

'Turutella, Lam.

The same round aperture as in 'rurbo properly so called, and completed, also, by the penultimate whorl; but the shell is thin, and is so far from being convoluted jn one plane, that its spire is prolonged into an obelisk (turreled). The eyes of the animal are placed on the external base of its tentacula; the font is smallt.

They are found in great mumbers among fossils: the Proto. Defr., should be approximated to then.

Scalaria, Lam.

Have the spire, as in 'Iurritella, elongated into a point, and the aperture, as in Delphinula, completely formed by the last whorl ; it is moreover surrounded by a ridge, which is formed, from space to space, as the shell of the animal increases in size. resembling so many steps. The tentacula and penis of the animal are long and slender.

One species celebrated for the high price it commands (a) , the Turbo scalari., L.: Chemn., IV, clii, 1426, \&c. vulg. Scalata, is distinguished by the whorls only coming in contact at the points where the ribs unite tlem, the intervals being open.

A second species, the Turbo clathrue, L.; List., 588, 50. 51, is not marked by this peculiarity ; it is more slender, and rery common in the Mediterrancan.
Some terrestrial or fresh water suhgenera, in which the aperture is entire, round, or ne:arly so, and operculated. may be placed here.
Of this number is the

[^50]
Cyclostona, Lam.*

The Cyclostome should be distinguished from all the others because they are terrestrial, as instead of branchio, the animal has merely a vascular network spread over the parietes of its pectoral cavity. In every other respect, however, it resembles the other animals of this fanily: the respiratory aperture is formed in the same way above the hear by a great solution of continuity; the sexes are separated; the penis of the male is large, fleshy, and reflected into the pectoral cavity; the two tentacula are terminated by blunt tubereles, and two other tubercles, placed on their external base, surport the cyes.

The shell is a spiral oval, with complete whorls, transversely and fincly striated, and its aperture, in the adult, is surrounded with a small ridge. It is closed hy a small romen opereulum. Found in woods, under moss, stones, \&̌c.

The most common is the Turbo elegans, List., 27, 25, about six lines in length and of a greyish colour; fonnd under abt the mosses \dagger.
Valvata, Mull.

The Valvate inhabit fresh water; their shell is convoluted in almost one plane like that of a Planorlis, bui the aperture is round, and firnished with an opereulum; the animal, which has two slender tentacula, with the eyes at their anterior base, respires by means of branchice. In a species found in France,

Valv. cristata, Mull.; Drap., I. 32, 33; Gruet-Huysen, Nov. Act. Nat. Cur. X, pl. xxxviii, the branclix, formed like a featlier, project from under the mantle and float externally, vibrating with the breathing of the animal. Ont the right side of the body is a filament which resembles a third tentaculum. The foot is divided, anteriorly, into two hooked lobos. The penis of the male is slender, and reflected into the branchial cavity. The shell, which is hardly three lines broad, is greyish, flat, and umbilicated. Found in stagnant waterf.
It is here that we mist place the completely aquatic shells, or those respiring by branchia, which belonged to the old gemus Hame; i. e., those in which the penultimate whorl forms, as in the Helices, Lymmex, \&oe, a depression which gives the aperture more or less of the figure of a creseent \S.

The three first genera are still closely alliced to Turbo.

[^51]
Paludina, Lam.

This gemus has lately been separated from the Cyclostomer, because there is no ridge romed the aperture of the shell; because there is a small angle to that aperture as well as to the operculum, and finally, because the animal, being provided with branchix, inlabits the water. like all other genera of this family. It has a very short snout and two pointed tentacula; cyes at the external base of the latter, but on 110 particular pedicle, and a small membranous wing on cach side of the fore part of the body. The anterior edge of the foot is double, and the wing of the right side forms a little cemal which introduces rater into the respiratory cavity, the incipient indication of the siphon in the fullowing family.

The common species, Helix rivipara, L.; Drapo, I, 16, whose smouth and greenish shell is marked with two or three purple, longitudinal hands, and which abounds in stagnant waters, in France, produces living young ones: in the spring of the year they may be found in the oviduct of the female, in every stage of development. Spallanzani assures us that if the yomig oness be taken at the moment of birth and be reared separately, they will reproduce without fecundation, like those of the Aphis. The males, however, are nearly as common as the females; they have a large penis which protrudes and retracts, as in Helix, but through a hole pierced in the right tontaculum, a circumstance which renders that tentaculum apmarently larger than the other, and which furnishes us with a mode of recognizing the male *.
The Ocean produces some shells which only differ from the Paludine in being thick. They form the

Littorini, Feruss.,

Of which the common species, Le Tigneau-Turbo littorcus, L., Chemm. V, clxxxy, 1852, abounds on the coast of France, where it is eaten. The shell is round. brown, and longitudinally streaked with blackish. The

Mosodos, $L_{\text {am }}$.

Only differs from Littorina in haring a blont and slightly salient tooth at the hase of the columella, which sometimes has also a fine noteh. 'The external edge of the aperture is crenulated in several species. The imimal is more highly ormamented, and is generally furnished with three or four filaments, on each side, as long as its tentacula, The ejes are planted on particular pedicles at the external base of the tentacula ; the opereulum is round and homy.

[^52]A small species, the Trochus tessclatus, L.; Adans., Seneg., XII, 1 ; List., $642,33,34$, with a brown shell spotted with whitish, is very abundant on the coast of France *.

Phashanetita, Lam.

An oblong or pointed shell, similar to that of several Bulimi and Lymure; the aperture also higher than it is wide, and furnished with a strong operculum; base of the columella sensibly flattened, but no umbilicus.

They inhabit the Indian Ocean, and are much sought for by collectors on account of the beauty of their colours. The animal is provided with two long tentacula, with eyes placed on two tubereles at their external base, and with double lips that are emarginated and fringed, as well as the wings, each of which has three filaments \dagger.

Ampularia, Lim.

A round, ventricose shell, with a short spire, as in most of the He lices; the aperture higher than it is wide, and provided with an operculum; the columella umbilicated.

They inhabit the fresh or brackish waters of hot countries. The animal has long tentacula, and eyes placed on pedicles at their base. In the roof of the respiratory cavity, by the side of a branchial comb, according to the observations of Messis. Quoy and Gaymard, is a large pouch, without an issue, that is filled with air, and which may be considered as a natatory bladder \ddagger.

The Laniste, Montf., are Ampullarie, with a large, spinal, convoluted umbilicus§.

Helicina, Lam.\|

Judging by the shell, the Helicinæ are Ampullarix in which the margin of the aperture is reflected IT.

When this reflected margin is trenchant, they are the Ampullince, Blainv. ; and when it is in an obtuse ridge, the Olygire, Say.

[^53]There is one species which is remarkable for a border and stony traverse, on the internal face of its operculum *.

The organs of respiration in these animals are arranged as in the Cyclostomie. and like the latter they can live out of water \dagger.

Melania, Lem.

A thicker shell; the aperture, higher than it is wide, enlarges opposite to the spire ; the columella withont plice or umbilicus; length of the spire very varions.

The Melanise inhabit rivers, but are not found in France, the animal has long tentacula, the cyes being on their external side, and at about the third of their length \ddagger. The
Missoa, Fremim:-A caies, Murim.

Differs from Melania, because the two cdges of the aperture unite above§. The

Melanopsis, Férus.s.,

Where the form is nearly that of a Melania, differs from it in a callus on the columella, and in a vestige of an emargination near the bottom of the aperture, which secms to indicate a relation with the Terebrex of Brugières\|. In the

Pirenta, Lam.,

We not only find this little sinus below, but likewise a second on the opposite side 9 .

These two subgencra, as well as the Melanix, inhabit the rivers of southern Europe and of all hot countries.

There are two genera, detached from the Volutie, which, but that

[^54]they are opereulated and have but two tentacula, would resemble the Auricule, that we think may come here, viz.
Acteon, Momef.*-Tornitelda, Lam.

Where the shell is elliptical, the spire but slightly salient, the aperture lengthened into a crescent and widened below, and the base of the columella marked by one or two large plicee or oblique callosities \dagger; and the

Pyramidella, Lam.

Where the spire is turreted, the aperture ereseent-like and wide, and the base of the columella obliqely contorted and marked with sharp spiral plicet.

Janthina, Lam.§

The form of the anmal separates the Janthine from all the preceding gencra. 'Their shell, howerer, is similar to that of the terrestrial Limaces, the columellar margin being also indented, but slightly angular at the external edge, and the columella somewhat extended beyond the half-oval, which, without this prolongation, would be formed by that edge.

The animal has $n 0$ operculum, but the under surface of its foot is furnished with a vesicular organ resembling a bubble of foam, but composed of a solid substance, which prevents it from crawling, but allows it to float on the surface of the water. The head, a cylindrieal proboscis, terminated by a vertically cleft mouth, and armed with little hooks, has a bifureated tentaculum on each side.

The cummon species, Helix Janthina, L,: List., 572, 24, has a pretty violet shell, and is very abundant in the Mediterranean. When the animal is tonched, it diffuses a thick fluid of a deep, violet colour that dyes the suriounding water.

Nerita, Lin. \|I

The columella of the Nerite being in a straight line, renders the aperture semicircular or semi-elliptical. This aperture is generally large in comparison with the shell, but is always furnished with an operculum which completely closes it. The spire is almost effaced, and the shell semi-globular.

[^55]
Natica, Lam.

Nerite with an umbilicated shell; the animal of the species known has a large foot, simple tentacula with the eyes at their base, and a horny operculum*.
Nerita, Lam.-Preoronta, Oken.

The umbilicus wanting; shell thick, columella dentated, and operculum stony; the cyes of the animal on pedicles by the side of the tentacula, and a moderate foot \dagger. The

> Velata, Montf.

Where the side of the columella is covered with a calcarcous, thick, and convex layer t, is distinguished from it, but perhaps without any good reasun; also the

Neritina, Lam.

Where the shell has no umbilicus and is thin, with a horny operculum ; the animal is like a true Nerita, and most generally the columella is not dentated. It inhabits fresh water.

A small species, very prettily coloured, abounds in the rivers of France; it is the Nerila furiatilis, L.; Chemn., $I X$, cxxiv, 188 §.
The columella in others, however, is finely crenulated $\|$, and of this number there are some in whieh the spire is armed with long spines-Clithon. Mont.ej

FAMILY II.

CAPULOIDA**.

Recent researches have convinced us that it is to the 'Trochoida that we must approximate this family, which contains five genera, four of which are taken from the Patelle. They all have a widely opened, scareely turbinated, shell, witl neither operculum, emargination, nor siphon; the animalresembles the other Pectinibranchiata, and has the sexes separate. There is but one branchial comb transversely ar-

[^56]ranged on the rouf of the cavity, and its filaments are frequently very long.

Capules, Monlf:-Pileorsis, Lam.

A conical shell with a recurved and spiral summit, which has long caused it to be placed among the Patelle; the branchice are in one range under the interior margin of the branchial cavity; the proboscis is long, and there is a closely plaited membranous veil under the neck; the eyes are at the exterual base of the conical tentacula*. The

Mipponyx, Defr.

Would appear from the shell to be a fossil Capulus, very remarkable, howerer, for a bed formed of calcarcous matter, on which it rests, and which probably exuded from the foot of the animal \dagger.

Crepinule, Lam.

The shell oval, with an ubtuse horizontal point, directed obliquely backwards and laterally; the aperture forming the base of the shell, which is half closed bencath and behind by a horizontal plate. The abdominal sac which contains the viscera is on this plate, the foot bencath, and the head and branchise forwards. The latter consist of a range of long filaments attached under the anterior margin of the branchial cavity. The eycs are at the external base of two conical tentacula $\%$ 'The genus

Pileoles, Sowerby,

Appears to consist of Crepidnlæ, in which the transserse plate occupies half the aperture; their shell, however, is more like that of a Patella §. They are only found fossil.

Septarit, Fór.-Nivicelia, Lam.-Cinber, Montf., 83.

The shell resembles a Crepidula, except that the summit is symmetrical and laid on the posterior margin, and that the horizontal plate is less salient. The animal is also provided with an additional, irregularly shaped, testaccous plate, horizontally comected with the superior surface of the muscular disk of its foot, and covered by the abdominal sac, which it partially supports. It is probably analogous to an operculum, but does not exercise its functions, being, in a measure, situated internally. The animal has long tentacula, at

[^57]whose external base are pedicles which support the eyes. They inhabit the rivers of hot countries *. In the

Calyptres, Lam.

We observe a conical shell in the hollow of which is a little lamina that projects inwards, resembling the commencement of a columella, and that interposes itself between a fold of the abdominal sac. The branchise are composed of a range of numerous filaments, long and stender, like hairs.

In some of them this lamina atheres to the bottom of the cone, heing itself bent into a portion of a cone or of a tube, and descending verticallyt.

In others it is almost horizontal, and adheres to the sides of the cone, which is marked above by a spinal line that establishes some relation between their shell and that of a Trochust.

Siphonima, Sowerb?

The shell of the Siphonarie, which have been recently separated from the Patellie, at the first glance seems very similar to a flattened Patella, with radiating sulci; but its margin projects rather more on the right side, and it is excavated beneath by a slight furow, which terminates at this prominence of the margin, to which there is a corresponding lateral hole in the mantle, for the introduction of water into the branchial cavity placed on the back, that is closed on erery other point. The respiratory organ consist of a few small lamellix, arranged in one transerse line on the roof of that cavity; the tentacula seem to be wanting, the head being merely furnished with a narrow veil§.

There are some species, in which even this slight appearance of the canal, in the shell, is effaced, resembling in toto that of a Patella, execpt in its summit, which is behind $\|$. In the

Sigaretus, Adans.

The shell is flattened, its aperture ample and round, and the spire very moderate, its whorls rapidly enlarging and seen within, but concealed during the life of the animal in the thickness of a fungous shield, which projects considerably heyond it, as well as the foot, and which is the true mantle. Before this mantle are an emargina-

[^58]tion and a semi-canal, which serve to conduct water into the branchial cavity, and which form the passage to the following family, but of which there are no impressions on the shell. I'he tentacula are conical, with the eyes at their external base: the penis of the male is very large.

Some species are found on the coast of France. The

Coriocella, Blainv.,

Consists of Sigareti, the shell of which is horny, and almost membranous, like that of the Aplysiæ*.

Cryptostoma, Blainv.

The shell, rescmbling that of a Sigaretus, with the head and abdomen, which it covers, supported by a foot four times its size, cut square behind, and forming before a fleshy, oblong bundle that constitutes nearly one half of its mass. The animal has a flat head, two tentacula, a broad branchial pecten on the roof of its dorsal cavity, and a penis under the right tentaculum; but I can find no emargination in the mantle \dagger.

FAMILY III.

BUCCINOIDA.

'This Family has a spiral shell, in the aperture of which, near the extremity of the columella, is an emargination or a canal for transmitting the siphon or tube, which is itself but an clongated fold of the mantle. 'The greater or less length of the canal, when there is one, the size of the aperture, and the form of the columella, furnish the grounds of its division into gencra, which may be variously grouped \ddagger.

Conus. Lin. \S

So called from the conical shape of the shell; the spire, either perfectly flat, or but slightly salient, forms the base of the cone, the apex being at the opposite extremity; the aperture is narrow, rectilinear, or nearly so, extending from one end to the other without enlargement or fold, either on its edge or on the columella. The

[^59]thinness of the animal is proportioned to the narrowness of the aperture through which it issues; its tentacula and proboscis are highly protractile; the cyes are placed on the outer side of the former, and near the point; the operculum situated obliquely on the lind-part of the foot, is too narrow and short to close the whole of the aperture.

The shells of this gemus, being usually ornamented with the most beautiful colours, are very common in cabinets. The seas of Europe produce very few *.

They are distinguished by the flatness or slight projection of the spire; by the whorls being tuberculated or not; by its being more salient and even pointed, and furnished, or not, with turbercles.

There are some in which the spire is sufficiently salient to give them a cylindrical appearance, in which case it may be either smooth or tuberculated \dagger.
The appellation of crowned spire is applied to that which is studded with tubercles,

> Cypraa, Lin.

The spire projecting but little, and the aperture narrow and extending from one extremity to the other; but the shell, which is protuberant in the middle, and almost equally narrowed at both ends, forms an oval, and the aperture in the adult animal is transversely wrinkled on each side. The mantle is sufficiently ample to fold over and envelope the shell, which at a certain age it covers with a layer of another colour, so that this difference, added to the form acquired by the aperture, may casily cause the adult to be taken for another species. The animal has moderate tentacula, with the eyes at their external base, and a thin foot without an operculum.

The colours of these shells, also, are extremely beautiful; they are extremely common in cabinets, though with very few exceptions they all inhabit the seas of tropical countries \ddagger. In the

Ovela, Brug.

The shell is oval, and the aperture narrow and long, as in Cyprea, but without plice on the side next to the columella; the spire is concealed, and the two ends of the aperture equally emarginated, or equally prolonged in a canal. Linnacus confounded them with the Bullx, from which Brugières has very properly separated them. The

[^60]animal has a broad foot, an extended mantle which partly folds over the shell, a moderate and obtuse snout, and two long tentacula, on which, at about the third of their length, are the eyes.

Montfort particularly designates, by the term Ovule, those in which the external margin is transversely suleated *.
'Ihose in which the two extremities of the aperture are prolonged into a canal, and in which the external margin is not sulcated, he calls Navettes Volvet.

When this external margin is not sulcated, nor the extremities of the aperture prolonged, he styles them Calpurnaf.

Terebellum, Lam.

An oblong shell, with a narrow aperture, without plice or winkles, and increasing regularly in width to the end opposite the spire, which is more or less salient, according to the speciess. The animal is not known. The
Voleta, Lin.

Varies as to the form of the shell and that of the aperture, but is recognised by the emargination without a canal which terminates it, and by the salient and oblique plice of the columella. From this genus Brugieres first separated the

Oliva, Brug.

So named from the oblong and elliptical shape of the shell, the aperture of which is narrow, long and emarginated opposite to the spire, whieh is short; the pliere of the columella are numerous, and resemble strixe; the whorls are sulciform. These shells are quite as beautiful as the Cyprææ\|.

The animal has a large foot, the anterior part of which (before the head) is separated by an incision on each side; its tentacula are slender, and the eyes are on their side about the middle of their length. The proboscis, siphon and penis are toicrably long; but it has no operculım. MM. Quoy and Gaymard have observed an appendage on its posterior portion, which enters the sulcus of the whorls.

The remainder of the genus Voluta was afterwards divided into five, by M. de Lamarck 9 . The

Volvaria, Lam.,
Closely resembles the Oliva in its oblong or cylindrical form; but

[^61]the aperture is narrow, and its anterior edge ascends to the top of the spire, which is excessively short. 'There is one plicaac, or several, at the foot of the columella. The lustre and whiteness of this shell are such, that on some coasts it is used for making necklaces*. A small fossil species is found in the vicinity of Parist. In the true Volutæ or the

Volu'ri, Lam.

I'he aperture is ample, and the columella marked with large plicæ, the one furthest from the spire being the largest. The degree of projection in the spire varies greatly.

In some of them, Cymbium, Montf.; Cymba, Sowerb., the last whorl is ventricose; the animal has a large, thick and fleshy foot, and a veil on the heald, from the sides of which issue the tentacida. The eyes are on this same veil outside of the ientacula. The proboscis is tolerably long, and there is an appendage on each side of the base of the siphon. They attain a large size, and many of them are extremely beautiful \ddagger.

In others, Voluta, Montf., the last whorl is conical, becoming narrower at the extremity opposite to the spire§. The foot of the animal is not so large as that of the preceding ones; their shells are frequently remarkable for the beauty of their colours or their arrangement.

Marginella, Lam.

Form of the shell, similar to that of a true Voluta; but the external margin of the aperture is tumid; the emargination is but slightly marked. The foot of the animal, according to Adanson, is very large, and lias no operculum. By turning up the lobes of its mantle it partly covers the shell. The eyes are on the external side of the base of its tentacula $\|$.
M. de Lamarck also distinguishes the Colombella, in which the plice are numerous, and the varix of the external margin is inflated in the middle 9 . It appears that the operculum is wanting.

- Volv. monilis, L. ; Polv. triticce, Lam., \&c.
+ Folvaria bullö̈les, Lam., Encye. Method., 11. 384, f. 4.
\$ Volv. alhiopica, List., 797, 4;-V. cyn:bium, 796, 3, 800, 7;- Y. olla, 794, 1; V. Neptuni, 802,8 ;-V. nauicula, 795, 2 ;-I. papilleris, Scb., III, lxiv, 9 ;V. indica, Martini, III, Ixxii, 772,773 ; genus Melo, Sowerb., Gen. of Shells, No. XXVIII ;-cymbiola, Chemn., \mathbf{X}, cxlviii ; 1385, 1386 ;-V. praputium, List., 798, 1 ;-V. spectibitis, Davila, I, viii, S.
§ Voluta musica, List., $805,14,806,15$;-V. scapha, 799, $6 ;-V$. vespertitio, $807,16,808,17 ;-V$. hadrea, 809,$18 ;-V$. vexillum, Martini, III, cxx, 1098 ;V. flaticans, Ib., xcv, 222, 323 ;-V. uindulata, Lam., Ann. du Mus., \&c. For the other specics consult the Memoir of M. Broderip, Zool. Journ., April 1825.

II Voluta glabclla, Adans., IT, genus, X, 1 ;-Toluta faba, Ib., $2 ;$ Fol. prunum, Ib., 3 ;-Vol. persicula, Ib., 4, and all Ml. xlii, vol. II, of Martini ;-Vol. marginata, Born., IX, 5, 6.

IT Voluta nercatoria, List., 824,43 ;-Vol. vuslica, List., $82 \div, 44$;-Vol. nnendicaria, and nearly all plate aliv of Martini, vol. II; Col. strombiformis:-Fol. labi-nso;-Wol. punchata, ※尺c., Sowerb., Gen. of Shells, No. IX.

Misra, Lam.

The aperture oblong, with a few large plica on the columella, the one nearest the spire being the largest; the spire nasually pointed and clongated. Several species are brilliantly spotted with red on a white ground*. The foot of the animal is small; the tentacula are of a moderate length, with the eyes on the side, near their inferior third; the siphon also is of a moderate length, but it frequently protrudes a proboscis longer than its shell.

Cancellaria, Lam.

The last whorl ventricose; aperture ample and round, the internal margin forming a plate on the columolla. The spire is salient and pointed, and the surface of the shell marked with decussating sulci \uparrow. The

Buccinum, Lin. \ddagger

Comprises all the shells furnished with an emargination or a short canal inflected to the left, and in which the columella is destitute of plice.

Brugières has divided then into the four genera of Buccinum, Purpura, Cassis, and Terebra, part of which have been again subdivided by Messis de Lamarck and Montfort. The

Buccinum, Brug.

Includes the emarginated shells without any canal, whose general form, as well as that of the aperture, is oval. The animals-all such as are known, are deprived of the veil on the head, but are furnished with a proboscis, two separated tentacula, on the external side of which are the eyes, and a horny opercnlum. Their siphon extends out of the shell.

The name of Buccinum is especially applied by M. de Lamarck to those in which the columella is convex and naked, and the margin without plice or varix. Their foot is moderate, their proboscis long: and thick, and their penis, frequently, excessively larges. In the

[^62]
Nassa，Lam．

The side of the columella is covered by a more or less broad and thick plate，and the emargination is decp，but without a canal．＇The animal resembles that of a true Buccinum，and there are gradual transitions among the shells，from one subgemus to the other＊．M． Delamarck calls

Eburna，Lam．，

＇Those，which to a smooth shell without a plicated margin，add a widely and deeply umbricated columella．The gencral form of their shell is closely allied to that of the Olivie．Their animal is unknownt．

> Averifimia, Lail.

The same smooth shell，and at the lower part of the columella a marked lip；there is no umbilicus，neither is the spire suleated．The animal of several species resembles that of the Olivie，the foot being still more developed ${ }_{+}$．The same naturalist calls

> Doliun, Lam.

Those in which projecting ribs，that follow the direction of the whorls，render the margin undulated；the inferior whorl is ample and ventricose．Montfort subdivides them into

Dolium，properly so called，where the lower part of the columella is twisteds，and into

Perdix，where it is trenchant．｜
Their animal has a very large foot，widened before；a proboscis longer than its shell，and slender tentacula，on the external side of which，and near the base，are the eyes；the head has no veil．nor has the foot an operculum．

> Harpa, Lam.

The Harpe are easily recognized by the projecting，transverse ribs on the whorls；the last of which forms a lip on the margin．The shell is beautiful．and the animal has a very large foot．pointed behind，

[^63]and widened in its anterior portion, which is distinguished by two decp emarginations. The cyes are on the sides of the tentacula, and near their base. It has neither veil nor operculum*. The

Purpura, Brug.

Is known by its flattened columella, which is trenchant near the end opposite to the spire, and which, with the external margin, forms a canal there, sunk in the shell, but not salient. The Purpuræ were scattered among the Buccina and the Murices of Linnæus. The animal resembles that of a true Buccinum \dagger.

The genus Licorne, Montf.,-Monoceros, Lam., consists of shells similar to the Purpura, but in which the external edge of the emargination is furnished with a salient spinet.

Others, also resembling the Purpurie, in which the columella or at least the margin is provided, in the adult, with teeth which narrow the aperture, form the Sistra, Montf., or the Ricinula, Lam.§

Concholepas, Lam.

The general characters of the Purpure, but the aperture is so enormous, and the spire so small, that the shell has almost the appearance of a Capulus, or one of the valves of the Arca; a small salient tooth is visible on each side of the emargination. The animal resembles that of a true Buccinum, with the exception of its foot, which is chormous in width and thickness, and that it is attached to the shell by a muscle shaped like a horse-shoe, as in the Capuli; it has a thin, narrow, and horny operculum.

But a single species is known, the Buccinum concholepas, Brug.; Argenv., pl. ii, f. F, D; and Sowerb., Gen. of Shells, No. VI. From the coast of Peru.

Casis, Brug.

The shell oval; aperture oblong or narrow; the columella covered with a plate as in Nassa, and that plate transwersely plicated, as well as the external margin; the emargination terminating in a short canal, that is reflected and pushed back, as it were, to the left: varices are frequently observed on it . The animal resembles that of a true Buccinum, but its horny operculum is denticulated, in order to pass between the plice of the external margin.

[^64]In some the lip of the margin is denticulated extemally near the cmargination*.

In others it is entire \uparrow. The
Monio, Montf.-Cassidaria, Lam.

Was separated from Cassis by Montfort. The canal curves less suddenly, and the whole shell leads directly to certain Murices. The animal resembles that of a Buccinum, but its foot is more developed \ddagger.

Terabra, Brug.,

The aperture, emargination and columella of a true Buccinum; but the general form is turriculated, that is to say, the spire is lengthened into a point§. In the

Cerithium, Brug.,

Very properly separated from the Murex of Linneus, we observe a shell with a turriculated spire; the aperture is oval, and the canal short, but well marked, and reflected to the left or backwards. The animal has a veil on its head, and is furnished with two separated tentacula, on the side of which are the eyes, and with a round, horny opereulum.
Many are found fossil||. M. Brongniart separates from the Cerithia the

Potamida, Brongn.

Which, with the same form of shell, has a very short and scarcely emarginated canal, no sulcus on the upper part of the right margin, and the external lip dilated. The Potamidie inhabit rivers, or, at least, their mouths, and fossil specimens are found in strata, which contain other fresh-water or land species only \wp. The genus

[^65]
Murex, Lim.*

Comprises all these shells in which there is a salient and straight canall. The animal of each subgenus is furnished with a proboscis, long approximated tentaeula on the external side of which are the eyes, and with a horny operculum; the veil on the head is wanting; and, the length of the siphon exeepted, it otherwise resembles that of the Bueeina. Brugière divides them into genera, which have been since subdivided by Messrs. Lamarck and Montfort. The

Murex, Brug.

Includes all those which have a and salient straight canal, with varices across the whorls \ddagger.
Lamarck appropriates this name to those in which the varices are not contiguous on two opposite lines.

If their canal be long and slender, and the varices armed with spines, they become the Murex, properly so called, of Montfort§.

When, with this long canal, the varices are mere knobs, they form the Brontis, Montf. ||

Some of them, which, with a moderate canal, have projecting tubes that penetrate into the shell between spiny varices, constitute the Typlis, Montf. ${ }^{\text {If }}$

When, instead of spines, the varices are furnished with plicated lamella, slashed, or divided into branches, they are the Chicoracea, Montf.** Their canal is long and moderate, and their foliaceous productions vary infinitely in figure and complication.

When, with a moderate or short canal, the variees are mere knots, and the base is provided with an umbilicus, they form the Aquilla, Montf. Several species inhabit the coast of France $\dagger \dagger$.
If the umbilicus be wanting, they are his Lotorium $+ \pm$.
Finally, when the canal is slicrt, the spire elevated, and the varices simple, they are his Tritonium. Their mouth is usually plicated

[^66]transversely on both margins. Very large ones inllabit the seas of Europe*

The varices are sometimes numerous, compressed, and almost membranous, constituting the Trophona, Montf. \dagger

At other times, they are compressed, very salient, and but fow in number*.
M. de Lamarek separates from all the Murices of Brogiere, the
Ravilla, Lam.,

Characterized by opposing varices, so that the shell is bordered with them on both sides. Their canal is short, and their surface studded with mere tubereles; margins of the aperture plicated§.

I'he Apolles, Montf., are merely umbilicated Ranellix\|. The

Fusus, Brug.

Comprises all shells with a salient and straight canal, which are destitute of varices.

When the spire projects, the colunclla is without plicix, and the margin is entire, they are the Fusus properly so called. Lam., which Montfurt again subdivides; when they have no umbilicus, they are his Fusus $\frac{1}{\text { I }}$. The shortest and most ventricose gradually approach the form of the Buccina**. When provided with an umbilicus they are his Lathirat†.

The Struthiolarice are distinguished from the true Fusi by a border which surrounds their aperture, and which covers the columella. The margin of the adult is inflated, which connects them with Murext.

When the spire is salient, the columella without plicer, and there is a small indentation or well marked emargination of the margin near the spine, they are the Pleurotoma, Lam.§§

[^67]The Clovalule, in which the emargination is wide and reaches to the spire, are also properly distinguished.

When the spire is but slightly marked, flattened or rounded, and the columella is without plicee, they are the Pyrula, Lam. Some are umbilicated ${ }^{*}$, and others not中.

From these Pyrule, Montfort again separates the species with a flattened spire, internally striated near the lip, by the name of Fulgur+. 'They are a sort of Pyrula with a plicated colunella, the plicie being sometimes almost insensible.

Among these divisions of the Fusi of Brugieres, the Fiasciolaria, Lam.§, are distinguished by some oblique and well marked plicee on the columella, near the origin of the siphon\|. 'The

Turbinella, Lam.,

Also consists of shells with a straight canal, but withont varices, distinguishable by the large transverse plicie on their columella, which extend the whole length of the aperture, and which closely approximate them to the conical Voluter; they only differ from the latter in the elongation of their aperture into a sort of canal $\|$; the line that separates them is not casily traced. The genus

Strombles, Ein.

Includes those shells with a canal that is either straight or inflected towards the right, of which the external margin of the aperture dilates with age, but still preserves a sinus near the canal, under which passes the head of the animal, when it extends itself.

In most of them the sinus is at some distance from the canal. They are subdivided by M. de Lamarck into two subgencra. The

Strombus, Lam.

In which the margin expands into a wing of more or less extent,
the immense number of fossil species described by Lamarch and other conely liologists.

* Mur. rapa, Martini, III, Lviii, 750, 753;-Buccinum bczoar, Gm., Martini, III, lxviii, $754,755$.
+ Bulla ficus, L., List., 750, 46;-Murex ficus, Ib., 741.
\ddagger Murex perversus, L., List., 907,27 ;-Mur. aruanus, List., 908,28 ;-Mur. cunuliculutus, Martini, III, Ixvi, $738,7 \not 50$, and Lxvii, 742,$3 ;-M u$. spirillus, Martini, III, cxv, 1069 ;-Pirula cataliculatu, Lam., Montf., 50 2, which appears to me the same as the Mur. carica, Martini, III, lxvii, $7 t 4$.
§ Mur. tulipu, L., List., 910, 911;-Mur trapezium, List., 93, 26;-Mur polygomus, List., 922, 15 ;-Mur. infundibulum, List., 921 , 14;-Mur. striatulus, Martini, IV, cxlvi, 1351,1352 ;-Mur. rersicolor, 1 h., 1348 ; Mher. pardalis, Id. cxlix, $138 \pm$;-Iur. costulus, Knorr., Petrif., C, n. 7 ;-IIu. lancen, Martini, IV, exlv, 1347.
|| Mur. scolymus, Martini, IV, cxlii, 1325 ;-V'oluta myrum, Martini, III, xev, 916 , 917;-Voluta cciamica, List., S2:1, 51 ;-Woluta Fhinoceros, Chemn. X, 150, f. 1407, 1408;-Voluta turbinellus, List., 811, 20;-Vol. cupitcllum, List., 810, 19;-Iol. globulus, Chemn., XI, 178, f., 1715;-lol. turita, Gm.
but not digitated. The foot is proportionably small, and the eyes are supported by lateral pedieles of the tentacula, thicker than the tentacula themselves 'The operculum is horny, long and narrow, and placed on a thin tail ${ }^{*}$. In the

Pterocera, Lam.

The margin, in the adult, is divided into long and slender digitations, varying in number, according to the species. The animal is the same as that of the true Strombus $\%$.
In other Strombi, the sinus of the external margin is contiguous to the canal, forming the Rostellaria, Lam. There is usually a scoond canal ascending the spire, formed by the external margin and by a continuation of the columella.

In some of them, the margin is still digitated. Their animal resembles that of a Murex, but has only a very small operculum \ddagger.

In others, we merely observe a dentated margin. Their canal is long and straight §.
In some again, that margin is entire; they are the Ifippocrenes. Montf. ||

ORDER VII.

TUBULIBRANCHIATA.

The Tubulibranchiata should be detached from the Pectinibranchiata, with which they are very closely allied, because the shell, which resembles a more or less irregularly shaped tube, only spiral at the commencement, attaches itself to various bodies; they consequently are deprived of copulating organs, and fecundate themselves. In the

Vermetus, Adans.,

We remark a tubular shell whose whorls, at an carly age, still form a kind of spire, but then continue on in a tube more or less irregularly contorted, or bent like the tubes of a Serpula. This shell usuaily attaches itself by interlacing with others of the same species, or is partly enveloped by Lithophytes: the animal, having no power of

[^68]locomotion, is deprived of a foot, properly so called; but the part which in ordinary Gastcropoda forms the tail, is here turned under it, and extends to beyond the head, where its extremity becomes inflated and furnished with a thin operculum; when the animal withdraws into its shell, it is this mass which closes the entrance; it is sometimes seen with various appendages, and in certain species, the operculum is spiny. The head of the animal is obtuse, and has two moderate tentacula, on the external sides of which, at the base, are the cyes. The mouth is a vertical orifice, beneath which is a filament on each side, that has all the appearance of a tentaculum, but belonging in reality to the foot. The branchiæ form but a single range along the left side of the roof of the branchial cavity. 'The right side is occupied by the rcctum and the spermatic canal, which also transmits the ova. There is no penis, the animal fecundating itself.

The species are numerous, but not very distinct. Linnæus left them among the Serpule *.
The Vermilice, also left by M. de Lamarck near the Serpule, are similar to the Vermeti \dagger.

Magilus, Montf.,

The Miagili have a longitudinally carinated tube, which is at first regularly spiral, and then cxtends itself in a line more or less straight; although the animal is unknown, it is highly probable that it should be placed near the Vermeti \ddagger. The

Siliquaria, Brug.

Resembles Vermetus in the head, the position of the operculum, and in the tubular and irregular shell; but there is a fissure on the whole length of this shell which follows its contour, and which corresponds to a similar cleft in that part of the mantle which covers the branchial carity. Along the whole side of this cleft is a branchial comb, composed of numerous, loose and tabular-like lamellæ. Linnæus left them with the Scrpule, and till very latcly they were considered as belonging to the class of the Annelides§.

[^69]
ORDER VIII.

SCUTIBRANCHIATA*

The Scutibranchiata comprise a certain number of Gasteropoda, similar to the Pectinibranchiata, in the form and position of the hranchix, as well as in the general form of the body, but in which the sexes are united, in such a way, however, as to allow them to fecundate themselves. Their shells are very open, without an operculum, and most of them without the slightest turbination, so that they cover these animals, and particularly their branchio, in the maner of a shicld. The heart is traversed by the rectum, and receives the blood from two auricles, as is the case in the greater number of bivalves. The

Halyotis, Lin. \dagger

Is the only gemus of this order in which the shell is turbinated; it is distinguished from that kind of shell by the excessive amplitude of the aperture, and the flatness and smalliness of the spire, which is seen from within. This form has caused it to be compared to the car of a quadruped. In the.

> Halyotis, Lam.,

Or the true Halyotes, the shell is perforated along the side of the columella by a series of holes; when the last hole is not terminated, it gives to that part the look of an emargination. The animal is one of the most highly ornamented of all the Gasteropoda. A double membrane, cut into leaves and furnished with a double range of filaments, extends, at least in the most common species, round the foot and on to the mouth; outside its long tentacula, are two cylindrical pedicles which support the eyes. The mantle is deeply cleft on the right side, and the water, which passes through the shell, penetrates through it into the branchial cavity; along its edges we observe three or four filaments which the animal ean protrude through these holes. The mouth is a short proboscis \ddagger.

The Padollce, Montf., have an almost circular shell, in which the holes are nearly obliterated, and there is a deep sulcus that follows the middle of the whorls, and is marked externally by a salient ridge; Padole Uriqueté, Montf., II, p. 114.

[^70]
Stromatia, Lum.

The shell more hollow, the spire more salient, and the holes wanting; otherwise resembling that of the Halyotides, which it thus conneets with ecrtain speeies of 'Turbo. 'The animal is mueh less ornamented than that of the Halyotides *.

In the following genera, which are separated from the Patcllæ, the shell is perfectly symmetrical, as well as the position of the heart and branchire \dagger. In the

Fissurella, Lam.,

We perceive a broad fleshy disk under the belly, as in the Patellar, a conical shell plaeed on the middle of the back, but not always eompletely covering it, and perforated at its summit by a small orifice, which affords at once an issue to the fieces and a passage to the water, required for respiration; this orifiee penctrates into the cavity of the branchise, situated on the fore part of the back, and in the bottom of which terminates the anus; a cavity otherwise widely opened above the head. A branchial comb is symmetrically arranged on each side; the eyes are on the external base of the eonieal tentaeula, and the sides of the foot are furnished with a range of filamentst.

Emarginula, Lam.

The structure of the Emarginulæ is similar to that of a Fissurella, except that instead of the hole in the summit, there is a small eleft or emargination in the anterior margin of their mantle and shell, whieh also penetrates to the branehial eavity; the margin of the mantle envelopes and covers a great part of that of the shell; the eyes are placed on a tuberele of the external base of the conieal tentaeula, and the margin of the foot is furnishes with a range of filaments \S.

Parmophorus, Lam.

A great portion of the shell curved by the reflected margin of the mantle, as in the Emarginulæ ; the shell itself oblong, slightly conieal, and without hole or emargination ; the branehire and other organs, as in the preceding gencra $\|$.

[^71]
ORDER IX.

CYCLOBRANCHIATA**

The branchixe of the Cyclobranchiata resemble small lamellx, or little pyramids forming a corlon more or less complete under the borders of the mantle, very nearly as in the Inferobranchiata, from which they are distinguished by the nature of their hermaphroditism; for, like the preceding genus, they have no copulating organ, but fecundate themselves. Their heart does not embrace the rectum, but varies as to situation. But two gencra of this order are known, in both of which the shell never approaches in the least to the turbinated form.

> Patelila, Lin.

The entire body corcred with a shell, formed of a single piece, in the form of a broad-based cone; a cordon of little branchial lamelle under the margin of the mantle; the anus and genital orifices somewhat to the right and above the head, which is furnished with a thick and short snout, and two pointed tentacula, on the external base of which are the eyes; the mouth is fleslyy, and containing a spiny tongue, which inclines backwards, and is reflected deeply in the interior of the body. The stomach is membranons, and the intestine long, thin, and greatly flexed ; the heart is forwards, above the nieck, and a little to the left \dagger.

Some speceies abound on the coast of France.
Chiton, Lin.
A range of testaceous and symmetrical scales along the back of the mantle, but not occupying its whole breadth; edges of the mantle

[^72]eoriaeeous, and furnished cither with a naked skin or little seales, which give it the appearanee of shagreen, or with spines, hairs, or setaeeous fasciculi. Under these edges, on each side, is a range of lamellar, pyramidal branchire; and before, a membranous veil on the mouth supplies the want of tentaeula. The anus is under the posterior extremity. The heart is situated behind, on the rectum, the stomaeh is membranous, and the intestine very long and greatly contorted. The ovary is situated over the other viscera, and appears to open on the sides by two oviducts.

A few small species are found on the coast of France; very large ones ahound in the seas of hot climates *.

CTASS IV.

ACEPHALA.

The Acephala have no apparent head; but a mere mouth coneealed in the bottom, or between the folds of their mantle. The latter is almost always doubled in two, and eneloses the body as a book is clasped by its cover; but it frequently happens, that, in eonsequence of the two lobes uniting before, it forms a tube; sometimes it is closed at one end, and then it represents a sac. This mantle is generally provided with a calcareous bivalve, and sometimes multivalve shell, and in two genera only is it reduced to a cartilaginous, or even membranous nature. The brain is over the mouth, where we also find one or two other ganglia. The branchiæe usually consist of large lamellæe covered with vaseular meshes, under or between which passes the water; they are more simple, however, in the genera without a shell. From these branchiæ the blood proceeds to a heart, gencrally unique, which distributes it throughout the system, returning to the pulmonary artery without the aid of another ventricle.

The mouth is always edentated, and can only receive the molecules brought to it by the water: it leads to a first stomaeh, to which there is sometimes added a second; the length of the intestines is extremely various. The bile is thrown by several pores into the stomach, which is surrounded by the mass of the liver.

All these animals fecundate themselves, and in several species, the young ones, which are innumerable, pass some time in the thickness

[^73]of the branchire previously to being bronght to light *. All the Acephala are aquatic \dagger.

ORDER I.

ACEPHALA TES'ACEA.

Testaccous Acephala, or Acephala with four branchial leaflets \ddagger, are beyond all comparison the most numerous. All the bivalves, and some genera of the multivalves belong to this order. Their body, which contains the liver and viscera, is placed between the two laminæ of the mantle; forwards, and still between these laminæ are the four branchial leaflets, transversely and regularly striated by the vessels: the mouth is at one extremity, the anus at the other, and the heart towards the back; the foot, when it exists, is inserted between the four branchir. On the sides of the mouth are four triangular leaflets, which are the extremities of the two lips, and serve as tentacula. The foot is a mere fleshy mass, the motions of which are effected by a mechanism analogous to that which acts on the tongue of the Mammalia. Its muscles are attached to the bottom of the valves of the shell. Other muscles, which sometimes form one mass and sometimes two, cross transversely from one valve to the other to keep them closed, but when the animal relaxes these muscles, an elastic ligament placed behind the hinge opens the valves by its contraction.

A considerable number of bivalves are provided with what is termed a byssus, or a fasciculus of threads more or less loosely connected, which issues from the base of the foot, and by which the animal adheres to various bodies. It uses its foot to direct the threads and to agglutinate their extremities; it even reproduces them when cut, but the nature of the production is not thoroughly ascertained. Reaumur considered these threads as a secretion, spun and drawn from the sulcus of the foot; Poli thinks they are mere prolongations of tendinous fibres.

[^74]The shell essentially consists of two pieces, called vulves, to which in certain genera are added others, connceted by a hinge that is sometines simple and sometimes composed of a greatcr or smaller number of teeth and plates, which are received into corresponding: cavitics.

There is usually a projecting part near the hinge called the summit or nates.

Most of these shells fit closely when the animal approximates them, but there are several which exhibit gaping portions either beforc or at the extremities.

FAMILY I.

OSTRACEA.

The mantle is open, without tubes or any particular aperturc.
The foot is either wanting in these Mollusca or is small; they are mostly fixed by the shell or byssus to rocks and other submerged bodies. Those which are free, seldom move except by acting on the water by suddenly closing their valves.

In the first subdivision there is nothing but a muscular mass reaching from one valve to the other, as seen by the single impression left upon the shell.

It is thought proper to class with them certain fossil shells, the valves of which do not even appear to have been held together by a ligament, but which covered each other like a vase and its cover, and were connected by muscles only. They form the genus

Acarda, Brug.-Ostracita, La Peyr.,

Of which M. de Lamarck makes a family that he names Rudista. The shells are thick, and of a solid or porous tissue. They are now divided into the

$$
\text { Radiolites, }^{\text {Lam., }}
$$

In which the valves are striated from the centre to the circumference. The onc is flat, the other thick, nearly conical and fixed*.

[^75]
Spharuljtes Lameth.

Where the valves are roughened by irregularly raised plates. It is also thought we may add the

Calceola,

One valve of which is conical but free, and the other flat and even, somewhat concave, so that they remind us of a shoe; and even the

Hippurites,

Where one valve is conical or cylindrical with two obtuse, longitudinal ridges on the inside; the base even appears to be divided into several cells by transverse septa*; the other valve fits like a cover. The

$$
\text { Batolithes, Montf. } 334,
$$

Are cylindrical and straight Hippurites; they are frequently found greatly elongated. There is much incertitude, however, with respect to all these bodies \dagger.

As to the well known living testaccous Acephala, Linneus had united in the genus

Ostrea, Lim.,

All those which have but a small ligament at the hinge, inserted into a little depression on each side, and without teeth or projecting plates.

Ostrea, Brug.
The truc Oysters have the ligament as just described, and irregular inequivalve and lamellated shells. They adhere to rocks, piles, and even to each other, by their most convex valve.

The animal-Peloris, Poli,-is one of the most simple of all the bivalves, possessing nothing remarkable but a double fringe round the mantle, the lobes of which are only united above the head, near the hinge ; but there is no vestige of a foot.
O. edulis, L. The common oyster is well known to every one. Its fecundity is as astomishing as its flarour is delicious. Among the neighbouring species we may observe,
O.cristata, Poli, II, xx, or the little Mediterrancan oyster. Among the foreign species we have,
O. parasilica, L.; Chemn., VIII, lxxiv, 681. Round and flat; it adheres to the roots of such mangroves and other trees of the torrid zone, as the salt-water can reach.

[^76]O. folium, L. ; Ih., lxxi, 662, 666. Oval; the margin plicated in zig-zag; it attaches itself by the indentations in the back of its convex valve to the branches of the Gorgonise and other Lithophytes *.
M. de Lamarck separates by the name of

Gryphea, Lam.,

Certain oysters, mostly fossil, of the ancient calcareous and schistous strata, in which the summit of the most convex valve greatly projects and curves more or less into a hook, or is partially spiral; the other valve is frequently concave. The greater number of these shells appear to have been free; some of them, however, seem to have adhered to other bodies by their hook \uparrow.

G. tricarinata. The only living species known.

Pecten, Brug.,

The Pectens, very properly separated from the Oysters by Brugière, although they have the same kind of hinge, are easily distinguished by their inequivalve semi-circular shell, almost always regularly marked with ribs, which radiate from the summit of each valve to the edge, and furnished with two angular productions called ears, which widen the sides of the hinge. The animal,-Argus, Poli, has but a small oval foot \ddagger placed on a cylindrical pedicle before a sac-like abdomen that hangs between the branchiæ. Some species, known by a deep enargination under their anterior ear, are furnished with a byssus. The others cannot adhere, and even swim with rapidity by suddenly closing their valves. The mantle is surrounded with two ranges of filaments, several of the external ones being terminated by a little greenish globule. The mouth has numerous branched tentacula in place of the four, usual, labial leafiets. The shell is frequently tinged with the most lively colours.

The great species of the French coast, Ostrea maxima, L., has convex valves, one whitish, the other reddish, with fourteen ribs each, that are broad and longitudinally striated. The animal is eaten.

We may also remark the Sole of the Indian Ocean, Ostrea solea, Chemn., VII, lxi, 595, with extremely thin and almost equal

[^77]valves, one brown, the other white, and internal ribs, fine as lair's, approximated two by two*.

Lima, Brug.

Whe Limæ differ from the Pectens in the superior length of their shell in a direction perpendicular to the hinge, the ears of which are shorter, and the sides less unequal, thus forming an oblique oval. The ribs of most of them are relieved with scales. The valves cannot join during the life of the animal, whose mantle is furnished with numberless filaments of different lengths without tuliercles, and more internally, with a large border which closes the opening of the shell, and even forms a veil in front. The foot is small and the byssus trifling. The Limæ swim with rapidity by means of their valves.

One species, the Ostrea lima, L.; Chemn., VII, lxviii, 65l, of a fine white, inhabits the Mediterranean. It is eaten \dagger.

Pedum, Brug.

The oblong and oblique shell with small ears, of the Limæ; but the valves are unequal, and the one only that is most convex has a decp emargination for the byssus. The animal is similar to that of a Lima, but its mantle is only furnished with a single range of small, slender tentacula. Its byssus is larger.

But a single species is known; it inhabits the Indian Ocean \ddagger.

Certain fossils may be placed here which have the hinge, ligament, and central muscle of the Ostreæ, Pectines, and Limæ, but are distinguished by some of the details of the shell.

Hinnita, Defi.

The Hinnitæ appear to be Ostreæ or Limæ with small ears, and adhering, irregular and very thick shells, the convex valve in particular. A depression is observed on the hinge for the ligament §.

[^78]
Plagiostoma, Sowerb.,

'The oblique shell of a Lima, flattened on one side; very small ears; the valves more convex, striated, without scales, the opening for the byssus smaller *. Found in formations anterior to chalk.
Pachytes, Defr.

Nearly the same form as that of the Pectines; shell regular, with small ears; a flattened transverse space between their summits, which in one of the valves is marked by a deep triangular notch, in which passed the ligament. Found in chalk \dagger. In the

Dianchora, Sowerb.,

The valves are oblique and irregular, one of them adherent and with a perforated summit, the other free and with ears \ddagger.

Podopsis, Lam.

Regular striated valves without opercula; the summit of one of them more salient, truncated and adherent, frequently very thick, and forming a sort of pedestal to the shell §.

Although multivalve, we should approximate the

Anomia, Brug.

To the Ostreæ. The Anomiæ have two thin, unequal, irregular valves, the flattest of which is deeply notched on the side of the ligament, which is similar to that of the Ostreæ. The greater part of the central muscle traverses this opening to be inserted into a third plate that is sometimes stony and sometimes horny, by which the animal adheres to foreign bodies, and the remainder of it (the muscle) serves to join one valve to the other. The animal,-Echion, Poli, has a small vestige of a foot, similar to that of a Pecten, which slips between the emargination and the plate that closes it, and perhaps serves to direct water to the mouth which is close to it $\|$.

These shells are found attached to various bodies like the Ostrere. They are found in every sea ${ }^{\text {I }}$.

[^79]
Placuna, Brug.

A small genus allied to the Anomir, in which the valves are thin, unequal, and frequently irregular, as in the latter, but both entire. Two projecting ribs, en chevron, are seen on the inside of one of them, near the hinge.

The animal is not known, but it must resemble that of the Ostreæ, or that of the Anomix *.

Spoxdylus, Lin.

A rough and foliaccous shell as in the Ostrear, and frequently spiny ; but the hinge is more complex; besides the cavity fur the ligament, analogous to that of the Ostrcee, there are two teeth to each valve that enter into fossse in the opposite one; the two middle teeth belong to the most convex valve, whieh is usually the left one, and which has a projecting heel, flattened as if sawed through behind the hinge. The animal, like that of a Peeten, has the borders of its mantle furnished with two rows of tentacula, some of the external ones being terminated by coloured tubereles; before the abdomen is a vestige of a foot formed like a broad radiated disk on a short pediele, and endowed with the faculty of contraction and expansion \dagger. From its centre hangs a filament, terminated by an oval mass, the use of which is unknown.
'The Spondyli are eaten like oysters. Their sleclls are frequently tirged with the most brilliant colours. Whey adhere to all sorts of bodiest.

Plicatula, Lam.

The Plicatule, separated by Lamarek from the Spondyli, have nearly the same kind of hinge but no heel, and flat, almost equal, irregular, plicated and sealy valves, as in many of the Ostreeæ §.

Mallees, Lam.

A simple pit for the ligament as in the Ostrex, where the Mallei were left by Linneus, on account of their having the same irregular and inequivalve shell, but distinguislied by a noteh on the side of this ligament for the passage of a byssus.

The most known species, Ostrea malleur., L.; Chemn., VIII, lxx, 655,656 , which ranks among the number of high-prieed and rare shells, las the two ends of the hinge extended and forming something like the head of a hammer, of which the valves, elongated in a transverse direction, represent the handle. It inhabits the Archipelago of India.
There are some others, possibly young ones of the same species, in

[^80]which the hinge is not prolonged. We must be careful not to confound them with the Vulsella *.

Vulsella, Lam.

A little salient plate inside of the hinge of each side, from one of which to the other extends the ligament, otherwise similar to that of the Ostreæ. By the side of this plate is a notch for the byssus, as in the Mallei. The shell is elongated in a direction perpendicular to the hinge.

The most known species inhabit the Indian Ocean \dagger.
Perna, Brug.

Several parallel cavities across the hinge, opposed to each other in the two valves, and lodging as many elastic ligainents; the irregular and foliaceous shell marked on the anterior side and under the hinge by a notch traversed by the byssus. The Pernæ were also left by Linnæus among the Ostreæ \ddagger.

Crenatula, Lam.

The Crenatulæ, lately separated from the Pernæ, instead of having transverse cavities on a broad hinge, are furnished with uval ones on the very margin, where they occupy but little of its breadth. The byssus seems to be wanting, and they are frequently found among sponges §.

It is thought that we may approximate to the Pernæ, certain fossil shells, in which the hinge is also furnished with cavities more or less numerous, that correspond to each other, and thus appear to have furnished points of attachment to ligaments : thus those of the

Gervilia, Defr.

Have a shell closely resembling that of the Volucellæ, but with a kind of double hinge, externally with opposed cavities, receiving as many ligaments, and internally furnished with very oblique teeth in each valve. Their impressions are found along with Ammonites in compact linestone \|. 'The

[^81]
Inoceramus, Sowerl.

Is remarkable for the elevation and inequality of the valves, the summit of which curves in a hook towards the hinge, and which has a lamellated texture *.

> Castillus, Brong.

Independently of the depressions for the ligament, the Castilli are marked by a conieal sulcus, sunk in a lip, which is bent at a right angle to form one of the margins of the shell. The valves are about equal, and of a fibrous texture. They appear to liave had a byssus \dagger.

> Pulvinites, Defr.

A regularly triangular shell, in whieh the few depressions diverge from the summit on the inside. 'The impression is found in ehalk \ddagger.

In the second subdivision of the Ostracea, as well as in almost all the bivalves which follow, besides the single transverse museular mass of the preceding genera, there is a faseiculus whieh is placed before the mouth, and extends from one valve to the other. It is apparently in this subdivision that we must place the

Etheria, Lam.

Large inequivalve shells, as irregular as those of the Ostrex, and more so; no teeth to the hinge; the ligament partly external and partly internal. They differ from the Ostreæ in having two muscular impressions. The animal is not seen to produce a byssus \S.

They have lately been diseovered in the Upper Nile $\|$.

Avicula, Brug.

An equivalve shell with a rectilinear hinge, frequently extended into wings by its extremities, furnished with a narrow and elongated ligament, and sometimes with small notehes near the mouth of the animal; in the anterior side, a little beneath the angle of the side of the mouth, is a noteh for the byssus. The anterior transverse musele is exeessively small.

The speeies with less salient cars form the Pintadine, Lam., or Mafgarite, Leach.

The most celebrated, Mytilus margaritiferus, L., Chemn., VIII, lxxx, 717,721, has nearly a semieircular shell, gremish without,

[^82]and ornamented with the most beautiful nacre within. The latter is employed in the arts, and it is from the extravasation of this substance that are produced the oriental or fine pearls, taken by the divers at Ceylon, in the Persian Gulf, \&c.
The name of Avicula is appropriated to such as have more pointed cars, and a more oblique shell. The vestige of a tooth, of which traces are visible in the Pintadine, is observed on the hinge, before the ligament.

One species, Mytilus hirundo, L., Chemn., VIII, 1xxxi, 722728 , that inhabits the Mediterrancan, is remarkable for the pointed ears which extend its hinge on each side. Its byssus is coarse and stout, resembling a little tree *.

> Pinna, Lin.

The Pinnæ have two equal valves, forming a segment of a circle, or resembling a half opened-fan, which are closely united by a ligament along one of their sides. The animal, the Сhimera, Poli, is elongated, like its shell; the lips, branchiæ, and other parts are in the same proportion. The mantle is closed along the side of the ligament; the foot resembles a little conical tongue excavated by a sulcus; it is furnished with a small transverse muscle situated at the acute angle formed by the valves, near which is the mouth, and with a very large one in their broader portion. By the side of the anus, which is behind this large muscle, is a conical appendage, peculiar to the genus, susceptible of expansion and elongation, the use of which is unknown \dagger.

The byssus of several species of Pinna is as fine and brilliant as silk, and is employed in fabricating the most precious stuffs. Such is the
P. nobilis. L., Chemn. VIII, lxxxix; which is moreover recognized by the valves being roughened with recurved and semitabular plates. It remains half buried in the sand, and anchored by its byssus \ddagger. In the

$$
\text { Arca, Lin. } \S
$$

The valves are equal and transverse, that is to say, the hinge occupies the longest side. It is furnished with a large number of small teeth, which interlock with each other, and, as in the subsequent genera, with two fasciculi of transverse and nearly equal muscles, in-

[^83]serted into the extremities of the valves, which serve to close them. In the

Arca, Lam.,

Or the Arce properly so called, the hinge is rectilinear, and the shell most elongated in a direction parallel to it. The summits are generally convex, and curve over the hinge, but are separated from each other. The valves do not close perfectly in the centre, because there is a horny plate or tendinous fillet, before the abdomen of the animal * that serves for a foot, and by which it adheres to submerged bodies. 'They are found in rocky bottoms near the shore, and are usually covered with a hairy epidermis. They are not much esteemed for the table.

Some species are found in the Mediterranean \dagger, and a great many fossil, in strata anterior to chalk, farticularly in Italy.
Certain Arcæ in which the teeth of the two ends of the hinge assume a longitudinal direction, are distinguished by Lamarck under the name of Cucullea \ddagger.

We ought also, it is probahle, to separate the species with well marked ribs, and completely closing and interlocking edges; for we must presume that their animal is not fixed, but rather resembles that of a Pectunculus \S.

We have a still better warrant for removing the Arca lortuosa, Chemn., VIII, liii, 524,525 , in its fantastic figure and unequally oblique valves $\|$.

Pectunculus, Lam.

The hinge forming a curved line, and the shell lenticular'; the valves always close completely, and their summits are approximated. The animal, Aximea, Poli, is furnished with a large compressed foot with a double inferior margin which enables it to crawl. They live in ooze. Some species are found on the coast of France q.

Nucula, Lam.

The Nuculæ are Arcæ, in which the tecth are arranged on a broken line. Their form is elongated, and narrowed near the posterior extremity. Their animal is unknown, but is probably not far removed from those of the preceding shells **.

This has long been the place assigned to the

[^84]
Trigonia, Brug.

So remarkable for the linge, which is furnished with two plates en chevron, crenulated on both faces, each of which penetrates into two cavities, or rather between four plates of the opposite side, similarly erenulated on their internal surface.

The internal impressions on the shell had already warranted the supposition that the animal was not provided with long tubes. Messis. Quoy and Gaymard have lately discovered living speeimens of this genus, and in fact, its mantle, as in the Arcæ, is open and without any separate orifice, even for the anus. The foot is large, its anterior portion trenchant and like a hook.

The living Trigonize resemble the Cardiae in the form of their shell, and the ribs which furrow it: its interior is composed of nacre *.

The fossil Trigonix are different. Their shell is flattened on one side, oblique, longest in a direction perpendicular to the hinge, and traversed in a contrary direction by scries of tubereles \dagger.

FAMILY II.

MYTILACEA.

In the second family of the testaccous Acepliala, the mantle is open before, but has a distinct aperture for the fæees.

All these bivalves have a foot, used in erawling, or at least serving to draw out, direct and place the byssus. They are commonly known under the generic name of Muscles.

Mytilus, Lin.

The true Mytili or Sea-Museles have a closed shell, with equal, convex and triangular valves. One of the sides of the acute angle forms the hinge, and is furnished with a long, narrow ligament. The head of the animal is in the acute angle; the other side of the shell, which is the longest, is the anterior one, and allows the passage of the byssus; it terminates in a rounded angle, and the third side aseends towards the hinge, to which it is joined by an obtuse angle; near this latter is the anus, opposite to which the inantle forms an opening or small particular tube. The animal Callícriche, Poli, has the edges of its mantle provided with branched tentacula near the rounded angle, as it is there that the water enters required for respiration. Before, and near the acute angle is a small transverse muscle, and a large one behind, near the obtuse angle. Its foot resembles a tongue.

In the true Mytili the summit is close to the acute angle.
Some of them are striated and others smooth.

[^85]Myt. edulis, L. This common Muscle is frequently seen suspended in extended clusters, along the whole coast of France, to rocks, piles, \&c. \&c. It forms a considerable item of food, but is dangerous if eaten to excess.*
Some of them are found fossilt. In the

Modiolus, Lam.

Separated from the Mytili by Lamarck, the summit is lower and near the third of the hinge. This summit is also more salient and rounded, approximating the Modioli more closely to the ordinary form of the bivalves \ddagger. We may also separate from the Mytili the

Lithodomus, Cuv.,

In which the shell is oblong, and almost equally rounded at the two ends, the summit being close to the anterior extremity. The species of this subgenus at first simply attach themselves to stones like the common Mytili ; subsequently, however, they perforate and excavate them in order to form cells, into which they enter, and which they never quit afterwards. Once entered, their byssus ceases to grow§.

One of them, the Mytilus lithophagus, L., Chemn., VIII, lxxxii, 729,730 , is very common in the Mediterranean, where from its peppery taste it is esteemed as food.

A second, Modiolo caudigera, Encyc. pl. 221, f. 8, has a very hard small appendage at the posterior extremity of each valve, which perhaps enables it to excavate its habitatation.

Anodontea, Brug.

'The anterior angle rounded like the posterior, and that next to the

[^86]anus obtuse and almost rectilinear ; the hinge of the thin and moderately convex shell has no appearance of a tooth whatever, being merely furnished with a ligament which extends along the whole of its length. The animal,-Limnea, Poli, has no byssus; its foot, which is very large, compressed and quadrangular, enables it to crawl upon the sand or ooze. The posterior extremity of its mantle is provided with numerous small tentacula. The Anodontes inhabit fresh water.

Several species are found in France, one of which-Mytilus cygneus, L., Chemn., VIII, lxxxv, 762 , is common in ponds, \&c., with oozy bottoms. Its light and thin shells are used for milkskimmers, but its flesh is not eaten on account of its insipidity*.
An oblong species, in which the hinge is granulated throughout its whole length, is distinguished by M. de Lamarck under the name of Iridinat; the hind part of its mantle is somewhat closed + .

Dr. Leach distinguishes another by that of Dipsada, where the angles are more decided, and in which there is a vestige of a tooth on the hinge.

> Unıo, Brug.

These Mollusca resemble the Anodontes both in their animal and shell, with the exception of their hinge, which is more complex. There is a short cavity in the anterior part of the right valve, which receives a short plate or tooth from the left one, and behind it is a long plate which is inserted between two others on the opposite side. They also inhabit fresh water, preferring running streams.

Sometimes the anterior tooth is more or less stout and unequal, as in

Mya margaritifera, L. ; Drap., X, 17, 19. A large thick species, the nacre of which is so beautiful that it is employed as pearls. Found in France; as is the

Unio littoralis, Lam., Drap., X, 20. A smaller and square species.
Sometimes the anterior tooth is laminiform, as in the
Mya pictorum, L.; Drap., XI, 1, 4. An oblong and thin species known to every one§.
Lamarck distinguishes the
Hyria, Lam.,
In which the angles are so decided that the shell is nearly triangular $\|$.

[^87]
Castalia, Lam.,

Where the slightly codiform shell is striated in radii ; the teeth and plates of the hinge are transversely sulcated, which gives them some affinity with the Trigonix *.

There are certain Marine Mollusea which have a similar animal, and about the same kind of hinge, that should be placed near the Unios; the summits of the shell, however, are more convex, and it is marked by projecting ribs extending from the summits to the edge. They form the

Cardita, Brug. \dagger

Which are more or less oblong or codiform, the inferior margin, in some, gaping \ddagger.

Cypricardia, Lam.

Carditæ, in which the tooth under the summit is divided into two or three. Their form is oblong, and their sides unequal §.
M. de Blainville also separates the

Coralliophaga, Blainv.,

Where the shell is thin, and the lateral plate considerably effaced, which nay cause their approximation to Venus.
One of them is known which excavates coralline masses to form its habitation ||. The

Venericardia, Lam.

Only differ from the Carditæ, in the circnmstance that the posterior plate of their hinge is shorter and more transverse, which caused their approximation to Venus; their form is almost round. Judging from the impressions of its muscles on them, their animal must resemble that of the Cardite and Unios. 9

Both of them approach the Cardia in their general form and the direction of their ribs. I suspect that this is also the place for the
Crassatella, Lam,-Paphia, Roiss.,

Which has sometimes been approximated to Mactra, and at others

[^88]to Venus; the hinge has two slightly marked lateral teeth, and two very strong middle ones, behind which, extending to botlı sides, is a triangular cavity for an interual ligament. The valves become very thick by age, and the impression made by the margin of the mantle leads to the belief that there are no protractile tubes*.

FAMILY III.

CHAMACEA.

The mantle closed and perforated by three holes, through one of which passes the foot; the second furnishes an entrance and exit to the water requisite for respiration, and the third for the excretion of fæces; these two latter are not prolonged into tubes as in the subsequent family. It only comprises the genus
Chama, Lin.,

Where the hinge is very analogous to that of a Unio, that is to say, the left valve near the summit is provided with a tooth, and further back with a salicnt plate, which are received into corresponding fossæ of the right valve. This genus has neccssarily been divided into the
Tridacna, Erug.,

The shell greatly elongated transversely, and equivalve; the superior angle, which answers to the head and summit, very obtuse.

The animal is very singular, inasmuch as it is not, like most of the others, placed in the sholl, but is directed, or, as it were, pressed out before. The anterior side of the mantle is widely opened for the passage of the byssus; a little below the anterior angle is another upening which transmits water to the branchire, and in the middle of the inferior side is a third and smaller one which corresponds to the anus, so that the posterior angle transmits nothing, and is only cccupied by a carity of the mantle open at the third orifice, of which we have just spoken.

There is but a single transverse muscle, corresponding to the middle of the margin of the valves. In

Tridacna, Lam.,

Or the Tridacire properly so called, the front of the shell as well as of the in..ntle has a wide opening with notched edges for the transmission of the byssus, which latter is evidently tendinous, and continues uninterruptedly with the muscular fibres.

[^89]Such is the celebrated and enormous shell of India, the Chama gigar, L. ; Chemn., VII, xlix, which is decorated with broad ribs relieved by projecting semi-circular scales. Specimens have been taken that weighed upwards of three hundred pounds. The tendinous byssus which attaches them to the rocks, is so thick and stout that the axe is required to sever it. The flesh, though tough, is edible. In

Hippupus, Lam.

The shell is closed and flattened before as if truncated*. In the
Chama, Brug.,

Or the true Chame, the shell is irregular, inequivalve, usually lamellar and rough, adhering to rocks, corals, \&c., like that of an Oyster. Its summits are frequently very salient, unequal, and curled up. The internal cavity frequently has the same form without any external indication of the fact. The animal,-Psilopus, Poli,-has a small foot bent almost like that of man. Its tubes, if it have any, are short and disjointed, and the aperture in the mantle, which transmits the foot, is not much larger. Some species are found in the Mediterranean.

There are also several that are fossilt.

Diceras, Lam.,

Between Diceras and the Chamæ there is no essential difference; the cardinal tooth of the former is very thick and the spiral lines of the valves are sufficiently prominent to remind us of two hornsf. In the

> Isocardia, Lam.,

We observe a free, regular, and convex shell, with spirally curled summits, divided anteriorly. The animal,-Glossus, Poli,-only differs from that of an ordinary Chama in having a larger and more oval foot, and because the anterior opening of its mantle begins to resume its ordinary proportions.

A large, smooth, red species, the Chama cor. L.; Chemn., VIF, xlviii, 483, inhabits the Mediterranean §.

[^90]
FAMILY IV.

CARDIACEA.

The mantle is open before, and there are, besides, two separate apertures, one for respiration, the other for the frees, which are prolonged in tubes, sometimes distinct, and at others united in one single mass. There is always a transverse muscle at each extremity, and a foot generally used for crawling. It may be considered as a general rule, that those which are furnished with long tubes, live in ooze or in sand. This mode of organization may be recognized on the shell by the more or less depressed contour described by the insertion of the edges of the mantle previous to its miting with the impression of the postcrior transverse muscle*.
Cardium, Lin.,

The Cardia, like many other bivalves, have an equivalve, convex shell, with salient summits, curved towards the hinge, which, when vicwing it sidewise, gives it the figure of a heart; hence its name of Cardium, heart, \&cc. Ribs, morc or less clevated, are regularly distributed from the summits to the edges of the valves; but what chiefly distinguishes the Cardia, is the hinge, through which, in the middle, are two small tecth, and at some distance before and behind a projecting tooth or plate. The animal,-Cerastes, Poli,-has gencrally an ample aperture in the mantle, a very large foot forming an elbow in the middle and with its point directed forwards, and two short or but moderately long tubes.
Numerous species of Cardia are found on the coast of France, some of which are caten, such as the
C. edule, L.; Chemn., VI, xix, 194. Fatvn-coloured or whitish with twenty-six transversely plicated ribs.
Under the name of Hemicardiun, we might separate those species in which the valves are compressed from before backwards, and strongly carinated in the middle; for it secms almost certain, that a modification of the animal must be a necessary consequence of this singular configuration \dagger.

> Donax, Lin.,

The Donaces have nearly the same kind of hinge as the Cardia, but

[^91]their shell is of a very different form, being a triangle, of which the obtuse angle is at the summit of the ralves, and the base at their edge, and of which the shortest side is that of the ligament, or the posterior side, a rare circumstance in this degree, among bivalves. They are generally small, and prettily striated from the summits to the edges; their animal-Preronea, Poli, is furnished with long tubes which are received into a sinus of the mantle. Some of them are found on the coast of France*. The

Cyclas, Brug.

Separated from Venus by Brugiére, like the Cardia and Donaces, has two teeth in the middle of the hinge, and before and behind, two salient, and sometimes crenulated plates; but the shell, as in several species of Venus, is more or less rounded, equilateral, and transversely striated. The animal has moderate tubes. The external tint is usually grey or greenish. The Cyclades inhabit fresh water.

One species, the Tellina cornea, L.; Chemn., VI, xiii, 133, is very common on the coast of France \dagger. M. Lamarck separates the
Cyrena, Lam.

Where the shell is thick, slightly triangular and oblique, covered with an epidermis, and otherwise distinguished from the Cyclades by having three cardinal teeth. The Cyrenæ also inhabit rivers, but there are none in France \ddagger.

Cyprina, Lam.

Also separated from the Cyclades by Lamarck; the shell is thick, oval, with recurved summits, and three stout teeth; further back is

[^92]a plate, and under the tecth a large cavity, which receives a part of the ligament*.

Galatiea, Brug.

The shell triangular; three teeth on the summit of one valve, and two on the other, en chevron; the lateral plates approximated \dagger.

But a single species is known; it inhabits the fresh waters of the East Indies.
It is here also that must be placed another genus separated from Venus, the

> Corbis, Cuv.-Timibria, Megerl.

Marine testaceous Acephala, transversely oblong, whieh have also stout middle teeth, and well marked lateral plates; their external surface is furnished with transverse ribs so regularly crossed by rays, that it may be compared to wicker-work.

The impression of their mantle exhibiting no flexure, their tubes must be short ${ }_{+}$.

Some of them are fossil§. In the

Tellina, Lin.

There are in the middle, one tooth on the left and two tecth on the right, frequently forked, at some distanee before and behind, on the right valve, a plate, which does not penetrate into a eavity of the opposite one. There is a slight plica near the posterior extremity of the two valves, whieh renders them unequal in that part, where they are somewhat open.

The animal of the Tellinæ-Peronea, Poli,-like that of the Donaces, has two long tubes for respiration and for the anus, which withdraw into the shell, and are concealed in a duplieature of the mantle.

Their shells are generally transversely striated, and decorated with beautiful colours.

Some of them are oval and thick.
Others are oblong and strongly eompressed.
Some again are lenticular, wherc, instead of a plica, there is frequently nothing but a slight deviation of the transverse striee \|.

We might scparate certain oblong species which have no lateral

[^93]tecth ${ }^{*}$, and others, whieh, with the hinge of the Tellinie, have not the plica of the posterior extremity - they are the Tellinides, Lam. \dagger

It is neeessary to distinguish from the Tellinæ, the

Loripes, Poli,

In whieh the middle teeth of the lenticular shell are almost effaeed, and where there is a simple sulcus for the ligament behind the nates. The anmal is furnished with a short double tuhe, and its foot is prolonged into a kind of cylindrieal eord. Besides the usual impressions, we may observe, on the inside of the shell, a line running obliquely from the print of the anterior musele, which is very long, towards the nates. There is no flexure in the print of the mantle for the retractor musele of the tube \ddagger.

> Lucina, Brug.

Separated lateral teeth, as in the Cardia, Cyelades, \&e., that penetrate between the plates of the other valve; in the middle are two teeth, frequently, but slightly apparent. The shell is orbicular, and without any impression of the retractor musele of the tube; that of the auterior eonstrietor, however, is very long. Possessing similar traits of eharacter with the Loripedes, their animals must be analogous §.

The living species are much less numerous than those that are fossil; the latter are very eommon in the environs of Paris $\|$.
We should approximate to the Lueinæ, the Ungulinea, whieh also have an orbieular shell and two eardinal teeth; the lateral ones, however, are wanting, and the anterior muscular impression is not so long ${ }^{\text {I }}$. The genus

Venus, Lin.

Comprises many 'restacea whose general eharaeter eonsists in the tecth and plates of the hinge being approximated under the summit, in a single group. They are usually more flattened and elongated, in a direetion parallel to the hinge, than the Cardia. I'he ribs, when there are any, are almost always parallel to the edges, being direetly the reverse of their arrangement in the Cardia.

The ligament frequently leaves an elliptical impression behind the summits, whieh has received the appellation of vulva, and before

[^94]these same summits there is almost always an oval impression termed the anus or lumula*.

The animal is always furnished with two more or less protractile tubes, sometimes united, and with a compressed foot, which enable it to crawl.
M. Lamarck appropriates the name of Venus to those which have three small diverging teeth under the summit. This character is particularly well marked in the oblong and slightly convex species \dagger.

Some of them-the Astarte, Sowerb., or Crassine, Lam.,-have only two diverging teeth on the hinge, and approach the Crassatellæ in their thickness and some other characters \ddagger.

Ameng the cordiform species, that is, those which are shorter and have more convex nates, and with more closely approximated tecth, we should remark those where the plates or transverse strice terminate in crests§ or tuberosities $\|$, and those that have longitudinal ribs and crests elevated behind.

We subsequently and gradually come to the Cytheree, Lam., which have a fourth tooth on the right valve, projecting under the lanula, and reccived into a corresponding cavity in the right one.

Some of them have an elliptical and clongated form ; others arc convex **, and it is among these latter that we must place a celcbrated species (Venus Dione, L., Chemn., VI, 27, 271), from whose form originated the application of the name Venus to the genus. Its transverse plates terminate behind in salient and pointed spines.

There are some species of an orbicular form, and with slightly hooked summits, in which the impression of the retractor of the tubes forms a large and almost rectilinear triangle $\dagger \dagger$.

When their animals are better known, we shall most 1 robably have to separate from the Cythereæ,

1. Those species of a compressed lenticular form, in which the nates are unitcd into a single point. The fold of the contour of the mantle is wanting, and shows that their tubes are not protractile $\ddagger \ddagger$:
2. Those of a convexly orbicular form, in which the fold is not

[^95]only wanting, but where, as in the Lucinx, the impression of the anterior muscle is very long *;
3. The thick species with radiated ribs, in which the fold is also wanting, and which connect the genus Venus with that of the Venericardiaf. In the

> Capsa, Brug.

Already separated from the former, there are two teeth on the linge on one side, and a single, but bifid one, on the other; the lumula is wanting, the shell convex, and the fold, indicative of the retractor of the foot, considerable \ddagger.

Petricola, Lam.

Also separated from the same genus; the Petricolæ, on each side, have two or three very distinct tecth on the hinge, one of which is forked. The shell is more or less cordiform, but as they inhabit the interior of stones, it sometimes becomes every irregular. Judging from the marginal impressions of their mantle, their tubes must be very large §.

> Corbula, Ibrug.

Similar in form to the triangular Cytheree, or cordate; but a single stout tooth in the middle of each valve, corresponding to the side of its antagonist. The lagiment is internal; the tubes must be short, and the valves but rarely equal $\|$.

The fossil species are much more numerous than the living ones 9.

Some of them live in the interior of stones**.
Mactra, Lin.

The Mactræ are distinguished from the other Testacea of this fanily by their ligament being internal, and lodged throughout in a triangular depression, as in the oysters; they all have a compressed foot fitted for erawling. In the

$$
\mathrm{Mactra}_{\mathrm{a}}, L a m_{\mathrm{L}},
$$

Or the Mactræ properly so called, the ligament is accompanied to the left valve, before and behind, by a projecting plate which is received between two others on the right one. Close to the ligament,

[^96]near the lunule, is a littile plate en chevron. The tubes are united and short*.

Some of them are found on the coast of France.
In the Lavignons, the lateral plates are almost effaced, but a single small tooth is observable near the internal ligament; there is also a second and internal ligament. The posterior side of the shell is the shortest; the valves are somewhat open, and the tubes are separate and very long, as in the Tellinæ.

There is one found on our coast, Mya hispanica, Chemn. VI, iii, 21 , which lives in the ooze at the depth of several inches \dagger.

> FAMILY V.

INCLUSA \ddagger.

The mantle open at the anterior extremity, or near the middle only, for the passage of the foot, and extended from the other end into a double tube, which projects from the shell, whose extremities are always gaping. Nearly all of them live buried in sand, stones, ooze, or wood. Those of the genus
MyA, Lin.

Have but two valves to their oblong shell, the hinge of which varies. The double tube forms a fleshy cylinder, and the foot is compressed. The different forms of the hinge have furnished Messrs. Daudin, Lamarck, \&c., with the following subdivisions §, in the first three of which the ligament is internal.

Lutraria, Lam.,

The Lutrarix, like the Mactre, have a ligament inserted into a large triangular cavity of each valve, and before that cavity a small

[^97]tooth en chevron; but the lateral plates are wanting; the gap of the valves is very wide, particularly at the posterior extremity, through which passes the thick, double, fleshy, respiratory and anal tube, a disposition which attaches them to this family. The foot, which issues at the opposite end, is small and compressed.

Some of them are found in the sand at the mouths of rivers in France *. In the
MyA, Lam.,

Or the Mya properly so called, one valve is furnished with a plate which projects into the other, and this latter with a cavity. The ligament stretches from this cavity to that plate.

Sume species are found in the sand along the coast of France \dagger.

Anatina, Lam.

The Anatine of Lamarck should be approximated to the preceding Myæ. Each of their valves has a small projecting plate inside with the ligament extending from one to the other.

One oblong and excessively thin species is known, the valves of which are supported by an internal ridge \ddagger; and another of a squarer form without the ridge \S. In the

> Solemya, Lam:

The ligament is seen on the outside of the shell, part of it remaining attached to a horizontal internal cuilleron on each valve. There is no other cardinal tooth, and a thick epidermis projects beyond the edges of the shell.

One species, the Tellina togata, Puli, II, xv, 20, is found in the Mediterrancan \|.

Glycymeris, Lam.-Cyrtodaria, Daud.

Neither teeth, plates, nor cavities on the hinge, but a simple callous enlargement, behind which is an external ligament. 'The animal resembles that of the Myæ.

The most common species-Mya siliqua, L.; Chemn. SI, 193, f. 194, is from the Arctic Ocean.

[^98]
Panopea, Mesnard, Lagr.

A stout tooth, anterior to the callous enlargement of the preceding subgenus, and immediately under the summit, whieh deeussates a similar one on the opposite valve, a eharaeter which approximates the Panoper to the Solens. A large species is found in the hills at the foot of the Appenines in so high a state of preservation, that it has been mistaken for a reeent sea-shell *.

There is another fossil speeies, whieh may perhaps be separated from it, that is eompletely closed at its anterior extremity \dagger.

After these various modifieations of the Mya, we may plaee the
Pandora, Brug.

In whieh one valve is mueh flatter than the other; the internal ligament is plaeed transverscly, aecompanied in front by a projecting tooth of the flattened valve. 'The posterior side of the shell is elongated. The animal withdraws more completely into its shell than the preceding ones, and its valves shut more elosely-its habits however are the same.

But a single species is well known; it inhabits the seas of Europe \ddagger.
Here also we find a group of some small and singular genera, sueh as

Byssomia, Cuv.

Where the oblong shell, which has no marked tooth, has the opening for the foot at about the middle of its edge and opposite the summits. The Byssomiæ also penetrate into stone, eorals, \&e.

A speeies which is provided with a byssus, abounds in the Arctie Ocean §.

Hiatella, Daud.

The shell gaping, to allow the passage of the foot, near the middle of its edges; but the tooth of the hinge is better marked than in the preeeding genus. Ranges of salient spines are frequently observed on the hind part of the shell. They are found in sand, among Zoophytes, \&c.

The North Sea produces a small speeies $\|$.

[^99]
Solen, Lim.

The shell only bivalve, oblong or elongated, but the hinge always furnished with salient and well marked teeth, and the ligament external. In the

> Sulen, Cuv.,

Or the Solens properly so called, the shell is cylindrically clongated, and has two or three teeth in each valve near the anterior extremity, where the foot issues, The latter is conical, and enables the animal to hury itself in the sand, which it excavates with considerable rapidity on the approach of danger.

Several species are found along the coast of France *.
We might distinguish those species in which the teeth approximate to the middle; some of them still have a long and narrow shell \dagger.

In others it is wider and shorter; their foot is extremely thick. Two of the latter inhabit the Mediterranean \ddagger. In
Sanguinolaria, Lam.,

The hinge is nearly the same as in the wide Solens, and has two teeth in the middle of each valve; but the two latter, which are oval, are much closer at the two extremities, where they merely gape, like certain Mactræ§.

> Psammobia, Lam.

The Psammobiæ differs from the Sanguinolariæ, in having but a single tooth in the middle of one valve, which penetrates between two on the opposite one.\|

Psaminothea, Lam.

But a single tooth to each valve; otherwise resembling the Psammobiæ 9.
Pholas, Lin.

The Pholades have two broad valves, convex towards the mouth,

[^100]narrow and elongated on the opposite side, and leaving a large oblique opening at each extremity ; their linge, like that of a true Mya, is furnished with a plate projecting from one valve into the other, and with an internal ligament ruming from that plate into a corresponding cavity. Their mantle is reflected externally upon the hinge, where it sometimes contains two or three supernumerary calcareous bodies. The foot issues through the aperture on the side next to the mouth, where it is widest, and from the opposite one project the two tubes, which are united and susceptible of inflation in every direction.

The Pholades inhabit canals which they excavate, some in oozc and others in stone, like the Lithodomi, Petricolæ, \&c. They are much sought for on account of their agreeable flavour.

Several species are found on the coast of France: such is the Dail commun; Pholas dactylus, L. ; Chemn., VIII, ci, 859 *.

Teredo, Lin.

The mantle extended in a tube much longer than the two small, rhomboidal valves, and terminated by two short tubes, the base of which is furnished on each side with a stony and moveable kind of operculum or palette. These Acephala, while quite young, penetrate and establish their habitations in submerged pieces of wood, such as piles, ships' bottoms, \&c., perforating and destroying them in every direction. It is thought, that in order to penctrate as fast as it increases in size, the Pholas excavates the wood by means of its valves; but the tubes remain near the opening by which its entrance was effected, and through which, by the aid of its palette, it receives water and aliment. The gallery it inhabits is lined with a calcareous crust which exudes from its body, and which forms a second kind of tubular shell for it. It is a noxious and destructive animal in the sea ports of Europe.

Teredo navalis L. This species, which is the most common, and is said to have been introduced into Europe from the torrid zone, has more than once threatened Holland with ruin by the destruction of its dikes. It is upwaads of six inches in length, and has simple palettes.
Larger species inhabit hot countries, whose palettes are articulated and ciliate. They should be remarked for their analogy to the Cirrhopoda. Such is the Teredo palmulatus, Lam., Adans., Ac. des Sc., 1759, pl. 9, f. 12.

Fistulana, Brug.

Scparated from Teredo; the extcrnal tube is entirely closed at its larger end, and is more or less like a bottle or club. The Fistulanæ are sometimes found buried in submerged fragments of wood, or in

[^101]fruits, and the animal, like that of a 'reredo, has two small valves, and as many palettes. Recent specimens are only obtained from the Indian Oecan, but they are found fossil in Europe *. We should approximate to them the

Gastrochena, Spengler.

Where the shells are deprived of teeth, and their edges being wide apart anteriorly, leave a large oblique opening opposite to which there is a small hole in the mantle for a passage of the foot. The double tube, whieh can be retracted completely within the shell, is susceptible of leing greatly elongated. It appears that they are certainly furnished with a calcarcous tube \dagger.

In some of them, as in the Mytili, the summits are at the anterior angle \ddagger; in others they are plaeed near the middles.

They inhabit the interior of Madrepores, which they perforate.
Two gencra of Acephala furnished with tubes, have been detected among fossils, but the first of them, the

> Teredina, Lam.,

Has a little euilleron on the inside of each of its valves, and a small, free, shield-shaped piece on the hinge $\|$. In the second,

Clavagelea, Lam.,

One of the valves is clasped by the tube, leaving the other, however, free ${ }^{\text {If. }}$

A single living species is found in the Madrepores of the Sicilian seas, which has been described by M. Audouin.
Some naturalists thin' we should also place in this family the

Aspergillum, Lam.,

The shell of which is formed of an clongated conical tube, elosed at its widest extremity by a disk perforated with numerous small tubular holes; the little tubes of the outer range being longest, form a kind of corolla round it. The reason for approximating them to

[^102]the Acephala with tubes is found in the fact that there is a double projeetion on one part of the cone, which really resembles the two valves of the Acephala. 'I'he affinity between these little tubes and those which envelope the tentacula of certain Terebella, formerly eaused this animal to be referred to the Annclides.
'I'he species most known,-Asper. javanum, Mart., Conch., I. pl. 1, f. 7 , is seven or eight inches in length*.

ORDER II.

ACEPHALA NUDA \dagger.

The naked Acephala (a) are not numerous, and arc sufficiently removed from the ordinary Accphala, to form a distinct elass, were such a division considered requisite. Their branchiæ assume various forms, but are never divided into four leaflets; the shell is replaced by a cartilaginous substance which is sometimes so thin that it is as flcxible as a membrane. We divide them into two families.

FAMILY I.

SEGREGATA (b).

This family comprises those genera in which the individuals that compose them are insulated and without any mutual organie eonneetion, although frequently living in socicty. In the
Biphora, Brug.-Thalia, Brown.-Salpa, and Dagysa, Gmelin,
The mantle and its cartileginous envelope are oval or eylindrical, and open at the two extremities. Near the anus, the opening is transverse, wide, and furnished with a valve whieh permits the entranee of water, but not its exit ; near the mouth, it is simply tubular. Mus-

[^103]Us (a) Or the Acephales sans coquilles of our author.-Eng. Ed.
(b) As this family has received no name from our author, we have been compelled in conformity with the plan adopted from the commencement of the work, to remedy the omission, for such we consider it, by the above word; in the selection of which we have been governed by that which the Baron himself affixes to the sccond family, or his Aggregés.-ENG. En.
cular bands embrace the mantle and contract the body. The animal moves by taking in water at the posterior aperture. and forcing it out through that near the mouth, so that it is always propelled backwards, a eireumstance which has led some naturalists into error by causing them to mistake the posterior opening for the true mouth *. It usually swims on its back. The branchie form a single tube or riband, furnished with regular vessels, placed obliquely in the middle of the tubular cavity of the mantle, in sueh a manner that it is constantly bathed by the water as it traverses that cavity \dagger. The heart, viscera, and liver are wound up near the mouth and towards the baek; but the position of the ovary varies. The mantle and its envelope when exposed to the sun exhibit the colours of the rainbow, and are so diaphanous, that the whole structure of the animal can be seen through them: in many they are furnished with perforated tubercles. The animal has been seen to eome out from its envelope without appearing to suffer pain. The most eurious cireumstance respeeting them, is their remaining united for a long time, just as they were in the ovary, and thus swimming in long ehains where the individuals are disposed in different ways, but each speeies always aceording to the same order.
M. de Chamisso assures us, that he has verified a still more singular fact relative to these animals ; it is, that the individuals which have thus issued from a multiplex ovary, are not furnished with a similar one, but produce insulated young ones of various forms, which have an ovary like that whieh produeed their parent, so that there is, alternately, a generation of a few insulated individuals, and arother of numerous and aggregate ones, and that these two alternating generations do not resemble each other ${ }_{+}$.

It is very ecrtain that in some species little individuals have been observed adhering to the interior of large ones, hy a peculiar kind of sucker, whieh were different in form from those that contained them §.

These animals are very abundant in the Mediterranean and the warmer portions of the ocean, and are frequently phosphorescent.

The Thaele, Brown, have a small crest or vertical fin near the posterior extremity of the baek $\|$.

[^104]Of the Salpe, properly so called, some have a gelatinous dark coloured plate, in the substance of the mantle and above the visceral mass, which may be the vestige of a shell *.

In others it is a simple prominence, of the same nature as the rest of the mantle, but thicker \dagger.

Others again have neither plate nor prominence, but their mantle is extended by points, and of these

Some have a point at each extremity \ddagger.
Others have two at the extremity nearest the mouth \S, and even three or more $\|$.

Some have but a single one at this same extremity I.
The greater number is simply oval or cylindrical**. In the

Ascidia, Lin.-Theyton of the Ancients,

The mantle and its cartilaginous envelope, which is frequently very thick, resemble sacs everywhere closed, except at two orifices, which correspond to the two tubes, of several bivalves, one serving to admit water and the other affording a passage to the fæces. The branchiæ form a large sac, at the bottom of which are the mouth and the visceral mass. The envelope is much larger than the mouth, which is fibrous and vascular, and on which, between the two tubes, is one of the ganglions. These animals attach themselves to rocks and other bodies, and are deprived of all power of locomotion; the chief sign of vitality which they exhibit, consists in the absorption and evacuation of water through one of their orifices; when alarmed they eject it to a considerable distance. They abound in every sea, and some of them are eaten $\dagger \dagger$.

[^105]Some species are remarkable for the lung pedicle which supports them*.

FAMILY II.

AGGREGATA.

The second family consists of animals more or less analogous to the Ascidiæ, but united in a common mass, so that they seem to communicate organically with each other, and in this respeet to comnect the Mollusea with the Zoophytes; but independently of their peculiar organization, these animals, according to the observations of Messrs. Audouin and Milne Edwards, at first live and swim separately, only becoming united at a certain subsequent period, a fact which is in direct opposition to this opinion.

Their branchiæ, as in the Ascidiæ, form a large sac, traversed by the aliment before it arrives at the mouth; their principal ganglion is also situated between the mouth and the arms; a nearly similar disposition obtains with respect to the viscera and ovary \dagger.

Notwithstanding this, some of them, like the Biphora, have an opening at each extremity. Such is the

Botryllus, Gcert.,

Of an oval form, fixed on various bodies, and united by tens or twelves, like the rays of a star. The brianchial orifices are at the

[^106]extermal extremities of these rays, and the anus terminates in a common cavity, which is in the centre of the star. If an orifice be irritated, but a single animal eontraets; if the centre be touched they all contract. These very small animals attach themselves to certain Ascidiæ, Fuci, \&c *.

In some partieular speeies, three or four stars appeared to be piled one on the othert.

Pyrosoma, Peron.

The Pyrosomie unite in great numbers, forming a large hollow eylinder, open at one end and elosed at the other, which swims in the ocean by the alternate eontraetion and dilatation of the individual animals whieh compose it. The latter terminate in a point on the exterior, so that the whole external surface of the tube is bristled with them; the branchial orifices are pierced near these points, and the anus debouches in the internal cavity of the eylinder. A Pyrosuma may thus be compared to a great number of stars of Botrylli strung together, the whole of which is movcable \ddagger.

The Mediterrancan, and the Ocean, produce large species, the animals of which are arranged with but little regularity. They exhibit a phosphorescent appearance during the night \S.

A smaller species is also known $\|$, where the animals are arranged in very regular rings.

The remainder of these aggregated Mollusca, like the ordinary Ascidiæ, have the anus and branchial orifiee approximated to the same etremity, The speeies known are all fixed, and till now they havc been confounded with the Alcyonia. The visceral bundle of eaeh individual is more or less extended into the common cartilaginous or gelatinous mass, morc or less narrowed or dilated in certain points; but each orifice always forms a little six-rayed star on the surface. We unite them all under the name of

Polyclinum \mathbb{V}.

Sume of them are extended over bodies like flcshy crests**.

[^107]Others project in a conical or globular mass*,
Or expand into a disk comparable to that of a flower or of ant Actiniat, or are elongated into cylindrical branches supported by slender pedicles, \&c. \ddagger or, form parallel cylinders \S.

Recent observations even seem to show that the Eschare, hitherto placed among the Polypi, belong to this family of the Molluscall.

CLASS V.

BRACHIOPODA V.

The Mollusca Brachiopoda, like the Acephala, have a bilobed mantle which is always open. Instead of feet they are provided with two fleshy arms furnished with numerous filaments, which they can protrude from, and draw into the shell. The mouth is between the base of the arms. Neither their organs of generation, nor their nervous system are well known.

All the Brachiopoda are invested with bibalve shells, fixed and immoveable. But three genera are known.

Lingula, Brug.

Two equal, flat, oblong valves, the summits of which are the extremity of one of the narrow sides, gaping at the other end, and attached between the two summits to a fleshy pedicle, which suspends them to the rocks; the arms become spirally couvoluted previously to entering the shell. It appears that the branchiæ consist of small leaflets, disposed around the internal face of each lube of the mantle.

But a single species-Lingula anatina, Cuv., Ann. du Mus., I, vi, Seb., III, xvi, 4, is known. It inhabits the Indian Ocean, and has thin, horny and greenish valves**.

[^108]
Terebratula, Brug.

Two unequal valves united by a hinge; the summit of one, more salient than the other, is perforated to permit the passage of a fleshy pedicle which attaches the shell to rocks, madrepores, other shells, \&c. Internally, a small bony piece of frame-work is observed, that is sometimes very complex, composed of two brancles which articulate with the unperforated valve, and that support two arms edged all round with a long close fringe, between which, on the side next to the large valve, is a third, simply membranous and much longer appendage, usually spirally convoluted, and edged, like the arms, with a fine and close fringe. The mouth is a small vertical fissure between these three large appendages. The principal part of the body, situated near the hinge, contains the numerous muscles which reach from one valve to the other, and between them are the viscera, which occupy but little space. The ovaries appear to be two ramified productions, adhering to the parietes of each valve. I have not yet been able to ascertain exactly the positon of the branchix.
Numberless Terebratulæ are found fossil or petrified, in certain secondary strata of ancient formations*. The living species are less numerous \dagger.
The shell of some is transversely broader or longer, in a direction perpendicular to the hinge, with an entire or emarginated contour, with two or several lobes; some of them are even triangular ; the surface is smooth, sulcated in radii, or veined; they are thick or thin, and even diaphanous. In several of them, in lieu of the hole in the summit of the thin valve, there is a notch, and this notch is sometimes partly formed by two accessory pieces, \&c. It is probable that when better known, their animals will present generic differences. Already in the

Spirifer, Sowerby,

Two large cones have been recognized, formed of a spiral thread, which appear to have supported the animal \ddagger, In

> Theidea, Def.,

The pedicle seems to have been incorporated with the small valve§.

[^109]
Orbicula, Cur.

The Orbiculie have two unequal valves, one of which, that is round and conical, when viewed by itself, resembles the shell of a Patella; the other is flat and fixed to a rock. The arms of the animal, -Criopus, Poli,-are ciliated and spirally recurved like that of the Lingulæ.

The seas of Europe produce a small species, Patella anomala, Müll., Zool. Dan. V, 26; Anomia lurbinata, Poli, XXX, 15 ; Bret. Sowerb., Lin. Trans., XIII, pl. xxvi, f. I.
The Discine, Lam., are Orbiculæ, the inferior valve of which is marked by a fissure. 'The

> Crania, Brug.

Should be approximated to the Orbicule. The arms of the animal are also ciliated, but the shells have deep and round internal muscular impressions, that have caused it to be compared to the figure of a skull.

One of them inhabits European seas; Anomia craniolaris, L.; or Crania personata, Bret. Sowerb., Lin. Trans., XIII, pl. xxv, f. 3. Several are fossil; such as the Cran. antiqua, and the others of which M. Hœninghaus has given an excellent Monograph.

CLASSVI.

CIRRHOPODA *.

[Lepas and Triton, Lin.]
The Cirrhopoda, in several points of view, are intermediate between this division and that of the Articulata. Enveloped by a mantle, and testaceous pieces which frequently resemble those seen in several of the Acephala, their mouths are furnished with lateral jaws, and the abdomen with filaments named cirri, arranged in pairs, composed of a multitude of little ciliated articulations, and corresponding to a sort of feet or fins similar to those observed under the tail of several of the Crustacea. Their heart is situated in the dorsal region, and the branchix on the sides; the nervous system forms a series of ganglions

[^110]on the lower part of the abdomen. These cirri, however, may be considered as analogous to the artieulated appendages of certain species of Teredo, while the ganglions in some respects are mere repetitions of the posterior ganglion of the bivalves. The position of these animals in the shell is such, that the mouth is at the bottom and the cirri near the orifice. Between the last two cirri is a long fleshy tube, that has sometimes, but erroneously, been takon for their proboscis, and at the base of which, near the back, is the opening of the anus. Internally, we observe a stomach inflated by a multitude of small cavities in its parietes, which appear to fulfil the functions of a liver, a simple intestine, a double ovary, and a double serpentine oviduct, whose walls produce the prolific fluid, and which, prolonged in the fleshy tube, open at its extremity. These animals are always fixed. Linnæus comprised them all in one genus-Lepas, which Brugières divided into two, that have in their turn been subdivided *.

Anatifa, Brug.

A compressed mantle, open on one side and suspended to a fleshy tube, varying greatly as to the number of testaceous pieces with which it is furnished ; twelve pair of cirri, six on each side, those nearest to the mouth being the thickest and shortest. The branchiæ are clongated pyramidal appendages, that adhere to the external base of the whole of the cirri, or of part of them.

The two principal valves, of the most numerous species (Pentalasmis, Leach,) resemble those of a Mytilus; two others seem to complete a part of the edge of the Mytilus opposite to the summit, and a fifth azygous one unites the posterior edge to that of the opposite valve; these five pieces cover the whole of the mantle. From the usual place of the ligament arises the fleshy pedicle; a strong transverse muscle unites the two first valves near their summit; the mouth of the animal is concealed behind it, and the posterior extremity of its body, with all the little articulated feet, is a little beyond it, between the four first valves.

The most common species of the European seas, Lepas analifera, L., owes its specific appellation to the fable which represents it as producing the Bernacles and Macreuses, a story founded on the rude resemblance that has been observed to exist between the pieces of this shell, and a bird. The Anatifæ adhere to rocks, piles, keels of vessels, \&e. \dagger We may distinguish from them

[^111]
Pollicipes, Leach,

Where, besides the five principal valves, there are several small ones near the pedicle *, some of which, in certain species, are nearly as large as the former \dagger; frequently there is an azygous valve, opposite to the ordinary one of the same description. In the

Cineras, Leach,

The cartilaginous mantle contains but five small valves, which do not occupy the whole of its extent \ddagger. In the

Otion, Leach.

The cartilaginous mantle contains but two very small valves, with three little grains which hardly merit that name, and has two tubular auriform appendages §.

Tetralasmis, Čuv.

But four valves, which surround the aperture; two of them longer than the others. The animal is partly confined within the pedicle, which is large, and covered with hair. They are a kind of tubeless Balani II.

> Balanus, Brug.

The principal part of the shell of the Balani consists of a testaceous tube attached to various bodies, the aperture of which is more or less closed by two or four valves. This tube is formed of various pieces, which appear to be detached, and separated in proportion as the growth of the animal requires it. The branchiæ, mouth, articulated tentacula, and the anal tube, differ but little from those of the Anatifæ. In

Balanus

Properly so called, the tubular portion is a truncated cone formed

[^112]of six projecting pieces, separated by as many depressed ones, three of which are narrower than the others. . Their base is usually formed of a calcareous lamina, and fixed to various bodies. The four valves of their operculum close the orifice exactly.

The rocks, shells, \&c., on the coast of Europe, are, in a manner, covered with a species of Balanus, the Lepas balanus, L., Chemn., VIII, xcvii, 826*. Naturalists have separated from it

The Acaste, Leach, whose base is irregular, convex towards the exterior, and which does not become fixed; most of them are found in sponge \dagger,

The Conie, Blainv., the tube of which has but four salient pieces f,
The Aseme, Ranzani, where the tube has no decidedly salient pieces §,

The Pyrgome, Savigny, whose tubular position, forming a strongly depressed cone, has but a very small orifice, almost like the shell of a Fissurella\|,

The Octhosıe, Ranzani, which have but three salient pieces in the tube, and only two valves to the operculum \mathbb{T},

The Creusie, Leach, with four salient pieces, and two valves to the operculum **.
M. de Lamarck, under the name of Coronule, separates the very wide species, where the parietes of the cone are occupied, by cells so large, that they resemble chambers $\dagger \dagger$; and under that of

Tubicinelle, those in which the tubular portion is elevated, narrower near the base, and divided into annuli, which mark its growth $+ \pm$.

There are some species of these last two subgenera, which affix themselves to the skin of the Balænæ, and even penetrate into their blubber.

To the preceding subgenera must be added the

[^113]
Daidema, Ranz.

Where the tubular portion is almost spherical, and which has but two small valves almost hidden in the membrane which closes the operculum. The opercular valves would not effectually closes the orifice without the membrane which unites them.

They also live on the Balænæ, and Otiones are frequently observed attached to their surface *.

[^114]
THIRD

GREAT DIVISION

OF THE

ANIMAL KINGDOM.

ANIMALIA ARTICULATA.

This third general form is as well characterised as that of the Vertebrata; the skeleton is not internal as in the latter, neither is it anni hilated as in the Mollusca. The articulated rings which encircle the body, and frequently the limbs, supply the place of it, and as they are usually hard, they furnish to the powers of motion all requisite points of support, so that here, as among the Vertebrata, we find the walk, the run, the leap, natation and flight. Those families only are restricted to reptation which are either deprived of feet, or in which the articulations are membranous and soft. 'This external position of the hard parts, and the internal one of the muscles, reduce each articulation to the form of a sheath, and allow it but two kinds of motion. When connected with the neighbouring parts by a firm joint, as happens in the limbs, it is fixed there by two points, and can only move by gynglymus, that is, in one single plane, a disposition which requires a greater number of joints to produce a same variety of motion. A greater loss of muscular power is also the result, and consequently more general weakness in each animal, in proportion to its size.

But the parts which connpose the body are not always articulated in this way; most generally they are only united by flexible membranes, or they fit into each other, and then their motions are more various, but have not the same force.

The system of organs in which the Articulata resemble each other the most, is that of the nerves.

Their brain, which is placed on the esophagus, and furnishes nerves to the parts adhering to the head, is very small. 'I'wo cords which embrace the esophagus are extended along the abdomen, and united
at certain distances by double knots or ganglia, whence arise the nerves of the body and limbs. Each of these ganglia seems to fulfil the functions of a brain to the surrounding parts, and to preserve their sensibility for a certain length of time, when the animal has been divided. If to this we add, that the jaws of these animals, when they have any, are always lateral and move from without, inwardly, and not from above, downwards, and that no distinct organ of smell has hitherto been discovercd in them, we shall have expressed all that can be said of them in gencral. The existence, however, of the organs of hearing, and the cxistence, number and form of those of sight, the product and mode of generation *, the kind of respiration, the existence of the organs of circulation, and even the colour of the blood present great differences, which must be noticed in the various subdivisions.

Distribution of the Articulata into four Classes.

The Articulata, whose mutual relations are as varied as numerous, present however four principal forms, cither internal or external.

The Annelides, Lam., or Red-blooded Worms, Cuv., constitute the first. Their blood, which is generally red, like that of the Vertebrata, circulates in a double and closed system of arteries and veins, sometimes furnished with one or several visible hearts or fleshy ventricles. Respiration is performed in organs which are sometimes developed externally, and at others remain on the surface of the skin or dip into its interior. Their body, more or less elongated, is always divided into numerous rings, the first of which, called the head, scarcely differs from the rest, except in the presence of the mouth and the principal organs of the senses. The branchiæ of several are uniformly distributed along their body or in its middle; in others, which are generally those that inhabit tubes, they are all placed antcriorly. They never have articulated feet, but most of them, in lieu thercof, are furnished with setæ or fasciculi of stiff and movable hairs. They are mostly hermaphrodites, and some of them require a reciprocal coitus. The organs of their mouth sometimes consist in jaws, more or less strong, and at others of a simple tube, those of the external senses in fleshy, and sometimes articulated tentacula, and in certain blackish points, considered as cyes, but which do not exist in all the spec:ies.

[^115]The Crustacea constitute the second form or class of articulated animals. They are provided with articulated and more or less complexed limbs, attached to the sides of the body. Their blood is white: it circulates by means of a fleshy ventricle placed in the back, which receives it from the branchiæ, situated on the sides of the body, or under its posterior portion, and to which it returns by a ventral and sometimes double canal. In the last or lower species, the heart or dorsal ventricle is itself extended into a tube. They all have antennæ or articulated filaments, inserted in the fore-part of the head, usually four in number, several transverse jaws, and two compound eyes. A distinct ear is only to be found in some species.
The Arachnides form the third class of the Articulata. Their head and thorax, as in many of the Crustacea, are united in one single piece, furnished, on each side, with articulated limbs; but their principal viscera are enclosed in an abdomen connected to the posterior portion of that thorax. Their mouth is armed with jaws, and their head furnished with simple eyes, that vary as to number, but the antennæ are always wanting. Their circulation is effected by a dorsal vessel, which gives off arterial branches, and receives venous ones from them; but their mode of respiration varies, some of them still having true pulmonary organs, which open on the sides of the abdomen, while others, receive air hy tracheæ, like Insects. In both of them, however, we observe lateral openings or true stigmata.

The Insecta constitute the fourth class of the Articulata, and the most numerous of all the animal kingdom. With the exception of some genera, the Myriapoda, in which the body is divided into numerous and nearly equal parts, it is always divided into three portions: the head, furnished with the antennæ, eyes and mouth; the thorax, to which are appended the feet and wings, when they exist; and the abdomen, which is susperided behind the thorax and contains the principal viscera. Those which have wings, only receive them at a certain age, and frequently pass through two more or less different forms before they assume that of the winged insect. In all their states they respire by trachex; that is, by elastic vessels which receive air through stigmata pierced on their sides, and distribute it by infinite ramifications to every part of the body. A vestige of a heart only is perceptible, consisting of a dorsal vessel, which experiences an alternate contraction and dilatation, but to which, no branch has ever been discovered, so that we are forced to believe that nutrition is effected in this class of animals by imbibition. It is, probably, this sort of nutrition which necessitated the kind of respiration proper to In-
sects; for as the nutritive fluid is not contained in vessels*, and could not be direeted towards pulmonary organs in seareh of air, it was requisite that this air should be diffused throughout the body to reach the fluid. This is also the reason why insects have no secretory glands, but are provided with mere spongy vessels, which, by the extent of their surface, appear to absorb the peculiar juices they are to produce, from the mass of the nutritive fluid \dagger.

Insects vary infinitely as to the form of the organs of the mouth, and those of digestion, as well as in their industry and mode of life; the sexes are always separated.

The Crustacea and Arachnides were long united with the Insecta, under one common name, and resemble them in many points of their external form, in the disposition of their organs of motion, and of the sensations, and even in those of manducation.

CLASSI.

ANNELIDES \ddagger.

The Annelides are the only invertebrate animals that have red blood. It cireulates in a double system of complicated vessels §.

Their nervous system consists in a double knotted cord, like that of insects.

Their body is soft, more or less elongated, and divided into a, frequently, considerable number of segments, or at least of transverse plicæ.

They nearly all inhabit the water-the Lumbrici or Earth-worms excepted; several penctrate into holes at the bottom, or construct

[^116]tubes there with the ooze or other matters, or even exude a calcarcous substance, which envelopes them with a sort of tubular shell.

Division of the Annclides into three Orders.

This class, which contains but few species, presents a sufficient basis of division in its organs of respiration.

The branchiæ of some resemble tufts or arbusculæ, attached to the head or anterior part of the body : they, nearly all, inhabits tubes. We will call them the Tubicole.

Those of others resemble trees, tufts, laminæ or tubercles in which vessels ramify, and are placed on the middle of the body: most of them inhabit mud or swim in the ocean, the smaller portion being furnished with tubes. We name them the Dorsibranchiate.

Others again have no apparent branchiæ, and respire, either by the surface of the skin, or as some authors opine, by the internal cavities. Most of them live free in mud or water; some of them only, in humid earth. They are the Abranchiate.

The genera of the first two orders are all furnished with stiff setæ, of a metallic colour, that issue from their sides, sometimes simply, and at others in fasciculi, which serve in lieu of feet; but there are some genera in the third order which are deprived of that support*.

The special attention paid by M. Savigny to these feet or organs of locomotion, has resulted in the distinction of the following parts : 1. The foot itself, or the tubercle which supports the setr; sometimes there is but one to each ring, and at others there are two, one above the other, styled a simple or double oar. 2. The setre, which compose a fasiculus for each oar, and which vary greatly in form and consistence, sometimes constituting true spines, and at others, fine and flexible hairs, frequently dentated, barbed, \&c.t 3. The cirri or fleshy filaments adhering to the foot, either above or beneatll.

The head of the Annelides of the two first orders is generally furnished with tentacula or filaments, to which, notwithstanding their fleshy nature, some modern naturalists give the name of Antennæ; and several genera of the second and third, are marked with black and shining points, usually considered as eyes. The organization of their mouth varies greatly.

[^117]
ORDER I.

TUBICOLE*.

Some of the Tubicolæ form a calcareous, homogeneous tube, probably the result of transudation, like the shell of the Mollusca, with which lowever they have no muscular adhesion; others construct one by agglutinating grains of sand, fragments of shells and particles of mud, by means of a membrane, also unquestionably transuded; the tube of others again is entirely membranous or horny. To the first belongs the genus

Serpula, Lin.

The calcareous tubes of the Serpulæ twine round and cover stones, shells, and all submarine bodies. The section of these tubes is sometimes round, and sometimes angular, according to the species.

The body of the animal is composed of numerous segments; its anterior portion is spread into a disk, armed on each side with several bundles of coarse hairs, and on each side of its mouth is a tuft of branchir, shaped like a fan, and usually tinged with bright colours. At the base of each tuft is a fleshy filament, one of which, either on the right or left, indifferently, is always elongated, and dilated at its extremity into a variously formed disk, which serves a an operculum, and seals up the orifice of the tube when the animal has withdrawn into it \dagger.

Serp. contortuplicata \ddagger, Ell., Corall., XXXVIII, 2. The most common species; its tubes are round, three lines in diameter, and twisted. The operculum is infundibuliforum, and the branchiæ are frequently of a beautiful red colour, or variegated with yellow, violet, \&c. Vases or other objects thrown into the sea are soon covered by its tubes.

Serp. vermicularis, Gm.; Müll., Zool. Dan., LXXXVI, 7, 9, \&c. A smaller species, with a claviform operculum, armed with two or three small points. The branchiæ are sometimes blue. No spectacle is more beautiful than that of a group of these Serpulæ when well expanded. They are found on the coast of France.

[^118]In others the opereulum is flat and bristled with more numerous points*. One of them is the

Serp. gigantea, Pall., Miscel., X, 2, 10. It is always found among the Madrepores, which frequently surround its tube; the branchia becone spirally convoluted when they enter the latter, and its operculum is armed with two small branching horns, resembling the antlers of a deer \uparrow. M. Lamarck distinguishes the

Spirorbis, Lam.,

Where the branchial filaments are much less numerous-three or four on each side ; the tube is regularly spiral, and the animal usually very small :.

Sabella, Cur.§

The same kind of body, and similar flabelliform branchie, as the Serpulæ; but the two fleshy filaments adhering to thesc branchiæ both terminate in a point, and without forming an operculum ; sometimes they are even wanting. The tube of the Sabellæ is most commonly composed of granules of clay or mud, and is rarely calcareous.

The species known are large, and their fan-like branchiæ remarkable for their delicacy and brilliancy.

Some of them, like the Serpulee, have a membranous disk on the anterior part of the back, through which pass the first pairs of the bundles of setæe; their pectiniform branchiæe are spirally contorted, and their tentacula reduced to slight folds $\|$.

Sab. protula, Cur.; Prolula Rudolphii, Risso. A large and splendid species inhabiting the Mediterranean. Its tube is calcarcons, like that of the Serpule, its branchiæ orangecoloured, \&ec. ${ }^{4}$

[^119]Others have no membranous disk anteriorly ; their two pectiniform branchiæ are equal and spiral*.

There are sometimes two ranges of filaments on each comb \dagger.
In others again, only one of the two combs is thus formed; the other, which is sinaller, enveloping the base of the first,-Sabella unispira, Cur.; Spiroyraphis Spallanzanii, Viviani, Phosph. Mar., pll. iv, $\mathrm{v} \ddagger$.

There are some whose branchixe merely form a simple funnel round the mouth; their filaments, however, are numerous, crowded, and strongly ciliated on the internal surface \S. Their silky feet are almost imperceptible.

Finally, uthers have bren described which have but six filaments, arranged in a stellate formn ||.

Terebella, Cuv. Ti

The Terebelle, like most of the Sabellæ, inlabit an artificial tube, but it is composed of grains of sand, and fragments of shells; their body, morcover, has fewer rings, and their head is otherwise decorated. Numerous filiform and extrencly extensible tentacula surround their mouth; their branchiæ, placed on the neck, are not infundibuliform, but resemble arbusculæ.

Sevcral species are found on the coast of France, long confounded under the name of Terebella conchileya, Gm., Pall., Miscel., IX, 14-22, most of which are remarkable for tubes formed of large fragments of shells, the edges of their opening being prolonged into several little branchics, composed of similar materials, and containing the tentacula.
In the greater number there are three pairs of branchioe, which, in those where the tube is branched, issue throngh a peculiar hole formed for that purpose **.

[^120]
Amphitrite, Cuv.,*

The Amphitrites are easily recognized by the golden coloured sete, arranged like a crown, or the tecth of a comb, in onc or two rows, on the anterior part of their head, where they probably scrve as a means of defence, or perhaps enable the animal to crawl, or to collect the materials of its tube. Numerous tentacula encircle the mouth, and on each side of the fore part of the back are pectiniform branchix.

Some of them construct light tubes of a regularly conical figure, which they carry about with them. Their gilded sete form two combs, whose tecth incline downwards. Their capacious and frequently flexed intestine is usually filled with sand + . Such is the

Amph. auricoma belyica, Gm.; Pall., Miscel., IX, 3-5. Its tube is two inches long, and formed of variously coloured round granules \ddagger.

Amph. auricoma capensis, Pall., Miscel., IX, i, 2. From the South Seas; its thin and polished tube appears to be transversely fibrous, and formed of some dessicated, soft, and stringy substance. It is a larger species §.
There are others which inhabit artificial tubes fixed to various borlics. Their gilded setæ form scveral concentric crowns on their head, from which results an operculum that seals up their tube when they contract, but the two parts of which can separatc. Each foot is furnished with a cirrus. The body is terminated behind in a

Lin. Trans., XII, 11 ;-T. nebulosa, Id. Ib., 12, 2;-T. constriclor, Id. Ib., 13, 1 ; -T. venusta, Ib., 2 ; he also calls one of them T. cirrhata, Ib., XII, 1; but which does not appear to be the same as that of Müller. Add T. variabilis, Risso, \&c.
N.B. M. Savigny makes two other divisions of Terebellæ, the T. Phyzelide, which have but two pairs of branchia, and the T. IdAlife, that lave but one pair. Among the latter would come the Amphitrite cristata, Müll., Zool. Dan., lxxi, 1, 4 ; Simph. ventricosa, Bosc., Ver., I, vi, 4-6.

* This genus, as it stands in Müller, Brugières, Gmelin, and Lamarck, also ineludes some Terebellce and Subellc. In 1824, Dict. des Sc. Nat. II, p. 78, I reduced it to its actual limits; since then, M. Lamarck has changed my divisions into gencra, his Pectinarie and Sabellarife, termed Aphictenae and Hermeldat by Savigny. The Amphitrites of Lamarek are my Sabellas. M. Savigny, ou the contrary, makes it the name of a family.
+ They are the Pectinarine, Lam.; Apifotende, Savig. ; Cirrysonontes, Oken; and the Cistence of Leach. This perpetual changing of names-and in this particular case there was not even the pretext of a change of limits in the group -will finally end in rendering nomenclature a much more difficult study than that of facts.
\ddagger The samc as the Sabella belgica, Gm., Klcin., tab. I, 5, Eehinod., xxxiii, A, B, and as the Amph. curicome, Müll., Zool. Dan. xxvi, of which Brugières lias made his Amphitvile dorée.
§ The same as the Sabella chrysodon, Gm., Berg., Stock. Mem., 1765, IX, 1, 3 ; as the Sabella capensis, Id., Stat., Müll., Nat. Syst., VI, xix, 67, which is a mere copy of Bergius; as the Sabella indica, Abildgaart, Berl. Schr., IX, iv. Scc also Mart. Slabber, Fless. Mem., I, ii, 1-3.
tube bent towards the head, which doubtless affords an issue to the fieces. I have found a muscular gizzard in them *.

Such is the species found along the coast of France, the Sabella alveolata, Gin.; Tubipora arenosa, L.; Ed. XII, Coral., XXXVI. Its tubes, united in ore compact mass, have their orifices regularly arranged like the cells of a honey-comb \dagger.
Another, the
Amplo. ostrearia, Cuv., establishes its tubes on the shells of Oysters, and it is said greatly hinders their propagation.

It is to this order I suspect that we must refer the

Syphostoma, Olto,

Where, on the superior part of each articulation, is inserted a fasciculus of fine setæ, and on the inferior a simple seta, and on the anterior extremity two fasciculi of strong golden coloured seta. Under these setaccous appendages is the mouth, preceded by a sucker surrounded by numerous soft filaments, which may very possibly be branchix, and accompanied by two fleshy tentacula. The knotted medullary cord is seen through the skin. They live buried in mud \ddagger. Hitherto, the genus

Dentaliua, Lin.,

Has always been placed in this vicinity. The shell is an elongated, arcuated cone, open at both ends, and has been compared to the tusk of an elephant in miniature. The recent observations of M. Saviginy, and those of M. Deshayes especially §, have, however, rendered this classification extremely doubtful.

The animal of the Dentalia, has neither any sensible articulation, or lateral setx, but is furnished anteriorly with a membranous tube, inside of which is a sort of foot, or flesly and conical operenlum, which closes its orifice. On the base of this foot is a small flattened head, and plumose brauchixe are observed on the nape. If the operculum recall to our minds the foot of the Vermeti and Siliquarie, which have been placed among the Mollusea, the brancliies strongly remind us of those of the Amphitrites and Terebellæ. Ulterior observations upon their anatomy, and principally upon that of their nervous and vascular system, will resolve this problem.

[^121]The shell of some of them is angular *, or longitudinally striated \uparrow. That of others is round \ddagger.

ORDER II.

DORSIBRANCHIAT E.

The organs of the Dorsibranchiatæ, and the branchire in particular, are equally distributed along the whole of the body, or at least of its middle portion.

At the head of the order we will place those genera in which the organs are inost completely developed.

Arenicola, Lam.§

Branchix, resembling small trecs, on the rings of the middle part of the body only : the mouth, a fleshy and more or less dilatable proboscis; and lave neither teeth, tentacula nor eyes, visible. The posterior extremity not only wants the branchix, but the setaceous fasciculi with which the rest of the body is furnished; the cirri totally deficient.

Aren. piscatorum, Lam.; Lumbricus marinus, L. ; Pall. Nov. Act. Petrop., ii, 1, 19-29. Very common in the sand on the sea-shore, where it is disinterred by the fishermen, who use it as bait. It is about a foot long, of a reddish colour, and diffuses an abundant yellowish liquid when touched. It has thirteen pairs of branchix \|.

Ampininome, Brug. 6 .

A pair of more or less complex, tufted or plumose branchice on cach ring of the body, and to each of the feet two fasciculi of separate setre, and two cirri; no jaws to the proboscis. The Amplinomes are divided by M. Savigny into

[^122]
Chloeia, Sav.,

Where the head is furnished with five tentacula, and the branchixe rescmbles a tripinnate leaf.

The Indian Ocean produces one of them, the Amphinome chevellue, Brug.;'Terebella flava, Gm.; Pall., Miscell. VIII, 711, very remarkable for its long bundles of lemon-coloured setie, and the beautiful purple plumes of its branchix. Its form is broad and depressed, and it las a vertical crest on the snout.
And into the

> Plelone, Sav.-Amphinome, Blainv.,

Where, with the same tentacula, the branchire are tufted. The Pleiones are also from the Indian Ocean, and some of them are very large*. To these he adds the

Euphrosine, Suv. \dagger

Where the head has but a single tentaculum, and the tree-like branchixe are very complex and greatly developed. To this subgenus, Messrs. Audouin and Edwards approximate the

Hipponoe,

Which has no caruncle, and but a single bundle of sctx, and a single cirrus to each foot.

Hip. Gaudichaudii, Ann. des Sc. Nat. t. XVIII, pl. ri. A species from Port Jackson. In the

$$
\text { Eunice, C'uv. } \ddagger
$$

The branchiæe are also plumose, but the proboscis is well armed with three pair of differently formed horny jaws; each foot is furnished with two cirri and a bundle of sete, there are five tentacula above the mouth and two on the nape. In some species only, we find two small cyes.

Eun. gigantea, Cur. The largest of the known Annelides, being upwards of four fect in length. From the sea of the Antilles.

Several smaller species are found on the coast of France \S.

[^123]By the name of Marpinsa, M. Savigny distinguishes those species, otherwise very similar, in which the two tentacula on the nape are wanting; their upper cirrus is very short*.

A species at least closely allied to them,-N. tubicola, Müll., Zool. Dan., I, xviii, l-5, inhabits a horny tube \dagger.
After these genera with complex branchix, we may place those where they are reduced to simple lamine or slight tubercles, or in which they are even replaced by cirri.

Some of them are still allied to the Eunices, by the strong armature of their proboscis, and their azygous antennæ. Such is the

> Lisidice, Sav.

Where, with jaws similar to those of the Eunices, and even more numerous and frequently azygous, the only brauchixe consist of three tentacula and the cirrit.

Aglaura, Sav.
The jaws of the Aglauree are also numerous and azygous, consisting of seven, nine, \&c.; but their tentacula are cither wanting or completely concealed ; their branchiæ are also reduced to cirri§.

> Nereis, C'uv.-Licoris, Sav.

The true Nereides have an even number of tentacula, attached to the sides of the base of the head, and a little further forwards, two others that are biarticulate, between which are two simple ones. Their branchire consist of small lamine between which is spread a network of vessels; each foot is alsc furnished with two tubercles, two fasciculi of setæ, one cirrus above, and another beneath.

Several species inhabit the coast of France $\|$.
In the vicinity of these Nereides are grouped several genera in

[^124]which the hody is also slender, and the branchix are reduced to simple lamine, or even simple filaments or tubercles. The jaws or tentacula are wanting in some of them.

Pifllodoce, Sav.-Nereiphylla, Blainv.

The Phyllodoces, like the true Nereides, have an eren number of tentacula on the sides of the head, and four or five small additional ones before. They are furnished with eyes; their large proboscis, which is studded with a circle of very short fleshy tubereles, presents no jaws, and, what particularly distinguishes them, their branehire resemble broad leaves, arranged in a single row on each side of the body, and overlapping each other; finely ramified vessels are distributed over them *.

Alciops, Aud. and M. Edu.

The mouth and tentacula nearly similar to those of the Phyllodoces; but the feet, independently of the tubercle whieh supports the setie and the two foliaceous cirri or branchix, are furnished with two branchial tubercles which oceupy their superior and inferior edges t.
Spio, Fab. 'and Gm.

The body slender; two very long tentacula which have the appearance of antenne; eyes in the head and on each side of every segment of the body; branchix in the form of a simple filament. They are small wrorms from the Arctic Ocean, and inhabit membranous tubes +.

Syllis, Saz.

An odd number of tentacula, articulated like the beads of a rosary, as well as the superior cirri of the feet, which are simple and have

[^125]but a single bundle of sete. It appears that there is some variety relative to the existence of the jaws *.

Glycera, Sav.
The Glyceræ are recognized by their head, which is a fleshy and conical point resembling a small horn, and divided at the summit, into four searcely visible tentacula. The proboscis of some still presents jaws, in others, they are said to be impereeptible \dagger.

Nepifthys, Cuv.

The proboscis of the Phyllodoces but no tentacula; two bundles of widely separated setæ on each foot, between which is a cirrus \ddagger.

Lumbrinera, Blainv.

The tentacula wanting; but a single small forked tubercle, from which issues a little bundle of sete, on each articulation of the elongated body. If there be any external organ of respiration, it can only consist of an upper lobe of this tubercle \S.

Aricia, Sav.

The teeth and tentacula wanting; two ranges of lamellated cirri on the back of the elongated body; anterior feet furnished with notched crests not found on the others $\|$.

Several species of these genera are found on the Atlantic coast of France.

Hesione, Lam.

A short thick body composed of but few and feebly marked rings; a very long eir'us, that probably exercises the functions of branchix,

* Syllis monilaris, Sav., Eg., Anncl., IV, f. 3, copicd Dict. des Sc. Nat. N. B. The Nercis ctmillaris, Müll., Ver., pl. ix, of which, without having secn it, M. Savigny proposes to make the genus Lycastrs, has tentacula and cirri formed like a rosary as in Syllis, but the tentacula are represented as being in cren numbers. It shoukd be examined.
+ Nereis alla, Müll., Zool. Dan., Ixxii, 6, 7;-Glyc. Meckelii, Aud., and Edw., Littor. de la Fr., Amel., pl. ri, f. 1.
\ddagger Nephthys Hombergii, Cuv., Dict. des Sc. Nat.
§ Nereis ebranchiala, Pall. Nov. Act. Petrop., II, pl. vi, f. 2 ;-Lombrinere Irillumt, Blainv., pl. of the Dict. des Sc. Nat.;-Lembricus fragilis, Müll., Zool. Dan., pl. xxii, of which, but with hesitation, M. De Blainville makes his genus Scoletoma.
N.B. The Scoroleres, lBlainv., which are only known by the fig. of Abildgaardt (Lumbricus squamatus, Zool. Dan., IV, clv, 1-5,) have a very slender body with numerous rings, each furnished with a branchial cirrus and two bundles of setie, the inferior of which seems to proceed from a fokl of the skin compressed like a scale; their head has neither jaws nor tentacula.

II Arisia Curicri, Aud., and Edw., Litt., de la Fr., Annel., pl. vii, f. 5-13.
The Lumbricus armiger, Miill., Zool. Dan., pl. xxii, f. 4 and 5, of which, without having seen it, M. de Blainville proposes to form a genus by the name of Scolople, appears to want botli tecth and tentacula, and to have simple small bundles of short setx on its first segments, and a bifid wart, a small seta, and a long pointed branchial lamina on the others.
on the top of each foot, and has another beneath, with a bundle of setæ; a large proboscis with neither tentacula nor jaws.

Several species are found in the Mediterrancan*.

Ophefena, Sav.

The body thick and short, with fecbly marked rings and scarcely visible setx; long cirri in licu of branchixe on two thirds of its length; palate of the mouth with a dentated crest; the lips surrounded with tentacula, of which the two superior are the largest \dagger.

Cirriatulus, Lam.

The branchice consisting of a very long filament; two small bundles of setre to each of the articulations of the body, which are numerous and compact; a scries of long filaments round the nape. The slightly marked head has neither tentacula nor jaws ${ }_{+}$.
Pamyti, Saz.

The Palmyree are recognized by their superior fasciculi, the setre of which are large, flattened, flabelliform, and glisten like highly polished gold; their inferior fasiculi are small; their cirri and branchix feebly marked. They have an clongated body, two extended tentacula, and three very small ones.

Palm. currifera, Sar. The only species known; it is from one to two inches in length, and is found at the Isle of France.

Aphronit.s, Lin.

This genus is casily known by the two longitudinal ranges of broad membranous scales that cover the back, to which, through a very groundless assimilation, the name of elytra has been given, and under which, their branchiæ, in the form of fleshy crests, are concealed.

Their body is usually flattened, and shorter and broader than in the other Annelides. Their extremely thiek and muscular esophagus is susecptible of being protruded like a proboscis; their intestine is unequal, and furnished on each side with numerous branched creca, the extremities of which are fixed between the bases of the setaccous fasiculi, which serve as feet. M. Sarigny distinguishes
from them the

[^126]
Halithea, Suv.

Where there are three tentacula, a small crest between two of them, and where the jaws are wanting.

A species is found on the coast of France, which, with respect to its colouring, is one of the most splendid of all ani-mals-the Aphrodita aculeata, L. Pall., Misc., VII, 1-13. It is oval, from six to eight inches in length, and from two to three in breadth. The scales on its back are covered and concealed by a sort of stuff resembling tow, which arises from the sides. From the latter also spring groups of stout spines, which partly transfix the tow, and fasciculi of flexuous sete of a splendid golden colour, whose changeable tints rival those of the rainbow. They are not infcrior in beauty to the plumage of the humming-bird, or to the lustre of the richest gems. Further down is a tubercle from which arise three groups of spines, of as many different diameters, and finally, a fleshy cone. There are forty of these tubercles on each side, and between the two first are two small fleshy tentacula. There are fifteen pairs of wide, and sometimes inflated scales on the back, and fifteen small branchial crests on each side.
Some of these Halitheæ have none of this tow-like material on the back*: one species-Aphr. hystrix, Sav.t, is found in the seas of Europe. A secend subdivision of the A_{p} hrodite is that of the
Polynoe, Sav.-Eumolpe, Oken.

Where there is none of this tow on the back; they have five tentacula, and their proboscis is furnished with strong and horny jaws.

Several small species are found on the coast of France \ddagger.

The Siglifones, Aud. and Edw., have a much more clongated furm, than the other Aphrodite; each foot is furnished with cirris.

The Acoetes, Aud. and Edw., are provided with cirri which alternate with the elytra\| ; their jaws are stronger and more deeply dentated.

[^127]A large species is found at the Antilles which inhabits a tube of the consistence of leather *.

This is the only situation we can assign to a new and very singular genus which I call

Chetopteres, Cuv.

The mouth las neither jaws nor proboscis, and is furnished above with a lip, to which are attached two tentacula. Next comes a disk with nine pairs of feet, followed by a pair of long silky fasciculi resembling wings. The lamellated hranchix are rather beneath the body than above it, and extends along its middle.

Chetopterus pergamentaceus, Cuv. This species, which is found at the Antilles, is from eight to ten inches in length, and inhabits a tube resembling parchment \dagger.

ORDER III.

ABRANCHIATAE.

The Abranchiate liave no apparent external organ of respiration whatever, and appear to respire, some, like the Lumbrici, by the entire surface of the skin, and others, like the Hirudines, by internal cavities. They have a closed circulating system, usually filled with red blood, and, like all the Annelides, a knotted nervous cord \ddagger. Some are also provided with setæ, which enable them to crawl, and others are deprived of them. This has caused their division into two families.

[^128]
FAMILY I.

ABRANCHIATE SETIGERTE.

This first family comprises the Lumbrici and Naides of Linnæus.

Lumbricus, Lin.

The Earth-worms, as they are commonly called, characterized by a long cylindrical body, divided by rugie into a great number of rings, and by an edentated mouth, necessarily required to be subdivided.

Lumbricls, Cur.

Eyes, tentacula, branchix and cirri, all wanting; a tubercle or visible enlargement, particularly sensible in the muptial season, serves to attach the two sexes to each other in coitu. The intestine is straight and rugose, and in the anterior part of the body we observe some whitish glands which appear to be concerned in the process of generation. The Lumbrici are certainly hermaphrodites, but it is possible that their coalescing may serve to excite them to the act of selfimpregnation. According to the observations of M. Montegre, the ova descend between the intestine and the external envelope, to the circumference of the rectum, where they are hatched. The young ones issue, living, from the anus. M. Leon Dufour, on the contrary, affirms that their ova resemble those of the Leech. The nervous cord it nothing more than a crowded suite of numerous little ganglia*.
M. Savigny subdivides them again.

His Enteriones have four pairs of small setæ, eight in all, under each ring.

Every one knows the Common Earth-worm-Lumbricus terrestris, L, with a reddish body, that attains nearly a foot in length, and which is composed of upwards of one hundred and twenty rings. 'The tuberele is near' the anterior third. Under the sixteenth ring are two pores, the use of which is unknown.

This animal traverses the soil in every direction, and swallows a quantity of earth. It also eats roots, ligneous fibres, animal fragments, Sce. In the month of June it rises to the surface during the night, to seek for a companion in the process of copulation \dagger.

[^129]His Hypogreones have, besides, an azygous seta on the back of each ring.

The only species known is from America*.
Messrs. Aulouin and M. Edwards also distinguish the Trophonice, which have four bundles of short setex on each ring, and on the anterior extremity a great number of long and brilliant setæ which surround the mouth \dagger.

Nais, Lin.

The Naides have an elongated body, the rings of which are less distinct than in the Lumbrici. They inhabit holes made by them in the ooze, from which one half of their body projects and is constantly in motion. Black points are observed on the head of some of them, which may be taken for eyes. They are small worms, whose power of reproduction is as astonishing as that of the Hydree. Several species are found in the rivers, \&e. of France.

Some of them liave long seter \ddagger.
And sometimes a long proboscis before \S.
Or several small tentacula at the posterior extremity $\|$.
Others have very short sete \ddagger.
Certain Amelides, hitherto referred to the Lumbrici, which construct tubes of clay, \&cc., in which they live, might be approximated to this genus: ${ }^{\text {:* }}$.

Clymena, Sav.

The Clymenæ also appear to belong to this family. Their thick body has but few rings, which are mostly furnished with stout seter; a little higher, and near the back, is a bundle of finer ones. There are neither tentacula nor appendages to the head. Their posterior extremity is truncated and radiated. They inhabit tubes $\dagger \dagger$.

[^130]
FAMILY II.

ABRANCHIAT压 ASETIGER E.

The second family consists of two great gencra, both of which are aquatic.
Hiredo, Lin.

Leeches have an oblong, sometimes depressed, transversely plicated body; the mouth is encireled by a lip, and the posterior extremity furnished with a flattened disk, both of which are well adapted for adhering to bodics by a sort of suction, and are the principal organs of locomotion possessed by these animals; for after extending itself, the Leceh fixes its anterior extremity and approximates the other, which in its turn adheres to allow the former to be carried forward. In several we observe on the under part of the body two scrics of pores, the orifices of as many small internal pouches, considered by some naturalists as organs of respiration, although they are usually filled with a mucous fluid. The intestinal canal is straight, inflated from space to space, for two-thirds of its length, where there are two crea. 'I'he blood swallowed is preserved there, red and unehanged, for several weeks.

The ganglions of the nervous cord are much more separate than in the Lumbrici.

The Hirudines are hermaphrodites. A large penis projects from under the anterior third of the body, and the valve is a little further behind.

Several of them form their eggs into a cocoon, and envelope them with a fibrous excretion*.

They have been subdivided from characters principally drawn from the organs of their mouth. In the

Sanguisuga, Sav. \dagger

Or the Leech properly so ealled, the superior lip of the anterior cup or sucker is divided into several segments; the aperture is transverse and contains three jaws, each edge of which is armed with two rows of very fine tecth, which enables them to penetrate through the skin without causing a dangerous wound. It is marked with ten small points, considered as cyes.

We all know the medicinal or common Leech-IFirudo medicinalis, L., that usefnl instrument for the local abstraction of

[^131]blood. It is usually blackish, with yellowish streaks above, and yellowish with black spots beneath. It is found in all stagnant waters. The

Hemorsis, Sav.*

Differs from the preceding in the teeth of its jaws, which are few and obtuse.

Hamop. sanguisorla, Sav.; Hirudo sanguisuga, L., Moq. Tand., pl. iv, f. 1; Car', p̣l. xi, f. 7 (The Horse Leach). Much larger, and entirely greenish-black. It is said to cause dangerous wounds \dagger. In the

$$
\text { Bolla, Sav. } \ddagger
$$

There are but cight eyes, and the jaws are completely edentated. Bd. nilotica, Eg. Annel., pl. v, f. 4. Inhabits the Nile. In the
Nephelis, Sav.§

There are also but eight eves; the interior of the mouth has but three folds of skin. Several small speeies are found in the stagnant waters of France; it is thought proper to distinguish from them the

Trochetia, Dutroch $\|$.

Which only differs from them in an inflation at the spot where the genital organs are placed.

One species is fomd in France-Geobdella trochetio, Blainv., Dict. des Sc. Nat., Hirud., pl. IV, f. 6, which frequently leaves the water in pursuit of Lumbrici.
M. Moquin-Tandon, under the name of Arbastoma, even describes a subgenus, where the mouth is merely furnished with numerous longitudinal plicæ-Aulast. nigrescens, Moq. Tand., pl. vi, f. 4.

[^132]Immediately after the Nephelides come the Branchiobdella, Odier, remarkable for their two jaws and the absence of eyes.

One species is known which lives on the branchise of the Astaci ${ }^{*}$.
In all these subdivisions the anterior sucker is but slightly separated from the body; in the two following ones it is clearly distinguished from it by a strangulation, is coniposed of a single segment, and has a transverse orifice. In the

Hemocharis, Sav. \dagger

In addition to this conformation, there are eight eyes, a slender body, and but slightly distinct rings. The jaws are salient, and scarcely visible points. The Hæmochares do not swim, but walk like the caterpillars called Geometræ, and adhere particularly to fishes.

One species, Hirudo piscium, L.; Rœesel, III, xxxii, is frequently observed on the Cyprinif. The

Albiona, Sav.§

Differs from the preceding subgenera in the body, which is studded with tubercles, and in having six eyes. The Albionæ inhabit the Ocean.

Alb. muricata; Hirudo muricata, L. A very abundant species in the seas of Europe; it is covered with small tubercles $\|$.
There is a parasitic animal that lives on the Torpedo called Branchelhon II, which closely resembles a leech in its two cups, depressed body, and transverse plicæ. Its anterior cup, which appears to have a very small mouth in the posteriur margin, is placed on a narrowed portion resembling a neck, at the root of which is a small hole for the organs of generation; there appears to be another behind. The lateral edges of its plicæ, which are compressed and salient, have been considered as branchix, but I can find no vessels there ; its epidermis is ample, and the envelopelike a very loose sac **. We also commonly place among the Leeches the

[^133]VOL. 111.

Clespine, Sav.-Glossopora, Johns*.

The Clespines have a widened body, a posterior cup only, and a probusciform mouth without a sucker; some of them, however, may be found to belong to the family of the Planarixe \dagger. I consider them more closely allied to the Phylline, Oken \ddagger, and to the Malacobdellce, Blainv. \S, which also have broad bodies, and are deprived of a proboscis and anterior sucker. They are parasitic animals.

Gordius, Lin.

The body resembling a thread, the only mark of the articulations being slight, transverse plicee; it has neither feet, branchiæ, nor tentacula. Internally, however, a nervous system is perceptible in a knotted cord. Perhaps it will be necessary in the end to place them among the cavitary Intestina, like the Nemertes.

They live in fresh water, in the mud, and in inundated grounds which they perforate in every direction.

The different species are not yet well distinguished; the most common-Gordius aquaticus, L., is several inches in length, almost as fine as a lair, and brown, with blackish extremities.

[^134]
THIRD

GREAT DIVISION

OF THE

ANIMALKINGDOM.

(CONTINUED.)
—粯《

CRUSTACEA, ARACHNIDES, AND INSECTA:

Or articulated animals with articulated feet*.

These last three \dagger classes of the Articulata, which were united by Linnæus under the general name of Insecta, are distinguished by at least six \ddagger articulated feet. Each articulation is tubular, and contains the muscles of the succeeding one, which always moves by gynglymus, that is, in but one direction.

The first articulation, which attaches the foot to the body, and which is composed of two pieces §, is called the coxa, or hip ; the following one, which is, usually, nearly in a horizontal position, the

[^135]femur, or thigh; and the third, generally vertical, the tibia or leg. To these ensues a suite of small ones which touch the ground, forming the true foot, or what is denominated the tursus.

The hardness of the calcarcous or horny* euvelope of the greater number of these animals, is owing to that of the excretion, which is interposed between the dermis and epidermis, or what is termed in man the mucous tissuc. This excretion also contains the brilliant and varied colours with which they are so often decorated.

They are always furnished with eyes, which are of two kinds; simple or stiouth eyest, which resemble a very minute lens, generally three in number, and arranged in a triangle on the summit of the head; and compound eyes, where the surface is divided into an infinitude of different lenses called facets, to each of which there is a corresponding filament of the optic nerve. These two kinds may be either united or scparated, according to the genera. Whether their functions be essentially different in those cases where they are found to exist simultancously, is a problem that reinains to be solved; but vision is effected in both of them hy means differing widely from those which produce it in the eye of the Vertebrata \ddagger. Other organs which for the first time are here presented to us, and which are found in two of these classes, the Crustacea and the Insecta§, the antennce, are articulated filaments varying greatly in form, and frequently according to the sex, attached to the head, appearing to be peculiarly devoted to a delicate sense of touch, and perhaps to some other kind of sensation of which we have no idea, but which may refer to the state of the atmosphere.

These animals enjoy the sense of smell and that of hearing. Some authors place the seat of the first in the antenmæ $\|$, others, M. Dumeril

[^136]for instance, in the orifices of the trachere, and Marcel de Serres, \&c. in the palpi; neither of these opinions, however, are corroborated by positive and conclusive facts. As to the second, it is only in the Crustacea Deeapoda, and some few of the Orthoptera, that we can find a visible ear.
The mouth of these animals presents a great analogy, which, according to Savigny*, and at least with respect to the Hexapoda, extends to those which can only feed by the suction of liquid aliment.
Those called Tritores or Grinders (broyeurs), on account of their having jaws fitted for triturating their food, always present them in lateral pairs, placed one before the other; the anterior pair are especially ealled mandibles; the pieces which cover them before and behind are named labia \dagger, and the front one, in particular, labrum. The palpi are articulated filaments attached to the jaws or to the lower lip, and appear to be employed by the animal in recognizing its food. The form of these various organs determines the nature of the regimen witin as much precision as the teeth of quadrupeds. The ligula, or tongue, commonly adheres to the lower lip \ddagger. Sometimes, in the Apes and other Hymenopterous insects, it is consider-
organ, Bullet. des Sc. Nut.; but he adduces no one direct cxperiment in proaf of his opinion. It would, if this were so, scem probable that in the highly carnivorons Crustacea, such as the Gecarcini and others, we should find this organ in a comparatively greater state of development, whercas the fact is dircetly the reversc. Ilis idcas respecting the external composition of the Crustacea Decapola suppose the cxistence of a skelcton. He should have commenced, however, by establishing the connexion of these animals with the Fishes, and not by admitting, as a positive fact, what is at least a matter of doubt.

* Mêmoire sur les cuimaux sans vertebres. The original idea was thrown out, but undereloped, in my Hist. Gen. des Insectes.
+ Wc here more particularly alude to inscets with six feet, or to the Hexapoda.
\ddagger Or rather labium, since the other is termed labrum. It is protected, before, by a horny production formed by a cutancous prolongation, and articulated at the base with an inferior portion of the head called the mentum or chin. Its palpi, always two in mumber, are distinguished from those of the maxillæ by the epithet labial. When the latter amount to four they are designated as external and internat; they are considered as a modification of the cxternal and terminal division of the maxillæ. This prociuction, which, in his Ulonates or the Orthoptera, Falricius termed the Galea, is still the same maxillary division, but more dilated, arched, and fitted to cover the internal division which, here, on account of its scaly consistence and of its tecth, resembles a mandiblc. In the last inseets, and particularly in the Libellula, the interior of the buccal cavity presents a soft or vesicular body, distinct from the lip, and which, compared to the Crustacca, appears to be the true tongue-labium, Fal). This part is perhaps represcnted by those lateral divisions of the ligula termed paraglosse. (Sce the Coleortera Carnivora, Hydrophili, Staphylini, the two pencilshaped pieces that terminate the lip of the Lucani Apiarix, \&e.) The abovementioned Insects, the Orthoptera and the Libellula of Limnaus, exidently demonstrate that this incmbranous and terminal portion of the inferior lip, which profjects more or less between its palpi, and is particularly clongated in several of the Hymenoptera, is very distinct from that internal caruncle which I consider the tonguc
ably elongated, as are also the jaws, forming a sort of false proboscis (promuscis) at the base of which is the pharynx, and frequently covered by a sort of sub-labrum, styled by M. Savigny the epipha$r y n x *$. At other times, in the Hemiptera and Diptera, the mandibles and maxille are replaced by sealy pieces in the form of setæ, which are received in an elongated tubular sheath, that is either cylindrical and articulated, or formed with more or less of an elbow, and terminated by a kind of lips. In this case they constitute a true proboscis. In others that also live by suction, the Lepidoptera, the maxiliz alone are greatly elongated and united, producing a tubular setiform body, resembling a long, slender, and spiral tongue (or the spiritrompe, Lat.); the remaining parts of the mouth are considerably reduced. Sometimes again, as in many of the Crustacea, the anterior feet approach the maxillæ, assume their form, and exercise part of their functions-the latter are then said to be multiplied. It may even happen that the true maxilise become so much reduced, that the maxillary feet supply their place in toto. Whatever be the modifications of these parts, however, they can always be recognized and referred to a general type \dagger.
properly so called ; notwithstanding this, nearly all Entomologists designatc this external cxtremity of the lip by the name of ligula or languctle. To say, however, that the tongne properly so called, is usually so intimately connceted with the lip that at the first glance they seem to be confonided, is corrcet. The pharynx is situated in the middle of the anterior face of this lip a little above its root, and in the Colcoptera provided with paraglosse, at their point of union. In order to understand well the primitive composition of the under lip, it must be studied in the larva, and chicfly in those of the Aquatic Carnivorous Colcoptera. Sce Cieneral Obscrvations on Insects.
* There is a menbranous production bencath the labrum, in many Colcoptera, which appears to me to be analogous to the cpipharynx. The labrum is to it, what the mentum is to the labium.
+ It is only by a comparative and gradual study of the montlo of the Crustacea, that we can acquirc correct and exact ideas respecting the various transformations of these parts, and the means of establishing, if not a ccrtain, at least a probable gencral concordance between thesc various organs in the three classes. The mandibles, maxillx, and the labinm, are in fact, a sort of fcet appropriated to the masticatory or buccal functions, but susceptible of being so modified as to become organs of loconotion. This principle cren cxtends to the antenne, or at least to the two intcrmediate ones of the Crustacca. By adopting it, we are enabled to reduce the composition of these organs to one general type, and we shall horeafter sec that, in this respect, neither the Arachnides nor Myriapoda present any anomaly.

CLASS I.

CRUSTACEA.

The Crustacea are articulated animals, with articulated feet, respiring by means of branchire, protected in some by the borders of a shell, and external in others, but which are not inelosed in special earities of the body, and whieh receive air from openings in the surface of the skin. Their circulation is double, and analogous to that of the Mollusca. The blood is transmitted from the heart, which is placed on the back, to the different parts of the body, whence it is sent to the branchir, and thence back again to the heart *. These branchire, sometimes situated at the base of the feet, or even on them, at others on the inferior appendages of the abdomen, either form pyramids composed of laminæ in piles, or bristled with setæ or tufted filaments of simple ones, and even appear in some cases to consist wholly of hairs.

Some of the Zootomists, Baron Cuvier in particular, had already made known to us the nervous system of various Crustacea of different orders. The same subject has lately been thoroughly examined by Messis. Victor Audouin and Milne Edwards in their third Memoir on the Anatomy and Physiology of these animals-Ann. des Sc. Nat. XIV, 77,-and all that is now wanting to complete their researches, is the publication of those made by M. Straus on the Branchiopoda and the Limuli in particular, which they have not noticed.
"'The nervous system of the Crustacea submitted to our observation, say they, presents itself in two very different aspects, which constitute the two extremes of the modifications visible in that class. Sometimes, as in the Talitrus, this apparatus is constituted by numerous similar nervous inflations, arranged in pairs, and united by cords of communication in such a way as to form two ganglionic chains, separated from each other, and extending throughout the length of the animal. At others, on the contrary, it is solely comiposed of two ganglions or knotty enlargements, dissimilar in form, volume, and arrangement, but always simple and azygous, and situated, one in the head and the other in the thorax. Such is the case in the Maia.
"These two modes of organization, at the first glanee, certainly seem essentially different, and if the study of the nervous system of

[^137]the Crustacea were limited to these two animals, it would be extremely difficult to reeognize the analogy between the central nervous mass in the thorax of the Maia, and the two ganglionic chains which occupy the same region of the body in the Talitrus. But if we remember the various facts detailed in this memoir, we neeessarily arrive at this remarkable result."

They were led to it by the exact and careful study of the nervous system of various intermediate Crustacea, forming so many links of the series, such as the Cymothoæ*, the Phyllosomæ \dagger, Astaeus \ddagger, Palæmon, and Palinurus. They have also supported their positions by the observations of Cuvier, and those of M. Treviranus. The eonsequence dedueed by them is, that notwithstanding this difference, the nervous system of the Crustacea is formed of the same elements, whieh, insulated in some and uniformly distributed throughout the length of the body, present in others, rarious degrees of eentralization, at first from without inwardly, and then in a longitudinal direetion ; and that finally, this approximation in all directions is carried to its extreme point, when it is reduced to a single nueleus in the thorax-as in Caneer, properly so called, or the Brachyura. Of all the Deeapoda Macroura examined by Messrs. Audouin and Edwards, the Palinurus was found to have the renous system most centralized; and in fact, that animal in our system is but little removed from the Brachyura. But this should not be the ease with Palemon and the Astaeini, for aecording to them the former approximates more closely in this respect to Palinurus than the latter, while in our arrangement the second preeede the first, a disposition whieh appears to us to be founded on several very natural eharacters.

The Crustaeea are apterous or deprived of wings, furnished with compound eyes, though rarely with simple ones, and usually with four antennæ. They have mostly-the Pæcilopoda excepted-three pairs of jaws, the two superior ones, designated by the name of mandibles, included; as many foot-jaws \S, the last four of which, however, in a great many instanees, beeame true feet; and ten feet properly so called, all terminated by a single small nail. When the last

[^138]two pairs of foot-jaws excreise the same functions, the number of feet is increased to fourteen. The mouth, as in insects, presents a labrum and a ligula, but no lower lip properly so called, or comparable to that of the latter; the third pair of foot-jaws, or the first, closes the mouth externally, and replaces that part.

The sexual organs, at least those of the males, are always double, and situated on the breast or at the inferior origin of that posterior and abdominal portion of the body commonly called the tail, and never posteriorly. Their envelope is usually solid, and more or less calcareous. They clange their skin several times, and generally preserve their primitive form and natural activity. They are mostly carnivorous and aquatic, and live several years. They do not attain their adult state until after casting their skin a certain number of times. With the exception of a few in which these changes somewhat influence their primitive form and modify or augment their locomotive organs, they are at birth, size apart, such as they are always to remain.

Division of the Crustacea into Orders.

The situation and form of the branchiæ, the mode in which the head is articulated with the trunk*, the mobility or fixedness of the eyes t, the organs of manducation, and the teguments, constitute the basis of our divisions, and give rise to the folluwing orders \ddagger.

We divide this class into two sections, the Malacostraca, and the Entomostraca §.
The first are usually furnished with very solid teguments, of a calcareous nature, and with ten or fourteen feet $\|$, generally unguiculated. The mouth, situated in the ordinary place, is composed of a labrum, tongue, two mandibles (frequently furnished with palpi),

[^139]and two pairs of maxillæ covered by the foot-jaws. In a great number each eye is placed on an articulated and movable pedicle, and the branchix are concealed under the lateral margins of the upper or lower shell; in the others they are usually placed under the postabdomen. This section consists of five orders: the Decapoda, Stomapoda, Lemodipoda, Amphipoda, and the Isopoda. The four first embrace the genus Cancer of Linnæus, and the last his Oniscus.
'I'he second, the Entomostraca, or "Insects with shells" of Müller, is formed of the gemis Monoculus, Lin. Here the tegiments are horny and very thin, while a shell, resembling a buckler, composed of from one to two pieces, covers or incloses the body of the greater number. The eyes are almost always sessile, and frequently there is but one. The feet, the number of which varies, are mostly fitted for natation, and without a terminal tail. Some of them, having an anterior mouth composed of a labrum, two mandibles-rarely furnished with palpi, a tongue, and one, or at most two pairs of jaws, of which the external ones are naked or are not covered by the foot-jaws, approximate to the preceding Crustacea. In the other Entomostraca, which seem to appproach the Arachnides in several particulars, the organs of mandueation are sometimes simply formed by the coxæ of the feet, projecting and arranged like lobes bristling with small spines round a large central pharynx. At others, they either compose a little siphon or beak, used for suetion, as in several Arachides and Insects, or they are wholly (or nearly so) invisible externally, cither because the siphon is internal, or beeause the suction is produced in the manner of a eup.

The Entomostraca are thus dentated or edentated. The first will form our order of the Brancmopona*, and the second that of the Pecilopoda, which, in the first edition of this work, were a mere section of the preeeding order.

The singular fossils called Trilobites, of which M. Brongniart has given an excellent Monograph, being considered by him, as well as by many other naturalists, as Crustacea allied to the Entomostraca, we will briefly speak of them after we have done with the latter.

[^140]
FIRST GENERAL DIVISION.

MALACOSTRACA.

The Mralacostraea naturally divide themselves into those whose eyes are placed on a movable pedicle, and thuse in whieh they are sessile and fixed.
a. Eyes placed on a movable and articulated pedicle.

Eyes* placed on a movable pedicle composed of two artieulations, and reeeived into fossulæ, distinguish the Deeapoda and Stomaporla from all the others. Anatomically considered, they appear to be still further removed from them,-Leçons d'Anat. Compar., Cuv.; Ann. des Se. Nat., t. XI,-inasmuch as they are the only ones that present sinuses in which the venous blood is collected previous to its transmission to the branchire on its return to the heart.
The Deeapoda and Stomapoda resemble each other in several eharacters eommon to both. A large plate, called a shell, eovers a greater or less extent of the anterior portion of their body. They all have four antennæ \dagger, the middle ones of whieh are terminated by two or three filanents; two mandibles, each of which, at its base, bears a palpus that is divided into three joints, and usually laid on it; a bilobate tongue; two pairs of jaws; six foot-jaws, the four posterior of which, in some, are transformed into elaws; and ten feet, or fourteen, in those where the four foot-jaws have that form.

In the greater number the branchiæ, of whieh there are seven pairs, are eonecaled under the lateral margin of the shell: the two anterior pairs are situated at the origin of the four last foot-jaws, and the others at that of the feet properly so ealled. In the other Crus-

[^141]tacea they are annexed, in the shape of tufts, to five pairs of paddles (feet) placed under the post-abdomen. The under part of this posterior portion of the body is similarly furnished, in the others, with four or five pairs of bifid appendares.

ORDER I.

DECAPODA.

The head, in the Decapoda, is closely joined to the thorax, and covered with it by a shell, entirely continuous, but that most frequently exhibits deep lines dividing it into various regions which indicates the places occupied by the principal external organs*. The mode of their circulation presents characters which distinguish them from the other Crustacea. The circumscribed heart t, of an oval form and with muscular parieties, gives organs to six trunks of ressels, three of which are antcrior, two inferior, and the sixth posterior. Of the three anterior arterics, the median-the ophethatmicis distributed almost exclusively to the eycs; the two others-the antennaries-spread over the shcll, the muscles of the stomach, a portion of the visccra and the antenne; the two infcrior ones-the hepatics-transmit blood to the liver; the last-the sternal-is the most voluminous of the three, and arises from the postcrior part of the body, sometimes on the right side and at others on the left; its chief coursc is to the abdomen, and to the organs of locomotion. It gives origin to a great number of large vessels, amoing which we should particularly observe the one called by M. Audouin and Edwards the superior abdominal, because it arises from the posterior part of that artery, at a short distance before the articulation of the thorax with the abdomen, vulgarly termed the tail, and because it oon dips into the abdomen-tail-where it divides into twolarge

[^142]branches, ruming backwards, becoming gradually smaller and terminating at the anus. The blood which has nourished these various organs, and thus become venous, collects from all quarters into two large sinuses*, one on each side and above the feet, and formed of venous sacs united in a longitudinal series, or like a chain. It is thrown into an external vessel-efferent-of the branchiæ, where it is renewed and becomes arterial; thence proceeds into an internal vessel-afferent; and finally seeks the heart through canals -branchio-cardiac-laid beneath the arch of the flanks. All the canals of a side unite in one large trunk, and open into the lateral and corresponding part of the heart by a single orifice, the folds of whieh form a double valve that opens to allow the transit of the blood from the branchix to this viscus, but prevents a retrograde motion by closing. Examined internally, the heart exhibits numerous fasciculi and muscular fibres, variously intercrossed and forming several small chambers before the orifices of the arteries. These chambers are so many small auricles, which communicate freely with each other when it dilates, but appear to form a similar number of little cells for each vessel when it contraets, their capacity being proportioned to the quantity of blood in their peculiar vessels. These vessels debouche in the interior of the heart by eight openings, the two lateral valvular ones above mentioned included. Such, with the exception of some modifications \dagger, is the general system of the circulation in the Decapoda.

The superior face of the brain \ddagger is divided into four lobes, eaeh of

[^143]the two middle ones furnishing from its anterior margin an optic nerve that plunges directly into the pedicle of the eye and there divides into numerous filaments, each of which is destined to a facet in the cornea of that organ. The inferior face of the brain produces four nerves, which belong to the antenne, and that also give off some twigs to the neighouring parts. Two nervous and very long cords, embracing the esophagus laterally and uniting beneath it, arise from its posterior margin. There, as in the Brachyura, this union only takes place in the middle of the thorax, the medulla then assuming the form of a ring whose proportions are eight times larger than those of the brain : six nerves on each side arise from this ring; the anterior ones belong to the parts of the month, and the five others to the five feet of the same side. From the posterior margin arises another nerve which runs to the tail, without producing any sensible ganglion, and that apparently represents the ordinary nervous cord. Here, as in the Macroura, each of the two nervous cords, previous to uniting beneath the esuphagus, and at about the middle of its length, gives off a thick nerve for the use of the mandibles and their muscles. United, they form a first-sub-cervical-ganglion, that distributes neves to the maxillæ and the foot-jaws;* they afterwards continue approximated throughout their length, presenting eleven successive ganglions, each of the five first furnishing nerves to as many pairs of feet, and the remaining six those of the tail; that of the Pagurus has some ganglions less, thus appearing to form the passage from the Brachyura to the Macroura. M. Serres thinks that he has recognised in these Decapoda, vestiges of the great sympathetic \uparrow.

The lateral margin of the shell is bent under, to cover and protect the branchire, leaving an opening anteriorly for the passage of water. Sometimes,-see Dorippe-the posterior and inferior extremity of the thorax has two peculiar apertures for that purpose. The branchie are situated at the origin of the last four foot-jaws and feet; the four anterior ones have less extent. The six foot-jaws are

[^144]all of a different form, are applied to the mouth, and divided into two branches, the exterior of which resembles a small antenna, formed of a pedicle, and a setaceous and pluri-articulate stem-it has been compared to a whip, palpus flagelliformis *. The two anterior feet, and sometimes the two or four following ones, are in the form of claws. The penultimate joint is dilated, compressed, and in the form of a hand ; its inferiur extremity is lengthened into a conical point, representing a sort of finger, opposed to another formed by the last joint, or the tarsus proper. This one \dagger is moveable, and has received the name of thumb-pollex; the other is fixed, and considered as the indexindex. These two fingers are also called mordaces. The last is sometimes very short, and has the form of a simple tooth; in this case the other is bent underneath. The hand with the fingers constitutes our forceps properly so called. The preceding, or antepenultimate joint is termed carpus.

The respective proportions and the direction of the organs of locomotion are such, that these animals can walk sideways or backwards.

With the exception of the rectum, which opens at the end of the tail \ddagger, all the viscera are contained in the thorax, so that this portion of the body rejresents the thorax and the greater part of the abdomen of insects. The stomach, supported by a cartilaginous skeleton, is armed internally with five bony and notched appendages, which completes the trituration of the aliment. In it, in the moulting season, which arrives near the end of the spring, we observe two calcareous bodies, round on one side and flat on the other, commonly called crabs' cyes, that disappear after the change is completed, thereby inducing us to believe that they furnish the material for the renewal of the shell. The liver consists of two large clusters of blind vessels, filled with a bilious humour, which they pour into the intestine, near the pylorus. The alimentary canal is short and straight. The flanks present a range of holes situated immediately at the insertion of the branchiæ, but which can only be seen by removing those organs. The under shell, viewed internally, at least in several large species exhi-

[^145]bits transverse cells formed by crustaceous laminæ, and separated in their middle by a longitudinal range of the same nature.

The sexual organs of the male are situated near the origin of the two posterior feet. I'wo articulated pieces, of a solid consistence, and resembling horis, stylets, or setaceous antennæ, placed at the junction of the tail with the thorax and replacing the first par of subcaudal appendages, are regerded as the male organs of copulation, or at least as their sheaths. But, according to our observations on various Decairoda, each of them consists of a little membranous body, sometimes setaceous, and at others filiform or cylindrical, that projects from a liole situated at the articulation of the hip of the two posterior feet, with the lowrer shell. The two vulvæ are placed on this piece, between those of the third pair, or on their first joint, a disposition depending on the widening and narrowing of the lower shell. Copulation takes place, ventre a venire. These animals grow but slowly, and live a long time. It is among them that we find the largest and most useful species, but their flesh is not easily digested. The body of some Pelinuri attains the length of a metre. Their claws are efficacious weapons, ind have such power in large individuals, that they have been seen to seize a goat, and drag it from the shore. They usually inhabit water, but do not instantly perish when deprived of it; some species even pass a part of their lives on land, only risiting the water in the nuptial season, and for the purpose of depositing their spawn. Even they are compelled to fix their dumicile either in burrows, or in cool, damp places. The Decajoda are voracious and carnivorous. Certain species even penetrato into cemetries, and devour the dead. 'Their limbs are regenerated with surprising promptitude, but it is requisite that the fracture be at the junction of the articulations, and when accident determines it otherwise, they know how to apply a remedy. When they wish to change their skin, they seek a retired and solitary spot, in order to be she!tered from their enemies, and to remain at rest. When the change is cffected, their body is soft, and has a more exquisite flayour. A chemical analysis of the old shell proves it to be formed of the carbonate and phosphate of lime, united in different portions with gelatine. On these froportions depends the solidity of the shell: it is much less thick and flexible in the latter genera of this order, and further on, it becomes ahmost membranous. M. de Blainville has observed that the shell of the Palinurus is composed of four superincumbent layers, the superior and wo inferior of which are membranous; the calcareous matter is interposed between them, forming the fourth. Exposed to heat, the epidermis becomes of a more or
less vivid red, the colouring principle being decomposed by boiling water; other combinations of this principle produce, in some species, a very agreeable mixture of colours, that frequently border on blue or green.

The greater number of fossil Crustacea hitherto discovered belongs to the order of the Decapoda. Among those of Europe, the oldest approach to species now living in the vicinity of the tropics; the others, or more modern ones, are closely allied with the living species of Europe. The fossil Crustacea of the tropical regions, however, appear to me to bear the closest similitude to several of those now found there in a living state, a fact of much interest to the geologist, should the study of the fossil shells of those countries, collected from the deepest strata, furnish a similar result.

FAMILY I.*

BRACHYURA.-Kleistagnatha, Fal,

Tail shorter than the trunk, without appendages or fins at the extremity, and doubled inder, in a state of rest, when it is received in a fossula on the chest. Triangular in the males, and only furnished at base with four or two appendages, in the form of horns, the superior of which are the largest, it becomes widened, and convex in the females \dagger, presenting beneath four pairs of double hairy filaments \ddagger, destined to support the ova, and analogous to the sub-caudal natatory feet of the Macroura, and others.

The vulve are two holes situated under the pectus, between the third pair of feet. The antennæ are small : each of the intermediate ones, usually lodged in a fossula under the anterior edge of the shell,

[^146]terminates in two very short filaments．The ocular pedicles are generally longer than those of the Decapoda Macroura．The auri－ cular tube is ahmost always stony．The first pair of feet terminate in a forceps or claw．The branchiæ are disposed on a single range，in the form of pyramidal ligulæ，composed of a multitude of leaflets piled one on another，in a direction parallel to their axis．The foot－ jaws are generally shorter and broader than in the other Decapoda， the two external ones forming a sort of lip＊．Their nervous system also differs from that of the Macroura \dagger ．

This family，as in several of the systems anterior to the distribution of these animals by Daldorf，might constitute but one genus，that of

Cancer，Lin．

In the greater number，all the feet are attached to the sides of the pectus，and are always exposed；this is the case in the first five sec－ tions．The first，or that of the Pimipedes \uparrow ，to this character，adds that of having the last feet，at least，terminated by a very flat or fin－ like joint that is oval or orbicular and broader than the same joint of the preceding feet，even when they also are shaped like a fin． They seldom frequent the coast，and are generally found in the high seas．With the exception of the Orithyiæ，we observe but five dis－ tinctly marked segments in the tail of the males，while that of the

[^147]females presents seven. We will begin with those in which all the feet, except the elaws, are natatory.

Matuta, Fabr.

The Matutix have an almost orbicular shell armed on each side with a very stout tooth in the form of a spine; the superior edge of the hands dentated like a crest, and their external face studded with pointed tubereles; the third joint of the external foot-jaws, without any apparent emargination, terminates in a point, so that it forms, with the preceding joint, an elongated and almost rightangled triangle. The external antennæ are very small, and the ocular pedieles slightly arcuated.

De Geer mentions a species-Cancer lalipes, which he says is from the American seas, and has its front terminated by a straight and entire margin. All those we have seen, however*, were brought from the East, and the middle of that margin always presents a bidentated or emarginated projeetion. The

Polybius, Leach,

Is allied to the Portuni, but the shell is proportionably narrower and more rounded; the sides are merely furnished with ordinary teeth. The third joint of the external foot-jaws is obtuse and emarginated. The eyes are much thicker than their pedicles, and globular.

But a single species is as yet known \dagger; it was found on the coast of Devonshire, and has also been observed by M. D'Or'bigny on the sea-eoast of the western departments of France \ddagger.
In all the following swimmers, the two posterior feet only are formed like fins \S.

We may first separate those whose shell is almost ovoid and transversely trumeated before, and where the tail of the males (the only sex known) consists of seven distinct segments. Sueh is the

Orythyia, Fubr.

The only species known,-Orith. mammillaris, Fabr., Cancer bimaculatus, Herbst., XVIII, 101, is found in the sea of China, or at least forms a part of the collections of Insects sold by its inhabitants to forcigners. The ocular pedicles are longer in proportion than those of the Portuni.

[^148]The shell of the last swimmers is much wider before than behind, forming either the segment of a eircle narrowed towards the tail and truncated, or a trapezium, or is almost in the shape of a heart. Its greatest transverse dianceter generally surpasses the opposite one. There are but five segments in the tail of the males, instead of the seven found in that of the females, the number usually peculiar to the tail of the Deeapoda; the third and the two following ones are confounded or form but one; frequently, however, traces of them are diseovered, at least on the sides.

We will first separate those whose eyes are supported by very long and slender pedicles, arising from the middle of the anterior margin of the shell, extending to its lateral angles, and received into a groove run under the edge. Such is the

Podopithalmus, Lam.,

Where the shell forms a transverse trapezium, wider and straight before with a long spiniform tooth behind the oeular cavities. The elaws are elongated, spiny, and similar to those of most of the speeies of the genus Lupa, Leach.

The only living speeies known * inhabits the coasts of the Isle of France, and those of the neighbouring seas.

The valuable eabinet of one of the most learned fossil conchylidogists of Europe, contains au internal east of a fossil Podophthalmus, to whieh M. Desmarest has affixed the name of its possessor, M. de France \dagger.
The ocular pedieles of the other Crustacea, belonging to this section, are short, oceupy but a very small portion of the transverse diameter of the shell, are placed in oval eavities, and resemble, generally, those of the ordinary Crabs with whieh these swimmers are almost insensibly connected. They may all be united in one single subgenus, that of

Portunus, Fub.

Certain species \ddagger peeuliar to the Indian Ocean, such as the $A d m e t e$, Herbst., LVII, 1, are distinguished from all the following ones by their shell, which is of a transversely quadrilateral form, narrowed posteriorly, and whose ocular eavities oceupy its anterior lateral angles; the eyes are thus separated by an interval almost equal to the greatest width of the shell. The insertion of the lateral antennae is at a considerable distanee from these cavities.

Other species, whose shell forms the segment of a cirele, posteriorly truneated and widest in the middle are remarkable for the length of their elaws, whieh is at least double that of the shell. Each side presents nine teeth, the posterior largest and spiniform. The tail of the males is frequently very different from that of the females.

[^149]These Portuni constitute the genus, Lupa, Leach, and are mostly of a large size and foreign to Europe. One species, however, is found in the Mediterranean *.

A third division will consist of species analogous to the last in the form of their shell, but whose lateral teeth, usually five in number, are nearly equal, or where, at least, the posterior tooth differs but slightly from the preceding ones; the length of the claws does not much exceed that of the shell.

Those which have from six to nine teeth on each side are exotic. The Portunus tranquebaricus, Fabr., Herbst., Canc., XXXVIII, 3, is the only one known that has nine equal teeth on each lateral edge; it is large, and is much esteemed as food. We suspect the P. leucodonte, Desmar., Hist. Nat. des Crust. Foss., VI, l-3, is the same species in a fossil state; it is alsu from India.
The following species, all from European seas \dagger, have five teeth on each lateral edge of the shell.
P. puber, Fab.; Cancer puber, L.; Penn. Brit. Zool., IV, iv, 8 ; Herbst., VII, 59 ; Leach, Malac. Brit., VI. Covered with a yellowish down; eight small teeth between the eyes, the two middle ones longest, obtuse and divergent; claws sulcated, armed with a stout dentated tooth on the inner side of the carpus, and from one joint to the following one or the hand; fingers blackish.

This species is usually called in France, where its flesh is considered a delicacy, l'Etrille.
P. corrugatus; Cancer corrugatus, Penn. Brit. Zool., IV, pl. v, 9 ; Leach, Malac. Brit., VII, 1, 2. The shell rugose, covered with a yellowish down, and furnished with three equal, and almost lobuliform teeth in front; the three posterior teeth of the lateral margins very sharp and spiniform.
P. mœnas ; Cancer mœnas, L., and Fab. This common species of the French coast, called Crabe enragé, appears to me to belong to the Portuni, rather than to the Crabs properly so called; its posterior fins are only somewhat narrower. Such was the first opinion of Dr. Leach, who subsequently made a

[^150]peculiar genus for it called Corcinus, (Malac. Brit., XII, tab. v) It also has five teeth on cach side, and a similar number in front', the internal oculars ineluded. The top of the shell is glabrous' fincly shagreened, with deeply impressed lines. The tarsi are striate; the upper edge of the liand is so compressed as to form a rounded ridge, terminated by a small tooth; a second but stronger one is observed on the inner side of the preceding joints; fingers striate, and almost equally dentited, with a blackish tip.

A fossil species is found in the marly limestone of MonteBolca, which, according to Desmarest,-Hist. Nat. des Crust. Foss., p. 125, is closely related to the mœnas.

In the Portunus Rondeletii, Risso, there are no teeth in front. The one he calls longipes, presents the same character, but its feet are longer in proportion than those of other analogous species.
We will form a fourth division with the subgenus.

Platyonichus, Laf.

Which name has replaced that of Portumnus, Leach, on aecount of the too great similarity between the latter and the word Portunus already adopted. Here the shell is at least as long as it is broad, and almost cordate. All the tarsi of the feet, the elaws exeepted, terminate in a small, semi-elliptical, clongated and pointed lamina; the index is strongly compressed.

This division also eomprises but a single species, the Cancer latipes, Plancus,-De Conchis minus notis III, 7, B, C,-and which has also been figured by Leaeh-Malac. Brit., IV. There are three front teeth, and on cach lateral edge five *.
From the swimmers we pass to those whose feet all terminate in a point, or conical and sometimes compressed tarsus, but never forming a fin properly so ealled. Those of them whese shell is tapering, forming the arc of a cirele before, and narrowed and truncated behind, in which the claws of hoth sexes are alike, where the number of the caudal segments is the same as in the Portuni, and which, with the exception of the tarsi, almost completely resemble them, will constitute our second seetion, that of the Arcuata. In the

Cancer, Fabr.

Or the Crab properly so called, the third joint of the external foot-jaws is emarginated or marked with a sinus near the internal and almost square extremity. The antennæ scarcely extending beyond the front and composed of but few articulations, are flexed and glabrous, or but slightly hairy. The hands are rounded and have no appearance of a crest on the upper edge.

The radieal joint of the external antemne is, in some, much larger than the following ones, and resembles a lamine ; terminated by a salient and advanced tooth, closing inferiorly the internal corner of

[^151]the ocular cavities. The fossule of the middle or internal antenne are nearly longitudinal. Such is the
C. pagurus, L.; Crabe poupart, \&c.; Herbst., IX, 59. Shel! reddish, wide, planc, almost smooth above, with nine festoons in each lateral margin, and three tecth in front. Its claws are large, smonth, with black fingers studded internally with blunt tubercles. It is sometimes a foot wide, and weighs five pounds. Common on the Atlantic coast of France, but less abundant in the Mediterranean. Its flesh is esteemed. Dr. Leach separates it generically from the other Crabs: Malac. Brit., XVII, x.
I_{11} the others, the lower joints of the Antenna are cylindrical; although somewhat larger, the first does not differ from the following ones in form or proportion, and does not extend beyond the internal canthus of the ocular fossulæ; those of the intermediate antennæ are prolonged in a direction rather parallel to the breadth of the shell than to its length.

There are some of them-C. 11-dentatus, Fab., in which the extremity of the fingers are excavated like the bowl of a spoon: they form the Clorodius, Leach. Several species, where they terminate in a point, are remarkable for the areuation of the edges of the shell which terminate posteriorly by a fold and overlapping projection, in the manner of an angle. Those with a tridentated front, and whose shell only presents that projection or posterior tooth, compose his genus Carpilius. The species of this subdivision,-C. corallinus, F.; C. mauculatus, Id., are marked with round bloodcoloured spots. They more particularly inhabit the Indian Ocean. Many fossil Crabs appear to me to belong to this subdivision.

The Xantho, of the same, some of which, Xanth. floridus, Leach, Malac. Brit., XI;-Cancer poressa, Oliv., Zool. Adriat., II, 3, inhabit the coast of France, have their antennæ inserted in the internal canthus of the ocular fossulæ, and not in the outer one, as in those just mentioned.

Other considerations would authorise us to augment the number of these divisions, but our limits require us merely to indicate the principal ones.

The "Crabe vulyaire de nös côtes" of the first edition of this work, has in this one been placed among the Portuni.-P. monas.

Pirinela, Leach.

These Crustacea completcly resemble Crabs, but their external antenme extend considerably beyond the front, and their stem, longer than their pedicle, consist of numerous joints. The fossulae of the intermediaries, as in the C.pagurus, are rather longitudinal than transversal.

But a single species is known, the P. denticulata, Leach, Malae. Brit., VIII; it is found in the British channel and in the Mediterrancan. Perhaps we shond refer to this speeies, the fossil deseribed hy Desmarest under the name of Atélécycle rugucux, in the Hist. Nat. de Crust. Foss., IX, 9.

Atelecyclus, Leach ${ }^{*}$.

Fossulie of the intermediate antennæ longitudinal ; lateral antennæe elongated, salient and composed of many joints, but very hairy as well as the claws; the latter strong, and with eompressed hands. The third joint of the foot-jaws sensibly narrowed above, resembling an obtuse or rounded tooth; eonical tarsi, and the ocular pedieles of the ordinary size. 'The tail is longer than in the preceding Crustacea.

Two species have been described \dagger. One from the coast of England, of a sub-orbicular form, and the other from that of Franee, Mediterranean, as well as Oeeanie. The

Thia, Leach,

Approaehes Atclecyelus in the lateral antennæ, in the direction of the fossulæ, in whieh the intermediaries are placed, in the form of the third joint of the external foot-jaws, and in the sub-orbicular shell; but the cyes, together with the pedieles, are extremely small and scarcely salient. The tarsi are strongly eompressed and subelliptical. The front is areuated, rounded, and without any marked dentations. The pectoral spaee between the feet is very narrow, and of the same breadth throughout. The elaws are much weaker in proportion. The shell is smooth, and in some respects the Thire approach the Leucosice and the Corystes.

The type \ddagger of this subgenus, whose habitation was unknown, has been discovered by Milne Edwards in the sandy shores of the Mediterranean, near Naples. Risso-Journ. de Phys., 1822, p. 251 ,-described a second, dedieated to M. de Blainville, whieh he found in the river at Niee. 'The

Mursia, Leach §.

Of whieh but a single species is known, and whieh is peeuliar to that part of the Occan which bounds the southern extremity of Africa, approaches the Matutæ and several Portuni, in the long spine with which eaeh side of the shell is armed posteriorly; it also approximates to the truc Crabs in the form of the shell, and of the external foot-jaws, with this differenee, that their third joint forms an elongated square, narrowed and obliquely truncated at its superior extremity; but, as in the Calappæ and Hcpati, the hands are strongly eompressed above, having a sharp and dentated edge, resembling a erest $\|$.

Hepatus, Latr.

The Heprati have a considerable affinity with the true Crabs in the

[^152]widened form of their shell, and the shortuess of their lateral antennæ, approaching the Mursiæ and Calappe in their eompressed hands, the upper edge of which resembles a erest ; but the third joint of their external foot-jaws form an elongated, narrow, and pointed triangle, without any apparent emargination, a charaeter also observed in the Matutr and Leueosix.

The species * which served as the type of this division was eonfounded by Fabricius with the Calapp. It it as large as an ordinary Pagarus. The shell is yellowish, dotted with red, and the margins finely and unequally erenulated. The eyes are small and approximated, and the feet are traversed by red bands. Although the tail of the male has but five complete segments, the traces of two others may still be discovered on the sides. This species is common at the Antilles.
In our third section, or that of the Quadrilatera, the shell is nearly square or heart-shaped, the front generally prolonged, infleeted or much inelined, and forming a sort of elypeus. There are seven segments, distinctly marked across their whole breadth, in the tail of both sexes. The antennæ are usually very short. The eyes of most of them are fixed on long or stout pedieles. Several live habitually on land, inhabiting holes excavated by themselves; others frequent fresh-water streams. They move with great swiftness \dagger.

A first division will comprise those in which the fourth joint of the external foot-jaws is inserted at the superior internal extremity of the preeeding one, either in a short, truneated projection, or in a sinus of the inner margin. They approaeh nearest to the Crabs proper.

The shell of some is nearly square, or a trapezium, but not transverse, or almost in the form of a truneated heart. The oeular pedieles are short, and inserted either near the lateral and anterior angles of the shell, or more internally, but always at a eonsiderable distanee from the middle of the front. Here eomes the

Eriphia, Lat.

Where the lateral antennæ are inserted between the ocular cavities and the median antennæ; the nearly cordiform shell is truncated posteriorly, and the eyes are removed from its anterior angles.

The coast of France furnishes a species-Cancer spinifrons, Fab. ; Herbst., XI, 65 ; Desmar., Considér., XIV, 1, whieh is the Pagurus of Aldrovandus. The sides of its shell are furnished with five teeth, the second and third bifid. - The front and elaws are spiny; the fingers black.

[^153]
Trapezia, Lat.

The Trapezie resemble the Eriphiæ in the inscrtion of their lateral antemme, but their shcll is nearly square, depressed, and smooth; the cyes arc placed at its anterior angles, and the claws, in comparison with the other fect, very large.

All the species arc cxotic*, and inhabit Eastern Scas. The

Pilumnus, Leach,

Differs from the two preceding subgencra, in the insertion of the lateral antenne at the internal extremity of the ocular cavities, above the origin of the pedicles of the cyes. The Pilumni, as to the form of the shell, approach nearer to the Crustacca of the second seetion, than the other Quadrilatera, and in this respect stand somewhat ambiguously between the two. As in most of the Arcuata the third joint of their foot-jaw is nearly square or pentagonal. The lateral antennæ arc longer than the ocular pedicles, and have a setaeeous stem, longer than the peduncle, and composed of numerous small joints. The tarsi are simply pilose \dagger.

Thelphusa, Lat. \ddagger

The lateral atennæ situated as in the Pilumni, but shorter than the ocular pedieles, composed of but few joints, and with a cylin-drico-conieal stem, hardly longer than its peduncle. The shell is almost shaped like a truncated heart, and the tarsi are furnished with spinous or dentated ridges.

Several species are known, all of which inhabit fresh water, but capable, as it would appear, of living at a distance from it for a considerable time. One of them, mentioned by the an cients, is found in the south of Europe, the Levant, and in Egypt; it is the Crabe flwiatile, of Belon, Rondelet, and Gesner \S. It is very common in scveral brooks and various lakes of the craters of the south of Italy; its effigy is observable on different antique Grecian medals, particularly on those of Sicily. The shell is about two inches in each diameter. It is greyish or yellowish, as the animal is living or dead, mostly smiooth, with little incised ruge and asperities on the anterior sides. The front is transversal, inclined, refleeted, and edentated. The claws are rough, with a reddish spot at the extrenity of the fingers, which are long, conical, and unequally dentated. The Greek monks eat it raw, and during Lent it forms one of the articles of diet used by the Italians.

[^154]T'wo naturalists, travellers of the government, prematurely taken from the scienees, Delande and Leschenault-de-Latour, discovered two other species; one was collected by the first in his travels to the south of Afriea, and the other by the second in the mountains of Ceylon.
The Cancer senex of Fabrieius (Herbst., XL, 5), should, in my opinion, be referred to the same subgenus. It inhabits the East Indies.

A species peculiar to America, the Thelphusa serrata, Herbst., X , ii, is proportionably wider and flatter than the others, presenting certain characters which seem to indicate a partieular division *.
Other Quadrilatera having, like the preceding ones, the fourtl joint of the external foot-jaws inserted in the external extremity of the previous joint, differ from them in the trapezoidal, transverse and widened form of the fore-part of the shell, as well as in their ocular pedielcs, whieh, like those of the Podophthalmi, are long and slender, extending to the anterior angles, and inserted near the middle of the front. The claws of the males are long and cylindrical : such is the

Gonoplax, Leach.

Two species of which are found in European seas; one of them, however, may possibly be a mere varicty of the other.

The first-Cancer angulatus, L. ; Herbst., I, 13; Leach, Malae. Brit., XIII, has the anterior angles of its shell prolonged into a point, and a second, but smaller spine behind. Two others are observed on the claws of the males, one on the joint called the arm, and the other on the internal side of the carpus; the hands are elongated, and somewhat narrowed at base ; another touth is found on the superior extremity of the thighs of the other feet. The body is reddish. It inhabits the western coast of France, and that of England.

In the second-Cancer rhomboides, L., the shell presents no other spines than those formed by the prolongation of the anterior angles. The body is smaller, and of a reddish-white or flesh colour. From the rocky localities of the Mediterranean \dagger.
In the seeond division of the Quadrilatera, the fourth joint of the external foot jaws, or those which cover the other parts of the mouth below, is inserted in the middle of the extremity of the preceding joint, or more outwardly.

[^155]Sometimes the shell is trapezoidal or ovoid, or is shaped like a heart truncated posteriorly. The ocular pedieles, inserted at a short distance from the middle of its anterior margin, extend to its anterior angles, or even beyond them.

Commencing with those whose shell is transversely quadrilateral, widened before and narrowed behind, or which has the form of an egg, we first observe the

Macrophthalmus, Lat.

Where the shell, as in the Gonoplaees, is trapezoidal, and the claws are long and narrow; the oeular pedieles are slender, elongated, and lodged in a groove under the anterior margin of the shell. 'The first joint of the intermediate antennæ is rather transverse than longitudinal, and the two whieh terminate them are very distinet and of a mean size. The external foot-jaws are approximated inferiorly at their inner edge, leaving no interval between them, and their third joint is transverse.

They* inhabit the Eastern Ocean, and the seas of New Holland.
The following, which constitute the subgenera Gelasimus, Ocypode, and Mictyris, inhabit burrows, are remarkable for the celerity of their eourse, and have the fourth pair of feet, and next to them, the third, longer than the others. The intermediate antennæ are excessively small, and hardly bifid, at their extremity; the radical joint is nearly longitudinal. They are peeuliar to hot elimates.

Here the shell is solid, of a quadrilateral or trapezoidal form, widest before.

Gelasimus, Lat.-Uca, Leach.

Eyes terminating their pedicles like a small head; third joint of the external foot-jaws forming a transverse square; last segment of the tail of the males almost semi-circular, that of the females nearly orbicular.

The lateral antennæ are longer, and more slender in proportion, than those of the Ocypodes. One of the elaws, now the right, and then the left, varying in individuals of the same species, is mueh larger than the other; the fingers of the small one are frequently shaped like a spoon or spatula. The animal closes the entrance of its burrow, which it excavates in the vieinity of the sea-shore, or in marshy places, with its large elaw. These burrows are cylindrieal, oblique, very deep, and placed close to each other, but are usually inhabited by a single individual. Their habit of holding the large elaw in an upright position before the body, as if making an appellative gesture, has obtained for them the name of Calling-Crabs (Cancer vocans). One species, observed by Bosc., in South Carolina, passes the three

[^156]winter month in its retreat without leaving it, and only visits the sea when about to spawn*.

Ocypode, Fabr.

Eyes extending into the greater part of the length of their pedicles, or claviform ; third joint of the cxternal foot-jaws forming a long square; tail of the males very narrow, and the last joint an elongated triangle ; that of the femalcs is oval.

The claws are nearly similar, strong, but short, and the forceps shaped like a reversed heart. Agreeably to the indication afforded by their generic name, thesc Crustacea run with great swiftness, which indeed is such, that a horse can scarcely overtake them, whence the name of Eques, given to them by the older naturalists. They are now sometimes termed Land-Crabs, and occasionally, naturalists have confounded them with the Gecarcini, under the general denomination of Tourlouroux. The Ocypodes, during the day, remain in the holes or burrows they have excavated in the sand, near the seashore, and quit them after sun- set.

Ocyph. eques; Cancer cursor, L.; Cancer eques, Bel.; Ocyph. ippeus, Oliv., Voy. dans l'Emp. Ottom., II, xxx, l. Distinguished from all the others by the bundle of hairs, which terminate the ocular pedicles. It inhabits the coast of Syria, that of Africa bordering on the Mediterranean, and is even found at Cape de Verd. In the

Ocyp. cerathophthalmus ; Cancer cerathopt., Pall., Spic. Zool., fasc. IX, v, $2-8$, the superior extremity of these pedicles extends beyond the eyes for morc than a third of their whole length, in a conical and simple point. The forceps are codiform, very rough, and their cutting edge dentated. From the East Indies.
In others the pedicles are terminated by the eyes forming a sort of club. Some from the eastern continent, and all those of the western world, are thus formed; but the latter possess a peculiar character, which indicates more acquatic habits, or that they swim with more facility; their feet are smoother, flatter, and furnished with a fringe of hairs. Such is the O. blanc, Bosc. Hist. Nat. des Crust, I, l. The Cumuru of Marcgrave bclongs to this division \dagger.

In classing the collection of the Museum d'Histoire Naturelle, we placed among the Ocypodes, under the specific name of quadridentata, a crustaccous animal, which appears to us to bear a close resemblancc

[^157]to the Gécurcin rois-épines, Desmar., at fossil species, Hist. Nat. des Crust. Foss:, YIII, lu; he suspects it may belong to the genus Thelphusa.

Here, at least in the females, the shell is very thin, membranous, and flexible, and the body almost round or subovoid. The ocular pedicles are sensibly shorter than in the preceding subgenera. First eomes the

Mictyris, Lat.

Where the body is subovoid, highly inflated, narrower, and more obtuse before, and truncated posteriorly; the clypeus considerably diminished, and its extremity narrowed into a point. The claws form an cllow at the junction of the third and fourth joint, the latter of which is almost as large as the hand; the other feet are long, with angular tarsi. To these essential characters we will add, that the ocular pedicles are curved, and erowned with globular eyes; that the external foot-jaws are very ample, and their internal edge hairy, the seeond joint being very large, and the following one almost semicircular.

Two species are known: one is found in the Australasian Ocean*, and the other in Egyptt, where it was observed by M. Savigny. Immediately after these come the

Pinnotheres, Lat.

Very small crustacea, which during a part of the year, in November particularly, inhabit various bivalve shells, ehiefly the Mytili and Pinner. The shell of the females is sub-orbieular, very thin and soft, while that of the males is solid, almost globular and somewhat narrowed into a point before. The feet are of a middling length, and the claws straight and formed as usual. The external foot-jaws present but three distinet joints, the first large, transversal, and areuated, and the second furnished at its internal base with a small appendage. The tail of the female is very ample, and covers the whole under part of the body.

The aneients believed that they resided with the Mollusea, in whose shells they are found, on friendly terms, warning them of danger and seeking food for them. The inhabitants of certain distriets, at the present day, attribute to their presence the unwholesome qualities sometimes manifested in the Mytili \ddagger.

We now arrive at Crustacca, which, although analogous to those just mentioned in the insertion of their ocular pedicles, are removed from them in respect to their shell. It is heart-shaped, and truncated posteriorly, clevated, dilated and rounded on the sides near the anterior angles. The ocular pedicles are shorter than those of the

[^158]preceding subgenera. and do not quite extend to the lateral extremitics of the shell. The interncediate antenne are always terminated by two very distinct divisions. The inlabitants of the French colonics designate them by various appellations, such as Tourlouroux, Crabes-peints, Crabes de terre, and Crabes violets, which may apply to different specics, or to varictics from age ; no observations worthy of credence have as yet settled this point of nomenclature. These animals more particularly inhabit intertropical countrics and those whieh adjoin them. Their habits are a constant source of interest to travellers, but by abstracting from their accounts all improbable and doubtful facts, their history will be as follows. The greater portion of their life is passed on land, where they sccretc themselves in holes, from which they never issue but at night. Some inhabit cemeteries. Once in the year, about the spawning season, they collect in immense bands and pursue a direct course to the sea, hecdless of all obstacles; after depositing their ova, they return much enfeebled. It is said that they seal up the mouth of their burrow during the time they are casting their shell. When this is effected, and while yet soft, they are called Boursiers, and their flesh is much estecmed, although sometimes poisonous This quality is attributed to the fruit of the manchineci, which they are supposed, falsely perhaps, to have eaten. In some of them, such as the
$$
\mathrm{U}_{\mathrm{C}_{A}}, \text { Lat., }
$$

The size of the fect, commencing with those of the sccond pair, progressively diminishes; they are extremely pilose, and the tarsi simply sulcated without any remarkable spines or dentations.

The only species known-Cancer uca, L., Herbst., VI, 38, inhabits the marshes of Guiana and of Brazil.
In others, the third and fourth pair of fect are longer than the second and fifth; the tarsi are marked with dentated or very spinous ridges. They form two subgencra.

> Cardisoita, Lal.

The four antenne and all the joints of the external foot-jaws exposed; the three first joints of these same foot-jaws straight ; the third shorter than the second, cmarginated superiorly and nearly cordiform ; the first of the lateral anternæ almost similar and broad.

They are called Crabes blanes at the Antilles, though sometimes they have a yellow shell striped with red *.

Gecarcinus, Leach.

The four antennæ covered by the clypeus; second and third joints of the external foot-ja wrs, large, flattened, arcuated, and leaving a space between their inner sides, the last onc forming a curvilinear triangle, obtuse at the summit; it reaches to the clypeus, and covers the three following ones, or the fourth, fifth, and sixth.

[^159]The most common species-Cancer ruricola, L., Herbst., III, 36 , when young, IV, xx, 116; xlix, 1, is of a more or less lively blood-red colour, more or less extended, and sometimes spotted with yellow with a deeply marked impression of the letter H. It is the Crabe violet, and Crabe peint of travellers; the name of Tourlourou appears to me to be more peculiarly applied to this species*.
Sometimes the shell is nearly square, subisometrical or not, broader than it is long, flattened, and the front turned down for ncarly the whole of its width. The ocular pedicles are short and inserted at the anterior lateral angles. The two ordinary divisions of the intermediate antenne are very distinct. The imer sides of the exterior footjaws are separated, leaving an angular space between them; their third joint is almost as long as it is broad. The.claws are short and thick, and the other feet very flat; the fourth pair, and then the third, are longer than the others; tarsi spinous.

> Plagusia, Lat.

The mediate anteneæ lodged in two longitudinal and oblique fissures traversing the whole thickness of the middle of the clypeus \dagger. They are inferior or covered by this part in

Grapsus, Lam.

Where the shell is somewhat wider before than behind, or at least not narrower, while in the Plagusiæ it widens from before backwards.

The Grapsi are found throughout all parts of the glole, but are more particularly abundant in the vicinity of the tropics. They are not seen in Europe beyond 50 deg . of latitude. If I mistake not they are called Cériques at Martinique. Marcgrave has figured some Brazilian species by the name of Aratu, Aratu-pinima (Grapsus cruentatus, Lat.) and Carava-una. At Cayenne they are called Ragabeumba, or soldicr.
T'hese animals conceal themselves during the day under stones, \&c., at the bottom of the sea. I have been informed that some of them even climb up the trees on its shores and hide beneath their bark. The broad and flattened form of their body and feet enables them to support themselves for a moment on the surface of the water; they always walk sideways, sometimes to the right, and it others to the left. Certain species inhabit rivers within the bounds of tide water,

[^160]but most frequently live on their banks or on land. 'They assemble in great numbers, and when any one appars among them, they hurry to the water with a tremendous noisce, cansed by striking one claw against the other. 'Their habits are similar to those of other carnirorous Crustacea**.
G. varius, Lat.; Cancer marmoratur, Fab.; Oliv., Zool., Adr., II, 1 ; Cancre madre, Rondel.; Herbst., XX, 114. Size middling; nearly square, hardly broader than long; yellowish or livid; greatly elongated above, and marked with numerous finc lines and points of a reddish brown; four flattened projections arranged transversely at the base of the clypeus, and three teeth at the anterior extremity of each lateral edge. The tarsi are spiny. The
G. porte-pinceau; Cuv. Règnc Anim., IV, xii, l; Rumplı, Mus. X, 2; Desmar., Consider., XV, 1, is remarkable for the numerous long and blackish hairs with which the superior surfaces of the fingers are furnished. The tarsi are without spines, a character exclusively peculiar, to this species. It is found in the East Indies \dagger.
In our fourth section or the Orbiculata + , the shell is either subglobular, rhomboidal, or ovoid, and always very solid; the ocular pedicles are always short or but slightly elongated; the claws of unequal size according to the sex, those of the males being largest; there are never seven complete segments in the tail; the buccal cavity grows gradually narrower towards its superior extremity, and the third joint of the external foot-jaws always forms an elongated triangle. The posterior feet resemble the preceding ones, and neither of the latter is ever very long. In the

Corystres, Latr..
The shell is an ovoidal oblong, and crustaceous; the lateral antennæ are long, projecting and ciliated; ocular pedicles of a mean size and separated; third joint of the external foot-jaws longer than the preceding one, with a visible emargination for the insertion of the next. The tail is composed of seven segments, the two middle ones obliterated in the males.

A species-Cancer personalus, Herbst., XII, 71, 72; Leach, Malac. Brit., VI, 1, is known on the coast of France. The lateral edge of its shell is marked with three notches on each side.

A second was brought from the Cape of Goor Hope by the late Delalande.

[^161]
Leucosia, Fab.

Form of the shell varying, but generally oroid or almost globular, and always very hard and stony; lateral antemme and eyes very small; eyes approximated. The third joint of the extemal foot-jaws is smaller than the sccond, and without any apparent internal sinus; these parts are contiguous inferiorly along the internal cdge, and form an clongated triangle, the extremity of which is received into two upper cells of the buccal cavity. The tail, which is ample and suborbicular in the females, usually consists of from four to five segments, but never seven.

Doctor Leach * has separated this genus of Fabricius into several genera, which, however, we will consider as simple divisions.

Those species which have a transversal shell, with the middle of its sides greatly prolonged or dilated, so as to resemble a cone or cylinder, forms his genus Ixa \dagger.

Those which have a rhombuidal shell with seven conical points, resembling spines on each side, compose that of Iphis.

If the shell still has the thomboidal figure, but merely presents angles or sinuses on the sides, it becomes his genus Nursia.

If these lateral edges are smooth, we have his Eibalia.
The Leucosixe with an oroid or nearly globular shell, and otherwise distinguished from several of the preceding by the elaws being always longer than the body, and thicker than the other feet, and by the tarsi being sensibly striate, may be divided thus :

In some the front projects, or at least is not surpassed by the superior extremity of the buceal cavity. The outer branch of the external foot-jaws is clongated, and almost linear.

Here the claws are slender, the hands cylindrieal, and the fingers long.

Sometimes the shell is nearly globular, and either very spiny, as in the genus Arcania, or smooth as in Ilia.

At others, the sliell is suborbicular and depressed, as in the genus Persephona, or ovoid as in Mlyra.

There the claws are thick. with oroid hands and short fingers.
They constitute the trie Leucosice of that naturalist.
In the others, the superior extremity of the buecal cavity outreaches the front. The outer branch of the external foot-jaws is short, and arcuated; the shell rommed and depressed. This last division comprises his genus Plyylira.

Other considerations, formded on the proportions of the feet and the form of the external foot-jaws, streng then these characters.

The Leucosie noyuu; Tlia mucleus, Leach; Cancer nucleus, Lin., Herbst., XI, 14, is common in the Mediterranean; its shell is globular, gramulated on the sides and posteriorly; the front is

[^162]notched; two tecth on the posterior margin, and two others widely separated on each lateral muscle; the posterior largest and spiniform, and sitluated above the origin of the posterior feet.

The sea coast of the western departments of France produces some other species, which belong to the genus Ebalia, Leach *.

All the remaining ones are from India and America.
Some fossil Lencosire are found in the East Indies. Three species have been described by M. Desmarest, two of which, according to him, are true Leucosice, Leach, and which are now living in the sane countries, and peculiar to them.
Our fifth section, that of the Trigona, is composed of those species whose shell is usually triangular or suburoid, narrowed before into a point or kind of beak, generally uneren and rough, with lateral eyes. The interval comprised between the antennæ and the buccal carity is always nearly square, as long, or almost as long, as broad. The claws, at least those of the males, are always large and elongated. The following feet are very long in a great number, and sometimes the two last even differ in form from the preceding ones. The third joint of the external foot-jaws is always nearly square or hexagonal, in those at least whose feet are of the ordinary length.

The apparent number of the caudal seginents varies. In both sexes of several it is seven; in others, however, the males at least, it is less.

Several of these Crustacea are designated by the vulgar appellation of Araignées de mer or Sea-spiders.

Although the species of this tribe are very numerous, but two have as yet been discovered except in a fossil state, one of which at least-Maia squinado-exists at the present day in a living state, and in the same localities \dagger.

A first division will comprehend those whose second and following feet are similar, and which diminish progressively in size.

From the latter we will form a first group of all those where the tail, either in hoth sexes, or in the females alone, is composed of seven segments. The third joint of the external foot-jaws is almost always square, and truncated or notehed at the superior internal angle.

Very large claws, particularly so when compared with the other fect, which are extremely short, directed horizontally and perpendicularly to the axis of the body, as far as the carpus or joint immediately preceding the hand, then reflected anteriorly on themselves with the fingers bent, suddenly forming an angle ; very short ocular pedicles, projecting but little, if at all, from their cavities ; a stony and very uneven or spiny shell, designate the

> Pamilenope, Fab.

The lateral antennæ of some are very short, not exceeding the

[^163]length of the eyes; the first joint is entirely situated under the ocular cavities.

If there are seven segments in the tail of both sexes, we have the gchus Parthenope properly so called * of Leach.

If that of the males presents but five, it is his genus Lambrus \dagger.
The lateral antemne of the others are sensibly longer than the eycs; their first joint extends to the superior internal extremity of the cavities peculiar to these latter organs, and appears to be confound.. ed with the shell. The post-abdomen is always composed of seven segments. 'The claws of the females are much shorter than those of the opposite sex. The same maturalist distinguishes these Crustacea generically by the name of Eurynoma. But a single species is known which inlahits the English and French coasts \ddagger.

All the other Parthenopes, one excepted $\$$ are from the Indian Ocean.

In the following ones, the claws always project, and their length, at most, is double that of the body; thein fingers are not suddenly lent into an angle $\|$.

Here the length of the longest feet-the second-barely excends that of the shell from the eyes to the origin of the tail. The under part of the tarsi is usually either dentated or sliny, or furnished with a ciliated fringe terminated like a club.

We will commence with those whose ocular pedicles are very short, or of a mean length, susceptible of heing entirely retracted within their cavities, and whose claws, at least in the males, are considerably thicker than the other feet.

Mithrax, Leach.

Robust claws; ends of the fingers like the bowl of a spoon; stem of the lateral antennæ sensilly shorter than the pedicle; the tail composed of seven seginents in both sexes.

All the known species are from the American seas I.

Acanthonyx, Latr.

A tooth or spiniform projection on the inferior side of the tibiar ; under part of the tarsi pilose, and as if pectinated; superior surface

[^164]of the shell smooth. The tale of the males presents, at most, but six complete segments*.

Pis., Leach.

Claws of a mean size, with pointed fingers; tibite without any spine beneath, and the tail composed of seven segments in both sexes. As in the preceding subgenera, the lateral antenne are inserted at an equal distance from the fossulic that receive the internediate ones, and from the ocular cavities, or rather nearer to the latter.

These, as in the genus Naxia, Leach \dagger, have two ranges of dentations on the under part of the tarsi. Those have but a single row of dentations, or a simple fringe of thick claviform cilia, under the same joint. The latter constitute the genus Lissa of that author ${ }_{f}$.

Among those which have a range of dentations, the feet sometimes gradually diminish in length, as happens in his Pisa§, properly so called, and at others, the third ones, in the males, become abruptly shorter than those which precede them, as in his Chorinus \|.

Pericera, Latr.

The Periceræe, though approaching the Pisæ in the form and proportions of the claws, and the number of their caudal segments, are removed from them, as well as from the other anterior subgenera, by the insertion of their lateral antenne under the snout, and their approximation to the fossule lodging the intcrmediate ones, being closer than to those whieh receive the ocular pedieles σ.

In the two following subgenera the ocular pedicles are short or moderate, as well as in the preceding ones. But the claws. even those of the males, are hardly thicker than the following feet. The tail always consists of seven segments. In the

Mala, Leach,

The second joint of the lateral antenne seems to arise from the internal canthus of the ocular fossee. The hand and the joint which precedes it are nearly of the same length. The shell is ovoid.

This sul)genus established by Lamarck, and originally consisting of a great number of species, comprises, at present, according to the method of Dr. Leach, but one, the Cancer squinado, Herbst, XIV,

[^165]884, 5, lvi; Inachus cornutus, Fab. It is very common on the coast of France and in the Mediterancan, where it is called Araignée de mer. It is one of the largest of the European Crustacea, and the Maiu of the ancient Greeks, figured on some of their cuins. They attributed great wisdom to it, and considered it as sensible to the charms of music.

Micippe, Leach.

The first joint of the lateral antenne curved, dilated at its superior extremity into a transyerse and oblique blade, closing the ocular. fosses; the ensuing joint inserted under its superior margin. The shell, riewed from above, appears widely truncated before; its anterior extremity is inclined, and terminates in a sort of elypeus or dentated rostrum *. 'the

Stenocionol's, Leach,

Is disting uished from all other subgenera of this tribe by long and slender ocular pedicles which protrude from their fonsulae \dagger

There the under surface of the feet presents neither ranges of dentations nor claviform cilia. These of the first pairs, at least, are one half longer than the shell, and frequently much longer. 'The body is usually more abhreviated than in the preceding subgenera, being either nearly globular, or formed like a shortened egg.

A sjeceies of this tribe, - Háaia retuju, Coll. du Jard. du Roi, whose shell is woolly and forms a trimeated weid, Cl is obtuse anteriorly; whose strongly curved elon:gated coular pedicles are received into fossula situated under the lateral margin of the shell ; whose carpus is clongated as in Naia;-presents another character which exclusively distinguishes it, riz. the length of the feet scems to augment progressively from the sccond pair onwards, or at least to differ but little. It is the type of the genus

Camposcla, Leach.

In the others, as usual, the length of the fect progressively diminishes from the second pair to the last.

In some of them, the ocular pedicles, although much shorter than in the Stenocionops, are alriays salicut, and the third joint of the pedicle of their lateral antenne is as long, or ceren larger, than the preceding ore the antenme themselves teminating in a long setaceous stem. The approach the Nicippes; such is the

$$
\text { Hamue, Latr. }+
$$

In those which constitute the two following sub-genera, the ocular

[^166]pedicles are susceptible of being entirely retracted within their fossulx, and are protected posteriorly by a dentiform projection, or angle, of the lateral edges of the shell. The second joint of the peduncle of the lateral antenne is much larger than the following one; they are terminated by a very short stem resembling an elongated stiplet.
Hras, Leach.

Lateral edges of the shell dilated behind the ocular cavities, which are large and oval ; external side of the second joint of the lateral antennie compressed and carinated; ocular pedicles, when erected, entirely exposed. The body is sub-ovoid *. In the

Libinia, Leach,

The ocular fossulæ are very small and nearly orbicular, and the ocular pedicles are very short, and but very slightly exertile. The second joint of the lateral antemne is cylindrical, and not compressed, or but very slightly so. The body is nearly globular, or triangular.

We will unite the Doclea and the Egeria of Leach to his Libinie.

In his Libinire, properly so called t, the claws of the males are thicker than the two following fect, and almost as long. The length of the longest does not excced twice that of the shell.

The claws of the male Doclra \ddagger are much shorter than the two following feet. The length of the latter is hardly more than once and a half that of the shell, which is nearly globular and always covered with a brown or blackish down.

In the Egerize § the claws are filiform, and the hands much clongated and almost linear. The following feet are five or six times longer than the shell. 'The body is triang'ular'.

Having reviewed all the sub-genera of this tribe in which the feet subsequent to the claws are of amilar form, and in which the tail, of the females at least, and most generally in both sexes, is composed of seven complete joints or segments, we now pass to those in which it never consists of more than six. The feet are usually long and filiform, as in the last sub-genera. With the exception of the Leptopi, these Crustacea are almost removed from the preceding by the form of the third joint of the external foot-jaws. It is proportionally narrower, and contracted at base, and the ensuing joint appears to be inserted at the middle of its superior margin, or more externally. The following sub-genus differs from those which succeed to it, in the tail of the males, where we only find three segments. The form of the third joint of the external foot-jaws appears to me the same as in the preceding sub-genera.

[^167]
Leptopus, Lam.

Tail of the females composed of but five segments; the body convex and feet very long.

But a single species is known which is part of the collection of the Muséum d'Histoire Naturelle, where it is called Maia longixes. Doctor Leach proposed to designate this genus by the name of Stenopus, a denomination we have not adopted, inasmuch as it is already appropriaied to another'. 'That of Leptopus, Lam., is composed of several species, which, the above mentioned one excepted, according to the charaeters here given, must be excluded from it.

If we except some species of Hymenosomx in which the tail presents but four, or at most five, distinet segments, that part of the body consists of six in all the following sub-genera, either in both sexes, or in the males. The third joint of the external foot-jaws is sometimes in the form of an inverted triangle, or of a posteriorly narrowed oval, and sometimes in that of a heart. The ensuing joint is inserted in the middle of its superior margin, or rather more outwards than inwards.

Some of them, such as the three following sub-genera, approach those of which we have just spoken by the almost isometrieal, or at least transversal form of the epistoma. The base of the intermediate antenne is but a short distance from the superior margin of the buecal eavity.

One of these sub-genera is distinguished from the others hy the flatness of the shell, and by the superior extremity of the first joint (free in several) of the lateral antenne, whieh does not extend beyond that of the ocular pedieles. Such is the.

Hymenosoma, Leach.

The shell is triangular or orbieular *. The species are generally small and peculiar to the Indian Ocean and coast of Australia. The number of eaudal segments varies, but never extends beyond six.

In the two following sub-genera, the shell is more or less convex, always triangular and terminated before in a rostrum. The first joint of the lateral antemne, always fixed. forms a ridge or salient line between the fossube of the intermediate antenmer and that of the eyes, and which is prolonged beyond the end of the ocular pedicles. In the

Inachus, Fab..

The tail is always composed of six segments; all the tarsi are nearly straight, or but slightly arcuated; the oeular pedicles are smooth, susecptible of being concealed within their fossula, and there is a tooth or spine, at least in the males, at the posteriorextremity of the latter cavitics. Doctor Leach has considerably reduced the original cxtent of this group t.

[^168]
Acheus, Leach.

Six segments in the tail, but the four posterior tarsi are arcuated or falciform; the ocular pedicles are always salient and present a tubercle anteriorly *.

Next come those in which the epistoma is longer than it is broad, shaped like an elongated triangle truncated at the apex, and in which the origin of the mediate anteune is separated by a considerable space from the superior margin of the buccal cavity. The ocular pedicles are always salient when the head is triangular and terminated in a point more or less bifid or entire.

Stenorhynchus, Lam.-Macropodia, Leach.

Six caudal segments in both sexes; anterior extremity of the shell bifid + .

Leptopodia, Leach.

Five segments in the tail of the male; one more in that of the female. The shell is prolonged anteriorly into a long, entire, and dentated point \ddagger.
The latter Trigona differ from the preceding in the dissimilitude of their posterior feet.

> Pactolus, Leach.

The four or six anterior feet simple, or without forceps. The internal extremity of the penultimate joint of the four posterior ones is prolonged into a tooth, forming with the last joint a forceps or didactyle hand. The form of the shell is that of the Leptoporliæ, and the tail presents the same number of segments: but the feet are much shorter; those of the third pair were wanting in the individual which served as the type of this section §.

Lithodes, Lat.

The Lithodes, as to the form of the first eight pairs of feet, resemble the other Trigona; their length, however, seems progressively to increase from the second to the fourth, but the two last are very small, bent, but slightly visible, beardless, and apparently useless. The tail is membranous with three crustaceous and transverse spaces on the sides, and another on the end, representing the segmentary divisions. The eyes are approximated inferiorly, The external foot-jaws are elongated and salient, and the shell is triangular, ex-

[^169]tremely spinous, and terminated anteriorly by a dentated point. These Crustacea are peculiar to the Arctic Seas*.

Our sixth section, that of the Crxpropoda \dagger consists of Brachyura remarkable for a vaulted projection of the posterior extremities of their shell, under which their fect, the two anterior or the claws excepted, can be completely retracted and concealed. The shell is nearly semicireular or triangular. 'The superior edge of the furceps is more or less clevated and notched in the manner of a crest. In those species where they are largest, they cover the anterior part of their body, and hence the name of Coq de mer (Sca Cock), and Crabe honteux (Bashful Crab), which have been given to some of them. One subgenus of this section, that of AEihra being closely allied by other characters with the Parthenopes of Fabricius, the first sul-genus of the preceding section, it follows, in a natural order, the Cryptopoda should be placed between the Orbiculata and the Trigona.

Calappa, Falt.

An extremely convex shell ; the forceps triangular, strongly compressed, dentated superiorly like a crest, and perpendicularly covering the anterior part of the body, during the contraction of the feet. The third joint of the external foot jiaws is terminated like a hook, and the stuperior extremity of the buccal cavity is contracted and divided longitudinally into two cells by a septum.

In most of them, the two posterior and lateral dilatations of the shell are incised and dentated.

One species, the Calappe migrane,-Cancer granulatus, L.; Calappa granulata, Fab.; Her!st., XIH, 75. 76, vulgarly styled Cor de mer and Crabe honteux, is found in the Mediterranean. The shell is reddish and marked with two deep sulci, and unequal tubereles of a carmine red. That fortion of the lateral margin which precedes the posterior dilatations, is at first nearly entire, and terminates hy four very short tecth, the two first being most strongly marked; those of the edges of the dilatations are large, and six in mumber, two on the posterior margin, and the other's lateral. 'There are two others on the front. The foreeps are also furnished with red tubereles, and their crest is formed by seven tecth, the superior of which are acute \ddagger.

[^170]The others, such as the C.voilté-Cancer calappa, L.; Calappa fornicata, Fab.; Herbst., XII, 73, 74, have the marginal dilatations of the shell entire. This species inhabits the seas in the vicinity of Australia and the Moluccas.

Athra, Leach.

The Aethre differ from the Calappe in their very flat shell, in their forecps, which are not raised perpendicularly, and which do not overshadow the forcpart of their body, and in the almost square form of the third joint of the external foot-jaws.

Sometimes* the shell is a transversal oval, and at others forms a short and very wide triangle laterally dilated and rounded. The claws are butslightly clongated, and are tolerably thick; here they are longer, augular, and remind us, as does also the form of the shell, of the Parthenopes. These latter species might constitute a separate subgenus.

Finally, our last and seventh division, that of the Notopoda, consists of Brachyura, whose last four or two feet are inserted above the level of the others, or which appear to be dorsal and look upwards. In those where they terminate by a sharp look, they are usually employed by the animal in seizing various bodics, such as shells, Alcyonii, \&c., with which it covers itself. The tail consists of seven segments in both sexes.

The tail of some of them, as in other Brachyura, is folded under, and their feet terminate in a sharp hook and are not fitted for natation.

Here the shell is nearly square, and terminates anteriorly in an advancing and dentated point, or it is sub-ovoid or truncated before. In the

Homola, Leach,

The eyes are supported by long pedicles closely approximated at the base, and inserted under the middle of the front. The two posterior fect are alone turned up. The claws are larger in the males than in the females.

The shell is extremely spinous, with a dentated projection on the middle of the front. The superior foot-jaws are clongated and salient.

These Crustacea inhabit the Nediterrancan, and were designated by Aldrovandus under the name of Hippocarcini; they are the Thelxiopes of Rafinesque. Some of the species attain a great size \ddagger.

Dorippe, Fab.

The eyes widely seprarated and placed at the anterior and lateral angles of the shell; the four posterior feet turned up; the claws short

[^171]in both sexes; the shell ovoid, widely truncated, without any projection like a rostrum, and flattened.

As remarked by Desmarest, we may observe on each side and above the origin of the claws, an oblique fissure resembling a buttonlole. longitudinally intersected by a diaphragm, ciliated, like itself, on the inargin that communicates with the branchixe, and affording an issue to the water that bathes them.

Three species are found in the Mediterranean*; the others inhahit Oriental seas, and one of them D.quudridens, Fabr., Herbst., $\mathrm{X}, 70$, is also obtained there in a fossil state.
There, the shell is sometimes nearly orbicular, or globular, and sometimes arcuated anteriorly and narrowed posteriorly, and dentated or spinous on the sides. The eyes are situated near the middle of the front, and placed on short pedicles.

Dromia fab.

The four posterior feet inserted in the back, and terminated by a double hook; the shell suborbicular or nearly globular, convex and woolly, or very hairy.

With their hind feet they scize upon Alcyonii, shells, and other bodies, beneath which they shelter themselves. transporting them wherever they go.

The most common species,-Cancer dormia, L. Rumph.. Mus., XI, 1; Herbst., XVInI, 103, is found in every sea, that of the North excepter, It is covered with a brown down, and has five teeth on each lateral margin and three in front. The fingers are stout, deeply dentated on the two edges. and fartly rosecoloured. Some authors say that it is renomous.
The Death's Head,-Cancer caput mortuum, L.; Dormia clypeata, Act. Hafin., 1802, is smaller, more convex, almost glubular, with three tecth on each side in its anterior margin, and has a short front, emarginate in the middle and laterally simuous. It is found on the coast of Barbary \dagger.

Dynoneare, Lat.

The two posterior feet much smaller than the others, alone dorsal, and apparently unarmed; the shell widened, and nearly resembling a reversed heart trumeated posterionly, like that of the last Quadrilatera, and simply pubescent. The ocnlar pedicles are longer than those of the Dromix.

But a single species, the Dynomene lispide, Desmar.. Consid., XVIII, 2, is known; it is found at the Isle of France.
The last Notopoda differ from the preceding in the feet, all of which except the claws, terminate in a fin, and from all the Brachyura in the extension of their tail. Such is the

[^172]
Ranina, Lam.,

In which the elongated shell is gradually narrowed from before backwards, and usually resembles a reversed triangle with a dentated base. The ocular pedicles are extended, and the lateral antennæe long and projecting. The external foot-jaws are similarly lengthened and narrow, and the extremity of the third joint is compressed into a point. All the fect are closely approximated. or almost contiguous at their origin, and from the fourth pair ascend towards the back; the two last, however, are alone on it. 'The forceps are compressed, have the figure of a reversed triangle, and are dentated; the fingers are suddenly flexed.

These Crustacea are closely allied to the Albuncæ of Fabricius, the first sub-genus of the following family, and thus form the passage from the Brachyura to the Macroura. From the approximation of the feet it is even probable that the genital orifices of the female are situated as in the Macroura. According to Rumphius, they not only leave the water, but even climb to the tops of houses; from the form of their feet, however, this appears impossible, or at least very improbable.

A fossil species was described by Aldrovandus, which the Abbé Ranzani and M. Desmarest have since made better known *.

FAMILY II.

MaCROURA.-Exochnata, Fal.

In the Decapoda Macroura, the end of the tail is provided with appendages \dagger which most frequently form a fin on each side; the tail itself is at least as long as the body, extended, exposed and simply

[^173]curved towards its posterior extremity. Its under surface usually presents in both sexes five pairs of false fect, each terminated by two lamine, or as many filaments. This tail is always composed of seven distinct segments. The genital orifices of the females are ont the first joint of the third pair of fect. The branchixe are formed of vesicular, bearded and hairy pyramids, arranged in scveral of them either in two rows, or in separate fasciculi. The antennæ are generally elongated and salient. The ocular pedicles are nsually short. The cxternal foot-jaws are mostly narrow and elongated, resembling palpi, and do not wholly corer the other parts of the mouth. The shell is narrower and more elongated than that of the Brachyura, and usually terminates by a point in the middle of the front.

For more minute details we refer the reader to the precited momoir of Messrs. Audouin and Edwards. These gentlemen have observed a character in the Lobster,-Astucus marinus, Fab.-which, if it applied to the other Macroura, would be decisive ; it is, that besides the two venons sinuses of which we have spoken in our general observations upon the order, there is a third, sitnated in the sternal canal between the two preceding ones, and extending from one end of the thorax to the other. This curious arrangement, according to them, establishes a connexion between the venous system of the Macroura, and that of the Stomapoda.

The Macroura never quit the watcr, and, with the exception of a small number, are all marinc Crustacca.

In imitation of Dec Gecr and Gronovins, we will arrange them in a single genus *, that of Astacus, which we divide in the following manner:
Some, by the proportions, figure, and uses of their fect, of which the first, or at least the second pair, are in the form of claws, and by the subcaudal situation of their ora, evidently approach the preceding Crustacea, and approximate still more closely to those commonly known by the names of Crave-fish, Lobster, and Shrimp.

The feet of the others are very slender, and are furnished with an exterior and elongated appendage or branch, which seems to double their number. They are exclusively adapted for natation, and none of them terminates in a forceps. The ova are situated between them, and not minder the tail.

We will subdivide the former into four sections; the Anomala, the Locuste, the Astacina, and the Carides.

The latter will compose the fifth and last sections of this family, and of the Dccapoda, or that of the Scmzoroda.

In the first, or the Anomala, the two or four last feet are always

[^174]much smaller than the preceding ones. The under part of the tail is never furnished with more than fontr pair of appendages or false feet*. The lateral fins of the end of the tail, or the pieces whieh represent them, are thrown on the side and do not form with the last segment a flabelliform fin.
'The ocular pedieles are generally longer than those of the Macroura belonging to the following sections.

Here (the Hippides, Latr.), all the superior teguments are solid. The two anterior feet sometimes terminated in a monodactyle hand, or one without a finger, in the manner of a palette, and sometimes in a point; the six or four following ones end in a fin; the two last are filiform, reflexed, and situated at the inferior origin of the tail. The latter becomes suddenly narrowed immediately after the first segment, which is short and broad; the last is in the form of an elongated triangle, and the lateral appendages of the penultimate in that of curved fins. There are four pairs of sub-eaudal appendages, composed of a very slender and filiform stem. The antennæ are very pilose or strongly ciliated; the lateral first incline to the intermediate, and are then arcuated or contorted outwards.

Albunea, Fabr.

The two anterior feet, terminated by a very compressed triangular, monodactyle hand; the last joint of the following ones falciform. The lateral antennæ are short, and the intermediate ones are terminated by a single long and setaceous filament. The ocular pedieles occupy the middle of the front, and form, together, a sort of flat triangular snout, with the external sides arcuated. The shell is almost plane, and nearly square; the posterior angles are rounded, and their anterior margin finely dentated.

The only well known species, Cancer symmista, L,; Albunea symnista, Fabrı. Herbst., XXII, 2; Desmar., Considér., xxix., 3, inhabits the Indian Ocean \dagger,
If the Cancer carabus of Linnæus belong to the same subgenus, a species would be found in the Mediterranean.

Hippa, Fab.-Enemita, Gronov.
The two anterior feet terminated by a strongly compresser, nearly ovoid and adactyle hand: the lateral antenne much shorter than the intermediate, and eontorted; the latter terminated by two short, obtuse filaments plaeed one on the other ; the oeular pedicles long and filiform, and the third joint of the foot-jaws very large and

[^175]laminiform, emarginated at the end and covering the ensuing joints. The shell is nearly ovoid, convex, and truncated at both ends.

Whe last joint of the second feet and of the two following pairs is triangular, but approaching, in the latter at least, to the form of a crescent: the two last of the fon'th pair are turned up, and laid on the two preceding ones; the first segment of the tail is marked with two impressed and tiansverse lines *.

Rempes, Lat.

The two anterior feet elongated, the last juint conical, compressed, and hairy; the fon anteme closely approximated, very short, and nearly of an equal length, the intermediate ones terminated by two filaments; ocular pedicles extremely short and cylindrical ; external foot-jaws in the form of small claws, thinned and arcuated at the end, and terminated by a stout hook. The shell is shaped like that of the Hippre.

The last joint of the second and third fect forms a triangular blade, with an emargination in its external side; the same foint of the fourth is triangular, narrow, and elongated. As in the Hippar, the first caudal segment presents two impressed and transverse lines.
'Two species are known; one from the Australian Sea \uparrow, and the other from the Antilles, and the coast of Brazil.
There (the Pagurii, Latr.), the teguments are somewhat crustaccons, and the tail is most commonly soft, contorted, and in the form of a sac. The two anterior fect terminated in a didactyle hand, the four following ones in a point, and the four posterior, which are shorter, in a sort of forceps or little didactyle liand. The first joint of the peduncle of the latcral antenme presents a pointed or spiniform appendage or projection.

These Crustacca, termed C'arcimion by the Greeks, and Cancelli by the Latins, usually inhabit empty univalve shells. Their tail, that of the Birgi excepted, presents but three false fect, (in the females only), situated on one of the sides, each of which is divided into two filiform and hairy branches. The three last segments are suddenly narrowed. In some of them, such as the
Burgus, Leach,

The tail is tolerably solid, suborbicular, and is furnished beneath with two rows of laminiform appendages. The fourth fect are but a little smaller than the two preceding ones; the two last are folded and concealed, their cxtremities being received into a depression at the bottom of the thorax; the fingers at the extremity, as well as those of the penultimate pair, are hairy or spinous. The claws excepted, all the fect are visibly separated at their origin. The thorax has the figure of a reversed heart, and is pointed anteriorly.

[^176]It appears that from their size, the form of their tail, and the more solid cousistence of their teguments, the Birgi are unable to shelter themselves in shells. They must retreat to holes, or fissures in the rocks.

The best known species, Cancer latro, L., Herbst. XXIV ; Rumph., Mus., IV; Seba, Thes., III, xxi, 1, 2, according to the Indians, feeds on cocoa-nuts, which it obtains during its nocturnal excursions for that purpose *. In the others, or the

Pagurus, Fab.,

The last four feet are much shorter than the preceding ones, and the forceps are covered with granules. The tail is soft, long, cylindrical, narrowed near the extremity, and has usually but a single row of filiform oviperous appendages. The thoras is ovoid or oblong.

With the exccption of some species domiciliated in sponges, Serpulæ and Alcyonii, they all inhabit univalve shells, whose aperture they close with their anterior claws, and most frequently with one of their fingers, which is usually larger than the other. It is asserted that the female spawns twice or thrice in the year.
Some species, Cenobita, Latr.; distinguished from the others by their projecting antennæ, of which the mediate are nearly as long as the external or lateral, and are furnished with elongated filaments, whose thorax is ovoido-conical, narrow, elongated, strongly compressed on the side, with the anterior cephalic portion shaped like a heart, establish their domicile in terrestrial shells on rocks near the sea, whence at the approach of danger, they roll down with them \dagger.

The true Paguri-Pagurus, Latr.,-on the contrary, have the mediate antennæ curved, much shorter than the lateral ones, with the two filaments short, the superior forming an elongated or subulated cone; the anterior division of the thorax is square, or forms a reversed and curvilinear triangle. They inhabit marine shells.

The Hermit,-Cancer Bernhardus, L., Herbst., XXII, 6; Pagurus streblonyx, Leach, Malac. Brit., XXVI, 1-4,-is of a mean sizc. Its two claws are bristled with spines, with the furceps alnost in the shape of a heart, the right one being the largest. The last joints of the ensuing fect are also spinous. It is very common in European seas. A sccond but fossil specics, the Pagure de Faujas,-Desmar., Hist. Nat. des Crust. Foss., XI, 2 , -is closcly allicd to it.
A third species, the P agurus angulatus, Risso, Crust. de Nice, I, 8; Desmar., Considér., XXX, 1 , is remarkable for its forceps,

[^177]\dagger Pagurus clypeatus, Fab.; Herbst., xii, 2.
VOL. III.
which are strongly sulcated with longitudinal ridges. The right one is the largest *.
A fourth from the same sea is removed from the preceding by several characters, and merits the distinction of forming a scparate subgenus, the Probirlax, Latr. The tail, with the exception of the superior surface of the three last segments, instead of being soft and arcuated, and having but in single range of oviferous filaments, is covered with a coriaccous tegument, is straight, and is only curved beneath at its extremity; its inferior surface presents a groove and two lows of false feet. The body also is linear, and the two lateral appendages of the end of the tail are almost equal, the larger division being foliaceous and ciliated. The last four feet are slightly granulated at their extremity, and appear to be terminated by a single finger, or at least are not distinctly bific. Perhaps we should refer to this division those Paguri which inhabit the Serpule, and Alcyonii, such as the Pagurus lubulurius, Fab.

In all the following Macroura, the two posterior feet at most are smaller than the preceding ones. Must gencrally the sub-caudal false feet form tive pairs, the teguments are always crustaceous. The lateral fins of the penultimate segment of the tail, and its last, form a common one arranged like a fan.
${ }^{r}$ The two subsequent sections possess a common character, which separates them from the fourth or that of the Carides. I'he antemme are inserted at the same height, or on a level; the peduncle of the lateral ones, when accompanied by a seale, is never entirely covered by it. There are frequently but four pairs of sub-caudal false feet. The two mediate antenne are always terminated by two filaments only, usually shorter than their pediuncle, or scarcely any longer. The extermal leaflet of the natatory appendages of the penultimate segment of the tail is never divided by transerse suture.

In our second section, or the Locustes, so called from the name Locusta given by the Latins to the most remarkable Crustacea, of this division, and from which is derived that of Langouste, applied to them in France, there are never more than four pairs of false feet. The posterior extremity of the fin that terminates the tail is always nearly membranous, or less solid than the rest. The peduncle of the mediate antenne is alwas longer than the two terminal filaments, and more or less bent or geniculate; the lateral ones are never furnished with scales; sometimes they are reduced to a single peduncle which is dilated, very that, and in the form of a crest : sometimes they are large and long, terminating in a point and bristled with spines. All the feet are nearly similar and end in a point ; the two first are merely somewhat larger; their pemultimate joint and that of the two last are at most unidentated, but without forming with the last a per-

[^178]fectly didactyle hand. The pectoral space included between the fect is triangular; the thorax is almost square or sub-cylindrical, and without any frontal prolongation or rostrum.

> Scyllarus, Fal.

The Scyllari, or Sea-Grasshoppers as they are called, present a very usual character in the form of their lateral antenne; the stem is wanting and the joints of the peduncle, very much dilated transversely, form a large, flattened, horizontal crest more or less dendated.

The external branch of the sub-caudal appendages is terminated by a leaflet; but the internal one, in some of the males, is a mere tooth.

Doctor Leach has established three gencra of them, founded on the proportions and form of the thorax, the position of the eycs, and some other parts. T'hey are,

1. Scylarius, where the thorax is as long as it is broad or longer, and without any laternal incisure, the eyes always situated near its anterior angles; the penultimate joint of the two posterior fect unidentated in the females. They excavate holes in the clayey soil near the shore, which serve them for habitations.

In one of them the Scyllare ours; Cancer arctus, L.; Cigale de mer, Rondel., liv. XIII, chap, VI; Herbst., XXX, 6, the external or lateral antennæ are much dentated. The thorax is marked with three longitudinal and dentated ridges, and the superior surface of the tail sculptured, but its lateral margin not crenulated.

The other, Scyllarus cequinoxialis, Fab.; Scyllarus orientalis, Risso; Squille large, or the Orchetta, Rondel.; Gesn., Hist.des Anim., I1I, p. 1097, is large, shagrecned, and without ridges. The crests are edentated, and the margin of the segments of the tail crenulated. Its flesh is highly esteemed, and the ova are of a vivid red.
2. Thencs, where the fore part of the thorax is broader than it is long, each hateral margin deeply incised, and the eycs are placed at its anterior augles*.
3. Ibacua, only differing from Thenus in the position of the eyes, which are approximated to the origin of the intermediate antenne.

In an Australian species, Ibacus Pronï, Leach, Zool. Misccl., CXIX; Desmar., Consid., XXX, 12, the exterior lateral margin of the third joint of the external foot-jaws is transversely striated, and notched in the mamer of a crest t. In the

[^179]
Palinurus, Fal.

The latcral antenne arc large, setaceous, and bristlcd with spincs.

Of thesc Crustacea, called Carabos by the Grecks, and Locusla by the Latins, and on which Aristotle made several important observations, some attain a length of nearly two metres, the antenne included. The specics found in European seas remain in deep water during the winter, and only visit the coast on the return of spring. Rocky localities are its favourite haunts. It subsequently deposits its ora, which are of a beautiful red colour, whence their name of Coral. At this period more males are taken than females, while after the spawning scason the latter are most abundant. According to Risso a second copulation, followed by another production of ora, takes place in the month of August. The Palinuri are disseminated throughout all the seas of the temperate and intertropical zones, but are particularly abundant in the latter. Their shell is rough, covered with priekles, and armed in front with stout, projecting, and more or less numerous spines or teeth. Its colour, as also that of the tail, consists of an agreeable mixture of red, green, and yellow. The tail frequently presents transverse bands or spots, sometimes ocellated, arranged in regular series. Their flesh, that of the females particularly, before and after the spawning season, is highly csteemed.

In the species taken on the eoast of France, and probably in others, the extremity of the penultimate joint of the two posterior fect of the female is provided with a tooth or spur peculiar to the sex. The same observation applies to the Seyllari.

Palinurus quadricornis, Fab.; Astacus elephas, Herbst., xxix, 1 ; Leach, Malac. Brit., xxx, or the Lanyouste commune of the Freneh, is sometimes half a metre in length, and when loaded with ova weighs from twelve to fourteen pounds. The shell is spinous and downy, with two stout teeth notched beneath before the eyes. 'The superior surface of the body is of a greenish or reddish brown; the tail is spotted and dotted with yellowish, and its segments are marked by a transverse suleus interrupted in the middle, its lateral edges forming a dentated angle. The feet are pieked in with red and yellowish. It inhabits the coasts of France, that of the Mediterrancan in partieular. It is found fussil in Italy *.
The third section, that of the Astacini, Latr., is distinguished from the preceding by the form of the two anterior feet, and fre-

[^180]quently by that of the two following pairs, which terminate in a forceps with two blades, or a didactyle hand. In some, the last two, or four, are much smaller than those which precede them, therein approaching the Anomala; but the fan-like fin of the cxtremity of their tail and other characters remove them from that section. The thorax is narrow anteriorly, and the front projects in a pointed snout or rostrum.

Some of them,-Galathadece, Leach, as well as the preceding Macroura, have four pairs of false feet; the mediate antennæ flexed like an elbow, with the two filaments representing the stem, are manifestly shorter than their peduncle. That of the lateral antenne is never provided with a lamina in the form of a scale. The two anterior feet alone terminate in a didactyle hand, which is frequently much flattened. The last segment of the tail is bilobate, at least in most of them.

At the head of this division come those whose * posterior feet are much smaller and thinner than the preceding ones; they are filiform, bent up, and useless in locomotion. In the

Galathea, Fab.

The tail is extended, the thorax nearly oroid or oblong, the mediate antenne salient, and the forceps elongated. The superior surface of the body is usually deeply incised or striate, spinous and ciliate. The most remarkable species of the European seas are the

Galathea rugosa, Fab.; Leo, Rondel., Hist. des. Poiss., p. 390 ; Pcmn. Brit. Zool., IV, xiii ; Lcach, Malac. Brit., XXIX, the claws of which are long and cylindrical, the mandibles edentate, and that has three long spines in the middle of the front, directed forwards, and ten similar and equally projecting ones on the tail, six on the second segment, and four on the following one \dagger.

Galathea strigosa; Cancer strigosus, L.; Herbst., XXVI, 2; Penn. Brit. Zool. IV, xiv; Leach, Malac. Brit., XXVII, B. Similar, as respects the mandibles, to the preceding species, but having a projection in front, or a rostrum, with four tecth on each side, and an cighth at the end; the claws are large, but neither very long nor linear, and very spinous, as is a great part of the following feet. This last character distinguishes it from it third species, also found in European seas, the Galathea squamifera, Leach., Malac. Brit., XXVIII, B.
This learned entomolugist has made a peculiar genus, Grinot ea, of the Galathea gregaria of Fabricius, The sccond joint of the intermediate antennæe terminates in a club, and the three last external

[^181]foot-jaws are foliaccous. It is of a red colour, and was discovered hy Sir Joseph Banks in his voyage round the world. It collected in such immense numbers that the Ocean seemed to be of one blood-red colour.

The Rglea, Id., is only distinguished from the precerling genus, and from Galathea, by the dentation of the mandibles, by the second joint of the external foot-jaws being shorter than the first, and by the surface of the body being generally smooth *.
That which Risso first named Calypso, and subsequently Janira, in the opinion of Desmarest,-C'onsidér., 1. 192, does not differ from Galathca.

Porclelana, Lam.

The Porcellame form a singular exception among the Macroura, with respect to their' tail, which is doubled under as in the Brachyura. They are otherwise removed from the Galathere by the more abbreviated, suborbicular, or almost square form of their thorax; by the mediate antenne, which are sunk in their fossulie, hy their triangular forceps; and finally, by the internal dilatation of the inferior joints of their external foot-jars. Their hody is very flat.

They are small, slowly-moring Crustacea, found in erery sea, and conceal themselves under stones near the shore.

Doctor Leach has formed a genus with certain species-hexapus Latr.,--longicornis, Id.,-Bluteli, Risso, Crust., I, 7, \&ec., which he calls Prsidia. According to Desmarest, however, it does not differ in any appreciable character.

Some of them are remarkable for their extremely large and pilose or ciliated forccps. Such are, 1. The Porcellane larges pinces; Cancer platycheles, Penn., Brit. Zool., IV, vi, 12; Herlsst, XLVII, 2, where only the external margin of the forecps is pilose and the nearly naked thorax is rounded; it is found on the rocks in the seas of Europe. 2. The P. lirta, Lam., the whole superior surface of whose forceps and thorax is pilose, and where the latter is nearly oval and becomes thinner anteriorly. It was brought from King's Island by Messrs, Péron and Lesueur.

The forecps of the others are glabrous. Such is the Cancer hexapus, L.; Herbst. XLV'1I, 4. The thorax is marked with short, transverse, and slightly ciliated lines: the front trifid, with its middle tooth finally notclied. The claws are covered with little blood-red seales and granules, the fingers separated and withont internal dentations. It inhabits European seas \dagger.
The genus Monolvers, Say,-Journ. of the Acad. of Nat. Sc. of Philad., 1, 155 ; Desmar., Consid., p. 199 and 200, appears to constitute the passage from the Porcellane to the Megalopes. It approaches the first in the two posterior feet, and in the direction of the tail. But this tail has but six segments, and the eyes are very large

[^182]as in the second. It would also appear that the lateral fins of the end of the tail resemble those of the latter.

The remaining Crustacea of the same division differ from the preceding in their posterior fect, which are similar to their preceding ones in form, proportion and uses, or equally ambulatory. They are also removed from them by the greater thickness and height of the body, the shortness of the lateral antennæ, the smallness of the claws, the large cyes, and lateral fins of the tail, which are composed of a single lamina. This tail is extended, narrow, and simply bent under near its extremity.

Megalopus, Leach.-Macrora, Latr., Eneyc.

Four species are known, three of which inhabit European seas, and the fourth the Indian Ocean *, whence it was sent to Paris by the late M. Leschenault and Messrs. Quoy and Gaymard.

In our second division of the Astacini, Latr., will be comprised those which have five pairs of false feet, the mediate antennæ straight or nearly so, salient, projecting, and terminated by two filaments as long as their peduncle, or longer ; and which, a single subgenus cxcepted-Gehia-lave the four or six anterior feet terminated by a didactyle hand.

Their tail is always extended; their two posterior fect are never more slender than the preceding ones, nor folded. The peduncle of the lateral antennæ is frequently accompanied by a scale.

Some of them, as well as others of the ensuing section, inhabit fresh water.

Those in which the first four feet, at most, terminate in two fingers, whose lateral antenne never have a scale at the base, and where the external leaflet of the lateral fins of the end of the tail, presents no transverse suture, will form a first subdivision. Most of their feet are ciliated or pilose. They inhabit salt-water, and conceal themselves in holes which they excavate in the sand.

Sometimes the index or immoveable finger, formed by a projection of the penultimate joint of the claws, is very evidently shorter than the thumb or moveable finger, merely constituting a simple tooth. The

> Gebia, Leach,

Approaches the preceding sub-genera in the two anterior fect, which are alone didactyle. The leaflets of the lateral fins of the end of the tail widen from the base to their extremity, and are marked with longitudinal ridges. I'he intermediate piece or the last segment of the tail is nearly square \dagger.

> Thalassina, Lat.

The four anterior feet terminated by two fingers; leaflets of the lateral fins of the end of the tail narrow, clongated, and without

[^183]ridges; the last caudal segment or intermediate portion forming an elongated triangle *.

Sometimes the four anterior feet, or the two first and one of the sccond \dagger are terminated by two clongated fingers, forming a complete forceps.

The two anterior claws are the largest ; the lateral leaflets of the fin terminating the tail, are in the form of a reversed triangle, or widest at the posterior magin ; the intermediary, on the contrary, is narrowed from base to apex, and terminates in a point.

Callianassa, Leach.

I'he claws of the Callianassae are very unequal, both as to form and proportion; the carpus of the largest of the two anterior ones is transversal, and forms a eommon body with the forceps; the same joint of the other claw is clongated; the two posterior feet are almost didactyle. The external leaflet of the lateral fins at the end of the tail is larger than the internal, and has a ridge; the latter is smooth.

The ocular pedicles are squamiform, and the cornea is situated near the middle of their external margin. The filaments of the mediate antennæ are not longer than their peduncle.

Callianassa subterranea, Leach, Malac. Brit., XXXII, is the only known specics. It is found on the coasts of France and England. The

Axius, Leach,

Differs from Callianassa in the claws, which are nearly cqual, and in the carpus, which does not form part of the forecps; the posterior feet are similar to the preceeding ones, The leaflets of the lateral fins are nearly equal in size, and have each a longitudinal ridge. The filaments of the mediate antennæ are evidently longer than their peduncle. The

Axius stirhynchus, Leaeh, Malae. Brit., XXXIII, is found on the coast of England, and on that of the western departinents of France, where it was observed by M. d'Orbigny, sen., a corresponding member of the Mus. d'Hist. Nat.
Our second and last subdivision consists of Crustacea whose six anterior feet form as many claws, terminating in a perfectly didactyle forceps, a character which distinguishes them from all the preceding Decapoda, and one which approximates them to the first of the ensuing section; but here the claws of the third pair are the largest, whereas there, it is the two first, besides which they are much thicker. The peduncle of the lateral antemme is aecompanied by a scale or spine. The external leaflet of the lateral fins at the end of the tail, in all the living speeies, is divided in two by a transverse suture f In the

[^184]
Eryon, Desmar.,

All the leaflets of the caudal fin are narrowed at their extremity and terminate in a point; the external one presents no transverse suture. The two filaments of the mediate antemm are very short, and hardly longer than their peduncle. The sides of the shell are deeply cmarginated.
'The forcejs of the two anterior claws are narrow and clongated.
This subgenus was established by Desmarest on a fossil species,Eryon Curiéri, Hist. Nat. des Crust. Fosss., X, 4 ; Consid., XXXIV, 3 , found in a lithographic, calcareous stone from Pappenheim and Aichtedt in the margravate of Anspach.

Astacus, Gronov., Fab.

Leaflets of the lateral fins at the end of the tail widened and rounded at their extremity; the external one divided transversely by a suture, and the posterior extremity of the mediate obtuse, or rounded. The two filaments of the mediate antenne are much longer than their peduncle. 'The sides of the shell are entire, or not incised.

In some, all inhabiting salt water, the last segment of the tail, or that which occupies the middle of the terminal fin, presents no transverse suture.

Those whose lateral antennæ have a large seale on their peduncle, whose eyes are very large and reniform, and the forceps of whose two anterior claws are narrow, clongated, prismatic, and equal, form the genus Nephrops of Leach, the type of which is the Cancer norwegicus, L.; de Gcer, Insect., VII, XXI; Herbst., XXVI, 3; Leach, Malac. Brit., XXVI. 'The two anterior claws are furnished with dentated spines and ridges, and the superior surface of the tail is sculptured. It is found in the seas of the north of Europe, and in the Mediterranean.

Those in which the peduncle of the lateral antemme presents nothing but two short projections in the form of teeth or spines, whose eyes are neither large nor reniform, and whose forceps are more or less oval, compose, with the fresh water species, the genus Astacus, properly so called, of the same author.

Astacus marinus, Fab.; Cancer yammarus, L.; Herbst., XXV; Penn., Brit. Zool., V, x, 21 ; (the Common Lobster). The point or rostrum of the anterior extremity of the shell has three tecth on each side, and another double one at its base. 'The anterior claws are very large and unequal; the largest finger of the forceps is oval, with great molar teeth, the other is clongated, and has numerous small ones. Old individuals are sometimes more than half a metre in lengtl. Its flesh is lighly esteemed. It is found in the European Ocean, in the Mediterranean, and even on the eastern coasts of North America. Its internal structure has been carcfully studied by Messrs. Victor Audouin, and Milne Edwards.
In the fresh water species, which otherwise resemble the preceding in their antemme, cyes, and form of the clars, the last segment of
the tail, or the middle one of its terminal fin, is transversely divided by a suture. The

Astacus communis; Cancer aslacus, L.; Roescl, Insect., III, liv, vii. The Craw-Fish has its anterior forceps granulated, and the inner edges finely dentated. There is a tooth on each side of the snout, and two at its base; the lateral edges of the segments of the tail form an acute angle. Its colour, which is usually a greenish brown, is sometimes altered by accidental circumstances.
This species, which inhabits the fresh waters of Europe, has been more particularly studied, both as resjects its anatomy and habits, and the faculty enjoyed by the Crustacea of regenerating their antemme and feet when they are cither mutilated or destroyed. When about to cast its shell, two stony concretions are found in the stomach, formerly much used in medical practice as an absorbent, but now replaced by the carbonate of magnesia. It conceals itself in holes, or under stones, never quitting its retreat except to search for food, which consists of small Mollusea and Fishes, and the larvec of Insects. It also feeds on putrid flesh, the carcases of quadrupels, for instance, which are placed as a bait for them in nets, or in the centre of fagots of wood. They are also taken in their holes by the light of torches. It changes its shell towards the end of spring. Two months after coition, which takes place ventribus junctis, the female produces her ova, which are at first collected in masses, and glued to the false feet, by means of a viscid humour. They are of a reddish brown colour, and enlarge hefore they are hatched. The young Astaci, at first extremely soft and precisely like their parent, shelter themselves under her tail, and remain there several days, until their bodies aequire a certain degree of solidity.

The term of existence assigned to the Astaci seems to be twenty years and upwards, their size augmeuting in proportion to their age. Those are preferred for the table which inhabit running streams of fresh water. A parasitic animal belonging to the Aunelites is found on their branchise, long ago observed by Resel, but imperfectly known until the researches of M. Odicr *.

The fresh-waters of North America produce another species, the A. Bartonii, figured by Bosc.-Hist. Nat. des Crust., II, $x, 1$.

A third inhahits the rice-ficlds of the same country, to which, according to Maior Le Conte. one of the best naturalists of the United States, it is very injurious.
In the fourth section, that of the Carines, the intermedial antemne are superior or are inserted above the laterals: the pedumele of these latter is completely covered liy a large seale.

[^185]Their body is arcuated, almost gilbous, and of a less solid consistence than that of the preceding Crustacea. The front is always drawn out into a point, and most frequently so as to rescmble a rostrum or pointed lamina compressed and dentated along the edges. The antennæ always project; the laterals are usually very long and resemble very fine sete; the intermediarics of a great number terminate in three threads. The eyes are closely approximated. The external foot-jaws, more elongated and narrow than usual, resemble palpi or attennæ. The mandibles of most of them are compressed and areuated at the extremity. One of the first pairs of feet is frequently flexed upon itself. The segments of the tail are dilated or widened laterally. The external leaflet of its terminal fin is always divided in two by a suture, a character observed nowhere else except in the last Crustacea of the preceding section; the azygous portion of the middle, or the seventh and last segment, is elongated, narrowed near the extremity, and provided above with ranges of small spines. The false feet, of which there are five pairs, are elongated and usually foliaccons.

Immense numbers of these Crustacea are consumed in all parts of the world. Some species are even salted in order to preserve them.

In some of them, the three first pairs of fect form a didactyle claw, the length of which progressively augments, so that the third pair is the longest. Such are the

Peneus, Fab.,

Where there is no annular division in any of the joints of the feet.

Their mandibular palpi are turned up and foliaceous. A little elliptical appendage may be seen at the base of the feet, a character which seems to approximate them to Pasiphæa, the last genus of this section, and to those of the following one.

Some, all indigenous to Europe, on account of the shortness of the two threads of their intermediate antenne, form a first division. It contains the following species.
P.sulcatus; Palcemon sulcatus, Oliv., Encyclop.; Caramote, Rond., Hist. Nat. des Poiss., liv. xviii, chap. 7. Nine inches long; on the middle of the thorax a longitudinal carina bifurcated at base, terminated hy a projecting rostrum, compressed, with eleven tecth in its uper edge and one in the lower; a longitudinal sulcus along each side of the carina.

This species is very common in the Mediterrancan and the ohject of considerable commerec. It is salted and shipped to the Levant. The P. trisulcatus, Leach, Malac. Brit. XLII, which inhabits the coast of England, is perhaps a mere local varicty of the sulcatus. Its thorax is trisuleate and the rostrum bidentate beneath. In the P. d'Orbigmy,--Lat., Nour. Dict. d'Hist, Nat., Ed. II, artiele Pénéc, the carina is not sulcated.
The intermediate antenne of others are terminated by long threads; they constitute our sccond division, to which we refer.

Penceus monodon, Fab.; Squilla indica, Bont., Hist. Nat., p. 81, which inhabits the Indian Occan.
P. antennatus, Risso, Crust., II, 6 , and P. mars, Id., II, 5 , also appear to belong to it.

Stenopes, Lat.
Distinguished from the Penxi by the transverse and annular divisions of the two penultimatejoints of the furr posterior fect.

The entire body is soft; the antenne and feet are long and slender', those of the third pair widest.

But a single species is known. It was brought from the seas of New IIolland by M. Péron and Lesucur. Olivier retains it in the genus Palæmon-Cancer seliferus, L.; P. hispidus, Oliv., Encyclop. and Atl. d'Hist. Nat., CCCXIX, 2 ; Selna, Mus., III, XXI, 6, 7; Herbst., XXXI, 3, where I first placed it.
The remaining Carides, the intermediate antenne of many of which are terminated by three threads, have at most hut two pairs of didactyle claws formed by the four anterior feet.

A subgenus founded on a single species peculiar to North America, that of

> Atya, Leach,

Is removed from all analogous Crustacea by an anomalous character. The forceps terminating the four claws is cleft down to its base, or scems to be composed of two fingers in the form of thongs united at their origin; the preceding joint is erescent-shaped. The sccond pair is the largest. The intermediate antenne have but two threads.

In all the following subgenera, the blades of the forceps originate at a certain distance from the base of the penultimate article, or of that which has the form of a hand; the borly or the part that precedes it is not lunulated.

We now have in the first instance those Carides whose feet are generally robust and not filiform, and which have no appendage to their external base. Their body is neither very soft nor greatly clongated.

Among these subgenera, whose feet are deprived of this appendage, the three following present an insulated form with respect to their claws.

Crangon, Fab.

The two anterior claws, which are larger than the subsequent feet, have but a single tooth in place of the index or immoveable finger, and that whech is moveable is bent and hooked.

The superior or intermediate antennæ have hut two threads. The second feet are folded up, and are more or less distinctly bifid or didactyle at their extremity; neither of the joints is ammlated. The rostrum is very short.

We do not scparate the Egeon, Risso, or the Pontormilus, Leach, from Crangon. In the former, the last joint of the external footjiatw is twice the length of the preceding one, while in the latter
they are equal. The seeond feet of the Egeones are shorter than the third and the smallest of the whole number, whilst in Crangon their length is the same. Besides, as the number of species is very limited, this generic distinetion beeomes the less neeessary.
C. vulgaris, Fab.; Rees., Insect., III, 1xiii, 1, 2, (The Shrimp), about two inehes long. It is smooth, of a pale glaueous green, dotted with grey. That part of the thorax which supports the third pair of feet projeets in a point. This speeies is very common on the oeeanic eoast of Franee, where it is vulgarly called the Cardon. It is taken there annually in nets. Its flesh is delicate, and highly csteemed. In the same locality, though rarely, according to M. Brébisson, is found the C. ponctué de rouge, of Risso; but I eonsider it, with him, as a mere variety. The C. loricatus-Egeon loricalus, Risso; Cancer cataphractus, Oliv., Zool., Adriat., III, 1, has three longitudinal and dentated ridges on the thorax.

Northern seas produee a large speeics, the Crangon boreas, Phipps., Voy. to the North Pole, pl. xi, l, Herbst. XXIX, 2.
Processa, Leach.-Nika, Risso.

One of the two anterior feet simply terminating in a point, the other in a didactyle elaw ; the two following are unequal, slender, and also didactyle, One of these seeond feet is very long, its carpus and the preceding joint being annulated, a charaeter which on the other foot is only found in the first of these joints. T'le fourth pair of feet are longer than the preeeding and two following ones. The superior antennee have but two threads.
P. edulis; Nika edulis, Riss., Crust., III, 3 , is of a flesh eolour dotted with yellowish; a line of small yellow spots in the middle. The anterior extremity of the shell is furnished with three sharp points, the intermediate of which, or the rostrum, is the longest. The two anterior feet are equal in size, the right one forming a foreeps. This speeies is found during the whole year in the markets at Niee. It is also found on the coast of the department of France, ealled the Bouches-du-Rhône *.

Hymenocera, Lalt.

The two anterior feet terminated by a long hook with a bifid extremity, and composed of very short divisions. The two following are very large; the hands, immoveable finger, and superior thread of the intermediate antennæ are dilated, membranous, and alnost fuliaecous. The external foot-jaws are equally foliaceous, and cover the mouth.

The only species known is in the eollection of the Muscum d' Histoire Naturelle, and was eaptured in the Indian Ocean.

[^186]We now pass to the subgencra, in which the claws present no remarkable or insulated peculiarity.

Sometimes the superior or intermediate antenne are only terminated by two threads.
'The rostrum is usually short.

Gnathophyllum, Lati.

The Gnathophylla are the only ones which approach the Hymenocere in the size of their foot-jaws. The four anterior feet form didactyle claws; the second pair is longer and thieker than the first. Neitler of the segments of the four is ammulated *.

Pontonia, Latr.

'The four anterior fect, as in the two following subgencra, didactyle claws, but the carpus is not amulated \uparrow.

Alpheus, Fal.
The four anterior fect also terminated by a didactyle claw, but the carpus of the second is articulated. The latter are shorter than the former + .

Hyppolyte, Leach.

The Hyppolytes only differ from Alpheus in the respective proportion of their claws; the sceond are longer than the first §.

The two last following subgenera lave this peculiarity; but a single pair of their feet terminate in a didactyle claw. In the

Autonomea, Risso,

It is the two anterior, which are also distinguished from the others by their size, their: thickness, and their disjroportion \|. In
Pandalus, Leach,

The two anterior feet are simple, or hardly bifid; the two following ones are longer, of unequal length and didactyle, the carpus and preceding segment ammulated.

The external foot-jaws are very long and slender', at least in some of them. The anterior projection of the shell is greatly extended, and multidentate + .

[^187]Sometimes the superior antenne have three threads.
They have four didactyle elaws, the smallest of which are folded up, and an elongated rostrum.

Palemon, Fab.

Prawns are distinguished from the two following subgencra by their inarticulated carpus; the second feet are larger than the first; the latter are doubled up. A remarkably large species is found in the East Indies, the second claws of which are very long. Tolerably large ones are also found at the Antilles, some of which frequent the mouths of rivers. Those on the eoast of France are much smaller, and are known there by the vulgar names of Crevetles and Salicoques. Their flesh is more lifghly estecmed than that of the Shrimp. According to M. de Brébisson-Catal. Method. des Crust. terrest. et fluviat., du Depart. du Calvados,-they are taken in the same manner as the latter Crustacea, but in the summer only. Prawns swim well, particularly when escaping from pursuit, and in various directions. They are always found about the slore. The lithographie stone of Pappenheim and Solhnofen frequently exhibits the debris of a fossil crustaccous animal, referred by Desmarest to the Prawns, under the specific appellation of spinipes-Hist. Nat. des Crust. Foss. XI, 4. It does in fact resemble it, but the claws are wanting. A second fossil species, but mueh larger, has been diseovered in England.

Pal. serratus, Leach, Malac. Brit. XLIII, 1, 10; Herbst,, XXVII, 1, is from four to five inches long, of a pale red colour, which becomes more vivid on the antennæ, the posterior margin of the segments of the tail, and particularly on the terminal fin. The rostrum extends beyond the peduncle of the intermediate antennæ, is recurved at its extreinity, and has five tecth above, exclusive of the point, and five beneath. The fingers are as long as the penultimate joint. It is found on the coast of France and England, and is the species of this subgenus that is more particularly sold at Paris. A sort of wen is frequently, and at all scasons, observed on one side of the shell, which covers a parasite Bopyrus, which fastens upon its branchiæ.

Pal. squilla, Leach, Malac. Brit., XLIII, 11-13; Cancer squilla, L.: Styuilla fusca, Bast., Opuse. subs., lib. 2, 111,5, is but half the size of the serratus. Its rostrum searcely extends beyond the peduncle of the superior antenne, is almost straight, or but slightity recurved, is cmarginated at the extremity, and has seven or eight teeth above, and three below. The fingers of the elaws are somewhat longer than the hand. Common on the coast of France and England *.
The earpus is articulated, or presenis annular divisions in the two following genera, viz.

[^188]
Sybmata, Risso: ante Melicerta, ejusd.

Where the second pair of claws are larger than the first *, and

Atianas, Leach.

In which, on the contrary, the first pair is larger than the second \dagger. The last suligenus of this section, that of
Pasiphea, Sav.,

Although closely approximated to several of the preeeding by the superior antenne which are terminated by two threads, by the form of the four anterior feet, terminating in a didactyle forceps, and preceded by a joint, without annular divisions, and by the shortness of the rostrum, differs from them in several respects. A testaccons appendage is very evident at the extemal base of their feet; these latter, with the exception of the claws, which are larger and nearly equal, are very slender and filiform ; the body is greatly elongated, strongly compressed, and extremely soft.

Pas. sivado; Alpheus sivado, Risso, Crust., III, 2 ; Desmar., Consid., p. 240, is two inehes and a lialf long, and four lines and a half in breadth. The body is trinsparent, of a naere white edged with red, the caudal fin marked with small dots of the same colour. The rostrum is sharp and slightly curved at the point. Claws reddish.

It is very abundant on the shores of Niee, and according to Risso spawns in June and July. No other species has yet been observed.
Our fifth and last section of the Macroura, that of the Schizopoda, appears to connect the Macroura with the following order. 'The feet, none of which terminates in a forecps, are very slender, resemble thongs, are furnished with an appendage more or less long, arising from their external side near their base, and serving for natation only. The ova are situated between them, and not under the tail. The ocular pedicles are very short. As in most of the Macroura the front projects into a puint or rostrum. The shell is thin, and the tail terminates, as usual, in a sort of fin. 'They are small, and inlabit salt water.

Here the eyes are very apparent; the lateral antennare accompanied by a scale, and the intermediaries terminated by two threads and composed of several small segments, as in the preceding genera.

Mysis, Latr.,

Antenne and feet exposed; the shell elongated; nearly square or eylindrieal; the eyes closely approximated, and the feet capillary, as if formed of two threads \ddagger.

[^189]
Cryptorus, Latr.

A subovoid inflated shell, curving downwards on the sides, enveloping the body as well as the antennex and feet, exhibiting beneath a mere longitudinal fissure. The eyes are separated, and the feet in the form of thongs, with a lateral appendage *.

There the eyes are concealed; the intermediate antennæ are conical, inarticulated, and very short; the laterals are composed of a peduncle, and a thread without any distinct articulations. There is no-at least salient-scale at their base. Such is the

Mulcion, Latr.

The body is soft and thorax ovoid. The feet are in the form of a thong, and most of them have an appendage at their base; the fourth pair is the longest.

I know but one species, the Mulcion Lesueurii, which was captured by that zealous naturalist in the seas of North America. The late Olivier, in the Pinna marina, found a crustaceous animal very similar at the first coup d'œil to the Lesueurii, but the specimens were so much injured that it was impossible for me to study their characters.
The Nebaliæ, which we at first placed in this section, having no natatory appendages under the last segments of their body, and their feet being tolerably similar to those of a Cyclops, will pass with the Condyhura into the order of the Branchiopoda, at the head of which they will stand. The Nebaliæ, by their very prominent eyes, which seem to be on pedicles, and by some other characters, appear to connect the Schizopoda with the Branchiopoda.

ORDER II.

STOMAPODA.

The branchire of the Stomapoda are exposed and attached to the five pairs of sub-adominal appendages, exhibited to us by that part of the body, called tail, in the Decapoda, and which here, as in most of the Macroura, are fitted for natation, or are fin-feet. Their shell is divided into two portions, the anterior of which supports the eyes and intermediate antennie, or composes the head, without giving origin to the foot-jaws. These organs, as well as the four anterior feet, are frequently approximated to the mouth on two lines that converge

[^190]VOL. III.
inferiorly, and hence the denomination of Stomapoda affixed to this order. Judging by the Squillæ, the most remarkable genus of this order, and the only one hitherto studied, the heart is clongated, and similar to a large vessel. It extends along the whole length of the back, rests upon the liver and intestinal canal, and terminates posteriorly and near the anus in a point. Its parieties are thin, transparent, and almost membranous. From its anterior extremity, placed immediately behind the stomach, arise three principal arteries, the mediate of which-the opthalmic-giving off scveral branches on cach side, is more particularly directed to the cyes and intermediate antennar ; and the two lateral ones-the antemaries-pass over the sides of the stomach and are lost in the museles of the mouth and of the externe. 1 antennæ. No artery arises from the superior surface of the heart but a great many issue from its two sides, cach pair of which, as it appears to us, corresponds to a particular segment of the body, commencing with the foot-jaws, whether these segments be external, or concealed by the shell, and even very small, as is the case with those that are anterior. On a level with the first five abdominal annuli, or those to which the natatory appendages and the branchice are attached, this superior suiface of the heart receives, near the median line, five pairs of vessels-a pair to each segment-procecding from thesc latter organs, and which, according to Messrs. Audouin and Milne Edwards, are analagous to the branchio-cardiacs of the Decapoda. A central canal * situated under the liver and intestine receives the venous blood which is poured into it from all parts of the body. On the level of each segment to which the foot-jaws and branchix are attached, it gives off a branch on each side, running to that part of the branchire which is situated at the base of the corresponding foot-jaw. The paricties of these vessels appear to the abovementioned gentlemen to be smooth and continuous, but formed by a layer of lamellated cellular tissue glued to the neighbouring muscles, rather than by a membrane proper; these ressels also appeared to them to communieate with each other near the lateral margin of the annuli, but they could not possitively affirm it. The afferent or internal vessels of the branchixe, which in these Squille form tufted bunches, are continuous with the branchio-cardiae canals, are no longer lodged in cells, pass between museles, turn obliquely over

[^191]the lateral part of the abdomen, reach the anterior margin of the preceding ring, and terminate on the superior surface of the leart near the median line, one partly mounting on the other. The medullary cord, exclusive of the brain, presents but ten ganglions, of which the anterior furnishes nerves to the moutli; the three following, those of the six natatory feet, and the last six, those of the tail. Thus, although the four last foot-jaws represent the four anterior feet of the Decapoda, they nevertheless form a part of the organs of manducation. The stomach of these Crustacea-Squillæ-is small and has but a few very small teeth* near the pylorus. It is followed by a straight and slender intestine which extends along the whole abdomen, accompanied on the right and left by glandular lobes, which appear to supply the want of a liver. A ramous appendage adhering to the inner basc of the last pair of feet appears to characterize the malc.

The teguments of the Stomapoda are thin, and, in several, nearly membranous or diaphanous. The shell is sometimes formed of two shields, of which the anterior corresponds to the head, and the posterior to the thorax, and sometimes of a single piece, which however is free behind, usually exposing the thoracic segments, bearing the three last pairs of feet, and having an articulation before that serves as a base to the eyes and intermediate antennæ; these latter organs arc always extended and terminated by two or three threads. The cyes are always approximated. The formation of the mouth is essentially the same as in the Decapoda; but the palpi of the mandibles, instead of being laid on them, are always vertical. The footjaws are deprived of the flagelliform appendage presented to us by the same parts in the Decapoda. They have the form of claws, or of small feet, and, at least in several-the Squillæ,-their external base as well as that of the two anterior fcet properly so called, exhibits a vesicular body. Thosc of the second pair, in the same Stomapoda, are much larger than the others, and even than the feet, which has caused them to be considered as true fect; fourtcen of them have been counted \dagger. The four anterior fcet have also the form of claws, but are terminated as well as the foot-jaws by a hook which curves towards the head, on the inferior and anterior edge of the preceding joint or of the hand. In others however--the Phyllosoma for instance \ddagger

[^192]-all these organs are filiform and have no forceps. Some of them at least, as well as the last six and equally simple ones of the Stomapoda provided with claws, have an appendage or lateral branch. The seven last segments of the body, containing a large portion of the heart and furnishing a base for the attachment of the respiratory organs, can no longer in this respect be assimilated to that portion of the body which is called the tail in the Decapoda: it is a true abdomen. Its penultimate segment has a fin on each side formed like the cauldal of the Macroma, but is frequently, as well as the last segment or intermediate portion, armed with spines or teeth.

The Stomapoda are all marinc Crustacea. Their favourite halitation is in the intertropical latitudes, and they are not formd beyond the temperate zones. Of their habits we are totally ignorant; that these which are furnishod with claws use them in seizing their prey, in the manner of those Orthoptera called in Provence Pregadious or Mantes*, we cannot doubt. Hence their vulgar appellation of SectMantis: they are the Crangones and Crangines of the Greeks. According to Risso they prefer sandy bottoms in deep water, and copulate in the spring. Other Stomapola, those of our second family. heing less favoured with natatory appendages, and having a much flatter and more superficially extended body, are generally found on the surface of the water, where they move very slowly. We will divide the Stomapoda into two families.

FAMILYI.

UNIPELTATA.

In this family the shell consists of a single shicld, of an elongated quadrilateral form, usually widened and free behind, covering the head, the antennæ and eyes excepted, which are placed on a common anterior articulation, and at least the first segments of the body. Its anterior extremity terminates in a point, or is preceded by a small plate with a similar end. All the foot-jaws, the second of which are very large, and the four anterior feet are closely approximated to the mouth on two inferiorly converging lines, and have the form of claws with a single finger or mobile and flexed hook. With the exception of the second feet, all these organs are furnished at their external origin with a little pediculated vesicle. The other six feet, at the base of whose third segment is a lateral appendage, are linear, terminated by a brush, and simply natatory. The lateral antemie

[^193]have a seale at their base, and the stem of the intermediaries is composed of three filaments. 'Jhe body is narrow and elongated; the ocular pedicles are always short.

This family is composed of but one genus, that of

> Seuria; Fab.,

Which we will divide in the following manmer :-
In some the crustaccous shicld is preceded by a small and more or less triungular plate, situated above the segment, in which the eyes and mediate antennæ are inserted, only covers the anterior portion of the thorax, and does not curve downwards on the sides. The piece which serves as a peduncle to the mediate antenne, as well as the ocular pedieles, and the external sides of the end of the abdomen, are exposed.

Here the body is almost semi-cylindrical, the posterior edge of the last segment being rounded, dentated or spinous; the lateral appendages of the last six fect are styliform.

Squilea, Lat.,

'The true Squillre, along the whole inner side of the penultimate segment of the two large claws, have an extremely narrow groove, dentated on one of its edges and spinous on the other, and the ensuing joint, or the claw, falciform and usually dentated.

Squilla mantis; Cancer mantis, L.; Herbst., XXXIII, I; Encyclop. Méthod., Atl. d'Hist. Nat., CCCXXIV; Desmar., Consid., XLI, 2, is about seven inches in length. 'The base of the large forceps is furnished with three moveable spines, and its claws have six clongated and sharp-edged teeth, the last one being the largest. The segments of the body, the last one exeepted, are marked by six longitudinal ridges, mostly terminating in a sharp point; the middle of the last is strongly carinated, punctured, and terminated postcriorly by a double range of indentations, and four very stout points, the mediate teetly of which are most closely approximated; each lateral margin has two reflected or thicker divisions, the last one terminating in a point. The peduncle of the lateral fins is prolonged beneath and terminated by two very strong teeth. It is common in the Meditcrrancan. The Squille de Desmarest, Risso, Crust. II, 8, which also inhabits the same sea, is hut two inches and a half in length. Its claws have five teeth; the shell and the middle portion of the abdominal segments, the last ones excepted, are smooth*. In the

Gonodactrius, Lell.

The groove of the penultimate segment of the large claws is widened at its extremity, presenting neither dentations nor spines. The finger is dilated, or resembles a knot near its base, terminating

[^194]in a straight or slightly curved compressed point. They are all foreign to Europe *,

There, the body is extremely narrow and depressed, and the last segment alnost square, entire, and without dentations or spines. The lateral appendage of its last six feet is in the form of an almost orbicular and slightly hordered palette; the antennie and feet are shorter than in the preceding; the penultimate segment of the large claws has its inner margin fringed with numerous cilia in the form of little spines; the figure is falciform.

Coronte, Latr.

But a single species is known \dagger.
In the remaining Stomapoda of this family the shell is almost membranous and diaphanous, covers the whole thorax, is curved laterally beneath, prolonged anteriorly into a spine or cnsiform blade, and projeets above the base of the mediate antenne and of the cyes. This base or support is susceptible of being curved under and enclosed in the case formed by the curvature of the shield. The posterior fins are coneealed under the last segment.

These very small, soft Crustacea, are peculiar to the Atlantic Ocean and the Eastern seas. The fingers of the large claws have no teeth; the second joint of the ocular pedieles is much larger than the first, and has the figure of a reversed cone; the eyes properly so called are large and almost globular; the fin-like appendage of the feet resembles that of the Squille and Gonodactyli. In the

Erichthus, Latr.-Smerdis, Leach,

The first joint of the oeular pedicles is mueh shorter than the second; the middle of the lateral edges of the shield has a strongly angular dilatation, and their posterior extremity exhibits two teeth \ddagger. In

A lima, Leach,

The first joint of the ocular pedicles is slender, eylindrieal, and much longer than the following one; the body is narrower and more clongated than that of an E1ichthus: the lateral borders of the shield are nearly straight or are but slightly dilated ; there is a slight longitudinal carina on its middle, and cach of its angles forms a spine, the two posterior of which are the largest §.

> FiAMIIY H.

BIPEL'IATA.

In this family we find the shell divided into two shiclds, the anterior

[^195]of which, very large and more or: less oval, forms the head, and the posterior, corresponding to the thorax, transverse and angular in its circumference, supports the foot-jaws and feet. These latter, with the exception at most of the two posterior and two last foot-jaws, are slender and filiform, usually very long and accompanied by a lateral, ciliated appendage. 'The other four foot-jaws are very small and conical. The base of the lateral antennæ exhibits no scale; the intermediaries are terminated by two threads. The ocular pedicles are long. 'The body is much flattened, membranous, and diaphanous; the abdomen small and its posterior fin without spines. It comprises but a single genus, the

Phyllosoma, Leach,

Of which all the species inhabit the Atlantic Ocean and Oriental seas *.

MALACOSTRACA.

b. Eyes sessile and immoveable.

The Branchiopoda are the only Crustacea of which we shall henceforward have occasion to speak, that exhibit eycs placed on pedicles. But independently of the fact that these pedicles are neither articulated nor lodged in special cavities, the Branchiopoda have no shell, and are otherwise removed from the preceding Crustacea by various characters. All the Malacostraca of this division are also deprived of a shell; their body, from the head downwards, is composed of a suite of articulations of which each of the first seven is furnished with a pair of feet, the following and last ones, seven at most, forming a sort of tail terminated by fins or styliform appendages. The head presents four antenne, the two intermediate superior, two eyes, and a mouth composed of two mandibles, a tongue, two pairs of jaws, and a sort of lip formed by two foot-jaws that correspond to the two superior ones of the Decapoda; here, as in the Stomapoda, the flagrum no longer exists. The four last foot-jaws are transformed

[^196]into fect, sometimes simple and at others constituting a claw, but almost always with a single toe or hook.

According to the observations of Messrs. Audouin and Edwards, the two ganglionary cords of the spinal marrow are perfectly symmetrical and distinct thronghout the whole of their length, and from those of the Baron Cuvier it would appear that the Onisci are only removed from them becanse these cords do not present the same uniformity in all the segments of the body, and because there are some ganglions less *. Thus, according to them, the nervous system of the Crustacea is the simplest of all; in the Cymothox and Idotex the two ganglionary chains are no longer distinct, and those ganglions which immediately follow the two cephaties, form as many small circular masses situated on the median line of the body; but the cords of communication which serve to connect them, remain isolated and attached to each other. It would appear from these facts that the latter Crustacea are higher in the animal scale than the preceding ones, but other considerations seem to us to require a considerable separation between the Talitri and Onisci, and the arrangement of the Cymothox and Idoteæ in an intermedjate rank.

The organs of generation are situated inferjorly near the origin of the tail. The two first appendages with which it is furnished beneath, and which are analogous to those presented to us by the same part in the preceding Crustacea, but more diversified, and always, as it appears, supporting the branchix, differ in this respect, according to the sex. The coitus takes place like that of insects, the male placing himself on the back of his female; the latter carrics her ova under the thorax, between seales which form a sort of pouch. There they are developed, and the young remain attached to the feet or other parts of the body of their mother, until they have acquired the strength requisite for natation, and providing for their wants. All these Crustacea are small, and mostly inhabit the sea-coast or fresh water. Some are terrestrial, and others are known which are parasitical.

They are divided into three orders: those whose mandibles are furnished with a palpus, appear to be naturally connected with the preceding Crustacea-such are the Amphipoda; those in which these organs are deprived of them will constitute the two following orders -the Liemodipoda and the Isopoda. The Cyami, a genus of the second one, heing parasitical, naturally lead us to the Bopyri and Crimothoie, with which we commence the Isopoda.

[^197]
ORDER III.

A MPHIPODA.

The Amphipoda are the only Malacrostraca with sessile and immoveable eyes, whose mandibles, like those of the preceding Crustacea, are furnished with a palpus, and the only ones whose subcaudal appendages, always very apparent, by their narrow and elongated form, their articulations, bifureations, and other incisures, as well as by the hairs or cilia with which they are provided, resemble false or natatory feet. In the Malacostraca of the following orders, these appendages have the form of lamine or seales; here these hairs and cilia appear to constitute the branchice. Many of them, Jike the Stomapoda and the Læmodipoda, have vesicular bursæ either between their feet or at their external lase, the use of which is unknown.

The first pair of feet, or that which corresponds to the second footjarvs, is always annexed to a particular segment, the first after the head. The antennæ, which with a single exception-the Phronimæ, —are four in number, project, gradually taper into a point, and consist, as in the preceding Crustacea, of a peduncle and a single stem, or one furnished at most with a little lateral branch, and usually composed of several joints. The body is generally compressed and eurved beneath posteriorly. The terminal appendages of the tail are most frequently styliform and artieulated. Most of them swim and leap with facility, and always laterally. Some inhabit springs and rivulets, and are often found in couples consisting of the two sexes; most of them however live in salt water. Their colour is uniform, verging on reddish or greenish.

I'hey may all be comprised in a single genus, that of

Gammarus, l'ub.

Which we may subdivide, in the first place, into three sections, from the form and number of the feet.

1. Those which have fourteen feet all terminated by a hook, or in a point.
2. Those which also have fourteen feet, but which are-the four last at least-simple natatory.
3. Those which have only ten apparent feet.

The first section is divided into two.
Some of them,-the Uroirtara, Latr., usually have a large head; the antenne are frequently short, and in some but two in number; the body is soft. All the feet, the fifth pair at most excepted, are simple, the anterior are short or small, and the tail is either furnished at the extremity with lateral fins, or is terminated by points or appendages, widened and bidentated, or forked at their posterior extremity. They
inhabit the bodics of various Acephala or Limnæan Mcdusæ, and of some other Zoophytes.

Here, as in

Pironima, Lat.,

There are but two-very short and biarticulated-antenne; the fiftl pair of feet is the largest of all and terminates in a didactyle forecps; the six appendages of the extremity of the tail are styliform, elongated and forked or bidentated at the end; six vesicular saes may be ubserved between the last fect. Several species appear to exist, but they lave not been strietly and comparatively deseribed.

That which has been taken for our type is the Cancer sedentarius, Forsk., Faun. Arab., p. 95 ; Latr., Gener. Crust. et Insect. I, ii, 2,3 , which is found in the Mediterranean, and inhabits a membranous transparent body that has the figure of a eask, and whieh appears to proeed from the body of a species of Beroe.

The Pluronime sentinelle, Risso, Crust., II, 3, inhabits the interior of Medusæ, constituting the gencra Equorée and Géronic of Péron and Lesucur. Anothcr speeies, according to Leach, has been observed on the coast of Zealand.
There we observe four antenne; all the fect are simple; on each side of the extremity of the tail is a lamellated or fuliaceous fin, the leaflets of which are acuminated or unidentated at the end.

Hyperia, Lat.

The body thickest anteriorly ; the greater portion of the head oceupied by oblong eycs somewhat emarginated on the inner cdge; two of the antenme, at least half as long as the body and terminated by a long setaceous stem composed of several small joints *.

Pirrosine, Risso.

Form of the body and that of the head similar to the Ifyperize, but the antenne, at most, the length of the latter, composed of but few and styliform joints, or terminated by a stem resembling an elongated cone \dagger.

[^198]
Dictylocera, Lat.

The body not thickened anteriorly; the head moderate, depressed, nearly square; cyes small; four extremely short antenmæ composed of but few joints, as in Phrosinc, of various forms-the inferior being thin and styliform, and the superior terminated by a small concave plate on the inmer side-resemble a spoon or forceps *.

The others-Gammarine, Latr:-always have four antenne ; their body, invested with coriaccous and elastic segments, is gencrally compressed and arcuated; the posterior extremity of the tail is deprived of fins; its appendages are styliform and cylindrical, or conical. At least two of their four anterior feet are usually terminated by a forceps.

The vesicular burse, in those where they have been observedthe Gammarinæ, Latr:--are situated at the exterior base of the fect, commencing with the second pair, and are accompanied by a small plate. The pectoral scales which inclose the ova are six in number.

Sometimes the four antennæ, although of different proportions in several, have a similar form and use; the inferior have no resemblance to feet nor do they perform their functions.

A subgenus which we have established under the denomination of

> Ione, Lal.,

Only, however, from a figure given by Montagu-Oniscus thoracicus, Trans. Lin. Soc., IX, III, 3, 4-exhibits very peculiar characters which separate it from all others of the same order. The body consists of about fifteen joints, but only distinguished by lateral tooth-like incisions. The four antenme are very short; those that are external, being longer than the others, are the only ones visible when the animal is scen on its back. Each of the two first segments of the body of the female is provided with two elongated, fleshy, flattened cirri resembling oars. The feet are very short, concealed under the body and hooked. The six last segments are furnished with lateral, fleshy, clongated, fasciculated appendages, which are simple in the male and like oars in the female. At the posterior extremity of the body we also observe six simple, recurved appendages, two of which are larger than the others. The aldominal valves are very large, cover the whole inferior surface of the body, and form a sort of reecptacle for the ova. This animal remains conecaled under the shell of the C'alinassa sublerianea, on the side of which it forms a tumour. Montagu, having withdrawn one of these Crustacea from its domicil, kept it alive for several days. The female is always accompanied by the male, who fixes himself firmly to her abdominal apperidages by means of his forceps. It is a rare animal which, in its halits, approaches the Bopyri \uparrow.

All the ensning Amphipoda have the segments of the body perfeetly distinct, throughout their whole extent; in neither sex nor in any

[^199]of the species do we find those long oar-like cimi observed in the first of the Iones.

In the latter, when it exists, the moveable toe of the foot, termimated by a forceps, is formed of a single joint.

Of these last, there are some whose superior anteme are much shorter than the inferior, and even than their peduncle; the stem of the latter is composed of numerous joints.

Orchestia, Leach.

The second feet of the male terminated by a large forceps, the moveable toc long and somewhat curved; those of the fenale by two toes. The third joint of the inferior antenne is at most twice the length of that of the preceding ones *.
Taliprus, lat.

Neither of the feet forming a forceps. The thind joint of the inferior antenne more than twice the length of that of the preceding ones; the antenux large and spinous \dagger.

In the following, the superior antennæ are never much shorter than the inferior.

Some of them, furnished with elongated setaccous antenner terminated by a phuri-articulated stem, and without any remarkable forecps, approach the preceding in their superior antemne, which are somewhat shorter than the inferior, and are removed from those that follow by the form of their head which is narrowed before into a kind of snout. Such is

Atylus, Leacht.

All those which succeed have the superior antenne as long as the inferior, or longer; their head is not elongated into a snout.

Here, as in the five following genera of Leach, the peduncle of the antenne is formed of three joints s.

Some, in their superior antemme, present a character which is unique in this order - the internal extremity of the third joint of the perhuncle is provided with a little articulated thread. It distinguishes the

Gammarus. Lat..

Where the four anterior feet have the form of small forceps, the moreable toe folding beneath.

[^200]The species best known and the type of this subgenus is the Cancer pulex, L.; Squilla pulex, De Geer, Insect., VII, xxxiii, 1, 2. It inhabits brooks, \&e. The other species are marine *.
The antenne of the following, as in all the other Amphipoda, are simple or without appendages.

Meljta, Leach.

The second pair of feet, in the male, terminated by a large compressed forceps, the toe folding under its internal surface; the antennæ nearly equal in length; a small foliaccous appendage on each side of the posterior extremity of the body t.

Mera, Leach.

The second feet in the males terminated as in the Melite, but the toe folds under the inferior edge of the forceps and is not concealed.
'The superior antenne are longer than the inferior, and the foliaceons appendages of the posterior extremity of the body are wanting \ddagger.

Ampirithoe, Leach.

The four anterior feet nearly similar in both sexes; the penultimate article or hand proper, ovoid §.

Pherusa, Leac/i.

The Pherusæ only differ from the preceeding subgenus in the hand of the forceps, which is filiform $\|$.

There, the peduncle of the antennæ is only composed of two joints, the third being so small as to be confounded with those of the stem, or forming that of the base; the superior are longer than the inferior. All the fect are simple, or without forceps. Such is

Dexamine, Leach I.

In those, the moveable toe of the two forceps is bi-articulated. The antennæ are of equal length.

Leucothoe, Leach.

The antennce short, their peduncle formed of two joints; the four anterior feet terminated in a stout forceps; toes of the two first bi-ar-

[^201]ticulated; those of the sccond pair consisting of a single and long juint*.

Cerapus, Say.

Large antenne, the peduncle consisting of three-the superioror four-the inferior-joints; the two anterior feet small, with a uni-articulated tue; the two following terminating in a large triangular, smooth, dentated hand, with a bi-articulated finger.

Ceraphus tubularis, Say, Journ. Acad. Nat. Sc. of Philad., I, iv, 7-11 ; Desmar., Consid., XLVI, 2. It inhalits a little cylindrical tube, and in this respect approaches the subsequent subgenus. Very common at Egg Harthour, New Jersey, among the Sertularixe on which it appears to feed.
Finally, the inferior antenne, sometimes much larger than the superior, their stem consisting at most of four joints, have the form of feet, and appear to serve, at least occasionally, as organs of prehension.

Here the sccond feet are terminator by a large forceps.

> Podocervs, Leach.

Eyes very prominent \dagger.

$$
J_{\triangle S S A}, \text { Leach. }
$$

Eyes not prominent \ddagger.
There, neither of the feet is terminated by a large fereeps.
Corophium, Lat.
C. longicornis; Cancer grossipes, L.; Gammarus longicornis, Fab.; Oniscus volutator, Pall., Spic. Zool., Fascic. 1X, iv, 9; Desmar., Consid., XLTIT, 1, called Peryms, on the coast of Rochelle, lives in holes, which it forms in the mud, that is covered with hurdles, called bouchots. hy the inhabitants. 'I'he animal does not make its appearance till the begiming of May. It wages ceverlasting war against the Nercides, Amphinomx, Arenicole, and other marine Annelides, which inhabit the same locality. A curious spectacle is presented by these Crustacea, when the tide is coming in; myriads of them niay then be seen moving in every direction, beating the mud with their great arms, and diluting it in order to discover their prey-is it one of the abore mentioned Amelides they lave discovered, which is ten or twenty times larger than themselves? they unite to attack and devour it. The carnage never ceases until the mud has been thoroughly turned up and its inequalities levelled. They do not eren spare Mollusca, Fishes, or dead bodies on the shore. They mount upon the hurdles which contain Muscles, and fishermen

[^202]asscret that they will cut the threads that keep them there, in order to precipitate them into the mud, where they may devour them at their leisure. They appear to breed during the whole summer, as females carrying their ova are to be met with at various periods. Wader's and different Fishes prey upon them. For these interesting observations we are indebted to M. D' $\mathrm{Or}^{\prime}-$ bigny, Senior, conservator of the Rochelle Museum and corresponding member of that of Paris *.
The second section-Heteropa, Lat.-is composed of those with fourteen feet, the last four of which, at least, are unarmed and destined for natation only. It comprises two subgenera ψ.

Pterygocera, Latr.
The thorax divided into several segments; four antennæ furnished with setze or hairs in bunches; all the feet natatory and the last large and pinnated + ; cylindrical, articulated appendages to the posterior extremity of the body.

Apseudes, Leach.-Eupheus, Risso.

The thorax also divided into several segments, but the two anterior feet terminated by a didactyle forceps; the two following ones claviforms, ending in a point and dentated on the edges; the next six slender and unguiculated at the extremity; the last four natatory. The antennæ are simple. The hody is narrow, elongated, and has two long seiaceous appendages at its posterior extremity§.

The third and last section-Decempedes, Lat-is composed of Amphipoda, which present but six distinct feet.

Typhis, Risso.
But two very small antennæ, the head large, and eyes not prominent; each pair of feet annexed to its peculiar segment, and the four anterior terminated by a didactyle forceps. On each side of the thorax are two moveable plates, forming a sort of lids or valves,

[^203]which when joined, the animal folding up its feet and tail beneath, encluse the bouly inferiorly, and give it a spheroidal appearance. 'The posterior extremity of the tail has no appendage*.
Ancleus, Risso.-Gnatha, Leach.

The thorax divided into as many segments as there are pairs of feet, but all the latter simple and monodactyle; four setaceous antemme; a stont square head with two large projections in the form of mandibles; extremity of the tail furnished with foliaccons fin-like appendages \dagger.

Prantza, Leach.

Four setaceous antemer, as in the preceding; but the thorax viewed from above presents but three segments, the two first of which are very short and transverse, each supporting a pair of fect, while the third, much larger and longitudinal, supports the others. The feet are simple; the head is triangular, pointed before, and has prominent eycs. Each side of the posterior extremity of the body is also provided with a fin \ddagger.

Various genera of Messrs. Savigny, Rafinesque and Say §, but the characters of which have not been described or sufficiently developed, appear to belong to this order of the Amplipoda. Even some of the subgenera I have just quoted require to be re-examined.
M. Milne Edwards has made several valuable and detailed observations on several of these Crustacea, which will most eertainly tend to clucidate the subject.

ORDER IV.
 LEMODIPODA.

The Lemodipoda are the only Malacostraca with sessile eyes, in which the posterior extremity of the body exhibits no distinct branchiæ, and which are almost deprived of a tail, the two last feet being inserted in that extremity, or the segment which connects them with it being merely followed by one or two very small joints. They are also the only ones in which the two anterior feet, that correspond to the sccond foot-jaws, form part of the head.

[^204]They all have four setaceous antennce supported by a tri-articulated pedunele, mandibles, without palpi, a vesicular body at the base of at least the four pairs of feet, beginning at the seeond or third pair, those of the head ineluded. The body, usually filiform or linear, is eomposed of eight or nine segments, including the head, and some small appendages in the form of tubercles at its posterior and inferior extremity. The feet are terminated by a stout hook. 'The four anterior the second of which are the largest, are always terminated by a monodaetyle foreeps or a elaw. In several, the four following ones are shortened, less articulated, without the terminal hook, or are rudimental, and nowise adapted for the ordinary uses of similar parts.

The females carry their ova under the sceond and third segments of the body in a poueh formed of approximated scales.

They are all marine Crustaeea. M. Savigny considers them as allied to the Pyenogonides, and constituting with the latter the transition from the Crustaeea to the Arachnides. In the first edition of this work they formed the first section of the Isopoda, that of the Cistibranchiata.

We may unite them in a single genus which, by the law of priority should be called the

Cfamus, Lat.

Some-the Filiforma, Lat.-have a long and very slender or linear body with longitudinal segments; feet equally slender and elongated, and the stem of the antennæ composed of several small joints.

They are found among marine plants, walk like the eaterpillar termed the Geometra, sometimes rapidly revolving in a eircle, or turning up their body, during which time the antennæ are vibrating. While swimming, the extremities of their body are eurved.

Leptomera, Lat.-Proto, Leach.

Fourteen feet, including the two annexed to the head, all eomplete and in a continuous series.

Here, as in our Leptomera proper-Gammarus pedatus, Müll., Zool. Dan., CI, 1, 2-all the fect, the two anterior exeepted, have a vesicular body at their base.

There, as in the Proto, Leach-Cancer pedatus, Montag., Trans. Lin. Soe., II, 6; Encyclop. Method., Atl. d'Hist. Nat. CCCXXXVI, 38 -those appendages are only proper to the second, and four following feet ${ }^{*}$.

[^205]
Naupredia, Lat.

But ten fect, all in one continuous series; the base of the second and two following pairs provided with a vesicular body *.

Caprella, Lam.

Ten fect also, but in an inlerrupted series, commencing with the second segment, exclusive of the head; both this segment and the following have two vesicular bodies, and are totally deprived of fect \dagger.

The other-Oralia, Lat,-lemodipoda have an oval body with transversal segments. The stem of the antennæ appears to be inarticulated, and the feet are short but slightly clongated; those of the second and third segments are imperfect and terminated by a long cylindrical joint without a hook; their base is provided with an elongated resicular body. They form the subgenus.

Cyamus, Lat.-Larenda, Leach.

I have scen three species, all of which live on the Cetacea; the most common, Oniscus ceti, L.; Pall., Spicil. Zool. Fascic. IX, iv, 14 ; Squille de la Baleine, De Gecr, Ins., VII, vi, 6 ; Pycnogonum celi, Fab.; Savig., Mém. sur les anim. sans rerteb. Fascic., I, r, . l, is also found on the Mackerel : it is called by fishermen Pou de Baleine. A second very analogous species was brought to France by the late Delalande from the Cape of Good Hope. The third, which is much smaller, establishes itself on the Cetacea of the Indian Occan.

ORDER V.

ISOPODA \ddagger.

The Isopoda approach the Læmodipoda by the palpi of the mandibles being absent, but are remored from them in several other re-

[^206]spects. The two anterior feet are not attached to the head, and belong as well as the following ones, to a particular segment. They are always fourteen in number, unguiculated, and without any vesicular appendage at their base. 'The under part of the tail is furnished with very apparent appendages resembling leaflets or vesicular bursæ, the two first or external of which, either partially or wholly, usually cover the others. The body is generally flattened, or is wider than it is thick. The mouth consists of the same pieces as ir the preceding Crustacea; but here, those which correspond to the two superior foot-jaws of the Decapoda, exhibit an appearance of a lower lip terminated by two palpi, still more than in the latter. The two mediate antennæ are almost obliterared in the last Crustacea of this order, which are all terrestial and also differ from the others in their respiratory apparatus. The male organs of generation are usually announced by linear or filiform appendages, and sometimes by hooks, situated at the internal origin of the first sub-caudal laminæ, The females carry their ova under the thorax, either between scales, or in a pouch or membranous sac, which they open in order to allow a passage to their young, which are produced with the form of parts peculiar to their species, merely changing their skin as they increase in size. Most of them are aquatic. Those which are terrestrial, like all other Crustacea which live out of water, still lequire a certain degree of atmospheric humidity to enable them

[^207]to breathe, and to preserve their branchire in a proper state for the exercise of that function.

This order according to the system of Linnæus embraces the genus
Oniscus, Lin.,

Which we will divide into six sections.
The first-Epicarides, Latr.-is composed of parasitical Isopoda, with neither eyes nor antennie, the body of which, in the male, is very flat, small and oblong; much larger in the female, and having an oval form narrowed and slightly curved pusteriorly, hollow beneath, with a thoracic border divided on each side into five membranous lobes. The fect are placed on this border and cannot be used either for locomotion or natation. The under surface of the tail is provided with five pairs of small, ciliated, imbrieated leaflets, corresponding to as many segments, and arranged in two longitudinal series; there is no appendage, however, to the posterior extremity. The only parts distinctly visilule in the montli are two membranous leaflets laid upon another of the same nature, forming a large quadrilateral figure. The inferior concavity forming a surt of shallow basket, is filled with the ora. Near their outlet is always found the individual presumed to be the male. Its extreme smallness seems to furbid all possibility of copulation; according to Desmarest it is provided with two eyes; its body is straight and almost linear.

These Crustacea form but a single subgems, that of

Bopyrus, Lat.,

The most common species is the Bopyrus crangorum, Lat., Gener. Crust. et Insect., I, 114; Monoculus ciangorum, Fab.; Fouger. de Bondar, Mém. de l'Acad. Roy. des Sc., 1772, pl. 1; Desmar. Consid. XLIX, 8-13. It lives on the Palæmon serratus, and the Pal. squilla, placed directly on the branchiæ and under the shell; it occasions a tumonr on one of its sides, resembling a wen. The fishermen of the British channel consitler them as very young Soles or Plaice.

A second species, the B. des palémons, has been described by Risso, under the female of which he observed eight or nine hundred living young ones*.
The second section-Cymothoada, Lat.-comprises Isopoda with four very apparent setaceons antenna, almost universally terminated by a pluri-articulated stem; having eyes, a mouth composed as usual \dagger; vesicular branchixe arranged longitudinally and in pairs; the tail formed of from four to six segments, with a fin on each side near the end; and the anterior feet nsually terminated by a small stont nail or claw. They are all parasitical.

The eyes are sometimes placed on tubereles on the top of the head; the tail consists of but four segments.

[^208]
Serolis, Leach.

But a single species is known, the Cymothoa paradoxa, Fab. The antennix are placed on two lines, and terminated by a pluriarticulated stem. Under the three first segments of the tail, between the usual appendages, there are three others, transversal and terminated posteriorly in a point *.
Sometimes the eyes are lateral and not plaeed on tubereles; the tail is composed of five or six segments.

Here the organ of sight is not formed of smooth, granular, approximated eyes; the antennxe are placed on two lines, and eonsist of seven joints at least; the six anterior feet are usually terminated by a small, stout nail.

In some, where the tail always consists of six segments, the length of the inferior antennæ never surpassed the half of that of the body.

We will begin with those whose mandibles, as usual, are but slightly, or in no degree salient.

Счмотнos, Fab.

The antennæ nearly equal in length; eyes scarcely apparent; last segment of the tail forming a transverse square; the two pieces terminating the lateral fins, linear, equal and styliform \dagger.

Ictiyorimeus, Lat.-Nerocila, Livonega, Leach.

The antennæ, equal in length, and but slightly visible eyes; the last segment of the body almost triangular; the two pieces terminating the lateral fins in the form of leaflets and laminæ, the exterior of which is largest in the Nerocile, and of the size of the other in Livoneca \ddagger.

In the four following subgenera the superior antennæ are manifestly shorter than the inferior:

In several, as in Cymothoa, all the fect are terminated by a small, stout, and strongly curved nail; the last cight are not spinous; the eyes are always separated and convex. They form three genera in the system of Leach, but may be united in a single subgenus, under the common denomination of one of them, or the

Canolira, Leach.-Anilocra, Olencira, Ejusd.

The laminæ of the fins in the Olenciræ \S are narrow and armed with spines. In the Anilocræ || the external leaflet of the same parts is longer than the internal; the reverse is the ease with the Canoline I. The eyes, besides, are but slightly granulous while in the preceding that disposition is evident.

[^209]In the three following subgencra, the second, third and fourth feet alone are terminated by a strongly eurved nail, and the last eight are spinous. The eyes are usually but slightly convex; they are large and converge anteriorly.

$$
\mathbb{F}_{\mathrm{GA}}, \text { Leach. }
$$

The two first joints of the superior antennæ rery broad and compressed, while in the two subsequent subgencra they are almost cylindrical *.

Rocinela, Leach.

The Rocinclæ differ from the Egæ, as just stated, in the form of the two first joints of their superior antenne, but otherwise approach them, as in their large eyes which approximate anteriorly t. The

> Conilira, Leach.

Resembles Roeinela in the antennæ; but the eyes are smaller and distant, and the edges of the segments nearly straight and not falciform nor prominent \ddagger.

The last subgenus, among those of this scetion in which the antennæ are placed on two lines, where the tail is composed of six segments, and the inferior antennæ are always short, is distinguished from all the preceding by strong and salient mandibles. It is the

> Synodus, Lat.,

A subgenus established on a single species \S.
In those that follow, the tail is usually composed of but five segments. The length of the inferior antenne is more than the lialf of that of the body.

> Cirolana, Leach,

The tail composed of six segments μ. In the

Nelocira, Leach.

It consists of but five. The cornea of the eyes is smooth I.

Eurydice, Leach.

Similar to Neloeira in the mumber of caudal segments, but removed from it by the gramulous cyes **.

This subgenus leads us to those in which these organs are formed of granules or approximated simple eyes, and that also have the four antennæ, eomposed of four joints at most, inserted on one horizontal line, and all the feet fitted for walking. The tail eonsists of

[^210]six segments, the last of which is large and suborbicular. Such is the

Limnoria, Leach.

The only living species known is the Limnoria terebrans, Leach, Edinb. Encyclop., VII, p. 433 ; Desmar., Consid., p. 312. Although scareely above two lines in length, its habits and fecundity render it highly noxious. It perforates the timbers of ships in various dircetions and with alarming rapidity. When taken in the hand it rolls itself into a ball. It is found in various parts of the Britislı seas.

The figure and description of a small fossil crustaccous animal has been sent to Count Dcjean by Professor Germar, which seems to us to belong to this subgenus *.

The third section-Spheromides, Lat.-exhibits four very distinct, short, sctaceous or conical antennæ, and a single genus-An-thura-excepted, always terminated by a stem divided into several small joints; the inferior, always the longcst, are inserted beneath the under part of the first joint of the superior which is broad and thick. The arrangement of the mouth is as usual. The branchiæ arc vesicular or soft, exposed, and arranged longitudinally in pairs. But two complete and moveable segments arcobscrved in the tail, the first, however, frequently presents imprcssed and transversc lines indicating vestiges of others; on each side of its posterior extremity is a fin terminated by two leaflets, of which the inferior alone is moveable; the superior \dagger is formed by an internal prolongation of the common stem. The branchial appendages are curved inwards: the inner side of the first arc accompanied, in the male, by a small linear and clongated projection. The anterior part of the head situated beneath the antennæ is triangular, or has the figure of a heart reversed.

Some have an oval or oblong body, usually assuming, when contracted, the form of a ball; the antennæ terminated by a pluri-articulated stem, and the inferior, at least, visibly longer than the head. The lateral and posterior fins are composed of a peduncle and two laminæ, forming with the last segment a common fin, shaped like a fan.

In these, the impressed and transverse lines of the anterior segment of the tail, which is always shorter than the next or last one, do not extend to the lateral margin. The first joint of the superior antenne lias the form of a triangular palette.

The head, viewed from above, forms a transverse square. The leaflcts of the fins are much flattencd, and the intermediate piece or the last scgment is widened and rounded latcrally.

[^211]Leaflets of the fins very large; the superior, which is the shortest, separates from the other to form a border to the last segment*.

> Spililroma, Lat.

Leaflets of a moderate size, equal, and laid one over the other \dagger.
In those, the impressed lines or transverse sutures of the anterior segment of the tail extend to its lateral edges and cutit. The first joint of the superior antennæ forms an elongated square, or linear palette.

The leaflets of the fins are maually narrower and thicker than in the preceding; the external sometimes (Cymodocea) incloses the other, which is prismatic; the point at which they unite resembles a knot or joint.

Sometimes the sixth segment of the body is visibly longer throughout all its width than the preceding ones and that which follows.

Only one of the two leaflets projects.

$$
\mathbf{N}_{\text {ASA }},-\mathrm{Campecopea} . \text { Leach. } \ddagger
$$

Sometimes the sixth segment of the body is as long as the preceding ones and as that which follows.

Cilicea, Leach.
Only one of the fin-leaflets salient, the other being placed against the posterior edge of the last segment \S.

> Cymodocea, Leach.

Both leaflets salient and directed backwards; the sixth segment is not prolonged postcriorly, and the extremity of the last one presents a small lamina in an emargination $\|$.
Dinamene, Leach,

Similar to the Cymodoce in the projection and direction of the leaflets of the fins, but the sixth segment is prolonged posteriorly, and the last one cxhibits a mere fissure rithout the lamina.

The others, such as the

> Anthura, Leach,

Have a vermiform body, and the antennæ, composed of four joints, searecly as long as the head. The leaflets of the posterior fins by their disposition and approximation form a sort of capsulc.

The anterior feet are terminated by a monodactyle forceps **.

[^212]In the fourth section-Idoteides, Leach-there are also four antennæ, but they are placed on one horizontal and transverse line; the laterals terminate in a tapering, pointed, pluriarticulated stem; the intermediaries are short, filiform or slightly inflated at the end, and consists of four joints, neither of which is divided. The composition of the mouth is the same as in the preceding sections. The branchix, white in most of them, are in the form of bladders, susceptible of inflation, serving for natation and covered by two laminæ or valvulæ of the last segment that adhere laterally to its edges; they are longitudinal, biarticulated, and open in the middle on a straight line like folding doors. The tail consists of three segments, the last of which is much the largest, and las neither terminal appendages not lateral fins. They are all marine.

Inotea, Fal.

All the feet alike, and strongly unguiculated; the body oval or simply oblong, and the lateral antennæ shorter than half the length of the body *.

Stenosoma, Leach.

The Stenosomæ only differ from the Idotex in the linear form of their body, and the length of their antenne which is more than half that of the body \dagger.

Arcturus, Lat.

The Arcturi are very remarkable for the form of the second and thirl feet, which incline forwards and terminate by a long, bearded and unarmed or fecbly unguiculated joint ; the two anterior are laid on the mouth and are unguiculated; the last six are strong, ambulatory, thrown behind, and lidentated at the extremity. - In the length of the antennæ and form of the body they approach the Stenosomæ.

I have never seen but a single species, the Arct. tuberculatus, which was brought to Europe, from the Arctic seas, in one of the last expeditions to those regions.
The fifth section-Asellota, Lat.-comprises Isopoda with four very apparent setaccous antennæ, arranged on two lines, and terminated by a pluriarticulated stem ; two mandibles; four jaws covered, as usual, by a kind of lip formed by the first foot-jaws; vesicular branchiæ, in pairs, covered by two longitudinal and biarticulated, but free leaflets; a tail composed of a single segment, without lateral fins, but with two bifid stylets, or two rery short tubercular appendages, on the middle of its posterior edge. Other lamelliform appendages situated at its inferior base, which are now numerous in the males, distinguish the sexes.

Asellus, Geoff.

Two bifid stylets at the posterior extremity of the body; eyes

[^213]separated; the superior antennæ at least as long as the peduncle of the inferior' ; the hooks at the end of the feet entire.

The only species of this subgenus that is known-the Aselle, d'eau douce, Geoff., Ins. II, xii, 2; Squille uselle, Deg., Insect., VII, xxi, 1 ; Desmar., Consid., XLIX, 1, 2; Idolea aqualica, Fab.,-is very aboundant in fresh and stagnant waters as well as in the marshes, in the vieinity of Paris. Its gait, unless alarmed, is very slow. In the spring it issues from the mud in which it has passed the winter. The male, much larger than the fefemale, earries the latter for cight days, clasping her with the fourth pair of feet. When he abandons her she is loaded with a great number of ova inclosed in a membranous sac, situated under the thorax, which affords an issue to the young through a longitudinal fissure.

Oniscona, Lat.

The Oniscodæ or Janiræ * of Leach differ from the Aselli in the approximation of their eyes, in the superior antenme which are shorter than the peduncle of the inferior', and in the hooks of the tarsi which are bifid.

The only speeies known, the Janira maculosa, Leach; Desmar., Consid., p. 315, was found on the coast of England among the Fuei and Ulvae.

> J.er.A, Leach,

But two tubereles at the extremity of the tail in place of the stylets.

But a single species has been described, the grera albifrons, Leach; Desm., Consid., p. 316, which is very common on the English coast among the Fuci and Ulre.
Finally, the Isopoda of the sixth and last seetion-Oniecides, Lat.-have four antenne also, but the two intermediate ones are very small, but slightly apparent, and are composed at most of but two joints; the lateral are setaceons. The tail consists of six segments, with two or four styliform appendages on the postcrior margin of the last one, and is without lateral fins. Some of them are aquatic and others terrestrial. In the latter, the first laflets of the under part of the tail exlibit a series of small holes, through which air penetrates to the organs of respiration therein contained.
In some, the sixth joint of thicir antennæ, or the stem, is so composed, that by counting the little joints of this part the total number amounts at least to ninc. These Isopoda are marine and form two subgenera. The
Tylos, Lat.,

Appears to possess the faculty of rolling itself into a ball. The last segment of the body is semicieular, and exactly fills up the emargination formed by the preceding one; the posterior appendages

[^214]are very small and entirely inferior. The antennæ consist of nine joints, the last four composing the stem. On each side is a depressed tubercle representing one of the intermediate antennæ; the intervening space is raised. The branchise are vesicular, imbricated, and covered by lamine *.

> Ligia, Fab.

The stem of the lateral antennæ composed of a great number of small joints; two very salient stylets divided at the end into two branches, at the pusterior cxtremity of the body.

Ligia oceanica ; Oniscus oceanicus, L., Desmar:, Consid., XLIX , 3, 4, about an inch long, grey, with two large yellowish spots on the back. The lateral antennæ are less than half the length of the body, and their stem consists of thirteen joints. The stylets are as long as the tail. This animal is very common on the coast of France, where it is seen climbing up the rocks, \&cc. If an attempt be made to capture it, it quickly folds up its feet and lets itself fall.

In the Ligia italica, Fab., the lateral antenne are nearly as long as the body; the sixth joint, or the stem, is divided into seventeen small ones. The stylets are much longer than the tail.

Ligia muscorum; Oniscus hypnorum, Fab., Cuv., Journ. d'Hist. Nat. II, xxvi, 3, 4, 5; Oniscus agilis, Panz., Faun., Ins. Germ., Fascic. IX, xxiv. The lateral antennæ shorter than the half of the body, and their stem composed of but ten small joints. The peduncle of the posterior' stylets is furnished on the inner with a tooth and seta.
In others, all terrestial, the lateral antennæ consist at most of eight joints which gradually diminish in size towards the extremity, so that no one of them appears to be divided or compound.

Here, the posterior appendages, or stylets, project beyond the last segment. 'The body does not contract into a ball, or docs it imperfectly.

Philoscia, Lat.

The lateral antennæ divided into eight par'ts and exposed at base ; the four posterior appendages nearly cqual. 'They are only found in wet places \uparrow.

Oniscus, Lin.

The true Onisci have also eight joints in their lateral antennæ, but their base is covered, and the two external appedages of the extremity of the tail are much larger than the others. 'I'hese animals and those of the two following sulgencra are vulgarly called Clous-ì-porte, and by syncope Cloporte, Porcelets de Sainl-Antnine (a).

[^215]They inhabit retired and obscure places, cellars, fissures in walls, old buildings, under-stoncs, \&cc., \&c. They feed on decaying vegetable and animal matters, and seldom issuc from their retreat except in rainy weathcr. 'They move but slowly, unless they are alarmed. The ova are inclosed in a pectoral pouch. The young, at birth, have one thoracic segment less than the adult, and consequently have but twelve feet. 'They are no longer employed inmedicine*.

> Porcellio, Lat.

The Porcclliones differ from the Onisci in the number of joints that compose the latcral antennæ, which is only seven. In their other characters they are alike \dagger.

There, as in

> Armadillo, Lat.

The posterior appendages of the body do not project ; the last segment is triangular; a little lamina resembling a reversed triangle, or widest and truncated at the end, formed by the last part of the lateral appendages, fills on each side, the space between that segment and the preceding' onc. 'The lateral antennæ have but seven joints. 'The superior subcaudal scalcs exhibit a range of small holes \ddagger.

SECOND GENERAI DIVISION.

ENTOMOSTRACA.

Under this denomination, which is taken from the Greck and signifies Insects with shells, Othon Frederic Miiller comprises the genus Monoculus of Linnæus, to which we must add some of his Lernæææ His investigation of these animals, the study of which is so mueh the more difficult as they are mostly microscopic, and the observations of Scheffer and of M. Jurine, Sen., have exeited the admiration and secured the gratitude of every naturalist. Other but partial labours such as those of Randolır, Straus, Herman, Jun., Jurine, Jun., A. Brongniart, Vistor Audouin, and Milne Edwards, have extended our knowledge of these animals and particularly of their anatomy;

[^216]but in this respect, Straus, as well as M. Jurine, Sen., although preceded by Randohr in the observation of several important details of organization, of whose memoir on the Monoculi, 1805, they secm to have been ignorant, has surpassed them all. Fabricius mercly adopted the genus Limulus of Müller, which he placed in his class of the Kleistagnatha, or our family Brachyura of the order Decapoda. All the other Entomostraca are united as by Linnæus in one single genus, Monoculus, which he places in his class of the Polygonata or our Isopoda.

These animals are all aquatic and mostly inhabit fresh watcr. Their feet, the number of which varies, and that sometimes extends to beyond a hundred, are usually fitted for natation only, being sometimes ramified or divided, and sometimes furnished with pinnulx or formed of lamellæ. Their brain is formed of one or two globules. The heart bas always the figure of a long vessel. The branchiæ composed of hairs or setæ, singly or united, in the form of barbs, combs or tufts, constitute a part of those feet or of a certain number of them, and sometimes of the upper mandibles *. Hence the origin of our term Branchiopoda, affixed to these animals, of which at first we formed but a single order. Nearly all of them are provided with a shell composed of one or two pieces, very thin, and most generally almost membranous and nearly diaphancus, or at least with a large anterior thoracic scgment, frequently confounded with the head, which appears to replace the shell. The teguments are usually rather' horny than caleareous, thereby approximating these animals to the Insecta and Arachnides. In those which are provided with ordinary jaws, the inferior or exterior are always exposed, all the foot-jaws performing the office of feet properly so called, and none of them being laid upon the mouth. The sccond jaws, those of the Phyllopa at most excepted, resemble these latter organs; Jurine sometimes distinguishes them by the name of hands.

These characters distinguish the gnawing Entomostraca from the Malacostraca; the others, those which constitute our order of the Poecilopoda, cannot be confounded with the Malacostraca, inasmuch as they are deprived of organs of mastication, or because the parts which seens to act as jaws are not united antcriorly nor precedcd by a labrum as in the anteccdent Crustacea and the gnawing Insecta, but are simply formed by the branches of the locomotive organs, which, for that purposc, are furnished with small spines. The Pœcilopoda in this class of animals represent those which in that of insects are known by the name of Suctoria or the Suckers. Ncarly

[^217]all of them are parasitical, and they seem to lead to the Lernææ by insensible gradations; but the presence of cyes, the faculty of changing their skin, or ceven of undergoing a sort of metamorphosis*, and that of locomotion by means of their fect, appear to us to establish a positve line of demarcation between the former and the latter We have consulted several erudite naturalists with respect to these transformations, but none of them have observed a change of skin to occur. The antenme of the Entomostraca, whose form and number greatly vary, serve for natation in several. The cyes are rarely placed on a pedicle, and when this is the case, that pedicle is a mere lateral prolongation of the head, and is never articulated at the base ; they are frequently closely approximated and cven form but one. The organs of gencration are situated at the orgin of the tail; it has been thought but crronenously, that their seat was in the antennæ of the male. This tail \dagger is never terminated by a fan-like fin, nor does it present those false feet observed in the Malacostraca. The ova are collected under the back, or are external, and covered by a common envelope, and resemble one or two small clusters at the base of the tail; it appears that they can be kept in a desiccated state for a long period without losing their properties.

It is only after a third change of skin that these animals become adult and capable of continuing their species. It has been proved, with respect to some of them, that a single copulation fecundifies several successive generations.

ORDER 1.

BRANCHIOPODA.

A mouth composed of a labrum, two mandibles, a ligula, and one or two pairs of jaws, and branchix, the first of which, when there are several are always anterior, characteriz, this order or the sixth of the class,

These Crustacea are always wandering and are generally protected by a shell resmbling that of a bivalve, and furnished with four or two

[^218]antemne. Their feet, with a few exceptions, are wholly natatory. Their number varies, being but six in some, while in others it amounts to twenty, forty-two, or more than a hundred. Many of them have but one eye.

Most of these animals, as we have already stated, being nearly microscopical, it is evident that the application of one of the characters we have employed-that of the presence or absence of the palpi of the mandibles-with respect to them, presents almost insuperable difficulties*. The form and number of the feet, that of the eyes. the shell, the antennæ, furnish us with more visible marks, and such as are within the observtion of every one.

This order in the systems of De Geer, Fabricius and Linnæus, a single species excepted-M. polyphemus, contained by a single genus

Monoculus, Lin. 个

Which we will divide into two principal sections.
The first,-that of the Lophyrops-is distinguished by the number of feet, which never extends beyond ten; their joints are also more or less cylindrical or conical, and never entirely lameliform or foliaceous; the branchiæ are but few in number, and most of them have but one eye. Several besides, have mandibles provided with a palpus \ddagger; there are, almost always, four antennæ which serve for locomotion.
In the second section-that of the Phyllopa-the number of feet is increased to at least twenty, and in some amounts to many more ; their joints, or at least the last ones, are flattened and resemble cilited leaflets. The palpi of the mandibles are always wanting. They all have two eyes, situated in some at the extremity of two moveable pedicles; their antennæ, but two in number in several, are generally small and not fitted for natation.

We will divide the Lophyropa into three principal and very natural groups, the two first of which approach the Crustacea of our three first orders in their mandibles, each of which is furnished with a palpus, and in some other characters.

1. Those Carcinoida, Lat.-whose more or less ovoid shell is not doublcd like that of a bivalve, and leaves the inferior portion of the body exposed. They never have antennæ resembling ramified arms They have ten feet, more or less cylindrical or setaceors. The ova, in those females whose gestation has been observed, are contained in two external sacs situated at the base of their tail. Some of them have eyes.

[^219]2. Thosc-Ostracoda, Lat.; Ostrapoda, Straus-whose shell is formed of two pieces or valves resembling those of a muscle, united by a hinge, and closing while the body is quiescent. They have but six feet*, neither of which terminates in a digitated fin, nor is accompanied by a branchial lamina. Their antennæ are simple, filiform or setaceuns. They never have more than one eye. Their mandibles and superior jaws are furnished with a branchial leaf. The ova are placed under the back.
3. The last-Cladocera, Lat.; Dapiinides, Straus-have but one eye, and the shell doubled but without a hinge (Jurine), terminating posteriorly in a point, and leaving the head, which is covered by a kind of shicld like a rostrum, exposed. They have two, usually very large, antennx, resembling arms, divided into two or three branches directly above the peduncle, which are furnished with threads, always projecting and serving as oars. Their ten feet \dagger are terminated by a digitated or peetinated fin accompanied, the two first excepted, by a branehial lamina \ddagger.
'Their ova are also placed under the back; their body always terminates posteriorly in the mannes of a tail, with two or three threads at the end. The anterior extremity of the body is sometimes prolonged into a kind of rostrum, and at others forms a kind of head, almost entirely occupied by a large eye.

The first division of the Lophyropa Branchioporla-that of the Carcinoida-may be divided into two according to the number of the eyes.

Some of them have two.
Here the shell completely invests the thorax; the cyes are large and very distinct, and the intermediate antennæ are terminated by two threads.

Zoea, Bosc.

Very large globular eyes completely exposed, and horn-like projections on the thorax.

Zoea pelayica, Bose., Hist, Nat. Crust. II, Xv, 3, 4. The body semi-diaphanous; four antemm inserted under the eyes, the external ones bent into an elbow and bifid; a kind of long rostrum on the forepart of the thorax and between the eyes, and a long pointed prominence on the posterior part of the back. The feet are very short and hardly visible, the two last excepted, which are clongated or terminate in a fin. The tail is as long as the thorax, curved, and formed of five joints, the last being large, crescent-shaped and spinous. It was discovered by Bose in the Atlantic Occan.

[^220]The Monoculus tauras, Slabber, Microsc. V, and the Cancer' germanus, L., appear to be allied to it *.

Nebalia, Leach.
Triangular, flattened eyes, partly covered by a triangular and arched scale.

The feet are forked, and the terminal appendages of the tail setaceous $\%$.

There the thorax or the shell, viewed from above, is divided into five segments, of which the first is much the largest, and has the antennæ, eyes, and foot-jaws attached to it; the second and the third have each one pair of feet, the fourth has the two following pairs, and the fifth, the last. The eyes are small and not prominent; all the antennæ are terminated by a single thread.

Condylura, Lat.

The inferior antennæ longest; the anterior sides of the first segment prolonged into a point forming two scales approximated into a kind of rostrum; feet terminating in a silky point; some of the intermediaries, as in the Schizopoda, with an external appendage near the base ; the tail narrow and formed of seven annuli, the last of which, conical and elongated, projects between the two lateral appendages that arc slender, styliform, and composed of two joints, the last silky \ddagger.

We should remark, that the genus Nicothoe of MM. Audouin and Milne Edwards, by admitting it to have mandibles and jaws, would belong to this section; but as the animal on which it is founded

[^221]\pm Condylura Jorbigni, Lat. From the sca coast of Rochelle.
VOL. III.
is parasitieal, and, as I think I perecive in it a vestige of a sucker, I have placed it among the Poecilopoda. I would observe, however, that the feet, the anterior excepted, closely resemble those of Cyelops, and that the females also carry their ova in two sacs situated at the base of the tail as in the latter genus*.

In the remaining Lophyropa of our first division, the thorax, as in the Condylura, is divided into several segments, the first of which is much the largest; they have but one eye situated in the centre of the front between the superior antennie. such is the

> Cycrors, Müll.,

So well studied by Jurine, Sen., and Randohr. The body is more or less oval, soft or gelatinous, and divided into two portions, one anterior, composed of the head and thorax, the other posterior, or the tail. The segment immediately preceding the sexual organs, and which, in the female, is provided with two appendages in the form of little feet-fulcra, Jurine-may be considered as the first of the tail, which is not always decidedly or suddenly distinguished from the thorax. It is composed of six parts or segments; under the second in the males, are two articulated appendages, sometimes simple, and at others with a small branch on the inner side of various forms, and constituting, either wholly or partially, the organs of generation. The vulva, in the other sex, is situated on the same segment. The last one is terminated by two points or stylets, forming a fork, and is more or less furnished with setæ or peniform threads. The other or anterior portion of the body is divided into four segments, the first of which is much the largest, and composes the head and part of the thorax, which are also covered by a common seale. In it, are inserted the cye, four antennæ, two mandibles-mandibules internes of Jurine, furnished with a palpus, either simple or divided into two articulated branches, two jaws-mandibules externes, or lèvre avec des barbillons of Jurine \dagger, and four feet, each divided into four cylindrical stems furnished with hairs or bearded threads;

[^222]the anterior pair, corresponding to the sceund jatws, differs slightly from those that follow. Jurine compares it to a kind of hands. 'To each of the three following segments is attached a pair of feet formed like the last of the freceding ones. Two of the antenne, superior to the others, are longer, setaccous, simple, and composed of nutmerous small joints; by their action, they facilitate the motion of their body, and almost perform the office of feet. The inferiorantennales, Jurine-are filiform, usually present but four joints, are sometimes simple, and at others, forked; by the rapidity of their motions in the water, they occasion a kind of whirlpool. In the males, the superior antennæ or one of them only (C. castor) are marked by a strangulation and dilatation, followed by a joint with a hinge. By means of these organs, they seize their females, in theiramorous preludes, either by the posterior feet, or by the extremity of the tail, and keep them, nolens volens, in the peculiar position in which they fix themselves. The latter carry of the males, when they are unwilling to gratify their desires on the spot. The business of coition is performed, as in the preceding Crustacea, and by prompt and repeated acts. Jurine observed it to occur three times in the space of fiftecen minutes. Until the publication of his remarks, it was thought that the male organs of generaion were placed on the superior antenne, and this error appeared to be the more probable, inasmuch as an analogous conformation was known to cxist in the Arancides. On each side of the tail, in the female, is an oval sac, filled witheggs-ovaire externe, Jurinc-adhering by a very slender pedicle to the sceond segment, close to its junction with the third, where the orifiee of the oviduct is also visible. The pellicle, forming these sacs, is a mere continuation of that of the internal ovary. The number of ova they contain augments with age ; they are at first brown or darls, afterwards become reddish, and, when the young ones are about to be hatelicd, are almost transparent, but without increasing in size. If insulated or detached, at least until a certain period, the germ perishes. A single, but indispensaable fecundification suffices for several successive gencrations. The same fomale may spawn ten times in the space of three months. Allowing it to occur but cight times in that period, and the number of young ones produced to be forty, the sum total of births will amount to near four thousand five hundred millions. The length of time which the young remain in the ovarics, varies from two to ten days, according to the temperature of the season, and various other circumstances. The ovifcrous sacs sometimes present a greater or less number of clongated glandiform bodies which appear to consist of a collection of Infusoria.

The young, at birth, have four feet, and their body is romded and without a tail. It was with these that Müller formed his genus Anymone. Some time after-fifteen days, from February to Marel -they aequire another pair of fect, constituting the genus Nauplius, Müller. After the first change they have the form and all the parts which characterize the adult animal, but more exignonsly propertioned; their antemie and feet are proportionally shorter. After thrice changing their skin they are capable of proparation. Most of these Entomostraca swim on their hack, dart ahom with gicat
vivacity, and move hackwards and forwards with equal facility. For want of animal substances they will attack vegetalle matters, but the fluid in which they live does not pass into their stomach. The alimentary canal extends from one extremity of the body to the other. The heart in the C. castor is oval, and situated under the second and third segments of the body; a vessel is given off at each of its extremities, one running to the head, and the other to the tail. Directly under it is a second analogous, but pyriform organ, which also produces a vessel at each end, corresponding perhaps to the branchio-cardiac canals, mentioned in our observations on the circulation of the Crustacea Decapoda, From several experiments made by Jurine upon various Cyclopes, alternately asphyxiated and resuscitated, it would appear that in this sort of resurrection the extremity of the intestinal canal gives the first signs of life, and that the irritability of the heart is less energetic; that of the antennæ, in the males especially, of the palpi, and lastly of the feet, is inferior. No alteration is effected in the antennæ by amputating a portion of them ; the reintegration takes place under the skin, for the organs reappear in all their entireness at the ensuing moult.

The C. staphylinus, from its shorter antennæ, the superior of which consist of a considerably less number of joints than those of other Cyclopes, while the inferior, on the contrary, have more; and from the shape of its body which gradually diminishes towards its posterior extremity, so that it seems to have no tail or at least none that is abruptly formed, and its back, in the females, being armed with a kind of horn posteriorly arcuated, forms a particular division. The C. castor, and some others whose inferior antennæ and mandibular palpi are divided above their base into two branches, may also compose another group. The one designated by Leach under the general name of Culanus, might in fact constitute a separate subgenus, if it were true that the animal on which it is founded had noinferior antennee; but has that gentleman satisfied himself that such is the fact, by personal observation, or does he depend upon the assertion of Müller?
> C. quadricornis; Monoculus quadricornis, L. ; Müll., Entom., XVIII, 1-14; Jurine, Monoc., I, II, III. All the antennae simple or undivided; the inferior with four joints, and their length hardly equal to one-third of the others; the body, propeerly so called, inflated and almost ovoid; tail narrow and formed of six segments. The colour varies greatly ; some are reddish, others whitish or greenish. 'I'he whole length of the animal is two lines. 'Ihis species is very common *.

The second general division of the Lophyropa Branchiopoda, or that in which the shell is formed of two valves uniting by a hingeOstracoda, Lat.; Ostrapoda, Straus-is composed of two subgenera, the first of which, Cythere, since the interesting and valuable observations of the laticr upon the second or Cypris, appears to solicit a more profound examination than that of Müller, our only authority

[^223]with respect to its characters, in order that they may be clearly defined. According to Mïller we find in the

Cythere, Müll.-Cytherina Lam.

Eight simple feet*, terminating in a point, and two equally simple setaccous antennæ, composed of five or six joints, furnished with scattered hairs. They are found in the salt and brackish waters of the sea-coast among the Fuci and Confervæ \dagger.

Cypris, Müll.
But six feet \ddagger; the two antennæ terminated by a bundle of setæ resembling a pencil.

The shell forms an oval, laterally compressed body, with an arcuated and convex back, or towards the hinge; the opposite side is almost straight, or slightly emarginated or reniform. Before the hinge and on the median line is the cye, forming a large, blackish, round point. The intermediate antennæ, inserted above, are shorter than the body, setaccous, composed of from seven to eight joints, the last of which are shortest and terminated by a bundle of twelve or fifteen setæ, serving as fins. The mouth consists of a carinated labrum, two large dentated mandibles, each furnished with a triarticulated palpus, to the first segment of which adheres a small branchial leaf with five digitations \S, and two pairs of juws. The two superior are much the largest, and have four moveable and silky appendages on their internal margin, and a large, pectinated, branchial lamina on their anterior edge; the second are composed of two joints, with a short, nearly conical, inarticulated palpus $\|$, silky at the end, as is the extremity of the jaws themselves. A sort of compressed sternum fulfils the functions of a lower lip I. The feet are divided into five joints, the third representing the femur, and the last the tarsus. 'The two anterior feet, inserted under the antennæ, are much shorter than the others, incline forwards, and are furnished with rigid setæ, or long hooks united in a bundle at the extremity of the last joints. They are deficient in the four following feet. The second, situated in the middle of the under part of the body and at first directed backwards, are arcuated and terminated by a long and streng hook inclining forwards. The two last are never visible ex-

[^224]ternally, but are turned up, applied to the posterior sides of the borly in order to support the ovaries, and terminate in two very small hooks *. The body presents no distinct articulations, and terminates posteriorly in a kind of soft tail which is doubled underneath, with two conical or sctaccous threads furnished with threc setæ or hooks at the end, directed backwards and issuing from the shell. The ovarics constitute two large, simple and conical vessels forming a cul-de-sac at their origin and situated on the postcrior sides of the body, underneath the shell, and opening, side by side, in the anterior portion of the abdomen where the canal formed by the tail establishes a communication between them. The ova are spherical. These Crustacea spawn, and change their skin, as frequently as the Cyclopes and other Entomostraca, and their mode of life is the same. Ledermuller states, that he observed them in coitu. Modern naturalists, who have most closely studied them, however, have never beco able to discover their sexual organs with certainty, nor been fortunate enough to see them in actu. M. Straus observed, under the origin of the mandibles, the insertion of a stout conical vessel filled with a gelatinous substanee, which appeared to communicate with the osophagus by a straight eanal, that he suspects may be a testis or salivary gland. The individuals which were the subjects of these obscrvations having ovaries, the Cyprides aecording to the first supposition must be hermaphrodites. 'I'his is so much the more doubtful, however, as he himself remarks that it is possible the males may only exist at a particular season of the year, and that the vessel alluded to seems to be more nearly connected with the function of digestion than with that of generation \dagger.

According to Jurine, the antennæ are true fins, the threads of whieh are spread out or united at the will of the animal, and in proportion to the degrec of velocity it wishes to communieate to its motions; sometimes but a single one is visible, at others they are all displayed. We also think that these threads, and those of the two anterior feet, may be considered as aiding in respiration, quite as mueh as the laminæ of the mandibles and of the two superior jaws, which M. Straus distinguishes by the name of branchial. The last, or those of the jaws, appear to me to be true but greatly dilated palpi, and the two others are appendages of the mandibular palpi. Sce Jurine, Hist. des Mon. VI, 3.

According to the naturalist of Geneva before mentioned, these animals, while they are swimming, move their anterior feet as rapidly as their antennie, but very slowly when walking over the surface of aquatic plants. These fect, conjointly with the two terminated by a long hook, or the penultimates, then support the body. He supposes that those which, aecording to him, form the sccond pair, are destined to create an aqueous current and to direct it toward the

[^225]mouth, thereby assimilating their functions to those of the second inferior antemne, which he calls antennule. The two threads com posing the tail unite on leaving the shell, and seem to form but one; they serve, as he supposes, to brush out its interior. The female deposits its ova in mass, fixing them on plants or the mud by means of gluten. During this operation, which lasts about twelve hours, and in the largest species produces twenty-four eggs, she clings with her second feet, and in such a manner as not to fear the shock of the water. He collected some of these packets of newly laid cggs, and after separating them, observed the hatching of the young ones, and obtained a second generation without the intervention of the males. A female which had deposited her ova on the 12 th of April, changed her skin six times between that period and the 18th of the following May. On the 27 th of the same month she spawned a second time, and two days afterwards, on the 29th, a third. From this, he concludes that the number of these changes in the young animal is in proportion to the gradual developement of the individual; that this developement ean only take place by a general separation of an envelope become too small to contain the animal; and that the size of the latter has a determined limit to which it must attain.*.

The Polyropha of our third division-Cladocera, Lat.; Daphnides, Straus-form the second family of the Monoculi of Jurine. The form of two of their antennæ, which resemble ramified arms and serve as oars, and the faculty of leaping which they possess, have acquired for one of the most common species the name of the aqualic arborescent flea.

The first of these naturalists, who has given us an excellent monography of the Daphnix, a subgenus of this division, establishes two new ones ; one by the name of Latona, characterized by antenne, in the form of oars, divided into three branches, and of but one joint \dagger; and the other by that of Sida, which approaches other known subgenera of the same division, in having similar antennæ, divided into two branches only, but of which one is composed of two joints, and the other of three \ddagger. The Daphnix, according to him, are distinguished from the preceding and from the Lyncei, inasmuch as one of the two branches of these oars is composed of three joints and the other of four. Jurine, however-Hist. des Mon. p. 92-states, that each branch is composed of three joints; but it scems that he did not include the first of the posterior branch, a very short one, it is true \S. The last, in all these Lophyropha, is terminated by three threads, and each of the preceding ones gives out another; these threads are either simple or barbed. There are also two other but very short antenne

[^226]-particularly in the females-situated at the anterior and inferior extremity of the head, which have but a single joint with one or two setre at the extremity. In the

Polyphemus, Müll.,

As in Daphnixe and Lynceus, the antennæ are in the form of oars divided into two branches; but each of them is composed of five joints. 'The head, moreover, which is very distinct and rounded, is provided with a sort of neck, and is almost entirely occupied by a large eye. The feet are completely exposed.

But a single speeies has hitherto been discovered, the Monoculus pediculus, L.; Deg., Insect,, VII, xxviii, 6-13; Polyphemus oculus, Müll., Entom., xx, l-5: Cephaloculus stagnorum, Lam. ; Jurine, Monoc., xv, l-3 ; Desmar., Consid., LIV, $1,2$.
The feet, according to Jurine, have no resemblance whatever to the Monoculi of this division. They consist of a thigh, leg, and a tarsus composed of two joints, from the extremity of which, that of the last pair excepted, issue several small threads. Two small antennie, consisting of a single joint and terminated by two threads, project from the anterior extremity of the head. The shell is so extremely diaphanous, that all the viscera can be distinguished, The matrix, when filled with eggs, occupies the greater part of its interior. Their greatest number never cxceeds ten. In following the gradual developement of the foetus, we are struck with the carly appearance of the eye, in comparison with that of other parts of the body. It is greenish at first, and passes insensibly to a deep black. The abdomen, after being flexed from behind forwards, bends suddenly backwards to form a long, slender, pointed tail, from which issue two long articulated threads. The animal always swims on its back, and most frequently in a horizontal direction, by the quick and repeated motion of its arms and feet, and executes all sorts of evolutions with case and agility. When young, and after its first changes, it is subject to a disease called the ephippium*; but this ephippium or saddle always has a determinate figure, and never contains the two oval ampullæ observed in the Daphnixe. These animals do not live long in a state of captivity, nor can their young ones be raised, at least such was the case with Jurine, who could not preserve them after their first changes. Among all the specimens which were the suljeets of his observations, he could not find a single male, though, it is true, he could procure but very few of them, this species being rare in the environs of Geneva. It is said, however, to be rery common in the marshes and ponds of the north, where it aggregates in considerable numbers. In the

> Daphina, Mfüll.,

The oars are always exposed to their base or to the origin of their peduncle; they are as long, or almost as long as the body, and are divided into two branches, the posterior of which consists of four joints, the first very short, and the other, or the anterior, of three.

[^227]Their eye is small or punctiform, and, with the exception of certain species, has not, as in Lynceus, the small black punctiform spot before it, which Müller considered as a second cye *.

Although the extreme smallness of these animals might be supposed to defy any attempt to investigate their organization, but few are better known. Exclusive of those who have devuted themselves to microscopie researches, four of the most profound naturalists, Schæffer, Randohr, Straus, and Jurine, Sen., the third particularly, have studied them with the most serupulous attention. If some anatomical details escaped the notice of the latter, the omission has been remedied by the labours of Randohr and Straus; Jurine also completes the observations of the former with respect to their habits, which he studied for a long period, and with the greatest success. The mouth is situated beneath at the base of the rostrum; we consider (with Randohr) the inferior portion of the head, which Straus denominates a labrum, as an clongated clypeus, and we apply the former term to that part which he styles the posterior lobule of the labrum. Directly under it are two strong jaws-interior jaws of Randohr-without palpi, vertically inclined, and applied to two horizontal jaws \dagger terminated by three stout horny spines, in the form of recurved hooks. Then come ten feet, the second joint of all of which is vesicular; the first eight terminate by an expansion in the manner of a fin, the edges furnished with setze or barbed threads arranged like a crown or a comb; the two anterior seem to be specially appropriated to the purposes of prehension, and in fact Randohr considers them as double palpi, the external and internal ; they are the same parts, elsewhere -Cyclops-ealled hands by Jurine. In the figures which they have published, the terminal setæ appear to be bearded : if this be so, we do not sce why these appendages may not concur in the process of respiration \ddagger, a property confined by Straus to the following ones, because the latter have, besides, a lamina on the inner side, which, with the exception of the two last, is elged with a pectinated serics of setæ, that aecording to the figures of Jurine and Randohr are also bearded. The structure of the two last feet is somewhat different, and Randohr distinguishes them by the name of claws. The abdomen, or body properly so called, is divided into eight segments perfectly free between its valves, and is long, slender, recurved at the extremity, and terminated by two small hooks directed backwards. On the superior surface of the sixth segment is a range of four papillæ forming indentations, and the fourth presents a sort of

[^228]tail *. The ovaries are situated along the sides between this segment and the first, and open separately near the baek into a cavity-matrix, Jurine-formed betwixt the shell and the body, in which the ova remain for some time after they are produced.

Müller has given the name of ephippium, or saddle, to a large, obseure, and rectangular spot, whieh at eertain periods and particularly in summer, appears, after the females have changed their tegument, on the superior part of the valves of the shell, and which he attributes to disease. According to Straus this ephippium presents two oval, diajhanous ampulle, placed one before the other, and forming with those of the opposite side two small oval capsules, opening like that of a bivalve. It is divided, as are also the valves of which it forms a part, into two lateral halves, united by a suture along their superior edge; its interior exhibits another similar, but smaller one, with free edges, provided it be not the superior that is attaehed to the valves, the two halves of whieh, playing upon each other as if hinged, present the same ampullo as the exterior lids. Each capsule contains an egg with a greenish and horny shell, otherwise similar to an ordinary ovum, but requiring a greater length of time for its developement, and being destined to pass the winter in statu quo. When the animal is about to change its tegument, the ephippium, as well as its ova, is abandoned with the exuviæ, of which it constitutes a part, and whieh protect them during the winter from the eold. The heat of spring hatehes them, and young Daphnire are produeed exactly similar to those which eome from the ordinary eggs. Sehreffer affirms that they will remain for a long period in a desiecated state without losing the vitality of the germ, but none of those preserved in that condition by Jurine were ever hatehed. They are entirely free, or do not adhere to each other in their peeuliar cavitics. In summer, according to Jurine, they may be hatehed in two or three days. In the climate of Paris, where Straus observed them at all periods of the year, they require at least one hundred hours. The foetus, twenty-four hours after the produetion of the ovim, is a mere rounded and unformed mass, on which, when closely examined, may be seen obtuse rudiments of arms in the form of very short and imperfeet stumps ghed to the body; neither head nor eye is perceptible; and as yet, the green or reddish body dotted with white, like the egg, exhibits no motion. It is only at the nineteenth hour, and when the hour has appeared, and the arms and valves are elongated, that the foetus begins to move. By the hundredth hour it is very active, and finally, at the humdred and tenth it only differs from the newly hatched animal in the setre of the oars whieh are still ghed to their stem, and in the tail of the valves which is bent under and received between their inferior edges. Towards the end of the fifth day, the tail, whieh terminates the valves in the young animal, and the setre of the arms beeome free, and the feet for the first time begin to move. The young being ready to make their appearanee, the mother lowers her

[^229]abdomen and they dart out. Newly laid eggs deposited in a glass jar, where they were observed ly Straus, were developed in this order. Jurine has also furnished us with the result of his analogous observations upon the successive changes in the embryo Daphniæ, but made during the winter, and, as the eggs were not hatehed till the tenth day, he could consequently detect thoir developement with more precision. The ovum, on the first day, presents a central bubble, surrounded by smaller ones, with coloured molecules in the intervals. These bubbles and molecules appear destined to form the organs by proximating towards the centre, and finally disappear. The form of the foetus begins to be defined on the sixth day; on the seventh the head and feet are distinguishable ; on the cighth appears the eye as well as the intestine; on the ninth the network of that eye begins to be visible, and the bubbles have entirely disappeared, the central one excepted, which contains the alimentary canal under the heart; on the tenth the developement of the foetus is terminated, the young Daphnia issues from the matrix and for a moment remains motionless.

The males, of those species at least observed by Straus, are very distinct from the femalc. The head is proportionably shorter ; the rostrum less salient ; the valves narrower and less gibbous superiorly, and gaping in front in such a manner as to present a wide and alnost circular opening. The antennæ are much larger and have the appearance of being furnished with two horns bent underneath, which are considered by Müller as the organs of generation. Straus could not diseover these sexual parts, but he remarks that the little nail terminating the last joint of the two anterior feet-or the second, if we suppose the oar to be the first-is much larger than those in the female, that it has the form of a very large hook with a strong outward curvature, and that the seta of the third joint is also much longer; it is by means of these hooks that he seizes the female. The mammillæ of the sixth segment of the abdomen are much smaller, and at an carly age have the form of tubereles. The inferior antennæ excepted, which are longest, the two sexes are nearly alike, and the two valves of their shell terminate in a stylet, dentated bencath, arcuated below, and nearly as long as the valves. Every time the animal changes its tegument, this stylet becomes shorter, so that in the adult it forms a mere obtuse point.

The males pursue their females with much ardour, and several frequently unite in their advances to the same individual.

A single copulation fecundates the female for several sucecssive geuerations, and for a period of six months, as ascertained by Jurine. Straus, remarking that the orifices of the ovaries are placed very decply under the valves and that consequently no part of the body of the male could reach them, suspects that he has no copulating organ, but darts the fecundating fluid under the valves of the female, whenee it finds its way to the ovaries; analogy however seems to disprove this conjecture *. Jurine saw them in actu, for a period of cight or

[^230]ten minutes. The male, first placing himself on the baek of the female, seizes her with the long threads of his anterior feet; he then seeks the inferior margin of her shell, and approximating the aperture of his own to that of the latter, he introduces the threads, as well as the hooks of these same fect. He now brings his tail in contact with that of his eompanion, who at first, refusing to comply, flies with her amorous mate, but finally yields. Little granulated bodies of a green, rose, or brown colour, aecording to the season, gradually ascend into the matrix and beeome eggs. Jurine observes, that the males of the D. pulex are but few, when eompared to the number of females: that they are extremely rare in spring and summer, but less so in autumn.

About the eighth day after they are hatehed, the young Daphnia effeets its first ehange of tegument, and repeats the same proeess every five or six days, aceording to the inereased or diminished temperature of the weather; it is not merely the body and valves whieh lose their epidermis, the branehix and setre of the oars undergoing the same operation. It is only after the third ehange that they are fitted to continue their speeies. At first the female lays but a single egg, then two or three, gradually augmenting the number, whieh in the D. magna amounts to fifty-cight. The day after she las pro-- dueed her ova, the female ehanges her skin, and in the teguments whieh she abandons may be found the shells of the eggs she has previously laid. The next moment a new batch is produeed. The young from each set of eggs are generally of one sex, and it is rare to find two or three males proceding from that which produced females, and vice versî. But in five or six of these broods, in the summer, one at most consists of males. Individuals are frequently remarked, whose integuments are of a milky white, opaque and thickenced; they do not however appear to be affected by it, and on the renewal of the shell, but slight rugous traces of this alteration are perceptible.

These animals ecase to propagatc, and no longer east their skins on the approach of winter; they perish before the extreme cold has arrived. The ova eontained in the ephippia, and whieh were laid during the summer, are hatehed on the first approaeh of the vernal heat; and the ponds soon abound again with countless Daplinire. Some naturalists attribute the oceasionally sanguine tinge of these waters to the presence of myriads of the D. pulex, but Straus says he never remarked the fact, and that this speeics is at all times but slightly coloured. Morning and evening, and even during the day in eloudy weather, they keep on the surface; but in the heat of summer, or when the sun darts his rays directly upon the pools whieh they inhabit, they deseend to the depth of six or eight feet; frequently, not one is to be seen on the surface. Their mode of natation is by little bounds, of a greater or less extent, aecording to the length of their oars, and in proportion to the projection of the shell which eovers the body, an inerease of its size impeding their movements. According to Straus, their food consists cxelusivcly of small pareels of vegetable substances which they find at the bottom, and frequently of Conferve. 'They always refused the aumal substanees he presented to them. He repeatedly saw them swallow their own fieces,
carried along by the current formed by the action of their feet, which directs their ordinary aliment towards their mouth. 'They use the hooks which terminate the extremity of their tail to clean their branchix.

Daphnia pulex ; Monoculus pulex, L.; Pulex aquaticus arborescens, Swamm., Bib. Nat., xxxi; Perroquet d'eau, Gcoff., Hist. Ins. II, 455 ; Schæf., Die Gruin., arm., Polyp., 1755, I, 1, 8; Straus, Mem. du Mus. d'Hist. Nat. V, xxix, l-20; Jurine, Mon., viii-xi. According to Straus, this species has a large convex rostrum ; setr of the oars plumose; first tubercle of the sixth segment linguiform; inferior edgo of the valves dentated; valves terminated by a short tail, which is obtuse in the females. This last character distinguishes it from another species with which it has been confounded, the

Daph. longispina, Str. Deg. Inscct. VII, xxvii, 1-4. The female is four millimetres in length *.
The last subgenus of the Lophyropa is

Linceus, Müll.-Chlodorus, Leach.

It can scarcely be distinguished from the preceding except by the oars, evidently shorter than the shell, the inferior portion of which has but little or no projection. According to Straus the articulations of the branchire are more numerous than in the preceding subgenera. They all have a little spot before their eye which has the appearance of a second one. The rostrum, longer in proportion than that of the Daphniæ, is curved and pointed \dagger.

The second section of the Branchiopoda, that of the Phyllopa, is distinguished from the first, as already stated, by the number of feet, which at least amounts to twenty \ddagger and by the lamellated or foliaccous form of their joints. There are always two eyes, which are sometimes pediculated: several of them have also an ocellus.

They form two principal groups.
In the first-Ceratopthalia, Lat.- there are never less than ten pairs of feet, nor more than twenty-two ; the vesicular body at their base is wanting; the anterior are never much longer than the others, nor ramified. The borly is contained in a shell resembling that of a bivalve, or is naked, each thoracic segment bearing a pair of exposed feet. 'Ihe eyes are'sometimes sessile, small, and closely approximated; at others, and most frequently, they are situated at the extremity of two moveable pedicles. The ova are internal or external, and are contained in a sac at the base of the tail.

Here the eyes are scssile and immoveable; the body is invested

[^231]with an oval shell resembling that of a molluscous hivalve, and the ovaries are always internal. Such is the

Limnadia, Ad. Brong.*

The Limnadiæe are so closely allied to the preceding subgems, that the only species known was placed among the Daphnire by the younger Hermann. The shell is bivalve, oval, and incloses the 1 ody, which is clongated, linear, and inflected forwards. In the head, and almost confounded with it, we find : 1 , two cyes closely approximated and placed transversely; 2, four antennæ, two of which are much the largest, each composed of a peduncle of eight joints and of two setaceous branches or threads divided into eight segments and somewhat silky; the two others are intermediate, small, simple, and widened at base; 3, the mouth, situated beneath, and consisting of two inflated mandibles arcuated and truncated at the inferior extremity, and of two foliaceous jaws. These parts, when united, form a sort of inferior rostrum. The body, properly so called, is divided into twenty-threc segments, each of which, except the last, bears a pair of branchial feet. All these fect are similar. strongly compressed, and bifid; their external division is simple, and ciliated on the exterior edge; the other has four joints, and is strongly ciliated along its interior mergin. The first twelve pairs are of equal length, and larger than the others; the length of the latter progressively diminishes. The eleventh pair, and the two following ones, liave a slender thread at their base, which ascends into the cavity situated between the back and the shell, in order to support the ova. The last segment on the tail is terminated by two threads. The oraries arre internal, and placed along the sides of the intestinal canal, extending from the base of the first pair of feet to the eighteenth; their openings appear to be at the root of some of those that are intermediate; the eggs, after having been produced, oceupy the dorsal cavity above mentioned, and are sccured there by means of small threads, whieh adhere to those of the fcet. At first they are round and transparent; they afterwards assume a yollowish tint, which is subsequently darker towards the centre, and their figure beeomes irregular and angular.

All the individuals examined by M. Ad. Brongniart were provided with them. The males, allowing the sex to exist, do not appear at the same time as the females, which is during the month of June, and are unknown.

Limnadia Hermani, Ad. Brongn., Mém. du Mus. d'Hist. Nat., VI, xiii; Daphnia-giggas, Herm., Mém. Apterol., V. Found in great numbers in the little pools of the forest of Fontaincbleau.
There, each cye is situated at the extremity of a pediele, formed by a lateral prolongation, in the shape of a horn, of eaeh side of the head. The body is naked, without a shell, and annulated throughout. The

[^232]ova of the females are contained in an elongated capsule, situated near the base of the tail in those which are thus terminated, or in the posterior extremity of the body and thorax in those which have no tail.

Some are provided with a tail.

Artemia, Leach.

Eyes placed on very short pedicles; the head confounded with an oval thorax, furnished with ten pairs of feet, and terminated by a long and pointed tail. The antennæ short and subulate.
A. salina; Cancer salimus, L.; Montag., Trans. Lin. Soc. XI, xiv, 8-10; Gammaius salinus, Fab.; Desmar., Consid., p. 393. A small species found in the salt marshes of Lymington, in England, when nearly dry, of which as yet we have but a very imperfect account.

Branchipus, Lat.-Chrocephalus, B. Prevost, and Jurine.

Eyes placed on projecting pedicles; the body narrow, elongated and compressed; the head distinct from the trunk, furnished with appendages varying according to the sex, and with two appendages resembling horns between the eyes; eleven pair of feet; the tail terminated by two leaflets more or less elongated and edged with cilia.

Although Schæffer and Benedict Prevost*, have published very detailed monographs of two species of this genus, they are still imperfect with respect to the profound and comparative study of the organs of the mouth, and of some other parts of the head. Considering the two sexes together, we find the following general conformation : the body is almost filiform, composed of a head separated from the trunk by a kind of neck; of a trunk or thorax longitudinally hollow beneath, divided, at least above, exclusive of the neck, into cleven segments, each bearing a pair of branchial, strongly compressed feet, usually composed of three foliaccous joints, with a fringe of hairs or bearded threads along the edges; and of an elongated tail tapering to a point, consisting of nine segments terminated by two more or less elongated leaflets fringed with cilia. Under its second segment we find the male organ of generation, and in the female an elongated sac containing the ova she is ready to produce. In the head we observe, 1. Two reticulated eyes situated at the extremity of two flexible peduncles formed by lateral prolongations of the head; 2. Two antennæ at least, frontal, scarcely longer than the licad, slender, filiform, and composed of very small joints; 3. Two projections under them, sometimes resembling a uniarticulated horn, and at others digitiform-the premier doigt des mains, Bened. Prevostand biarticulated; 4. A mouth underneath, composed of two kinds of dentated mandibles without palpi, and of some other parts. We suspect that these horn-like projections are merely an appendage, larger and differently formed in the males, of the frontal antennie;

[^233]the two other antemxe may be wanting or be obliterated in the female, and form in the other sex of onc of these species-Chirocephala diaphana, Prevost-those singular appendicated and dentated tentacula, in the form of a soft proboseis which is susceptible of being spirally convoluted, designated by Benedict Prevost under the name of doigts des mains, or fingers. It is probable that, as in Apus, the mouth is furnished with two pairs of jaws, a ligula and a labrum, but their respective form and situation have not yet been well ascertaincd. I am convinced that the part resembling a rostrum mentioned by Schæffer, and which Prevost ealls a valve (soupapc) is the labrum; that the four bodies or tubcreles placed on the sides, mentioned by the former, are the mandibles and the two upper jaws; and that the parts considered by the second as cirri (barbillons) are also maxillary. The two first feet, which, aceording to Seheffer, are composed of but two joints, the last terminating in a print, would represent the two first foot-jaws of the Crustacea Decaporda, and the two large antenniform feet of an Apus*. The chicf of the male organs of gencration, at least those whieh are eonsidered as such, consist in two conoid biartieulated bodies, which only project by pressure (Schæeffer), situated under the sccond ring, in which vessels terminate that arise from the first. M. Prevost presumes that the two rulvæ of the female are placed at the cxtremity of the tail, but that they afford no issue to the ova. This issue (two apertures aceording to Sehreffer), is in the second ring, and communicates internally with the sac containing the eggs, which acts as an external matrix. But there is no erustaceous animal known in which the female organs of gencration are placed at the postcrior extremity of the body, and lience we can allow but little weight to this opinion.

The observations of Schæffer on the hairs of the feet of these Crustacea, prove that they are so many air tubes; even the surfaee of the feet of whieh they are composed, appears to absorb a portion of the air, which adheres to it under the forin of little bubbles.

The Chirocephalus diaphanus, Bened. Prevost, which scems to us to l:e very elosely allied to our Branchipus palustris, if it be indeed different, has, when first hatched, a body divided into nearly equal and almost globular masses. In the first we observe an ocellus, two short antenne, two very large oars ciliated at the extremity, and two short slender feet, composed of five joints. After the first ehange of tegument, the two eompound eyes make their appearance, the body is clongated posteriorly, and terminated by a conical, articulated tail with two threads at the extremity. The subsequent changes gradually develope the feet, and the oars disappear. The valve-soupape-which at first cxtended over and covered the abdomen, diminishes in proportion.
The Branchipi are found, and usually in great numbers, in little muddy, fresh water pools, and frequently in those that are formed by hravy rains, particularly in spring and autumn. On the first approach of eold weather they perish. They swim with the greatest

[^234]facility on their back, and their feet, which they cannot use for walking, while thus employed, present a graceful and undulating motion. This motion ereates a eurrent between them, which, following the canal of the thorax, direets to its mouth the atoms which constitute its food; when the animal wishes to advance it strikes the water, right and left, with its tail, whieh forces it forwards by bounds and leaps. Withdrawn from its element, it moves its tail for a while, and eurves itself into a eircle. Deprived of a certain degree of humidity, it remains motionless.

Benedict Prevost states, that when the male of the speeies whieh constitutes the objeet of his memoir seeks his female, he swims round her, seizes her by the neck with the two horn-like appendages of his head, and remains fixed there, until she turns up the posterior extremity of her tale, in order to approximate the two valves of the copulating organs; this proeess is analogous to the eoitus of the Libellule. The ova are yellowish, spherieal at first, and afterwards angular; the shell is thiek and hard, a eircumstance which tends to preserve them. It appears that even desiecation, provided it be not earried to far, produees no ehange in the germ, and that the young are hatched as soon as a suffieieney of rain has fallen. M. Desmarest has frequently remarked Branchipi in the little hollows filled with rain water, on the summit of the rocks at Fontainebleau. The female Chiroeephalus produces several distinet sets of eggs, after each copulation, at different.times, oeeupying some hours, and even the whole day in the process. Eaeh set consists of from one to four hundred eggs; they are rapidly ejeeted from the female in jets of ten or a dozen, and with sufficient foree to sink them slightly in the mud.

Benediet Prevost has remarked that the Chir. diaphanus was subjeet to eertain diseases, of whieh he gives a description. This speeies, as we have already stated, does not differ from our Branchipus palustris *. The two horns, situated under the superior antenne, are eomposed, in both sexes, of two joints, the last of whieh, however, is large and areuated in the male, and very short and conieal in the female. In the Branchipus stagnalis t, the horns consist of a single joint, and those of the males resemble the mandibles of the Lucanus cervus, in their form, dentations, and direetion.

Others have no tail; their body terminates almost direetly behind the thorax and last feet. Such is the

Eulimene, Lat.

The body of the Eulimenes is almost linear, and has four nearly filiform antennæ, two of whieh are smaller than the others, bearing a great resemblance to palpi, and plaeed on the anterior extremity of the head. Their head is transverse, with two eyes seated on large

[^235]VOI. III.
and cylindrical peduncles. 'There are eleven pairs of branchial feet, the three first joints and the last small and tapering; direetly after them follows a terminal and nearly semiglobular piece replacing the tail, and from which issues an elongated thread, that, perhaps, is an oviduet. Near the middle of the fifth pair of feet, and of the four following ones, I have remarked a globular body, possibly analogous to the vesicles presented by these organs in the following subgenus.
'The only species known, Eulimène blanchâtre, Lat., Règne Animal, Cuv., III, p. 68; Nouv. Dict. d'Hist. Nat. X, 333 ; Desmar., Consid., p. 353,354 , is very small; whitish eyes, and posterior extremity of the body blackish. From the vicinity of Niee.

The remaining Phyllopa-Aspidiphora, Lat.-have sixty pairs of feet, all furnished externally near their base with a large oval vesicle *, and the two anterior of which, although much larger and ramous, resemble antennæ; a large shell, eovering the greater part of the superior portion of the body, almost entirely free, elypeiform, emarginated posteriorly, provided anteriorly in a eircumseribed space with three simple, sessile eyes, the two anterior of which are largest and lunated; and two bivalve eapsules containing the ova, and annexed to the eleventh pair of feet. Such are the characters which mark the

Apus, Scop.,

Which makes part of the genus Binoculus, Geoff,, and of the Limulus, Miiller.

The body, ineluding the shell, inclines to an oval, wider and more rounded before, and narrowed behind in the manner of a tail; abstracting the shell, it is at first nearly cylindrical, convex above, coneave and divided longitudinally beneath by a furrow, and terminates in an elongated eone. It consists of thirty annuli, which are considerably smaller at the posterior extremity, and which, the last seven or eight excepted, give origin to the feet. The first ten are membranous, soft, without spines, exhibit a small button-like prominence on each side, and have each but a single pair of feet. The others are more solid or horny, with a range of small spines on the posterior margin; the last is larger than the preceding ones, nearly square, depressed, angular, and terminated by two articulated threads or setæ. In some species composing the genus Lepidurus, Leach, a horny, flattened, and elliptieal lamina is seen between them. If the number of feet be about a hundred and twenty, the last annuli, beginning with the eleventh or twelfth, must necessarily have more than one pair, a circumstance which in this respect approximates these Crustacea to the Myriapoda. The shell, perfectly free from its anterior adhesion, invests a great part of the body, and thus protects the primary segments, whieh, as already stated, are softer

[^236]than the others. It consists of a large, homy, extremely thin, and almost diaphanous scale or plate, which represents the superior teguments of the head and thorax united, and forming a large oval convex shield, angularly notehed and dentated at its posterior extremity. Its upper surfaee is divided by a transverse line forming two united arcs in two areas, the anterior nearly semilunar, corresponding to the head, and the posterior to the thorax. In the middle of the first we observe three closely approximated simple eyes, or without apparent faeets, the two anterior of which are largest and almost reniform, and the posterior mueh smaller and oval. A duplieature of the anterior portion of the shell forms a sort of frontal, flattened, semilunar shield beneath, which serves as a base to the labrum. The posterior area, that which corresponds to the thorax, is carinated throughout the middle of its length. This shell is only adherent by its anterior extremity, so that looking from this point we can discover the whoie back of the animal. Each side of the shell, seen from beneath and in a strong light, presents a large spot, formed by numerous lines describing concentric ovals, which appear to be tubular and filled with a red fluid. Directly under the sliield or frontal disk, we find the antennæ and mouth. The former, two in number, are inserted on each side of the mandibles, are very short and filiform, and are composed of two nearly equal joints. The mouth consists of a square, projecting labrum ; of two strong, horny, inferiorly inflated mandibles, compressed and dentated at the extremity and without palpi; of a large and profoundly emarginated ligula; and of two pairs of foliaeeous jaws laid on each other, the superior of which are spinous and ciliated along the inner margin, and the inferior almost membranous and similar to small false feet; they are terminated by a slender, elongated joint, and are prolonged externally from their base into a species of auriele, (oreillette), furnished with an uniarticulated and ciliated appendage, which may be considered as a kind of palpus. Aceording to Savigny *, the ligula exhibits a ciliated eanal, which leads direetly to the œesophagus. The feet, which amount to about one hundred and twenty, insensibly diminish in size, commencing from the second pair; they are all strongly compressed, foliaceous, and are composed of three joints, exclusive of the two long threads at the extremity of the two anterior feet, and the two leaflets at the cnd of the following ones, parts, which, when united, we may consider as constituting a fourth, forceps-like joint, or one with two elongated toes coverted into a sort of antenniform threads. On the posterior side of the first joint is inserted a large, branchial, triangular membrane; the second also, on the same side, has a red, vesicular and oval sac. On the opposite margin of these feet are four triangular and eiliated leaflets, the superior of whieh is closely approximated to the toes of the forceps, appearing to form a third to the second and following feet, as far as the tenth pair. In proportion as these organs diminish in size, the leaflets approximate more closely, the the forceps is more elcarly defined and less pointed, and the first toe

[^237]becomes wider, shorter, and rounder. The two anterior feet, which are much larger and are formed like oars, resemble ramous antenne, and have been considered as such by some writers *: they exhibit four multi-articulated setaceous threads, the two last joints, one of them particularly, being mueh longer than the others, whieh are situated on the internal side or anteriorly. The two at the extremity are evidently analogous to the toes of the foreeps, the remaining two also correspond to as many of the lateral leaflets; it is easy to eonvinee ourselves of this by eomparing these parts in young speeimens. After their sixth or seventh ehange of tegument, the two or three following feet of the latter greatly resemble the two anterior ones, and even their antennæ are longer in proportion than in the adult, and are terminated by setæ or hairs. The eleventh pair are very remarkable \dagger. The first joint, behind the vesieles, presents two eircular valves, laid one on the other, formed by two leaflets, and containing the ova, which resemble granules of a bright red eolour. Every specimen whieh has hitherto been examined being always found to possess this kind of feet, they have been considered as hermaphrodites, and are eonsidered eapable of self impregnation.

These animals inhabit ditches, pools, stagnant waters, \&e., and usually in myriads. Abdueted, when thus assembled, by violent winds, they have been seen to deseend in rain. They generally make their appearanee in spring, and in the beginning of summer. Their customary food is the Tadpole. They swim well on their back, and when they sink into the mud they ereet their tail. When first produeed they have but one eye and four fect, rescmbling arms or oars, furnished with tufts of hairs, the second of which are the largest. Their remaining organs are regularly developed after each ehange of tegument. M. Valenciènnes, an attaché of the Mus. d'Hist. Nat., has remarked that these Crustacea are frequently devoured by the bird vulgarly called the Lavandiere (a).

The number of species known being very small, it is unneeessary to imitate Leach in forming a separate genus-Lepidurus, Leach-for those which have a lamina between the threads of the tail. Sueh is the Apus prolongatus; Monoculus apus, L. ; Schæff., Monoc., VI; Limule sirricaude, Herm., Jun.; Desmar., Consid., LII, 2. The carina of the shicld terminates posteriorly in a small spine, whieh is not seen in the Apus canciformis; Binocle à queue en filet, Geoff., Insect., XXI, 4; Limulus palustris, Müll.; Schæff., Monoc. I-V ; Apus vert, Bosc.; Desmar., Ib., LI, l; the latter, besides, has no lamina between the eaudal threads; it is the type of the genus Apus, Leach, or

[^238][^239]the Apus properly so called. The same naturalist has figured another species, Apus Montagui, Edinb. Encyclop. Suppl. I, XX.

ORDER II.

PRECILOPODA.

The Pæcilopoda are distinguished from the Branchiopoda by the diversity in the form of their feet, among the anterior of which an indeterminate number are ambulatory, or fitted for prehension; while the others, lamelliform or pinnate, are branchial and natatory. It is principally, however, by the absence of the usual mandibles and jaws that they are removed from all other Crustacea. Sometimes these parts are replaced by the spinous haunches of the first six pairs of feet; and sometimes the organs of manducation eonsist either of an external siphon in the form of an inarticulated rostrum, or of some other apparatus fitted for suction, but eoncealed or slightly apparent.

The body is almost always, either wholly, or for the greater portion, invested with a shell in the form of a shield, eonsisting of a single plate in most of them, and of two in others, whiel always presents two eyes when those organs are distinct. Two of their antennæ -Cheliceres, Lat.-form a forceps in several, and fulfil its functions. Most of them have twelve feet *, and nearly all the remainder have either ten or twenty-two. Their usual habitat is on aquatic animals, and most eommonly on fishes.

We divide this order into two families \dagger.

FAMILY I.

XYPHOSURA.

This family is distinguished from the second by several characters: there is no siphon; the haunches of the first six pair of feet are covered with small spines and perform the office of jaws; there are twenty-

[^240]two fect; the first ten, with the exception of the two anterior ones in the mates, are terminated by a didactylc forceps, and inserted, as well as the two that follow, under a large semi-lunar shicld; the lattcr lave the sexual organs attached to them, and the form of large leaflets, as in the case with the ten following, which are branchial and inserted under a second shell, terminated by a very hard, ensiform and moveable stylct. They are wandering animals, and form the genus

Limulus, Fab.
The species are known in commerce by the name of the Molucca Crab. The suborbicular, slightly elongatcd, and posteriorly narrowed body is divided into two parts, invested by a solid shell composed of two pieces, one to each part, very hollow beneath, and presenting above two longitudinal sulci, one on cach side, and a carina on the middle of the back. The first part of the shell, or that which covers the fore-part of the body, is much larger than the other, forms an extensive semi-lunar shield, with a reflected cdge, furnished above with two oval eyes of numerous facets, resembling granules, one on each side, exterior to a longitudinal carina; and on the anterior extremity of the middle one, and common to both pieces of the shell, two small, closely approximated, simple eyes*; thesc carinæ are armed with teeth or acute tubercles. The duplicature of this shell at its anterior extremity, beneath, forms a level border, strongly arcuated, and terminated inferiorly by a doublc arc, projecting like a tooth towards the centre of union. Immediately under this projection, in the cavity of the shield, is a small inflated labrum, carinated in the middle, and terminating in a point, above which are inserted two little antennæ, in the form of small didactyle forceps, flexed into an elbow in the middle of their length, at the point of union between the first joint and the second, or of the forceps properly so stylcd. Directly beneath, inserted and approximated by pairs, and on two lines, are twelve feet, the ten first of which, the two or four anterior ones of the males excepted, terminate in a didactyle forceps; their radical joint, projecting inwards like a lobe and covered with points, performs the office of a jaw. The size of these feet augments progressively; those of the fifth pair cxcepted, they are all composed of six joints, the moveable toe of the forceps included. The latter have an additional joint, and also differ from the preceding ones by having, at their external base, a bi-articulated appendagc, directed backwards, the last joint of which is compressed and obtusc; by their fifth joint being terminatcd on the inner side by five small, moveable, horny, narrow, elongated and pointed leaflets, and by the two toes of the forccps being moveable or articulated at base. The two pieccs situated betwcen these fcet, which M. Savigny considers as the ligula, appear to me to be merely two maxillary lobes of these organs, but detached or free. The pharynx occupies the interval included by all these feet. The males are distinguished from the

[^241]females by the form of the forceps, which terminate the two or four anterior feet: they are inflated and deprived of the moveable toe. The two last feet of this shield are united in the form of a large, membranous, and almost semi-circular leaflet, having the sexual organs on its posterior face, and presenting, in the middle of an emargination of the posterior margin, two small, triangular, elongated, and pointed divisions, which appear to represent the internal toes of the forceps ; the other articulations are indicated by sutures. The second piece of the shell, articulated with the first in the middle of its posterior emargination, and filling the interval it forms, is nearly triangular, and is angularly truncated and emarginated at its posterior extremity. Its lateral edges are alternately emarginated and dentated, and in the middle of each of the emarginations, counting from the second, is an elongated and moveable spine, six on each side. Inclosed in the inferior cavity, and disposed in pairs on two longitudinal ranges, are ten fin-like feet, almost similar in form to the two last, but simply united at base, laid one on the other, and bearing, on their posterior face, the branchiæ, which appear to be composed of numerous and crowded fibres arranged on the same plane one against the other. The anus is situated at the inferior root of the stylet terminating the body. According to an observation communicated to us by M. Straus, we only find in the interior of the first shield, besides the brain, a single sub-œsophagal ganglion *. The two nervous cords are then prolonged into the interior of the second shield, forming there, and at the origin of the branchial fect, some small ganglia, which send branches to those organs, According to Cuvier, the heart, as in the Stomapoda, is a large vessel furnished internally with fleshy columns, extending along the back, and giving out branches on both sides. A wrinkled œsophagus, ascending in front, leads to a very muscular gizzard, lined with a cartilaginous kind of velvet, studded with tubercles, and followed by a wide and straight intestine. The liver pours its bile into the intestine by two ducts on each side. A great portion of the shell is filled by the ovaries in the female, and by the testes in the male.

These animals are sometimes found two feet in length; they inhabit the seas of hot climates, and most generally frequent their shores. 'Ihey appear to me to be proper to the East Indies and the coast of America. The species found in France-L. cyclops-is commonly called the Casserole (a), from its having some resemblance to the form of that utensil, and because, when the feet are removed, its shell is used to hold water. Major Le Conte, one of the most intelligent of naturalists in the United States, and who has so largely contributed to advance the science of entomology by his discoveries and researches, states that it is given to the hogs. Savages employ the stylet of the tail to point their arrows, which, thus armed, are much

[^242]$\sqrt{3}$ (a) The King-crab, of American fishermen, or the llorse-shoc. Very common on the coast of New Jersey.-Eng. Ed.
dreaded. Their eggs are eaten in China. When these animals walk, their feet are not seen. Fossil specimens are found in certain strata of a moderate antiquity *.

In some, the four anterior feet, at least in one of the sexes, are terminated by a single toe.

But a single species of this division is known; it is the Limulus heterodactylus, and is the type of the genus Tachypleus Leacht. I have seen it figured on Chinese vellums.
In the others, the two anterior claws at most, are alone monodactyle. All the ambulatory feet are didactyle, at least in the females. I'his division is composed of several species, which, owing to the little attention that has been paid to the detailed form of their parts, to the differenees resulting from sex and age, and from their peculiar loealities, have not yet been eharacterized in a rigorous and comparative manner. The common American Limulus for instance, when young, is whitish, or of a light colour, and has six stout tecth along the whole ridge of the middle of the upper shell, and two others equally strong and pointed on each lateral ridge of the shield, or of the first pieee of that shell; while older specimens, sometimes more than a foot and a half in length, are of a deep brown eolour, or almost blaekish, their teeth, the middle ones especially, being almost obliterated. Here also the lateral margins of the second piece of the shell are marked with fine dentations, which are scarecly apparent or wanting in the former.

We should consider as young individuals the Lim. cyclops, Fab., and the L. Sowerbii, Leaeh, Zool. Misecll., LXXIV ; his L. tridentatus, and the L. albus, Bose. : and as older ones, my Limule des Moluques; Monoculus polyphemus, L. ; Clus., Exot., lib. VI, cap. xiv, p. 128; Rumpl., Mus., XII, a, b, which I at first considered a distinet speeies, under the belief that these large individuals inhabited those islands exchusively. In all of them, or at all ages, the tail is somewhat shorter than the body, and triangular, the upper ridge finely denticulated and without any decided sulcus beneath. We will designate this species by the name of Limulus polyphemus. These latter charaeters will distinguish it from some others described by Dr. Leach \dagger.

FAMILY II.

SIPHONOSTOMA.

The Siplonostomæ have no kind of jaws whatever. A sucker or siphon, sometimes exterual, and in the form of an acute inarticulated

[^243]rostrum*, and at others concealed or but slightly visible, fulfils the functions of a mouth. There are never more than fourteen feet. The shell is very thin and composed of a single piece. They are all parasitical.

We will divide this family into two tribes.
The first-Caligides, Lat.-is characterized by the presence of a shell resembling an oval or semi-lunar shield; by the number of visible feet, which is always twelve,-or fourteen, if we include those which Leach considers as such, and which I call inferior antennæ; by the form and size of the tenth pairs which are sometimes multifid, pinnate, or terminated in a fin, and well adapted at all times, and in the adult, for the purposes of natation, and sometimes foliaceous, or broad and membranous. The sides of the thorax are never furnished with wing-like expansions directed backwards and inclosing the body posteriorly.

Here, the body, exhibiting several segments above, is elongated and narrowed posteriorly, terminating in a kind of tail with two threads, or as many other salient appendages at the end; this extre~ mity is not covered by a segment of the superior teguments in the form of a large rounded scale, decply notched in the posterior margin. I'he shell is at least half the length of the body. This subdivision will comprise two genera of Mïller.

Argulus, Müll.

This genus was at first designated under the name of Ozolus, and but very imperfectly described. Jurine, Jun., has since studied its type with the most scrupulous attention, followed it throughout all its changes of age, and produced a perfect and complete monograph of it. He has restored to the genus the original name given by Müllcr.

The Arguli are furnished with an oval shield, posteriorly emarginated, covering the body, the posterior extremity of the abdomen excepted, and bearing on a mediate, triangular space distinguished by the name of clypeus, two eyes, four very small, almost cylindrical antennæ placed in front, the superior of which, shorter and triarticulated, have a stout, edentated and recurved hook at their base; and the inferior quadriarticulated, with a small tooth on the first joint. The siphon is directed forwards. There are twelve feet. The two first terminate in a transversely annulated disk, striated and edentated along the margin, and presenting internally a sort of rosettc formed

[^244]by the muscles, and apparently acting in the manner of a cup or sucker. Those of the second pair are prehensile, the thighs large and spinous, and the tarsi composed of three joints, the last of which is provided with two hooks. The remaining feet are terminated by a fin formed of two elongated pinnulæ, whose edges are fringed with bearded threads : the two first of the latter, or those of the third pair, including the four that precede them, have an additional but recurved toe. The two last are annexed to that portion of the body which projeets posteriorly from the shell, or the tail. The female has but a single oviduct, covered by two small feet situated behind the two palettes. The organ which is considered as the penis of the male, is placed at the internal extremity of the preceding joint of the same feet near the origin of the two toes. On the same joint of the two preceding feet, and facing these organs of copulation, is a vesicle presumed to be seminal. The abdomen, by which we mean that part of the body which extends posteriorly from the ambulatory feet, the rostrum, and a tubercle containing the heart, is entirely free, without distinet articulations, and terminates directly after the last feet behind, by a sort of tail, in the form of a rounded lamina, decply emarginated or bilobate, and without terminal hairs; it is a species of fin. The body is so transparent that the heart may be distinguished through its parietes. It is situated behind the base of the siphon, lodged in a solid tubercle, semi-diaphanous and composed of a single ventricle. The blood, formed of little diaphanous globules, is impelled forwards in a column which soon divides into furr branehes, two of whieh proceed directly towards the eyes, and two towards the antennæ; the latter are then reflected baekwards and united to the former, constituting a single column on each side, which descends towards the eup, turns round its base, and disappears. A little beneath the two following feet, we may distinguish on each side another sanguineous column which curves outwards, extends along the borders of the shell, and having reaehed the two penultimate feet, is flexed forwards and ceases to be visible. Another, where, as in the preceding, the blood flows from the anterior part of the body to the posterior, and traverses longitudinally the middle of the tail ; it unites behind with two other currents that may be seen on the edges of the tail, but whieh flow in a contrary direction, or appear to return the blood to the heart, Jurine avoids using the term vessel, because the blood which is driven into the anterior part of the body appears to be diffused there in such a manner as to induce us to believe that its globules, instead of being contained in particular vessels, are dispersed in the parenchyma of those parts. From what we have stated, however, with respect to the cireulation in the Decapoda, it is evident, that the blood, in the first instance, is distributed in the Arguli in the same way, and that the currents or columns of which we have just spoken seem to indicate the existence of peculiar vessels. This able observer, in fact, subsequently acknowledges that the circulation is not every where carried on in so diffused a manner as in the anterior part of the shell, where, however, in our opinion. it is effectuated as in the Decapoda. The brain, which is situated behind the eyes, appeared to him to be divided into three equal lobes, one anterior and
two lateral. The anterior part of the stomach gives origin to two large appendages, eaeh divided into two branehes, which ramify in the wings of the shell. The brownish eoloured aliment they eontain renders these ramifications visible. The eæeum is provided near its origin with two vermiform appendages.

The exeessive ardour of the males frequently induees them to mistake one sex for the other, or to make their advanees to pregnant or dead females. They are placed in eoition on their baek, to whieh they eling by means of their feet with cups for several hours. The period of gestation is from thirteen to nineteen days. The ova are smooth, oval, and milk-white. They are fixed with gluten on stones or other indurated bodies, either in a straight line or in two ranges, and from one to four hundred in number; being pressed against each other, their form beeomes almost hexagonal.

Twenty-five days after the extrusion of the ova, and after they have assumed a yellowish and opaque tinge, the eye and parts of the embryo are pereeptible. In about ten days more, the shell opens longitudinally, and the tadpole issues from it, being at this period about three-eighths of a line in length. Its general form is similar to that of the adult, but the organs of locomotion present a very essential difference. Mïller has deseribed it in this state by the name of Argulus charon. Four oars or long arms, two situated before the eyes and two behind, each terminated by a pennate and flexible pencil of hairs that have a simultaneous motion, by whieh the animal is impelled by jerks, projeet from the anterior extremity of the shell: they do not represent the antennæ, for they also are visible. The feet with eups are replaeed by two stout feet, flexed into an elbow near the extremity, and terminated by a strong hook, with whieh it clings to Fishes. The only feet proper to the adult, that are developed and free, are those of the second and third pairs, or the two ambulatory and the two first natatory feet; the following ones are as yet fixed to the abdomen. The heart, proboscis, and ramifications of the appendages of the stomach are distinct. After the first ehange of tegument, which is effeeted by a laceration of its inferior surface, the oars disappear, and all the natatory feet are visible. In three days more the second ehange ensues, but without produeing any important alteration. But after the third, whieh oceurs forty-eight hours subsequently to the seeond, these same feet are eonverted into those with eups, still, however, preserving the terminal hook. At the expiration of nine days, there is a new change of skin, and the organs of generation, male and female, are apparent; another ehange of tegument, however, is required ere the sexes are fitted for copulation, so that the period of their metamorphosis extends to twenty-five days. Still, however, they have attained but the half of their proper size. For that purpose fresh ehanges of the tegument, whieh oceur every six or seven days, are requisite. Jurine satisfied himself of the fact, that propagation never ensues without the intervention of the male. The females, whieh he kept separate, perished from a disease whieh was announced by the appearance of several brown globules, arranged in a semieircle on the posterior portion of the
clypeus, and apparently formed in the parenchyma, for they were not dispersed by the change of tegument.

Argulus foliaceus, Jurine, Jun., Ann. Mus. d'Hist. Nat. VII, xxvi ; Monoculus foliaceus, L.; Argulus delphinus, Herm. Jun., Mem. Apter., V, 3, VI, ii; Monoculus gyrini, Cur., Tabl., Elem. de l'Hist. Nat. des Anim., p. 454; Ozolus gasterostei, Lat., Hist., Nat. des Crust. et des Insect., IV, xxix, 1-7; Desmar., Consid., L. ; Louse of the Stickleback, Baker, Micros., II, xxiv. T'lis species, the only one of the genus that is known, attaches itself to the under part of the body of the tadpoles of Frogs, of that of the Stickleback or Gasterostens, and sucks its blood. The body is flattened, of a light yellowish green colour, and about two lines and a half in length. Herman, Jun., who has well described this Argulus in its perfect state, and who quotes a manuscript of Leonard Baldaneur, a fisherman of Strasbourg, dated 1666, in which the same animal is figured, says, that in the environs of that city it is seldom found, except on the Trouts, and that it frequently kills them, those especially which are kept in ponds; it is also found on the Perch, Pike, and Carp. He has never found it on the gills. It has a habit of whirling round like the Gyrini. He says that the body is divided into five rings, but slightly distinct on the back.

Caligus, Müll.

Neither of the feet with cups; those of the anterior pair unguiculated; the others divided into a greater or less number of pinnule or membranous leaflets. A consideralle portion of the body is not covered by the shell, and is usually terminated posteriorly by two long threads, and sometimes by fin-like or styliform appendages.*

The vulgar name of fish-louse, by which they are collectively designated, announces their habits to be similar to those of the Arguli and other Siphonostomæ. Several naturalists have considered the tubular threads at the posterior extremity of their body as ovaries; I have sometimes found ova under the posterior and branchial feet, but never in these tubes. Besides, external oviducts thus prolonged are never met with except in females whose eggs are to be deposited in deep holes and cavities-now this is not the case with the Caligi. Mïller and other zoologists have remarked that these Crustacea erect and agitate the appendages in question. We believe with Jurine, Jun., and such also is the opinion of his father, that they serve for respiration, like the terminal filaments of the abdomen of an Apus \dagger.

[^245]Some of them whose feet are free, and (the two last cxcepted) annexed to the anterior part of the body-Cephalothorax, Lat.covered by the shield, in which some of the posterior fcet are furnished with numerous and pennated threads, and in which the siphon is not apparent, have the abdomen naked above and terminated by two long threads, or as many styles; they compose the subgenus.

Caligus, properly so called,-Caligus risculuts, Leach*.

In all others, the superior surface of the body is imbricated, or that portion of the body is inclosed in a kind of case formed by the last feet which resemble membranes and fold over it.

Of these latter, there are some whose antennæ never project like little claws, whose feet are free, and whose last oncs do not envelope the body like a membranous case. They form the following subgenera.

Pterygopoda. Lat.-Nogaus? Leach.

Where the posterior extremity of the body is terminated by two kinds of fins; where the under part of the post abdomen or of the second division of the body, not covered by the shield, is furnished with pinnated or digitated feet; and where there is a distinct proboscis or rostrum \dagger.

Pandarus, Leach.

Two threads at the posterior extremity of the body; the first and fifth pair of feet unguiculated, and the remainder digitated; no apparent siphon \ddagger.

Dinemoura, Lat.

Two long anal filaments and an apparent siphon; the two anterior' feet unguiculated'; the two following ones terminated by two long toes, and the remainder membranous leaflets \S.
'The last subgenus of this subdivision, that of

Anthosoma, Leach,

Approximates to Dinemoura in the presence of a siphon, and in the two caudal threads; but it is removed from it, as well as the preceding ones by its projecting antennæ, which rescmble little monodactyle claws, and by its six last fect which are membranous,

[^246]united inferiorly, and folded laterally over the post-abdomen, enveloping it like a case; those of the first and third pairs are unguiculated; the second fect arc terminated byltwo short and obtuse toes *.

There, the body is oval, without salient caudiform appendages, composed of threads or fin-like productions at its posterior extremity. A portion of the superior teguments forms a shield, which does not cover its antcrior half, is rounded and emarginated beforc, widened and as if bilobate behind; then follow three picces or scales, posteriorly rounded and emarginated, the sccond of which, and the smallest of the threc, is almost in the form of a reversed heart; the last, and the largest, is arched. The four posterior feet are in the form of lamine, and are united by pairs; those of the first and the third are unguiculated; the extremity of the second is bifid. The siphon is apparent. The ova are covered by two large, oval, contiguous, coriaceous pieces, placed under the abdomen, and surpassing it in length. Such are the characters of the genus
Cecrops, Leach,

Of which a single species only is known.
Cecrops Latreillii, Leach, Encyc. Brit., Supp. I, xx ; 1, 3, the male ; 2, 4 , the female ; 5 , the antennre magnified; Dcsmar., Consid. L, 2 Found on the branchiæ of the Tunny and Turbot.
The second tribe, that of the Lerneiformes, Lat., consists of Entomostraca, which approximate to the Lerneæ, in their external configuration, still more than the preceding subgenera. There are but ten feet visible \dagger, mostly very short, and but slightlyor nowise adapted to natation. Sometimes the body is nearly vermiform and cylindrical, the anterior segment being merely somewhat widened and furnished with two projecting didactyle claws; sometimes, on account of two lateral expansions resembling lobes or wings behind the thorax, and of two posterior ovaries, it forms a small quadrilateral mass. This tribe is composed of two gencra. In the first or the

Dichelestium, Herm., Jun.

We obscrve a narrow clongated body, slightly dilated before, and composed of seven segments, the anterior of which-the thorax of Herm.-is wider than the others, rhomboidal, and formed of the head and a portion of the thorax united. It bears : 1, four short antennæ, of which the lateral are filiform and consist of several joints, and the intermediate project like little arms and are quadri-articulated, the last joint terminating in a didactyle claw ; 2, an inferior, membranous, and tubular siphon; 3 , threc kinds of deformed palpi-

[^247]two multifid feet?-on eaeh side placed on an eminence; 4, four prehensile feet, the two first of which eonsist of a thigh and leg terminated by various unequal and dentated hooks, and the others of an enlarged thigh terminated by a small but stout nail. The second and third segments are almost lunulated, each bearing a pair of feet formed of a single joint, terminated by two kinds of toes, dentated at the end: To the fourth segment is attaehed another pair of feet, the fifth and last, but having the form of simple, oval, divergent, and immoveable vesieles, which Hermann presumes are rather ovaries than feet. This segment, as well as the next, is nearly square. The sixth is much longer, and cylindrieal. The seventh and last is three times shorter, almost orbicular, flattened, and terminated by two small vesieles. The eyes are not distinct.

Dichelestium sturionis, Herm., Jun. Mem. Apter. p. 125, V, 7,8; Desmar., Consid. L, v. About seven lines long and one broad. The seeond segment is prolonged on each side into an obtuse papilla, and the four following are red in the middle, with whitish-yellow along the lateral margins. When viewed from above, the feet are not visible. This animal penetrates deeply into the skin and places itself on the osseous arches of the branchiæ, but without, as it appears, intruding upon their eombs. Twelve of them were taken by Hermann from a single fish. Of this number, two or three, perhaps males, were one third shorter than the others, and had a eurved body; one of the twelve lived three days. They are constantly whirling about and with eonsiderable vivacity. By means of their frontal elaws they are enabled to eling with great tenacity.

Nicothoe, Aud. and Edw.

These animals terminate the Crustacea, and are distinguished from all others of that elass by their heteroclitical form. To the naked eye they seem nothing more than two lobes united in the form of a horse-shoe, which inclose two others. By the aid of glasses, however, we diseover that the two large lobes are formed by the great expansion of the sides of the thorax, whieh resemble wings, are almost oval and thrown behind; that the two others are external ovaries or clusters of eggs, analogous to those of a female Cyclops, and inserted, one on each side, into the base of the abdomen by means of a short pediele; and that the body of the animal is eomposed of the following parts: 1, a distinet head furnished with two separate eyes; two short, setaceous, lateral antennæ formed of eleven joints, eaeh with a hair on the inner side; a mouth forming a cireular aperture which acts as a cup, and aceompanied on eaeh side withanterior feet-maxilliform appendages: 2, a thorax of four segments, with five pairs of feet beneath, the two anterior of which are terminated by a stout hook, and are bidentated on the inner side; the remaining eight being formed of one large joint, terminated by two nearly equal and eylindrieal stems, eaeh composed of three joints, and furnished with setæ: 3, a pointed abdomen of five annulli, the first and largest of which gives origin to the oviferous saes; the last
is terminated by two long hairs. The lateral expansion merely appears to be an excessive developement of the fourth and last ring of the thorax. Within we may perceive two kinds of entrails originating from the median line of the body, which may be considered as cæca or divisions of the intestinal canal in a state of hernia. They are endowed with a very decided peristaltic motion. We have scen that the stomach of the Arguli also exhibits two cæca, which ramify in the wings of their shell, and it is possible that these thoracic expansions of the Nicothocs may be two analogous lobes *.

Nicoihoe astaci, Aud. and Edw. Ann. des Sc. Nat., 1826, XLIX, 1, 9. The only species known; it is about half a line long and three lines broad, the thoracic enlargement included. It is rose-coloured, paler on the oviperous sacs; the expansions yellowish. It adheres closely to the branchire of the Lobster, and penetrates decply between the filaments of those organs. It is only found in small numbers, and on a few individuals. All the Nicothocs observed by these two naturalists were furnished with ovaries; it is probable that previously to fixing themselves on the branchix of the Lobster, and before their thoracic lobes have acquired their ordinary developement, they can swim ; that developement, as is the case with the body of the Ixodes, may be the result of superabundant nutrition.

TRILOBITES.

According to Brongniart and various other naturalists, it is in the vicinity of the Limuli and other Entomostraca with numerous feet, that we should place these singular fossil animals, originally confounded under the common name of Entomolithus paradoxus, and now designated by that of Trilobitcs, of which an excellent monograph, enriched with good lithographic figures, has been published by that gentleman \dagger. By this hypothesis we have to admit as a positive or at least highly probable fact, the existence of locomotive organs, although, notwithstanding the most carcful investigation, no vestige of them has been discovered \ddagger. Presuming, on the contrary,

[^248]that these animals were deprived of them, I thought that their natural position was in the neighbourhood of the Chitones, or rather that they constituted the original stock of the Articulata, being connected on the one hand with these latter Mollusca, and on the other with those first mentioned, and even with the Glomeres *, to which some Trilobites, such as the Calymenes, appear to approximate, as well as to the Chitones, inasmuch as by contracting they could also become spherical. . Since the puhlication of M. Brongniart's work, some naturalists have rejected his opinions and adopted mine, cither wholly or in part; others still hesitate. Be this as it may, these animals appear to have been annihilated by some ancient revolution of our planet.

The Trilobites, one heteromorphous genus excepted, that of Agnostus, lave, like the Limuli, a large anterior segment in the form of an almost semicircular or lunated shicld, followed by from about twelve to twenty-two segments \dagger, all transversal except the last, and divided by two longitudinal sulci into three ranges of parts or lobes, whence their name of Trilobites \ddagger. Some naturalists call them Entomostracites.

[^249]VOL. III.

Agnostus, Brongn.

The only genus where the body is semicircular or reniform. In all the other genera it is oval or elliptical, and exhibits the general characters above mentioned.

Calymene, Brongn.

The Calymenes are distinguishod from all other Trilobites, by the faculty of contracting their body into a ball, and in the same manner as Sphæroma, Armadillo, and Glomeris, that is, by approximating the two inferior extremities of the body. The shield, as broad as it is long, or broader, is furnished, as in the Asaphi and Ogygiæ, with two oculiform prominences. The segments do not project beyond the sides of the body, and arc united throughout; the body is terminated posteriorly by a sort of triangular and elongated tail. In

> Asaphus, Brongn.

The oculiform tubercles seem to exlibit a sort of eye-lid, or are granulus ; the species of tail which terminates the body posteriorly is less elongated than in Calymene, and is either nearly semicircular, or in the form of a short triangle *. In the

Ogygia, Brongn.

The shield is longer than it is broad; its posterior angles are extended into a kind of spine, The oculiform tubcrcles exhibit neither eyelid nor granulations. The body is elliptical.
Paradoxides, Brongn.

The eye-like tubercles cease to exist, or are not apparent in this genus. The segments, or at least most of them, project beyond the sides of the body, and are free at their lateral extremity.

Such are the characters of the five genera established by M. Alexander Brongniart, which may be arranged in three principal groups; the Reniformes-Agnostus; the Contractiles-Calymene; and the Extensi--Asaphus, Ogygia, and Paradoxines.

For a description of the species and their localities, we refer the reader to the excellent work of this celebrated naturalist, who in his labours upon the fossil Crustacea, properly so called, or universally admitted as such, has availed himself of the talcnts of one of his most distinguished pupils, M. Desmarcst, frequently referred to by us, not only with respect to this particular part of the science, but in relation to his work on the living Crustacea. Different naturalists have proposed various generic sections of these fossils; but being restricted to general considcrations, I have adopted those presented to us by the best work hitherto produced on the subject.

[^250]
CLASS II.

ARACHNIDES.

The Arachnides, which compose the second class of articulated animals provided with moveable feet, are, as well as the Crustacea, deprived of wings, are not subject to changes of form, or do not experience any metamorphosis, simply casting their skin. Their sexual organs also are at a distance from the posterior extremity of the body, and situated at the base of the abdomen, those of several males excepted; but they differ from them as well as from Insects in several particulars. Like the latter, the surface of their body presents apertures or transverse fissures called stigmata,* for the introduction of air, but they arc few in number-eight at most, and usually but two-and confined to the inferior portion of the abdomen. Respiration is also effected either by means of air-branchiæ, fulfilling the function of lungs, that are contained in sacs of which these stigmata are the apertures, or by radiated tracheæ \dagger. The visual organs merely consist of ocelli, which, when numerous, are variously grouped. The head, usually confounded with the thorax, in place of the antennæ. has two articulated pieces in the form of small didactyle or monodactyle chelæ, improperly compared to the mandibles of Insects, and so denominated, moving in a contrary direction to the former, or from above downwards, still however co-operating in the manducation, and replaced in the Arachnides, where the mouth has the form of a siphon or sucker, by two pointed blades which act as lancets \ddagger. A kind of lip-labium, Fab. - or rather ligula, produced by a pectoral prolongation; two jaws formed by the radical joint of the first seg-

[^251]ment of two small legs or palpi*, or by an appendage or lobe of that sume joint; a part concealed under the mandibles, called langue sternale by Savigny-description and figure of the Phalangium cop-ticum-and composed of a projection in the form of a rostrum, produced by the union of a very small clypeus, terminated by an extremely small triangular labrum, and of an inferior longitudinal carina, usually very hairy, are the parts, which, with the pieces termed mandibles, constitute with some modifications the mouth of most of the Arachinides. The pharynxt is placed before a sternal projection which has been considered as a lip, but which, from being placed directly behind the pharynx, and having no palpi, is rather a ligula. The legs, like those of Insects, are commonly terminated by two hooks, and even sometimes by one more, and are all annexed to the thorax, or rather cephalo-thorax, which except in a small number, is only formed of a single segment, and is frequently intimately united to the abdomen. This latter part of the body is soft, or but slightly defended, in most of them.

With 'respect to their nervous system, the Arachnides are greatly removed from the Crustacea and Insects; for if we except the Scorpions, which from the knots or joints forming their tail have some additional ganglions, the number of these enlargements of the two nervous cords is never more than three, and cven in the latter, all counted, it never extends beyond seven.

Most of the Arachuides feed on Insects, which they either seize alive, or to which they adhere, abstracting their fluids by suction. Others are parasitical, and live on vertebrated animals. Some of them, however, are only found in flour, on cheese, and even on various vegetables.. Those which live on other animals frequently

[^252]multiply there to a great extent, 'Two of the legs, in some species, are only developed by a elange of the tegument, and in general it is not until the fourth or fifth ehange of skin that these animals are capable of propagation*

Division of the Arachnides into Orders.

Some have pulmonary saes \dagger, a heart with very distinct vessels, and six or eight simple eyes. They eompose our first order, or that of the Pulmonarie,

The others respire by traeheæ, and have no organs of eireulation, or, if they have, the eireulation is not complete. The traeheæ are divided near their origin into various braneles, and do not, as in Inseets, form two trunks whieh run parallel to eaeh other throughout the whole length of the body, and receive air from various points by means of numerous stigmata. Here, but two, at most, are distinctly visible, and they are situated near the base of the abdomen \ddagger. The number of simple eyes is at most but four. They constitute our seeond and last order, or that of the Trachearie.

ORDER I.

PULMONARIE§.

We here find a well marked eireulating system and pulnonary saes, always plaeed under the abdomen, announeed externally by transverse openings or fissures (stigmata), of whieh there are sometimes eight, four on eaeh side, and at others four, or even two. The number of simple eyes is from six to eight $\|$, while in the following order it

[^253]never exceeds four, and is most generally but two ; sometimes they are hardly perceptible, or even annihilated. The organ of respiration is formed of little laminæ. The heart is a large vessel which extends alung the back, and gives off branches on each side and anteriorly*. There are always eight legs. The head is always confounded with the thorax, and presents at its anterior superior extremity two man-dibles- so called by authors, the chelicerce or antenne-pinces, Latr. -terminated by two fingers, one of which is moveable, or by a single one resembling a hook or claw that is always moveable \dagger. The mouth is composed of a labrum \ddagger, of two palpi, sometimes resembling arms or claws, of the two or four jaws, formed, when there are but two, by the radical joint of these palpi, and moreover, when there are four, by the same joint of the first pair of feet, and of a ligula consisting of one or two pieces \S. If we base our arrangement on the progressive decrease of the number of pulmonary sacs and stigmata, the Scorpions where it is eight, while in the other Arachnides it amounts to but four or two, should form the first genus of this class, and consequently our family of the Pedipalpi should precede that of the Araneides\|. But the latter Arachnides are in a manner insulated by their male organs of generation, by the claw or hook of their frontal mandibles, by their pediculated abdomen and its spinning apparatus, and by their habits; besides this, the scorpions appear to form a natural transition from the Arachnides Pulmonariæ to the family of the Pseudo-Scorpiones, or the first of the following order. We will therefore commence, as we have said, with the Arancides or spinners.

[^254]
FAMILY I.

ARANEIDES.

This family is composed of the genus Aranea, Lin., or the Spiders. They have palpi resembling little feet, without a forceps at the end, terminated at most in the females by a little hook, and the first joint of which, in the males, gives origin to various and more or less complicated sexual appendages*. Their frontal cheliceræ (the mandibles of authors) are terminated by a moveable hook, flexed inferiorly, underneath which, and near its extremity, which is always pointed, is a little opening, that allows a passage to a venomous fluid contained in a gland of the preceding joint. There are never more than two jaws. The ligula consists of a single piece, is always external and situated between the jaws, and either more or less square, triangular, or semicircular. The thorax \dagger usually marked with a depression in the form of a V , indicating the space occupied by the head, consists of a single segment, pusteriorly to which, by means of a short pedicle, is suspended a moveable and usually soft abdomen; it is always furnished, under the anus, with from four to six closely approximated cylindrical or conical articulated mammillæ with fleshy extremities, which are perforated with numberless small orifices \ddagger for the passage of silky filaments of extreme tenuity proceeding from internal reservoirs. The legs, identical as to form, but of different sizes, are composed of seven joints, of which the two first form the hip, the third the thigh, the fourth § and fifth the tibia, and the two others the tarsus: the last is terminated by two hooks usually pectinated, and in several by one more, which is smaller and not dentated. The intestinal canal is straight, consisting of a first stomach composed of

[^255]several sacs, and then of a second stomach or dilatation surrounded with silk. According to the observations of M. Leon Dufour -Ann. des Sc. Phys.VI-it occupies the greater part of the abdominal cavity, and is imrnediatcly enveloped by the skin. It is of a pulpy consistence, and is formed of granules*, whose individual excretory ducts unite in several hepatic canals, which pour the scereted matter into the alimentary tube. In the middle of its superior surface is a depressed line, where the heart is lodged, and which divides that organ into two equal lobes. Its form, like that of the abdomen, varics according to the species; thus in the Epeira sericea its contour is festooned. In this subgenus, as in the Lycosa tarentula, its surface is covered with a whitish coat split into arcolæ, which, in several species, are casily perccived through the glabrous skin; they may be seen obeying the impulse communicated to them by the systole and diastole of the heart. Both sexes frequently eject from the anus an excrementitious fluid, part of which is milk-white, and the remainder black as ink.

The nervous system is composed of a double cord occupying the median line of the body, and of ganglions which distribute nerves to the various organs. M. Dufour has not been able to determine the number and disposition of these ganglions, but from the figure of this system given by Treviranus-Veber deninnern, bau des Arachniden, tab. V. fig. 45 -there are but two. The observations of the latter will also supply the want of those relative to the organ of the circulation by M. Dufour, which, according to him, appears to consist of a simple dorsal vessel, as well as with respect to the testcs and spermatic vessels, on which he is totally silent.

The dorsal region of the abdomen in several Arancides, those especially which are glabrous or but slightly pilose, exhibits depressed points varying both in number and arrangement. M. Dufour has ascertained that these little orbicular depressions are caused by the insertion of filiform muscles, which traverse the liver, and which he has also observed in the Scorpions,

The one or two pairs of pulmonary sacs are indicated extcrnally by as many yellowish or whitish spots near the ventral base, and immediately after the segment, which, by means of a fleshy thread, unites the abdomen with the thorax. Each pulmonary bursa is formed by the superposition of numerous, triangular, whitc, and extremely thin leaflets, which become confluent round the stigmata, and whose number exactly equals that of the pulmonary sacs. When there are

[^256]four, a sort of fold or annular vestige found even in those where there are but two, and placed directly behind them, forms a line that separates the two pairs,

The females have two very distinct ovaries, lodged in a species of capsule formed by the liver. In an unfecundated state they appear. to be composed of a spongy, flaky kind of tissue, formed by the agglomeration of rounded and scarcely visible corpuscles, which are the germs of eggs. As the results of fecundation become more apparent, the cluster formed by these ova * becomes less compact, and they are seen to be laterally inserted on several canals. Their great analogy to the ovarier of the Scorpions induces the same observer to presume that they form meshes terminating in two distinct oviducts, which open into a common vulva. The figure of the latter varies; sometimes it is a longitudinal bilabiated slit, as in the Micrommata argelasia; sometimes it is protected by an elongated operculum with a caudiform termination, as in the Epeira diadema; and at others resembles a tubercle.

With respect to the simple eyes, or ocelli, he remarks that they shine in darkness like those of Cats, and that the Araneides most probably enjoy the faculty both of nocturnal and diurnal vision.
'The abdomen becomes so putrid and decomposed after death, that its colours and even its form are soon destroyed. M. Dufour, by means of a rapid desiccation, the mode of which he points out, has succeeded in remedying this evil to a great degree.

The silk, according to Reaumur, is first elaborated in two little reservoirs, shaped like tears of glass, placed obliquely, one on each side, at the base of six other reservoirs, resembling intestines, situated close to each other, flexed six or seven times, procceding from a little vessel beneath the origin of the abdomen, and terminating in the papille by a very slender thread. It is in these last mentioned vessels that the silk acquires a greater degree of firmness and other propertics peculiar to it; they communicate with the preceding ones by branches, forming a number of geniculate turns, and then various pieces of net-work \dagger. The newly spun filaments, when first drawn from the mammillæ, are adhcsivc, and a certain degree of desiccation or evaporation is required to fit them for their destined purposes. When the temperature is propitious, however, a single instant is sufficient, as the animal cmploys them the moment they escape from the apparatus. Those white and silky flocculi that may be observed

[^257]floating about in spring and autumn in foggy weather, vulgarly termed in France fils de la Vierge, are certainly produced-as we lave satisfactorily ascertained by tracing them to their point of origin -by various young Arancides, those of the Epeiræ and Thomisi particularly; they are mostly the larger threads which are intended to afford points of attachment to the radii of the web, or those that compose the chain, and which, becoming more ponderous by the access of moisture, sink, approach one another, and finally form little pellets: we frequently observe them collected near the web commenced by the Spider, and in which it resides.

It is also very probable that many of these young animals not having as yet a sufficient supply of silk, limit their structure to throwing out simple threads. It is, I think, to the young Lycosa that we must attribute those which intersect the furrows of ploughed grounds, whose numbers are rendered so apparent by the reflection of light after sunrise. By chemical analysis, these fils de la Vierge exhibit the same characters as the web of the spider-they are not then formed in the atmosphere, as, for want of proper observation, ex visu, that celebrated naturalist, M. Lamarck, has conjectured. Gloves and stockings have been made with this silk; but it was found impossible to apply the process on a large scale, and, as it is subject to many difficulties, is rather a matter of curiosity than utility. This substance, however, is of much greater importance to the little animals in question. With it, the sedentary species, or those which do not roam abroad in search of their prey, weave webs * of a more or less compact tissue, whose form and position vary according to the peculiar habits of each of them, and that are so many snares or traps, where the insects on which they feed become entangled, or are taken. No sooner is one of them arrested there by the hooks of its tarsi, than the Spider, sometimes placed in the centre of his net, or at the bottom of his web, or at others lying in ambush in a peculiar domicile situated near and in one of the angles, rushes towards his victim, and endeavours to pierce him with his murderous dart, distilling into the wound a prompt and mortal poison; should the former resist too vigorously, or should it be dangerous to the latter to approach it, he retreats, waiting until it has either exhausted its powers by struggling, or become more entangled in the net; but should there be no cause of fear, he hastens to bind it by involving the body in his silken threads, with which it is sometimes completely enveloped.

[^258]Lister says that Spiders dart their threads in the same way that the Porcupine darts his quills, with this difference, however, that in the latter, aecording to the popular belief, the spines are detached from the body, whereas in the former, these threads, though propelled to a considerable distanee, always remain eonneeted with it. The possibility of this has been denied. Be it as it may, we have seen threads issuing from the mammillæ of several Thomisi from straight lines, and, when the animals moved eireularly, produeing moveable radii. A seeond use to which this silk is applied by the female Araneides is in the eonstruetion of the saes destined to eontain their eggs. The texture and form of these saes are variously modified, according to the habits of the race. They are usually spheroidal; some of them resemble a eap or tymbal, others are placed on a pedicle, and some are elaviform. They are sometimes partially enveloped with foreign bodies, sueh as earth, leaves, \&c.; a finer material, or sort of tow or down, frequently surrounds the eggs in their interior, where they are free or agglutinated and more or less numerous. As they are voraeious animals, the males, in order to avoid a surprise and to prevent themselves from falling victims to their premature desires, approaeh their females in the nuptial season with the greatest eireumspection and mistrust. They eautiously and repeatedly touch them, and frequently for a long time before they yield to their wishes, and when this is the case they quiekly and repeatedly apply the extremity of their palpi to the inferior surface of the abdomen, protruding at each time, and as if by a spring, the fecundating organ contained in the button formed by the last joint of those palpi, and insinuate it into a sub-abdominal slit, near the base and between the respiratory orifiees; after a moment's interval the same act is repeatedly performed. Sueh is the mode of eopulation of a small number of speeies belonging to the Orbitelæ. It is impossible to avoid feeling the most lively interest in reading what has been written upon this subject by that learned naturalist, who of all other's has most profoundly studied these animals, the celebrated Walckenaer, member of the Aead. des Inseriptions et Belles-lettres. The apparatus of the male organs of generation, or at least of what are considered as sueh, is usually highly complicated and very various; it consists of sealy pieees, more or less hooked and irregular, and of a white fleshy body, on whieh sanguineous looking vessels are sometimes pereeptible, whieh is considered as the fecundating organ, properly so called; but in the Araehnides with four pulmonary saes, and in some belonging to the division where there are but two, the last joint of the palpi of the males only exhibits a single horny piece in
the form of a hook or ear-picker, without the smallest visible opening. Although Müller and others were mistaken when they placed the male organs of certain Entomostraca upon two of their antennæ, it is very certain that the parts considered as analogous to them in the Araneides are very different from those observed on the antennæ of those Crustacea, and that if we refuse to admit of their exercising this function, it is impossible to conceive of their use *.

According to the experiments of Audebert, who has given us a history of the Monkeys worthy of the talents of that great painter, it is certain that a single fecundation is sufficient for several successive gencrations, but that with them, as with all Insects and other analogous classes, the ova are sterile without a union of the sexes. Their nuptial season in France lasts from the latter end of summer till the beginning of October. The ova first laid are frequently hatched before the termination of autumn: the others remain in statu quo during the winter. The females of certain species of Lycosa have been observed to tear open the egg-sac when the young ones were about to issue from the ovum. The latter then mount on the back of their mother, where they remain some time. Other female Araneides carry their cocoons under the abdomen, or remain near them and watch them. The two posterior fcet of some of the young ones are not developed until several days after they have been hatched. Some, during the same period, live together, and appear to spin in common. Their colouring is then more uniform, and the young naturalist may easily err in multiplying their species. One of our collaborators for the Encyclopedie Methodique, M. A. Lepelletier of Saint-Fargeau, has observed that these animals, as well as the Crustacea, possess the faculty of reproducing a lost limb.

I have ascertained that a single wound from a moderate sized Araneid will kill our common Fly in a few minutes. It is also certain that the bite of those large Araneides of South America, which are there called Crab-Spiders, and are placed by us in the genus Mygale, kills the smaller vertebrated animals, such as Humming-Birds, Pigeons, \&c., and produces a violent fever in Man; the sting of some species in the south of France has even occasionally proved fatal. We may, therefore, without believing all the fabulous stories of Baglivi and others respecting the bite of the Tarantula, mistrust the Arancides, and particularly the larger ones.

Various insects of the genus Sphex, Lin., seize upon these Spiders, pierce them with their sting, and transport them into holes where they have deposited their eggs, as a source of food for their young.

[^259]Most of them perish in winter, but there are some which live several years-such are the Mygales, the Lycosa, and probably several others. Although Pliny states that the genus Phalangium is unknown in Italy, we still presume that these latter Araneides and other large species which weave no web, as also the Galeodes and Solpugæ, are the animals they collectively designated by that name, and of which they distinguished several species. Such also was the opinion of Mouffet, who, in his Theat. Insect., p. 219, has figured a Lycosa or Mygale, of the island of Candia, as a species of Phalangium.

Lister was the first and most successful observer of the Spiders, whose habits he was enabled to study; those of Great Britain laid the foundations of a natural arrangement, of which most of those that have been since published are merc modifications. The more recent discovery of species peculiar to hot climates, such as the Araignée maçonne described by the abbé Sauvages, and some others, the use of the organs of manducation introduced into the system by Fabricius, a more exact study of the general disposition of the eyes, and of their respective sizes, with that of the relative length of the legs, have all contributcd to extend this classification. Walckenaer has entered into the most minute of these details, and it would be a difficult matter to discover a species that could not find its place in some one of his divisions. One character, however, existed, the application of which had not been made general: I allude to the presence or absence of the third terminal hook of the tarsi. Savigny, so far as this is concerned, has given us a new method, of which, however, I have only seen a simple sketch*.
M. Leon Dufour, who has published many excellent memoirs on the anatomy of Insects, who has especially studied those of Valencia, among which he has detected several new species, and to whose labours the science of Botany is not less indebted, has paid particular

[^260]attention to the respiratory organs of Spiders, and it is from him that we have taken our divisions, which consist of those that have four pulmonary sacs-with as many external stigmata, two on each side, and closely approximated-and of such as have but two*. The first, which embraces the order of the Theraphosæ of Walckenaer, and some other genera of the one he collectively designates by the name of Spiders, according to our method form but the single genus

Mygade.

Their eyes always situated at the anterior extremity of the thorax, and usually, closely approximated; fect and cheliceræ robust; copulating organs of the males always salient and frequently very simple. Most of them have but four fusi, of which the two lateral or external, situated somewhat above the others, are longest, and consist of three segments, exclusive of the prominence that forms their peduncle. They weave silken tubes in which they reside, and which they conceal either in holes excavated by them for that purpose, or under stones, bark of trees, or between leaves.

The Theraphose of Walckenaer will form a first division, the characters of which are: 1. Four fusit, of which the two that are intermediate and inferior are usually very short, and the two that are exterior very salient; the hooks of the chelæ doubled underneath, or along their carina or inferior edge, and not on the inner side of their internal face, or upon it; eight eyes alrays, usually grouped on a little eminence, three on each sidc, forming a reversed triangle, and the two superior ones approximated; the remaining two arranged transversely between the preceeding

The fourth pair of legs are the longest, and then the first; the third is the shortest.

Here the palpi are inserted into the superior extremity of the jaws; so that they appear to consist of six joints, the first of which, narrow and elongated, with the internal angle of the superior extremity salient, fulfils the functions of a jaw. The ligula is alrays small and nearly square. The last joint of the palpi of the males is short, has the form of a button, and bears the organs of generation at its extrcmity. The two anterior legs of the same sex have a stout spine or spur at their inferior extremity. Such are the characters of the

Mygale, Walck.,

Or the true Mygales. In some of them we find no transwerse series of horny and moveable spines or points, resembling the teeth of a rake, at the superior extremity of their cheliceræ immediately above the insertion of the claw or hook which terminates them. The hairs which decorate the under part of their tarsi form a thick and broad

[^261]brush, projecting bcyond the hooks, and usually conccaling them. The male organs of generation consist of a single scaly piece, terminated by an entire point, or ncither emarginated nor divided; sometimes it is formed like an ear-pick-M. de la Blond, Lat.-usually, however, it is globular inferiorly, then becomes narrow, terminates in a point, and forms a kind of arcuated hook.

This division is composed of the largest species of the family, some of which, when at rest, cover a circular space of from six to seven inches in diameter; they sometimes seize upon Humming-birds. They establish their domicile in the clefts of trees, under the bark, in the fissures of rocks, or on the surface of leaves of various plants. The cell of the Mygale avicularia has the form of a tube, narrowed into a point at its posterior cxtremity. It consists of a white web, of a close, very fine texture, semi-diaphanous, and resembling muslin. One of them, presented to me by M. Goudot, when uniolled, was about two decimetres in length, and six centimetres in brcadth, measured across its greatest transversal diameter, The cocoon of the same species was of the figure and size of a large walnut. Its cnvelope, consisting of the same material as that of its domicile, was formed of three layers. It appears that the young are hatched in it, and undergo their first change of tegument there. The naturalist just mentioned stated to me, that he had taken a hundred of them from a single cocoon*.

This Mygale-Aranea avicularia, L. ; Kléem. Insect, XI, and XII, the male-is about an inch and a half long, blackish, and extremely hairy; the extremity of the feet and palpi, and the inferior pili of the mouth reddish. The genital organ of the male is hollorv at base, and terminates in an elongated and very acutc point.

South America and the Antilles produce other species, called by the French colonists Araignées-crabes. Their bite is reputed to be dangerous. A very large species-M. fasciata; Seb., Mus., I, lxix, i; Walck., Hist. of Spiders, IV, i, the female-is also found in the East Indies. A species, nearly as large as the avicularia, inhabits the Cape of Good Hope. Another of the same division-M. Valentina-was discovered in the sandy and desert districts of Moxenta, in Spain, by M. Dufour, who has described and figured it in the Ann. of the Phys. Sciences, Brussels, Vol. V. Walckenaer has also described a second species from that peninsula which has two prominences above its respiratory organs. These two latter specics form a particular group, characterized by the hooks of the tarsi, which are salient or exposed \dagger.
In the following Mygales \ddagger, the superior extremity of the first

[^262]joint of the chelicere presents a series of spines, articulated and moveable at base-according to the observations of Dufour-and forming a sort of rake.

The tarsi are less pilose underneath than in the preceding division, and their looks are always exposed. The males of one species, the only ones I have seen, have more complicated organs of generation than those of the preceding division. The principal and scaly piece incloses a peculiar, semiglobular body, terminating in a bifid point, in an inferior cavity *.

These species, in the dry and mountain districts of the south of Europe and of some other countries, exeavate subterraneous galleries, which are frequently two feet in depth, and so extremely tortuous, that. according to Dufour, it is frequently impossible to trace them. At the mouth, they construct a moveable operculum with earth and silk, fixed by a hinge, which, from its form, nicely adjusted to the aperture, its inclination, its weight, and the superior position of the hinge, spontancously shuts, and completely closes the entrance of their habitation, forming a kind of trap-door, which is scarcely distinguishable from the surrounding earth. Its inner surface is lined with a layer of silk, to whieh the animal clings, in order to keep its door shut and prevent intruders from opening it. If it be slightly raised, it is a sure indication that the owner is within. Unearthed by laying open the gallery front of the entrance, it becomes stupified, and allows itself to be captured without resistance. A silken tube, or the nest properly so ealled, lines the inside of the gallery. M. Dufour thinks that the males never excavate. Independently of his having found them under stones only, they do not seem to him so well prepared with organs adapted to such work \dagger. Without deciding upon this point, we presume, with him, that the Mygale carminans of France-Nouv. Dict. d'Hist. Nat., art. Mygale -is merely the male of the following species: Walckenaer, however, doubts it.
M. camentaria, Lat.; Araignée maçonne, Sauvag., Hist. de l'Acad. des Sc., 1758, p. 26 ; Araignée mineuse, Dorthés., Trans. Lin. Soc. II, 17, 8 ; Walek., Hist. des Aran., fasc. III, x ; Faun. Franç., Arach., II, 4; Dufour, Ann. des Sc. Phys, V, Ixxiii, 5. The female Mason Spider, as it is called, is about eight lines in length, of a reddish colour, verging on a brown more or less deep; edges of the thorax paler. The chelicere are blackish, each one furnished above, near the articulation of the hook, with five points, of which the internal is the shortest. The abdomen is of a mouse-grey, with streaks of a darker hue. The first joint of all the tarsi is furnished with small spines. The hooks of the last have a spur at their base, and a double range of acute teeth. The mammillæ are but slightly prominent.

[^263]According to Dufour-Ann. des Se. Plyys., V. lxxiii, 4-the supposed male, of whieh I have made a species. M. cardeuse, differs from the preeeding individual in the greater length of its fect, in the hooks of the tarsi, whieh are twiec the number of the other, but have no spurs, and in the diminished length of its mammillæ. A more apparent eharaeter may be found in the stout spine, whieh terminates, inferiorly, the two anterior tibiæ. This Mygale is found in the southern departments of France, situated on the borders of the Mediterranean, in Spain, \&c.
M. fodiens, Walek., Faun. Franç., Arach., II, 1, 2 ;M. Sauvagesii, Dufour, Ann. des Se. Phys., V, 1xxiii, 3; Aranea Sauvagesii, Ross. The female is somewhat larger than that of the preeeding species, and of a light reddish-brown, without spots. The exterior fusi are long. The four anterior tarsi are alone furnished with small spines; all have a spur at the end, and their hooks have but a single tooth, situated at their base. The eheliecræ are stouter and more bent than those of the Cæmentaria; the teeth of the rake are rather more numerous, and there are two ranges of teeth under the first joint. The male is unknown. This speeies is found in Tuseany and Corsica. There is a small elod of earth in the Museum d'Hist. Nat. of Paris, in which are four of its nests, forming a regular quadrilateral figure.

> M. Lefèvre who has made so many sacrifiees to the scienee of Entomology, has diseovered a new speeies of Magale in Sieily, the catire body of whieh is of a blackish brown. The extremity of the anterior tibioc of the male does not exhilit that stout spine whielh appears to be peculiar to the individuals of the same sex, in the other Mygales.
> Another speeies is found in Jamaiea-M. nidulans-figured, together with its nest, by Brown in his Nat. Hist. of Jamaiea, pl. sliv, 3 .

There, the palpi are inserted into an inferior dilatation of the external side of the jaws, and consist of but five joints. The ligula, at first very small-Atypus-lengthens, and then advanees between the jaws, and this eharaeter beeomes gencral. The last joint of the palpi, in both sexes, is elongated, and pointed near the end. There is no spur to the extremity of the anterior tibie of the males.

> Atypus, Lai.-Oletera, Walck.

The Atypi have a very small ligula almost covered by the internal portion of the base of the jaws, and closely approximated eyes grouped cin a tuberele.

Atypus Sulzeri, Lat., Gener. Crust. et Inscet., I, v, 2, the male; Dufour, Ann. des Sc. Plyss., V, lxxiii, Aranea picea, Sulz.; Olétère atype, Walek., Faun. Franç., Araeh., II, 3. Body entirely blaekish, and about eight lines in length. The thorax is nearly square, depressed posteriorly, inflated, widened, and broadly truncated anteriorly, presenting an appearance very voL, III.
different from that of the same part in the Mygales. The cheliceræ are very stout, and underneath the claw and at its base is a little eminence resembling a tooth. The last joint of the palpi of the male is pointed at the end. From the genital organ arises, inferiorly, a little squamous semi-diaphanous piece, widened and unequally bidendated at the end, with a small seta or cirrus at one of its extremities. This speceies excavates a cylindrical gallery in sloping grounds covered with grass; in this gallery, seven or eight inehes in length, horizontal at first and then inclined, it weaves a tube of white silk of the same form and dimensions. The cocoon is fastened with silk by both ends to the bottom of the gallery. It is found in the environs of Paris and Bourdeaux; M. Basoelhes has observed a varicty near Sécz, which is always of a light brown.
M. Milbert has discovered another species-Atypus rufipesnear Philadelphia, which is entirely black, with fulvous feet.

> Eriodon, Lat.-Missulena, Walck,

The Eriodons differ from the Atypi in their elongated, narrow ligula, advaneing between their jaws, and in their cyes, whieh are seattered over the anterior part of the thorax.

The only species known-Eriodon occatorius, Lat.; Missulena occatoria, Walck., Tabl. des Aran. pl. II, ii, 12-is an inch long, blackish, and peeuliar to New Holland, where it was discovered by MM Péron and Lesueur *.
In our second and last division of the quadripulnonary Spiders or Mygales, we find characters common to Eriodon, such as the ligula being prolonged between the jaws, and the palpi consisting of five joints; but the claws of the chelicere are folded over their inner face, there are six fusi, their first pair of legs is the longest and not the fourth, and the third is always the shortest. Some of them have but six cyes. The number of pulmonary sacs will not allow us to remove the subgenera of this division from the preceding ones, and as they conduct us to Drassus, Clotho, and Scgestria, subgenera with but two pulmonary saes, the natural order will not permit us to pass from the Mygales to the Lycosee and other linuting or wandering Spiders. The Mygales are true tapissiercs-or true spiders which line their galleries with silk-and in fact, it was in this division that the Aranea avicularia of Limmeus was formerly placed.

This second division comprises the two following subgenera.

[^264]Dysdera, Lat.
But six cyes arranged in the figure of a horse-shoc, the opening in front; the eheliceræ very stout and projecting; jaws straight and dilated at the insertion of the palpi *.

Filistata, Lal.

Eight eyes grouped on a little eminence at the anterior extremity of the thorax; the cheliecree small; the jaws arcuated on the outer side, and surrounding the ligula \dagger.

We now pass to Araneides with but one pair of pulmonary sacs and as many stigmata. They all have palpi formed of five joints, inserted into the external side of the jaws near their base, and most frequently in a sinus; a ligula extending between them, either nearly square, triangular or semicircular, and six fusi at the anus. The last joint of the palpi, in the males, is more or less ovoid, and usually encloses, in an excavation, a complicated and varied organ of copulation: it is rarely-Segestria-exposed.

With the exception of a few speeies, which enter into the genus Mygale, they compose that of

Aranea, Lin. Araneus, of some authors.

A first division will comprehend the Aranee Sedentarie, or sedentary spiders. They make webs, or throw out threads to ensnare their prey, and always remain in these traps, or their vicinity, as well as near their eggs. Their eyes are approximated anteriorly and are sometimes eight in number, of whieh four or two are in the middle and two or three on each side, and sometimes six.
Some, which, from the eireumstanee of their always moving forwards, we term the Rectigrade, weave webs and are stationary; their legs are elevated when at rest; sometimes the two first and two last are the longest, and at others those of the two anterior pairs, or the fourth and the third. The general arrangement of the eyes does not form the segment of a eirele or a ereseent.

They may be divided into three seetions: the first, or that of the Tubitelæ, has eylindrieal fusi approximated into a fasciculus direeted baekwards; the legs are robust, the two first or the two last, and vice versa, longest in some, and the whole eight nearly equal in others.

We will commence with two subgenera, which, with respect to the jaws that deseribe a eircle round the ligula, approach the Filistatæ, and are removed from those that follow.

Clotho, Waick.-Uroctea, Dufour.

A singular subgenus. The eheliceræ are very small, can separate but little-thereby approximating this subgenus to the last-and

[^265]are not indenter; very small hooks; the shortness of the body and length of the legs produce a resemblance to the Crab-Spiders or Thomisi. The relative length of these organs differs but little; the fourth pair, and then the preceeding one are merely somewhat longer than the first; the tarsi, only, are furnished with spines. The eyes are further from the anterior margin of the thorax than in the following subgenus, and are approximated and arranged as in the genus Mygale of Walckenaer ; three on each side form a reversed triangle ; the two others form a transverse line in the space comprised between the two triangles. The jaws and the ligula are proportionably smaller than those of the same subgenus; a short projection or slight dilatation on the external side of the jaws, gives insertion to the palpi; the jaws terminate in a point; the ligula is triangular and not nearly oval as in Drassus. The two sulerior or most iateral fusi are long, but what, according to Dufour, particularly characterizes his Uroctex or our Clothos, is, that there are two peetiniform valves which open and shit at the will of the animal *, in place of the two intermediate fusi.

But a single species is known, the Uroctea 5-maculata, Dufour, Amn. des Se. Phys., V, lxxvi, 1 ; Clotho Durandii, Lat. The body is five lines in length, of a fine chesnut colour; abelomen hlack; five small, round, yellowish spots above, four of which are arranged transversely in pairs, and the last or fifth pusterior ; legs hairy. It is evident from the plates of the great work on Egypt, that M. Savigny found it in that comntry, and proposed forming a new genus with it. Count Dejean brought it from Dalmatia; and Sehreiber, director of the Imperial Muscum of Vienna, has sent me specimens captured in the same coun try. M. Dufour also fonnd it in the momntains of Narbonne, in the Pyrennces and among the rocks of Catalonia. To this latter naturalist we are indebted not only for our knowledge of the external characters of this spider, but for many curious observations relative to its habits. "She construets," says he, " a shell resembling a calotte or patella an ineh in diameter, on the under surface of large stones or in the fissures of roeks. Its contour presents seven or cight emarginations, the angles of which are alone attached to the stone by silken faseiculi, the margin being free. This singular tent is admirably woven. The exterior resembles the very finest taffeta, formed, according to the age of the animal, of a greater or less number of layers. Thus, when the young Uroctea first commenecs her establishment, she merely forms two wel s, between which she seeks for shelter. Subsequently, and I believe at each change of tegument,

[^266]she adds a certain number of layers Finally, when the muptial scason has arrived, she lines an apartment with a softer and more downy material which is to enclose the sae of eggs and young oncs. Although the exterior shell is more or less soiled by foreign bodies whieh serve to conceal it, the ehamber of the industrious arehitect is always extremely neat and elean. There are four, five, or six egg pouches or saceuli in eaeh domieil; they are lenticular, more than four lines in diameter, and formed of a snowwhite taffeta lined with the softest down. The ova are not produced till the latter end of December or the beginning of January; the young are to be protected from the rigour of winter and the incursions of enemies-all is prepared ; the reecptacle of this preeious deposit is scparated flom the web that adheres to the stone by soft down, and from the external calotte by the various layers I have mentioned. Some of the emarginations in the edge of the pavilion are eompletely closed by the continuity of the web, the edges of the remainder are merely laid on each other, so that by raising them up, the animal can issuc from its tent or enter it, at pleasure. When the Uroctea leaves her habitation for the chase, she has nothing to fear, she only possesses the secret of the impenctrable emargination, and has the key to those which alone afford an entrance. When her offspring are able to provide for themselves, they leave their native dwelling, to establish elsewhere their individual habitations, while the mother returns to it and dies-it is thus her cradle and her tomb."

Drassus, Walck.

The Drassi differ from Clotho in several characters. Their cheliceræ are robust, projecting and dentated beneath; their jaws are obliquely truncated at the extremity, and the ligula forms an inferiorly truneated oval, or an elongated curvilincar triangle; the eyes are nearer to the anterior margin of the thorax, and the line formed by the four posterior ones is longer than the anterior, or extends beyond it on the sides, 'There is but little difference in the proportions of the fusi, and we do not observe between them the two pectiniform valves peculiar to Clotho. Finally, the fourth pair of legs, and then the first, are manifestly longer than the others. The Tibie and first joint of the tarsi are armed with spines.

These Spiders live under stones, in the fissures of walls, and on leaves; they construct their cells with an extremely fine white silk. The cocoons of some are orbicular and flattened, and consist of two valves laid one on the other. M. Walekenaer distributes the Drassi into three families, according to the direetion and approximation of the lines formed by the eyes, and the greater or less dilatation of the middle of the jaws.

The species which he calls viridissimus, Hist. des Aran. fascic. IV, 9, and which alone composes his third division, weaves a fine, white, transparent web on the surface of a leaf; under this web it seeks for shelter. I have sometimes observed a similar web on the leaf of the Iear-tree, but the margin was angular.
and resembling a tent, like that of the Clotho, beneatle which was the cocoon. It is, I presume, the work of this species of Drassus, and proves the analogy of this subgenus with the preceding one. M. Leon Dufour, Ann. des Se. Phys., VI, xev, 1, has given a very complete discription of a species of Drassus -D. segestriformis-found by him under stoncs in the highest Pyremnees, and never beneath the Alpine region. It is one of the largest of this subgenus, and appears to me to be closely allied to my melanogaster, which I believe to be the D. lucifugus Walckenacr, Schieff. 1 con. CI, 7.

One of the prettiest species, which is very commonly observed running along the ground in the vicinity of Paris, is the D. relucens. It is small, and almost cylindrical, with a fulvous thorax, invested with a purple silky down; the abdomen is a mixture of blue, red, and green, with metallic reflections, and marked by two transverse and golden lines, of which the anterior is arcuated. Four golden dots are sometimes observed on it*.
In the other Tubitele the jaws do not surround the ligula; their external side is dilated inferiorly beneath the origin of the palpi.
Some have but six cyes, four of which are anterior, and form a transverse line, and the two others posterior, situated, one on each side, behind the two lateral ones of the preceding line. Such is the essential character of the

Segestria, Lat.

The ligula is elongated and almost squarc. The first pair of legs, and then the sccond, is the longest; the third is the shortest. These spiders construct long, silky, cylindrical tubes in the chinks and crevices of old walls, which they inhahit; their first pairs of legs are always directed forwards, and diverging threads border the external entrance of their domicil, forming a net for ensnaring Insects. The genital organ of the S. perficla-Aranea florentina, Ross., Faun. Etruse., XIX, 3-a large black sjecies with green chelicerae, which is not rare in France, is shaped like a tear, or is oroido-conical, very acute at the end, entirely salient, and red \dagger.

The remaining Tubitele have eight cyes. On account of the difference in the site of their habitations, we may divide them into the terrestrial and the aquatic. Although the last family of the Arancides of Walckenaer (his Naiades) is composed of these latter, they are so closely allied to the other 'Tubitele, that notwithstanding this disparity of halits they must be placed together. In those which are terrestrial, the ligula is almost square, or but very slightly narrowed, with a very obtuse or truncated summit, the jav's are straight, or nearly so, and more or less dilated towards the extremity; the two eyes of each lateral extremity of the ocular group are generally separated from each other, or at least are geminate and placed on a particular eminence like those of the aquatic Tubitele.

[^267]
Clubiona, Lal.

This subgenus is only distinguished from the following one by the mearly equal leng'th of the exterior fusi, and by the straightness of the line formed by the four anterior eyes. The Clubionæ construct silky tubes under stones, in chinks of walls; or between leaves. Their cocoons are globular *.

Aranea.

The true Aranex, which we at first designated by the generic appellation of Tegenaria, retained by Walckenaer, and to whieh we add his Angelenæ and Nyssi, have their two superior fusi mueh longer than the others, and their four anterior eyes arranged in a line posteriorly areuated or forming a curve.

They eonstruet in our houses, in the angles of walls, on plants, hedges, along the roads, in the earth, and under stones, a large and nearly horizontal web, at the upper part of which is a tube where they remain motionless \dagger.

Then follow the Naiades of Walckenaer, or our aquatic Tubitelæ, which form the

Argyroneta, Lal.

The jaws are inelined on the ligula, which is triangular. Th two eyes of each lateral extremity of the oeular group are closely approximated and placed on a partieular eminence; the four others for'm a quadrilateral.

Argyroneta aquatica; Aranea aquatica, L., Geoff., Deg. Blackish brown, the abdomen darker; silky; four depressed points on the baek. It is found on the stagnant waters of Europe, where it swims with the abdomen enclosed in a bubble of air; it forms an oval cell, filled with air, and lined with silk, from which various threads extend to the surrounding plants. Here it lies in wait for its prey, deposits its eoeoons, which it carefully watehes, and encloses itself to pass the winter.
In the second seetion of the sedentary and reetigrade spiders, that of the Inequitele, the external papillæ are nearly conieal, projeet but litile, are convergent, and form a rosette; the legs are very slender. The jaws ineline over the lip, and beeome narrower at their, superior extremity, or at least do not sensibly widen.

Most of them have the first pair of legs lungest, and then the fourth. The abdomen is more voluminous, softer, and more eoloured than in the preeeding tribes. Their webs form an irregular net eomposed of threads which cross each other in every direction, and on several planes. They lie in wait for their prey, display mueh

[^268]anxiety for the preservation of their eggs, and never abandon them till they are hatched. They are short-lived.

In some, the first pair of legs, and then the fourth, are the longest.

Scytodes, Lat.

But six cyes arranged in pairs. According to Dufour, the hooks of their tarsi are inserted into a supplementary joint.

Two species are known, one of which, the thoracica * inhabits houses in Europe, and the other, la blonde, Ann. des Sc. Phys. V, lxxvi, 5, was found under calcareous debris in the mountains of Valencia. It weaves a uniform tube of a thin milk-white tissuc, like that of the Dysdera crythrina.

'Inermion, Walck.

Eight eyes disposed as follows: four in the middle forming a square, the two anterior of which are placed on a little eminence, and two on each side, also situated on a common elevation. The thorax has the figure of a reversed heart, or is nearly triangular. This subgenus is very numerous \dagger.

Therid. malmignatte; Aranea 13-guttata, Fab.; Ross. Faun. Etrusc., II, ix, 10. The lateral eyes separated from each other ; body black, witl thirteen small, round, blood-red spots on the abdomen. Its bite is considered venomous and even mortal. From Tuscany and Corsica \ddagger.

The A. mactans, Fab., a second species of Theridion inhabiting South America, is equally dreaded in that country. This prejudice against these animals appear to originate from their black colour, varied with sanguine spots.

Episinus, Walck.
Eight cyes also, but they are approximated on a common clevation; the thorax is narrow and almost cylindrical §.

In the remaining Inequitelæ, the first pair of legs, and then the second are the longest. Such is the

Pholcus, Walck.

Where the eight eyes are plaeed on a tubercle, and divided into three groups; one on each side consisting of three eyes, forming a triangle, and the third in the middle, somewhat anteriorly, and composed of two on a transverse line.

[^269]Ph. phalangioides, Walck., Hist. des Aran., fasc. V, tab. x; Araignée domestique à longues paltes, Geoff'. 'Ihe body long, narrow, pale yellowish or livid, and pubescent; abdomen nearly cylindrical, very soft, and marked above with blackish spots; very long, slender legs; a whitish ring round the extremity of the thighs and tibiæ. Common in houses, where it spins a wreb of a loose texture, in the angles of the walls. The female cements her eggs into a round naked mass, which she carries between her mandibles.
M. Dufour has found a second species, the Pholque à queue -Ann. des Sc. Phys. V, lxxvi, 2,-in the clefts of the rocks in Moxente, Valencia. Its abdomen terminates in a conical point, and thus forms a sort of tail, like that of the Epeira conica. Like the preceding species, it balances its body and feet. The genital organs of the male are very complex.
In the third section of the sedentary rectigrade spiders, the Orertele, or Araignécs T'endeuses of others, the external fusi are almost conical, slightly salient, convergent, and form a rosette; the legs are slender, as in the preceding section, but the jaws are straight and evidently wider at their extremity.

The first pair of legs, and then the second, are always the longest. There are eight eyes thus arranged: four in the middle forming a quadrilateral, and two on each side.

The Orbitelæ approach the Inequitelæ in the size, softness, and diversity of colour of the abdomen, and in their short term of existence; but their web is a regular piece of net-work, composed of concentric circles, intercepted by straight radii diverging from the centre, where they almost always remain, and in an inverted position, at the circumference. Some conceal themselves in a cell or cavity which they have constructed near the margin of the web, which is sometimes horizontal, and at others perpendicular. Their eggs are agglutinated, very numerous, and inclosed in a voluminous cocoon.

The threads which support the web, and which can be extended one-fifth of their length, are used for the division of the micrometer. This observation was communicated to us by M. Arrago.

Linyphia, Lat.

The Linyphix are well characterized by the disposition of their eyes; four in the middle form a trapezium, the posterior side of which is widest, and is occupied by two eyes much larger and more distant ; the remaining four are grouped in pairs, one on each side, and in an oblique line. The jaws are only widened at their superior extremity.

They construct on bushes a loose, thin, horizontal web, attaching to its upper surface, at different points, or irregularly, separate threads. The animal remains at its inferior portion, and in a reversed position*.

[^270]
Uloborus, Lat.

The four posterior eyes placed at equal intervals on a straight line, and the two lateral ones of the first line nearer to the anterior edge of the thoras than the two comprised between them, so that the line is arcuated posteriorly. Their jaws, like those of the Epeiræ, begin to widen a little above their base, and terminate in the form of a palette or spatula. The tarsi of the three last pairs of legs terminate by one small nail. The first joint of the two posterior ones has a range of small setr.

The body of these animals, as well as in the following subgenus, is elongated and nearly eylindrical. Placed in the eentre of their web, they advance their four anterior legs in a straight line, and extend the two last in an opposite direction; those of the third pair project laterally.

These Araclinides construct webs similar to those of other Orbitelæ, but they are louscr and more horizontal. They will completely envelope the body of a small coleopterous insect in less than three minutes. Their cocoon is narrow, elongated, angular at the margin, and suspended vertieally to a web by one of its extremities. The other end is bifureated or terminated by two prolonged angles, one of which is shorter than the other, and obtuse; there are two acute angles on cach side. For these interesting observations I am indebted to my friend M. Leon Dufour.

Uloborus Walchenaerius, Lat *. About five lines in length; reddish-yellowish ; covered with a silky down forming two series of little faseiculi on the top of the abdomen; paler rings on the legs. From the woods in the vicinity of Bourdeaux, and in various departments of the south of France.

Tetragnatha, Lat.

The eyes placed four by four on two nearly parallel lines, and separated hy almost equal intervals; jaws long, narrow, and only widened at their superior extremity. The cheliceræ are also very long, in the males especially. The web is vertical \dagger.

> Epeira, Walck.

The two eyes on each side approximated by pairs, and almost contiguous; the remaining four forming a quadrilateral in the middle. The jaws dilate from their base, and form a rounded palette.

The cucurbitina is the only species known whose web is horizontal; that of the others is vertical, or sometimes obligue.
Some place themselves in its centre in a reversed position, or with their head downwards; others construct a domicil elose by it, either vaulted on all sides, or forming a silky tube composed of leaves drawn together by threads, or open above, and resembling a eup or the nest of a bird. The web of some exotic species is formed of such

[^271]stout materials that it will arrest small birds, and even impede the progress of a man.

Their cocoon is usually globular' ; that of some species, however, is a truncated oval, or very shor't cone.

The natives of New Holland-Voyage à la recherche de la Peyrouse, p. 239-and those of some of the South Sea Islands, for want of other food, eat a species of Epeira, closcly allied to the Aranea esuriens, Fab.
M. Walckenacr, in his Tableau des Aranèides, mentions sixty-four species of Epeiræ, remarkable, in general, for the diversity of their colours, form and habits. He has arranged them in various small and very natural families, the study of which we have endeavoured to simplify in the second edition of the Nouv. Dict, d'Hist. Nat., article Epeïre. Certain important considerations, such as those of the sexual organs, had been neglected or were not sufficiently attended to ; thus, for instance, the fomale Ep. diadema, and uthers, present at the part which characterizes their sex, a singular appendage, which reminds us of the apron of the Hottentot women. 'These species should constitute a scparate division. By pursuing this examination other not less natural divisions might be established.

We will content ourselves with mentioning a few of the principal species, commencing with those that are indigenous to Europe.

Ep. diadema; Aranea diadema, L., Fab.; Rœs., Insect. IV, xxxv-xl. Large, reddish, velvety; abdomen of the females extremcly voluminous, particularly when about to lay their eggs, and of a deep brown or yellowish red; a large rounded tubercle on each side of the back near its basc, and a triple cross, formed of small white spots or dots; palpi and legs spotted with black. Very common in Europe in autumn. The eggs are hatched in the spring of the ensuing year.

Ep. scalaris; Aranea scalaris, Fab.; Panz., Faun. IV, xxiv. 'Thorax reddish; top of the abdomen usually white, witlı a black spot in the form of a reversed triangle, oblong and dentated, Weaves its web along the banks of ponds, brooks, \&c.

Ep. cicatricosa; Aranea cicatricosa, De Geer; A. impressa, Fab. The abdomen flattened, and of a greyish brown or obscure yellowish; a black band, festooned or edged with grey along the middle of the back; eight or ten large impressed points in two lines. It constructs its web on walls or other bodies, and renains concealed in a nest of white silk, which it forms under some projecting object, or in some cavity in the vicinity. It only works and feeds during the night, or when the light of day is but weak. It retires under the bark of uld trees or logs.

Ep. sericea, Walck., op. cit., III, ii. Covered above with a silvery and silken down; abdomen flattened, immaculate and with festooned margins. South of Europe and Senegal.

Ep, fusca, Walck., Hist. des Aran. II, i, the femalc. Very common in the cellar's of Angers. Its cocoon is white, almost globular, fixed by a pedicle, and composed of very fine threads; it is soft to the touch, like wool. That of the

Ep. fasciata, Walck,, op. cit. III, i, the female, is about an inch
long; it resembles a little balloon, of a grey colour, with longitudinal black stripes, one of whose extremities is truncated and closed by a flat and silky operculum; a fine down envelopes the eggs in its interior. This species weares a vertical and irregular web, in the middle of which it remains, along the banks of rivulets, \&ce. Its thorax is covered with a soft and silvery down, and its abdomen is of a beautiful yellow, intersected at intervals with transwerse brown, or blackish-brown lines, arcuated and slightly undulated. M. Leon Dufour, Ann. des Sc. Phys. VI, pl. xev, 5 , has given a detailed description of this species, and of its habits, and was the first who aseertained the malc. He has figured its sexual organ. The penis resembles a twisted seta.

Ep. cucurbitina; Aranea cucurbitina, L.; A. senoculata, Fah.; Walck. Hist. des Aran., III, iii. Small; abdomen oroid and lemon-coloured, marked with black points; a red spot on the anus. It weaves a small horizontal web between the stems and leaves of plants.

Ep.conica; Aranea conica, De Geer and Pall.; Walek. Hist. Nat. des Aran., III, iii. Remarkable for its abdomen, which is gibbous anteriorly and has a conical termination; the anus is placed in the centre of an eminence. When it has extracted the juices from an insect, it suspends it to a thread.

Immediately after the conica, we may place the species called by Dufour Epeïre de l'opuntin-Ann. des Sc. Phys., V, lxix, 3 -from the circumstance of its always wearing its loose and irregular web among the leaves of the Agare and Opuntia. It is black, with white hairs laid close to the body, having an appearance of scales. The abdomen has two pyramidal tubercles on each side, and terminates posteriorly in two others, which are obtuse, and separated by a ride emargination. The posterior face of each tubercle is marked with a beautiful snowwhite spot, resembling nacre; these spots are connected with each other, and with one or two more behind them, by white zig-zag lines. In the newly-hatehed animal, these tubereles are not visible. The cocoons are oval, whitish, and formed of two coats, the interior of which is a kind of tow that envelopes the ova. Seren, cight, and even ten of these cocoons are frequently found arranged in file, or one after the other. From Catalonia and Valencia.

Some of the species foreign to Europe are very remarkable. Here we olserve that the abdomen is invested with an extremely firm skin, furnished with points or horny spines*; and there the legs are provided with bundles of hairs $\dot{\dagger}$.

[^272]We now come to Spiders that are scdentary, like the preceding, but which have the faculty of moving sideways, forwards, and backwards, in a word, in all directions. They constitute our section of the Laterigrade. The four anterior legs are always longer than the others; sometimes the second pair surpasses the first, and at others, they are nearly equal; the animal extends them to the whole of their length on the plane of position.

The cheliceræ are usually small, and their hook is folded transverscly, as in the four preceding tribes. Their eyes, always eight in number, are frequently very unequal, and form a segment of a circle or crescent: the two posterior or lateral ones are placed farther back than the others, or are nearer to the latcral margin of the thorax. The jaws, in most of them, are inclined on the lip. The body is usually flattened, resembling a crab; the body is large, rounded, and triangular.

These Arachnides remain motionless on plants, with their feet extended. They make no web, simply throwing out a few solitary threads to arrest their prey. Their cocoon is orbicular and flattened. They conceal it between leaves, and watch it until the young ones are hatched.

> Micrommata, Lat.-Sparassus, Walck,

Jaws straight, parallel and rounded at the end; eyes arranged four by four, on two transwerse lines, the posterior of which is longest, and arcuated backwards. The second legs, and then the first, are the longest; the ligula is semicircular *.

Microm. smaragdula; Ar.smaragdula, Fab.; Ar.viridissima, De Geer; Clerck, Aran. Suec. pl. 6, tah. iv. A medium size; green; the sides edged with light yellow; abdomen greenish ycllow, intcrsected on the middle of the back by a green line.

It ties three or four lcaves in a triangular bundle, lines the interior with a thick layer of silk, and places its cocoons in the middle; the latter is round, white, and so diaphanous, that the ora can be perceived through its parictes. The eggs are not agglutinated.
M. Argelas; Dufour, Am. dcs Sc. Phys., VI, p. ©06, XCV, I; Walck., Hist. des Aran., IV, ii. This animal, whose specific appellation will remind the French naturalists of one of their most zealous scvans, one already recommended by me to their estecm as my protector from the horrors of the revolution, is one of the largest species indigenous to France; M. Dufour has completed my description of it, and has observed its habits. The body is about seven or cight lines in length, of a cinercous flaxen colour, covered with down, and more or less spotted with black. The top of the abdomen, from its middle to the extremity, is marked with a band formod of a scrics of small hatehetshaped spots, of the last mentioned colour. A black longitudinal

[^273]band, grey in the middle, runs along its under surface. The legs are annulated with black. This species was discovered by the naturalist to whorn I have dedicated it, in the environs of Bourdeaux. M. Dufour has since found it in the most barren mountains of Valencia. It runs with great volocity, the feet being extended laterally. Its unguiculated palettes cnable it to cling to the smoothest surface, and in every possible possition. It constructs a cocoon, which in texture resembles that of the Clotho of Durand, on the under surface of stones, to which it retires for shelter in bad weather, to escape from enemies, and to lay its eggs. It is an oval tent, nearly tro inches in diameter, attached to the stone in the manner of a marine Patella. It is formed of an external envelope, consisting of a yellowish taffeta, as fine as the peel of an onion, but rigid, and of an inner lining which is more supple, softer, and open at both ends. It is from these openings, which are furnished with valves, that the animal issues. The cocoon is globular, and placed underneath its dwelling, so that it can brood over it ; it contains about sixty eggs.
The same naturalist has described and figured another species, the M. ì tarses spongieux-Ann. des Sc. Phys., V, 1xix, 6which he found on a tree in a garden at Barcelona. From its habits, however, and some of its characters, I presume that it belongs to the genus Philodroma of Walckenaer**.

Senelops, Duf.

The Senelops form the transition from the preceding genus to the following one. The jaws are straight or but slightly inclined, without any lateral sinus, and taper to a point obliquely truncated on the inner side. The ligula is semicircular like that of the Micrommatæ, but the eyes are arranged differently. There are six before forming a transverse line; the two others are posterior, and situated one on each side, behind each extremity of the preceding line. The legs are long; the second pair, and then the third and fourth, are longer than the first.

The type of the genus, Senelops omalosoma, Dufour, Ann. des Sc. Phys. V, lxix, 4, was found by M. Dufour in Valencia, but it is very rare there. The body is about four lines in length and very flat, of a greyish red, with cincreous spots; the feet are annulated with black. The posterior part of the abdomen seems to exlibit vestiges of annuli, forming on the sides an appearance of teeth. It lives among rocks, and when escaping from pursuit flies with the rapidity of an arrow. It is also found in Syria-Collection of M. Labillardière-and in Egypt.

[^274]Other species inhabit Senegal, the Cape of Good Hope and the Isle of France.

Philodromus, Walck *.

The Philodromi differ from the two preeeding subgenera in their jaws, which are inclined on the ligula, whieh is also higher than it is wide. The almost equal eyes always form a ereseent or semicirele. The lateral ones are never plaeed on tubercles or eminences. The chaliecrex are elongated and eylindrieal : the four or two last legs do not materially differ in length from the others.

Aceording to Walekenaer these animals run with great swiftness, their legs extended laterally, lie in wait for their prey, throw out solitary threads to entrap it, and coneeal themselves in ereviees or among leaves.

In some the body is broad and flat, the abdomen short and widened posteriorly, and the four intermediate legs the longest. Sueh is the Philodrome tigrée; Thomise tigré, Lat.; Araneus margaritarius, Clerek, VI, iii ; Sehreff., Ieon., lxxi, 8; Friseh. Ins., Centur., II, xiv; Aranea levipes, L.? It is about three lines in length. Its two anterior intermediate eyes and the four lateral ones are situated on a slight elevation, and the latter, aeeording to the same naturalist, are somewhat the largest, or at least are more apparent. The thorax is very wide, flattened, of a reddish fawn eolour, brown laterally and posteriorly, and white anteriorly. The abdomen, whieh forms a kind of pentagon, is speekled by the red, brown and white hairs whieh cover it, and edge laterally with brown; there are four or six impressed points on the middle of the baek. The belly is whitish, and the legs are long, slender and reddish, with brown spots.

This speeies is very eommon on trees, wooden partitions, walls, \&e., where it remains as if glued, with the feet extended. If touehed, it runs with astonishing rapidity, or falls to the ground supported by a thread. The coeoon is of a beautiful white, and contains about a hundred eggs, whieh are yellow and free. The female plaees it in hollows of trees or elefts of posts, \&c., exposed to the north, and carefully watehes it.
The other Philodromi, which, aceording to the method of M. Walckenaer, form several small groups, have the body, and sometimes the eheliceræe, proportionably longer. The abdomen is sometimes pyriform or ovoid, and sometimes cylindrical. The second pair of legs and then the first or the fourth are the longest.

Plilodromus romliferus, Walek., Faun. Frane., Aran., VI, 8, the male. Its borly is three lines and a half in length and reddish; the second legs and then the two last are the longest;

[^275]sides of the thorax brown; the abdomen ovoid, with a black or brown lozenge-shaped spot above, hordered with white.

Philoctromus oblongus, Walck., Ib., tab. cad., fig. 9, This species, as respects the relative proportion of the legs, and the disposition of the eyes, helongs to the same division; but the abdomen is longer and almost cylindrical or forming an clongated cone, with three brown longitudinal streaks and points on a yellowish ground, which is also the colour of the thorax, In the middle of the latter are two brown streaks forming an elongated V.
'These two species inlabit the environs of Paris. For the other, see the Faune Française, from which we have extracted the preceding descriptions.

Thomisus, Walck.

The Thomisi differ from the Philodromi in their cheliceræ, which are smaller in proportion and cunciform, and in their four posterior legs. which are evidently and even suddenly shorter than the preceding ones. The lateral cyes are frequently situated on eminences, while those of the Philodromi are always sessile. Here also the two posterior lateral ones are further behind than the two that are intermediate on the same line, while in the Thomisi these four cyes are nearly on a level.

The species of this genus are those more particularly designated by the name of Crab-Spiders. The males frequently differ greatly from the females in colour and are much smaller.

Some of them, all exotic *, have their eyes arranged four by four on two transverse and almost parallel lines, the posterior of which is the longest.

In the others, and the greater number, the ensemble of these eyes represents a crescent, the convex side of which is forwards and outwatds.

Thomisus globosus; Araneaglohosa, Fab.; Aranea irregularis, Panz., Faun. Insect. Germ. fascic. LXXIV, tab. xx, female ; Walck., Faun. Franc., Aran., VI, 4. Three lines long; black; abdomen globular; red or yellowish all round the back.

Thomicus cristatus; Clerck, Aran, Suec:, pl. 6, tab. vi, size of the preceding; body grey-reddish, sometimes brown, with scattered hairs; fect with small spines; lateral eyes largest and placed on a tuberele; a transverse yellowish stripe on the front of the thorax; two others of the same colour on the back forming a V ; abdomen rounded, and a yellowish band on the middle of the back with three indentations on each side. A common species frequently observed on the ground.

Thomisus citreus; Aranea citrea, De Gecr; Scheff. Icon. Insec., tab, xix, 13. A lemon yellow, with a large abdomen wider

[^276]behind；two red or saffron coloured streaks or spots are fre－ quently observed on the back．On flowers＊．
A subgenus established by M．Walekenaer，under the nane of STo－ rend，but which is yet but inuperfectly known，should apparently terminate this section and lead to Oxyopes，which are as nearly allied to the Crab－Spiders as to the Citigrader．The Storenxe have their jaws inclined on the ligula，which is nearly of the same length，and forms an elongated triangle；the cheliceræ are conical ；the two ante－ rior legs，and then the second，longest；the two following ones longer than the last．The eyes are arranged in three transverse lines，2，4， 2 ；the posterior，with the two intermediate ones of the second lines， form a small square，and the two anterior ones are distant \uparrow ．

Other Aranex whose eyes，alway＇s eight in number，extend more along the length of the thorax，than across its breadth，or at least almost as much in one direction as the other，and which form cither a truncated curvilinear triangle or oval，or a quadrilateral，constitute a second general division，or the Vagabunam，which I have thus named to distinguish them from those of the first，or the Sedentarize．

Two or four of their eyes are frequently much larger than the others；the thorax is large．and the legs robust；those of the fourth pair and then the two first，or those of the second pair，are usually the longest．

They make no web，but wateh for their prey and seize it，either hy hunting it down，or by suddenly leaping upon it．

We divide them into two sections．
The first，that of the Citigradee，is composed of the Araignees． Loups of authors．＇The eyes form cither a curvilincar triangle，an oval，or a quadrilateral，of which，however，the anterior side is much narrower than the widest part of the thorax．This part of the body is ovoid，narrowed before，and carinated along the middle of its length． The legs are usually only fit for running．The jaws are alwars straight，and rounded at the end．

Most of the females remain on their cocoon，or carry it with them at the base of the abdomen，or suspended to the anus．Nothing but the most extreme necessity will induce them to abandon it，and，when the danger is over，they always return in search of it．They also take care of their young for a certain period after they are hatched．
Oxyopes, Lat.-Sphasus, Walck.

The eyes arranged two by two，or four transverse lines，the two extreme ones the shortest；they describe a sort of oval，truncated at each end．The ligula is elongated，narrowest at base，dilated and rounded towards the end．＇The first pair of legs is the longest；the fourth and second are nearly equal；the third is the shortest＋．

[^277]
C'tenus, Walck.

'The eycs arranged in three transverse lines, which become gradually longer-2, 4, 2-and form a sort of curvilinear, reversed triangle, with a truncated apex. The ligula is square, and almost isometrical ; the fourth pair of legs, and then the first, are the longest; the third is the shortest.

This genus was established on a large species found at Cayenne. Others have since bcen discovercd in the samc island and in Brazil, but none of them have been described.

Dolomedes, Lal.

The eyes, arranged in three transverse lines, 4, 2, 2, form a quadrilateral, somewhat wider than long; the two posterior ones are placed on an elevation. The second pair of legs is as long as or longer than the first; those of the fourth are still longer. The ligula is square and as broad as it is high, like that of a Ctenus.

In some, the two lateral eyes of the anterior linc are larger than the two intermediate ones; their abdomen is an oblong oval terminating in a point.

The females construct an infundibuliform, silky nest on the tops of trees covered with leaves, or on bushes; there they lay their eggs, and when they go abroad to hunt or arc forced to abandon their retreat, they always bear off their cocoon which is attached to the base of the abdomen. Clerck says he has seen them spring upon flies which were buzzing around them *.

They inhabit the borders of streams, run over their surface with the most surprising rapidity, and can even partly enter the water without becoming wet. The females weave a coarse irregular web, between the branches of plants, in which they place their cocoon. They watch it till the ova are hatched \dagger.

Lycosa, Lat.

The eycs of the Lycose also form a quadrilateral, but one as long or longer than it is wide ; the two posterior eyes are not placed on an elevation. The first pair of legs is evidently longer than the sccond, but shorter than the fourth, which, in this respect, surpasses all the others. The internal extremity of the jaws is obliquely truncated. The ligula is square, but longer than it is broad.

Almost all the Lycosx kcep on the ground, where they run with great swiftness. They inhabit holes accidentally presented to them,

[^278]or which they excarate, lining their parietes with silk, and enlarging them in proportion to their growth. Some establish their domicil in chinks and cavities in walls, where they form a silken tube, covered externally with particles of earth or sand. In these retreats they change their tegument, and, as it appears, after closing the opening, pass the winter. There also the females lay their eggs, When they go abroad they earry their eoeoon with them, attached to the anus by threads. On issuing from the egg the young ones eling to the body of the mother, and remain there until they are able to provide for themselves.
${ }^{T}$ The Lycosæ are extremely voracious, and courageously defend thier dwelling.

A species of this genus, the Tarentula, so called from Tarentum, a city of Italy, in the environs of which it is eommon, is highly celebrated. The poisonous nature of its bite is thought to produee the most serious consequences, being frequently followed by death or Tarentism, results which can only be aroided by the aid of musie and dancing. Well-informed persons, however, think it more necessary in these cases to combat the terror's of the imagination than to apply an antidote to the poison ; medicine at all events presents other means of cure.

Several curious observations on the Lycosa tarentula of the scuth of France have been published by M. Chabrier, Aead. de Lille, faseic. IV.
This genus is very rich in species, which have not as yet, however, been well eharacterized.

Lyc. tarentula; Aranea larentula, L., Fab.; Albin, Aran., tab. xxxix; Senguerd. de Tarent. An inch long; under part of the abdomen red, crossed in the middle by a black band.

The Tarentula of the south of France-Lycose narbonnaise, Walck., Faun. Franç., Aran., I, I-4, is not quite so large; the under part of its abdomen is rery black, and edged all round with red.

A similar species is found in the environs of Paris, the Lycose ouvrière, or L. fabrilis, Clerck, Aran. Suee., pl. 4, tab. ii; Walck., Faun. Franç., Aran. II, 5.

Lyc. saccala; Aranea saccata, L.; Araneus amentatus, Clerek, IV, tab. viii ; Lister, tit. 25, f. 25. Small; blackish; carina of the thorax, obscure reddish, with a cinereous line; a little bundle of grey hairs at the superior basc of the abdomen; legs of a livid red, varied with blackish spots; the cocoon flat and greenish-very common about Paris*.
We will terminate this section with the subgenus

> Myrmecla, Lat.,

Which seems to lead to the following one, and whose characters we have detailed in the Ann. des Sc. Nat., III, p. 27. The eyes form a

[^279]short and hroad trapezinm; there are four before in a transverse line; two others, more internal than the two last of the preceding ones, form a second transverse line; the last two are behind the two preceding ones. The chelicere are stout. The jaws are rounded, and very hairy at the end. The ligula is nearly square ; somewhat longer than broad. The legs are long, and almost filiform; those of the fourth and first pairs are the longest of all. The thorax seems to be divided into three parts, of which the anterior is much the largest and square; the two others resemble knots or humps. The ahdomen is much shorter than the thorax, : ind is covered with a solid epidermis, from its origin to the middle.

The Myr. fulva, on which I have established this genus, inhabits Brazil; other species, however, appear to be found in Georgia, United States of America.
In the second section of the Vagabunde, that of the Saltigradia. called by others Araignées phalanges, the eyes form a large quadrilateral, the anterior side of which, or the line formed by the first ones, extends across the whole width of the thorax; this part of the body is almost square or semi-ovoid, plane, or but slightly convex above, as wide anteriorly as in the rest of its extent, and descending suddenly on the sides. The legs are fitted for running and leaping. The thighs of the two fore legs are remarkalle for their size.

The Araignée à chevrons blancs of Geoffroy, a species of Salticus very common in summer on walls or windows exposed to the sun, moves by jerks, stops short after a few steps, and raises itself on its fore legs. If it discover a fly, or particularly a musquito, it approaches softly, and then darts upon the victim with a single bound. It leaps fearlessly and perpendicularly on a wall, being always attached to it by a thread, which lengthens as it advances. This same filament also supports it in the air, enables it to ascend to its point of departure, and allows it to be wafted by the wind from one place to another. Such, generally, are the habits of the species that belong to this division.
Several construct nests of silk resembling oval sacs open at both ends, between leaves, under stones, \&c. Thither they retire to change their tegument and to seck shelter in bad weather. If danger menaces them there, they leave it at once and escape with specd.

The females construct a sort of tent, which becomes the cradle of their posterity, and in which the young ones, for a time, live in common with the mother.

Certain species, resembling Ants, elevate their anterior legs and make them vibrate with great rapidity.

Singular combats sometimes ensuc between the males, but no fatal issue occurs.
A subgenus established by M. Rafincsque, that of

Tessarops,

Appears to us to approximate closely to the following one in most of its characters and habits, hut to be widely removed from it, if there
he no mistake, in the number of the cyes, which is but four. See Ann. Gener. des Sc. Phys., VIII, p. 88.

A second subgenus, which also is only known to us by description, is the
Palpimanus, Duf.,

Described by M. Dufour in the Ann. des Sc. Phys., V, Ixix, 5, and which appears to him to be intermediate between Eresus and Salticus. The disposition of the eyes is about the same as in the first of these two subgenera. The ligula is similarly triangular and pointed, and the jaws are still dilated and rounded at the end; but, according to M. Dufour, they are inclined and nut straight like those of the Eresi. The terminal joint of the anterior tarsi is inserted laterally, and has no huoks.

He describes one species, the Palpimane bossu. It never jumps, walks slowly, and is found under stones in Valencia, where, however, it is extremely rare.

A new species has been discovered by M. Lefèvre in Sicily, which appears to me to lelong to this genus.
In the two following subgencra there are always eight eyes; the jaws are straight.

Eresus, Walck.

Four cyes forming a small trapezium near the middle of the anterior extremity of the thorax, the other four on its sides forming a sinilar but much larger figure. The ligula is triangular and pointed. The tarsi are terminated by three hooks*.

Salticus, Lat.-Attus, Walck.

Four eyes, the two intermediate of which are the largest, on the anterior part of the thorax in a transverse line, and the other near its lateral edges, two on each side; they also form a large square open behind, or a parabola. The ligula is very obtuse or truncated on the summit. There are but two hooks to the extremity of the tarsi. Several of the males have very large chelicere.

The thorax of some are very thick and sloping, (en talus) and much inclined at base.

Salt. Sloanei; Aranea sanguinolenta, L. Black; a white line formed by down on each side of the thorax; the abdomen of a cinmabar-red, with an elongated black spot on the middle of the back. South of France, on stones \dagger.

[^280]The thorax of the other's is much flattened, insensibly sloping at its basc.

Sometimes their body is simply oval, and furnished with hairs or thick down ; the legs short and robust.

Sallique chevronné; Aranea scenica, L.; Araignée ì chevrons, Geoff.; Araignée à bandes blanches, De Geer, Insect., VII, xvii, 8, 9. About two lines and a lialf long; above, black; margin of the thorax, and three lines en chevion on the top of the abdomen, white. Very common *.
Sometimes the body is narrow, clongated, almost cylindrical and shorn; the legs long and slender.

Sall. formicarius; Aranea formicaria, De Geer, Insect., VII, xviii, 1, 2; Atte fourmi, Walck., Faun. Franç., Aran., V, 13. Reddish; fore part of the thorax black; black band and two white spots on the abdomen \dagger

FAMILY II.

PEDIPALPI.

In the second family of the Arachnides Pulmonarix, we find very large palpi, resembling projecting arms, terminated by a forceps or a claw; didactyle chelicere, one finger of which is moveable; an ahdomen composed of very distinct segments, without fusi at the extremity; and the sexual organs placed at the base of the abdomen. The whole body is invested with a firm tegument ; the thorax consists of a single piece, and exhibits three or two simple eyes, approximated or grouped, near the anterior angles; and near the middle of its anterior extremity, or posteriorly, but in the median line, two others equally simple and approximated. There are four or cight pulmonary sacs. Those which form the genus

> Tarantula, Fab.,

Have their abdomen attached to their thorax by a pediele, or portion of their transverse diameter; it has no pectinated laminæ at its liase, nor sting at its cxtremity. Their stigmata, four in number, are situated near the origin of the venter, and are covered with a plate. Their cheliceræ (mandibles) are simply terminated by a

[^281]moveable hook. 'Their ligula is elongated, very narrow, and concealed. They have but two jaws, which are formed by the first joint of their palpi.

They ali have eight eyes, of which three, on each side and near the anterior angles, form a triangle; and two near the middle at the anterior margin are placed on a comman tubercle or little elevation, one on each side. The palpi are spinous. The tarsi of the two anterior legs differ from the others, being formed of numerous setaceous or filiform joints, and without a terminal tail.

They are confined to the hottest portions of Asia and America. Their habits are unknown to us. They now constitute two subgenera.

Phrynus, Oliv.

Palpi terminating in a claw ; the body much flattened; thorax broad, and almost in the form of a crescent; abdumen ecaudate, and the two anterior tarsi very long and slender, resembling setaceous antennæ *.

Thelyphonus, Lat.
The Thelyphoni are distinguished from the preceding subgenus by their shorter, thicker palpi, terminated by a forceps, or by two united fingers; by their long body with its oval thoras, and the extremity of the abdomen furnished with an articulated seta forming a tail. 'Their' anterior tarsi are short, of a uniform appearance, and composed of few articulations \dagger.

The others have their abdomen intimately united to the thorax throughout its entire width, presenting, at its inferior base, two moveable pectiniform laminæ, and terminated by a knotted tail armed with a terminal sting. Their stigmata, eight in number, are exposed and arranged four by four along the belly; their cheliceræ are terminated by two fingers, of which the exterior is noveable. They form the genus

Scorpio, Lin. Fab.

Scorpions have an elongated body, suddenly terminated by a long slender tail formed of six joints, the last of which terminates in an arcuated and excessively acute point or sting, which affords issue to a venomous fluid contained in an internal reservoir, forming a long square, and usually marked in the middle by a longitudinal sulcus, presenting on each side, and near its anterior extremity, three or two

[^282]simple eyes, forming a curved line, and near the middle of the back two others, also simple, which are approximated. The palpi are very large, with a forceps at the extremity resembling a hind; their first joint forms a concave and rounded jaw. There is a triangular appendage at the origin of cach of the fonr anterior legs, which (appendages) by their approximation have the appearance of a quadripartite lip; the two lateral divisions, however, may be considered as a kind of jaws, the remaining two forming the ligula. The abdomen is composed of twelve annuli, those of the tail included ; the first is divided into two parts, of which the anterior bears the sexual organs, and the other the two combs. These appendages are composed of a principal, marrow, elongated, and articulated piece, moveable at base, and furnished along its inner side with a suite of little hollow lamine, united to it by an articulation, that are narrow, elongated, parallel, and similar to the teeth of a comb; their number is more or less considerable according to the species; it varies to a certain extent, and perhaps with age, in the same specics. No positive experiment has yet determined the use of these appendages. The four following annuli have each a pair of pulmonary sacs and stigmata. Directly afier the sixth, the abdomen becomes suddenly narrowed, and the remaining six, under the form of joints, compose the tail. All the tarsi are alike, and consist of three joints, with two hooks at the end of the last. The four last legs have a common base, and the first joint of the hip is soldered; the two last are even partly fixed against the abdomen.

The two nervous cords, proceeding from the brain, unite at intcrvals and form seven ganglions, the last of which belong to the tail. In all other Arachnides, there are never more than three.

The cight stigmata open into as many white bursie, each containing a great number of very slender, sinall lamine, between which it is probable that the air passes. A muscular vessel extends along the back, and communicates with each bursa by two branches*; it also distributes vessels to every part of the animal, The intestinal canal is straight and slender. The liver is composed of four pairs of ghandular clusters, which pour their humour into the intestine at four points. The male has two copulating organs arising near the combs, and the female has two vulve. The latter open into a matrix consisting of several inter-communicating canals, which in the proper period are found filled with living young ones; the testes are also formed of some anastomosing vessels \dagger.

These Arachnides inhabit the hot countries of both hemispheres, live on the ground. conceal the: selves under stones and other bodies, most commonly in ruins, dark and cool places, and even in houses. 'They run with considerable swiftness, curving their tail over their back. They can timn it in every direction, and use it for the pruposes of attack and defence. With their forceps they seize Onisci and varions insects, Caribici, Orthoptera, \&c., on which they

[^283]feed, pierce them with their sting by directing it forwards, and then pass their prey through their cheliceræ and jaws. They are particularly fond of the eggs of Spiders and of Insects.

The wound occasioned by the sting of the europaus is not usually dangerous. That of the Scorpion of Souvignargues, of Maupertius, of the species which I have named Roussatre (occitanus), and which is larger than the preceding one, according to the experiments of Dr. Maccary courageously tried upon himself, produces serious and alarming symptoms; the older the animal the inore active seems to be the poison. The remedy employed is the volatile alkali, used externally and internally.

Some naturalists have asserted that the European species produce two generations in the year. That which appears to me to be the most unequivucally ascertained occurs in August. The female in coitu is laid on her back. According to Maccary she changes her teguments previous to the production of her young. The male experiences a similar alteration at the same epoch.

The young are produced at various intervals. The mother carries thein on her back for several days, during which time she never leaves her retreat, and watches over them for a month, when they are strong enough to establish themselves elsewhere, and provide for their subsistence. Two years are required to qualify them for continuing their species.

Some have eight eyes; they form the genus Buthus of Leach.
S. afer, L., Fab.; African Scorpion, Rœes., Insect., 3, lxv; Herbst., Monog. Scorp., l. Five or six inches long, and of a blackish brown; forceps large, cordate, rough and somewhat hairy; anterior edge of the thorax deeply emarginate; thirteen teeth to each comb. From the East Indies, Ceylon.
S.roussalre; S. occilumus, Amor.; S. tunetanus, Herbst. Monog. Scorp. III, 3 ; Buthus occitanus, Leach, Zool. Miscell., cxliii. Yellowish or reddish; tail rather longer than the body, with elevated and finely crenulated lines. Upwards of twentyeight teeth-fifty-two to sixty-five, Maccary-to each comb. From the south of Europe, Barbary, \&e.-Very common in Spain.
The others have but six eyes; they compose the genus Scorpio, properly so called, of the same naturalist.
S. europaus, L., Fab.; Herbst. Munog. Scorp., III, 1, 2. Brown, more or less dark; legs and last joint of the tail paler or yellowish; forceps cordate and angular; nine teeth to each comb. From the extreme southern and eastern departments of France.

ORDER II.

TRACHEARIA.

The Arachnides which compose this order differ from those of the preceding one in their organs of respiration, which consist of radi-
ated or ramified tracheæ *, that only receive air through two stigmata; in the absence of an organ of circulation \dagger; and in the number of their eyes, which is but from two to four \ddagger. The want of sufficiently general anatomical observations, has prevented the limits of this order from being rigorously determined. Some of these Arachnides, the Pycnogonides for instance, exhibit no stigmata; their mode of respiration is unknown.

The Trachearix are very naturally divided into those which are furnished with cheliceræ, terminated by two fingers, one of which is moveable, or by one that is equally so; and into those where these organs are replaced by simple laminæ, or lancets, which with the

[^284]ligula constitute a sucker. Most of these animals, however, being very small, great difficulties necessarily aecompany these investigations, and it is readily pereeived that such charaeters should only be resorted to when it is impossible to avoid it.

FAMILY I.

PSEUDO-SCORPIONES.

In this family we find the thorax articulated, its first segment mueh the largest, and resembling a corselet; the abdomen is very distinet and anuulated, and the palpi very large and in the form of legs or claws. There are eight legs in each sex, with two equal hooks at the extremity of the tarsi, the two anterior ones, at most, excepted, and two apparent cheliceræ terminated by two fingers and two toes, formed by the first joint of the palpi. They are all terrestrial, and have an oval or oblong body. This family comprehends but two genera.
Galeodes, Olii.-Solpuga, Licht., Fab.

Two very large eheliceræ, with strongly dentated vertical fingers, one superior, fixed, and frequently furnished at its base with a slender, elongated, pointed appendage ${ }^{*}$, and the other moveable; large projecting palpi in the form of feet or antennæ, terminated by a short, vesicular joint, resembling a button without a terminal hook; the two anterior feet of an almost similar figure, equally unarmed, but smaller; the others terminated by a tarsus, the last joint of which is furnished at the end with two little pellets, and two long toes terminated by a hook; five semi-infundibuliform pediculated seales on each posterior leg, arranged in one series along their first joints: and two eyes closely approximated on an eminence anterior to the first thoracie segment, which represents a large head bearing the two anterior feet, as well as the parts of the mouth.

Their body is oblong, generally soft, and bristled with long hairs. The last joint, of the palpi according to M. Dufour, contains a particular organ formed like a disk, of a nacre-white, and which never protrudes unless the animal is irritated. The two anterior fect may be considered as second palpi. The labrum has the form of a little, strongly compressed, recurved rostrum, pointed and hairy at the end. The ligula is small, shaped like a keel, and is terminated by two divergent, bearded setæ, each posted on a little joint. The other pairs of legs are annexed to as many segments, I have perceived a large stigma on each side of the body, between the first and second pair of legs, as well as a slit at the base of the inferior part of the abdomen. The abdomen is oval, ard composed of nine annuli.

[^285]It is supposed that the ancients designated these animals by the names of Phalongium, Solifuga Tetragnatha, \&c. M. Poë diseovered a species in the environs of Havanna, but the others are pecular to the hot and sandy eountries of the eastern continent (a). They rum with great eelerity, erect their head when surprised, and show signs of resistance; they are ennsidered venemous *.

Chelifer, Geoff.-Obisium, Illig.

The palpi elongated, in the form of an arm. with a hand terminated by a didactyle forceps; all the legs equal, terminated by two hooks; the eyes placed on the sides of the thorax.

These animals resemble small Scorpions destitute of a tail. Their body is flattened, and the thorax nearly square, with one or two eyes on each side.

They run swiftly, and frequently retrograde or move sideways like Crabs. Roesel saw one female lay her eggs and collect them into a heap. Hermann, Sen., says that she carries them under her abdomen, united in a pellet. He is even of the opinion that these Araehnides can spin.

Hermann, Jun.-Mem. Apter.-divides this genus into two sections.

In some-Chelifer, Leach-the first segment of the trunk or thorax is divided by an impressed transverse line ; the tarsi consist of a single joint; there is a kind of stylet at the extremity of the moveable finger of the chelicere, and the hairs of the body are shaped like a spatula.

Ch. cancroides; Phalangium cancroides, L.; Scorpio cancroides, Fab.; Roes., Inseet. III, Supp. LXIV, vulgo Book-Scorpion. Found in herbaria, old books, \&c., where it feeds on the small insects that destroy them.

Ch. cimicoides ; Scorpio cimicuides, Fab.; Herm., Mem. Apter., VII, 9. Inhabits under bark of trees, stones, \&c.
In others-Obisium, Leach-the thorax is entire, the eheliceræ, are destitute of a stylet, and the lairs on the body are setaceous \dagger. A more important character however is found in the number of eyes. In Obisium it is four, and but two in Chelifer properly so called \ddagger.

[^286]
FAMILY II.

PYCNOGONIDES.

The trunk, in this family, is composed of four segments, occupying nearly the whole length of the body and terminated at each extremity by a tubular joint, the anterior of which is the largest, sometimes simple, and sometimes accompanied by cheliceræ and palpi, or only one kind of these organs, that constitutes the mouth *. There are eight legs in both sexes, formed for running, but the fomale is furnished with two additional false ones, placed near the two anterior and solely destined to carry her eggs,

The Pycnogonides are marine animals \dagger, analogous either to the Cyami and the Caprellæ, or to the Arachnides of the genus Phalangium, where Linnæus placed them. Their body is commonly linear̈, with very long legs, composed of eight or nine joints, terminated by two unequal hooks which appear to form but one, and the smallest of which is cleft. The first segment of the body, which replaces the head and mouth, forms a projecting tube, cylindrical or in the form of a truncated cone, with a triangular aperture at its extremity. The cheliceræ and palpi are placed at its base. The former are cylindrical or linear, simply prehensile, and composed of two joints, the last of which is a forceps, the inferior finger, or the one that is fixed, being sometimes shorter than the other. The palpi are filiform, and consist of five or nine joints, with a terminal hook. Each of the following segments, the last excepted, bears a pair of legs \ddagger; but the first, or the one articulated with the mouth, has a tubercle on the back, on which are placed two eyes on each side, and beneath, in the females only, two additional small folded legs, bearing the eggs which are collected around them in one or two pellets. The last segment is small, cylindrical, and perforated by a little orifice at the extremity. No restige of stigmata can be perceived.

[^287]They are found among marine plants, sometimes under stones near the beaeh, and oceasionally also on the Cetaeea.
Pycnogonum, Brun., Müll., Fab.

The cheliceræ and palpi wanting; length of the feet hardly greater than that of the body, which is proportionably thicker and shorter than in the following genera. They live on the Cetacea*.

Phoxichiles, Lat.

The palpi wanting, as in the Pyenogoni; but the legs are very long, and there are two ehelieeræ \dagger.
Nymphon, Fab.

The Nymphones resemble the Phoxichili in the narrow and oblong form of their body, the length of their legs, and in the presenee of chelieeræ; but they have, besides, two palpi \ddagger.

FAMILY III.

HOLETRA§.

The trunk and abdomen are here united in one mass, under a common epidermis, or, at most, the thorax is divided by a strangulation, and the abdomen, in some, merely exhibits an appearance of annuli, formed by the plieæ of the abdomen.

The antcrior extremity of their body frequently projects in the form of a snout or rostrum : most of them have eight legs, and the remainder six $\|$.

This family eonsists of two tribes. In the first or the Phalangita, Lat., we observe very apparent cheliecre which either project in

[^288]front of the trunk, or are inferior, and always terminating in a didactyle forceps, preceded by one or two joints.

They have two filiform palpi, composed of five joints, the last of which is terminated by a small nail; two distinet eyes; two jaws formed by the prolongation of the radical joint of the palpi, and frequently four more *, which are also a mere dilatation of the hip of the two first pairs of legs. The body is oval or rounded, and eovered, the trunk at least, with a firmer skin ; there is also an appearance of annuli or pliere on the abdomen. The legs, of whieh there are always eight, are long, and distinetly divided, like those of inseets \dagger At the origin of the two posterior legs, at least in several-Plalangiumare two stigmata, one on each side, but lidden by their hips.

Most of them live on the ground, at the foot of trees, and on plants, and are very aetive; others coneeal themselves under stones and in moss. Their sexual organs are internal, and plaeed under the mouth.
Phalangium, Lin., Fab.

The chelieeræ projeeting, much shorter than the body; eyes plaeed on a common tuberele.
Their legs are very long and slender, and when detached from the body show signs of irritability for a few moments. The two sexes in eoitu are placed opposite to each other; this oceurs at the latter end of summer. The penis of the male is formed like a dart, and has a demi-sagittal termination. The female has a filiform, flexible, annulated and membranous oviduct. The tracheæ are tubular.

P'/.cornutum, L., the male ; Opilio, Id., the female ; Herbst., Monog. Phal., I, 3, the male; 1b., 1, the female. Body oval, reddish or eincreous above; blaek beneath; palpi long; two ranges of small spines on the oeular tubereles, and spines on the thighs; corneous ehelieere in the males; a blackish band with a festooned margin on the back of the female \ddagger.
A celebrated English entomologist, M. Kirby, under the name of Gonoleptes, has formed a particular genus of the speeies with spinous palpi, the two last joints of which are nearly equal, sub-oval, and terminated by a stont nail, and in which the hips of the two posterior

[^289]legs are very large, soldered, and form a plate under the body. These legs are separated from the others and placed helind*. In Phalangium properly so called, the palpi are filiform; spineless, and terminated by a joint much longer than the preceding one, with a little terminal hook. All the legs are approximated, with similar coxæ contiguous at their origin. Such are all the species indigenous to Europe.

Siro, Lat.

Projecting chelicere nearly as long as the body; eyes separated and placed on different insulated tubercles \dagger.

Macrocheles, Lat.

Extremely salient and very long cheliceree ; but the eyes mull or sessile; the two anterior legs very long and antenniform; the top of the body forming a plate or scale without distinct annuli.

To this genus I refer the Acarus maryinatus and the Ac. testudinarius, of Hermann, Jun., Mem. Apter., p. 76, pl. vi, fig. 6, and p. 80, pl. ix, fig. 1.

Trogleve, Lat.

Anterior extremity of the body projecting like a clypeus, and receiving the cheliceræ and other parts of the mouth into an inferior cavity,

The body is flat and covered with a very firm skin \ddagger.
In the second tribe of the Holetra, that of the Acarides, we sometimes find cheliceræ, but they are simply formed of a single forceps. either didactyle or monodactyle, and are hidden in a sternal lip; sometimes there is a sucker formed of united lancets; or finally, the mouth consists of a simple cavity without any apparent appendages. This tribe is composed of the genus

> Acarus, Lin.

Most of these animals are very small or nearly microscopical. They are observed everywhere. Some of them are errant, and of these some are found under stones, leaves, the bark of trees, in the earth. in water, dried meat, old cheese, and putrescent animal matters. Others are parasitical, living on the skin or in the flesh of various animals, which they often, by their excessive multiplication, reduce to a state of great debility. The origin of certain diseases, such as the itch, is attributed to particular species. The experiments of Dr. Galet prove that if the Acari of the human psora be placed on the body of a perfectly liealthy person, they will inoculate him with the virus of that disorder. Various species of Acari are also found on

[^290]Insects, and some of the Coleoptera that feed on cadaverous or excrementitious substances are frequently covered with them. They have even been observed in the brain and eye of man.

The Acari, or Mites as they are vulgarly termed, are oviparous, and excessively prolific. Several of them at first have but six legs, the remaining two being developed shortly after. Their tarsi terminate in various ways according to their habits.

Some-Acarides, Lat.-or the Acari proper, have eight legs, solely destined for walking, and cheliceræ.

Trombidium, Fab.

The cheliceræ menodactyle, or terminated by a movable hook; salient palpi, pointed at the end, with a moveable appendage or species of finger under their extremity; two eyes, cach placed on a little immoveable pedicle. The body is divided into two parts, the first of which, or the anterior, is very small, and bears the two first pair of legs, together with the eyes and mouth.

Tromb. holosericeum, Fab.; Herm., Mem. Apter., pl. 1, 2, and II, 1. Very common in gardens in the spring; blood-red; abdomen nearly square, posteriorly narrowed, with an emargination; the back loaded with papillæ, hairy at base, and globular at the extremity.

Tromb. tinctorium, Fab.; Herm. Apter.; I, I. Three or four times the size of the preceding; it furnishes a red dye. The East Indies *.

Erythreus, Lat.

The cheliceræ and palpi of Trombidium; but the eyes are not placed on pedicles, neither is the body divided \dagger.

Gamasus, Lat. Fab.

Didactyle cheliceræ; very distinct or projecting filiform palpi.
The superior surface of the body, in some, is either wholly or partially invested with a scaly skin \ddagger.

The body is entirely soft in the remainder. Several species of this division live on Birds and Quadrupeds. Some are known; such as the

Gam. telarius; Ac. telarius, Fab.; which form extremely fine webs on the leaves of several plants, particularly of the Elm, and

[^291]VOL, YII.
are very injurious to them. These particular speeies is reddish, with a blaekish spot on each side of the abdomen.

Cheyletus, Lat.

Didaetyle chelieeræ; but the palpi are thick, resemble arms, and have a faleiform termination *.

Oribata, Lat. Notaspis, Herm.

The cheliceræ are also didactyle in the Oribatæ, but their palpi are very short or eoncealed; their budy is invested by a firm, eoriaeeous or sealy skin resembling a shield, and their legs are long or moderate.

The anterior part of the body projects into a snout, and an appearanec of a thorax is often observable. The tarsi, in some, are terminated by a single hook, and in others by two or three, without any vesicular pellet.

They are found on stones, trees, and in moss; their gait is slow \uparrow.

> Uropoda, Lat.

Judging from analogy, we presume that the Uropodæ are furnished with foreeps-like cheliceræ. Their palpi are not apparent; their body, still covered with a scaly skin, has but very short legs, and a filament at the anus, by means of which they attach themselves to eertain coleopterous Insects, suspending themselves in the air \ddagger.

Acarus, Fab. Lat.-Sarcoptes, Lat.

Two didaetyle cheliceræ, and very short or concealed palpi, as in the preeeding; but the body very soft or without a scaly crust.

The tarsi have a vesicular pellet at their extremity. Several speeies live on the food of Man, and others are found in his psoraie uleers, and in those of the Horse, Dog, and Cat §.

Others, called Ticks-Ricinie, Lat.-also have eight legs, solely adapted for running, but are destitute of cheliceræ, properly so called; they are replaced, however, by two laneet-like blades, whieh, with the ligula, form a sueker.

Sometimes they have distinet eyes, and salient, filiform, free palpi ; a sucker composed of membranous parts, and entire; and a very soft body. They are errant animals.

Bdella, Lat. Fab.-Scirus, Herm.

Elongated palpi, bent into an elbow, with setæ or hairs at the ex-

[^292]tremity; four eyes; the posterior legs longest; sucker projecting in the form of a conical or subulate rostrum. Found under stones, bark of trees, and in moss.

Bd. longicornis; Acarus longicornis, L.; La Pince rouge. Geoff.; Scirus vulgaris, Herm., Mem. Apter., III, 9 ; IX, S. Hardly half a line in length; searlet; the feet paler; sueker in the form of an elongated and pointed rostrum ; quadriarticulated palpi, the first and last joint of whieh are the longest; the latter somewhat the shortest of the two, and terminated by two setr. Common in the environs of Paris; under stones *.

Smaridia, Lat.

Distinguished from Bdella by the palpi, whieh are hardly longer than the sueker, straight and without terminal setæ; by the eight eyes, and by the two anterior legs, whieh are longer than the others \dagger.

Sometimes these Ticks, with eight legs and without chelieere, have no eyes that are perceptible; their palpi are either anterior and projecting, but in the form of valvulæ, widened or dilated near the extremity, serving as a sheath to the sucker-or inferior; the parts composing the sucker are horny, very hard and dentated; the body is invested with a coriaceous skin, or has at least, anteriorly, a scaly plate,

These animals are parasitieal, gorge themselves with the blood of several of the Vertebrata, and from being extremely flat, aequire by suction a great volume and a vesicular form. They are round or oval.

Ixodes, Lat. Fab.-Cynorhestes, Herm.

The palpi forming a sheath to the sucker, and with it constituting a projecting and short rostrum, truneated and slightly dilated at the extremity.

The Ixodes are found in thick woods abounding in bushes, briars, \&c.; they hook themselves to low plants by the hind legs, keeping the others extended, and fasten on Dogs, Oxen, Horses, and other Quadrupeds, and even on the Tortoise, burying their sucker so eompletely in their flesh, that they can only be detached by foree, and by tearing out the portion that adheres to it, They lay a prodigious quantity of eggs, which, according to M. Chabrier, are protruded from their mouth. They sometimes increase to such an enormous extent on the Ox and Horse, that they perish from the exhaustion. Their tarsi are terminated by two hooks inserted in a palette, or united at base on a common pediele,

The ancients designated these Arachnides by the term Ricinus.

[^293]Huntsmen in France call the species which attaches itself to the Dog, Lowette. It is the

Ixodes ricinus; Acarus ricinus, L.; Acarus redwius, De Geer, Insect., VII, vi, 1, 2. A deep blood-red; the sealy, anterior plate still darker; sides of the body turned up, and slightly hairy; palpi forming a sheath to the sucker.

Ixodes reticulatus, Lat. Fab.; Acarus reduvius, Schrank, Enum. Insect., Aust., No. 1043, iii, 1, 2: Cynorhcestes pictus, Herm. Cinerous, with small reddish-brown spots, and little annular lines of the same colour; edges of the abdomen striate; palpi nearly oval. It infests Oxen, and when tumefied, is six lines in length.
The species of this genus have not been sufficiently studied *.

Argas, Lat.-Rhynchoprion, Herm.

Distinguished from Ixodes by the inferior situation of the mouth, and by the palpi which do not encase the sucker, have a conical form, and are composed of four joints, and not of three, as in the preceding genus.

Argas reflexus; Ixodes reflexus, Fab.; Lat. Gen. Crust. et Insect., I, vi, 3, Herm. Mem. Apt. IV, 10, 11. Pale yellow, with dark blood-coloured, or obscure and anastomosing lines.On Pigeons.

Argas persicus; Malleh de Mianeh. This species, described by travellers under the name of Punaise venimeuse de Miana, with other Ixodes, constitutes the subject of some curious observations published by M. Gotthef Fischer de Waldheim.
Others again-Hydrachnelle, Lat.-have also eight legs, but they are ciliated and adapted to natation.
They form the Genus Hydrachna of Müller \dagger or that of Athax Fab., and are wholly aquatic. Their body is generally oval or nearly globular, and very soft. That of some males is narrowed posteriorly, so as to resemble a kind of tail, their genital organs being placed at its extremity; in the female, they are on the inferior surface of the abdomen. The number of eyes varies from two to four, or, according to Müller, even to six.

The mouth of those species, I have been able to study, offered the three following modifications, which have served as a base to three generic divisions, but to which it is almost impossible to refer all Müller's species of Hydrachnæ, that naturalist not having described them with sufficient minuteness.

[^294]
Eylais, Lat.

Cheliceræe terminated by a moveable hook*.

Hydrachna, Lat.

The mouth composed of laminæ, forming a projecting sucker; a moveable appendage under the extremity of the palpi \dagger.

Limnochares, Lat.
The sucker mouth of the Hydrachnæ, but the palpi are simple \ddagger.
Others,-Microphthira, Lat.-are removed from all the rest of the Arachnides by the number of their legs, which only amounts to six. They are all parasitical.

Caris, Lat.
A sucker and apparent palpi ; the body rounded, flat, and covered with a scaly skin§.

> Leptus, Lat.

A sucker and palpi as in Caris, hut the body very soft and ovoid.
Leptus autumnalis; Acarus autumnalis, Shaw, Zool. Miscell., II, pl. xlii. A very common species, in autumn, on grasses and other plants. Having reached the person of the passenger, it climbs up, insinuates itself into his skin at the root of the hairs, and occasions an itching as intolerable as that produced by a regular itch. It is called the Rouget in France, and in fact it is of a reddish colour and very small.
The remaining species are found on different Insects, and belong to the division of the Trombidia hexapoda, Hermann \|.

Aclysia, Aud.
The body shaped like a bagpipe, and furnished with a siphon, without distinet palpi, situated beneath its anterior extremity, which is narrowed, curved and obtuse; very small legs.

The Aclysiæ live on the Dytisci. But a single species-Ac. dytisci, Mém. de la Soc., d'Hist. Nat., I, p. 98, pl. v, fig. 2was at first known, the one on which M. Victor Audouin established the subgenus. Count Manheiren, a Russian naturalist, to whom the science is much indebted for his entomological essays, and his readiness to second the efforts of those who study it, has, as it appears, discovered another.

[^295]
Atoma, Lat.

Neither sucker nor palpi visible, the mouth merely consisting of a small orifice on the chest. The body is oval and soft, the legs very short*. The

Ocypete, Leach,

Belongs to this tribe by the number of legs; but, according to him, these animals are furnished with mandibles \dagger.

[^296]
THIRD

GREAT DIVISION

OF THE

ANIMALKINGDOM.

(CONTINUED.)

CLASS III.

INSECTA.

Insects, which form the third class of articulated animals provided with articulated legs, have, besides, a dorsal vessel analogous to the vestige of a heart, but totally destitute of any branch for the circulation*. They respire by means of two principal tracheæ, extending,

[^297]parallel to each other, throughout the whole length of the body, having centres, at intervals, from which proceed numerous branches, corresponding to external openings or stigmata*, which admit air.
two transverse fissures which communicate with the abdominal cavity and through which the blood contained in the latter enters the heart. Each of these apertures is provided, internally, with a little semi-circular valve which presses on it during the systole of the heart. From this short description it will be seen, that when the posterior chamber dilates, the blood contained in the abdominal eavity penetrates into it by the transverse fissures of which we have spoken, and which we call auriculo-rentricularies. When the chamber contraets, the blood finding no exit into the abdominal eavity forces the inter-ventricular valve, passes into the second chamber which dilates to receive it, and which, at the same time, receives a certain quantity of blood by the true auriculo-ventrieular apertures. When the second chamber receives the contracting impression, the blood passes into the third, which also receives a portion of it through the lateral openinge, and thus the blood is foreed from one ehamber to another into the artery. It is these successive ceutractions of the chambers of the heart that we perceive through the skin of eaterpillars." The heart of the Crustacea Deeapoda, Squilli, Limulæ, Araneæ, \&c., as I have been assured by the same profound observer, also contains similar valvulæ. It is enclosed in a sort of sae or perieardium, which, according to him, acts in lieu of an auriele. These divisions or chambers of the dorsal vessel are what Lyonet terms ailes or wings, he also saw that the dorsal vessel extended to the head, and terminated there in the manner already described: but he did not see the orifices and valvulæ mentioned by Straus. The definition of the dorsal vessel given by this naturalist, evidently proves, that, whatever be its internal formation, it is not a true heart. Besides, these observations do not teach us the true nature of the liquid it contains, nor how it becomes diffused throughout the other parts of the body to effeet their nutrition. It is however certain, from the observations of Lyonet, that all the parts of the body communieate with the corps graisseux by means of fibrilli. The trachere give off branches which extend to the extremities of the various appendages of the borly. The action of the air may occasion the ascension of the nutritive juices in the interstices, forming a sort of capillary tubes.

* The number of segments in the body of the Myriapoda being undetermined, that of their stigmata is the same, and frequently extends to above twenty. In the Hexapoda it is frequently eighteen, nine on each side. This computation, however, is rather true with respect to the animal as a larva than in its perfect state. Caterpillars, the larvæ of the Coleoptera and those of various other Insects, have one pair of stigmata on the first segment, or the one that bears the first pair of legs; the second and the third arc destitute of them, owing, I presume, to the developement of the wings which occurs in these rings, and renders the presence of respiratory apertures useless in that particular placc. The fourth and each of the seven following annuli exhibit a pair: but in coleopterous Insects in their perfeet state, besides the two anterior stigmata concealed in the cavity of the pro-thorax, whieh had not been perceived, we observe two others, situated between the origin of the elytra and that of the wings : they belong to the mesothorax. There are none in the metathorax, unless we consider the two of the first abdominal segments, as supplementary to the thorax, a consideration founded on what oecurs in the Diptera and Hymenopterous Inseets with a pediculated abdomen, where these two stigmata, with the semi-segment in which they are placed, make part of the thorax. Thus, generally speaking, the hexapoda have eight pairs of abdominal stigmata, the two last of whiel, however, are frequently obliterated.

In Acrydium, Truxalis, and Libellula, each side of the mesothorax presents a stigma, or those which Mareel de Serres calls trémaeres. In these latter Inseets, as well as in others with naked wings, or without elytra, the two first thoracic stigmata are placed above, betwcen the prothorax and the mesothorax. With the exeeption of the Libellulæ, the thorax proper offers no other distinet stigmata-I say thorax proper, beeausc, as we have already observed, the two first of the abdomen, in several, are referable to the posterior extremity of the thorax. The metathorax of the Pentatome, and Seutelleræ is provided inferiorly with a pair of stigmata. In the apterous Spec-

They all have two antennæ and a distinct head. The nervous system of most Insects-the Hexapoda-is generally composed of a brain formed of two opposing ganglions, united at base, giving off eight pairs of nerves and two single ones, and of twelve ganglions*, all inferior. The two first are situated near the junction of the head with the thorax, and are longitudinally contiguous; the anterior sends nerves to the lower lip and adjacent parts; the second, third and fourth belong to each of the three first segments, or those which form the thorax in the Hexapoda; the remaining ganglions belong to the abdomen, so that the last or the twelfth corresponds to its seventh ring, and is immediately followed by those which compose the organs of generation; each of these ganglions transmits nerves to the parts of its respective segments. The two last, which are closely approximated, also send some to the terminal annuli of the body. The frontal region exhibits three particular ganglions called frontal by Lyonet, from the first of which arises posteriorly a great nerve with enlargements, the longest of all, that he denominates the recurrent. The first ordinary or sub-œsophagean ganglion, gives off, according to him, four pairs of nerves, and each of the following ones, two; so that by counting the eight pairs of the brain, and the ten spinal bridles, whieh may also be considered as so many pairs of nerves, we shall have in all forty-five pairs, exclusive of the two solitary nerves above-mentioned, or from twelve to fourteen more than are found in the human subject. The two nervous cords which form the ganglions by their union, are tubular and composed of two tunicks, in the exterior of whieh we observe tracheæ; a medullary substance fills the eentral canal. The admirable work of M. Hérold on the anatomy of the larva of the great Papilio brassice, L., studied throughout its various degrees of developement, and to the period of its transformation into a ehrysalis, shows us that the nervous system and that of the digestive organs experience remarkable changes; that in the beginning, the nervous cords are longer and further apart, an observation which strengthens the opinion of one of the greatest zootomists of the age, Doctor Serres, on the origin and developement of the nervous system. In our general remarks on points common to the three classes of articulated animals provided with articulated feet, we mentioned the various opinions of physi-

[^298]* Several of the Lamcllicornes in a perfect statc form exceptions.
ologists with respect to the seat of the sense of hearing and of smell.
We will merely add, in regard to the former, that the little nervous frontal ganglions of which he have spoken, seem to confirm the opinion of those who, like Scarpa, place it in the origin of the antennæ. I have detected two small orifices near the eyes of certain Lepidoptera, which, perhaps, arc auditory canals. If, in several Insects, particularly those furnished with filiform, or long, sctaccous antennæ, they (the antennæ) are organs of touch, it seems to us difficult to account for the extraordinary developement they acquire in certain families, and mure particularly in the males, if we refuse to admit that they are then the seat of smell. The palpi also, in some cases, as when they are greatly dilated at the extremity, may possibly be the principal organs of smell, part of which scuse may also perhaps belong to the ligula.

The digestive system consists of a preparatory or buccal apparatus, intestinal canal, biliary vessels, also called hepatic vessels, those styled salivary, but which are less general, free and floating vessels called excrementitious, the epiploon or corps graisseux, and probably of the dorsal vessel. This system is singularly modified according to the difference of the aliment, or forms a great number of particular types, of which we shall speak when treating of families. We will merely say a word with respect to the buccal apparatus and the principal divisions of the intestinal canal, beginning with the latter. In those where it is the most complicated, as in the carnivorous Coleoptera, we observe a pharynx, œsophagus, crop, gizzard, stomach or chylific ventricle, and intestines which are divided into the small intestines, great intestine or cæcum, and the rectum. In those Insects where the tongue, properly so called, is laid on the anterior or internal face of the lip, or is not free, the pharynx is situated on that same face and this is most commonly the case *. We will also add, that a naturalist who first furnished us with correct observations on the respiratory organs of the Mygales, M. Gaede, professor of natural history at Licge, does not consider the biliary vessels as secreting organs-this opinion, however, does not appear to be sufficiently well founded, and the observations of M. Leon Dufour \dagger. even seem to destroy it.

[^299]Some few, and always apterous Insectes, such as the Myriapoda, approximate to several of the Crustacea, either in the number of the annuli of their body and in their legs, or in some points of analogy in the conformation of the parts of the mouth; but all the others never have more than six legs, and their body, the number of whose segments never extends beyond twelve, is always divided into three principal parts, the head, trunk, and abdomen. Among the latter Insects, some are found without wings, that always preserve their natal form, and merely increase in size and change their skin ${ }^{*}$. In this respect they bear some analogy to the animals of the preceding classes. Nearly all the remaining Hexapoda have wings ; but these organs, and even frequently the feet, do not make their appearance at first, but are only developed after a series of changes, more or less remarkable, styled metamorphoses, of which we shall soun have to speak.

The head \dagger bears the antennce, eyes, and mouth. The composi tion and form of the antennæ are much more various than in the Crustacea, and are frequently more developed or longer in the males than in the females.

The eyes are either compound or simple; the first, according to the baron Cuvier, Marcel de Serres and others, are formed: l, of a cornea, divided into numerous little facets, which is so much the more convex, as the insect is more carnivorous; its internal surface is covered with an opaque, and variously coloured, but slightly fluid substance, usually, however, of a black or deep violet hue: 2 , of a choroides, fixed by its contour and edges to the cornea, covered with a black varnish, exhibiting numerous air vessels, arising from tolerably large trunks of tracheæ in the head, whose branches form a circular trachea round the eye: it is frequently wanting, however, as well as the choroides, in various nocturnal insects; 3, of nerves arising from a large trunk, proceeding directly from the brain, which then opens, forming a reversed cone, the base of which is next to the eye, and each of whose rays or threads traversing the choroides and lining matter of the cornea, terminates in one of its facets : there is no crystalline nor vitreous humour.

Several, besides these compound eyes, have simple ones, the cor-

[^300]nea of which is smooth. They are usually three in number, and are disposed in a triangle on the top of the head. In most of the Aptera, and in the larvæ of those that are winged, they replace the former, and are frequently united in a group; those of the Arachnides seem to indicate that they are fitted for the purposes of vision.

The mouth of hexapodous insects is generally composed of six principal parts, four of which are lateral, are disposed in pairs, and move transversely; the other two, opposed to each other in a contrary direction, occupy the space comprised between the former: one is placed above the superior pair, and the other beneath the inferior. In the triturating insects (broyeurs), or those which feed on solid matters, the four lateral parts perform the office of jaws, the other two being considered as lips; but, as we have already observed, the two superior jaws have been distinguished by the peculiar appellation of mandibles, the others alone bearing that of maxillæ or javs; the latter are also furnished with one or two articulated filaments called palpi, a character never exhibited, in this class, by the mandibles. Their extremity is often terminated by two divisions or lobes, the exterior of which, in the Orthoptera, is called the galea. We have already said that the upper lip was called the labrum. The other, or the labium, properly so styled, is formed of two parts; the one, inferior and solid, is the mentum or chin; the other, which is usually provided with two palpi, is the ligula*.

In the Suctoria, or those that live by the suction of fluid aliament these various organs of manducation present themselves under two kinds of general modifications. In the first, the mandibles and the jaws are replaced by little laminæ in the form of setæ or lancets, forming, by their union, a sort of sucker, which is received into a sheath, supplying the place of a labium, and is either cylindrical or conical, and articulated in the form of a rostrum, or fleshy or membranous, inarticulated, and terminated by two lips constituting a

[^301]proboscis. The labrum is triangular and arched, and covers the base of the sucker.

In the second modification, the labrum and mandibles are nearly obliterated, or are extremely small: the labium is no longer free, and is only distinguishable by the presence of two palpi, to which it gives insertion : the jaws have acquired a most extraordinary length, and are transformed into tubular filaments, which, being united at their edges, compose a sort of spiral proboscis called the tongue, but which, to avoid all equivocation, it would be better to call spirignatha; its interior exhibits three canals, the intermediate of which is the duct of the alimentary juices. At the base of each of these filaments is a palpus, usually very small, and but slightly apparent.

The Myriapoda are the only insects in which the mouth presents another mode of organization-it will be explained in treating of that order.

The trunk * of insects, or that intermediate portion of their body which bears the legs, is generally designated by the term thorax, or corselet by the French. It is composed of three segments, not well distinguished at first, the relative proportions of which vary considerably. Sometimes, as in the Coleoptera the anterior, much the largest, separated from the following one by an articulation, moveable, and alone exposed, appears at the first glance to constitute the entire trunk, and is called the thorax or corselet; sometimes, as in the Hy menoptera, Lepidoptera, \&c., it is much shorter than the ensuing one, has the appearance of a collar, and, with the two others, forms a common body, attached to the abdomen by a pedicle, or adhering closely to it across its whole posterior width, and is also called thorax. These distinctions were insufficient, and frequently ambiguous, inasmuch as they were not based on a ternary division, distinctly announced by me in the first edition of this work, as a character proper to the Hexapoda. M. Kirby having already employed the denomination of metathorax, to designate the after-thorax \dagger, that of

[^302]prothorax and mesothorax, the ternary division once established, naturally presented itself to the mind, and the celebrated professor Nitzsch was the first to employ it. Some naturalists have since designated the prothorax or anterior segment, that which bears the two first feet, by the term collar, collare. Wishing to retain the denomination of corselet, but to restrain its application within proper limits, we will employ that term in all those cases where this segment is much larger than the others, and where these latter are joined to the abdomen, and seem to constitute an integral part of it-a disposition proper to the Coleoptera, Orthoptera, and several of the Hemiptera. When the prothorax is short, and forms with the succeeding segments a common and exposed mass, the trunk composed of the three will retain the name of thorax. We will also continue to style pectus the inferior surface of the trunk, dividing it according to the segments, into three areæ, the ante-pectus, medio-pectus, and post-pectus. The median line will also constitute the sternum, which we divide into three parts: the ante-sternum, medio-sternum, and post-sternum.

The teguments of the thoracic segments, as well as of those of the abdomen, are usually divided into two annuli or semi-annuli, the one dorsal or superior, the other inferior, laterally united by a soft and flexible membrane, which, however, is but a portion of the same tegument that in many Insects, the Coleoptera particularly, is less firm. At the point of junction between these annuli we observe a little space of a more solid texture, or of the consistence of the annulus itself, which bears a stigma, so that the sides of the abdomen present a longitudinal series of small pieces, or each segment seems to be quadripartite. Other equally corneous pieces occupy the inferior sides of the mesothorax and metathorax and immediately under the origin of the elytra and wings, which are supported by another longitudinal piece. The relations of these parts, the size and form of the first joint of the coxæ, the manner in which they are articulated with

[^303]the semi-annulus to which they belong, the extent and direction of that semi-annulus varying, furnish the thorax, thus considered, with a combination of characters, which in a systematic point of vicw are of great importance. Some naturalists, Knoch in particular, had already employed them, but on no fixed principle, and under arbitrary denominations. A necessary preliminary step was the careful and comparative study of the thorax, as it exists in all the orders of the class of Insects. This was undertaken at my request, by the late Lachat. His friend, M. Victor Audouin, has prosecuted his researches and presented to the Academie des Sciences an excellent memoir on the subject. All that is yet known of it, however, is from the general sketch given by the Baron Cuvier in his report *,

[^304]and by the extract published by the author in the article Insectes of the Dict. Class. d'Histoire Naturelle. Before we can adopt his nomenclature, and apply it generally, we must wait until his work and the figures which accompany it are published; for all practical purposes, however, the denominations already introduced may suffice. A second production relative to the same subject, which both justice ând friendship here compel me to notice, is that of M. Chabrier on the flight of insects. It forms part of the Mem. du Mus. d'Hist. Nat., but is sold separately. The figures are executed on a great scale, as are also those of a Memoir of Jurine, Sen. on the wings of the Hymenoptera, a work, like the preceding one, which is the result of infinite patience.

As Insects inhabit all kinds of dwellings, they are provided with all sorts of locomotive organs, wings and feet, which in several, act as fins.

The wings are membranous, dry, elastic organs, usually diaphanous, and attached to the sides of the back of the thorax : the first, when there are four, or when they are unique, on those of its second segment, and the second on those of the following or of the metathorax. They are composed of two membranes laid one on the other, and are traversed in various directions by more or less numerous nervures, which are so many tracheal tubes, now forming a network, and then simple veins. A celebrated naturalist, Jurine, Sen., has taken advantage of the disposition and decussation of these nervures * in a systematic point of view. The Libellulæ, Apes, Vespæ, Papiliones, \&c., have four wings; but those of the latter are covered with small scales, which at the first glance resemble dust, and give them the magnificent colours in which they are drest. They are easily removed with the finger, and that portion of the wing becomes transparent. By the aid of glasses we discover that these scales are of various figures, and implanted in the wing by means of a pedicle, arranged gradually and in series, like tiles on a roof. Before the superior wings of these Insects are two species of epaulettes-ptery-goda-which extend posteriorly along a portion of the back on which they are laid. The wings of some Insects remain straight, or are

[^305]doubled transversely. Those of others are folded or plaited longitudinally like a fan. Sometimes they are horizontal, and sometimes inclined in the manner of a roof: in several they cross on the back, and in others they are distant *. Directly under them, in the Diptera are two small moveable threads with a claviform termination, which; according to the gencral opinion \dagger, secm to replace the two wings that are wanting. They are called (balanciers) halteres. Other twoo-winged and more extraordinary Insects have also two halteres, but situated at the anterior extremity of the thorax, which to distin. guish from the others we will call prolualteres. Above these appendages is a little membranous scale formed of two pieces united by one of their edges and resembling a bivalve shell-it is the alula or cueilleron. The same appendage is also observed under the elytra (at their base) of some aquatic Coleoptera.

Many Insects, such as the Melolonthæ, Cantharides, \&xc., in lieu of the two superior or anterior wing's, are furnished with two species of scales, more or less solid and opaque, which open and close, and beneath which, when at rest, the wings are transversely folded. These scales or wing cases are called elytra \ddagger. The Insects provided with them are named Coleoptera, and in such they are never absent, though this is sometimes the case with respect to the wings. In other Insects the extremity of the seale is completcly membranous, or like the wing : they are styled Hemiptera.

The scutel or scutellum is usually a small triangular piece, situated on the lack of the mesothorax, and between the insertions of the elytra or of the wings. Sometimes it is very large, and then it covers the greater part of the superior portion of the abdomen. In various Hymenoptera, behind the scutellum and on the metathorax, we find a little space called the post-scutellum.

The ambulatory organs of locomotion consist of a coxa formed of two pieces, a femur, an uniarticulated tibia, and of a tarsus, which is divided into several phalanges. The number of its articulations varies from three to five, a difierence which greatly depends upon the proportional changes experieneed by the first and penultimate

[^306]joints. Althongh their supputation may sometimes prove embarrassing, and this numerical series may not always be in exact accordance with the natural order, it furnishes a good character for the distinction of gencra. The last joint is usually terminated by two hooks. The form of the tarsi is subject to some modifications, according to the habits of the animal. Those of aquatic species are usually strongly ciliated and flattened, and resemble oars *.
'The abrlomen, which forms the third and last part of the body, is confounded in the Myriapoda, with the thorax: but in all other Insects, or those which have but six feet, it is distinct. It contains the viscera and the sexual organs, presenting nine or ten segments or annuli, some of which, however, are frequently concealed or considerably reduced. The organs of generation are situated at the posterior extremity and issuc through the amus. The Iuli and Libellulæ alone constitute exceptions. The last annuli of the abdomen, in several females, form a retractile or always projecting ovipositor-oviscapte of Marcel de Serres—more or less complicated, which act as an auger. A sting is substituted for it in many of the female Hymenoptera. The fecundating organ of the male is almost provided with hooks or a forceps \uparrow. The sexes usually copulate but once, and this junction in certain genera is even sufficient for the fecundation of several successive generations. The male places himself on the back of his mate, and remains there for some time. The latter soon lays her eggs \ddagger, and deposits them in the way best adapted for their preservation, and in such a manner that the moment the larve make their appearance, suitable aliment is always within their reach. Frequently she collects provisions for them. This maternal solicitude often excites our surprise, and more particularly unveils the instinct of Insects. In the numerous socicties of several of these animals, such as the Ant, Termes, Wasp, Bee, \&c., those

[^307]individuals which form the greater portion of the community, and by whose labour and vigilance the whole community are maintained, have been considered as being of neither sex. They have also been designated by the terms of labourers and mules. It is now known, however, that they are females, whose sexual organs or ovaries have not been fully developed, and that if an amelioration of their diet perfect those organs at a particular epoch while they are young they become fruitful.

The ova are sometimes hatched in the abdomen of the mother; she is then viviparous. The number of gencrations in a year depends on the duration of each of them. Most commonly there is but one or two. A species, all things being equal, is so much the more common, as one gencration succceds more rapidly to another, and as the female is more prolific.

A female Papilio or Butterfly, post coitum, lays her eggs, from which are hatched, not Butterflies, but animals with an elongated hody, divided into rings, and a head furnished with jaws and several small eyes, having very short feet, six of which are anterior, scaly, and pointed, the rest varying in number and membranous, being attached to the posterior annuli. These animals, caterpillars, live in this state for a certain period, and repeatedly change their skin. An cpoch, however, arrives, when from this skin of a caterpillar issues a totally different being, of an oblong form and without distinct limbs, which soon ceases to move and remains a long time apparently desiceated and dead under the name of a chrysalis. By close examination we may discover on the external surface of this chrysalis, lineaments which represent all the parts of the Butterfly, but under proportions differing from those they are one day to possess. After a longer or shorter period, the skin of the chrysalis splits, and the Butterfly, humid and soft, with flablby short wings, issues from it-a few moments, however, and it is dry, the wings enlarge and become firm, and the perfcet animal is ready for flight. It has six long logs, antennæ, a spiral proboscis, and compound cyes-in a word, it has no resemblance whatever to the catcrpillar, from which it has originated, for it is ascertained that these various clanges are nothing more than the succossive development of parts contained one within the other.

This is what is styled the metamorphosis of Insects. In their first condition they are called larvee, in their second pupce or nymphs, and in the third perfect insects. It is only in the last state that they are capable of reproduction.

All insects do not pass through these three states. Those which
are apterous issue from the ovum with the form they are always to preserve*: they are said to be without a metamorphosis. Of those that have wings, many experience no other change than that of receiving them: these are said to undergo a demi-metamorphosis. Their larva resembles the perfect insect, with the single exception of the wings, which are totally wanting. The nymph only differs from the larva in possessing stumps or rudiments of wings, which are developed at its final change of tegument, and render the animal perfect. Such are the Cymeces, Grylli, \&cc. Finally, the remaining Insects provided with wings, that are said to undergo a complete metamorphosis, are at first larve, resembling caterpillars or Worms, and then become motionless mymphs, but presenting in that state all thec parts of the perfect insect contraeted, and as if wrapped in a bandage.
In the nymph of the Coleoptera, Neuroptera, Hymenoptera, \&ic., these parts, though elosely approximated and in contact with the body, are frec; but they are not so in that of the Lepiloptera and of many Diptera. An elastic or solid skin is moulded over the body and its external parts, forming a kind of case for it.

That of the chrysalides of the Lepidoptera merely consisting of a simple pelliele applied to the external organs, following their contour in every direction, and forming, for each of them, so many moulds, like the envelope of a mummy, allows us to recognise and distinguish them \dagger; but those of Flies and Syrphi, formed of the dried skin of the larva, resemble an egg-like shell. It is a species of capsule or case in which the animal is shut up \ddagger.

Many larve, before they pass into their pupastate, prepare a cocoon in which they enclose themselves, either with silk which they draw from the interior of their bodics by means of the spinning apparatus of their lip, or other materials which they collect. The perfeet Insect issues from the nymph through a fissure or slit which opens on the back of the thorax. In the pupre of Flies one of the extremities is detachecd, like a cap, to allow the egress of the animal.

The larve and pupre of those Insects which experience a demimetamorphosis only differ from the same in a perfect state, in the absence of wings. The other external organs are precisely alike. But in such as undergo a complete metamorphosis, the form of the body of the larva has no constant relation with that it is to possess in its perfect state. It is usually more elongated; the head is frequently

[^308]very different, as well in its consistence as in its figure, having mere rudiments of antenne, or perhaps none at all; there are never any compound eycs.

There is also a great disparity in the organs of manducation, as may be easily seen by comparing the mouth of a caterpillar with that of the Butterfly, or the mouth of the larva of a Fly with that of the perfect Insect.

Several of these larvæ are destitute of feet; others, such as the eaterpiliars, have many, all the six first excepted, membranous, and without terminal looks. Some Insects, such as the Ephemerie, exhibit a singular anomaly in their metamorphosis-the animal arrived at its perfect state undergoes another change of tegument (a).

The Insects which constitute our three first orders preserve for life their natal form. The Myriapoda, however, exhibit a kind of metamorphosis. At first they have but six legs, or, according to Savi, are altogether destitute of them; the others, as well as the segments on which they depend, are developed by age.

But few vegetable substances are protected from the voracity of Insects; and as those which are necessary or useful to Man are not spared by them more than others, they become very injurious, particularly during scasons which favour their multiplication. Their destruction greatly depends upon our vigilance and knowledge of their habits. Some of them are omnivorous--such are the Termites, Ants, \&e., whose ravages are but too well known. Scveral of those which are carnivorous, and all the species which fecd on dead animal and exerementitious matters, are a benefit conferred on us by the Author of Nature, and somewhat compensate for the inconvenience and injury we experience from the others. Some are employed in medicinc, the arts, and our domestic cconomy.

They have numerous cnemies: Fishes destroy many of the aquatic species; Birds, Bats, Lizards, \&ce., deliver us from a part of those which inhabit the air or earth. Most of them endeavour to escape by flight or ruming from the dangers that surround them, but some have recourse to stratagem or arms.

Having undergone their ultimate transformation, and being possessed of all their faculties, they hasten to propagate their species:this aim once accomplished, they soon cease to exist. Thus, each of

[^309]the three finer seasons of the year produces species peculiar to it. The females and males of those which live in societies, however, enjoy a longer term of life. Individuals hatched in autumn shelter themselves from the rigours of winter, and reappear in spring.

The species, like those of plants, are circumscribed within geographical limits. Those of the western continent for instance, a very few, and all from the north, excepted, are strictly peculiar to it ; such also is the case with several genera. The castern continent, in turn, possesses others which are unknown in the western. The Insects of the south of Europe and north of Africa, and of the western and southern countries of Asia, have a strong mutual resemblance. The same may be said of those which inhabit the Moluccas, and more eastern islands, those of the Southern Occan included. Several northern species are found in the mountains of southern countries. Those of Africa differ greatly from the opposite portions of America. The Insects of Southern Asia, from the Indies on the Sind castward, to the confines of China, are very much alike. The intertropical regions, covered with immense and well-watered forests, are the richest in Insects of any on the globe; Brazil and Guiana are particularly so.

All general systems or methods relative to Insects are reduced essentially to three. Swammerdam based his on their metamorphoses; that of Linnæus was founded on the presence or absence of wings, their number, consistence, superposition, the nature of their surface, and on the deficiency or presence of a sting. Fabricius had recourse to the parts of the mouth alone. In all these arrangements the Crustacea and Arachnides are placed among the Insects, and in that of Linnæus, the one generally adopted, they are even the last. Brisson, however, had separated them, and his class of the Crustacea, which he places before that of Insects, comprises all of those animals which have more than six feet, or the Insectes Apiropodes of M. Savigny. Although this order is more natural than that of Linneus, it was not followed; and it is only in modern times, that anatomieal observations and their rigorously exact application have brought us to the natural method *.

I divide this class into twelve orders: the three first of which, composed of apterous Insects, undergoing no essential change of form or habits, merely subject to simple changes of tegument, or to a

[^310]kind of a metamorphosis, which increases the number of legs, and that of the annuli of the body, correspond to the order of the Arachnides antennistes of Lamarck. The organ of sight in these animals is usually a mere (more or less considerable) assemblage of simple eyes resembling granules. The following orders compose the class of Insects of the same author. That of the Suctoria, which only comprises the genus Pulex, from its natural relations should apparently terminate the class, but as I place thosc Insects which are apterous at the beginning, this order, for the sake of regularity in the system, should immediately follow that of the Parasita.

Certain English naturalists have formed new orders, based upon the wings; I see no necessity, however, for admitting them, that of the Stresiptera excepted, the name of which appears to me to be erroneous*, and which I will call Rhipipter \dagger \dagger.

In the first order, or the Myriapoda, there are more than six feet-twenty-four and upwards-arranged along the whole length of the body, on a suite of anmuli, each of which bears one or two pairs, and of which the first, and in several cven the second, seem to form a part of the mouth. They are apterous才.

In the second, or the Thisanoura, there are six legs, and the abdomen is furmished on its sides with moveable parts, in the form of false feet, or terminated by appendages fitted for leaping.

In the third, or the Parasita, we find six legs, no wings, and no other organs of sight than ocelli; the mouth, in a great measure, is intermal, and consists of a snout containing a retractile sucker, or in a slit between two lips, with two hooked mandibles.

In the fourth, or the Suctoria, there are six legs, but no wings \S; the mouth is composed of a sucker inclosed in a cylindrical sheath, formed of two articulated portions.

In the fifth, or the Coleoptera, there are six legs, and four wings, the two superior of which have the form of cases, and mandibles, and maxillæ (a) for mastication : the inferior wings are simply folded cross-

[^311]路 (a) The maxille of eoleopterous Inseets, in enojunetion with the mandibics, usually have this triturating function assigned to them. M. Mentz, a distinguished American entomologist, Trans. Phil, Soc., III, part ii, p. 458, is of the opinion that in many eases the maxille must be eonsidered as mere appendages to the tongue, and that their office is to assist in deghtition, seldom serving to grind or lacerate, except in the Melolonthidre, Rutelile, and some others, where there scems to be a departure from their primary use. In corroboration of this idea he adduces the configuration
wise, and the cases, always horizontal, are crustaceous. They experience a complete metamorphosis.

In the sixth or the Orthoptera *, there are six legs; four wings, the two superior in the form of cases, and mandibles and jaws for mastication, covered at the extremity by a galea; the inferior wings are folded in two directions, or simply in their length, and the inner margins of the cases, usually coriaccous, are crossed. They only experience a semi-metamorphosis.

In the seventlo or the Hemiptera, there are six legs and four wings, the two superior in the form of crustaccous cases, with membranous extremities, or similar to the inferior, lut larger and firmer; the mandibles and jaws are replaced by setie forming a sucker, enclosed in a sheath composed of one articulated, cylindrical or conical picee, in the form of a rostrum.

In the eighth or the Neuropters, there are six legs, four membranous and naked wings, and mandibles and jaws for mastification; the wings are finely reticulated, and the inferior are usually as large as the superior, or morc extended in one of their diameters.

In the ninth or the Hymenoptera, there are six feet, and four membranous and naked wings, and mandibles and jairs for mastication; the inferior wings are smaller than the others, and the abdomen of the female is almost always terminated by a terebra or sting.

In the tenth or the Lepinoptras, there are six legs, four membranous wings, eovered with small coloured seales resembling dust; a horny production in the form of an cpaulette, and directed backwards, is inserted before cael upper wing, and the jatss are replaced by two united tubular filaments, forming a kind of spirally convoluted tongue \dagger.
of the maxilla of screral Inseets, in which he has been fortunate cnough to detect a retractile appendage hitherto unknown. The first is the Cuntharis marginata, Fab., whose maxillie, when dried, offer but one hifid lobe; if, howerer, the abdomen and thorax of the recent animal lie gradually compresed, a soft, clastic, sub-eonic body is protruded from the cleft of that lobe, more than half its length, and extending beyond the palpi ; a scoond appendage of the same lind, and about hall its length, projects at right angles from the base of the first, which is directed forwards, both are covered "ith hairs. The scoond is the Centh. bimaculatu, Fab., in wheln this appendage is still more sensibly and casily displayed, protruding by pressure from each maxilla in the form of a tapering filament covered with fine hairs, susceptible of considcable catension, reaching beyond the middle of the antenna, and consequently more than double the lengtl of the maxilla itself. I have rerified these facts in this last species. The use of these organs in collectiong nourishment from flowers is cvident. Sce Trans. Phil. Soc. ut sup. pl. XV, f. i, e, and f. ii, e.-Tivg. Ed.

* De Gecr established this order under the name of Dermaptore, improperly changed by Olivier to that of Orthoptera. We preserve the latter, however, as naturalists have generally adopted it.
t Spiritrompe. Sce our general obscrwations on the elass. The thorax of the Lepidoptera has more analogy with that of the Neuroptera than with that of the Hymonoptera, the segmont which I lave called the mediate appearing to form

In the eleventh or the Rhipiprera, there are six legs, two membranous wings folded like a fan, and two crustaceous moveable bodies, resembling little elytra*, situated at the anterior extremity of the thorax; the organs of manducation are simple, setaceous jaws with two palpi.

In the twelfth or the Dipters, there are six legs, two membranous extended wings, aceompanied, in most of them, by two moveable bodies or halteres, placed behind them; the organs of manducation are a sucker composed of a variable number of setie, inclosed in an inarticulated sheath, most frequently in the form of a proboscis terminated by two lips.

ORDER I.

MYRIAPODA \dagger.

The Myriapoda commonly called Centipedes, are the only animals of this elass whieh have more than six feet in their perfeet state, and whose abdomen is not distinet from the trunk. Their lody, destitute of wings, is composed of a (usually) numerous suite of annuli, most commonly equal, each of which, a few of the first excepted, bears two pairs of feet mostly terminated by a single hook; these amnuli are either entire or divided into two demi-segments, each bearing a pair of those organs, and one of them only exhibiting two stigmata \ddagger.

The Myriapoda in general resemble little Serpents or Nereides, their feet being closely approximated to each other throughout the whole extent of the body. The form of these organs even extends to the parts of the mouth. The mandibles are bi-articulated and immediately followed by a quadrifid pieee in the form of a lip with articulated divisions, resembling little fect, which, from its position, corresponds to the ligula of the Crustacea: next come two pairs of

[^312]little feet, the second of whieh, in several, resemble large hooks, that appear to replace the four jaws of the last-mentioned animals, or the two jaws as well as the lower lip of Insects: they are a sort of bueeal feet. The antennæ, two in number, are short, somewhat thieker towards the extremity, or nearly filiform and composed of seven joints in some ; in others they are numerous and setaceous. Their visular organs are usually composed of a union of oeelli, and if in others they present a cornea with faeets, the lenses are still larger, rounder, and more distinct, in proportion, than those of the eyes of Insects. I'he stigmata are frequently very small, and their number, owing to that of the annuli, is usually greater than in the latter, where it never execeds eighteen or twenty. The number of these annuli and that of the feet increases with age, a charaeter whieh also distinguishes the Myriapoda from Insects, the latter ab ovo always having the number of segments peculiar to them, and all their legs with hooks, or true legs, being developed at onec, cither at the same epoch, or when they pass into their pupa state. M. Savi, professor of Mineralogy at Pisa, who has paid particular attention to the Iuli, has observed, that on leaving the egg they arc destitute of these organs: they experience then a true metamorphosis. In some, the male organs of generation are placed immediately after the seventh pair of feet, on the sisth or seventh segment of the body, and those of the female near the origin of the second feet: in the others the two sorts of organs are situated, as usual, at the posterior extremity of the body. The position of the male organs of the first compared with that in whieh they are placed in the Crustacea and Araehnides, would scem to indicate the separation of the trunk and abdomen: with respect to these in whieh these organs are posterior, we observe that an inversion of the suecessive order of the stigmata takes place in an analogous portion of the body of eertain species, which appears to announee a similar distinetion.

The Myriapoda live and inercase in size longer than other Inseets, and, according to Savi, two years are required to render the genital organs of some (the Iuli) of them apparent.

From this ensemble of faets, we may eonclude, that these animals approach the Crustacea and Arachnides on the one hand, and the Inscets on the other; but that as respects the presence, form and direction of the bracheæ, they belong to the latter.

We divide them into two families, perfectly distinet both in their organization and habits, and forming two genera according to the system of Linnæus.

FAMILY J.

CHILOGNATHA *.

The body generally crustaceous and frequently cylindrical; the antenmæ somewhat thicker near the end or nearly equal, and composed of seven joints ; two thick mandibles without palpi, very distinctly divided into two portions by a median articulation with imbrieated tecth, implanted in a cavity of its superior extremity; a spccies of lip-ligula \dagger-situated immediately above, that covers them, is crustaceous, plane, and divided on its exterior surface by longitudinal sutures and emarginations, into four principal areæ, tuberculated on the superior margin, the two intermediate of which, narrower and shorter, are placed at the superior extremity of another areæ, serving as a common base: the fect very short, and always terminated by a single look; four fect, situated immediately under the preceding part, of the form of the following ones, but more closely approximated at base, with the radical joint proportionably longer; most of the other attached in double pairs to a single annulus. The male organs of generation are situated immediately after the seventh pair of feet, and those of the female behind the second. The stigmata are placed alternately, outside of the origin of each pair of feet, and are very small.

The Chilognatla move very slowly, or slide along, as it were, and roll themselves spirally or into a ball. The first segment of the body, and in some the following one, is the largest, and has the form of a corselet or little shicld. It is only at the fourth in some, and at the fifth or sixtl in others, that the duplication of the feet commences; the first two or four feet are cren entirely free to their origin, where they merely adhere to their respective segments by a median or sternal line. The last two or three rings are withont fect. A series of pores is observed on each side of the body, which were considered as stigmata, but, according to Savi, they are simply designed to afford a passage to ant acid fluid of an extremely disagrecable odour, which appears to serve as a means of defence ; the respiratory apertures, for whose discovery we are indebted to him, are situated on

[^313]the sternal part of each segment, and communicate internally with a double scries of pneumatic sacs strung together like a rosary, extending along the body, from which proceed traeheal branches that ramify over the other organs. According to an observation of Straus, the saes or vesicular trachea are not, as usual, connected with each other by a principal trachea.

In the environs of Pisa, where M. Savi collected the preceding facts, the nuptial scason of the common Iulus commences near the end of December, and terminates about the middle of May. The male organs of copulation, in this species, are situated under the sixtly segment, but they do not appear in this form till the individual has attained the one-third of its full size; until this cpoch, that place is oceupied by a pair of fect (the fifteenth), whieh is always found there in the females; in the latter, the orifice of the sexual organs is between the first and second segment. Some female Glomeres and Iuli, behind the origin of the second pair of fect, exhibit two convex mammillæ, whieh appear to characterize this sex; that of the males also consists of two mammillæ, but cach of them is terminated by a sealy and twisted hock. 'These inseets, in coitu, creet the anterior extremities of their bodies, and plaee them in contact, face to faec, twining round eaeh other inferiorly. The body of the new-born animal is reniform, perfectly smooth, and destitute of appendages. Eighteen days after, it undergoes its first change, and then for tlee first time assumes the form of the adult, still, however, having but twenty-two segments; the total number of feet also amounts to twentysix pairs. Savi appears to contradict the assertion of Dc Geer, who says that he only found three pairs and eight annuli in the young animal-but it is certain that this change of which Savi speaks is really the first ; and should we not, on the contrary, rather presume that these young individuals do not suddenly pass from a state in whieh they exhibit no loeomotive appendages to one where we find them possessed of twenty-six pairs, or, in a word, that previous changes of tegument, which have escaped the noticc of Savi, have taken place and suecessively dercloped this number of feet? Do not the observations of the Swedish Reaumur confirm these gradual transitions? Be this as it may, the first cighteen pairs of feet, according to Savi, alone serve for locomotion; at the second change we observe thirty-six pairs, and at the third, forty-three; the body then consists of thirty segments. Finally, in the adult state, the male has thirtynine, and the female sixty-four; two years afterwards they again experience a change, and then only do the genital organs make their' appearance. From the moment of their birth, whieh oecurs in March,
until November, at which time M. Savi terminated his observations, these changes take place abont once a month. In their exnviie, we find even the lining membrane of the alimentary canal and trachere. The organs of the mouth were the only parts that Savi could not discover *.

These Insects feed on dead and decomposed animal and vegetable matters; they deposit in the ground a large number of eggs. According to the system of Limæus they form but one genus, that of
Iulus, Lin.

Which we divide as follows:
Some have a crustaceous body without terminal appendages, and antemme enlarged near the end.

Glomeris, Lat.
Resembling Onisci; oval, and rolling into a ball; the body convex above, and concave underncath, with a range of little scales analogous to the lateral divisions of the Trilobites along each of its inferior sides. It is composed, exclusive of the head, of but twelve segments, the first and narrowest of which forms a sort of semicircular transverse collar; the following and the last are the largest of all; the latter is arched and rounded at the end. There are thirtyfour feet in the female, and thirty-two in the male, his sexual organs replacing the pair that is deficient. These animals are terrestrial, and live under stones in hilly places \dagger.
Iulus, Lin.

The body of the true Iuli is cylindrical and very long, and has no ridge or trenchant edge on the sides of the annuli; they roll themselves up spirally.

The larger specics live on land, particularly in the woods and sandy places, and diffins a very disagreeable odour. The smallest ones feed on fruit, or the roots and leaves of esculent vegetables. Others are found muder the bark of trees, in moss, \&c.
I. maximus, L.; Marcgr., Bras., p. 255. Peculiar to South America, and is seven inches long.
I. sabulossus, L.; Scheff. Elem. Entom., lxxiii; I. fusciatus, De Gecr, Insect. VII, xxxvi, 9, 10; Leach, Zool. Miscell., cxxxiii. About sixteen lines in length, of a blackisl-brown,

[^314]with two reddish lines along the back; fifty-four segments, the perultimate terminated by a stout point with a horny and hairy extremity. Inhabits Europe,
I. terrestris, L. ; Gcoff., Insect. II, xxii, 5. A fourth smaller; bluish-einereous, pieked in with light yellowish; forty-two to forty seven segments. Inhabits Europe with the sabulosus *.

Polydesmus, Lat.

The Polydesmi resemble the Iuli in the linear form of their body, and the spiral manner in which they roll up their hody; but the seg ments are compressed on the inferior sides, and have a projecting ridge above, They are found on stones, and most commonly in wet places \dagger.

The speeies with apparent eyes form the genus Craspedosoma of Leach +

The others have a very soft, membranous body, terminated by pencils of little seales. Their antennæ are equal. Sueh is the
Pollyxenus, Lat.,

Which as yet comprises but a single species, placed among the Seolopendræ-Sc. lagura,L.,-by Linnæus, Geoffiroy and Fabricius.
lt is the Iule à queue en pinceau of De Geer, Insect., VII, xxxvi, 1, 2, 3,; Zool. Miscel., cxxxy, B. Very small, oblong, with bunches of little scales on the sides, and a white pencil at the posterior extremity of the body. It has twelve pairs of feet placed on as many semi-annuli. Inhabits cracks in walls, and under pieees of bark \S.

FAMILY II.

CHILOPODA \|.

The antenne of the Chilopoda are more slender towards the extremity, and eonsist of fourteen joints and upwards; their mouth is

[^315]composed of two mandibles furnished with a little palpiform appendage, which scemed to have becu soldered in the middle, and terminated like the bowl of a spoon with dentated edges; of a quadrifid lip *, of whieh the two lateral divisions are the largest, and transversely annulated, resembling the membranous feet of caterpillars; of two palpi or little feet, united at base and unguiculated at the extremity, and of a second lip \dagger formed by a sccond pair of fect, dilated and united at base, and terminated by a stout moveable hook, whose inferior extremity is perforated by a hole whieh affords an issue to a venomous fluid.

The body is depressed and membranous. Each of its rings is covered with a coriaeeous or cartilaginous plate, and most generally bears but a single pair of feet \ddagger; the last is usually thrown baekwards, and elongated into a kind of tail. The organs of respiration are wholly or partly composed of tubular traeliea.

These animals run very fast, are earnivorous, avoid the light, and eonecal themsclves under stones, logs, in the ground, \&e. They are mueh dreaded by the inhabitants of hot climates, where they are very large, and where their venom is possibly more active. The Scolopendra morsitans is styled in the Antilles the malfaisante. Some of them exhibit phosphoresecnt pruperties.

The organs of generation are internal, and plaeed at the posterior extremity of the body, as in most of the following Insects. The stigmata are lateral or dorsal, and more apparent than in the preeeding family.

The Chilopoda, which, in the system of Leach, form the order Syngnatha, from these last eharacters, the nature of the respiratory organs and the feet, may be thus divided :

[^316]Some have but fifteen pairs of feet *, and their body viewed from above presents fewer segments than when seen from beneath.

Scutigera, Lam.-Cermatia, Illig.

The body covered with cight scutelliform plates, under each of whieh M. Marcel de Serres has observed two pneumatic sacs or vesieular tracheæ, which receive air and communicate with lateral and inferior tubular tracher. The under part of the body is divided into fifteen semi-annuli, each bearing a pair of feet, terminated by a very long slender multi-articulated tarsus; the last pairs are more elongated; the eyes large and compound.

Their antennæ are slender and tolerably long; the two palpi salient and furnished with small spines. The body is shorter than in the other genera of the same family, and the joints of their feet are proportionably longer.

The Seutigeræ, which by these characters form the passage from the preceding family to the present one, are extremely agile animals, and frequently part with some of their feet when seized.

The species found in France \dagger conceals itself between the beams and rafters of houses.

Lithobius, Leach.

The stigmata lateral; body divided above and beneath into a similar number of segments, each bearing a pair of feet; the superior plates alternately longer and shorter, and overlapping each other elose to the extremity.
L. forficatus; Scolopendra forficuta, L.; Fab., De Gecr; Gcoff., Hist. des Insect., II, xxii, 3; Panz., Fann. Insect. Germ., L., xiii ; Leach, Zool. Miseel., exxxvii \ddagger.

The others lave a least twenty-one pairs of fect, and the segments both above and underneath are equal in size and number.

Scolopendra, Lim.

Those which form the two feet that immediately follow the two hooks forming the exterior lip, presented but twenty-one pairs, and whose antennæ have seventecn joints, constituting the genera Scolopendra and Crytops of Leach. There are eight distinet eyes, four on each side in the first, and that in whieh the largest species are found; in the second, they are null or but very slightly visible.

The most southern departments of France and other countries of the south of Europe, produce a speeies-Scolopendra cingu-

[^317]Lata, Lat.; Sc. morsitans, Vill., Entom., IV, xi, 17, 18-which is nearly as large as the common species of the Antilles, but has a more flattened body *.
Those which form the genus Crytops, Leach, have a rougher antenne than the Scolopendre, and their two posterior feet are more slender. Leach mentions two species found in the environs of London \uparrow.

In such as form the genus Geophilus, Id., the number of feet is more than forty-two, and often considerably so. The antennæ consist of but fourteen joints, and their extremity is less tapering; the body is proportionably narrower and longer. The eyes are but slightly apparent. Some of the species are electrical \ddagger.

ORDER II.

THIYSANOURA.

This order consists of apterous Insects, supported by six feet, that experience no metamorphosis, and have, in addition, particular organs of motion either on the sides or the extremity of the abdomen.

FAMILY I.

LEPISMENAE, Lat.

Setiform antennæ divided from their origin into very numerous and small joints; mouth furnished with very distinct and salient palpi; each side of the under part of the abdomen provided with a range of moveable appendages, in the form of false feet; abdomen terminated by articulated setæ, three of which are the most remarkable; body always covered with small shining scales.
It comprises but one genus, the

> Lepisma, Lin.

The body of these animals is elongated and covered with small scales, frequently silvery and brilliant, from which circumstance the most

[^318]common specics lias been compared to a little Fish. The antennæ are setaccous and usually very long. The mouth is composed of a Labrum, of two alnost membranous mandibles, of two bipartite jaws, with a palpus consisting of five or six joints, and of a quadri-emarginated lip bearing two quadri-articulated palpi. The thorax is formed of three pieces; the abdomen, which is somewhat narrowed at its posterior extremity, is furnished along each side of the venter with a range of small appendages, supported by a short joint, and terminating in silky points, the last of which are the longest; a sort of scaly compressed stylet, composed of two pieces, issues from the anus; then come the three articulated setæ, which are extended beyond the extremity of the body. The feet are short and frequently have very large strongly compressed coxæ resembling scales.

Scveral species conceal themselves in the cracks in the frame work of windows, under damp boards, in wardrobes, \&c. Others retire under stoncs.

These Insects run with great velocity; some of them by means of their caudal appendages are enabled to leap. They are divided into two subgenera.

Machilis, Lat.-Petrobius, Leach.

Eyes very compound, almost contiguous, and occupying the greater part of the head ; body convex and arcuated above ; abdomen terminated by small threads for saltation, of which the middle one, placed above the two others, is much the longest.

The maxillary palpi are very large, and have the form of small feet. The thorax is strangulated, the first segment smatler than the second and arched.

These Insects leap well, and frequent stony and enclosed places. All the specics known belong to Europe *.

Lepisma, Lin.-Forbicina, Geoffo, Leach.
Eyes very small, widely scparated, and composed of a small number of granules; body flattened, and terminated by threc threads of equal length, inserted on the same linc, and of no use in leaping.

Their coxæ are very large. Most of the species inhabit the interior of houses.
L. saccharina; Forbicine plate, Gcoff., Insect., II, xx, 3; Schæff., Elem. Entom., lxxy. Four lines in length; of a silvery and somewhat leaden hue, and immaculate; originally, it is said, from Amcrica, now very common in houses in Europe.
L. vittata, Fab. Body cinereons, dotted with blackish: four streaks of the same colour along the back of the abdomen. Other species are found under stones.

[^319]
FAMILY II.

PODURELLE, Lat.

Antennæ quadri-articulated; no distinct or salient palpi ; abdomen terminated by a forked tail folded under the venter when at rest, and used for leaping. The Podurellæ form but one genus in the Linnæan system.

Podura, Lin.

These Insects are very small, soft and elongated, with an oval head and two eyes, each composed of eight granules. Their legs have but four distinct joints. The tail is soft, flexible, and formed of an inferior piece, moveable at base, to the extremity of which are articulated two appendages susceptible of being approximated, separated, or crossed-they are the teeth of the fork. They have the faculty of elevating their tail, and then forcing it suddenly against the plane of position, as if they let go a spring, thus raising them selves into the air, and even leaping like the Pulices but to a less height. They usually fall on their back, with their tail extended posteriorly. The middle of the venter exhibits a raised oval portion divided by a slit.

Some keep on trees and plants, under old pieces of bark, or stones; others on the surface of stagnant waters, and sometimes on that of snow during a thaw. Several unite in numerous societies on the ground, and at a distance resemble little heaps of gunpowder. Some species appear to propagate in winter.

Podura, Lat.

Antennæ equal, and without annuli or little joints to the last segment; body nearly linear or cylindrical; trunk distinctly articulated; abdomen narrow and oblong *.

Smynthurus, Lat.

Antennæ slenderer near the extremity, and terminated by an annulated piece, or composed of little joints; trunk and abdomen united in a globular or oval mass \dagger.

[^320]
ORDER III.

PARASITA*.

The Parasita, so called from their parasitical habits, have but six legs, and are apterous, like the Thysanoura; but their abdomen is destitute of articulated and noveable appendages. Their organs of vision consist of but four or two simple eyes; a great portion of their mouth is internal, exhibiting externally either a snout or projecting mammilla containing a retractile sucker, or two membranous and approximated lips with two hooked mandibles. According to Linnæus, they form but one genus, that of

Pediculus, Lin.

Their body is flattened, nearly diaphanous, and divided into twelve or eleven distinct segments, three of which belong to the trunk, each bearing one pair of legs. The first of these segments frequently forms a sort of thorax. The stigmata are very distinct. The antennæ are short, equal, composed of five joints, and frequently inserted in a notch. There are one or two small ocelli on each side of the head. The legs are short, and terminated by a very stout nails, or two opposing hooks, which enable these animals to cling with great facility to the hairs of Quadrupeds, or to the feathers of Birds, whose blood they suck, and on whose body they propagate and pass their lives. They attach their ova to these cutaneous appendages. They multiply excessively, and one generation succeeds to another with great rapidity. Particular and unknown causes facilitate their increase to an astonishing degree in the P. humanus, producing in Man what has been termed the morbus pediculosus, and even in children. These Insects always live on the same Quadrupeds and on the same Birds, or at least on animals of these classes, which have analogous characters and habits. Two species frequently live on the same Bird. Their gait in general is very slow.

Some of them-Pediculea, Leach-such as the

Pediculus, Deg.,

Or true Lice, have a mouth consisting of a very small tubular mammilla situated at the anterior extremity of the head, in the form of a snout, containing a sucker whers at rest. 'Their tarsi are composed of a joint almost equal in size to the tibia, terminated by a very stout nail, folding over a projection, and with this point fulfilling the function of a forceps. Those which I have examined presented but two simple eyes, one on each side.

[^321]Three species live on Man; their ova are termed nits.
In the two following species, the thorax is very distinct from the abdomen, is about the same width and of a moderate length. They constitute the genus Pediculus properly so called of Leach *.
P. humanus corporis, De Geer, Insect., VII, 1, 7. Dirty white; immaculate; emarginations of the abdomen less salient than in the following species. It is exclusively confined to the body of Man, and increases to a frightful extent in the morbus pediculosus.
P. humanus capitis, De Geer, Insect., VII, I, 6. Cinercous; the spaces in which the stigmata are placed, brown or blackish; lobes of the abdomen rounded. On the head of Man, and of children particularly.

The males of this and the preceding species, at the posterior extremity of the abdomen, have a small scaly and conical appendage, resembling a string, which is probably the organ of generation.
Hottentots, Negrocs, and various Monkeys, eat these Pediculi, or are Phthiropagi. Oviedo pretends that these animals abandon the Spanish mariners on their way to India as soon as they have reached the tropics, but that on their return, when they arrive at the same point, they find them in possession of their old quarters. It is also said that in India, however filthy be the individual, they are never found except on the head.

At one period the P. humanus was employed by the physicians for the removal of ischuria-they introduced it into the urethra.

Dr. Leach forms a particular genus, Phthirus, of the P. pubis,

 L.; Red., Exp., XIX, 1, which has a wide rounded body, a very short thorax almost confounded with the abdomen, and the four posterior feet very stout \dagger. It is commonly called Morpion. It attaches itself to the hairs of the genital organs and eye-brows. Its bite is very severe.Redi has rudely figured several other species found on different Quadrupeds. That which lives on the Hog has a very narrow thorax with a very wide abdomen, and forms the genus Hamatopinus, Leach \ddagger; the Pou du Buffle, figured by De Gecr, Insect., VII, 1, 12, presents more important characters.

The others-Nirmidia, Leach-such as the

> Ricinus, De Geer.-Nirmus, Herm. Leach,

Have the mouth inferior, and composed externally of two lips and two mandibles, resembling hooks. Their tarsi are very distinct, articulated, and terminated by two equal hooks.

One single species excepted, that of the Dog, they are all exclu-

[^322]sively confined to Birds. Their head is usually large, sometimes triangular, and at others forming a semicircle or crescent, and frequently presenting angular projections. It sometimes differs, like the antenne, in the two sexes. I have perceived, in several, two simple approximated eyes, on each side of the head. According to the observations of M. Savigny, communicated to me by himself, these animals are provided with jaws, each of which has a very small palpus, hidden by the lower lip, which has also two organs of the same description. They have moreover a kind of tongue.
M. Leclere de Laval informs me that he has found parcels of feathers in their stomach-he thinks that they constitute their only food. De Geer, however, assures us that he has found the Pediculus of the Fringilla coelebs filled with recently imbibed blood. It is well known that these Insects survive but a short time on dead birds. When thus situated, they are observed to wander over their plumes with much anxiety, those of the head and the vicinity of the beak especially.

Redi has also represented a great number of species of this subgenus.

The mouth of some is situated near the anterior extremity of the head. The antennæ are very small, inserted laterally, and at a distance from the cyes *.

In the others, the mouth is nearly central ; the antennæ are placed close to the eyes, and their length about equals half that of the head \dagger.

The celebrated professor Nitzsch has profoundedly studied the internal as well as external organization of these animals, as may be seen by referring to his paper on the Epizoic Insects, in the Magasin der Entomologie of M. Germar. The genus Pediculus, properly so called, or that whose species are provided with a sucker, is arranged by him with the Epizoic Hemiptera. The Ricini of De Geer and others, or the Nirmi of Hermann, Jun., that is to say, the species furnished with mandibles and jaws, are referred to the Orthoptera, and collectively designated by the term Mallophaga. Two genera of this division approach the preceding ones in the circumstances of living on the Mammalia-such are Trichodectes and Gyropus. In the first the maxillary palpi are null or indistinct, and the antennæ, filiform, and composed of three joints. The species of this genus are found on the Dog, Badger, \&c, In the second the maxillary palpi are apparent, and the antennæ, thicker towards the end, consist of four joints. The mandibles have no teeth; there are no labial palpi, and the four posterior tarsi have but a single terminal hook. These last characters distinguish it from another genus, also furnished with

[^323]visible maxillary palpi, quadriar-ticulated antennæ thicker near the extremity, and an anterior mouth, that of Liotieum. Here the mandibles are bidentate, the labial palpi distinct, and all the tarsi terminated by two hooks. The species are found on various Birds, whereas the Gyropi live on the Guinea-pig. A fourth and last genus, the species of which are exclusively confined to Birds, is that of Philopterus. The antennæ consist of five joints, the third of which, in the male, frequently presents a branch that forms a forceps with the first; these organs are filiform. The maxillary palpi are invisible. The tarsi have two hooks at their extremity, but they do not diverge like those of the Liothea. Besides this, the males here have six testes, three on each side, and their four biliary vessels are thickened near the middle of their length. Those of the Trichodectes and Philopteri do not exhibit this enlargement, and they have but four testes, two on each side. In these two genera there are also ten ovaries, five on each side; in such of the female Liothea as this sevant could find them, he saw but six, three on each side. He has no positive knowledge of the number of those in the female Gyropi, nor of that of the testes in the males. In all these genera the thorax is bipartite, that is, the prothorax and the mesothorax compose the apparent trunk, and the third division, or the metathorax, is united to the abdomen and confounded with it. M. Kirby was the first, I think, who thus designated this segment; but Nitzsch, on the other hand, seems to have first employed the others *. The limits of this work interdict any exposition of the subgenera he has established. We will merely remark that the one he calls Goniodes, the fourth subgenus of Philopterus, is exclusively proper to the Gallinaceæ. In the collection of memoirs which terminates our Histoire des Fourmis, we have minutely described a species of Ricinus-Philopterus, Nitzsch.
M. Leon Dufour, with the P, meliteca of Kirby, previously well observed by De Geer, who considered it as the larva of the Meloe proscarabreus, as well as by that celebrated entomologist, has formed a new genus-Triongulin des andrenelles-the characters of which he has figured and published in the Ann. des Sc. Nat. XIII, 9, B. If this Insect be not the larva of that Meloe, as in the opinion of M . Kirby, there is no doubt but that it forms a peculiar subgenus in the order of the Parasita; but according to the researches of MM. Lepeletier and Servile, the idea of De Geer is confirmed.

ORDER IV.

SUCTORIA \dagger.

The Suctoria, which constitute the last ordor of the Aptera, have a mouth composed of three \ddagger pieces, enclosed between two articulated

[^324]laminæ, which, when united, form a cylindrical or conical proboscis or rostrum, the base of which is covered by two scalcs. These characters exclusively distinguish this order from all others, and even from that of the Hemiptera, to which, in these respects, it approximates the most elosely, and in which these Insects were placed by Fabricius. The Suctoria, besides, undergo true metamorphoses, analogous to those of several Diptera, such as the Tipule.

This order consists of a single genus, that of

> Pulex, Lin.

The body of the Flea is oval, compressed, invested by a firm skin, and divided into twelve segments, threc of which compose the trunk, that is short, and the others the abdomen. The head is small, strongly compressed, rounded above, and truncated and ciliated before; it is furnished on each side with a small rounded cye, behind which is a fossula, in which we discover a little moveable body furnished with small spines. At,the anterior margin, near the origin of the rostrum, are inserted the pieces considered as the antennæ: they are scarcely the length of the head, and are composed of four almost cylindrieal joints. The sheath or rostrum is divided into three segments. The abdomen is very large, each of its annuli being divided into or forming two laminæ, one superior and the other inferior. The legs are strong, the last oncs particularly, fitted for leaping, spinous, the coxa and femur large, the tarsi composed of five joints, the last terminating in two elongated hooks, the two anterior legs are inscrted almost under the head, the rostrum being placed midway between them.
The male, in coitu, is placed under the female, so that they face each other. The latter lays a dozen of white and slightly viscid eggs; the larvæ have no fect, are much clongated, resemble little worms, and are extremely lively, rolling themselves into a circle or spirally, and crawl with a serpentine motion ; they are first white and then reddish. Their body is composed of a scaly head, without eycs, bearing two very small antennæ, and of thirtecn segments, with little tufts of hairs, the last one terminated by two kinds of hooks. Some small moveable pieces are observed in the mouth, by which these larve push themselves forwards. After remaining twelve days under this form, they enclose themselves in a little silky cocoon in which they bccomc pupe, and from which, in about the same time, they issue in their perfect state.

Pulex irritans, L.; Rœes., Insect., II, ii, iv, The common Flea fecds on the blood of Man, the Dog, Cat, \&c.; the larve live in the dirt that is collected under the nails of filthy individuals of the human family, in the nests of Birds, particularly of Pigeons, where they fasten to the neek of their young, and suck their blood to such a degree as to become perfectly red.

$$
\text { Pul. penetrans. L.; Catesb., Carol. III, } x, 3 \text { *. Theirspecies, }
$$

[^325]called the Chique or Chigre in America, most probably forms a particular genus, It insinuates itself under the nails of the toes and the skin of the heel, where, by the speedy developement of the ova contained in a membranous sac under the venter, it soon acquires a size equal to that of a pea.

The numerous family, to which it gives birtl, produces a malignant ulcer, that is cured with difficulty, and which sometimes proves mortal. These difficultics are gencrally avoided by rubbing the feet with bruised tobacco leaves and other bitter and acrid plants. The Negroes extract the animal from its domicil with much address.
Various Quadrupeds and Birds are infested with Fleas, which appear to differ specifically from these two.

ORDER V.

COLEOPTERA *.

Coleopterous Insects have four wings, the two superior of which resemble horizontal scalcs, joining in a straight line along the inner margin ; the inferior wings are merely folded transversely and covered with others, which form cases or covers for them, usually denominated the elytra \dagger.

Of all Insects, these are the most numerous and the best known. The singular form and brilliant colouring of many species, the volume of their bodies, the greater solidity of their teguments, which facilitates their preservation, the numerous advantages which the study derives from the various forms of their external organs, \&c., have secured to them the particular attention of naturalists.

Their head presents antenne of various forms, and almost always composed of eleven joints; two compound eyes, but none simple \ddagger; and a mouth consisting of a labrum, two mandibles, usually of a scaly substance, two jatws, each furnished with one or two palpi, and of a labium formed of two pieces, the mentum and the ligula, and accompanied by two palpi, commonly inserted into the latter. Those of the jaws, or when they have two, the exterior ones never consist of more than four joints; those of the lip usually have three.

[^326]The anterior segment of the trunk, or that which is before the wings, usually called the corselet, bears the first pair of legs, and is much larger than the two other segments*. The latter are intimately united with the base of the abdomen, and their inferior portion or pectus gives insertion to the second and third pairs of legs \dagger. The second, on which the scutellum is placed, is narrowed before, and forms a short pedicle which fits into the interior of the first, and serves as a pivot, on which it moves.

The elytra and wings arise from the lateral and superior edges of the metathorax. The elytra are crustaceous, and, when at rest, join along their internal margin, and always horizontally. They almost always conceal the wings, which are wide and traversely folded. Several species are apterous, but the elytra still exist. The abdomen is sessile or united to the trunk in its greatest width. It is composed externally of six or seven annuli, membranous above, or less solid than underneath. The number of joints in the tarsi varies from three \ddagger to five.

The Coleoptera undergo a complete metamorphosis. The larva resembles a Worm, having a scaly head, a mouth analogous to that of the perfect Insect in the number of its parts, and usually six feet. Some few species are destitute of them, or have merely simple mammillæ.

The pupa is inactive and takes no nourishment. The labitations, mode of life, and other habits of these Insects, in both states, greatly vary.
I divide this order into four sections, according to the number of joints in the tarsi.

The first comprises the Pentamera, or those in which all the tarsi consist of five joints, and is composed of six families, the two first of which are distinguished from the others by a double excremental apparatus§.

[^327]
FAMILY I.

CARNIVORA*.

Two palpi to each maxilla, or six in all; antenne almost always filiform or setaceous, and simple.

The maxillæ are terminated by a scaly hook or claw, and the interior side is furnished with cilia or little spines. The ligula is fixed in an emargination of the mentum. The two anterior legs are inserted on the sides of a compressed sternum, and placed on a large patella; the two posterior have a stout trochanter at their origin; their first joint is large, appears to be confounded with the postpectus, and forms a curvilinear triangle with the exterior side excavated.

These Insects pursue and derour others. Several have no wings under their elytra. The anterior tarsi in most of the males are dilated or widened.

The larvæ also are very carnivorous. Their body is usually cylindrical, elongated, and composed of twelve rings ; the head, which is not included in this supputation, is large, squamous, armed with two stout mandibles, recurved at the point, and presents two short and conical antennæ, two maxillæ divided into two branches, one of which is formed by a palpus, a ligula bearing two palpi, shorter than the, others, and six small simple eyes on each side. The first annulus is covered by a squamous plate; the others are soft, or have but little firmness. Each of the three first bears a pair of legs, the extremity of which curves forwards.

These larve differ according to the genus. In those of the Cicindeler and of the Aristus bucephalus, the top of the head is very concave in the middle, whilst its inferior portion is convex. They have two small simple eyes, on each side, much larger, and similar to those of the Lycosie. The superior plate of the first segment is large, and forms a semicircular shield. There are two hooked mammillie on the back of the eight annulus; the last has no remarkable appendage.

In the other larvæ of this family which are known to us, those of Omophron excepted, the head is weaker and more equal. The simple eyes are very small and similar. The squamous piece of the first

[^328]ring is square, and does not project from the body. There are no mammille on the eighth; and the last is terminated by two conical appendages, exclusive of a membranous tube formed by the prolongation of that part of the body which contains the anus. These appendages, in the larve of Calosoma and Carabus, are horny and dentated. In those of Harpalus and Licinus, they are fleshy, articulated and longer. The body of the larva of a Harpalus is somewhat shorter, and the head a little larger. The mandibles of both approaeh the form of those of the perfect Insect. The larva of the Omophron borde, according to the observations of Desmarest, has a conical form, a large head, with two very stout mandibles, and but two eyes; the posterior extremity of the body, which is somewhat narrowed, terminates by a quadri-artieulated appendage. I could find but troo in that of the larvæ of Lieinus and Harpalus.
In this family, we always observe a first, short and fleshy stomaeh; a seeond, elongated, and, from the number of small vessels with whieh it is covered externally, apparently hairy; and a short and slender intestine. The hepatic vessels, four in number, are inserted near the pylorus.

Some are aquatic, others terrestrial.
The latter have legs exclusively adapted for running, the four posterior of whieh are inserted at equal distanees; mandibles completely exposed; the terminal piece of the maxillæ straight inferiorly, and only eurved at its extremity; and most frequently an oblong body with projecting eyes. All their traeheæ are tubular or elastie. Their intestine terminates in a widened cloaea, furnished with two small saes, which separate an acrid humour*.

[^329]They are divided into two tribes. The first or the Cicindeleter, Lat., comprises the genus

Cicindela, Lin.,

In whieh the extremity of the maxillæ is provided with a little nail articulated with it by its base.

The head is large, with great eyes, and very projeeting and dentated mandibles; the very short ligula is concealed behind the mentum. The labial palpi are distinetly composed of four joints, and generally pilose, as well as those of the maxille. The greater number of the species are foreign to France.
Some have a touth in the middle of the emargination in the mentum; the labial palpi separated at base, the first joint almost eylindrical and without an angular prolongation at the extremity; and the exterior maxillary palpi manifestly projeeting beyond the labium.

Here, the tarsi are similar, and have cylindrieal joints, in both sexes; the abdomen is wide, almost eordate, and eompletely elasped by soldered elytra, whose exterior margin forms a carina.

Manticora, Fab.

The only two species known * are peeuliar to Caffraria; they are the largest of the genus. One of them-Manticora pallida, Fab.,-is hesitatingly referred by M. William Mac-Leay to a new genus which he ealls Platychile; but whieh to us only seems to differ from the Mantieore in the elytra, which are not soldered \dagger.
There, the three first joints of the two anterior tarsi are evidently more dilated or wider in the males than in the females.
Sometimes the body is simply oval or oblong, the thorax almost square, sub-isometric, or broader than it is long, and neither globular nor in the form of a knot. The third joint of the anterior tarsi of the males does not ineline inwards, and the following one is inserted on its extremity.
Of these latter, those speeies whose labial palpi are evidently longer than the external maxillary palpi, and with the penultimate joint longer than the last, form two subgenera.
extremity, and of a reservoir. The culca is provided with two retractile hooks. The ora form oblong ovals. The prescuce of a secreting excremental appraratus is onc of the most striking characters in the anatomy of all the Carabici. It consists of onc or several clusters of secreting utriculi, the form of which varies according to the gemus; of a long ras efferens; of a bladder or contractile reservoir ; of an excretory duct, in which the mode of excretion varics; and of an eacreted liquid which possesses ammoniacal properties. The respirutory orgun has stigmata or bivalve buttons and truchece, all of which are tubulur. The nerrous system does not differ from that of the Colcoptera in genoral."

* Manticora maxillosa, Fab. ; Oliv., Col. III, 37, 1, 2 ; Hist. Nat. des Coleop. d'Eur. I, 1, 1; Manticora pallida, Fab.
+ Annulosa Javanica, I, p. 9.

Megacephala, Lat.

Labrum very short and transversal; first joint of the labial palpi muel longer than the second, and projecting beyond the mentum *.

Oxycheila, Dej.

The labrum forming an elongated triangle, first joint of the labial palpi not much longer than the second, and not extending beyond the emargination of the mentum \dagger.

In the following speeies the labial palpi are at most about the length of the external maxillary palpi, the last joint is longer than the penultimate. They also form two subgenera.

Euprosopus, Lat. Dej.

The third joint of the labial palpi thicker than the last ; the three first joints of the anterior tarsi of the males somerwhat elongated, flattened, carinated beneath, and equally eiliated on both sides; very large eyes. They keep on trees \ddagger.

Cicindela, Lat.

The true Cicindelæ only differ from the Euprosopi in the third joint of the labial palpi, which is not mueh thicker than the fourth; and in their anterior tarsi, whose three first joints, in the males, are much elongated, more strongly eiliated on the internal side than the external, and are destitute of a earina beneath.
Their body is usually of a darker or lighter green, mixed with various brilliant metallic tints; the elytra are marked with white spots. They prefer dry, warm situations, run with considerable swiftness, take wing the moment they are approaehed, but alight at a short distariee. If pursued, they have reeourse to the same means of eseape.

The larvæ of the two speeies indigenous to France, the only ones that have been observed, exeavate in the eartl a deep eylindrical hole, an operation which they effect with their mandibles and feet. To empty it, they place the detached partieles on their head, turn about, climb up the ascent little by little, resting at intervals, and clinging to the walls of their domicile by means of their two dorsal mammillæ; when they arrive at the mouth of the aperture they throw down their burden. While in ambuseade, the plate of their head exaetly eloses the entranee of their eell, and is on a level with the ground. They seize their prey with their mandibles, and even dart

[^330]upon it, and by a see-saw motion of their head precipitate it to the bottom of the hole. Thither also they quickly retreat on the least intimation of danger. If they are too confined, or the soil is not of a proper nature, they construct a new habitation elsewhere. Such is their voracity that they devour other larve of the same species, which have taken up their abode in their vicinity. When about to change their tegument or to become pupr, they close the opening of their cell. Part of these observations were communicated to me by the late M. Miger, who had carefully studied many larvæ of Coleoptera, and discovered several which had escaped the researches of naturalists.
C. campestris, L. ; Panz., Faun. Insect, Germ. LXXXV, iii. About six lines in length; grass-green above; labrum white, slightly unidentated in the middle; five white points on each elytra. Very common in Europe in the spring.
C. hybrida, L. ; Panz., Ib., iv. Two crescent-shaped spots, and a white band on each elytron; one of the spots at the exterior base and the other at the end; suture cupreous. In sandpits, never mixing with the campestris * (a). The
C.permanica and sume other species have a narrower and more elongated form, and seem to constitute a particular section. The germanica, unlike the preceding, does not fly when about to be seized but escapes by running, which it does with great speed. M. Fischer, in his Entomography of Russia, has placed a Brazilian species (T.marginatus) in the subgenus Therates.

All these species are winged; but some apterous ones are known whose abdomen is also narrower and more oval, and in which the tooth of the emargination of the mentum is very small and hardly sensible. Such is the one figured in our Hist. Nat. des Coleop. d'Europe, I, i, 5, under the name of coarctata. Count Dejean, Spec. Gen. des Colcop., II, p. 434, has formed a new genus with them, that of Dromica (D).
Sometimes the body is long and narrow, the thorax elongated, in the form of a knot, narrowed before; the third joint of the two anterior tarsi of the males pallet-shaped, and projecting internally; the fourth is inserted exteriorly near its base.

> Сtenostoma, Klüg.-Caris, Fisch.

This subgenus appears to be peculiar to the intertropical regions of

[^331]South America. The head is large, with almost setaceous antennæ nearly as long as the body; the external palpi are very salient, and terminated by a thieker joint elongated and pyriform ; the penultimate joint of the external maxillary palpi shorter than the following one ; the two first joints of the labial palpi very short, and the terminal lobe of the jaws without any apparent unguiculus at the extremity. The abdomen is oval, strangulated at base and pediculated. The legs are long and slender.

The Ctenostomæ approael the Megaeephale in the size of their palpi, and in other respeets approximate to the Trieondyle and Therates*.

The others have no tooth in the middle of the emargination of the mentum. The labial palpi are contiguous at their origin, with the first joint obeonical or in the form of a reversed pyramid. and dilated or prolonged interiorly in the manner of an angle or tooth; the exterior maxillary palpi hardly extended beyond the labrum. These speeies have been distributed into three subgenera.

Therates, Lat.-Eurychle, Bonel.

The Therates in their general form resemble the true Cicindelæ, but are distinguished from them, as well as from all other analogous subgenera, by their internal maxillary palpi, which are very small and acicular. The tarsi are similar in 1 oth sexes, with the penultimate joint cordate, unemarginate, and simply excavated above for the insertion of the last.

These Insects are exclusively proper to the most eastern islands of Asia, as Java, those of Sunda, and sueh as are to the north of New Holland \dagger.

In the two following subgenera, both proper to the East Indies, or the remotest of the Oriental islands, the body is narrow and elongated, and the thorax almost cylindrical, or in the form of a knot. The third and fourth joint of the tarsi is prolonged interiorly in the manner of a lobe.

Colliuris, Lat.-Collyris, Fab.

Furnished with wings; antennæ thiekest near the end ; last joint of the labial palpi almost securiform, and the penultimate frequently curved; thorax nearly eylindrieal, narrowed and strangulated before, with the anterior margin widened; abdomen almost cylindrieal, widened and enlarged posteriorly; tarsi similar in both sexes, the penultimate joint prolonged obliquely on the inner side, as large as the preeeding one; the latter in the form of a reversed triangle with acute angles \ddagger.

[^332]
Tricondyla, Lat.

Destitute of wings; antennce filiform; penultimate joint of the labial palpi longest and thickest; thorax in the form of a knot, subovoid, strangulated, truncated, and turned up at both ends; abdomen oval, oblong, narrowed towards the base, and slightly gibbous posteriorly; three first joints of the anterior tarsi dilated in the males, the third obliquely prolonged on the inner side of the manner of a lobe ; the fourth nearly similar, but mueh smaller and less prolouged *.

The sccond tribe, or the Carabici, Lat comprehends the genus
Carabus, Lin.

Where the maxille simply terminate in a point or hook, without an articulated extremity.
'Their head is usually narrower than the thorax, or, at most, of the same width; their mandibles, those of a few exeepted, have no dentations, or but very few; the ligula usually projects, and the labial palpi exhibit but three free joints \dagger. Many of them are destitute of wings, only having elytra. They frequently diffuse a fetid odour, and ejeet an acrid and eaustic liquid from the anus. Geoffroy believed that the aneients designated Carabici under the name of Buprestes, Insects which they considered as highly poisonous, partieularly to Oxen $\$$.

The Carabici coneeal themselves in the ground, under stones, chips, bark of old trees, \&e,, and are mostly ver'y aetive. 'Their larvæ have the same habits. 'This tribe is very numerous, and forms a most difficult study.

We will eompose a first gencral subdivision with those, the termination of whose exterior palpi is not subulate; their last joint is not united with the preceding one, to form either an oval body aeutely pointed at the end, or a conoid terminated by a slender and aeieular point.

These Carabici may be subdivided into those whose two anterior tibiæ have a deep notch on the inner side, separating the two spines which are usually placed near each other at the extremity of this side, and into those where these tibiæ present no cmargination, or if any, a mere oblique, linear canal, whieh does not reach their anterior side.

Of this subdivision we will make several sections:

1. The Truncatipennes, so called beeause the postcrior extremity of their elytra is almost always truncated. The head and thorax are narrower than the abdomen. The ligula is most commonly oval or square, and is rarely accompanied on the sides by salient divisions.

The hooks of the tarsi, in some, are simple or not dentated, but arranged like the teeth of a comb.

[^333]\ddagger See the genus Meloè.
vol. III.

We will commence with those in which the head is not abruptly narrowed at its posterior extremity, and is not attached to the thorax by a sort of suddenly formed neck, or by a species of patella. The thorax is always in the form of a truncated heart. The exterior palpi are never terminated by a much larger and securiform joint. The two anterior tarsi of the males are not dilated, or if so, but very slightly; the penultimate joint of these and the other tarsi is never deeply bilobate.

The three following subgenera have a common negative character: that of being destitute of wings.

Anthia, Web. Fab.

An oval, horny ligula, advaneing between the palpi nearly to their extremity.

The labrum frequently large and dentated or angular.
The exterior palpi filiform; the last joint almost cylindrical or forming a reversed and elongated cone. No tooth in the emargination of the mentum. The abdomen oval, and most frequently convex; elytra almost entire, or but slightly truncated.

These Insects, as well as those of the ensuing subgenus, have a black body spotted with white, a colour formed by down; they inhabit the deserts and similar localities of Africa* and some parts of Asia. According to the late M, Leschenault de Latour, the Anthiæ, when irritated; discharge a caustic fluid from the anus. The species generally are large, and in the males of some the thorax is more or less dilated posteriorly and terminates by two lobes \dagger.

Graphipterus, Lat.-Anthia, Fab.

The Graphipteri were formerly confounded with the Anthix, but differ from them in their ligula, which, the middle part excepted, is entirely membranous; and in their compressed antennæ, whose third joint is mueh longer than the others. Besides this, their abdomen is always flattened and orbieular, and one of the two spines terminating the posterior tibiæ is always laminiform and much longer than the other.

The species of this subgenus are exelusively proper to Africa, and smaller than the preceding \ddagger.

> Aptinus, Bon.-Brachinus, Web. Fab.

The last joint of the exterior palpi somewhat thicker, that of the labials particularly; a tooth in the middle of the emargination of the

[^334]mentum. The ligula is similar to that of the Graphipteri, but the lateral divisions form a small pointed projection. What particularly distinguishes this, as woll as the following subgenus, is the fact, that the oval and thick abdomen contains organs which secrete a caustic liquor of a penetrating odour, that issues from the anus with a crepitus and instantly evaporates. This fluid produces a discoloration of the skin similar to that caused by nitric acid, and if the species be large, a burn, accompanied with pain. M. Leon Dufour has described the organs which secrete it*.

These Insects are frequently found in society, at least in the spring, under stones. They employ the above mentioned mode of defence to terrify their encmies, and can repeat the discharge a number of times. The larger species inhabit tropical and other hot climates to the limits of the temperate zone.

Apt. balista, Dej., Hist. Nat. des Coleop. d'Eur., II, viii, I; Brachinus displosor, Duft. From five to eight lines in length; black, with a fulvous thorax and sulcated elytra. Navarre and various parts of Spain and Portugal.

Apt. pyrenceus, Dej., Hist. Nat. des Coleop. d'Eur., II, viii, 3. From three to four lines in length; deep black; antennæ and palpi fulvous; feet of a russet yellow \dagger. The elytra are sulcated. It was discovered by Count Dejean in the department of the Pyrénnées-Orientales.

Brachinus, Web. Fab.

The Brachini only differ from the Aptini in being furnished with wings, and in the circumstance of the emargination of their mentum having no tooth.
Some, generally the largest and mostly forcign to Europe, have their elytra very sensibly sulcated or ribbed. Of this number is a species common to the Antilles and Cayenne, the

Brach. complanatus, Fab.; Carabus planus, Oliv. III, vi, 63. From six to eight lines in length; russet yellow; the elytra black, no humeral point, a sinuous band traversing their middle, and a russet yellow spot at their extremity ; their external margin of the same colour; posterior angles of the thorax prolonged into a point.
The elytra of the others are smooth or but slightly sulcated. In the environs of Paris the following species are usually to be found.

Brach. crepitans, Fab. ; Hist. Nat. des Colcop, d'Eur., II, viii, 6; Panz., Faun., Insect. Germ. XX, 5. Avcrage length four lines; fulvous; clytra sometimes decp blue, at others bluishgreen, and slightly sulcated ; antennæ fulvous, but the third and fourth joints blackish; the pectus, its middle excepted, and the abdomen, black. This species has been confounded with the

[^335]explodens of Duftschmid-Hist, Nat. des Coleop. d'Eur., II, viii, 7 -which is also very common. It is but half the size of the crepitus, with blue and almost smooth elytra. The glabratus, Bonelli, only differs from it in the absence of the spots on the antennæ.

Brach. sclopeta, Fab. ; Hist. Nat. des Coleop. d'Eur., II, ix, 3. Very similar to the last, but distinguished from it as well as from the preceding ones by the suture of the elytra, which is fulvous-red from the base to the middle. The body also is wider in proportion, and of the same colour above and heneath.

Brach. bombarda, Illig.; Hist. Nat. des Coleop. d'Eur., II, ix, 2. This species is intermediate between the last and the first. A fulvous sprout surrounds the seutellum, but does not extend along the suture.

Brach. exhalans, with elytra of an obscure blue, and four yellowish spots, and Brach. causticus, all fulvous, with a band along the suture and posterior spot blackish-are found in the department of Herault *
In the Hist. Nat. des Coleop. d'Eur., we placed the genus Catas copus of Kirby next to Brachinus. A more reeent examination leads us to think that it rather belongs to the Simplicimani. The posterior extremity of the elytra, it is true, does offer a deep emargination, but it terminates in a point towards the suture, and is not truncated. Several speeies of this division also present the same sinus, though less deep and aeute.

Between the Braehini and the Catascopi, Count Dejean-Speeies I, p. 226-places the genus Corsyra of Steven, the type of which is the Cymindis fusula of the Russ. Entomog., of Fischer, I, xii, 3. It differs from the latter in its tarsi, the hooks of whieh are simple. The body also is flattened, as in the preceding and other neighbouring subgenera, tolerably broad, with filiform palpi, unidentated mentum and transverse labrum; the thorax is wider than the head, and nearly semi-orbicular.

But one species is known.
The other Carabici of the same division with equally simple hooks are removed from the preecding by the form of their head, which is suddenly narrowed immediately after its origin, presenting the appearanee of a neck or rotula.

First come those in whieh the tarsi of both sexes are identieal, subeylindrical or linear, and whose penultimate joint, at most, is decply notched or bilobate.

Sometimes the extcrior palpi are filiform or but slightly enlarged at the end, with the last joint verging to an oval; the head has the same form and becomes gradually narrowed behind the eyes. The first joint of the antennie is always short or but slightly elongated. The thorax is always narrow and elongated. The body is thick.

[^336]The emargination of the mentum has a central tooth. The ligula is almost square, and its paraglosse are salient and pointed.

Casnonia, Lat.-Ophiongea, Klüg.

The thorax almost like a truncated cone, or a cylinder narrowed anteriorly*.

Lbptotrachelus, Lat.

Thorax cylindrical, and without any sensible contraction anteriorly; elytra entire or not truncated; penultimate joint of the tarsi bilobate \dagger.

Odacantha, Payk. Fab.
The same kind of thorax, but the elytra are truncated and the joints of the tarsi entire.

Odac. melanura, Fab.; Clairv., Entom. Helv. II, v; Hist. Nat. des Coleop. d'Eur., II, x, 6. The type of the genus; three lines in length; greenish-blue; elytra, the extremities excepted, rus-set-yellow; base of the antennæ, pectus, and a greater portion of the feet of the same colour; ends of the elytra blackish-blue. it frequents the neighbourhood of water, and is more particularly found in the north of France, Germany and Sweden \ddagger.
Sometimes the exterior palpi are terminated by a thicker triangular joint, or one resembling a reversed cone; the head, directly behind the eyes, is suddenly narrowed, and has a triangular form, or that of a heart.
Some in which the body is flattened, placed by Fabricius among his Galeritæ, have all the joints of the tarsi entire, the thorax cordate and posteriorly truncated, and the mandibles as well as the maxillæ of an ordinary length or but slightly salient.

The first joint of the antennæ forms a reversed and elongated cone. The ligula is square, and its paraglossæ are usually as long as itself; the middle of the emargination of the mentum is furnished with a tooth, These Carabici, of which the species indigenous to Europe are found under stones, bark, and most commonly in the vicinity of water, form the three following subgenera.

Zuphirm, Lat.

First joint of the antennæ at least as long as the head; exterior maxillary palpi much elongated §.

[^337]
Polistichus, Bon.

First joint of the antennæ, as in the following subgenus, shorter than the head; maxillary palpi of the ordinary length; second, third and fourth joints of the tarsi; those of the two anterior legs particularly, short and nearly orbicular; the ligula terminated superiorly by a straight margin, its paraglossx salient, and resembling narrow, arcuated and pointed auriculee *.

Helluo, Bon.

This subgenus is only distinguished from Polistichus by the entirely corneous ligula, which is rounded at the superior extremity, and without any distinct paraglossx. The species are all foreign to Europe \dagger,

The others, which with those that immediately follow, appear to approximate to the Brachini \ddagger, have the penultimate joint of all the tarsi strongly bilobate; the mandibles and maxillæe long, narrow, and projeeting; the body thick; the head in the form of a narrow and elongated triangle; the thorax almost cylindrical, and slightly narrowed posteriorly.

The first joint of the antennæ is long and narrowed at base. The mentum is nearly lunate, and is destitute of a tooth in the middle of the emargination. The ligula is salient, narrow, almost linear, and terminated by three stout spines; it has two small paraglosse. The under part of the tarsi is covered with down. Sueh are the eharacters of

Drypta, Lat. Fab.

All the species knorm belong to the eastern continent and to New Holland. Two inhabit Europe, and are always found on the ground.

The most common is the Drypta emarginata, Fab.; Clairv. Entom. Helv. II, xvii; Hist. Nat. des Coleop. d'Eur., fase, II, x. l. It is about four lines in length, and of a beautiful azureblue; the antennæ, mouth and legs, fulvous: extremity of the first joint of the antenne and the middle of the third, blackish; elytra with punctate strix. More common in the south of France than the north. M. Blondel Jun., however was found it in abundance in a locality near Versailles §.

[^338]We now come to the Carabici, very analogous to the preceding ones in their divisional characters, but removed from them by the furm of their tarsi. The four first joints, or at least those of the anterior tarsi of the males, are greatly dilated and bifid; the penultimate of all, and in both sexes, is always emarginated or dilated. The exterior palpi and the first joint of the antennæ always long.

Trichognatha, Lat.

Ultimate joint of the exterior palpi in the form of a reversed cone, and elongated : a hairy triangular projection on the exterior side of the maxille ; very long palpi; labrum bicrenate, with three obtuse tecth; summit of the ligula armed with three spincs; the four postcrior tarsi not dilated, at least in the females. The type of the genus (T. marginipennis) was brought from Brazil by the celebrated botanist M. de Saint Hilaire.

Galerita, Fab.

The Galeritæ diffor from the preceding subgenera in their exterior palpi, of which the last joint is triangular or securiform, and in the non-dilatation of the exterior side of the maxillo.

The two anterior tarsi of the males are widened; the emarginations of the four first joints are acute, and their internal divisions are larger and more prolonged than the external. The summit of the ligula is tridentate, and its paraglossæ are very distinct. The emargination of the mentum is unidentatc.

Some specics, such as the Galerita occidentalis, Dej.; G. africana, Id., by their oval head, and narrower and more elongated thorax, form a particular division. Most of them belong to America *.

> Condistes, Latr.-Calopheena, Klüg,-Odocantha, Fal.

The extcrior palpi filiform and terminated by an oval and pointed joint.

The four first joints of all the tarsi dilated, and the first in the form of a reversed and clongated cone; lobes of the two following ones equal, straight, and pointed; the fourth in the form of a heart or reversed triangle, and uncmarginate: its superior face is cxcavated for the reccption of the next. The head is nearly oval \dagger.

We will terminate this section with those in which the hooks of the tarsi are dentated beneath in the manner of a comb, and commence with such as have their oval or ovoid head separated from the thorax by a sudden and marked strangulation forming a sort of knot or patella. The penultimate joint of their tarsi is always divided down to its base into two lobes; the preceding ones are broad, and in the form of a heart or reversed triangle. The first joint of

[^339]the antennæ is but slightly elongated. All the species known belong t_{0} the western world.

Ctenodactyla Dej,

Extcrior palpi filiform, the last joint oval; body but slightly elongated and flattened; thorax almost cordiform, elongated, and truncated posteriorly (a).

> Agra, Fab,

Exterior maxillary palpi filiform; labial palpi terminated by a large triangular or securiform joint; the body long and narrow; thorax forming an elongated cone narrowed anteriorly. The mentum is suborbicular with a tooth in the middle of the emargination; the ligula nearly cylindrical, without very distinct paraglossæ *.

Now the head is scparated from the thorax by a very abrupt strangulation, in the form of a knot or patella \dagger. The joints of the tarsi are entire in several, and the first are rarely dilated. The body is always flattened. The paraglossæ are never salient, simply forming a membranous margin, rounded or obtuse at the end.

Here the thorax is isometric, or longer than it is wide, cordiform, and truncated posteriorly. The body is elongated. Such are

> Cymindis, Lat.-Cymindis, Anomeus, Fisch.-Tarus, Clairv. Carabus, Fab.

Exterior maxillary palpi filiform, or hardly thicker at the extremity, with the last joint cylindrical; the same of the labials, larger, almost securiform, or like a reversed triangle, at least in the males; the head not narrowed posteriorly; all the joints of the tarsi entire and nearly cylindrical \ddagger.

> Calleida, Dej.

Entirely similar to Cymindis, with the exception of the tarsi, the penultimate joint of which is bifid; in the preceding it is triangular. Peculiar to America.

Demetrias, Bon.

Analogous to Calleida in the tarsi, but having an oval head narrowed posteriorly, and all the exterior palpi nearly filiform, with the last joint almost ovoid or sub-cylindrical.

This subgenus, as well as the next, is composed of very small species, which usually frequent wet places. They are, nearly all, European §.

[^340]$\{\overrightarrow{3}(a)$ Ctenodactyla Cherrolatii, Dcj. Spec. I, p. 227. The only species known and type of the genus. From Caynne.-Eng. Ed.

Dromias, Bor.

Generally apterous; joints of the tarsi entire ; otherwise similar to Demetrias.
There, the thorax is evidently wider than it is long, forms the segment of a circle, or resembles a heart, widely and transversely truncated posteriorly.
In some, the middle of the posterior margin of the thorax is extended backwards. Such is

> Lebia, Lat.-Lebla Lamprias, Bon.

Exterior palpi terminating in a little larger and nearly cylindrical or oval joint, truncated at the end; four first joints of the tarsi almost triangular, and the fourth more or less bifid or bilobate. One of the most common in Europe is
L. cyanocephala; Carabus cyanocephalus, L., Fab.; Bupreste bleu à corselei rouge, Geoff.; Panz., Faun. Insect. Germ., LXXV, 5 ; Hist. Nat. des Ćoleop. d'Eur., fascic. III, xii, 7. From two to two lines and a half long; blue or green and very lucent ahove; first juint of the antennæ, the fect and thorax fulvousred ; extremity of the femur black : elytra marked with slight punctuated striæ.
L. hœmorrhoidalis; Carabus hemorrhoidalis, Fab.; Hist. Nat. des Coleop. d'Eur., fascic. III, xiii, 8. Not above two lines in length ; body fulvous with black elytra, terminated by a yel-lowish-fulvous spot ; elytra slightly striate, the striæ punctuate, with two more decply impressed puncta near the third, commencing from the suture*.
In the following, the thorax terminates posteriorly in a straight line without any central projection.

Plochionus, Dej.

The antennæ almost granose ; last joint of the labial palpi large, nearly securiform; four first joints of the tarsi short, in the form of a reversed heart, the fourth bilobate \dagger.

Orthogonius, Dej.

Similar tarsi; but the antenne are filiform, and the external palpı terminated by an almost cylindrical joint ${ }_{\ddagger}{ }^{\text {. }}$

> Coptonera, Dej.

The palpi of the preceding; antennæ more or less granose; three first joints of the anterior tarsi short and wide; the same of the four

[^341]posterior tarsi, almost filiform; the penultimate joint of all bifid, but ot bilobate. All the species quoted by Count Dejean are foreign to Europe, and belong, gencrally, to America*.
2. The second section, that of the Bipartiti,-Scarilides, Dej.which in relation to their habits might also be be styled Fossores, is composed of Carabici with elytra either entire or slightly sinuated at their posterior extremity; having frequently granose and geniculate antenne; a broad head, large thorax, usually shaped like a cup or almost semi-orbicular, and separated from the abdomen by an interval which causes the latter to appear pediculated; the legs generally but slightly elongated, their tarsi usually short, and similar in the two sexes, or nearly so, without any brush beneath, and simply furnished with urdinary hairs or cilia. The two antcrior tibiæ are dentated, and in several palmated or digitated; the mandibles frequently strong and dentated. Where is a tooth in the emargination of the mentum. They all keep on the ground, conceal themselves either in holes which they excavate, or under stoncs, and frequently only leave their retreat at night. They are usually of a uniform black. The larve of the Ditomus buccphalus, the only one that has been observed, has the form and mode of life of the larro of the Cicindelæ. They are more particularly proper to hot countrics.

The three first subgenera, on account of their labial palpi, which are terminated by a larger, securiform or triangular joint, form a particular group; the last of these sulgenera leads us to Scarites, whilst the first, which, as respects the absence of the emargination in the internal side of the two anterior tibiæ, corstitutes an exception, seems to connect itself with the first subgenera of the family, They all have stout and dentated mandilles. The external maxiliary palpi terminate in a rather larger joint; the thorax has the form of a cup or truncated hear't; the abdomen is pediculated.

T'wo of the subgenera of this group form a special suldivision. Their antcrior tibiæ are not palmated. Their anternæ consist of cylindrical joints, or such as resemble reversed cones. The mentum covers the whole under part of the head as far as the labrum, and frequently exhibits no transverse suture at its base. The body is much flattened, and is apterous in several. They all belong to the castern continent or to New Holland.

Encrladus, Bon.

The inner side of the anterior legs unemurginate; first joint of the antenne but little elongated, and almost cylindrical, the third shorter than the second; middle of the supetior margin of the ligula projecting in the manner of an angle or tooth; thorax almost in the form of a broadly truncated heart, the posterior angles slightly dilated and pointed; labrum emarginate or nearly bilobate.

Encel. gigas, Bon., Mem. of the Acad. of Sc. of Tur. The only species described. From the coast of Angola.

> Siafona, Lat.-Cucujus, Galerita, Fab.

A very decided emargination on the internal side of the two ante-

[^342]rior tibiæ; the first joint of the antennæ elongated, forming a reversed cone, and the second shorter than the third; summit of the ligula straight, without any projection; thorax almost in the shape of a eup, nearly as long as it is broad, and without postcrior projections; the labrum dentated.

Some arc aptcrous and have an oval abdomen*. The latter is oval in others, and truncated at base; these are furnished with wings. A new speeies has bcen discovered in Sicily by M. Lefevre. All the others, both of this and the preceding division, inhabit northern Afriea or the East Indies \dagger.

The third subgenus, in its moniliform antenne, the tecth on the extcrior side of the two first tibiæ and in the ordinary proportions of the mentum, evidently approximates to Scarites.

Carenum, Bon.

Straight maxillæ without a terminal hook; summit of the ligula rounded; ultimate joint of the exterior maxillary palpi enlarged and double the length of the preceding one.

The only species known-Scarites cyaneus, Fab.-inhabits New Holland.
None of the other Carabici of this seetion exhibits labial palpi terminated by a larger and securiform joint: the last is in the form of a reversed and elongated cone, or almost cylindrieal and smaller at base; the same joint of the exterior maxillary palpi is also nearly cylindrical; all these palpi are about the same thickness throughout, or sometimes attenuated at the extremity.

A first very natural subdivision, which eompriscs the Scarites of Fabricius, the cyaneus exeepted, consists of bipartite Carabici, whose anterior legs are palmated, or at least digitated at the end, that is to say, terminated exteriorly by a long point in the form of a spine, opposite to a very stout internal spur. Their antennee arc granose; the seeond joint as long as the following onc, and frequently longer. Thic mandibles, those of a small number excepted, are stout, projecting, and angular, or dentated on the internal sidc. The labrum is very short, transversal, and crustaceous. The ligula is most frequently entirely eorncous, bristled with hairs or eilia, broadly emarginate or widened at the summit, and with projecting lateral angles.

Some have very strong, projecting, and usually dentated mandiblcs; the anterior margin of the crustaccous labrum very dentate, the ligula short, not extending beyond the mentum, entirely horny or crustaeeous, bristled with hairs, and widened at the superior margin. Their anterior tibie are always palmate. The specics generally are largc.

Onc of these subgencra,

[^343]
Pasimachus, Bon.

Approximates to the last in the jaws, which are straight, and destitute of a terminal hook.

The antenne are of equal thickness. The body is much flattened and oval, thorax cordiform, broadly truncated behind, almost as wide at its posterior margin as before and as the base of the elytra; this margin almost straight, and merely somewhat concave in the middle. This subgenus is peculiar to America * (a).

According to Count Dejean-Spec., II, p, 471-after the Pasimachi, should come his genus Scapterus, formed with a species from the East Indics, sent to him by one of the most zealous of the French entomologists, M. Guerin, to whom it is dedicated. Whether the maxilhe resemble those of the preceding subgenus I do not know, but the body is diffcrently proportioned, being clongated and cylindrical. The antcnnæ are shorter in proportion than usual ; the second joint is square, somewhat thicker than the others, which are short, almost square, and become gradually stouter.

In the following the maxillæ arc arcuated and hooked at the end, The antennæ become sensibly thicker towards the extremity. The thorax is always separated posteriorly from the base of the elytra by a well marked space or angle.
Here the exterior palpi are terminated by an almost cylindrical joint, not narrowed into a point at the end.

Acanthoscelis, Lat.

This subgenus is remarkable for the four posterior tibiæ, which are short, broad, arcuated, plane and slightly concave on their internal face, convex, and covered with granules or little spines on the opposite one, with the superior edgc dentated, and the posterior teeth large and compressed; the trochanter of the two posterior thighs is very large.
The body is short, wide, convex above; the thorax transversal, rounded laterally, and its posterior margin sinuous; spurs of the anterior tibie very long, and the others almost laminiform,

The only species known-Scarites ruficornis, Fab.-inhabits the Cape of Good Hope.

Scarites, Fab.

The four posterior tibix narrow, generally smooth, and merely furnished with little spines on their ridges, and intermediaries have at most one or two teeth on the exterior side; the trochanter of the posterior thighs much smaller than the thighs themselves. The mandibles form elongated triangles, and are strongly dentated at base. The

[^344]second and third joints of the antennæ resemble reversed cones, almost of the same thickness; the following ones are granulous.

Some have two teeth on the exterior side of the intermediate tibiæ.

Sc. pyracmon, Bonel.; Dej., Spec. I, p. 367 ; Sc. gigas, Oliv., Col. III, No. 36, I, 1; Clairv., Entom. Helv, II, ix, a. About an inch long; apterous; flattened ; of a shining black; the elytra somewhat widened posteriorly, finely striate, and the striæ lightly punctate; in the third, near the extremity, two more distinct and deeper puncta. The head, according to Count Dejean, is much larger in the male than in the female; the front of the latter presents two impressions and some little rugæ. The thorax, on each side, exhibits a tooth posteriorly. There are three on the anterior tibix. It is found on the borders of the Mediterranean, in the soutl of France, and the eastern part of Spain. M. Lefevre de Cerisy, a distinguished naval officer and excellent entomologist, has published some observations on its habits.

Sc. terricolu, Bonel.; Dej., Spec. I, p. 398. Body furnished with wings ; from eight to nine lines in length; black; anterior tibie with three stout teeth, followed by three very small ones; cxternal side of the two following tibire with but one; elytra elongated, striate, and slightly rugose; two deep points near the third stria. Found with the pyracmon.

Sc. sabulosus, Oliv., Col. III, 36, 1, 8 ; Clairv., Entom. Helv. II, ix, 6 ; Scar. larigatus, Fab., Dej. Very similar to the terricola, but somewhat smaller and more depressed ; it is apterous and the elytra slightly striate; but two indentations on the anterior tibie after the three ordinary teeth. It inhabits the same localities as the pyracmon, and is also found in Sicily (a).

Oxygnathus, Dej.

The Oxygnathi, as to their antenne and palpi, are essentially similar to the preceding Insects, but having, as well as the two following subgenera, long, narrow, edentated mandibles which cross each other in the manner of a forceps. Their body is narrow, elongated, and cylindrical ; their antennæ shorter than the head and mandibles united; the labrum rather indistinct, and the thorax almost square.

The type of this subgenus-Scarites elongatus, Wiedem.; Oxygnathus clongatus, Dej. Spec. II, p. 474 -is from the East Indies.
There, the four exterior palpi, or at least those of the labrum, ter-
2β (a) The Sc. subterraneus, 'Fab. 'Syst. El. I, p. 124, No. 8, 'usually, considered as the only species of Scarites,-inhabits the United States. The very great disparity of size, however, between it and a congener from Georgia, combined with a certain difference of aspect would seem to warrant the supposition that the latter is a distinct species. Although, after the most careful comparison of the two, I confess my inability to point out any truly specific difference, I am stlll inclined to believe they are distinct.
minate by a fusiform joint ending in a point. The body is elongated and eylindrical, and the mandibles are long, narrow, and without any remarkable teeth, like those of the Oxygnathi.

> Oxystomus, Lat.

The labial palpi almost as long as the exterior ones of the maxillæ, recurved, the first joint salient and eylindrical, the second but slightly elongated, and the last fusiform, long and acutely pointed at the end; the antenn completely moniliform from the middle of their length, with the first joint as long as the three following ones united ${ }^{*}$.

Camptonontus, Dej.

The labial palpi evidently shorter than the external ones of the maxillæ, not recurved, and terminated as well as the latter by a fusiform joint ; a greater part of the joints of the antennæ resembling inyerted cones; the length of the first hardly surpassing that of the two following ones taken together \dagger.

The others, whose anterior tibie are not dentated externally, but simply didaetyle at the end, have short mandibles, projecting but litthe beyond the labrum ; the labrum coriaceous and entire ; the ligula advancing beyond the emargination of the mentum, glabrous, or but slightly pilose, with separate, salient, and membranous paraglossæ; the exterior palpi are terminated by an oral joint, acuminated at the extremity.

They are small, frequent humid places, and are not strangers in northern countries.

Clivina, Lat.
Three stout teeth on the external side of the two anterior tibiæ, and one on that of the next two + .
Dischirius, Bon.-Clitina, Dcj.

Nothing but dentations or very indistinet and small spines on the external side of the two anterior tibiæ, and where the extremity of this side is usually extended into a long point in the form of a spine, and opposed to another consisting of a stout spur on the internal side. The last joint of the labial palpi is thieker in proportion than that of the Clivinæ, and almost clarato-securiform. The thorax is usually globular §.

Our second and last subdivision of the Bipartiti will comprise those whose anterior tibix are neither dentated externally, nor bidigitated at the extremity, and where the sceond joint of the antenne is evidently shorter than the third. They closely approximate to the two last subgenera in the organs of mandueation, and have been confounded

[^345]by some authors with the Searites, which, in fact, they very much resemble, both in appearance and habits.

Some have a narrrow elongated body, almost forming a parallelopiped, with a nearly square thorax; the antenne either entirely or partly granose : the last joint of the exterior palpi almost eylindrieal, and the same of those of the labium, nearly in the form of a reversed eone, or sceuriform. They are all exotie.

Morio, Lat.

Antennæ equal in size throughout ; labrum profoundly emarginate; exterior palpi filiform; thighs oval, with triangular tibiæ*.

Ozena, Oliv.
Antenne thieker or inflated at their extremity; labrum entire; labial palpi terminating by a larger and almost securiform or triangular joint; thighs and tibiæ narrow and elongated \dagger.

The others have an oval or oblong body, and the thorax cither nearly in the shape of a cup or heart, or almost orbieular; the antennæ arc filiform, and consist mostly of cylindrical joints, the last particularly; the others narrowed at base and nearly in the form of a reversed cone; the last joint of the exterior palpi is almost oval or fusiform. The labrum is emarginate.

They are peculiar to the hot and sandy distriets of the western countries of the castern continent,

Ditonus, Bon.-Carabus, Calosoma, Scaurus, Fab.

Palpi shorter than the head; thorax cordiform, or like a cup; tarsi short.

Some species, those to which Ziegler has restored the generic appellation of Ditomus, have a more elongated body of equal width; the head separated from eaeh side of the thorax by a re-entering angle, and usually armed in the males, with one or two horns t.

The others, or those which compose the genus Aristus, Zieg., have the body shorter, and wider before; the head almost eotinuous with the thorax, and buried in it up to the eyes; its anterior angles are pointed §.

Aptonus, Hoff:-Scarites, Ross.

The anterior palpi very long; thorax orbicular; tarsi filiform and elongated; exterior maxillary palpi mueh longer than the head, and

[^346]terminated by an ovoido-cylindrical joint; the same joint of those of the labium elongated and fusiform. I lave not perceived a tooth in the emargination of the mentum *.
3. Our third section of the Carabici, that of the Quadrmani,Harpalicus, Dej. \dagger, includes those, otherwise similar to the last in the pointed termination of the posterior extremity of their elytra, in the males of which the four anterior tarsi are dilated; the three or four first joints are in the form of a reversed heart or triangular, and nearly all terminated by acute angles; they are usually furnished underneath (the Ophoni excepted) with two ranges of papillæ or scales, with an intermediate linear space.

The body is always winged. and generally oval and arcuated or convex above ; the thorax is wider than it is long, or at most nearly isometrical, square or trapezoidal. The head is never suddenly contracted posteriorily, and the antennæ are equal throughout, or slightly and insensibly thickened near the extremity. The mandibles are never very strong. The exterior palpi are terminated by an oval or fusiform joint, longer than the preceding one. The tooth of the emargination of the mentum is always entire, and in some is wanting \ddagger. The legs are robust, the tibixe spiny, and the hooks of the tarsi simple. The intermediate tarsi, even in the females, are short, and, with the exeeption of the dilatation, nearly formed like the anterior, These Carabiei prefer sandy and hot localities.

This section is composed of the genus Harpalus, as limited by Bonelli in his tabular view of the general distribution ef the Carabici. New seetions have still more diminished its extent. They are all subordinate to the three following divisions.

The eharacters of the first are : the emargination of the mentum unidentate§; labrum emarginate; head and anterior extremity of the thorax as wide as the abdomen or wider $\|$. It comprises three subgenera.

> Acinopus,. Zieg. Dej.

Filifurm antennæ, composed of short but cylindrieal joints; thorax insensibly narruwed from before backwards, with the posterior angels very obtuse or rounded; mandibles destitute of teeth; tooth of the emargination of the mentun widely truneated of,

[^347]
Daptus, Fisch.-Achinopus, Dej.

The antenme, from the fifth joint, moniliform; thorax suddenly narrowed towards its posterior angles, which terminate in a point; one of the mandibles projecting and rery pointed ; the four anterior tibiæ, those of the males particularly, covered with very small spines*.

Near Daptus should apparently be placed the genus Pangus of M. Megerle, mentioned by count Dejean in his catalogue.

In examining one of the two species (the pensylvanicus), referred by the latter to this genus, I could discover no character which should distinguish the section in question from the preceding one.

The second division consists of Harpali, in which the emargination of the ventum is also unidentate, but where the more or less oval or ovoid body is narrowed before, and the labrum entire, or simply somewhat concave. They form the

$$
\text { Harpalus, } D e j \text {. }
$$

Or the true Harpali. One of the most common in all Europe is H. ceneus ; Carabus aneus, Fab.; Panz. Faun. Insect. Germ. LXXV, 3, 4. Body about four lines in length, and of a shining black; antenne and legs fulvous; thorax and elytria most commonly green, or cupreous and brilliant, sometimes of a bluish hlack. The thorax is transvcrsal, narrowed postericrly, and the lateral and posterior margins delicately reflected, with a punctated depression on each side near the posterior angles. The elytra are striated, with an incisure near the extromity, and little depressed puncta between the exterior strix. This insect has also been called the Proteus, on account of the variety of its colours \dagger.
The total absence of a tooth in the emargination of the mentum distinguishes the Carabici of the third and last division of this section, which, by the form of the body and the labrum, rescmble those of the preceding division.

Ophonus, Zieg. Dej.

The four anterior tarsi of the males strongly dilated, or evidently wider, and gencrally furnished beneath with numerous and compact hairs, forming a continuous brush; the penultimate joint is not bilobate. The last joint of the exterior palpi truncated, or very obtuse.

The body is very finely punctated above, and the thorax most frequently cordiform, and truncated posteriorly \ddagger.

[^348]
Stenolophus, Zieg. Dej.

The Stenolophi only differ from the Ophoni in the form of the penultimate joint of the four anterior tarsi, at least in the males, and in some cren of the posterior; it is divided down to the base into two lobes*.

Acupalpus, Lat.-Stenolophus, Dej.
The four anterior tarsi of the males differing but little from the intermediate joints; rounder, almost granular, and pilose; exterior palpi terminating by a joint with a pointed extremity.

They are very small insects, and seem to be allied to Trechus \dagger.
4. The fourth section, that of the Simplicimani \ddagger approaches the

* Stenolophus vaporariorum, Dcj. Ib.; Carabus raporariorum, L. ; Panz., Faun. Insect. Gcrm., XVI, 7; Harpalus sapanarius, Dufour. S'enegal.
\dagger The Stenolophi of the Cataloguc, Dcj., the preceding oue execpted. We will name, among others, the Carabus meridianus, Lin. and Fab., and the C. vespertinus, of Panzer, XXXVII, 21.
\ddagger This section in the system of Dejean, forms his tribe of Carabiques Feroniens, in which-Spec. Gen. des Colcop. III-he has established several nerr gencra. Those male Feronix, in which the two first joints of the two anterior tarsi are alone dilated, are comprised in the genera Pogonus, Cardiaderus Baripus, and Patrobus In the two first, the last joint of the labial palpi is oval or pointed, whilst in the other two it is almost cylindrical, trumeated at the extremity, and slightly securiform. The sccond-Daptus chloroticus, Fischcr-differs from the first in the thorax, which is convex, cordiform, and narrowel posteriorly. In Baripus, it is convex and almost oval. That of Patrobus is plane, narrowed posteriorly and more or less cordiform.

In the other male Feronix the three first joints of the anterior tarsi arc dilated. A first subdivision comprehends those Fcronix, the hooks of whose tarsi are dentated, and among these the genus Dolichus is the one in which the tootlo of the middle of the emargination is simple, that is to say, entire. That which he names Pristonychus, is identical with my Ctenipus: to this he refers the Sphodrus terricola of his Cataloguc. His new genus Pristodactrila closely resembles Taphria, but the last joint of the palpi is elongated and almost cylindrical, and the thorax is oval. He describes but a single species.

Among the Fcroniæ in which the hooks of the tarsi are simple, fonr genera, Omphreus, Olisthopus, Masoreus, and Antarctia, are removed from all the others by the absence of a tooth or lobe in the middle of the cmargination of the mentum. The first, of which Count Dejean has only scen the females, is very distinct by the length of the first joint of the antenna which equals that of the thrce following ones; and then by its palpi, the last joint of which is strongly securiform. That naturalist places this genus directly after Sphodrus; perhaps it may come among the Patellimani, and approximate to Rembus and Dicelus. The second genns, Olisthopus, belongs to that division in which the three first joints of the anterior tarsi of the males are clongated, and rery slightly triangular or almost square; its type is the Agonum rotundutum of Sturm. The other two re-enter the division of those in which the three first joints of the two anterior tarsi of tbe males are but slightly elongated; they are as long as they are wide, and strongly triangular or cordiform. The thorax in Masorens is transversal, rounded laterally, and slightly prolonged in the middle. That of Antarctio is more or less square or cordiform, and slightly or not at all transversal. The Harpalus civcumfusus of Germar, referred by us to Tetragunoderus, is an Antarctia.

Six othcr gencra, Trigunotoma, Catadronue, Lesticus, Distrigus, Abacetus, and Microcephalus, form, among the Feronic with tarsi amalogous to those of the last, a snall section, the character of which consists in a trilobate or slightly emarginated mentum (a). The last genus, that of Aicrocephahus, is very distinct from
(a) The ordinary tootb in the middle of the mentum is very large, and thus forms a lobe which diminishes the extent of the emargination.
preceding in the manner in which the elytra are terminated; but the two anterior tarsi alone are dilated in the males, without however forming a square or orbicular palette; sometimes the three first joints are much wider, and in this case the succeeding one is always smaller than its antecedent; sometimes the latter and the two preceding ones are larger, almost equal, and in the form of a reversed heart or triangular: the first joints of the four following tarsi are more slender and clongated, almost cylindrical, or in the form of an elongated and reversed cone.

In some, the hooks of the tarsi are simple or not dentated.
Here the third joint of the antennre is, at most, double the length of the preceding one. The feet are generally robust, the thighs thick and more or less oval ; the thorax measured in its greatest transversal diameter is as wide as the elytra.

Sometimes the mandibles are evidently shorter than the head, not projecting beyond the labrum at most more than half their length.

We will begin with those in which the cxterior palpi are filiform.

> Zabrus, Clairv. Bon.-Pelor, Bon.

Distinguished from the following by the last joint of the maxillary palpi, which is evidently shorter than the preceding one, and by the two spines which terminate the two anterior tibire *.

Pogonus, Zieg. Dej.
The Pogoni, which in a natural order appear to us to be closely allied to the Amarce of Bonelli, are removed from the other Carabici

[^349]of this division by the mode of dilitation peculiar to the two anterior tarsi of the males; the two first joints, of which the radical is the largest, are alone dilated; the two following ones are small and equal. Their body is usually more oblong than that of an Amara, besides which they appear to inhabit, exclusively, the coast or borders of salt-water ponds *.
It is only by an analogous character that we can distinguish from the last the

Tetragonoderus, Dej.

Anterior tarsi of the males less dilated, in proportion, than in the following ones, their first joints being more narrow, elongated, and rather in the form of a reversed cone than cordiform. These Insects are peculiar to South Ameriea \dagger.

Feronia, Lat.

Three first joints of the anterior tarsi of the males strongly dilated, in the form of a reversed heart; second and third rather transversal than longitudinal.

This subgenus will inelude the numerous generic sections given in the Catalogue, \&e. of Count Dejean, such as Amara, Paccilus, Argutor, Omaseus, Platysma, Pterostichus, Abax, Steropus, Percus, Molops, Cophosus. This learned entomologist has since-Speeies III-perceived the impossibility of distinguishing them, the first excepted, which he still retains; the others he unites in one great generic section whieh he calls, with me, Feronia. But even as regards the Amare themselves, I have vainly sought for eharaeters in the antennae and parts of the mouth, whieh might clearly distinguish them from the other genera. The one drawn from the tooth of the middle of the emargination of the mentum, to say nothing of the slight degree of importance attached to it, is very equivocal ; this tooth in all these Carabiei appears to me to be emarginated at the extremity, though somewhat more deeply or distinetly in some than in others. The antennæ of several are slightly granose, or composed of joints comparatively shorter, and rounded at the summit; but the limits of this distinction eannot be rigorously defined. I say the same of the concavity of the anterior margin of the labrum and of the form of the thorax.

The Feroniæ may form three dirisions:

1. Those species, generally furnished with wings, in which the more or less oval body is slightly convex or arcuated above, with more fiiform antenne, the head proportionably narrower, and the mandibles somewhat less salient. In their habits these species approach the Zabri and Harpali. Such are the Amaræ \ddagger, whose thorax

[^350]is transversal ; the Pœcili, where it is almost as long as it is wide, and where the third joint of the rather short antenne is compressed and angular ; and the Argutores similar to the Pocili, but whose antennae are proportionably longer, and their third joint not angular.
2. The species usually furnished with wings, but in which the body is straight, plane or horizontal above, with a nearly equally wide head. Thcy frequent cool or damp places. Such is the genus Platysma, Bonclli, with which we unite that of Omaseus, Zieg., and Dej., and the Catalromus of Mac Lcay, Jun. *
3. The third division of the Feronire will consist of species analogous to those of the preceding onc in the ensemblc of their characters, but differing from them by the absence of wings.

Of these, some, the most numerous, and in which the thorax is not always in the form of a truncated heart, have a well-marked, continuous, transverse fold or border at the base of the elytra, that extends to the suture.

Sometimes the thorax is almost square, or has the form of a truncated heart, with acute posterior angles.

Those, in which the body forms a long or cylindrical square, where the thorax is almost square, hardly narrower behind than before, form the genus Cophosus of Ziegler and Dejcan. It was established on an Austrian species, the C. cylindricust.

Those in which the body is generally oval, depressed, or but slightly concave above, with a wide, nearly square, and subisometrical thorax, whose lateral margin is always strongly reflected, and is as wide, or ncarly as wide, at its posterior margin as the base of the elytra, compose the genus Abax of Bonelli.
Several specics are found in Germany. The one called the metallicus, and the Molops striolatus, Dej., whose antenne are composed
peared to me that they were most so externally. This Insect may form a separate subgenus-Cyclosomus. As to the preceding ones, see the Spccies, Gener. des Coleop. Dej., III.

* Those in which the body is much flattened, and the thorax considerably narrowed posteriorly in the form of a truncated heart, will constitute a first division : such is the Carabus picimanus, Duft., or the C. monlicola of othcrs; Count Dejean places it in Pterostichus; certain Brazilian species also belong to it. M. GermarInsect. Nov. Spec. I, 21 -deseribes one of them under the name of MIolops corinthius.

Those, in which the body nearly forms a parallelopiped, and the thorax is almost square, but slightly or not at all narrowed posteriorly, will constitute a second division. Of this number are the Platysma nigra, Bonel., and Dej., the Omasci of the latter-Catal. p, 12-and the Carabus lenebrioides of Olivier, the type of the subgenus Caladiomus of Mac Leay, Jun.-Annul. Javan. I, p. 18, 1, 5-which only differs from Omaseus in the tooth of the mentum, which is much larger and entire; the elytra lave a large sinus, or rather an emargiation at their cxtremity. It is one of the largest species of this family.

The Harpalus nigrita, anthracinus, and atervimus, of Gyllenhall, are Omasei. The last has the posterior angles of the thorax obtuse, a circumstance which distinguishes it from all the others. The Carabus leucopthalmus, Fab. or the melanarius of Illiger, is placed in the same division, but it is apterous.
\dagger We will add to it the Omuseus meiunarius, Dej., as well as another spectics of Germany intermediate between the preceling ones and the Cowhosus cylindriets, and which, I think, is the Omaseus elongat"s Kiegter.
of shorter joints, or are nearly granose, have been formed into a new genus, styled Cheporus*.

The F. striola; Carabus striola, Fab.; Carabus depressus, Oliv., Col. III, 35 ; IV, 46, is often found in the cold or humid localities of the forests in the environs of Paris†.
Sometimes the thorax, always terminated posteriorly by two wellmarked or acute angles, is evidently narrowed behind. Its figure approaehes more or less to that of a truncated heart.

Of these species, several have the body depressed or plane above, and the antenme composed of elongated joints, rather obeonical than turbinated. They are distinguished generally by Bonelli under the genuine name of Pterostichus. They more particularly inhabit the high mountains of Europe, and Caueasus.

But a single species-Carabus ollongo-punctatus, Fab.; Panz., Faun. Insect. Germ., LXXIII, 2- is found in the environs of Paris \ddagger.
Others, whose antennæ are almost granose, have the body convex above, and proportionally wider, with a shorter abdomen. They form the genus Molops, Bonelli, which evidently leads to other very analogous Feroniæ, but where the posterior angles of the thorax are rounded, and the abdomen oval, the cxterior angle of the base of the elytra being obtuse or non-salient. The body and antennæ are, in general, proportionably longer. These latter species have been separated from Pterostiehus to form a new genus, the Steropus, Meg §.

Finally, we will terminate this subgenus with speeies generally large, in which the thorax almost always has the form of a truncated heart, and the base of whose clytra has no transverse fold, presenting almost a smooth spaee without any well-terminated posterior edge. Such appears to me to be the most distinguished character of the genus Percus, Bonelli. Neither the relative length of the two last joints of the maxillary palpi, the inequality in the proportions of the mandibles, nor some slight scxual differenee taken from the latter annuli of the abdomen, elearly distinguish it from the other subgenera. These speeies are exclusively confined to Spain, Italy, and the great islands of the Mediterranean. Some of them are flattened above \|.

[^351]
Mysa, Zieg.

These Insects resemble the Feronire which constitute the genus Cheporus, but their thorax is more dilated laterally, and narrowed near its posterior angles, immediately before which is a little emargination. The labial palpi terminate in an evidently thicker and nearly triangular joint.

Two species are known, one from Hungary, the M. Chalybous, and the other from North America, where it was discovered by Major Le Conte*. [The M.cyanescens, Dej.-Eng. $E d$.
Sometimes the mandibles are as long as the head, and extend considerably beyond the clypeus. The body is always oblong, and the thorax in the form of an clongated heart. Some of them resemble Scaritides amd others Lebire.

Cepinalotes, Bon.-Broscus, Panz.

Length of the antenne almost equal to half that of the body; their joints short, the first shorter than the two following ones taken together; the right mandible strongly unidentated on the internal side ; labrum entire \dagger

Stomis, Clairv.

The antennæ longer than the half of the body, and composed of elongated joints, the first of which is longer than the two following ones taken together; the middle of the internal side of the right mandible deeply notehed; the labrum emarginate \ddagger. The following subgenus

Catascopus, Kirby,

Is distinguished from the two preceding subgenera, to which it otherwise approximates in the relative length of the third joint of the antennæ, by tle flatness of the body, by being proportionably wider, with a shorter thorax, by the elytra being strongly emarginate laterally at their posterior extremity, and by the elongation of the labrum. The eyes are larger and protuberant. These are ornamented

[^352]with brilliant coloura, and at the first glance resemble Cicindela or Elaphri*.
'There, the length of the third joint or the antennæ is triple, or nearly so, of that of the preeeding one. These organs, as well as the legs, are generally slender.

In these, the four first joints of the anterior tarsi in the males are wide, and the penultimate is bilobate.

Coliones, Mac Leay.

This subgenus established by Mac Leay, Jun.-Annul. Javan., I, p. $17, \mathrm{pl} . \mathrm{i}, \mathrm{f} .3$-appears to be allied in many points to Catascopus and the following subgenera. According to him, the labrum is a transverse square, and entire, the emargination of the mentum simple or edentate, and the head almost the length of the thorax. The latter is nearly in the form of a truncated cone, emarginate before, with rounded and slightly bordered sides. The elytra are slightly emarginate. The lobes of the penultimate joint of the anterior tarsi of the male are the largest. The body is somewhat convex. He quotes but a single speeies, the brunneus.

In those, all the joints of the tarsi, in both sexes, are entire.

Monmolyce, Hagemb.

The body strongly flattened, foliaeeous, and its anterior half much the narrowest ; head very long, narrow, and aimost cylindrieal; thorax oval and truncated at both ends; elytra greatly dilated, and areuated exteriorly,-their internal side, near the extremity, profoundly emarginate.

The only speeies known-phyllodes-is found in Java, and forms the subject of a Monograph published by M. Hagembach.

[^353]Sphodrus, Clair. Bon.-Lgimosthenus, Bon.-Carabus, Lin.
The body depressed but not foliaceous; head ovoid ; thorax cordiform; clytra without any exterior dilatation or internal emargination.

Scveral of these Insects live in cellars *.
The last of the Simplicimani are distinguished from all the others by the internal dentations of the terminal hooks of their tarsi.

All the exterior palpi, of some, are filiform; their thorax is either in the form of a lieart, narrowed and tmincated posteriorly, or in that of a trapezium widening from before backwards.
Ctenipus, Lat. (a)-Lemosthenus, Bon.

The body straight and elongated, thorax cordiform, narrowed and truncated posteriorly; third joint of the antennæ elongated \dagger.

Calatius Bon.

The body oval and arcuated above; thorax square or trapezoidal, wider posteriorly \ddagger.
The labial palpi of the uthers have a clavate termination, in the form of a top or reversed cone, and a nearly orbicular thorax.
Taphria, Bon.--Stnuciuve, Gyll.

Emargination of the mentum bidentate, as in the preceding subgenera§.
5. The fifth section, that of the Patelimani, is only distinguished from the fourth, by the mamer in which the two anterior tarsi of the males are dilated; the first joints-usually the three first, then the fourth, and sometimes only the two first-all of which are sometimes square, and at others only in part, the remainder being cordiform, or resembling a reversed tiangle, but always rounded at their extremity, and not terminated as in the preceding sections by acute angles, form an orbicular palette or long square, the inferin surface of which is usually furnished with brushes or crowded papillæe, without any intermediate vacancy.

The legs are generally slender and elongated, and the thorax is frequently narrower than the abdomen, throughout its whole length. Most of them frequent the shores of rivers, or other aquatic localitics.

[^354]We divide the Patellimani into those in which the head becomes insensibly narrowed behind, or at base, and those where this contraction occurs suddenly behind the eyes in such a manner that the head seems to be supported by a kind of neck or pedicle.

The first also may be subdivided into two.
Some, in which the mandibles always terminate in a point, and the palette of whose tarsi is always narrow, elongated, and formed by the three first joints, the second and third square, have the labrum entire or nearly unemarginatc, and one or two teeth in the emargination of the mentum; the anterior extremity of the head has no border.

Here, as in the preceding ones, the under part of the palettes of the tarsi present two longitudinal series of papillæ or hairs, with an intermediate space, and not a compact and continuous brush. The exterior palpi are always filiform and terminated by an almost cylindrical or ovoido-cylindrical joint.

Sometimes the body is strongly flattened.

Dolichus, Bon.

The Dolichi approach the last sulgenera, and are removed from all the others by the hooks of their tarsi, which are dentated beneath. Their thorax is cordiform and truncated *.

> Platinus, Bon,

Similar to Dolichus in the form of the thorax, but the tarsial crotchets are simple.

The wings are absent in some, or are imperfect \dagger (a).

Agonux, Bon.

Where the thoras is almost orbicular $\ddagger(b)$.
Sometimes the body is of an ordinary thickness, the thorax beirg always in the form of a truncated heart.

[^355]
Anchomenus, Bon.* ${ }^{*}$ (a)

There, the inferior surface of the tarsial palette is furnished with a compact and continuous brush. The exterior palpi, those of the labium in particular, are terminated in several by a thicker or wider joint in the form of a reversed triangle.

We will commence witl those in which they are filiform.

> Calfistus, Bon.

The tooth in the emargination of the mentum entire; exterior palpi terminated by an oval joint pointed at the end; thorax in the form of a truncated heart \dagger.

Oodes, Bon.

Similar to Callistus in the tooth of the emargination of the mentum, but the last joint of the external maxillary palpi is cylindrical, whiie that of those attached to the labium forms a truncated oval. The thorax is trapezoidal, narrower before, and as wide posteriorly as the base of the abdomen \ddagger.

Chlenius, Bon.

Tooth of the emargination of the mentum bifid; exterior maxillary palpi terminated by an almost cylindrical joint, somewhat smaller at base ; last joint of the labial palpi in the form of a reversed and elongated cone.

The Carabe savonnier of Olivier, Col. III, 38, iii, 26, which is used in Senegal in lieu of soap, belongs to this subgenus§.
In the following, the exterior palpi are terminated by a wider, compressed joint, in the form of a reversed triangle or securiform, and more dilated in the males. The tooth of the emargination of the mentum is always bifid.

Epomis, Bon.
To which we will unite the Dinodes, in which the last joint of the palpi is somewhat more dilated $\|$.

* Carabus prasinus, Fab.; Panz., Ib., XVI, 6 ;-C. albipcs, Fab. ; Panz., Ib. LXXIII, 7 ;-C. oblongus, Fab.; Panz., Ib., XXXIV, 3.
+ Carabus luneatus, Fab.; Panz. Faun. Inscet. Germ. XVI, 5; Dej. Spec. II, p. 296.
\ddagger Carabus helopioides, Fab. ; Panz., Ib., XXX, ii. See Dcj. Spec. II, p. 374.
§ C. cinctus, Fab. ; Herbst. Archiv., XXIX, 7 ;-C. festivus, Fab. ; Panz. Ib., XXX, 15 ;-C. spoliahus, Fab.; Panz. Ib. XXXI, 6 ;-Chlonius velutinus, Dej.; Carabus cinctus, Oliv., Col. III, 35, iii, 28 ;-C. holoscriccus, Fab. ; Panz., Ib. XI, 9, a;—C. nigricornis, Fab.; Panz. Ib., XI, 9, b. c;-C. agrorum, Oliv., Ib. XII, 144 ;-C. 4 -sulcatus, Payk., and several other exotic species of Fabricius, such as the tcnuicollis, oculatus, posticus, micans, quadricolor, sligma, ammon, carnifcx, \&c. See the Spec. Dej. II, p. 297, ct scq. Add the C. rufilabris, laticollis, rufipes, cobaltinus, nemoralis, lricolor, \&c. \&c.

II Dinodes rupifes, Bon. ; Dej. Spec. II, p. 372 ; Čarabus azureus, Duft.; Chlenius azureus, Sturm., V. cxxvii;-Epomis circumscriphus, Dej. Spec. II, p. 369 ; Carabus cinctus, Ross., Faun. Etrusc., I, iv, 9 ;-Carabus craesus, Fab.
us (a) Add the Anch. gagates, sinuatus, corvinus, clongatulus, extensicollis, thoracicus, \&c. \&c.-ENG. Ed.

The genus Lissauchenus of Mac Leay, Jun.- Annul. Javan., I, i, l-appears to me to differ but slightly from the preceding.

The others, most commonly, have their mandibles very obtuse, or as if truncated and forked, or bidentated at the extremity. Their labrum is distinctly emarginate or bilobate, and the anterior portion of the head from which it arises, is bordered and frequently concave. There is no tooth in the emargination of the mentum. The tarsial palette of several is broad and almost orbicular.

The mandibles of these latter terminate in a point without any tooth or emargination under it.

I'he tarsial palette of the males is composed of the three first joints.

> Rembus, Lat.

The labrum bilobate; exterior maxillary palpi filiform; last joint of the labial palpi somewhat enlarged, and in the form of a reversed and elongated cone.

The head, in comparison with the width of the body, is narrow; the antemnæ and palpi are slender*.

Dicelus, Bon.

The labrum simply emarginate with an impressed longitudinal line in the middle; the last joint of the exterior palpi is the largest and almost securiform.

The body nearly forms a parallelopiped; the head is almost as wide as the thorax, and the elytra are strongly striated and frequently carinated laterally. The mandibles are arcuated infericrly on the internal margin, and then as if truncated and terminated in a point. The species known are from America \dagger.

Those have very obtuse mandibles, emarginate at their extremity, or unidentate beneath.

Licinus, Lat.

The last joint of the exterior palpi largest and almost securiform ; tarsial palette of the males broad, suborbicular, and formed by the two first joints, the first of which is very large \ddagger.
Badister, Clair.-Amblychus, Gyll.

Last joint of the exterior palpi oval ; that of the labial palpi merely somewhat thicker, and frequently terminating in a sharp point; tarsial palette forming a long square, and composed of the three first joints§.

[^356]The last of the Patellimani, or those which constitute the second general division, have their head suddenly narrowed behind the eyes, and as if distinguished from the thorax by a sort of neck or pedicle. It is frequently small, with very protuberant eyes. In several, the ligula is short, and projects but little beyond the emargination of the mentum.
Here, the emargination is edentate; the mandibles are tolerably stout, and the labrum is strongly emarginate and almost bilobate. Such is the

Prlecium, Kirby.

Last joint of the exterior palpi securiform; ligula short; body oblong, larrowest before ; the four first joints of the anterior tarsi of the males in the form of a reversed triangle, furnished with brushes beneath; the fourth is bifid.

The species of this and the following subgenus are peculiar to South America*.
There, the emargination of the mentum presents a tooth; the mandibles are usually small and moderate in the others. The labrum is entire or but slightly emarginate.
Some of them approach Pelecium in their exterior palpi, which are also terminated by a larger securiform joint, or one in the form of a reversed triangle. Their head is always small, and the thorax orbicular or trapezoidal.

Cynthia, Lat.-olim Microcephalus, Id.

The first joints of the anterior tarsi of the males in the form of a reversed triangle and forming the palette: they are provided with a brush underneath, and the fourth is bifid.

The head and the mandibles are stouter in proportion than in the ensuing subgenus. The exterior palpi are less elongated but more compressed at the end. The body is oval, with a trapezoidal thorax wider posteriorly, plane, bordered, and sulcated longitudinally \dagger.

Panageus, Lat.

The palette of the tarsi peculiar to the males formed of the two first joints only. The head is very small compared to the body, and the eyes globular. The mandibles, maxillæ and ligula are also very small. The thorax is most generally suborbicular \ddagger.
In the following subgenera, which terminate this section, the exterior palpi are filiform; the last joint of the maxillary palpi is almost

[^357]cylindrical, and that of those attached to the labium, oval or almost like a reversed and elongated cone. The first subgenus, the

Loricera, Lat.,

Is very remarkable. The antennæ are setaceous and curved, with the second and four following joints shorter than the last, and furnished with fasciculi of hairs. The mandibles are small. The maxillæ are hearded externally. The labial palpi are longer than those of the maxillæ. The eyes are very prominent. The thorax is nearly orbicular or cordiform, and widely truncated, with its posterior angles rounded. The three first joints of the anterior tarsi are dilated in the males*.

Patrobus, Meg.

The antenne straight, filiform, without the fasciculi of hairs, the fourth and following joints equal and almost eylindrical: the mandibles of an ordinary size; the labrum forming a transverse square, with an anterior edge straight. The length of the labial palpi does not exceed that of those attached to the maxillæ. The thorax is cordiform and truncated, with the posterior angles acute. The two first joints of the anterior tarsi are alone dilated in the males. The eyes are less prominent than in the preeeding subgenus, and the neck is not so narrow \dagger.

We will now pass to those Carabici whose anterior tibir have no emargination on the internal side, or whieh present one that begins elose to their extremity, or that does not extend on their anterior faee, and forming a mere oblique and linear eanal. The ligula is often extremely short, terminated in a point in the middle of its summit, and aceompanied by pointed paraglosse. The mandibles are robust. The last joint of the exterior palpi is usually larger, compressed into the form of a reversed triangle, or securiform in some, and almost into that of a spoon in others \ddagger. The eyes are prominent. The elytra are entire or simply sinuous at their posterior extremity. The abdomen, compared with the other parts of the body, is voluminous. They are gencrally large Insects, are ornamented with brilliant metallic eolours, run very fast, and are extremely carnivorous. They constitute a particular seetion, the sixth of the genus, whieh we will name the Grandipalpi§.
A first division is thus characterized: the body always thick and apterous; labrum always bilobate; last joint of the exterior palpi always very large; emargination of the mentum edentate; internal

[^358]路 (a) The only species of the genus.-Eng, Ed.
side of the mandibles entirely (or nearly so) dentated throughout its length.

Herc, the mandibles are arcuated, strongly dentated throughout their length, and the lateral and exterior extremity of the two first tibiæ is prolonged into a point. The last joint of their exterior palpi forms a longitudinal semi-oral with the internal side arcuated; the internal maxillary palpi arc straight; their last joint is much larger than the first, and almost ovoid. The mentum is profoundly emarginate. Such are the charaeters of

Pamborus, Lat.

Of which but a single species, the P. alternans, Cuv. Règ. Anim. V, xiv, 2; Dej., Spec. II, p. 18, 19, is yet known. It was brouglit from New Holland by Messrs. Peron and Lesueur.
There, the mandibles arc straight, simply arcuated, or hooked and dilated at the extremity. The lateral cxtremity of the two anterior tibire is not prolonged into a spine. The last joint of the exterior palpi is much larger than the preceding ones and concave above, alinost in the form of a spoon. The mentum is deeply emarginate, longer in proportion than in the following subgenera, thickened on the sides in most of them, and as if longitudinally divided into three spaces. The elytra are soldered, carinated laterally, and embrace a part of the sides of the abdomen. These Carabici compose the genus Cychrus of Paykull and Fabricius, since modified as follows:

Those in which the tarsi are similar in both sexes, the thorax is cordiform and truncated, narrower posteriorly, or almost orbicular, and not raised along the sides, with the postcrior angles null or rounded, alonc retain the generic denomination of

> Cychrys, Lat. Dej.*

Those, in which the three first joints of the anterior tarsi of the males are dilated, but slightly, and in the form of a palette, and in which the thorax forms a trapezium, wide, emarginated at both ends, with the sides turned up, and with acutc and recurved posterior angles, constitute another generic section, that of

Scaphinotus, Lat. Dej. \dagger

Finally, other species resembling the Cychri, but in which the two first joints of the anterior tarsi of the malcs arc generally dilated, and form a patella with the third, which is less so, and cordiform, constitute the

> Spheroderus, Dej.

The species of these two last subgenera are peculiar to America.
In the second division of this section, we find Carabici with a thick

[^359]body, and most commonly apterous, like the preceding, but in which the middle of the emargination of the mentum is provided with an entire or bifid tooth, and where the mandibles are, at most, armed with one or two teeth, situated at their base.

The thorax is always in the form of a truncated heart. The abdomen is most frequently oval.

Some of them, in which the labrum is occasionally entire, have all the tarsi identical in both sexes,

Tefflus, Leach.

The Teffli are the only ones of this division in which the labrum is entire or unemarginate.
T. Megerle; Carabus Megerlei, Fab.; Voet., Col. II, xxxix, 49. Nearly two inches in length; all black; thorax lugose; elytra divided by longitudinal ribs with elevated points in their sulci, last joint of the exterior palpi very large, elongated and securiform, the internal edge curvilinear; tooth in the emargination of the mentum small; third joint of the antennæ at least thrice the length of the second.

Procerus, Meg.

The labrum bilobate. All the known species are large, entirely black, or black underneath, and blue or greenish above with extremely rough elytra. They usually inhabit the mountains in the East and South of Europe, and those of Caucasus and Lebanon *.

The others, in which the labrum is always divided into two or three lobes, have the anterior tarsi very sensibly dilated in the males.

These latter are always destitute of wings. Their mandibles are smooth, and at their base, or that of one of them, we find one or two teeth. The thorax is cordiform and truncated, sub-isometrical, or longer than it is broad. The abdomen inclines to an oral.

Procrustes, Bon.

The labrum trilobate; tooth in the emargination of the mentum bifid \dagger.

> Carabus, Lin. Fab.-Tachypus, Web.

The labrum simply emarginate or bilobate; tooth of the emargination of the mentum entire.

Count Dejean describes one hundred and twenty-four species, which he has arranged in sixteen divisions. The first thirteen comprise those whose elytra are convex or arched, and the three last, those in which they are plane, and of which M. Fischer forms two genera

[^360]Plectes and Cechemus*, fommed on the iclative proportions of the head and thorax. The nature of the surface of the elytra furnishes the other secondary claracters of theso divisions, and such was the method of Messrs. Clairville and Bonclli.

The greater number of these species inhahit Europe, Cancasus, Siberia, Asia Minor, Syria, and the north of Africa to the thirtieth degree of north latitude. Sume few are also found at the two cxtremities of Amcrica, and it is probable that others may be found in the intermediate mountains (a).

Of those with a convex and oblong body, the most common is the C. aur chus, L.; Panz. Faun, Insect. Germ., LXXXI, 4, commonly called the Jardinier. It is about an inch long, golden green above, black underneath; the first joints of the antennæ and the legs fulvous; clytra sulcated, unidentated on the exterior margin near their extremity, particularly in the female, with three smooth ribs on each.

This Insect disappear's in the south of Europe, or is only found there in the mometains ψ.
Those are most generally furnished with wings. Their mandibles are transversely striated, and without any visible tectlo on the internal side. The thorax is transversal, dilated equally, rounded laterally, and without any prolongation at the posterior angles. The abdomen is almost squarc. Their exterior palpi are less dilated at the extremity. The maxillæ are suddenly curved at the extremity.

[^361]The second joint of the antennæ is short, and the third elongated. The four posterior tibix are arcuated in several males.

Calosoma, Web. Fab.-Calosoma, Callisthenes, Fisch.

This genus is much less numerous than the preceding, but the species extend from the North to the Equator.
C. sycophanta; Carabus sycophanta, L.; Clairv., Entom. Helv. II, xxi, A. From eight to ten lines in length; violet black; clytra golden-green or brilliant cupreous, and finely striated, each with three series of impressed and distant points.
Its larva inhabits the nest of the processionary caterpillars, on which it fecds, consuming several of them in the course of a day; when filled to satiety, it loses all activity, and other larvæ of the same species attack and devour it. It is black, and frequently found running about on the ground or trees, particularly the oak *.
The third and last division of the Grandipalpi presents an ensemble of characters which elearly distinguishes it from the preceding ones. Most of the species that compose it are winged. The anterior tarsi of the males are always dilated. The labrum is entire. The exterior palpi are merely somewhat dilated or thicker at the extremity, with the last joint in the form of a reversed and elongated cone. The internal side of the mandibles presents no tooth worthy of notice ; that in the middle of the emargination of the mentum is bifid. The middle of the superior margin of the ligula is clevated into a point. On the internal side of the anterior tibiæ of several is a short emargination, or one of the two spurs is inserted higher than the other, so that in this respeet these Carabici are ambiguous, and might be placed, as well as those of the ensuing scetion, direetly after the Patellimani \dagger. They usually frequent wet plaees. Some of them, such as Omophron, appear to connect this tribe with the following one or the Aquatic Carnivora.

Some, in which the body is flattened, or convex and suborbicular, are provided with eyes of an ordinary size; their antennæ are linear, and generally consist of elongated and almost cylindrieal joints; the external sides of the maxillix are bearded, and the two internal spines of the two anterior tibix on a level at their origin ; these tibice merely have a simple longitudinal canal.
Sometimes the body is a flattened oblong oval, with a cordiform and truncated thorax posteriorly narrowed. The scutellum is disdilated. The three first joints of the anterior tarsi of the males are dilated.

[^362]
Pogonophorus, Lat. Gyllen.-Leistus, Frol. Clairv"-Carabus, Fab.-Manticora, Panz.

Remarkable for the elongation of the exterior palpi, those of the labium being longer than the head, for the mandibles, the external side of which forms a salient and flattened angle, and for the projecting ligula terminated by three spines. The head is suddenly narrowed belind the eyes, and the joints of the antennæ are long and slender. All the specics known belong to Europe*.

Nebria, Lat.

The Nebrix only differ from the Pogonophori in negative charactcrs, or in the much greater shortness of the palpi; in the want of dilatation in the external side of the mandibles, which merely forms a very small auricle, not extending beyond the base of the jaws; and in the absence of the strangulation, or neck, in the head. The antenne are also proportionably thicker, and composed of shorter joints \dagger.

Alpews, Bon.

Mere apterous Ncbrix, somewhat more oblong, that especially inhabit high mountains \ddagger.

Sometimes the body, arched or convex above, is nearly obicular, the thorax very short, transversal, strongly emarginate anteriorly, and wider and lobulate posteriorly. The scutellum is not apparent. The first joint alone of the two anterior tarsi of the males-and sometimes that of the intermediate ones as in the O. mélangé-is sensibly dilated.

Omophron, Lat.-Scolytus, Fab.

This subgenus is composed of a small number of species found on the shores of rivers, \&c. in Europe, North America, Egypt and the Cape of Good Hope. M. Desmarest has described the larva of the most common species. Its form approaches that of the larva of a Dytiscus. The anatomical observations of M. Dufour appcar to confirm this affinity §.

The others, in which the body is tolcrably thick, have large and very prominent cyes; anteunæ that are slightly enlarged near the extremity, and composed of short joints, mostly in the form of a top

[^363]or of a reversed cone; one of the two spurs of the internal extremity of the two anterior tibize is inserted higher than the other, with a notch between them. The four or three first joints of the anterior tarsi of the males are in general but slightly dilated. The palpi are never elongated. They are shore Insects, and peculiar to Europe and Siberia.

Sometimes the labrum is very short, transversal, and terminated by a straight line. The last joint of the exterior palpi is almost obconical, thicker and truncated at the extremity. The mandibles advance considerably beyond the labrum. The anterior tarsi of the males are sensibly dilated.

Elaphrus, Fab.-Elaphrus, Blethisa, Pelophila, Dej.
In some of them, and the lasgest-Bletlisa, Bonelli-the thorax is wider than it is long, plane, bordered laterally, almost square and slightly narrowed towards the posterior angles.

Here, the three first joints of the anterior tarsi of the males are strongly dilated and cordiform. They are the Pelophila of Dejean *.

There, the four first joints of the anterior tarsi of the males are slightly dilated-they form the Blethisa, Dejean \dagger.

In the others, the thorax is at least as long as it is wide, convex, cordiform and truncated. The body is proportionably more convex than in the preceding subgenera. The four first joints of the anterior tarsi are slightly dilated in the males. These latter alone compose his genus Elaphrus.
E. uliginosus; C.uliginosus, Fab.; Elaphrus riparius, Oliv., Col. II, 34, I, I, A-E. About four lines in length, of a blackish bronze, with numerous puncta; little depressions or fossulæ on the front and thorax, and others with a violent bottom and elevated contour joined to each other on the eiytra; tarsi bluishblack; tibiæ sometimes of the latter colour and sometimes russet. T'hese latter individuals have been considered as a distinct species-cupreus-by M M. Megerle and Dejean. It is rare in the environs of Paris, but common in other parts of France, and in Germany, Sweden, Sc.
E. riparius, Fab., Clairv., Entom., Helv., II, xxv, A, a; Cicindela riparia, L.; Elaplıus paludosus, Oliv., Col. II, 34, 1, 4, b; Panz., Famn. Insect. Germ. xx, 1. About a third less than the uliginosus; above, very finely dotted with dead-cupreous, mixed with green; circular green impressions with papillated centres arranged in four lines, and a polished, shining cupreous spot on each elytron near the suture. Common in the environs of Paris \ddagger.
Sometimes the labrum is almost semicircular and rounded ante-

[^364]riorly; the exterior palpi terminate by a sub-oval joint, narrowed into a point at the extremity. The mandibles project but little beyond the labrum. Tarsi identical in both sexes.

The anterior extremity of the head forms a small snout. The body is plane above, and the thorax trapezoidal, almost as wide as the head, and slightly narrowed posteriorly.

Notiophilus Dumer.-Elaphrus, Fab. Oliv.*

Our second gencral division of this tribe, or that of the Subulifalpi, is distinguished from the preceding one by the form of the exterior palpi, of which the penultimate and obconical joint is united to the following, forming with it a common oval or fusiform body, terminated, cither insensibly or suddenly, in a point, or in the manner of an awl. The internal side of the two anterior tibize is always cmarginated. These Insects, both as iespects their form and mode of living, are very similar to the preceding ones.

Bempidion, Lat.-Bembidium, Gyll. Dej.

Penultimate joint of the exierior palpi large, inflated, and turbinated; the last much more slender, very short or acicular ; first joint of the two anterior tarsi dilated in the males.

Messrs. Ziegler and Megerle have divided this subgenus into several others t, but without giving their character or depending as it would appear, on the changes in the form of the thorax.

[^365]The following species is placed by Count Dejean among his Tachypi.
B. flavipes; Panz. Faun. Insect. Germ. XX, 2; Cicindela flavipes, L. Very similar to the Elaphrus riparius; two lines in length; thorax rather narrower than the head, cordiform, truncated, and as long as it is wide; eyes large; the body blackishgreen above, bronzed beneath and mottled with cupreous-red; two large impressed puncta on each elytron near the suture; base of the antennæ, palpi and legs yellowish. Very common in the environs of Paris*.

Trechus, Clairv.

The last joint of the exterior palpi, from its thickest part to its origin, as long as the preceding or longer, so that the two united make a fusiform body \dagger.

The Pentamerous Aquatic Carnivora form a third tribe, that of the Hydrocanthart, Lat. The feet of these Insects are fitted for natation; the four last are compressed, ciliated or laminiform, and the two last at a distance from the others; the mandibles are almost

[^366]entircly covered ; the body is always oval, the eyes but slightly prominent, and the thorax much wider than long. The terminal hook of the maxillæ is areuated from its base; those at the cxtremity of the tarsi are often unequal.

They eompose the genera Dyliscus and Gyrinus of Gcoffroy. They pass their first and last stage of existenee in the fresh and placid waters of lakes, marshes, ponds, \&cc. They are good swimmers, and rises oceasionally to the surfaee of their liquid abodes in order to respire ; this they easily effeet by keeping their head motionless, and permitting themselves to float. Their body being reversed, they elevate its posterior extremity a little above the water, raise the extremity of their clytra, or depress the end of the abdomen, in order that air may enter the stigmata, whieh are eovered by them, whence it finds its way to the tracheæ. They are exeessively voracious, and feed on small animals inhabiting the same element, which they never leave exeepting during the night, or at its approaeh, When taken from the water they diffuse a nauseating odour. They are frequently attraeted into houses by the light of eandles, \&c.

Their larvæ have a long and narrow body composed of twelve rings, the first of whieh is the largest; a stout head, provided with two powerful mandibles, eurved into an arc, and perforated near the point; small antennæ, palpi, and six simple approximated eyes on eaeh sidc. They have six tolerably long legs, frequently fringed with hairs, and terminated by two small nails. They are active, earnivorous, and respire either by the anus or by a kind of fins resembling branchir. When about to enter into thcir pupa state they leave the water.

This tribe consists of two prineipal gencra : -

Dytiscus, Geolf.

The Dytisci have a filiform antennæ longer than the head, two cyes, the anterior legs shorter than the following ones, and the last most commonly terminated by a compressed tarsus ending in a point*. By means of their legs fringed with long hairs, the two last particularly, they are enabled to swim with great velocity. They dart upon other Inscets, aquatie Worms, \&e. In most of the males the three first joints of the four anterior tarsi are widened and spongy

[^367]underneath; those of the first pair partieularly are very remarkable in the larger slecics, these thrce joints forming there a large palette, the inferior surface of which is covered by little bodies, some in the form of papille, and uthers, larger, in that of cups or suckers, \&e. Sime of the females are distingushed from their males by their suleated elytra. The body of the larva is composed of from eleven to twelve annuli, and covered with a squamous plate; this larva is long, ventricose in the middle, and slender at each end, partieularly behind, where the last amuli form an elongated cone furnished on the sides with a fringe of floating hairs, with whieh the animal acts on the water, and propels its body forwards; the latter is usually terminated by two conical, bearded and moveable filaments. Between them are two small cylindrical bodies. perforated at their extremity by a hole, which are so many air-ducts, and in whieh the two trachere terminate; stigmata, however, are observed on the sides of the abdomen. The head is large, eval, attached to the thorax by a neek, and furnished with strongly arcuated mandibles, under the extremity of which De Geer perceived a longitudinal slit, so that, in this respect, these organs resemble the mandibles of the larva of the Myrmelcon, and serve as suckers; the mouth, however, is provided with maxille and a labium with palpi. Each of the three first annuli bears a pair of tolerably long legs, the tibire and tarsi of which are bordered with hairs, which afford them additional aid in swimming. The first ring is the largest or longest, and is defended abore as well as underneath by a squamous plate.

These larræ suspend themselves on the surface of the water by means of two lateral appendages at the extremity of their body, which they keep above it. When they wish to change their position, they eommunicate a sudden vermieular motion to their body, and strike the water with their tail. They feed more particularly on the larva of the Libellulæ, and those of the Culiees and Asclli. When the period of their metamorphosis has arrived, they issue from the water, and having gained the shore penetrate into the earth, which must, however, be constantly moistencd, or very humid. They then excarate an oval carity, and shut themselves up in it.

According to Roesel, the eggs of the D.marginalis are hatched from ten to twelve days after they are laid. In four or five days after this epoeh, the larva is already fire lines in length, and undergoes its first change of tegument. The second ensues at the expiration of a similar period, and the animal is then double its former size. Its final length is troo inches. They have been observed, in summer, to enter into their pripa state at the end of fifteen days, and to become perfeet Insects in fiftecn or twenty more. Besides the cloaca of the Insects of this family, the Dytisci have a tolerably long cæeum, which is pereeptible even in the larva.

This great genus is subdivided as follows:
Some lave antenne composed of eleven distinct joints, the exterior palpi filiform or somerhat larger at the extremity, and the base of their posterior feet as well as that of the others exposed.

Sometimes the thickness of the antennee gradually diminishes from
their origin to the extremity; the last joint of the labial palpi is simply obtuse at the end and unemarginate. Such is

Dytiscus, proper.

Where all the tarsi are composed of five very distinct joints, of which the three first of the two anterior ones are very wide, forming, collectively, a palette, cither oral and transverse, or orbicular.
D. latissimus, L.; Panz. Faun. Insect. Gcrm. LXXXVI, . . Alout an inch and a half long, and casily distinguished by the compressed and trenchant dilatation of the exterior margin of the elytra, the border of which is yellowish; thorax margined all round with the same colour; clytra sulcated and carinated in the female. From the department of Vosges in the north of Europe and from Germany.
D. marginalis, L.; Panz. Ib. 3. About a fourth smaller; a yellowish border all round the thorax, and a line of the same colour on the exterior and non-dilated margin of the elytra; those of the female suleated from their base to about two-thirds of their length.

Fabricius says that if laid on its back, it soon regains its natural position by jumping.

Esper preserved a D. marginalis for threc years and a half, in perfect health, in a lurge glass jar. Every week, and sometimes oftener, lie threw into the vessel a piece of raw beef about the size of a filbert, on which it darted with great avidity, and then completely exhausted its hood by suction. It can go without food for at least four weeks. It kills the Hycrophilus piceus. althongh double its own size, by piereing it between the head and thorax, the only part of the bedy that is unarmed. According to Esper, it is affected by atmospheric changes, and indicates them by the height at which it remains in the jar.
D. Roselii, Fab.; Ros., Inscet., II, Aquat., Class I, ii. Narrower, or more oral and more depressed than the preceding* ones; extcrior margin of the thorax and elytra yellowish; the latter fincly striated in the femalc. Environs of Paris, and Germany.
D. serricornis, Payk., Nor. Acad. Śc. Stock., XX, i, 3. Remarkable for the anomalons form of the antenne of the male, the four last joints of which form a compressed and serrated mass *.

[^368]
Colymbetes, Clairv.

All the tarsi composed of five very distinct joints; but the four anterior, in the males, have the three first equally dilated, constituting, collectively, a small palette forming a long square; the antennæ, at least the length of the head and thorax. 'I'he body is perfectly oval, and wider than it is high; the eyes are not protuberant, or but very slightly so * (a).

Hygrobia, Lat.-Hydrachna, Fab. Clairv.-Pellobrus, Schuenh.

The tarsi also composed of five distinct joints, the four anterior of which are almost equally dilated at base, in the males, into a little palette forming a long square; but the antennæ are shorter than the head and thorax; the body is ovoid and very thick in the middle; eyes prominent \dagger.

Hydroporus, Clairv.-Hyphydrus, Schucnh.

The four anterior tarsi nearly similar, and spongy underneath, in both sexes, composed of but four distinct joints, the fifth being deficient or very small and concealed, as well as a part of the last, in a deep cleft in the third.

These Insects have no apparent scutellum $\ddagger(b)$.
aciculatus, Ib. III, 30 ;-D.larigatus, Ib. 23 ;-D.tripunctatus, Ib. 24 ;-D. mificollis, Ib., II, 20 ;-D. viltutus, Ib., I, 5 ;-D. griseus, Ib., II, 12 ;-D. sticticus, Ib., II, 11;-D. circumflexus, Fab. Of Ameriean species the D. fimbriolatus, rerticalis, mediatus, teniolis, \&c.

* D. fuscus, Panz., Faun. Insect. Germ., LXXXYI, 5 ;-D. cinercus, Fab.; Panz., Ib., XXXI, 2 ;-D. zonatus, Fab.; Panz., Ib., XXXYIII, 3 ;-D. bipunctatus, Fab.; Panz., Ib., XCI, 6 ;-D. fenestratus, Fab. ; Panz., Ib., XXXVIII, 16 ; D. clualconatus, Fab. ; Panz., Ib., 17 ;-D. ater, Fab. ; Panz. Ib., 15 ;-D. guttatus, Payk. ; Panz., Ib., XC, 1 ;-D. fuliginosus, Fab. ; Panz., Ib., XXXYIII, 14 ;D. bipustulatus, Fab. ; Panz., Ib., CI, 2 ;-D. stagnalis, Fub.; Panz., Ib., XCI, 7 ;-D. transversalis, Fab. ; Panz., Ib., LXXXVI, 6 ;-D. abbreriatus, Fab. ; Panz., Ib., XIV, I;-D. muculatus, Fab.; Panz., Ib., 7 ;-D. agilis, Fab.; Panz., Ib., XC, 2 ;-D. adspersus, Fab. ; Panz., Ib., XXXVIII, 1 S ;-D. minutus, Fab. ; Panz., XXVI, 3,5 ;-D. Lcendcr, Oliv., Ib., III, 25 ;-D. rarius, Oliv., Ib., II, 17 ;D. Limaculatus, Oliv., Ib., 18. Sce Clairv., Entom. Helvet. II, genus Colymbetes.

Certain small species without any distinct scutellum, and in which the anterior tarsi of the males are but slightly dilated, compose the genus Lacophilus of Leach, who cites the following :-D. hyalimus, Marsh ;-D. intcrouptus, Panz. ?-D. minutus, L. ;-D. murmoreus, Oliv. Sce his Zool. Miscell. III, p. 72.
\uparrow Hydrachan Mcrmanni, Fab. ; Lat. Gencr. Crust. et Insect., I, vi, 5 ; Clairv., Entom. Helv. II, xxvii, A, a ;-II. uliginosu, Clairv., Ib., B, b.

These Insects with the Halipli, in the system of Leach-Zool. Miscell. p. 68 form a particular group, the characters of which are: a scutcllum; all the legs adapted for walking, with five joints to all the tarsi and two terminal hooks to the last.

The Hygrobix have their exterior palpi somewhat enlarged at the end ; two stout and approximated spurs at the extremity of the tibix, and their anterior tarsi suseeptible of being doubled under the tibir to which they are annexed.
\ddagger In the preceding divisions, some small species excepted, it is very apparent.
if (a) Add to the species of Colymbetes the C. erythroptervs, fencstralis, ambiguns, seriatus, nitidus, biccrinatus, vonustus, glyphicus, obtusatus, \&e. Of the G. Lacophilus the L. maculosus and proximus.-Eng. Ed.
(b) Add of Amcrican species the Hydrop. undulatus, oppositus, miger, catascopium, lucustris, parallehus, madulatus, \&c.-ENG. ED.

We might separate from them some species* in which the body is almost globular, and where the last joint of the four anterior tarsi is very small and projects but little beyond the preceding oneHyphydrus, Lat.-The body of the rest is oval, and not so thick \dagger.

Sometimes the antenne are slightly dilated and wider in the middle of their length ; the last joint of the labial palpi is emarginate, and appears forked.

Noterus, Clairv.

No scutel ; tarsi consisting of five distinct joints, and the two first of the four anterior dilated in the males, forming an elongated palette ; first joint of the two anterior tarsi covered by a broad laminiform spur, the part of the pectus bearing the last legs with a deep groove on each side \ddagger.

The others have but ten distinct joints in their antenne; their exterior palpi are fusiform, or have a more slender termination tapering to a point, and the base of the posterior legs is covered with a large shield.

The body is convex and ovoid underneath, as in Hygrobia; but there is no scutel, and all the tarsi are filiform, composed of five almost cylindrical joints, and have nearly the same form in both sexes. 'They are the

> Haliplus, Lat.-Hoplitus, Clair.-Cnemidotus, Illig.§

The second genus of the Hydrocanthari, or the

Gyrinus, Lin.

Comprises those in which the antennæ are clavate and shorter than the head; the two first legs are long and project like arms; the remaining four are compressed, wide, and pinnate. There are four eyes.

The body is oval and usually very glossy. The second joint of the antennæ, which are inserted in a cavity before the eyes, is prolonged exteriorly in the form of an auricle, and the following joints $\|$ are very short, crowded, and united in one almost fusiform and slightly curved mass. The head is sunk in the thorax almost to the eyes, which are large, and divided by a border, in such a way that two are above and two underneath, The labrum is rounded and strongly ciliated before. The palpi are very small, and the

[^369]interior of those attached to the maxillæ are wanting, or are not developed in several, and particularly the larger species. The thorax is short and transversal. The elytra are obtuse and truncated at their posterior extremity, leaving the anus expused, which ends in a point. The two anterior legs are long, slender, folded in two, and when contracted, almost at a right angle with the body: they are terminated by a very short, strongly compressed tarsus, the inferior surface of which, in the males, is furnished with a fine compact brush. The four others are broad and extremely thin, the joints of their tarsi forming little leaffets arranged like a flounce.

The Gyrini are usually smanl, or of a moderate size. They are to be found from the very begiming of spring until the end of autumn, on the surface of staguant waters, and cren on that of the Ocean, where, frequently collected in troops, they appear like brilliant points, swimming and whecling with great agility in all sorts of curves, and in every direction, whence the name of Puce aquatique and Tourniquet given to them by authors. Sometimes they remain motionless, but the instant any one approaches, they cscape by swimming, and dive witl great celerity. Their four last legs serve them as oars, and the two before for seizing their prey. Placed on water, the superior surface of thicir body is always diry, and when they dive, a little bubble of air, resemiling a silvery glolule, remains fixed to its posterior extremity. When scized, a lacteous fluid oozes from their body which spreads over it, and which, perhnps, produces that disagrecable and penetrating cdour they then diffuse, and which remains attached to the fingers for a long time. They copulate on the surface of the water. Sometimes they remain at the bottom clinging to plants: there, also, it is probable they secrete themselves to pass the winter *.
G. natator, L.; Panz., Faun. Insect. (rerm. III, 5; De Geer, Insect., IV, xiii, 4, 19. Three lines in length; oval, glahrous, very glossy ; bronze-black above; black beneath; legs fulvous; scutel triangular, very pointed, somewhat longer than wide; elytra rounded at the extremity, and marked with small impressed puncta in regular and longitudinal lines.

The female lays her eggs on aquatic plants. They are very small, and form littlo yellowish white cylinders. The body of the larva is long, tajering, linear, and censists of thirteen annuli, each of the three first bearing a pair of legs. The head is large, of an elongated oval shape, and much flatened, presenting the same parts as that of the larva of a Dytiscus; but here the fourth and seven following anmuli are furnished on each side with a conical, membranous, flexible filament with bearded edges. The twelfth ring has four similar, but much longer ones, directed more posteriorly. Two very slender tracheæ traverse the whole length of the body, and receive an air vessel

[^370]from each filament. The last ring is very small, and is terminated by four long and parallel hooks. 'This larva inhabits the water, from which it issies in the beginning of August to become a ehrysalis. It encloses itself in a little oval cocoon, pointed at the ends, formed of a material drawn from its body resembling grey paper, which it fixes to the reeds. Very common in Europe * (a).

FAMILY II.

BRACHELYTRA.

In the sceond family of the Pentamerous Coleoptera we find but one palpus to the maxillæ, or four in all ; the antennæ, sometimes of equal thickness, and at others slightly enlarged at the end, are usually composed of lenticular or graniform joints; the elytra are much shorter than the body, which is narrow and elongated, and the coxæ of the two anterior legs are very large; near the anus are two vesicles which the animal protrudes at will.

These Coleoptera compose the genus

Staphylinus, Lin.

The Staphylini have been considered as forming the passage from the Coleoptera to the Forficulce, the first genus of the following order. They also approximate, in some respects, to the Insects of the preceding family, and to the Silphe and Necrophori, (genera of the fourth), in many others. 'Ihey commonly have a large, flattened head, stout mandibles, slort antennæ, a thorax as wide as the abdomen, and the elytra truneated at the extremity, but still covering the wings, which preserve their usual extent. The semi-annuli of the top of the abdomen are as scaly as those of the venter, The vesicles of the anus consist in two conical and pilose points, which are protruded and retracted at the will of the animal; a subtile vapour eseapes from them, which, in some species, has a strong odour of sulphuric ether. M. Leon Dufour, Ann. des Sc. Nat. VIlI, p. 16, has described the apparatus which produces it. The last segment of the abdomen, that which contains the anus, is prolonged and terminates in a point.

[^371]These Insects, when touched, or while they run, elevate the extremity of their abdomen and flex it in every direction. They also use it to push their wings under the elytra. The tarsi of their two anterior legs are frequently broad and dilated, and their coxæ as well as those of the intermediate legs are very large. They are usually found in earth, dung, and excrementitious matters; some live in mushrooms, rotten wood, or under stones; others are only met with in aquatie localities. Some very small ones keep on flowers. They are all voracious, run with great swiftness, and take wing very promptly.

The larva bears a close resemblance to the perfect Insect: it has the figure of an elongated cone, the base of which is occupied by the very large head; the last ring is prolonged into a tube, and is accompanied by two conical and hairy appendages. It feeds on the same matters as the perfect Inseet.

The first stomach of the Staphylini is small and without plicæ; the second is very long and pilose ; the intestine is extremely short *.

It is a very extensive genus, which we will divide into five sections.

In the first, or that of the Fissilabra, the head is completely exposed and separated from the thorax, whieh is sometimes square or semi-oval, and at others rounded, or cordiform and truneated, by a neck or sensible strangulation. The labrum is profoundly cleft and forms two lobes. Such is the

Oxyporus, Fab.

Where the maxillary palpi are filiform, and those attached to the labium are terminated by a very large and lunate joint. The antennæ are large, perfoliate and compressed; the anterior tarsi are not dilated; the last joint and then the second are the longest. They inhabit the Boleti and Agarici.
O. rufus; Staphylinus rufus, L.; Panz. Faun. Insect. Germ., XVI, 19. About three lines in length; fulvous; head, peetus, extremity and interior margin of the elytra, as well as the anus, black \uparrow.

Astrapeus, Grav.

The four palpi terminated by a larger and nearly triangular joint ; anterior tarsi greatly dilated, the first and last joints the longest \ddagger. In the

[^372]
Staphylinus, I'ab. $^{\text {a }}$

Or'the true Staphylini, all the palpi are filiform, and the antennæ are inserted between the eyes, above the labrum and mandibles.

Some, particularly the males, have the anterior tarsi greatly dilated, and the antenne separated at base; the length of the first joint of the latter is equal, at most, to that of a fourth of the whole number. The head is but slightly elongated. In some systems, those species alone which present the above characters, constitute the genus Staphylinus. The S. dilatatus, Fab., Germ., Faun. Insect. Europ., VI, 14, has even been separated from it, to compose another, on account of its antennæ, which form an elongated serrated club. According to the observations of M. Chevrolat, a zealous entomologist, this Insect feeds on caterpillars which it searches for on trees,
S. hirtus, L. ; Panz., Faun. Insect. Germ., IV, 19. Ten lines in length; black; very hairy; superior surface of the head, thorax, and last abdominal annuli covered with thick hairs of a glossy golden-yellow; elytra cinereous-grey, with a black base ; under part of the body bluish-black. North of Europe, France, and Germany.
S. olens, Fab., Panz. ib., XXVII, 1. An inch long; dead black; head wider than the body; wings reddish. Its ova are remarkably large. Very common in the environs of Paris, under stones.
S. maxillosus, L.; Panz. ib. 2. About eight lines in length; black; glossy; head wider than the thorax; great part of the abdomen and elytra cinereous grey, dotted and spotted with black. In earth, dung, \&cc.
S. murinus, Fab.; Panz., ib., LXVI, 16. From four to six lines long; head, thorax and elytra deep bronze, glossy, with dusky spots; scutel yellowish, marked with two atrous spots; abdomen black; greater part of the antennæ reddish. Found with the preceding,
S. erythropterus, L.; Panz., XXVIII, 4. From six to ten lines in length; black; elytra, base of the antennæ, and legs fulvous *.
The others, which are linear, with a head and thorax elongated in the form of a long square, lave their antennæ approximated at base, and strongly geniculate and granose ; their anterior tarsi are usually not at all or but very slightly dilated. The anterior tibiæ are spinous, with a stout spine at the extremity. The labrum is small. They form the genus Xantholimus of some entomologists \dagger.

[^373]
Pinopillus, Grav.

Palpi filiform; but the antennæ inserted before the cyes, outside of the labrum, and near the exterior base of the mandibles *.

Lathrobiun, Grav.-Pederus, Fal.
Palpi suddenly terminated by a pointed and frequently indistinct joint, much smaller than the penultimate; those of the maxille much longer than the labials; the antennæ inserted as in Pinophilus; anterior tarsi strongly dilated in both sexes; length of the last joint of the four posterior tarsi almost equal to that of the four preceding ones taken together \dagger.

In the second section, that of the Longipalpi, where the head is also completely exposed, but the labrum entire, the maxillary palpi are nearly as long as the head, and have a clavate termination formed by the third joint, with the fourth concealed or but slightly visible, and in the figure of a small point, terminating the club when apparent ; the preceding joint considerably enlarged. These Insects live along the shores of rivers, \&c,

Pederus, Fab.
The antennæ inserted before the cyes, either filiform or gradually increasing in thickness, and longer than the head; body long and narrow; mandibles dentated on the internal side, and terminating in a simple joint.
In some of them, Pederus, Lat.-the penultimate joint of the tarsi is bifid \ddagger.
P. riparius; Staphylinus riparius, Fanz., Faun. Insect, Germ. IX, 2. About three lines in length; very narrow and elongated; fulvous; head, pectus, superior extremity of the abdomen and knees, black; elytra blue. Very common in wet sand, under stones, among the roots of trees, \&vc.
In the others, Stilici, Lat.-all the joints of the tarsi are entire \S.

[^374]Evesthetus, Grav.
The antennæ also inserted before the eyes, but hardly longer than the head, and almost entirely moniliform; the body but slightly elongated, and the head as wide as the thorax *.

Stenus, Lat.

The antennæ inserted near the internal margin of the eyes, and terminated in a triarticulated club; extremity of the mandibles forked; large eyes.
S. 2-guttatus; Staphylinus 2-guttatus, L.; Panz. Faun, Insect. Germ., XI, 18. About two lines in length; all black, with a reddish dot on each elytron \dagger.
The third section-Denticrura, Lat.-differs from the second in the maxillary palpi, which are much shorter than the head, and always consist of four distinct joints; the anterior tibir, at least, are dentated or spinous along their exterior side. The last joint of the tarsi, which in most of them are bent under the tibiæ, is as long as all the preceding ones together, or longer; the first, or two first, are usually so small or so concealed that the whole number does not appear to exceed two or three.

The fore-part of the head, and even the thorax, is armed with horns in several males. The antennæ are inserted before the eyes.

Some, whose palpi have a fusiform termination, whose antennæ are mostly granose and gradually enlarge towards the extremity, present but three distinct joints in the tarsi + .

> Oxytelus, Grav.§

The others have filiform palpi, and at least four very distinct joints in the tarsi.

> Osorius, Leach, Dej.

The body cylindrical; all the tibire widened and dentated ; the head as long as it is wide; thorax almost cordifurm, narrowed and truncated posteriorly; the greater part of the antennæ granose, insensibly enlarging towards the extremity, and shorter than the head and thorax; mandibles much shorter than the head, crossing considerably, and terminating in a simple point; mentum large and scutiform,

But a small number of species are known, which are not yet described. From Guiana and Brazil.

[^375]
Zyrophorus, Dalm.-Leptochirus, Germ.-Ireneus, Leach.Oxytelus, Oliv.-Piestus, Grav.

The body depressed; anterior legs only, wider than the rest, dentated exteriorly; head transverse; thorax square; antennæ equal throughout, at least as long as the head and thorax, and composed mostly of oval or cylindrical joints rounded at both ends; mandibles as long as the head, and dentated at the extremity *.

Prognatha, Lat. Blond.-Siagonum, Kirby.

The Prognathæ scarcely differ from the Zyrophori except in their filiform antennæ, composed of elongated joints \dagger.

Coprophilus, Lat.-Omalium, Grav. Oliv. Gyll.

The body still flattened, but all the tibiæ dentated or spinous exteriorly; antennæ much longer than the head, granose, insensibly enlarging towards the end ; mandibles almost lunate, arcuated exteriorly, not sensibly dentated, and their extremity but slightly prolonged \ddagger.

In the fourth section, that of the Depressa, we find a free head, an entire labrum, and short maxillary palpi of four distinct joints; but the tibiæ are simple, or without teeth or spines exteriorly, and the tarsi evidently consist of five joints.

Here the palpi are filiform.
Omalium, Grav.
The thorax as wide as the elytra, wider than the head, and almost forming a transverse square; the angles, or at least those before, rounded, and frequently with a raised lateral margin; the antennæ enlarging towards their extremity \S.

Lesteva, Lat.-Anthophagus, Grav.

Thorax cordiform, narrowed, and truncated posteriorly, almost isometrical, as wide as the head, and narrower than the elytra; the anternæ usually filiform, with elongated joints $\|$.

There the palpi are subulate.

> Micropeplus, Lat.

Antennæ terminating in a solid club, and lodged in fossulæ of the thorax \mathbb{I}.

[^376]
Proteinus, Lat.

Antennæ granose, somewhat perfoliaceous, and larger at the end, but clavate, always exposed, and inserted before the eyes; thorax short; elytra covering the greater part of the abdomen*.

Aleocilara, Grav.

The antennæ inserted between the eyes or near their inferior margin and exposed at base, with the three first joints evidently longer than the following ones, which are perfuliate, the last elongated and conical; thorax nearly oval, or a square rounded at the angles \dagger.

In the fifth section-Microcephala-the head is plunged posteriorly into the thorax, nearly up to the eyes; it is neither separated by a neck, nor by a risible strangulation; the thorax forms a trapezium, and is widened from before backwards.

The body is less elongated than in the preceding section, and approaches more to an ellipsis; the head is much narrower, contracted and projected forwards, and the mandibles are of a moderate size, edentated, and simply arcuated at the point. The elytra, in several, cover rather more than the half of the length of the top of the abdomen. Some live on flowers and mushrooms, and others in dung. Fabricius placed several species among the Oxypori.

Lomechusa, Aleochara, Grav.

No spines on the tibiæ; the antennæ, from the fourth joint, forming a perfoliaceous mass, or elongated and fusiform; palpi subulate; antennæ frequently shorter than the head and thorax ${ }_{\ddagger}^{+}$.

Tachinus, Grav.

Tibiæ spinous; antennx composed of pyriform joints, and insensibly enlarging; palpi filiform §.

[^377]
Tachyporus, Grav.

Similar to Tachinus in the tibixe and antenne, but the termination of the palpi is subulate *.

The genus Callicerus, Gravenhorst, is unknown to me. The Stunosthetus of Megerle, mentioned in the Catalogue, \&c. of Dejean, presents all the characters of a true Pselaphus, and must be suppressed-such also is now the opinion of this last named naturalist.

FAMILY III.

SERRICORNES.

In the third family \dagger of pentamerous Colcoptera, as in the preceding and following families of the same order, we find but four palpi. The elytra cover the abdomen, which, with some other characters, distinguish the Inscets which compose it from the Brachelytra just mentioned. The antenure, with some exceptions, are equal throughout, or smaller at the extremity, dentated, either like a saw or a comb, or even like a fan, and in this respect are most developed in the males. The penultimate joint of the tarsi is frequently bilobate or bifid. These characters are rarely found in the following family, that of the Clavicornes, to which we arrive by such insensible gradations, that to define its limits rigorously becomes a rery difficult matter.

Some, in which the body is always firm and solid, and most commonly oval or elliptical, with partly contractile legs, have the head plunged vertically into the thorax up to the eyes; and the præsternum, or median portion of that thorax, elongated, dilated or reaching to beneath the mouth, usually distinguished on each by a groove
is wide, the muzzle advances, the four posterior tarsi are evidently longer than their respective tibix, appear to form a particular division.

* Oxyporus mefipes, Fab., Panz., Ib., XXVII, 20 ;-O. marginatus, F.; Panz., Ib., 17 ;-O. chrysomelinus, Fab.; Panz., Ib., IX, 14 ;-0. unalis, Fab.; Panz., Ib., XXII, $16 ;-$ - abdominalis, Fab.
+ The Silphe are the only pentamerous Coleoptera in which, as in the preceding oncs, we find an excrementitious apparatus; but it is not binary as in the latter, and the extcrior canal opens directly into the rectum, like the urcthra of birds. From these considerations then it would seem that the Silphæ, as well as other Clavicornes, should come directly after the Brachelytra. Other considerations had led me to a similar approximation.-Sce preface to my Consid. Génér. sur l'Ordre Nat. des Crust., \&c.-According to M. Leon Dufour, who has furnished me with these anatomical remarks, the hepatic ducts of the Buprestides and Enterides, or of my Sternoxi, in number, length, and mode of insertion, resemble those of the Carabici. The Lampyrides and Melyrides, also, have but two hepatic ressels, but there are four in Telephorus, Lycus, and Ptinus. Of all the insects of this (Serricornc) fanily, whose organization he has investigated, he finds the longest alimentary canal in Malachius, Drilus, and Anobium.
in which the antennæ-always short-are lodged, and prolonged posteriorly into a point, which is reccived into a depression of the anterior extremity of the mesosterrum. These anterior legs are at a distance from the anterior extremity of the thorax. They form our first section or that of the Sternoxr.

Others, whose head is enclosed posteriorly by the thorax, or at least covered by it at base, but in which the prosternum is not dilated, and does not project auteriorly in the manner of a chin-cloth, nor is usually* terminated posteriorly in a point received into a cavity in the mesosternum, and in which the body is most commonly either entirely or partially soft and flexible, constitute our second section, that of the Malacodermi.

A third and last, that of the Xrlotregr, will comprise those Serricornes, in which the posterior extremity of the præsternum is not similarly prolonged, but whose head is completely exposed and separated from the thorax by a strangulation or species of neck.

We will divide the Siernoxi into two tribes. In the first or that of the Buprestides, the posterior projection of the presternum is flatened, and not terminated in a laterally compressed point, that is simply received into a depression or emargination of the mesosternum. The mandibles frequently terminate in an entire point, without any fissure or emargination. The posterior angles of the thorax are either but very slightly or not at aH prolonged. The last joint of the palpi is most commonly nearly cylindrical, hardly thicker than the preceding ; the others are globular or ovoid. Most of the tarsial segments are generally wide or dilated, and furnished beneath with pellets. These Insects never leap, a character which eminently distinguishes them from those of the following tribe \dagger : they compose the genus

Buprestis, Lin.

The generic appellation of Richard, given to these Coleoptera by Geoffroy, intimates the richness of their livery. Several of the European species, and many that are foreign to this country, besides their size, are remarkable for a brilliant polished gold colour on an emerald ground; in others, an azure blue glistens over the gold, or

[^378]there is a union of several other metallic colours. Their body, in general, is oral, somewhat wider and obtuse, or truncated before, and narrowed behind from the base of the abdomen, which occupies the greater part of its length. The eyes are oval, and the thorax is short and wide. The scutel small or null. The extremity of the elytra is more or less dentated in many. The legs are short.

They walk very slowly, but fly well in hot and dry weather. When about to be seized, they let themselves fall to the ground. At the posterior extremity of the abdomen of the females is a coriaceous, laminiform, conical appendage, composed of three parts, the last annuli of the abdomen; it is properly an instrument with which they deposit their ova in dry wood, the habitat of their larvæ. Several small species are met with on leaves and flowers; most of the others, however, are found in forests, and wood-yards: they sometimes appear in houses, where they have been transported, in wood, in the state of a larva or chrysalis.

Sometimes the antennæ are at most dentated like a saw. The intermediate joints of the tarsi are in the form of a reversed heart, and the penultimate, at least, is bifid. The palpi are filiform or very little thicker at the end. The jaws are bilobate.

Buprestis, Lin.

In the true Buprestis, the antennæ are of equal thickness throughout, and serrated from the third or fourth joint.

Some have no scutel.
B. fasiculata, L.; Oliv., Col. II, 32, IV, 38. Abont an inch long; ovoid, convex; densely punctured and wrinkled; of a golden or cupreous-green, sometimes dusky, with little tufts of yellowish or reddish hairs; elytra entire. From the Cape of Goud Hope, where it is often found in such abundance on the same shrub, that the plant seems loaded with flowers.
B. sternicornis, L.; Oliv., Col., Ib., VI, 52, a. Somewhat larger, and of the same form; green, slightly gilded, and very brilliant; large punctures, ornamented at bottom with whitish scales on the elytra; three teeth at their extremity ; poststernum projecting in the form of a horn. The East Indies.
\dot{B}. chrysis, Falb.; Oliv., Ib., II., 8, VI, 52, 6. Differing from the sternicornis in the elytra, which are chesnut-brown, and without whitish spots.
B. viltala, Fab.; Oliv, Ib. IIT, 17. Nearly an inch and a half long; narrower and more elongated than the preceding species; depressed; bluish-green ; four elevated lines, and a cupreous and golden band on each elytron, the end of which is bidentate. East Indies.
B. ocellala, Fah.; Oliv., Jb. I, 3. Almost similar to the preceding in form and size; a large, yellow, phosphoric spot between two golden ones, on each elytron, which is tridentate at the extremity.
The others are furnished with a scutel.
B. gigas, L.; Oliv., Ib. I, l. 'Two inclies long; thorax cupreous, mixed with brilliant green, and two large smooth spots
of burnished steel; elytra tridentate at the extremity, cupreous in the middle, bronze-green on the margin, with impressed puncta, and elevated lines and rugæ. Cayenne.
B. affinis, Fab.; B. chrysostigma, Oliv., Ib., VI, 54. Bronze above, brilliant cupreous beneath; elytra serrated at the point, with three elevated longitudinal lines, and two golden impressions on each. France.
B. viridis, L. ; Oliv,, Ib., XI, 127. About two lines and a half long; linear; bronze-green; elytra entire and dotted. On the trees in France (a).
Fabricius has separated from the true Buprestides those in which the body is shorter, wider in proportion, and almost triangular ; the front concave, thorax transversal and lobate posteriorly; where the tarsi are very short and the pellets broad. The five last joints only of the antennæ here furm the teeth of the saw, the preceding ones, with the exception of the two first, being small, almost granose, or obconical; the two first are much stouter. These species compose the genus Trachys *, one of which is
B. minuta, L.; Oliv., Ib., II. 14. Black underneath; cupre-ous-brown above ; middle of the front indented ; posterior margin of the thorax sinuous; undulated whitish streaks, formed by transverse hairs, on the elytra. Common on the Hazel, on the leaves of which it feeds.

Aphanisticus, Lat.

The antennæ suddenly terminated by a clavate, oblong, compressed, and slightly serrated club, formed by the four last joints; last joint of the palpi somewhat thicker and almost oval; space between the eyes excavated as in Trachys.

Two or three species are known, all linear, and very small \dagger.
Sometimes the antennæ are strongly pectinated, on one side, in the males, and deeply securiform in the females; the joints of the tarsi are almost cylindrical and entire, the antennæ terminated by one much thicker than those that precede it, and nearly globular. The jaws terminate in a single lobe.

Melasis, Oliv.

The body cylindrical, and the posterior angle of the thorax prolonged into an acute tooth, characters, which, in those drawn from

[^379]the tarsi and palpi, announce that these Insects form the passage from this tribe to the second.*

Or that of the Elaterides, which only differs essentially from the first in the posterior stylet of the presternum. which terminates in a laterally compressed point, frequently somewhat arcuated and unidentate, that sinks at the will of the animal into a carity in the pectus, situated immediately above the origin of the second pair of legs; and in the eircumstance, that these Insects when placed on their baek have the faculty of regaining their original position by bounding upwards. Most of them have mandibles emarginated or cleft at the end, palpi terminated by a triangular or securiform joint, mueh larger than those which preeede it, and the joints of the tarsi entire. This tribe only comprises the genus

Elater, Lin.

The body is usually narrower and more elongated than that of the Buprestides, and the posterior angles of the thorax are prolonged into a sharp point, in the form of a spine.

The common French name of these Insects is Scarabées ì ressort, and their Latin one, Notopeda, Elater. When placed on their back, finding it impossible to regain their natural position on aecount of the shortness of their legs, they bound perpendieular upwards until they fall on their feet. To exeeute this motion, they press the latter close to the body, lower their head and thorax, which has a free downward motion, then approximating this last to the postpeetus, they foreibly press the point of the presternum against the margin of the hole situated before the mesosternum, into whieh it sinks suddenly, as if by a spring. The thorax and its lateral points, the head and elytra, being violently propelled against the plane of position, partieularly if it be solid and smooth, cuncur by their elastieity in causing the body to bound upwards. The sides of the prestennum are distinguished by a groove, where the antennæ, which are pectinated or bearded in several males, are partly lodged. The females have a species of elongated ovipositor, with two lateral pieces pointed at the end, between which is the true oviduct.

The Elaterides are found on flowers, plants, and even on the ground; they lower their head in walking, and if any one approaches let themselves fall, pressing their legs against their body,

De Geer has deseribed the larva of a speeies (undulatus) of this genus.. It is long, almost cylindrieal, and provided with small antennæ, palpi, and six feet ; it consists of twelve annuli, eovered with a scaly skin, that of the posterior extremity forming a plate with an elevated and angular margin, with two blunt points curved inwards; underneath is a large fleshy and retractile mammilla, which performs the duty of a foot. It inhabits the debris of rotten wood,

[^380]and is also found in the earth. It even appears that the larvæ of the E. striatus, Fab., attack the roots of the Wheat, and, where they exist in great numbers, do much injury to it.

The stomach of the Elaterides is long. transversely rugose, and its posterior portion sometimes inflated; their intestine is moderate.

The various subgenera of this tribe may be referred to two principal divisions. Those where the antennæ can be entirely received into the inferior cavities of the thorax constitute the first.

Sometimes they are received, on each side, into a longitudinal groove, situated directly under the lateral edges of the thorax, and are always filiform and simply serrated. The joints of the tarsi are always entire, without prolongations, and in the form of a palette underneath, The thorax is convex or arched, at least on the sides, and dilates at the posterior angles in the manner of a lobe, pointed or triangular. These Insects approach the Buprestides.

> Galba, Lat.

Mandibles terminating in a simple point; maxillæ unilobulate last joint of the palpi globular; the body almost cylindrical *.

Eucnemis, Arh.
Mandibles bifid; maxillæ bilobate; last joint of the palpi nearly securiform, and the body almost elliptical \dagger.

At other times the antennæ, occasionally clavate, are received, at least partially, cither into the longitudinal grooves of the lateral borders of the præsternum, or into fossulæ situated under the posterior angles of the thorax. The tarsi are frequently provided with little palettes formed by the prolongation of the inferior pellets, or the penultimate joint is bifid.

Some, with filiform antennæ, have the joints of the tarsi entire and without palettes underneath; the anterior legs, when contracted, are received into lateral cavities in the inferior surface of the thorax. Such is the

$$
\text { Adelocera, Lat }{ }_{+}
$$

Others, with antennæ also of equal thickness throughout, have the joints of the tarsi entire, but the inferior pellets prolonged or projecting in the manner of little palettes or lobes. Their head is exposed. They form the

[^381]Lissomus, Dalm.-Lissodes, Lat.-Drapetes, Meg. Dej. *.
Others again have equally filiform antemne, but their second and third joints are flattened, larger than the following ones, and are alone received into the sternal grooves : the tarsi are similar to those of Lissomus; the head is concealed underneath, and as if covered by a semicircular thorax, into which it is plunged. Such is the

Chelonarium, Fab.

The antennæ, when at rest, extend parallel to each other along the pectus; the first and the fourth joint are the smallest of all ; the seven following ones are of the same size, and, with the exception of the last, which is ovoid, almost in the form of a reversed cone, and equal. The body is ovoid, and the anterior tibiæ are wider than the others,

All the species known are from South America \dagger.
The last subgenus of this first division, or

> Throscus, Lat.-Trixagus, Kigl. Gyll.-Elater, Lin.

Is distinguished from all others of this tribe by the antennæ, which terminate in a triarticulated club, and are lodged in a lateral and inferior cavity of the thorax. The penultimate joint of the tarsi is bifid, and the point of the mandibles entire \ddagger.

Our second division of this tribe will include all the Elaterides whose antennæ are exterior or exposed.

We will separate, in the first place, those in which the last joint of the palpi, of the maxillaries particularly, is much larger than the preceding ones, and almost securiform.

A single subgenus, the

[^382]Cerophypumt, Lat.,
Is removed from the others by the tarsi, of which the four first joints are short and triangular, and the penultimate is bifid.

The antennæ of the males are ramous on the inner side, the base of the third joint and of the following ones being extended into a widened branch rounded at the extremity; those of the females are serrated .

In all the other subgenera the joints of the tarsi are almost cylindrical and entire.

Sometimes the head is plunged into the thorax up to the eyes; the anterior extremity of the presternum projects under the head, and its margin is arcuated.

In some, the labrum and mandibles are concealed by the antcrior extremity of the presternum, the clypeus or epistoma being widened and laid over it. Such is the

> Cryptostoma, Dej-Elater, Fab.

In which the internal angle of the summit of the third joint of the antennæ, and of the seven following ones, is prolonged into a tooth; the second and fourth joints are shorter, the last is long and narrow, and there is a straight linear branch on the inner side of the third, near its origin.

The mandibles are unidentated under the point. The maxillæ present but a single lobe, and are small and membranous, as is also the ligula. The palpi are very short. The tarsi are small, thin, and almost setaceous.

The only species known, the Elater denticornis, Fab., is found in Cayennc, whence it was sent to the Mus. d'Hist. Nat. of Paris by M. Banon.

Nematodes, Lat.

First joint of the antennæ clongated, and the five following ones forming reversed cones, equal, the first or second of this number excepted, which is somewhat shorter, and the five last thicker and almost perfoliate ; terminal joint ovoid.

The body is almost linear \dagger.
Now the mandibles and labrum are exposed.
Here the antenne of the males have a flabelliform termination.
They form the

> Hemiriifus, Lat.

Of which all the species are foreign to Europe \ddagger.
There, these organs, in the same sex, are longitudinally pectinated.

> Stemtura, Lat.§

In the following subgenus or

[^383]
Elater, properly so called,

The antennæ of the males are simply serrated *.
E. noctilucus, L.; Taupin cucujo, Oliv., Col., II, 2, 31, 11, 14, a. Rather more than an inch long; dusky-brown, with a cinereous down; a convex, yellow, round, shining spot on each side of the thorax near its posterior angles; clytra marked with lines of small punctures. From Soutll America.
During the night, the thoracic spots diffuse a very strong light, sufficiently bright to enable one to read the smallest character, particularly if several of the Insects be placed in the same vase. By it also the women of the country pursue their work, and Ladies even use it as an ornament, placing it in their hair during the evening paseo. The Indians fix them to their feet to light them in their nocturnal journeys. Brown pretends that all the internal parts of the Insect are luminous, and that it has the power of suspending, ad libitum, its phosphoric property \dagger. The French colonists call it Mouche lumineuse, and the Indians, Cucuyos, Coyouyou, whence the Spanish term Cucujo. An individual of this species, aecidently transported to Paris in some wood, in its larva or pupa state, completed its metamorphosis there, and greatly astonished the inhabitants of the faubourg Saint-Antoine by its, to them, extraordinary light.
E. ceneus, L.; Oliv., Col., Ib., viii, 83. Six lines long, bronze green ; glossy; elytra striated; legs fulvous. Germany and the North of Europe.
E. germanus, L,; Oliv., Ib., 11, 12. Very common in the vicinity of Paris, and only differing from the æneus in the colour of its feet, which are black.
E. cruciatus, Oliv., Ib. IV, 40. A pretty European species, with the appearance of the æneus, but smaller; black; two longitudinal red bands on the thorax, near the lateral margin; elytra yellowish-red, with a black line near the anterior angles of their base, and two bands of the same colour forming a cross on the suturc. Rare near Paris.
E. castaneus, L.; Oliv., Ib. III, 25; v, 51. Black; thorax covered with a reddish down; elytra yellowish with a black extremity; antennæ of the male pectiniform. Europe.
E. ruficollis, L.: Oliv., Ib., VI, 61, a, b. Three lines in length, and of a shining black; posterior half of the thorax red. North of Europe.

[^384]E. ferrugineus, L.; Oliv., Ib., III, 35. Ten lines in length; black; the thorax, its posterior margin excepted, and the elytra deep blood-red. On the Willow. The largest species in Europe *.
Sometimes the head is free posteriorly, or is not sunk to the eyes, which are protuberant and glubular. The antennæ are inserted under the edge of a frontal projection, depressed and arcuated anteriorly. 'The body is long and narrow, or nearly linear.
Such are those which form the subgenus
Campylus, Fisch.-Exophthalmus, Lat.-Hammonus, Mühfeld \dagger.
Elaterides with filiform palpi and antenmæ, pectinated from the fourth joint, will compose a last subgenus, that of

Phyllocerus \ddagger. (a)

Our second section, or that of the Malacodermi is divided into five tribes. In the first, or the Cebrionites, so named from the genus Cebrio of Olivier, on which all the others depend, the mandibles terminate in a simple or entire point, the palpi are of equal thickness or more slender at the extremity, the body is rounded and convex in some, oval or oblong, but arcuated above, and inclined anteriorly in others. It is usually soft and flexible; the thorax is transversal, widest at base, and its lateral angles acute, or in several even prolonged into spines. The antennæ are generally longer than the head and thorax. The legs are not contractile.

Their habits are unknown. Many of them are found on plants in aquatic localities. They may all be united in one genus, that of

> Cebrio, Oliv. Fab.

Some which establish a connection between this and the preceding

[^385]tribe, which are even of as firm and solid a consistence as the Sternoxi, whose legs are never fitted for leaping, and whose body is generally an oblong oval, with the antenne of the males either pectinated, flabellated, or serrated, the palpi filiform or somewhat longer at the extremity, and the posterior angles of the thorax prolonged into an acute point, present mandibles projecting beyond the labrum, narrow, and highly arcuated or in the form of hooks. The labrum is usually very short, and emarginated or bilobate.

There, as in the Elaterides, the præsternum terminates posteriorly in a point, received into a cavity in the mesosternum.

The antennæ, which in the males of some species are long, are composed of eleven pectinated or serrated joints. The last joint of the palpi is almost cylindrical or forms a reversed cone.

Physodactylus, Fisch.

An orbicular membranous pellet (sole on planta) on the inferior surface of the three intermediate joints of the tarsi; the posterior thighs enlarged; the antennæ, at least in one of the sexes, very short, serrated, and insensibly diminished towards the extremity.

This subgenus has been established by the celebrated author of the Entomographia Imperii Russici, on an Insect from North America, the P. Henningii, Letter on the Physodactylus, Moscow, 1824, Ann. des Sc. Nat. Dec. 1824, XXVII, B.

Cebrio, Oliv. Fab.

In Cebrio proper, all the joints of the tarsi are entire and without pellets, and the posterior thighs are not larger than the others.

The species peculiar to Europe appear in great numbers after heavy rains. The female * of the best known speciesC.gigas, Fab.; C.longicornis, Oliv., Col. II, 30, bis, I, 1, a, b, c; Taupin, $\mathrm{I}, 1, \mathrm{a}, \mathrm{b}, \mathrm{c}$,-differs greatly from the male; the antenne are hardly longer than the head, and the first joint is much longer than the others; the fourth and following ones united from a little oblong and almost perfoliaceous mass. The wings are partly abortive. The legs are shorter, but stouter in proportion, than those of the male. The larra probably lives in the earth.
The C. bicolor, Fab. t, and some other American species, in which the body is elongated, less arcuated above or almost straight, and with shorter antenne, appear to Dr. Leach to constitute a new generic section \ddagger.

[^386]Here the præsternum is not prolonged into a point, and there is no anterior cavity in the mesosternum.

Sometimes ali the joints of the tarsi are entire, and without a projecting membranous palette underneath.

Anelastes, Kirby.

The antennæ remote at base, short, almost granose, with the last joint* nearly crescent-shaped; last joint of the palpi almost in the form of a reversed cone.
A. Druriï, Kirb., Lin. Trans., XII, xxi, 2. The only species quoted.

Callirhipis, Lat.

The antennæ closely approximated at the base, inserted on an eminence, and from the third joint, in the males, forming a large fan; the last of the palpi ovoid, the same of the tarsi almost as long as all the others taken together, and presenting between its crotchets a little silky and linear appendage.

The species which is the type of the suhgenus-C. Dejeaniiis found in Java, and was sent to the Museum of Paris by M. Diard and the late M. Duvaucel. The antennæ consist of but eleven joints, and in that differ from those of the Rhipiceræ, which have the same form, but are composed of more joints in individuals of the same sex or the males.
Sometimes the inferior surface of the tarsi is furnished with membraneous palettes, or their penultumate joint is profoundly bilobate.

In the two following subgenera, the inferior surface of each of the four first joints of the tarsi presents two membranous and projecting lobes; the last is long, and terminated between the crotchets by a little silky appendage. The antennæ of some are composed of more than eleven joints, and are flabclliform ; those of the others consist of eleven, and are serrated, the four last larger, and forming a club.

Sandalus, Krooch.

The antennæ, at least those of the females, only a little longer than the head and consisting of eleven joints, the third, and with the exception of the last, the following ones serriform, the four last somewhat more dilated, forming a club; the terminal joint almost ovoid or rounded, or very obtuse at the end \dagger.

Rhipicera, Lat. Tirby.-Ptyocerus, Hoff:-Polytonus, Dalm.
The antennæ flabelliform in both sexes, and composed of numerous joints (from twenty to forty), but fewegr in the females.

[^387]This subgenus consists of five or six species, two of which are from New Holland, and the remainder from America *.
The three first joints of the tarsi in the two following subgenera are in the form of a reversed heart, and have no membranous prolongation underneath; the fourth is deeply bilobate; the last, but slightly elongated, exlibits no projecting and silky appendage between its crotchets. The antennæ are filiform, simple, or at most pectinated, and never consist of more than eleven joints.

Prilodactyla, Illig.-Pyrochroa, De Geer.

Distinguished by the semi-pectinated, or serrated antennæ of the males.

The species of this subgenus are peculiar to America \dagger.

Dascillus, Lat.-Atopa, Fab.

Only differs from Ptilodactyla in the antennæ, which are simple in both sexes \ddagger.

The remaining Cebrionities have small mandibles which project but little, or not at all, beyond the labrum, a generally soft and almost hemispherical or oroid body, and palpi terminating in a point. The antennx are simple, or but slightly dentated. The posterior legs of several are fitted for leaping. They live on aquatic plants.

In these, the penultimate joint of the tarsi is bilobate. The second and third of the antennæ are shorter than the fourth.

> Elodes, Lal.-Cyphon, Fab. Dej.

The posterior thighs differing but little in thickness from those of the preceding subgenus \S.

> Scyrtes, Lat.-Cyphon, Fab,

Thighs of the posterior legs are very large, and the tibiæe terminated by two stout spurs, one of which is very long, a circumstance which enables these Insects to leap. The labial palpi are forked, and the first joint of the posterior tarsi is as long as all the others taken together $\|$.

In those, all the joints of the tarsi are entire.

Nycteus, Lat.-Hamaxobium, Zieg.-Eucynetus, Schüp.

The third joint of the antennæ very small, and much shorter than the second and following one, the last almost granose ; the four tiliæ

[^388]terminated by two very distinct spurs; the tarsi long, and more slender towards the extremity *.

> Eubria, Zieg. Dej.

The antenme slightly serrated, the second joint very small, the two following ones lirgest of all, and the last somewhat emarginate at the end, and tapering to a point; spurs of the tibiæ very small, or nearly null; tarsi filiform \dagger.

The second tribe of the Malacodermi, or that of the Lampyrides, is distinguished from the first by the enlarged termination of the palpi, or at least those of the maxillæ, by their always soft, straight, depressed, or but slightly convex body, and by the thorax, sometimes semieireular, and at others nearly square or trapezoidal, that projeets over the head, which it either entirely or partially covers. The mandibles are usually small, and terminate in a slender, arcuated, very acute point, that is generally entire. The penultimate joint of the tarsi is always bilobate, and the crotehets of the last have neither dentations nor appendages.

The femaies of some are apterous, or lave but very short elytra.
When seized, these Inseets press their feet and antenna against their body, and remain as motionless as if they were dead. Several, thus situated, curve their abdomen underneath. They comprise the genus
LAMPYRIS, Lin.

Antenne closely approximated at base, the head either exposed and prolonged anteriorly in the manmer of a snout, or for the greater part, or entirely, concealed under the thorax; eyes of the males large and globular; mouth small. Such are the characters of a first division of this tribe, which we will subdivide into those in which neither sex is phosphorescent, and those in which the females at least are possessed of that faculty. Both sexes of the former are provided with wings, have their head exposed, and frequently narrower and extended anteriorly, or in the form of a snout, and the thorax widened posteriorly with pointed lateral angles. The two or three ultimate annuli of their abdomen are destitute of that pale yellowish or whitish tint that is always found on this part of the body in the true Lampyrides, and which anounces their phosphorescence. The elytra, in several, widen behind, and are sometimes strongly dilated and rounded postcriorly, in the females particularly. They are densely punctured, and frequently reticulated.

> Lxicus, Fíab. Oliv.-Cantharis, Lin.

We restrict this subgenus to those species of Fabricius, in which the snout is as long as the portion of the head that precedes it, or

[^389]longer, and the antennæ are serrated. The elytra are most commonly dilated, either laterally, or at their posterior extremity, the two sexes differing greatly in this respeet, particularly of certain speeies peeuliar to Afriea *.

Other speeies of the same author, but with very short snouts, and whose compressed antenuæ, sometimes simple, and at others serrated or peetinated, have their third joint longer than the preeeding one, and in whieh the intermediate joints of the tarsi have the form of a reversed heart, compose a seeond subgenus, the

Dictioptera, Lat.

In some of the woods in the vicinity of Paris, on the flowers of the Yarrow, and of other plants, we frequently observe the

Lycus sanguineus; Lampyris sanguinea, L.; Panz., Faun. Inseet. Germ. XLI, 9. About three lines in length; blaek; sides of the thorax and the eltyra blood-red; elytra silky and slightly striated. The larva lives under the bark of the Oak. It is linear, flattened, and blaek, the last ring red, resembling a plate with two kinds of horns, cylindrieal, and, as it were, annulated or artieulated, and areuated inwards. It has six small feet.

Lycus minutus, Fab. ; Panz., Faun. Inscet. Germ., XLI, 2. Smaller; all blaek, the extremity of the elytra exeepted, which is red, and the end of the antennæ, whieh is reddish. Also found in France, but in forests of the Mountain Fir \dagger.

Omalisus, Geoff: Oliv. Fab.
No apparent snout; joints of the antennæ almost cylindrieal, slightly redueed at base, and the seeond and third mueh shorter than the following oues; penultimate joint of the tarsi alone in the form of a reversed heart; the others elongated and eylindrieal; elytra tolerably solid and firm.
O. suturalis, Fab.; Oliv., Col. II, 24, 1, 2. Rather more than two lines in length, blaek, elytra blood-red, the suture excepted. Found in the woods in the vieinity of Paris, and in the forest of Saint Germain particularly, on the Oaks^{2} in spring + .
The other Lampyrides of our first division are distinguished from the preeeding ones, not only by the want of a snout, by their head, whieh, in the males almost entirely oeeupied by the eyes, is entirely or for the greater part eonecaled under a semieireular or square thorax, but also by a very remarkable character, either common to both sexes, or peeuliar to the females, that of being phosphoreseent, whence the names of glow-worms, fire-flies, \&e, given to these Inseets.

Their body is extremely soft, the abdomen particularly, which has

[^390]the appearance of being plaited. The luminous matter occupies the inferior part of the last two or three annuli, which differ in colour from the rest, and are usually yellowish or whitish. The light they diffuse is more or less vivid, and greenish or whitish, like that of the different kinds of phosphorus. It seems that they can vary its action at pleasure, a fact particularly observable when they are seized or held in the hand. They live a long time in vacuum and in different gases, the nitrous acid, muriatic and sulphurous gases excepted, in which they soon expire. Placed in hydrogen gas, they, sometimes at least, detonate. They continue to live after the excision of this luminous portion of their abdumen, and the part thus separated preserves its luminous property for some time, whether it be submitted to the action of various gases, be placed in vacuum, or left exposed to the air. The phosphorescence depends on the softness of the matter, rather than on the life of the animal. When apparently extinct it may be reproduced by softening the matter with water. The Lampyrides emit a brilliant light when immersed in warm water, but in cold water it becomes extinguished: this fluid seems to be the only dissolving agent of the phosphoric matter *.

They are nocturnal Insects; the males, like Phalenæ of the same sex, are frequently observed circling round the blaze of candles, \&c., from which we may conclude that this phosphoric light, which is chiefly given out by the females, is intended to attract the former to the latter: and if, as De Geer asserts, the larvæ and pupæ of the species found in France are luminous, we are only to conclude that the phosphoric matter is developed at the earliest period of their existence. It has been said that some males were destitute of this luminous property-but they still possess it though in a very small degree. As nearly all the Lampyrides of hot climates, males as well as females, are provided with wings and are extremely numerous, they present to their inhabitants at night an interesting spectacle, a continued illumination, proceeding from the myriads of luminous points which like little wandering stars traverse the air in every direction.

According to M. Dufour-Ann. des Sc. Nat., III, p. 225-the alimentary canal of the female of the common European Lampyris, the splendidula, is about twice the length of the body. The œesophagus is extremely short and immediately dilated into an abbreviated crop separated from the chylific ventricle by a valvular strangulation. The latter is very long, smooth, turgid, and cylindrical for two thirds of its length, then intestiniform. The small intestine is very short and flexuous, presenting an enlargement (perhaps not constant) representing a cæcum, and terminated in an elongated rectum.

Certain Brazilian species, in which the antennæ of the males consist of more than eleven joints formed like the laminæ of a feather,

[^391]have been separated from the genus Lampyris of Linneus. They constitute the Amyderes, Hoff., Germ *.

Others, also peculiar to South America, whose antennæ are composed of but cleven joints, present particular characters which have entitled them to the same generic distinction, under the name of Phengodes, Hoff. The third joint of these organs and the following ones give off, from the inner sidc, too long ciliated filaments, which appear to be articulated and convoluted round themselves. The clytra are suddenly narrowed into a point. The wings are extended throughout their entire lengtle, and simply folded longitudinally. The maxillary palpi are very salient and almost filiform. The thorax is transversal. The tarsi are filiform, and their penultimate joint is very short and scarcely bilobate. The body is narrow and elongated, with the head exposed \dagger.
The other species now form the genus

Lampyris, properly so called,

Which, from the form of the antennæ, the presence or absence of the elytra, wings, \&c., is susceptible of several divisions.
L. noctiluca, L.; Panz., Faun., Inseet. Germ. XLI, 7. The malc about four lines in length; blackish; antennæ simple ; thorax semicircular, receiving the entire head, with two transparent lunate spots; venter black; ultimate annuli pale-yellowish.
S. splendidula, L.; Panz., Ib., 8. Closely allied to the preceding, but somewhat larger; thorax yellowish, with a blackish disk and two transparent spots before; clytra blackish; under part of the body and legs livid-ycllowish; first annuli of the venter sometimes of this latter colour, and at others dusky.

The female is destitute of elytra and wings; blackish above ; circumference of the thorax and last ring ycllowish; lateral angles of the second and third annuli flesli-colour; under part of the body yellowish, with the three last annuli of the colour of sulphur.

These latter individuals are more particularly called glowworms, or vers luisants. They arc found cvery where about the country, along the roads, in hedges, meadows, \&c. in the months of June, July, and August. They lay a great number of lemoncoloured eggs, which are large and spherical, in the ground or on plants, where they are fixed by means of a riscid matter with which they are covered.

The larva bears a great resemblance to the female, but is black, with a reddish spot on the posterior angles of the annuli; its antenne and legs are shorter. Its gait is very slow, and it has the faculty of elongating and shortening its body, and of bending it underneath. It is prohably carnivorous.
L. italica, L.; Oliv., Cul. II, 28, 11, 12; the Lucciola of the Italians. The thorax does not cover the whole head, is trans-

[^392]versal, and as well as the seutel, peetus and one pair of legs reddish; head, elytra and abdomen black; the two last annuli of the body yellowish; wings to both sexes *.
In our second division of the Lampyrides, the antennæ are very remote at hase; the head is neither prolonged nor narrowed anteriorly in the form of a snout, and the eyes are of an ordinary size in both sexes.

> Drilus, Oliv.-Ptiminus, Geoff: Fab.

The males are winged, and the inner side of the antennæ, from the fourth joint, is prolonged like the tooth of a comb. Those of the females are shorter, somewhat perfoliaccous and slightly serrated. The maxillary palpi in both sexes are theker towards the end, and terminate in a point. The inner side of the mandibles presents a tooth.

The female of the speeies, which is the type of the genus, and whose male is tolerably common, remained unknown until lately, as well as the metamorphoses of both sexes. Certain observations made at Geneva, by Count Mielzinsky, on the larva of this Inseet and the perfect female, excited the attention of two able Freneh naturalists, MM. Desmarest and Vietor Audouin. The latter had received from the author of the discovery several living larvie, which were found in the shell of a Helix nemoralis of Linnæus, and which together with the perfect female, the only sex he had obtained in that state, were deseribed by him. But he was mistaken in considering as pupæ, larve which had attained their full growth, and which pass the winter in the interior of these shells. In this state, these Inseets are tolerably similar to the larvæ of the European Lampyrides, but there are a range of eonical mammillæ on eaeh side of their abdomen, and two series of hairy tufts on other elevations of the same nature. 'The posterior extremity of the body is forked, and the anus is used by the animal as a means of progression. It soon devours the legitimate owner of the shell, whence the gencric appellation of Coehleoctonus, given to this Inseet by the naturalist above mentioned. M. Desmarest presuming that as these larvæ were common in the neighbourhood of Geneva, they might also be found in the vieinity of Paris, by the aid of his pupils soon proeured a number of them, whieh enabled him to give a complete history of the Insect, and to ascertain that the individuals in their perfeet state, described by Mielzinsky, were the females of the Drile jaunatre or the Panache jaune, Gcoff., I,], 2; Oliv., Col. II, $23,1,1$, the body of which is about three lines long, black, with yellowish elytra. The female is nearly thrice as large, is of an orange or reddish yellow, and resembles that of a Lampyris, but without its phosphorescence. M. Audouin has published its anatomy, and observed that the exuviæ of the larva exactly elose the aperture of the shell, forming a sort of operculum. While the animal is in its larva state, it remains at the bottom of its domieil, and so placed, that the posterior extremity of its body faces the opening;

* See Fabricius, and Olivier, Col, II, No, 28 .
when it has passed into that of a pupa its position is inverted. For this observation we are indebted to M. Desmarest*. M. Dufour has also published some anatomical observations on the male of this species.

A second, the D. ater, Dcj., all black, with the antennæ less pectinated, is found in Germany. It is figured, as well as a third, the ruficollis, discovered by Count Dejean in Dalmatia, in a Memoir of M. Audouin-Ann. des Sc. Nat., Aout 1824which, under the title of "Recherches anatomiques sur la femelle du Drile Jaunâtre et sur le mâle de cette espèce," forms a complete Monograph of the genus, enriched with excellent figures.
Both sexes of the remaining Lampyrides of this second division are winged, and their maxillary palpi are not much longer than those of the labium. They embrace a great part of the genus Cantharis, Lin., or that of Cicindela, Geoff.

Telephorus, Schoff:-Cantharis, Lin.

The palpi terminated by a securiform joint; thorax destitute of Iateral emarginations. Whey are carnivorous Insects and run over plants. Their stomach is long and transversely rugose; the intestine very short.
T. fuscus; Cantharis fusca, L.; Oliv., Col, II, 26, i, i. From five to six lines in length, posterior part of the head, elytra, pectus and the greater portion of the legs of a slate-black; the other parts yellowish-red; a black spot on the thorax. Is frequently met with in Europe during the spring. The larva is almost cylindrical, elongated, soft, of a dead velret-black, the antennæ, palpi, and feet yellowish-rufous. The head is squamous and furnished with stout mandibles. There is a mammilla under the twelfth and last annulus, which it uses in crawling. It is carnivorous and inhabits moist earth.

During the winter of certain years in Sweden, and even in the mountainous parts of France, these larvie and various other species of living Insects have been observed among the snow in such abundance as to cover a considerable space.

It has been very rationally supposed that they had been swept away and deposited there by those violent gusts of wind which uproot and destroy great numbers of trees, particularly Pines and Firs. Such is the origin of what is termed a shouer of insects. The species then met with are probably such as appear early in the spring.
T. lividus; Cantharis livida, L.; Oliv., Ib., II, 28. Size and form of the preceding; thorax fuscous and immaculate; elytra yellowish; extromity of the posterior thighs black. On flowers \dagger.

[^393]> Silis, Meg. Dej. Charp.

This subgenus only differs from Telephorus in the thorax, which is emarginated posteriorly on each side, and has underncath-at least in the S. spinicollis-a little coriaceous appendage terminated by a club, whose extremity, probably more membranous, in the dried speciment has the appearance of a joint. A species, the rubricollis, is figured by M. Toussaint de Charpentier in his Hor. Entom., p. 194, 195, vi. 7.

Malthinus, Lat. Schoen.-Necydalis, Geoff.

The palpi terminated by an ovoid joint; head narrow behind; elytra, in several, shorter than the abdomen. On flowers, and particularly on trees *.

In the third tribe of the Malacodermi, or the Melyrides, we find the palpi most commonly short and filiform; mandibles emarginated at the point; the body usually narrow and elongated; the head only covered at base by a flat or but slightly convex thorax, generally square, or elongated and quadrilateral; joints of the tarsi entire, and the hooks of the last one unidentated or bordered with a membrane. The antennæ are usually serrated, and, in the males of some species, even pectinated.

Most of them are very active, and are found on flowers and leaves.
This tribe, which is a mere division of the genera Cantharis and Dermestes of Linnæus, will form the genus

Melyris, Fab.

In some, the palpi are of equal thickness throughout.
Here, under each anterior angle of the thorax, and on each side of the base of the abdomen, we observe a retractile, dilatable vesicle in the form of a cockade, which is protruded by the animal when alarmed, and whose use is unknown. The body is shorter in proportion than in the following subgenus, wider and more depressed; the thorax wider than it is long. Under each crotchet, at the end of the tarsi, is a membranous appendage resembling a tooth.

Malachius, Fab. Oliv.-Cantharis, Lin.

One of the sexes, in each species, furnished with an appendage in the form of a hook, at the extremity of each clytron, which is seized from behind by an individual of the opposite sex, with its mandibles, in order to arrest the former when it attempts to escape, or moves too rapidly. The first joints of the antenme are frequently dilated and irregular in the males. They are all prettily colvured.

MT. eneus; Cantharis enea, L.; Panz., Ib.; X, 2. Three lines in length; glossy green; margin of the elytra red ; head, yellow anteriorly.

[^394]M. bipustulatus: Cantharis bipustulata, L.; Panz. Ib., 3. Rather smaller, and of a glossy green; extremity of the elytra red ${ }^{*}$.
Among the following Melyrides with filiform palpi, and whose thorax and abdomen are destitute of retractile vesicles, we will first place those the length of whose antenno at least equals that of the head and thorax, in which the body is generally straight, elongated, and sometimes linear, and the hooks of the tarsi are usually, as in Malachius, bordered inferiorly by a membranous appendage.

Dasytes, Payk. Fab.-Dermestes, Lin.

D. ceruleus, Fab.; Panz., Faun. Insect. Germ., XCVI, 10. Three lines in length; elongated; green or bluish; glossy and pilose. Very common near Paris on flowers in the fields.
D. trés noir, Oliv., Col. 1I, 21, ii, 28; Dermestes hirtus, L. Somewhat larger and Jess oblong; all black and densely pilose; a much stonter and strongly hooked spine at the base of the anterior tarsi in one of the two sexes. On the Grasses \dagger.
Others, the crotchets of whose tarsi are unidentated, like those of Dasytes, to which they are closely allied, and with which Olivier confounds them, are removed from that subgenus by the antennæ being shorter than the head and thorax, and having thie third joint at least double the length of the second. Their body is less elongated, and is more solid; the head is slightly prolonged and narrowed before, and the thorax semiorbicular and truncated anteriorly. They have a certain degree of resemblance to the Silphæ of Linnæus. Such are those which form the

$$
Z_{\text {YGiA }}, F a b .
$$

In which the fourth and following joints of the antennæ almost form an elongated, compressed, and serrated club; most of the joints transversal; thorax very convex.
Z. oblonga, Fab. Found in Spain and Egypt, in the interior of houses, and more particularly, according to Count Dejean, in granaries. It is also sometimes found in France in the departments of the Pyrénées Orientales. A second species has been discovered in Nubia.

Melyris, Fab.

In Melyris, properly so called, the antennæ inseusibly enlarge, but without forming a club; their joints are less dilated laterally and are almost isometrical. The thorax is less convex \ddagger.

[^395]In the remaining Melyrides the maxillary palpi are terminated by a larger and securiform joint. This eharaeter, together with the shortness of the first joint of the tarsi, and some other considerations, seems to approximate them to the Inseets of our next tribe. They form the

Pelocophorys, Dej.,

Who arranges them with the tetramerous Coleoptera*.

The fourth tribe of the Malacodermi, that of the Clerir, is distinguished by the ensemble of the following characters. 'Two of their palpi at least project and are clavate. The mandibles are dentated. The penultimate joint of the tarsi is bilobate, and the first is very short or but slightly visible in several. The antennæ are sometimes nearly filiform and serrated, and at others insensibly enlarged near the extremity. The body is usually eylindrieal, the head and thorax narrower than the abdomen, and the eyes emarginated.

Most of these Inseets are found on flowers, the remainder on the trunks of old trees or in dry wood. Such of the larve as are known are carnivorous.

This tribe will comprise the genus

Clerus, Geof

The tarsi of some, viewed from above and underneath, distinctly exhibit five joints. The greater part of their antennæ is always serrated.

Of these, some have the maxillary palpi filiform, or slightly enlarged near the extremity.

Cylidrus, Lal.

Mandibles long and much erossed, terminating in a simple point, with two teeth on the internal side; four first joints of the antennæ eylindrieal and elongated; the six following ones formed like the teeth of a saw, and the last oblong; the palpi terminated by an elongated joint; that of those attached to the maxillæ eylindrieal, and the same of the labial palpi, rather thieker and forming a reversed eone; penultimate joint of the tarsi distinetly bilobate. The head is elongated.

The only species known-Trichodes cyaneus, Fab,-inhabits the Isle of France.

[^396]
Tillus, Oliv., Fab.*

Mandibles moderate, cleft or bidentated at the extremity; antennæ sometimes serrated from the fourth joint to the tenth inclusively, with the last ovoid, and at others suddenly terminating, from the sixth, in a serrated club. 'The last joint of the labial palpi is very large and securiform; head short and rounded; third and fourth joints of the tarsi dilated in the form of a reversed triangle. Found in old wood or on trunks of trees.

In the remaining Insects of this tribe, which are always distinctly pentamerous, the four palpi terminate in a club; the last joint of the labials is almost always securiform.

Here, the four first joints of the tarsi are provided underneath with membranous pellets, projecting in the form of lobes. The thorax is elongated and almost cylindrical.

Priocera, IIrb.

The body convex; thorax narrowed posteriorly; last joint of the maxillary palpi less dilated than that of the labials and in the form of a reversed and oblong triangle; the labrum emarginated.

But a single species is known, the Priocera variegata, Kirb., Lin. Trans. XII, p. 389, 390, xxi, 7.
Axina, Kirb.

The body depressed; last joint of the four palpi very large and securiform.

But a single species has yet been described, the Axina analis, Kirb., Ib., fig. 6. From Brazil.
There, the penultimate joint of the tarsi is alone distinctly bilobate. The thorax is square. The body is depressed as in Axina, and the palpi terminate as in the same subgenus. Such is

Eurypus, IIirb.

E. rubens, Kirb., Ib., 5, also from Brazil. I have seen a second species of the same country in the splendid collection of M. de la Cordaire.

We now come to species in which the tarsi, when viewed from above, appear to consist of but four joints, the first of the usual five being very short and concealed under the second \dagger.

[^397]Sometimes the antennæ insensibly enlarge towards the extremity, or gradually terminate in a club; the intermediate joints, from the third, are nearly in the form of a reversed cone; the two or four penultimate joints form reversed triangles, and the last is ovoid.
Thavasmus, Lat.-Clerus, Fab.

The maxillary palpi filiform; last joint of those attached to the labium large and securiform *.

Opilo, Lat.-Notoxus, Fab.

The four palpi terminated by a large securiform joint \dagger.
Sometimes the three last joints of the antenne are much wider than the preceding ones, suddenly forming a club, either simple and in the form of a reversed triangle, or serrated.

Those, in which this club is simple or not serrated, form two subgenera.

> Clerus, Geoff:-Trichodes, Fab.

The maxillary palpi of these Cleri, properly so called, are terminated by a compressed joint in the form of a reversed triangle; the last of those that belong to the labium, which are larger than the others, is securiform. The antennal club is hardly longer than wide, and is composed of crowded joints; the third is longer than the second. The maxille terminate in a projecting and fringed lobe. The thorax is depressed anteriorly.

These Insects are found on flowers; their larvæ devour those of certain Bees.

Their stomach is widest anteriorly, and without plicæ; their intestine is short, with two enlargements behind. According to M. Dufour, their crop is so short that it is almost entirely concealed in the head \ddagger.
C. apiarius; Attelabus apiarius, L.; Trichodes apiarius, Fab.; Oliv., Col. IV, 76, 1, 4. Blue; elytra red, traversed by three bands of deep blue, the last of which occupies the extremity. The larva devours that of our domestic Bee, and does much injury to hives,
C. alvearius; Trichodes alvearius, Fab.; Oliv., Ib., I, 5, a, b; Reaum., Insect., VI, viii, 8-10. Almost like the preceding, but with a bluish-blaek spot on the seutel. It inhabits the nests of the MIason Bees-Osmia-of Reammur, and feeds on their larvæ.

> Necrobid, Lat.-Corynetes, Fub.

The four palpi terminated by an elongated, compressed, triangu-

[^398]lar joint of the same size; the second and third joints of the antennæ nearly equal, and the terminal club elongated, with loose joints; no depression in the thorax anteriorly.

N violacea, Oliv., Col., Ib., 76, bis, I, 1; Dermestes violaceus, L. Small ; violet-blue or greenish, with similarly coloured legs; elytra, with longitudinal series of punctures. Very common in houses in the spring; it is also found in carrion *.
We will terminate this tribe with a subgenus in which the two penultimate joints of the antennæ, more or less dilated internally in the form of teeth, compose with the last, which is oval, a serrated or semipectinated club. The palpi are terminated by a larger joint, either in the form of an elongated or compressed triangle, or securiform. Such are those which form the

Enoplium, Lat.-Tillus, Oliv. Fab.-Corynetes, Fab. \dagger

The type of the fifth tribe of the Malacodermi, or the Ptiniores, consists of the genus Plinus of Linnæus, and of some other genera depending on, or which most closely approach it. The body of these Insects is of a tolerably firm consistence, sometimes almost ovoid or oval, and at others nearly cylindrical, but generally short and rounded at the two extremities. The head is nearly globular or orbicular, and almost entirely received into a strongly arched or vaulted thorax, resembling a hood. The antennæ of some are filiform, or diminished towards the end, and are either simple, flabelliform, pectinated, or serrated; those of others terminate suddenly by three larger and much longer joints. The mandibles are short, thick, and dentated under the point. The palpi are very short and terminated by a larger and almost ovoid joint, or like a reversed triangle. The tibiæ are not dentated, and the spurs at the extremities are very small. There is but little variety in their colours, which are always dark. They are very small. When touched they counterfeit death, lower their heads, incline their antemne, and contract their feet; in this apparent state of lethargy they remain for some time. Their motions are generally slow, and those that are winged rarely take to flight to escape. 'Their larvæ are very noxious to us, and bear a great resemblance to those of the Scarabæides. Their body, frequently curved into an arc, is soft and whitish; the head and feet are brown and squamous. Their mandibles are strong. With fragments of various substances, which they detach by gnawing, they construct a shell in which they become nymphs. Other species establish their

[^399]domicil in the country, in old wood, and under stones; their habits are the same.

Such are the characters of the genus

Ptinus, Lin.

In some, the head and thorax, or the anterior lalf of the body, is narrower than the abdomen ; the antenne are always terminated in the same manner, simple or but slightly serrated, and at least almost as long as the body.

> Ptinus, Lin., Fab,-Bruchus, Geoff:

The antennex of the true Ptini are inserted between the eyes, which are protuberant or eonvex. Their body is oblong.

They are gencrally found in houses, and ehicfly in granaries and inhabited places. 'Their larve destroy our herbarin and desiceated specimens of animals. The antennæ of the males are longer than those of the females, and, in several speeies, these latter are apterous.
P. fur, L., Fab.; P. latro, striatus, F.; Oliv. Col. II, 17, i. 1, 3 ; ii, 9 , var. of the male. One line and a half in length; light brown; antenne as long as the body; a pointed projeetion on each side of the thorax, and between them two others, rounded and covered with a yellowish down: two transverse, greyish bands on the elytra, formed by hairs.

Aeeording to De Geer, it feeds on Flies and other dead Insects that fall in its way. The larvae are very injurious to herharia and other colleetions of natural history.
P. imperialis, Fab.; Oliv., Ib., I, 4. Remarkable for two spots on the elytra, whieh, together, form a rude figure of a two-headed Eagle. On old wood *.

I have frecquently found on feeal matters, the P. germain, Lat. Gener. Crust. ct Insect., I, p. 279, which is elosely allied to the P. fur \dagger.

Gibbium, Scop.-Ptinus, Fab. Oliv.

The antennæ inserted before the eyes, which are flattened and very small; sentellum wanting or indistinet; the body short; abdomen very large, turgid, almost globular and scmidiaphanous; the antennæ smaller at the extremity, and the elytra soldered. These Insects also reside in our herbaria, \&e. \ddagger.

In the others, the body is oval, ovoid, or nearly cylindrieal; the

[^400]thorax the width of the abdomen, at least at base; the antennæ either uniform and serrated or pectinated, or terminated by three joints much larger than the preceding ones; they are shorter than the body.

> Ptilinus, Geoff. Oliv.-Ptinus, Lin.

The antemæ from the third joint strongly pectinated or plumose (en panache) in the males, and serrated in the females.
They inhabit dry wood, which they pierce with small holes. There also they copulate, one of the sexes being without and suspended in air *. In the

> Xyletinus, Lat.-Ptilinus, Fal.

To which we will unite the Ochina of Ziegler and Dejean, the antennæ are simply serrated in both sexes \dagger.

Dorcatoma, Herbst., Fab.

The antennæ consisting of but nine joints, terminating suddenly in three larger ones; the two penultimate joints resembling the teeth of a saw \ddagger.

Anobium, Fab., Oliv. Ptinus, Lin.-Byrrhus, Geoff.
The antennæ also terminated by three larger or longer joints, but the two penultimates are in the form of a reversed and elongated cone, and that of the end is oval or nearly cylindrical; they consist of eleven joints.
Several species of this genus inhabit the interior of our houses, where, in their larva state, they are very noxious, attacking the timbers, furniture, books, \&c., and piercing little round holes in them similar to those made by a very small gimblet. Their excrements form those little pulverulent piles of wood-dust which are frequently observed on floors. The larve of other species of Anobium attack flour, wafers, cabinets of Birds, Insects, \&ic.

Both sexes, in the nuptial season, fiequently summon each other by reiterated and rapid strokes of their mandibles against the wood they inhabit, and mutually answering the signal. Such is the cause of that noise, resembling the accelerated tick of a watch, which is so often heard, and which is superstitiously called the death-watch.
A. tesselatum, Fab.; Olir., Col. II, 16, i. 1. Three lines in length; dead dusky brown, with yellowish spots formed by hairs ; thorax smooth; elytra not striated.
A. pertinax; Plinus pertinax, L. ; A. striatum, Fab.; Oliv. Ib, I, 4. Blackish; thorax with a yellowish spot at each posterior angle, and near the middle of its base a compressed eminence

[^401]divided anteriorly by a depression; elytra with punctured striæ. According to De Gecr, it will permit itself to be roasted to death by a slow fire, rather than cxhibit the least sign of life when it is seized.
A. striatum, Oliv.; Anobium pertinax, Fab.; Panz., Ib, LXVI, 5. Very similar to the preceding, but smaller, and destitute of the yellow spots at the posterior angles of the thorax-very common in houses. M. Dufour has observed a number of appendages round its pylorus which form a kind of strawberry.
A. paniceum, Fab; A. minutum, Id.; Oliv. Ib. II, 9. Very small ; fulvous; thorax smooth; elytra striated. It gnaws farinaccous substances, and devastates our cabinets of Insects, if left undisturbed. It also establishes its domicil in cork*.
The third and last section of the Serricornes, forming also a last tribe, that of the Xylotrogi, is distinguished from the two preceding oncs, as we have already stated, by the entire freedom of the head, and consists of the genus

> Lruexylon, Fab.,

Which we will divide as follows.
In some, the maxillary palpi are much larger than those of the labium, pendent, pectiniform or tufted in the males, and terminated by a large ovoid joint in the females. The antennæ are short, slightly widened in the middle, and narrowed at the extremity. The tarsi are filiform, and all the joints entire; the four posterior long and very slender.

Those, whose elytra are very short, and in the form of a little scale, constitute the genus

> Atractocerus, Palis. de Beauv.-Necydalis, Lin.Lymexylon, Fab.

The antennæ compressed and almost fusiform; thorax square; abdomen depressed.
A. necydaloides, Palis. de Beauv., Magaz. Encyclop.; Necydalis brevicornis, L.; Lymexylon abbreviatum, Fab.; Macrogaster abbreviatus, Thunb. This Insect is found in Guinea, and appears to differ but little from another species that inhabits Brazil. There is a second much smaller and perfectly distinct, enclosed in amber, that belongs to the Museum. A third is met with in Java.
Those, in which the elytra are as long as the abdomen, or not much shorter, form two subgenera.

Here, the antenne are compressed and serrated, the joints transversal; thorax almost square. Such is the

[^402]Hylecetus, Lat.-Meloe, Cantharis, Lin.-Lymexilon, Fab.
H. dermestoides; Meloe Marci, L., the male; Lymexylon morio, Fal.; L. proboscideum, Id.; Cantharis dermestoides, L., the female; H.dermestoides, Fab., Id.; Oliv., Col., II, 25 ; I, 1, 2, It. The female is six lines in length; pale-fulvous; pectus and eyes black. The male is black; the elytra sometimes blaekish, and sometimes reddish, with a black extremity. Germany, England, and the north of Europe.
There, the antennæ are simple, slightly or not at all compressed, and almost moniliform. The thorax is nearly cylindrical.

Lymexylon, Fab.-Cantharis, Lin.-Elateroides, Schceff.

L. navale, Fab., the female; L. Mavipes, Id., the male; Oliv., Ib., l, 4. Length of the preeeding, but narrower; pale-fulvous; the head, exterior margin, and extremity of the clytra, blaek; the latter colour rather more predominant in the male. This Insect is very common in the Oak forests of the north of Europe, but lare in the viemity of Paris; its larva is very long and slender, almost resembling a Filaria. It multiplied so excessively in the dock yards at Toulon some years ago, as to destroy great quantities of timber*.
In the others the palpi are very short. and similar in both sexest.
The antenne are always simple and of equal thiekness throughout.
The tarsi are short, and the penultimate joint in some is bilobate.
The body is of a firm eonsistence, the top of the head unequal or suleated, and the thorax nearly square or suborbicular:

Cupes, Fab.

Joints of the antennæ almost eylindrical ; penultimate joint of the tarsi bifid, mandibles unidentated under the point; palpi, maxillæ, and ligula exposed, the latter bilobate; mentum nearly semi-orbieular.

Two species are known, both proper to North Ameriea \ddagger.

> Rhysodes, Lat. Dalm.

The antennæ granose and all the joints of the tarsi entire. The mandibles appear to me to be narrowed and almost trienspidate at the end ; the mentum is corneous, very large, elypeiform and terminated superiorly by three teeth or points; the palpi are very short.

[^403]Notwithstanding the number of tarsial joints, this genus seems to approach that of Cucujus and even certain Brenti, with a short proboscis in both sexes. The habits of these Insects are the same as those of the Xylophagi ${ }^{*}$.

FAMILY IV.

CLAVICORNES.

In the fourth family of the pentamerous Coleoptera, as in the third, we find four palpi, and elytra covering the superior surface of the abdomen, or its greater portion; but it differs in the antennæ, which are almost always thicker at the extremity, that even frequently forms a perfoliaceous or solid club; they are longer than the maxillary palpi, and their base is exposed, or barely covered. The legs are not natatory, and the joints of the tarsi, at least those of the posterior ones, are usually entire.

In their larva state, at least, they feed on animal matters.
We will divide this family into two sections: the common characters of the first of which are, antemæ always composed of eleven joints, longer than the head, not forming from the third a fusiform or nearly cylindrical club, and their second joint not dilated in the form of an auricle; last joint of the tarsi, as well as its hooks, of a moderate length, or small.

These Clavicornes are terrestrial, while those of our second section are aquatic or shore Insects, thus leading to the Palpicornes, most of which inhabit water, and whose antennre never consist of more than nine joints.

The first section will comprise several small tribes. The first, that of the Palpatores, in a natural series, should be placed near the Pselaphii and Brachelytra \dagger. Their antennæ, which are, at least, as long as the head and thorax, slightly enlarge towards the extremity, or are nearly filiform; their two first joints are longer than the following ones. The head is distinguished from the thorax by an ovoid strangulation.

The maxillary palpi project, are long and inflated at the extremity. The abdomen is large, oval or ovoid, and embraced laterally by the elytra. The legs are elongated, thighs clavate. and tarsial joints entire.

[^404]These Insects remain on the ground, under stones and other bodies. Some-the Scydmæni-frequent wet places. We will unite them in a single genus, that of

Mastigus.

Mastigus, Hoff.-Ptinus, Fab.

Joints of the antennæ nearly in the form of a reversed cone, the first very long and the last ones hardly thicker than the others; the two last joints of the maxillary palpi forming an oval club; thorax almost ovoid; abdomen oval*.

Scydmenus, Lat. Gyll.-Pselaphus, Illig. Payk.-Anthicus, Fab.
Antennæ granose, sensibly inflated towards the extremity, and but slightly geniculate; maxillary palpi terminated by a very small and pointed joint; thorax nearly globular; the almost ovoid abdomen shorter in proportion than in Mastigus \dagger.

In all the following Clavicornes the head is generally sunk in the thorax, and the maxillary palpi are never at the same time so much projected and clavate; the ensemble of their physiognomy also exhibits other differences.

The genus Hister forms our second tribe, which, with Baron Paykull, who has so profoundly studicd it, we will name the Histeroides. Herc the four postcrior legs are more remote from each other at base than the two anterior, a character alone that distinguishes this tribe from all others of the same family. The legs are contractile, and the outer side of the tibiæe is dentated or spinous. The antennæ are always geniculate, and terminated by a solid club composed of crowded joints. The body is extremely firm, and usually forms a square or parallelopiped; the præsternum is frequently dilated anteriorly, and the elytra are as often truncated. The mandibles project, are strong, and frequently unequal as to size. The palpi are almost filiform, or slightly enlarged near the end, and terminated by an oval or ovoid joint.

In habits, the dentations of their tibire, and some other characters, these Insects seem to approach the Coprophagi Lamellicornes, but

[^405]from other considerations, founded on their anatomy, they approximate to the Silphr-such also is the opinion of M. Dufour, Ann. des Sc. Nat., Octob. 1824. The alimentary canal of the species he dissected-the sinuatus-is from four to five times the length of the body. The œesophagus is very short ; the oblong enlargement that immediately follows exhibits through its parietes certain brownish lines, which seem to indicate the existence of internal triturating appendages; if this be the case, the enlargement is entitled to the appellation of gizzard; the chylific ventricle is very long, flexed, and studded with pointed and very salient papillæ. The hepatic vessels have six distinct insertions round the chylific ventricle-Ibid. July, 1825. Randohr reduces their number to three, so that each of them would have two insertions: but such a disposition of their vessels is doubtful.

These animals feed on cadaverous or stercoraceous matters and decomposing vegetable substances, such as dung, old mushrooms, \&c.: some establish their domicil under the bark of trees. Their gait is slow, and their colour a brilliant black or bronze. Such of their larvæ as have been observed-those of the merdarius, cadaverinus-feed on the same substances as the perfect Insect. Their body is glabrous, soft, and of a yellowish white, the head and first segment excepted, the dermis of which is brown or reddish; it is provided with six short legs, and is terminated posteriorly by two articulated appendages, and an anal and tubular prolongation; the squamous plate of the first segment is longitudinally canaliculated.

This tribe, as we have already stated, will consist exclusively of the genus

Hister, Lin.

Baron Paykull restricted his division of this genus to the separation of certain strongly flattened species, with which he formed that of Hololepta, but Doctor Leach has established four more *.
In some, the tibiæ, at least the antcrior ones, are triangular, dentated exteriorly, and the antennæ always free and exposed; the body is generally square, but slightly or not at all inflated.
They may be divided into two subgenera. In the first or

Hololepta, Payk.

The body is strongly flattened, the presternum does not project over the mouth, and the four posterior tibiæ have but a single range of spines; the terminal lobe of the maxille is prolonged; the mentum is deeply emarginated, and the palpi, proportionally more advanced, are formed of almost cylindrical joints.

They live under the bark of trees. The animal figured by Paykull, as the larva of a species of this subgenus, is that of a species of Syrphus, or Fly *.

The other Histeroides, in which the præsternum projects over the mouth, the maxillæ are terminated by a short lobe, with but slightly n-jecting palpi composed of joints which, the last excepted, are rather in the form of a reversed cone than cylindrical, and finally, in which the mentum is slightly emarginated, will re-enter the subgenus

Hister, properly so called.

Some species in which, as in the Hololeptæ, the four posterior tibiæ have but a single range of small spines, and that also live under the bark of trees, constitute the genera Platroma and Dendrophilus of Leach. The first \dagger only differs from the second + in the flattening of the body above, and in the shortening of the thorax, which is also narrowed anteriorly. A species of the same division, H. proboscideus, Payk., Monog., VIII, 4, has a peculiar form. The body is long and narrow, and the thorax more than half as long again as it is wide.

The remaining Histeroides have two ranges of spines on the four posterior tibiz. They are the only ones which Dr. Leach retains in the genus Hister.
H. unicolor, L.; Payk., Ib., II, 7. Four lines in length; entirely black and glossy; three dentations on the exterior side of the two first tibiæ; two striæ on each side of the thorax, and four on the external part of each elytron, that nearest the margin interrupted. Very common.
The number of tibial dentations, that of the strie on the thorax and elytra, their punctures, and the form of the body, have furnished M. Paykull with excellent characters, by means of which he has well described the species.

A last subdivision of this tribe comprises very small Histeroides, with a thick and almost globular body, of which the but slightly or not at all laterally compressed presternum does nut advance over the mouth, and is straight in front.

In some-Abreus, Leach-it is prolonged to the anterior angles of the thorax, and entirely covers the antennæ when they are contracted; in the others-Onthophilus, Leach-it is narrower; but here the antennal club is received into a very distinct orbicular carity, situated under the anterior angle of the thorax. The anterior tibir are frequently narrow, almost linear, and edentated. The last superior semi-segment of the abdomen is curved inferiorly, and appears to terminate it \S.

[^406]The legs of the other Clavicornes are inserted at an equal distance from each other. Those in which these organs are not contractile, and the tarsi at most can only be flexed on the tibire, whose mandibles are most commonly salient and flattened or not thick, and whose presternum is never dilated anteriorly, will constitute five other tribes.
In the third tribe of this family, that of the Silphales, we find five distinct joints in all the tarsi, and the mandibles terminating in an entire point without emargination or fissure*. The antennæ terminate in a elub that is most commonly perfoliaceous and eonsisting of from four to five joints. The internal side of the maxillæ, in most of them, is furnished with a horny tootl. The anterior tarsi are frequently dilated, at least in the males. The exterior margin of the elytra of the greater number is marked by a groove with a well raised border.

This tribe is composed of the genus
Silpia, Lin.--Peltis, Geoff.

Here the antennæ are suddenly terminated by a short and solid club, formed by the four last joints; the second is larger than the following ones. The body is almost square, the elytra are truncated, the tibiæ dentated, the tarsi simple, and the mandibles bidentated on the inner side; the last joint of the maxillary palpi is as long as the two preceding ones taken together. There is a horny tooth on the inner side of the maxillze. So closely do these Insecis resemble the Histeroides, that Fabricius confounded them. Such are those which form the

Spherites, Dufts.-Sarapus, Fisch.-Hister, Fab.-Nitidula,
Gyllen \dagger.
Here, the antenne terminate in a perfoliaceous club.
Sometimes the body is oblong, and the head, strangulated posteriorly, is as wide as the anterior margin of the thorax, or not much narrower; the latter forms a square with rounded angles; the elytra form a long square, and are suddenly and strongly truncated at their posterior extremity. The posterior thighs, at least in the males, are usually inflated. The last joint of the maxillary palpi is rather more slender than the preeeding one, almost cylindrical, somewhat smaller at the end, and obtuse, The anterior tarsi are dilated in the males.

[^407]
Necrophorus, Fab.-Silpha, Lin.-Derhiestes, Geoff.

The antenne, hardly longer than the head, terminate abruptly in an almost globular club of four joints, the first of which is long, and the second much shorter than the third. The body nearly forms a parallelopiped; the thorax is widest anteriorly; all the tibiæ are strong, widened at the extremity and terminated by stout spurs; the elytra are truncated at right angles. The maxillæ are destitute of a horny unguiculus.
'Iheir instinetive habit of burying the bodies of Moles, Mice, and other small quadrupeds, have procured for them the names of enterreurs and porte-morts. When they find a dcad animal of the above description, they work under it and excavate a hole of sufficient dimensions to contain the body, which they gradually drag into it; in this body they deposit their ova, and thus the larvæ find their food in the very nidus in which they are liatehed. They are long, and of a greyish white colour; the anterior segments are covered superiorly with a small, fulvous-brown, squamous plate, and the posterior with little elevated points, They are furnished with six feet and strong mandibles. When about to pass into the state of a chrysalis, they penetrate deeply into the earth, where they construct a cell, which they line with a viseid substance.
'I'hese Insects, as well as many others that inhabit dead animal bodies, diffuse a strong odour resembling musk. Their habits have lately attraeted the attention of Mole-catchers, and in the work entitled L'Art du Taupier, we find certain facts relative to this subject which had escaped the observations of naturalists. The sense of smell must be excessively acute in these Insects, for but a short time elapses after a Mole has been killed, when Necrophori are seen circling about it, although they were previously sought for in vain in the same locality.

The digestive eanal of the Necrophori and Silphæ is at least thrice the length of the body. The eesophagus is very short and followed by an ellipsoidal gizzard, whose lining tunic is slightly seabrous and bristled, at least in several species, with pointed setæ variously directed, but arranged in eight longitudinal bands separated by smooth intervals. The intestinal canal is very long, particularly in the Ne crophori and Neerodes. Its surface, in the latter, as well as in the Silphæ, is thickly studded with salient and granular points. It opens, either laterally or direetly, into a smooth enlargement, which, according to Dufour-Ann. des Sc. Nat., Octob. 1824-may be compared to a cæeum. To the side is appended a pediculated oval or oblong bursa, which constitutes a part of the excrementitious apparatus. There are four biliary vessels, slender, extremely long and vely flexuous, each of which is separately inserted round the extremity of the chylific rentriele.-Dufour, 1b., July, 1825. From the figure of the alimentary canal of the Necrophorus vespillo, given by Randohr, it appears that the great intestine, instead of being covered with granular papillæ, is furnished with transverse muscular fillets, forming annular plieæ,
N. vespillo; Silpha vespillo, L.; Oliv., Col. II, 10, i, 1. From seven to eight lines in length; black; three last joints of the antennæ red; elytra with two orange, transverse and indented bands; coxx of the two posterior legs armed with a strong tooth; the tibie are curved.
N. mortuorum, Fab.; Panz., Faun. Insect. Germ., XLI, 3. Smaller; antennæ entirely black; the second transverse orange band of the elytra observed on the vespillo, usually forming a large lunated spot. Found in woods, and frequently in mushrooms.
N. germanicus, Fab.; Oliv., Ib., 1, 2, a, b. More than an inch long; all black; external margin of the elytra fulvous; a ferrugineous yellow spot on the front.
N. Iumator, Fab.; Oliv., Ib. 1, 2, c. Always smaller than the germanicus, and differing from it in the orange hue of the antennal club.

North America produces several species, one particularlyN. grandis, Fab.-that surpasses all others in size *.

This genus seems to be confined to the northern districts of Europe and America.

Necrodes, Wilk.-Silpha, Lin. Fab.

The antennæ manifestly longer than the head, and terminated by an elongated club of five joints, the second of which is larger than the third. The body is an oblong oval, with an almost orbicular thorax, widest in the middle ; the tibiæ are narrow, elongated, but slightly widened at the end, and terminated by two ordinary spurs; the elytia are obliquely truncated.

Species of this subgenus are found in Europe, tropical America, the East Indies, and New Holland \dagger.
Sometimes the body is oval or ovoid; the head not at all or but very slightly strangulated posteriorly, and narrower than the thorax; the thorax either almost semicircular and truncated, or trapezoidal and wider behind; the elytra rounded or simply emarginated at the posterior extremity. There is but little or no difference in the posterior legs of the two sexes.

The maxillæ are armed internally with a tooth or squamous hook.

Silpha, Lin. Fab.-Peltis, Geoff.

The body almost scutiform and depressed, or but slightly elevated; thorax semicircular, truncated or very obtuse before; exterior margin of the elytra strongly recurved and canaliculated; palpi filiform, their last joint almost cylindrical, and, in several, terminating in a point. Most of them live in carrion, and thus diminish the quantity of its noxious eflluvia. Some climb on plants, and particularly on

[^408]the stems of Wheat, where they find little Helices, on which they feed. Others remain on high trees and derour caterpillars. The larve are all equally active, live in the same manner, and frequently in large societies. They bear a great resemblance to the perfect Insect. Their body is flattened, and consists of twelve segments, with acute posterior angles; the posterior extremity is narrower and terminated by two conical appendages.
In most of the species, the two anterior tarsi of the males are alone more dilated than the others. The antennæ insensibly enlarge or terminate abruptly in a club of four joints at most, the second and third of which differ but little; the last joint of the maxillary palpi is, at most, as long as the penultimate, and frequently somewhat shorter and more slender.

Those species in which the extremity of the antennæ is distinctly perfoliaceous or composed of joints, which, the last excepted, are wider than they are long, where this club is abrupt, and the elytra are emarginated at their extremity, at least in the males, form the genus Thanatophilus, Leach *.

Those, in which the elytra are entire, but where the antennæ are similar to those of the preceding, constitute his Oiceptoma.
S. thoracica, L.; Fab.; Oliv., Col. II, 11, i, 3, a, b. Black; thorax red and silky; three flexuous elevated lines on each elytron, the exterior shortest, forming a carina, and terminating near a transverse tubercle; posterior extremity of the elytra, in the inales, terminating in a point at the suture. In the woods particularly.
S. quadripunctata, L,; Fab.; Oliv., Ib. I, 7, a, b. Black; margin of the thorax and elytra yellowish, each of the latter with two black dots, one at base and the other in the middle. Peculiar to forests, but usually remains on young Oaks, where it feeds on caterpillars \dagger.
Those in which the extremity of the antennæ is likewise perfoliaceous, but where the club is formed gradually, according to Leach, alone retain the generic appellation of Silpha. They are usually found in fields, along the roads, \&c.
S. levigata, Fab.; Oliv., Ib. I, i, a, b. Shining black; multipunctured; thorax much narrower than before; elytra without elevated lines.
S. obscura, L.; Fab. ; Oliv., Ib., II, 18. Dusky black; thorax truncated anteriorly; elytra more deeply punctured; three raised but slightly salient and short lines, the intermediate the longest, on each of the latter.
S. reticulata, L.; Panz., Faun. Insect. Germ., V, 9. Opaque black; thorax truncated before ; three raised lines on each elytron, the exterior largest and forming a carina, terminated by a tubercle, with transverse rugæ in the intervals \ddagger.

[^409]The antenne of some are not distinctly perfoliate at the extremity, the last joints being almost globular. They are the Phosrifuga, Id. *

A species from Germany, which might form a separate subgenusNecronhluss, Lat.-is removed from the preceding ones by several characters. It is the
S. sublerranea, Illig., and cthers. The four anterior tarsi are similar and dilated at base, the two first joints, at least in the males, being evidently broader than the two following ones. The third joint of the antenne is longer than the preceding one, and the five last form abruptly a perfoliaceous club. The last joint of the maxillary palpi is as long as the two preceding ones taken together.

Argyrtes, Froh.-Mycetophagus, Fal.

The body tolerably thick, convex, and arcuated superiorly, not scutiform; thorax somewhat wider than long, and a little narrower before; extcrior margin of the elytra inclined and not canaliculated; last joint of the maxillary palpi thicker and ovoid \dagger.

Certain Clavicornes, which seem to approach Argyrtes in their habits and other characters, but whose mandibles are cleft or bidentated at the extremity, will compose our fifth tribe, that of the Scaphidites. Their tarsi consist of five very distinct and entire joints. The body is oval, narrowed at koth ends, arcuated or convex above, and thick in the middle; the head low, and received posteriorly into a trapezoidal thorax, widest behind, the margin of which is but slightly or not at all recurved. The antennæ are usually at least as long as the head and thorax, and terminated in a quadriarticulated and elongated club. The last joint of the palpi is conical. The legs are elongated and slender. With the exception of some species-the Cholevæ-the tarsi are nearly similar in both sexes.

This tribe consists of the genus

Scaphidiun.

Scaphidium, Oliv. Fab.-Silpha, Lin.
In the true Schaphidia, the five last joints of the antenne are almost globular, and compose the club. The maxillary palpi project but little, and gradually taper to a point, the pernltimate joint not being thicker than the last at their junction. The body is navicelliform; the margin of the thorax slightly recurved, and the elytra truncated.

[^410]They inhabit mushrooms. But few species are known; one from Cayenne and the rest from the north of Europe (a).

> Choleva, Lat. Spence,-Ca'rops, Fal.-Peltis, Geoff.

Most of the joints of the antennal club turbiniform and more or less perfoliaceous; maxillary palpi very salient and abruptly subulate; the body ovoid; thorax plane, without a border; the four first joints of the anterior tarsi, and the first of the intermediate ones, dilated in the males of some species-Catops blapsoides, Germ.

In the Cholevæ properly so ealled, the antennæ are about the length of the head and thorax; their eighth joint, or the second of the club, is evidently shorter than the preceding and following one, and sometimes is even indistinct; the last is semi-ovoidal and pointed *.

In the Mylerchus, Lat., Oliv.,-Catops, Payk., Gyll., the antennæ are shorter, the eighth joint is larger than the preceding, and almost equal to the following one, the last is rounded and obtuse on the summit \dagger.

The fifth tribe, or that of the Niridularie, approximates to the fourth in the scutiform and bordered body, but the mandibles are bifid or emarginated at the extremity ; the tarsi seem to consist of but four joints, the first and last, in some, being only visible beneath, where they merely form a slight projection, and the penultinate in the remainder being very small, in the form of a knot, enelosed between the lobes of the preeeding ones. The antennal club is always perfoliaceous, consists of three or four joints, and is usually short or but little elongated.

The palpi are short and filiform, or somewhat thickest at the extremity, The elytra in several are short or truncated. The legs are but slightly elongated, and their tibix frequently widened at the end; the tarsi are furnished with hairs or pellets. The habitation of these Insects varies with the speeies; they are found on flowers, in mushrooms, putrified meat, and under the bark of trees. They form the genus

Nitidula.

In some, the antennal club eonsists of but two joints, and the anterior part of the head projects in the manner of a semicircular flattened elypeus, covering the mandibles and other parts of the month.

[^411]
Colobicus, Lat.

In this and the following subgenus, the tarsi, from the point where they are moveable, seem to consist of but four joints, of which the three first, much shorter than the last, are entire, and simply furnished underneath with a greater or smaller number of hairs; the first as in several of the Cleri of Fabricius, is only visible underneath, where it forms a little projection; it is also pilose. The palpi of the Colobici and those of the following subgenus are terminated by a joint somewhat thicker than the preceding one *.

In the other Nitidulariæ, the artennal club always consists of three joints, and the head never projects over the mouth,

Sometimes the first joint of the tarsi, as in the Colobici, is very short, and the three following ones elongated, equal, entire, and simply pilose underneath; the palpi are thickest at the extremity. Such is
Thymalus, Latr.-Peltis, Fab.-Silpha, Lin.

In those species where the body is almost hemispherical-limbatus -the antennal club is proportionally shorter, and the third and following joints smaller than the second; the tibial spurs are extremely small \dagger.

Sometimes the three first joints of the tarsi, at least those of the males, are short, wide, and emarginated or bilobate; the fourth is very small, but slightly or not at all visible ; the maxillary palpi, at least, are filiform.

Here, the tibir, at least the anterior ones, are widened at the extremity in the form of a reversed triangle; the first joint of the antennæ is usually larger than the second, and the elytra are generally truncated posteriorly, or very obtuse.

In the two following subgenera, the third joint of the antennæ is evidently longer than the following one, and the antennal club abrupt and nearly orbicular or oval.
Ips, Fab.-Nitidula, Oliv. Lat.--Silpha, Lin.

The body always forming an oblong oval, and depressed; posterior extremity of the abdomen exposed; one of the mandibles-the lefttruncated and tridentated at the extremity, and the other widened and broadly emarginated or concave at the same end; terminal lobe of the maxillæ elongated \ddagger.

Nitidula, Fab.-Nitidula, Strongylus, Herbsl-Silpifa, Lin.
The two mandibles become narrowed near the extremity and terminate in an emarginated or bifid point.

Some are flattened, oblong, or ovoid; the others are orbicular and arched or proportionally more convex than the preceding. 'I'hus

[^412]some authors have placed certain species in genera of a similar form but otherwise very different, such as Spheridium and 'Iritoma.
N. ceneus, Fab.; N. viridescens, rufipes, var., Id.; Oliv., Col., II, ii, 12 ; III, 20, a, b; V, 33, a, b. Small; form, an oblong ovoid; of a brilliant bronze-green and multi-punctured; antemæ blackish, terminated by a very large obtuse club; thorax transversal, slightly emarginated anteriorly, and bordered laterally; legs sometimes blackish brown, and sometimes fulvous *.
Here the second and third joints of the antennæ are almost equal in size, and the club is elongated in the form of a reversed cone, or is pyriform.
Cercus, Lat.-Catheretes, Herbst. Illig.-Dermestes, Lin. Fab.Spheridium, Fab. Gyll.-Nitidula, Oliv.
The body depressed, and elytra truncated; two first joints of the antennæ much larger in the males of some species than in the females, and perhaps this subgenus should consist of such only, referring the others to Nitidula \dagger.

There the tibiæ are long, narrow, and almost linear' ; the elytra cover the abdomen and are not truncated.

The body is oval, thorax trapezoidal, and the antennal club oblong; its two first joints are nearly equal, and the third is hardly longer than the fourth. Such are the

> Byturus, Lat. Schonh.-Dermestes, Geoff: Fab. Oliv.-Irs, Oliv. \ddagger

Those that compose our sixth tribe, that of the Engidites, analogous to the Nitidularix in the emargination of the extremity of their mandibles, are distinguished from them by their not projecting, or but very little and simply on the sides, beyond the labrum. 'T'heir body is oval or elliptical, and the anterior extremity of the head slightly extended into an obtuse or truncated point. The tarsi consist of five $\|$ distinct joints, entire, and at most, slightly pilose underneath; the penultimate is somewhat shorter than the preceding one. The antemne terminate in a perfoliaceous triarticulated club; the elytra cumpletely cover the abdomen, and the palpi are somerrhat thicker at the extremity. Some very small species inhabit the interior of houses, and are frequently found on windows.

We will unite them all in a single genus, that of

Dacne.

> Dacne, Lal.-Engis, Fab. Dej.-Erotylus, Oliv.

Their antennæ terminate abruptly in a very lange orbicular or

[^413]ovoid and compressed club, composed of crowded joints, of which the middle one at least is much wider than it is long; the third is longer than the second and fourth.

The middle of the posterior margin of the thorax is dilated behind or lobate, and the superior extremity of the mentum terminated in a truncated or bidentated point*. In
Cryptophagus, Herbst. Scheenh.-Dermestes, Lin. Fab.-Ips, Oliv. Lat.-Antherophagus, Knoch,
The antennæ are moniliform, their second joint as large as the preceding or larger, and terminating in a less abrupt and narrower chub than in Daene, and with intervals between its segments \dagger.

We now come to certain tribes in which the præsternum is frequently dilated anteriorly in the manner of a chin-cloth, and whieh differ from the preceding ones in their feet, which are either wholly or partially contractile; the tarsi may be free, but the tibire at least can be flexed on the thigh. The mandibles are short, and generally thick and dentated. The body is ovoid, thick, and covered with deciduous scales or hairs of various colours. The antennæ are straight and usually shorter than the head and thorax. The head is plunged into the thorax as far as the eyes. The thorax is but slightly or not at all bordered, trapezoidal, and wider posteriorly; the middle of its posterior margin is frequently somewhat prolonged or lobate. The larvæ are piluse, and mostly feed on the exuvie or carcasses of animals. Several are very injurious to entomological collections.
Those then in which the legs are not completely retractile, the tarsi being always free, and the tibiæ elongated and narrow, form our seventh tribe, that of the Dermestint, and the great genus

Dermestes.

The only insects of this tribe whose antennæ do not present two distinct joints, and whose very short and inferiorly inflated palpi afterwards terminate in a point, are those which form the

Aspidiphorus, Ziegl. Dej.

Their body is orbicular \ddagger.
From among the species in which the antenno consist of eleven

[^414]distinct joints, and the palpi are filiform or gradually enlarge, we will first separate those whose antennæ are not received into particular fossulæ in the under part of the thorax. The præsternum rarely extends over the mouth *.

In some, the antennæ terminate abruptly in a large perfoliaceous triarticulated club.

Dermestes, Lin., Geoff., Fab.

In Dermestes, properly so called, the antennæ are similar, or differ but very slightly in both sexes; the length of the last joint is never much greater than that of the preceding ones.

Certain species do great injury among furs, and devastate our collections of natural history. De Geer calls them dessectors, and in fact the Dermestes lardarius cuts to pieces the Insects of the cabinet into which it has penetrated. The others devour the dead bodies of all kinds of animals.
D. lardarius, L.; Oliv., Col., II, 9, 1, 1. Black; base of the elytra cinereous and dotted with black. The larva is elongated, insensibly tapered from head to tail, of a chesnut-brown above, white beneath, furnished with long hairs and two squamous horns on the last annulus. Its excrements resemble long threads \dagger.

> Megatoma, Herbst., Lin., Geoff., Fab.

The Megatomæ only differ from Dermestes in the club of their antenæ, which is much more elongated in the males than in the females; the terminal joint is lanceolate or forms an elongated triangle.
M. pellio; Dermestes pellio, L.; Oliv., Ib., II. ii. But two lines and a half in length; black; three white dots on the thorax, and one on each elytron, formed by down. The larva is greatly elongated, of a glossy reddish-brown, and covered with reddish hairs, those of the posterior extremity forming a tail. It moves by sliding, and as if by jerks, which is also the case with the perfect Insect, and the Dermestes \ddagger.
In others, such as

> Limnichus, Zieg., Dej.,

The antennæ become gradually thicker, and terminate in a larger and ovid joint; they are granose, and received under the anterior angles of the thorax. The maxillæ are terminated by two lobes, the

[^415]exterior of which is narrow and palpiform. The labial palpi are very small; the last joint of those of the maxillæ is larger than the preceding ones and ovoid *.

In all the following subgenera, the antennæ, or least their club, are received into particular and lateral cavities in the under part of the thorax. 'The præsternum is always dilated or projected forwards in the manner of a chin cloth.

Here, the antennal club is perfoliaceous and not solid. In

> Attagenus, Lat.-Megatoma, Lat.-Dermestes, Fab.

The club is very large, almost serriform, and composed of three joints, of which the first and last, particularly in the males, are the lungest. The body is ovoid, short, and but slightly convex. The last joint of the mixillary palpi is larger and ovoid t.

Trogonerma, Lat., Dej.-Anthrenus, Fab.

Antennal club quadriarticulated at least; body ovoid and oblong; palpi filiform \ddagger.

The antennal club is now solid or formed of crowded joints. The body is ovid, short, and completely covered with little diciduous scales. The thorax is lobate posteriorly. In

Anthrenus, Geoff., Fab.-Byrrhus, Lin.
The antennæ, terminated by a club in the form of a reversed cone, are received into short cavities under the anterior angles of the thorax.

These Insects are very small, living on flowers in their perfect state and in that of larvæ devouring desiccated animal matters, insects particularly. The larvæ are oval and furnished with hairs, some of which are dentated, forming tufts; the last are prolonged posteriorly into a kind of tail. Their final exuvium serves as a cocoon for the chrysilis.
A. verbasci; Byrrhus verbasci, L.; Oliv., Col. II, 1.0, 1, 2. Grey above, reddish-yellow beneath; the two angles of the thorax, two transverse bands on the elytra, and a spot near their extremity, grey $\|$.

> Globicornis, Lat.

The antennæ terminating in a globular club, and received into fossulæ extending to near the posterior angles of the thorax \S.

[^416]The eighth tribe, that of the Byrrhit, differs from the preceding in the perfect contractility of the legs; the tibire are susceptible of being flexed on the thighs, and the tarsi on the tibire *, so that when thus folded and pressed against the body, the animal seems to be inanimate and entirely destitute of feet. The tibiæ are usually broad and compressed. The body is short and convex.

This tribe is chiefly composed of the genus,

> Brrrhus, Lin.

Those species which form the

Nosodendron, Laí.

Are removed from the others by their entirely exposed, very large, and scutiform mentum. Their antennæ terminate abruptly in a short, perfoliaceous and triarticulated club. They are found in wounds of trees, of the elm particularly \dagger.

> Byrrhus, Lin.-Cistela, Geoff.

The true Byrrhii differ from the preceding Insects in their mentum, which is of an ordinary size and interlocked (at least partially) by the presternum, whose anterior extremity is dilated.

In some, the antennæ enlarge insensibly, or terminate in an cngated club formed of from five to six joints.
B. pilula, L.; Oliv., Col. II, 13, 1, 1. From three to four lines in length; black beneath, blackish-bronze or soot coluur and silky above, with little black spots mingled with lighter ones arranged in lines.
M. Waudouer has detected the larva of a variety of this species. It is narrow and elongated; the head thick; the plate of the first segment large, and the two last longer than the others. It lives in Moss.

A second species-striato punctatus, Dej.-with similarly formed antennæ, constitutes a separate division, on account of its tarsi, of which the fourth joint is very small and concealed between the lobes of the preceding one.

The antennæ of another species, very small and covered with hairs, terminate in a triarticulated club. It forms the genus Trinodes, Megerl., and Dej. \ddagger.

On similar grounds we might alse separate from the Byrrhii some other analogous species $\|$. in which the antennal club consists of but two joints, the last much the thickest and nearly glohular.

[^417]
All the Byrrhii remain on the ground in sandy localities *.

It is impossible to describe the Clavicornes of our second section, although a very natural one, but by the reunion of several characters. Some of these Insects are removed from all others of the family by their antennæ, which cunsist of nine or six joints; they are those, which, in this respect, seem to approximate most closely to the Palpicornes. The antennæ of the other Clavicornes of the same section are composed of eleven or ten joints; but sometimes they are not much longer than the head, and from the third joint form an almost cylindrical or fusiform club, arcuated and somewhat serrated; sometimes they are nearly filiform and as long as the head and thorax united; but here, as in most of the other subgenera of the same division, the tarsi are terminated by a large joint furnished with two strong terminal hooks. Those of some-Heterocerus, Georissusconsist of but four joints.

The body of thesc Insects is generally ovoid, and their head plunged to the eyes in a trapezoidal thorax, with a recurved lateral margin, and terminating posteriorly in acute angles; the præsternum is dilated anteriority \uparrow, and the legs are imperfectly contractile. They are found in the water, under stones in the vicinity of shores, and frequently in the mud: some of them-Dryops-are allied to the Gyrini by the structure and shortness of their antennæ.

I will divide this scetion into two tribes \ddagger. The Insects which compose the first or the Acanthopod are remarkable for their flattened and tolerably wide tibire, armed anteriorly with spines; for their short quadriarticulated tarsi, the hooks of which are of the usual size; and for their depressed body. The preesternum is dilated. The antennæ are a little longer than the head, arcuated, and formed of

[^418]II. Antenne nine or six joints.

Macronychus, Georissus.
eleven joints, the last six constituting an almost cylindrical and slightly serrated club; the second is short and not dilated.

This tribe is composed of a single genus

Heterocerus, Bosc., Fab.

These Insects are found in the sand or mud, along the borders of rivulets, marshes, \&cc., issuing from their holes when disturbed by the trampling of feet. The form of their tibix enables them to turn up the earth, and conceal themselves in it ; their tarsi can be flexed upon the tibiæ. There also reside their larvæ, which were first discovered by M. Miger.
H. marginatus, Fab.; H. lavigalus, Ib.; Panz., Faun., Insect., Germ., XXIII, 12. A small, blackish, and silky Insect, with little yellowish or reddish spots, varying in form and number, and sometimes even wanting on the elytra.
M. Gyllenhal observes that the tarsi really consist of five joints, the first of which is small and oblique. See Insect. Suec. I, p. 138.
The second tribe, or that of the Macrodactila, comprises Clavicornes with simple, narrow tibiæ and long tarsi, all-one genus excepted (Georissus), well distinguished from every other tribe, by its antennæ of nine joints, of which the three last form an almost solid club-composed of five distinct joints, the last of which is large, with two stout terminal hooks. The body is thick or convex. The thorax is less rounded, and most commonly terminates on both sides in acute angles.

The principal type of this tribe is the genus

Dryors, Oliv.,

Or that of Parnus, Fab., which is divided in the following manner :

1. Those whose antennæ, never much longer than the head, are composed of from ten to eleven joints, which, from the third, form an almost cylindrical or slightly fusiform club, arcuated, and somewhat serrated.

Potamophilus, Germ.-Parnus, Fab.

The Potamophili, which, ignorant of the establishment of this subgenus, we had named Hydera *, have their antennæ exposed, and not received into particular cavities; they are rather longer than the head ; the first joint is almost as long as the following ones taken together, and the second short and globular. The palpi are salient, and the mouth is completely exposed as the præsternum does not project over it, a character in this tribe exclusively peculiar to this subgenus \dagger.

[^419]Dryops, Oliv.-Parnus. Fal.
In Dryops proper, the antenne, shorter than the head, are received into a cavity situated under the eyes, and are almost covered by the second joint, which is large, dilated, in the form of an almost triangular palette, and projects in the manner of an auricle, whence the name of Dermeste à oreilles, given to the most common species by Geoffroy *. The palpi are not salient.
2. Those in which the antennæ, composed of eleven joints, are filiform, or merely a very little thicker near the extremity, and at least nearly as long as the head and thorax.

Elmis, Lat.-Limnius, Illig.

They are found in water, under stones, or on the leaves of the Nymphea \dagger.
3. Those in which the always very short antennæ consist of but six or nine joints, and terminate in an almost solid, oval, or nearly globular club.

> Macronychus, Müll., Germ.

These Insects have five distinct joints in the tarsi, an oblong body, and antennæ of six segments, the last of which-perhaps composed of three-forms an oval club; they can be folded under the eyes \ddagger.

> Georissus, Lat., Gyll.-PPimelia, Fab.]

Here the tarsi consist of but four joints; the body is short, turgid and almost globular, and the abdomen embraced by the elytra; the antennæ are composed of nine joints and terminate in a round club formed by the three last \S.

FAMILY V.

PALPICORNES.

In our fifth family of pentamcrous Coleoptera, as in the fourth, we observe antennæ terminating in a club, usually perfoliaceous, but consisting of nine points at most in all, and inserted under the lateral and projecting edges of the head; they are never much longer than the latter and the maxillary palpi, and frequently even shorter than the last-mentioned organs. The mentum is large and scutiform.

The body is usually ovoid or hemispherical, convex or arched. The legs in several are adapted for natation, and then consist of but

[^420]four very distinct juints, or of five, the first of which is much shorter than the second ; all the joints are entire.

Those in which the legs are natatory, the first joint of the tarsi is much shorter than the following ones, and the maxillæ are entirely comeons, will form our first tribe, that of the Hrdropinlin, which embraces the genus

Hydiopinlus, Geoff.

Linnæus merely made these Insects a division (the first) of his genus Dytiscus, but their anatomy is essentially different. The alimentary canal of the Hydrophili is very analogous in its contexture and length, which is more than four or five times that of the body, to that of the Lamellicornes, and only approximates to the same canal of the carnivorous Insects with respeet to the biliary vessels. They neither lave the natatory bladder nor excrementitious apparatus which characterize the Hydrocanthari. In the females only, this apparatus is replaeed by ergans which secrete the matter that is to form the coeoon that encloses the ova, and to produce it their anus is furnished with two fusi. Finally, the male organs of generation have the closest affinity with those of the Clavicornes *.

In some, where the body is oral, oblong and depressed. or elongated and narrow, the thorax scabrous and narrowed posteriorly, the tibiæe are slender and funished with small spurs, and the tarsi filiform, slightly ciliated and terminated by two strong hooks; the an-tennæ-always composel of nine joints-terminated in a slightly perfoliaceous or nearly solid club, almost in the form of a reversed cone, and the extremity of the mandibles is entire, or ends in a single tooth. They are all very small, swim but seldom or badly, and inhabit stagnant waters, from which they occasionally remove, to conceal themselves under stones or in the earth. They compose the family of the Helphoridea of Leach, a name which reminds us of the genus Elophorus of Fabricius.

Here the length of the maxillary palpi does not surpass that of the antennæ or is even less. The epistoma is entire or without any notable emargination.

Sometimes the maxillary palpi are terminated by a thicker and oval joint.
Elophorus, Fab.-Silpha, L.-Dermestes, Geoff.-Hydrophilus, De Gecr,
The body oral, and the thorax transversal; the eyes but slightly prominent \dagger.

Hydrochus, Germ.-Elophorus, Fab.
The Hydrochi are only distinguished from the preceding subgenus

[^421]by their narrow and elongated form, their thorax which has the figure of a long square, and the prominence of their eyes*.

Sometimes the maxillary palpi are subulate or terminate in a nore slender joint, short and conical.
Octhebius, Leach, Germ.-Elophorus, Fab.-Hydraia, Illig., Lat.
The thorax is nearly semi-orbicular \dagger.
There, the maxillary palpi, terminated by a fusiform joint, larger than the penultimate and pointed at the end, are much longer than the antennæ and head. The epistoma is strongly emarginated. Their appearance otherwise is that of the Octhebii.

$$
\text { Hydrens, Kugel. Leach }+
$$

In the other Hydrophili the body is ovoid or almost hemispherical, and generally convex or arched, and the thorax always smooth and wider than it is long; the tibiee are terminated by strong spurs, and the tarsi most frequently ciliated. The extremity of their mandibles is bidentated. They embrace the family of the Hydrophiliclea, Leach, or the genus Hydrophilus, Fab.

Some have butsix joints in the antennæ; their epistoma is emarginated. Such are those which form the

> Spercheus, Fab.§.

In the following the antenne are always composed of cight or nine joints, and the epistoma is entire, or on the anterior margin slightly concave.

A species transmitted to us by our friend Doctor Leach presents such singular characters that we have been induced to consider the Insect as the type of a now subgenus \|, the

Globaria, Lat.

So named because its body is almost spherical and laterally compressed, and because it appears susceptible of forming a ball, like an Agathidium, Its antenne appear to me to be composed of buteight joints, of which the fifth is dilated into a spine at the internal side, the sixth forms a reversed and elongated cone, the seventh cylindri-

[^422]cal, and the last or the eighth conical ; these latter joints form an almost cylindrical and greatly elongated club, which terminates in a point. The maxillary palpi are a little shorter than the antennæ. The eyes are large and prominent. The thorax is almost scmilunar. The elytra completely clasp the abdomen. The pectus is destitute of a sternal spine. The extremity of the four posterior tibiæ is furnished with a bundle of setex almost as long as the tarsus. The scutellum is small, triangular, elongated, and narrow.

The only species known, G. Leachii, is small, and foreign to Europe. I belicve it is from South America.
All the remaining Hydrophilii have nine joints in their antennæ; the club is oval or ovoid. The body is not susceptible of being contracted into a ball.

In the largest species, the two intcrmediate joints of the antennal club, or the seventh and eighth, are reniform or irregularly lunate, obtuse at one end, prolonged, arcuated, and pointed at the other, with a remarkable space between them; the first of this club is cupulate and most prolonged anteriorly. The middle of the sternum is elcvated into a carina, and terminated posteriorly in a point more or less long, and very acute. The maxillary palpi are longer than the antennæ; their last joint is shorter than the penultimate. The tarsi, particularly the last, are compressed, fringed with hairs or cilia along their internal side, and terminated by two hooks, generally small, unequal, and unidentated inferiorly. The scutellum is tolerably large. These species compose the genus

Hydrophlus, Geoff., Fab., Leach.-Dytiscus, Lin.

Here the sternal spine is strongly prolonged behind. The last joint of the two anterior tarsi of the males is dilated in the form of a triangular palette. The scutellum is large. They form the H_{y} drous of M. Leach *.

The larvæ resemble a sort of soft, conical, and elongated worms, furnished with six feet, and a large squamous head, more convex underneath than above, armed with strong and hooked mandibles. They respire by the posterior extremity of the body, are very voracious, and do great injury to fish ponds by devouring the sparn.
H.piceus, Fab.; Oliv., Col. III, 39, 1, 2. An inch and a half long; oval ; of a blackish-brown, polished, or as if covered with a varnish; antennal club partly reddish; some slightly marked striæ on the elytra, the posterior extremity of which is rounded laterally, and prolonged into a small tooth at the internal angle.

It swims and flies well, but walks badly. When held loosely in the hand, its sternal spine sometimes inflicts a wound.

The anus of the female is provided with two fusi, by means of which she constructs an ovoid cocoon, surmounted with a point, resembling an arcuated brown horn. Its external tissue is a fummy paste, which, though fluid at first, subsequently

[^423]hardens, and becomes impervious to water. The ovait contains are arranged symetrieally, and kept in situ by a sort of white down. These eoeoons float on the water.

The larva is depressed, blackish and rugose, and has the faeulty of throwing back its brown, smooth round head. 'This enables it to capture the little Mollusca whieh navigate the surfaee of the water, its baek serving as a point d'appui or anvil on which it mashes the shell in order to devour the animal it eontains. The body of these larvæ beeomes flabby as soon as they are eaught. They swim with great faeility, and are provided with two fleshy appendages beneath the anus which serve to maintain them on the surface of the water, head downwards, when they come there to respire. Aeeording to M. Miger, to whom we are indebted for these observations-Ann. du Mus. d'Hist. Nat. XIV, 441-the larvæ of other Hydrophilii are deprived of these appendages, and neither swim nor surpend themselves like those of whieh we have been speaking. The females of these speeies swim with difficulty, and earry their ova under the abdomen enclosed in a silken web; but these species belong to the last subgenera of this tribe.
The Hydroplitus proper of Leaeh consists of species in which the tarsi are identieal in both sexes, and not dilated, the pectoral spine terminates with the post-sternum, and in which the scutel is proportionally smaller*.

In all the following Hydrophilii, the two intermediate joints of the antennal club are exaetly transversal, of a regular form, not prolonged into a tooth at either extremity, and without any space between them; the last is obtuse or rounded at the end. The peetus exhibits neither carina nor spine. The tarsi are less, or not at all fitted for natation, but slightly or not ciliated, and terminated by large, equal, and simple hooks.

Those in which the maxillary palpi are hardly longer than the antennæ, with the last joint shorter than the preeeding one, and cylindrical, in which the body is low, and the elytra are truncated at the extremity, or very obtuse, form the genus

$$
\text { Limnebius, Leach } \dagger \text {. }
$$

Those, in whieh the maxillary palpi are hardly longer than the antennæ, with the last joint as long as the preceding one or longer, and almost oval, and in whieh the body is convex, are eomprised by the same English savant in two genera. In one of them, the

> Hydrobius, Leach,

The eyes are depressed or but slightly convex ; the anterior extre-

[^424]mity of the head is not abruptly narrowed, and the base of the thorax is as wide as that of the elytra*. In
Berosus, Leach,

On the contrary, the cyes are very prominent, the anterior extremity of the head is narrowed abruptly, and the base of the thorax is narrower than that of the elytra. The body is very convex \dagger.

Our second tribe, or the Spheridiota, consists of terrestrial Palpicornes, with tarsi composed of five very distinct joints, the first of which is at least as long as the second. The maxillary palpi are somewhat shorter than the antennæ, with the third joint longer, inflated, and in the form of a reversed cone. The maxillary lobes are membranous.

The body is nearly hemispherical, the posterior extremity of the presternum is prolonged into a point, and the tibire are spinous; those that are anterior are palmated or digitated in the large species. The antennæ always consist of nine joints, or of eight, if the last be considered as an appendage of the penultimate \ddagger.

These Insects are small, and inhabit cow-dung and other excrementitious matters; certain species are found near the shores of rivers, \&c. They compose the genus

Spheridius, Fab.

From which, however, we must separate several species, a division already effected by Olivier. Dr. Leach only considers as such those in which the anterior tarsi of the males are cilated. Such is
S. 4-maculaium; Dermestes scarabreoides, L.; Oliv., Col. II, 15, 1 and 3, II, 11. It is of a shining black and smooth; the scutellum is elongated, and the legs are very spinous; a hlood-red spot at the base of each elytron, and their extremity reddish. In some individuals these spots diminish or disappear.
The species, in which the tarsi are similar in both sexes, and whose antennal club is closely imbricated, compose the genus Cer cydion § of Leach. The Sphæridia might be divided into several other sections by characters drawn from the form of the tibix, and the disposition of their spines or dentations, a division which would facilitate the study of the specics, that seem to lave been improperly multiplied ||.

[^425]

rus

[^0]: * This preface is the same which stood at the commencement of the third volume of the first edition of this work. Having there confined mysclf to an exposition of the general principles, upon which my arrangement of the animals composing the Linnæan elass of Insects was effected, and having in the present edition made no cliange in that respect, the same observations are still applicable. Considered, however, with regard to the details, or to the secondary and tertiary divisions, that is to say, Ordcrs, Families, Genera and Subgenera, this edition will be found to prescnt a remarkable difference. It was impossible to place it on a level with the actual state of the seicnce, without modifying several parts of my former system, and without considerable additions, which, such has been the progress of Entomology, are so numerous, that even by filling two volumes instead of onc, I have been barely enabled to give a very summary view of the multitude of gencric divisions effectuated within the last ten years, and which are frequently founded on the most minute characters. This branch of Zoology has gained much from other and more positive sources, those of Anatomy. These observations I was the more imperatively bound to noticc, as they formed part of the plan of the illustrious author of the " Règne Animal," and as they serve to confirm the stability of the divisions I have established. By a perusal of the general remarks which precede them, the reader will be better able to appreciate the motives which have determined these changes, and to feel the importance of the addenda that enrich the entomologieal portion of this edition. A simple comparison between it and that of the former will show, at a glance, that it has been entirely remouldel, or that it is a new work which we now present to the world, rather than a new edition.
 + Tableau Elément. de l'Hist. Nat. des Animaux, and the Leç. d'Anat. Compar.

[^1]: * I there divided the Aptera of Linnæus into seven orders: 1. The Suctoria. 2. The Thysanoura. 3. The Parasita. 4. The Aceiphala (Avachnides palpisics, Lam.) 5. The Entomostraca. 6. The Crustacea. 7. The MyraPODA.
 \dagger These considcrations, however, have not been overlooked, and I have used them advantageously in grouping families, and arranging them in a natural ordcr, as may be seen by a reference to the listorical sketches which precede the exposition of those families. I have even been employed on a work respecting the metamorphosis of Insects in general, which has not yet been published (sce article "Insecles," Nouv. Dict. d'Hist. Nat. Ed. 2d), but which I have long been maturing, and which I have communicated to my friends: I have mude use of it in the course of my general remarks.

[^2]: ＊Consid．Génér．sur l＇ordre des Crust．，des Arach．，et des Insectes，p． 46.

[^3]: * Those added to the present edition are from Messrs. Léon Dufour, Marcel de Serres, Straus, Audouin and Milne Edwards.

[^4]: ＊Those genera which we mention accessorily，either because they are but slightly or not at all known to us，or because we unite them with others，are printed in stalics．

[^5]: * N.B. Linnæus united all invertebrate animals without articulated limbs in a single class, under the name of Vermes, dividing them into five orders: the IntesTina, cmbracing some of my Anuclides and Intestina; the Mollusca, comprehending my Naked Mollusca, my Echinodermata, and part of my Intestina and Zoophytes; the Testacea, comprising my Molluscuand Annelides with shells; the Lythopirta, or Stony Corals; and the Zoophytes, embracing the remainder of the Polypi, some of the Intestina and the Infusoria.

 No regard whatever was paid to nature in this arrangement, and Brugiére, Encyel. Method., endearoured to rectify it. He there established six orders of worms, viz. the Infuriosa; the Intestina, including the Annelides; the Molmusca, uniting sereral of my Zoophytes to my true Mollusea; the Echinodermata, which only comprised Echinus and Asterias; the Testacea, nearly the same as those of Linneus; and the Zoophytes, under which name he included the Corals ouly. This arrangement was merely superior to that of Linnæus in the more complete approximation of the Annelides, and by the distinction it effected of a part of the Echinodernata.

 I proposed a new arrangement of all the invertebrate animals, founded on their internal structure, in a paper read lofore the Societé d'Histoire Naturelle on the loth of May 1795, of which my subsequent labours on this part of natural history are the development.

[^6]: tion of the third volume for a loug time after the appearance of the fourth ; among the most prominent of which were the number of changes in the gencra, and in the distribution of species, he was compelled to make by recent discoveries. IIe also acknowledges his obligations to the works of the Iate lamanted MI. de Lamarck, and those of MM. de Blainville, Savigny, Fŕmssac, Des Heycs, D'Orhigny, Rndolphi, Bremser, Otto, Lenckart, Chamisen, Fisenhardt, Rang, Sowerby, Charles Desmoulins, Quoy and Gaymard, Delle Chiajc, Defrance, Deslonchamp, Audouin, Milne Edwards, Dugés, Moquin Tandon, Morren, Ranzani, and other sawans whom he names in different places. IIc concludes by regretting that he had not received in time certain rery reecut works, which would have supplied him with valuable materials, particularly the Syst. Acaleph., Berlin, 1529, 4to, of M. Eschholtz, and the article Z'Oophyles of the Diet. des Sc. Nat., of M. de Blainville, which was not then published. Eng. Ed.

[^7]: * Until my labours on the subject were made public, the Testacea constituted a particular order; but there are so many insensible transitions from the Naked Mollusea to the Testacea, and their natural divisions form such groups with each other, that this distinction can no longer exist. Besides this, there are several of the Testacea which are not Mollusca.

[^8]: as (a) This name is given to a woolly texture which covers the outside of several univalve shells. Eng. Ed.

[^9]: * M. de Blainville has substituted the name of Malacozocires for that of Mol lisea, separating from them the Chitons and Cirrizipor?, which he calls Malentom zoasres.
 t The whole of this arrangement of the Mollusca, and most of the secondary sublivisions, belong exclusively to me.

[^10]: * M. de Blainville has changed this name to that of Cephalophora.
 M. de Lamarek at first united my Cephalopoda and Gasteropoda under the common name of Ccplola, but having subsequently increased the number of classes, he resumed that of Cephatopodet.

[^11]: * See Carus, Nov. Act. Nat. Cur., XII., part I, p. 320, and Sangiovanni, Ann. des Sc. Nat. XYI, p. 308.

[^12]: * M. Ab. Remusat, however, can find nothing in the authors of China which confirms this idea.
 + M. de Blainville makes an order of them, which he calls the CryptondbranCHITA.

[^13]: * Add the Poulpe cirrhcaux, Lam., loc. eit., pl. i, f. 2, and, in general, several new species of the whole genus Sepia, which will shortly be published by M. de Férussac.

[^14]: * It is upon this hypothesis that M. Rafin and others have formed the animal into the genus Ocythoe.
 + All that has been stated to the contrary, even in modern times, is founded upon report and conjecture.
 \ddagger Poli, test. Neapol., III, p. 10. Sec, also, Fírussac, Mcm. de la Soc. d'Hist. Nat., II, p. 160, and Ranzani, Mem. di Stor. Nat. dec., 1, p. 85.
 § Arg. argo, Favanne, VII, A, 2, A, 3;-Arg. houstrum, Delw., ib., A, $5 ;-A$. tuberculatu, Shaw, Nat. Misc., 995 :-A. nuricula, Solander, Fav., VII, A, $7 ;-$. hians, Sol., Fav., VII., A, 6 ;-A. Cranchii, Leach, Phil. Trans. 1817.

 II Bellorophon vasuliles, Montf., Conch. Syst., I. p. 5I. Sce, also, Defrance, Ann. des Sc. Nat., I, p. 264.

[^15]: * Sec, howerer, Lsachia cychura, Lesueur, Ac. Nat. Sc. Phil., II, p. S9, and Krusenstern, Atlas, pl. hxxwiii.
 \uparrow Add, Lol. Barlramii, Lescuer, Ac. Nat. Sc. Phil., II, vii, 1, 2 ;-Lol. BerrtTingii, Id., XCV;-Lol. illecelrosa, ll., pl. F, No. 6 ; L L. pelayica, Bosc., Vers., I, 1, 2 ;-L. Peulii, Lcsucur, I, с, viii, 1, 2;-L. P'tro. Id.. XCVI;-L. breripinna, Id., Ib., III, x.
 \ddagger On. cariban, Lesucur, Ac. Nat. Sc. Phil., I1, ix, 1, 2 ;-On. ctnyulata, Id., Ib., I, 3 ;-On. uncinalu, Quoy and Gaym., Voy. Frcycin., Zool., pl. vii, f. 66 ;-On. Bergii, Licht., Isis, 1818 , pl. xix;-On. Fabricii, Ib., Id.;-On. Bunksii, Jucach, App. Tuckey, pl. xriii, f. 2, copied Journ. de Phys, tome LXXXVI, Junc, f. 4 ; On. Smithii, Lcach, Ib. f. :3, Journ. de Phys., Ib., 5.
 § Chondrosepi loligiformis, Leukard, App. Juppel., pl. vi, f. 1.

[^16]: * Small bodies, armed with a spine are frequently found among Fossils-they are the extremities of the bones of the Scpir. They constitute the genus Befoprera Deshayes. See my note on this smbject, Ann. des Sc. Nat. II, xx, 1, 2.

 There are some other-but petrified-Fossils, which appear to be closely allied to the above bones. They are the Ryncholithes of M. Faure Biguet. See Gail. lardot, Ann. des Sc. Nat., II, 485, and pl. xaii, and of Orbigny, Ib., pl. vi.

[^17]: * The figure of Rumphius is absolutely unintelligible, and it is somewhat astonishing, that, of the many naturalists who have visited the Indian Ocean, not one has ever examined or collected this curious animal, which belongs to so common a shell.
 \dagger Large specics, with a simple siphon: the Angulite, Mont., f. 1, 6;-the Aganide, Id., 50 ;--the Cantrope, Id., 46.
 \pm Nuutilus lituus, Gm. ; - Nuul. semilituus, Planc., I, x.

[^18]: * Breyn. de Polythal., pl. iii, ix, v, and vi.; and Walch, Pctrif. of Knorr., Supp. IV, b, iv, d, iv. See also Sage, Journ. de Phys. an. IX, pl. 1, tinder the name of Belemnite.
 t The best works on this singular genus of Fossils, are the Mémoires sur les Bélemites considerées zoologiquement el géologiquement, by M. de Blainville, Paris,

[^19]: 4to, 1827; and that of M. J. S. Miller on the same subject in the Geol. Trans., second series, vol. II, part I, London, 1S26. Sce also Sage, Journ. de Phys. an. IX, and Raspair, Journ. des. Sc. d'Observ., sceond No. To this genus we refer the Paclite Diontf., 318 ;--the Thalamule, 322 ;-the Achélöte, 358 ;--the Cetocine, :370;-the Acame, $37+$;-the Beleminte, 382 ;-the Hibolite, 386 ;-the Prorodrague, 390 ;-the Pirgopole, 394, which are the eases of different species. As to the Amimone, Id., 326 ;-the Callirhoc, 362 ;-the Chriscore, 378 , they appear to be mere nuelei or piles of alveoli detached from their eases.

 * So ealled from the resemblance of their volutes to those of a ram's horm.
 + The various species of Ammonites have long been colleeted and deseribed, but with less care than those of other shells. We may commence studying them in the article Ammonite, Eney. Method. Vers. I, 28, and in that of M. de Roissy, in Sonini's Bufton, Mollusca, V. 16. Sce also the Monograph of Haan, entitled "Monogruphice Ammoniteorum et Gomiuteorum Specimen," Leid. 1325.
 \ddagger Sc. obliquens, Sowerb. ; Cur., Oss. Foss., II, part II, pl. ii, f. 13.
 § Baculites vertcbralis, Montf. 342 ; Fauj., Mont. de St. Pierre, pl. xxi.
 II The Tiranite, Montf., 346; Walch., Petrif., Supp., pl. xii, constitutes the genus Raabdites of Haan, who refers the Icthyosarcolites of Desmar to it.

[^20]: * Montf, Journ. de Phys., an. VII. pl. i, f. 1. There are some doubts as to the position of the siphon. Perhaps, as M. Adouin observes. what has heen taken for it, is the columellar convolution.
 * The stone tormed pierre de Laon is wholly formed of Nummulites. The pyramids of Egypt are placed upon rocks of this description, which also furnished the materials of the superstructure. See the Memoir of Fortis on the Discolifes in his work on Italy, and that of M. Héricart de Thury, as well as Lann., Anim. sans Verleb., VIII, and M. D'Orbigny, Teh. Method. des Céphalopodes.
 \ddagger Noutihus mammillu, Ficht., and Moll., VI, a, b, e, d; Nuut. lenticularis, VI, e, f, g, h, TH, a-h. To this genus also we refer the Licophre and Egeone, Montf, $15 \mathrm{~S}, 166$, and his Rotalite, 162 , which differs from the Rotalies of Lamarck.

 II Nautilus radialus, Ficht. and Moll., TTI., a, b, c, d;-Naul. Venosus, Ib., e, f, r, h.
 § Siderol. calcitropö̈de, Lam. Far., Mont. de St. Pierre, pl, xxxiv.
 YOL. III.

[^21]: * These infinitely small beings having but little to do with our plan, we will merely eite the names of the genera with a few examples. The Nummulites themselves are compressed in this first division under the name of Nummulines, Nauilus pompiloïdes, Ficht., and Moll., N. incrassalus, Id.

 The Syderolina, the same as Syderolites, Lam.
 Cristellaria,-Nautilus cussis, Nuul. galeu, Id., \&c.
 Robulina, Nautilus calcar, Naul. varlex, Id.
 Spirolina,-Spirolinites cylindrucer, Lam. Anim., sans verteb.
 Peneropla,-Neutilus plenutus, Ficht. and Moll., \&r.
 Dentritina,
 Polystomella,
 Anomalina,
 Vertebralina,
 Cassidulina.

 + M. D'Orbigny divides them into four genera:

 ## Soldania,

 Operculina,
 Planorbulina,
 Planulina.
 \ddagger These form ten genera:
 Truncatulina,
 Gyroidina,
 Globigierina,
 Calcarina, where is placed, imong others, the Noutilus Spengleri, Fich. and Moll. XIV, d., I, and XV.
 Rotalia,
 Rosalina,
 Talvulina,
 Bulimina,
 UVigeriNa,
 Clavulina.
 § The Stycostegua are divided by M. D'Orbigny into eight genera: the NonoaAria, which he subdivides into the trme Nodosaria, surh as the Nautilus radiculus, L. ;-Ncui. jugosus, Montag., Test. Brit., Nif.f. 4 ; and into Dentalina, such as the Naulilus rectus, Montag., 1 , rit., XIX, f. 4,7 (the genus Reophaga, Montf. I, 330) ; into Onthoerins, such as the Nadosariu clarulus, Lam., Encycl., pl. 466 , f. 3 ; and into Mucronina.

 Frondicuaria, where comes Renutino complenate, Blainv., Makac.
 Lingulina,
 Rimulina,

[^22]: * M. de Blainville mites my Pleropotio and my Gasteropoda in a single class, which he calls Paracepmalophora, of which my Plormpode form a particular order, under the name of Amorobrancmata. This orter is divided into two families; the Thecosomu, which are fumished with a shell, and the Gymnosumu vhech are not.
 eius (Faum. Groen., L., 334), and the Clio lemucinu of Phips (Ellis, Zoopho, 11. 15, f. $9,1,10$), of which Gimelin makes as many difierent specics, ippem to be this some animal.

[^23]: * Sce Péron, Ann. Mus., XV, pl. iii, f. 10-11. N. B. in the fig. of Cymbulier, given by Blainville, Malac., XLVI, the position of the animal in the shell is directly the reverse of the true onc. Our description is founded upon the recent and repeated observations of M. Laurillard.
 + M. de Blainville once thought that the fins supported the branchial tissuc, and that what I have considered as branchie is another kind of fin. In this case the analogy with the Clios would have been greater; but since then, (Malacol., p. 483) that gentleman has adopted my views.
 \ddagger I am not sure that the animal drawn by Ecoresby, of which de Blainville (Matac., pl. xlviii. bis, f. 5) makes his genus Spreatelea, is, as he thinks, the same as those of Phips and Fabricius.

[^24]: * Add: Hyal. lanceolata, Lesueur, Bullet., des Sc. Junc 1813, lll. r, f. 3 ;-IIyal. inflexe, Ib., f. 4.
 N. B. The Glaucus, Curinaire, and Firole, referred by Pron to the family of the Pterofoda, belong to the Gasterovoda; the Philliroe of the same author also probably belongs to it.-His Callianire is a Zoophyte.
 + It is probably near the Creseis, and perhaps eren in the same subgenus, atecording to Messrs Rang and Audouin, that we must place the genus Triptera of Messrs Quoy and Gaymard, which is referred by M. de 13lainville to the family of the Akeræ.
 \ddagger See the Mém., of M. Rang, Amn. lles Sc. Nat., Novemb., 1827, and March 1825 .
 N. B. Several Pteropoda have been discovered in a fossil state. N1. Rang has found, near Bourdeaux, Hyuler, Curieria, and Cleodore. See Ann. des Se. Nat. August 1826. The Vaginella of Datudin is a Cresis according to M. Kang ; it has, in fact, all the characters of the latter.
 $2 \sqrt{3}$ (1) The Pteropodes eonstitute the first order of Lamarek's twelfth class, and his division of this order into genera, is precisely the same as that given in the present work, with the exception of the fossil genus added by Cuvier under the name of Pyrgo. The general description of the order by Lamarek is as follows :-
 These Mollusea have no feet to crawl with, or arms to assist their motion or seize their prey; they have two opposite and simularly construeted fins adapted to swimming; their hodies are free and floating. The Pteropodes are swimming Mollusca, without the means of affixing themselves to other bodies, flating on the surface of the sea and changing their position by mans of their two fins or oars, which resem ble two wings placel on each side of the month in some and in others on cath side of the neck. He adds that in the Ayalda the head is so much concealed at the hase or point at which the fins are united that it appears obsolete, exhibiting consequently an alliance between these anmals and the Conehifere (the eleventh class of Molluscous animals in his system). In the Cymbulia a little lobe which stands forward on the posterior part, between the two true wings, has been crroneously regarded as a third fin.-DEng. En.

[^25]: * N.B. Sometimes, as in Vermetus, \&c., the foot is recurved in such a inanner that the operculum is before.

 Q $\sqrt{3}$ (a) In the original this order does not occur, but we find further on, that when the author comes to take each of thesc orders into detailed consideration, as it will be seen he does in the following pages, the necessity occurred to him of separating from the Pectinibranchia an additional order, to which he gave the name of of Tubulibranchia. We have therefore decmed it necessary to insert this order with its characters preciscly in the order and relation assigncel to it by the author.Eng. Ed.

[^26]: * M. de Blainville prefers the term Pulmonobranchiatu.

[^27]: : Add : the L. allues, Minl., F'́mss., pl. i, f. 3;-L. hortensis, Id., pl. ii, f. \&-6.
 中 Add: L. alpimes, Meruss., pl. $\sqrt[i]{ }$ a;-L. gagates, Drap., pl. ix, f. 1 and 2, Ke. N.13. The Pıectornoma, Feruss, would he Limaces, having a sort of smatl conieal thell on the end of their tail, and far from the shield ; they are only known, lowever, by drawings of very efuivocal anthority, Favanne. Zoomorphose, pl. lxxri, eopied Veruss., pl. vi, f. 5, $6,7$.
 M. de Blainville (Malae., p. 46t) now donbts the reality of his genus Limacetala, and rejects his gemus Veroxicelba, Wiet. des Sc. Nat. The Phyiomicisus mal Eumetes, Raf., are too imperifetly indieated to be admitted into a work like this.
 \pm I'agimulus Tramaisii, Fernss., pl. viii, A, f. 7 ; and viii, 13, 2 ; ;-V. allus, Id., 11. viii, A, f. S, and riii, B, f. 6 :- V. Langsdorfii, 1d., pl. viii, 13, f. 3 and $\ddagger ;-1$: larigulus, Td., pl. viii, 13, f. 5, 7 ;-Onchilium occildentule, Guilding, Lin. Trans. MTV, ix.

 The gemis Mrghimatiua of Vion Hassel., Bullet. Univers., 1824 , Zool. tome ITI, 1, 82 , should apparently be added to it.
 N.B. The genus Vagrnula differs from Onchidium, with whieh M. de blainville has united it, Malae., 1. 465 , detaehing from it, at the smme time, the true Onchidiums to form his genus PraosiA. His anatomy of the Vaginula in the Moll. Terr, et Fluy. of M. de P'ímusac, ple viii, (', is very good.

[^28]:
 1i．asivera：－If．atens！；－li．nemorensis；－H．fruictm；－IV．hiomu；－H．villula；－

 1．hamastoma；－II．pullat－1I，renustu；－II．pichu，Gmel，\＆e．
 ＋See Spallanzani，Schoffer，Bonnet，\＆c．
 －H．maculata；－H．alyira；－H．lavipes；－II．veriniculata；－Ir．exilis；－II．cara－ colla；－H．cormu militare；－H．pellis serpentis；－Ir．Guaileridia；－H．oculis commu－ ris ；－II．marginella；－H．maculosa；－If．navia；－II．carvunaia；－H．ericetonum； H．nltens；－H．costata；－H．pulchella；－H．ce？laria；－II．olnolatu；－H．streigosula；
 badia；－H．ccimu venatorium，\＆e．
 rol．III．

[^29]: * Hel. sinuata;-II. lucerna;-H. lychnuchus;-H. cepa;-H. isognomostoma;H. sinuosa:- H. punctata, \&c.
 + Hel. ringens, Chemn., IX, cix, 919, 920, the Axostoma of Lam., or Tomogeres, Montf.; an analogous fossil shell is the Strophostoma, Deshayes. See, also, pl. v, vi, vii, viii, of Draparn., with the accompanying descriptions; the works of Sturm and Pfeiffer on the German species, but particularly sec the splendid folio of M. de Férussac on the "Mollusques terrestres et fluviatiles."
 \ddagger Termed by M. de Férussac " une curiasse et un colirlier."
 $\stackrel{+}{\$}$ Hel. pellucida, Müll. and Gcoff.; Vitıina pellucida, Drap., VIIT, 34-37: the Helicarion, Quoy and Gaym., Zool. de Freycin., 1l. lxvii, 1; Féruss., pl. ix, f. 1 - 4 .
 || Hel. mufa and brevipes, Féruss., Drap., VIII, 26-33.

[^30]: * Add Helix ovalis, Gm., Chcinn., IX. cxix, 1020, 1021 ;-II. oblonga, Ib., 1022, 1023 ;--H. trifusciata, Id., CXXXIV, 1215 ;-II. dextra, Ib., 1210, 1212;-, H. interrupta, Ib., 1213,1214 ;-H., Ib., 1215 ;-H., Ib., 1224, 1225 ;-H. perversa, Id., CX and CXI, 928-937; H. inversa, Ib., 925, 926 ;-H. contraria, Id., CXI, 938, $939 ;-H . l$ leva, Ib., 940 and $949 ;-H$. labiosa, Id., CXXXIV, $1234 ;-$ H., Ib., 1232 ;-II., Ib., 1231 ; H. cretacea, Id., CXXXVI, 1263 ;-II. pudica, Id., CXXI, 1042 ;-H. calcirca, Id., CXXXV, 1226.

 Bulla auris Malcha, L., Gm., Ib., 1037,1038, V, Ib., 1041.
 Bulimus columba, Brug., Seb., III, lxxi, 61 ;-Bul. fasciolatus, Oliv., Voy., pl. xvii, f. 5. For the small species of France, see Draparnaud, Moll. terr. ct fluviat.,
 pl. iv, f. $21-32$.
 \dagger Bulimus labrosus, Oliv., Voy. pl. xxxi, f. 10, A, B ;-Pupa edentula, Drap. III, 28, 29 ;-Pupa obfusa, Id., 43, 44 ;-Bul. fusus, Brug.
 \ddagger Turbo ura, L., Martini, IV, eliii, 1439 ;-Turbo muscorum, L. (Papa marginata,
 Drap., III, 36, 37, 38) ;-Pupa muscorum, Drap., III. 26, 27. (Vcrtigo cylindrica, Féruss.);-Pupa umbilicata, Drap. III, 39, 40 ;- P. doliohum, Ib., 41, 42.

 II Hel. vertigo, Gm., (Pupa vertigo, Drap., III, 34, 35) ;-Pupa antivertigo, Ib., 32, 33 ;-Pupa pygmœa, Ib., 30,31 ;-Bulimus oculeris, Oliv., Voy., XVII, 12 , a, b.
 § Bulimus zebro, O1., XVII, 10 :-Pupa tridens, Drap.., III, 57 ;-P'upa variabilis, Ib., 55, 56.

 T Bulimus avenaceus, Brug., (Pupa avena) Drap., III., 47, 48;-P. secale, Ib., 49,50 ;-P. frumentum, Ib., 51, 52 ;-Bulimus similis, Brug.;-P. cinerea, Drap., Ib., 53, 54;-P. polyodon, IV, 1, $2:-$ Helix quativilems, (Pupa quadr., Drap.) Ib. 3.

[^31]: * Suscinca cmphibia, Drap., IT. 22, 2? (Holix pulris, L.) ;-S. oủlonga, Ib., 24. -The genera Cocimomrina. Fémes. Lucina, Oken, Tassade, Huder, corresponi to the Succince. M. Delamark at first styled them Amphibubimit. The Amphinulime cucapuchonne, Lem.. Ann. du Mus, VI, lv, 1, may also form a Testarelia.
 millaris, Gm., Drap., lu., 1:3: and the other Clousilia of Drap., figured on the same plate;-Limlimus rofusus, Oliv., Vny.. XVII, 2 :-But. infatus, Ih.. $3 ;$-Bul. ieres, Ib., g;-Svl. forticollis, Ib.. 4, a, b;-Turlo triche, L., Chemn., IX, xii, 957 ;Clousitiar colluris, Fóruss.. List., 20, 16.
 if Bulla z̈plora, I. Chemn., IX, ciii. 8.5, S7G: cxriii, $1014-1016$;-Bulla arhaina, Th., 1012, 1013;-Bulla pivpura, Ib., 1018 ;-Eulla dominicensis, Id., CXVII, 1011 :-Bulla stertcus pulicun, CLI, 1026, 1027 ;-Bulla fiammea, Id., CXIX, $1021-1025$:-Melix toneru, Gin., Ib., 1028,1030 ;-Bulimus bicarinatus, Brug., Jist., 37 ;-Mélanie bucrinöde, Oliv., Voỵ., XVII. 8.
 \|f Bulla rirginerl, L., Chemn., IX, exvii, 1000, 1003 ; ג, clxxiii, 1682-3.
 § Bulimus glens, Brug., Chemn., IX, cxrii, 1000, 1010.

[^32]: * Ovehidium, a name given to this genus, becausc the first species (Onciuditum typha, Buchan., Lin. Soc. Lond., V', 132) was tubereulous; I now know one that is sinooth, the Onchidium laviyatim, Cur., and four or five that are tubereulons: Onch. Peronii, Cuv., Ann. du Mus., V, 6;-Unch. Sloanii, Cuv., Sloane, Jâm., 1 H . 273, 1 and 2 ;-Onch. verruculatum, Deser. de l'Eg., Moll. Gaster., pl. ii. f. :3;Onch. cellicum, Cur., a small species from the coast of Brittany.
 N. B. M. de Blainville has changed the name of Onchitium into that of Perowis, and applied the former to the Vaginula. These Peronis he places among his Crclobranchiata, but I can sce no real difierenee between their respiratory organ and that of the other Pulanoner.
 + See Chamisso, Nor. Act. Mat. Cuv., NI, part I, 1. 348, and Van Hassel, Bullet. Univers., 1824. Sept., Zool., 83.
 \pm Hel. rortex: - 1I. cornect;-M. spiorbis;-II. polygyre;-M. contorla;-M. iatilida;-II. celba;-l's. similis.

 See the quotations of Ginel., and add, Drapamatd, !nl. I, f. 30-51, and M. ii, f. 1 -22.

[^33]: * Hel. stagnalis, L. of which H. fragilis is a varicty ;-II. palustris :-H. peregra : -H. limosa;-H. aurimlaria. See Drap., pl. ii, f. 2s, 42, and pl. iii. f. 1, 7.
 \dagger The mantle of the Limn. ghetinosus, like that of the Plase, is sufficiently ample to envelope its shell. It is the genus Ampupprlea. Nilson, Moll, suce.
 \ddagger The neighbouring species, Bull. hypnorum, L., and Physa acuta, and Scaturiginum. Drap., require an examination of their animals. Tide, Drap., p. 54, et seq.

[^34]: * Helix scarabceus, L.
 \dagger Add, Voluta auris Midre, L., Martini, II, xliii, 4:36-38; Chemn., X, exlix, 1395,1396 ;-Volula auris Judre, L., Martini, II, xliv, 449-51 ;-Vol. auris Sileni, Horn., 1X, 3-4;-Vol. glabra Mart II. xliii, 447, 448 ;-Vol. coffea, Chemn., LX, exxi, 1044.
 \ddagger Voluta minuta, L., Mart., II, xliii, f. 445, or Bulimus coniformis, Brug. ;-Bul. monile, Brug., Mart. Ib., f. 444 ;-But. ovulus, Br., Mart., Ib., 446.
 || My four first orders are united by M. de Blainville in what he terms a subclass, designating them by the name of Paracephalopiora Monotca. He makes two orders of my Nudibuanchiala; in the first, or the Cyclombanchiata, he places Doris and other analogous genera: in the second, or the Polybranchiata, are Trilonia and the following genera, which he divides into two families, according to the presence of two or four tentacula.

[^35]: * A name first applied isy linmous to an animal of this gemus, whiel, however, he charaeterized bady. It was afterwards extended by Multer and Gimelin to almost the whole of the Nudibronchiath, and restored by me to its original signification.
 + Speries with an oval mantle projecting beyond the fent: D3oris remocosu, L., Cur., Ann. du Mus., IV, l:xiii, 4, $5:-$ Doris aryo, L., Bohatoch, Anim. Mar. V', 4, 5 ;-Doris otucolatu, Mïll., Zoni. Dan., XLTII, 1, 2 ;-Doris fusca-, Id., Ib., LKVII, 6, 9 ;-Doris stelluta, Bommé, Act. Illess., I, iii, 4 ; Doris pilosa, Müll., loc. cit. LXXXV, 5-8;-D. leris, Id., Ib., XLYII, 3-5;-D. muricuta, Id., LXXXV, 2-4;-D. fulucrcuiata, Cuv., Amn. du Mus., M. Ixxiv, 5 ;-D. limbutu, Ib., Id., 3 ; -D. solea, Id., Ib., 1, 2 ;-D. scabra, Id., Ib., p. 446 ;-D. maculosa, Id., Ib.,-D. fomeniosa, Id., Ib.;-D. motosa, Montag., Lin. Trans., IX, vii, 2 ;-D. marginata, Lin., Trans., V'II, vii, p. $84:-$ D. nigricams, Ottn., Nov. Act. Nat. Cur, XIII, part II, pl. xxvi. f. 1 ;-D. gramdifort, In., Ib., XNYII, f. 3;-D. ligrina, Sav. Eiryp., Gasterop., pl. i. p. 3 :-D. concentrisca, Ib., f. 5 :- D. marmoratu, Ib., f. ©, 太犬c.

 Prismatic species, where the mantle is almost as narmo as the foot: Duris licere, Cur., Ann. du Mns., IV, lxxiii, ¢. 1 and $2 ;-D$, wfomerginaír. Id.. Ib.. Ixxiv, 6 ; D. pustuloser, Id., 1b., p. 47 : ;-1). giotcilis, Rapp.. Now. Act. Nat. ('tu, Xlli, part 11, pl. xxvii, f. 10. See also Vian Mascl. Rullet. Y'nir., 1 82:, Octuh., Zool., p. 235.
 \$ Onchifora Lecthii, Blainv., ग?alac., Ml. xlvi, f. \&.
 || Plocemberios arcilatues, Leuck., App. Ruppel., Invert, pl. 5. f. A.

[^36]: * Doris quadilineafa, Mäll., Zool., Dan., I, xvii , 4-6, and better, Ib., cxxxviii, 5-6 ; D. cormile, Ib., cxlv, 1, 2, 3;-D. flare, Lin. Trans., VII, vii. p. 84 ;Poblucera lineuta, Rissn, Hist., Nat., IV, pl. i. f. 5.
 \dagger Such are Trif. elegans, Descr., de l'Eg. Zool., Gastcr., pl. 2, f. 1 ;-Trii. rubra, Lenck., App., Rupp., Invert., pl. 4, f. 1 ;-Tr. glaucu, Ib., f. 2 ;-T. cyanobranchiata, Ib., f. 3:-T. arborescens, Cuv., Ann. du Mus., VI, lxi, and three others, at least closely allicd;-Doris arborescens, Stræmı, Act., Hafu., X, v. 5 ;-Doris frondose, Ascan., Act. Dronth., V, v, 2, and Doris cerviat, Bommé, Act., Fless., 1, iii, 1.
 \ddagger Dowis coronata, Bommé, Ib., and Doris jumatifila, Lin. Trans., VII, vii, which is closely allied to it :-Doris fimlriecta, Müll., Zool. Dan., CXXXVIII, 2, ard probahly Doris clarigera, Mull., Ib., XVII, 1-3. Perhaps the Doris lacera, Zool. Dan., CXXXVIII, 3, 4, should also be referred to this genus.
 § From Эequa:, a name employed by the ancients to dicsignate the Ascidic ; Linneus anplied it to this genus.
 || The diference observed between the Thethys fimbriaf!, Bohatsch., Anim. Mar., pl. v, end the Theihys leporinc, Fab., Column., Ag., pl. sxvi, appears to me to be the result of a greater on less degree of prescriation.

[^37]: * Doris radiata, Gm., Dup., Phil. Trans., LJII, pl. iii ;-Scyllice macrée, Bosc., Hist. des Vers ;-Glaucus atlanticus, Blumenb., fig., Nat. Hist., pl. 48, and Manuel., fr. tians., II, p. 22 ; Cuv., Ann. du Mus. VI, lxi, ii, Péron, Ann. Mus. XY, iii, 9 .
 † Laniogorus Elforfii, Blainr., Malar, pl. xlvi, f. 4.
 \ddagger Doris papillosa, Zool. Dan., CXLIX, $1-4$; Doris bodoensis, Gunncr., Act. Hafn., X, 170 -Doris minima, Forsk., Ic., xxvi, H ;-Doris fasiculata, Id., Ib., G; -Doris branchialis, Zool. Dan. CXLIX, 5-7;-Doris coerulea, Lin. Trans., VII, vii. S4;-Eolidia histrix, Otto., Nov. Act. Nat. Cur., IX, xxxviii, 2, \&c.

 II Doris peregrina, Gm., Cavolini, Polyp. Mar., VII, 3;-Eolidia amulicornis, Chamisso, Nor. Act. Nat. Cur., XI, part II, pl. xxiv, f. 1;-Doris longicornis, Lin. Trans, IX, vii, 114.
 N.B. This genus must not be confounded with the Cavolina of Λ bildgard, which is the Myalara.

[^38]: * Doris affinis, Gm. Cavol., Polyp. Mar., VII, 4.

 中 Limax tergipes, Forsk., XXVI, E, or Doris lacimelatu, Gm.;-Doris maculala, Lin. Trans., YII, vii. 34 ;-Doris pennata, Bommé, Act. Fless., I, iii, 3.
 \ddagger Busiris griscus, Risso, Hist. Nat. Mar., IV, pl. i, f. 6.
 II In the species known (Placobranchus Hasselti, Cit.), the branchial strix are green, and the body a brown-grey sprinkled with little ocelli, Van Hasselt., Bullet. Univ., Oct., 1824, p. 240. Messrs Quoy and Gaymard found it at the Friendly Islands.

[^39]: * Phyllidia trilincuta, Seb., III, i, 16; Cuv., Am. du Mus., V, xviii, 1; and Zool., Yoy. Freycin., pl. 87, f. 7-10; Ph. ocellat!, Cuv., 1b. 7 ;-Ph. pustulosa, It. Ib. S, and some nell succies.

 中 Dinhyllidia Bruesmansii, Cuv.;-Diphyll. lineeta, Otto., Nov. Act. Nat. Cur., X, vii, (or I’lcuro-phyllidia, Meckel., Germ. Archiv, V゙IlI, 1'. 190, pl. ii, delle Chinie, Mem., X, 12.
 N. B. The Linguelle of Elfort, Blainv, IFalac., pl. xlvii, f. 2, does mot appear to differ from our first specics.
 CHIATA.

[^40]: * Pleurobrunchus Peronii, Cuv., Ann. du Mus., V, xviii 1,2; -Pl. tulerculatus, Meckel., Anat. Compar., 1, v, 33-40; and sonie new specics, such as the Picur. oblongus, Descr. de l'I.g., Moll. Gaster., pl. iii, f. 1 ;-Plaur anrantiacus, Id., Risso., Hist. Nat. Merid. IV, pl. i, f. s;-Pl. luniceps, Cuw.;-Pl. Forshalii, Forsk., pl. xxviii, and Leuckard, App., Ruppel., An. Invcit., pl.v;-Pl. citrinus, Ib., f. 1.

 The genus Lamellaria, Montag., Lin. Trans., XI, pl. xii, f. 3 and 4, does not appear to me to differ in any essential point from Pleurobranchus; the same observation applies to the Berthelda of Blainv., Malac., pl. xlii, f. 1. The latter is distinguished merely because the mantle is not emarginated above the head, as is the ease in many species of Pleurobranchus. The Pl. oblengus would belong to it, and even the $P l$. luniceps.
 f It is the genus Pleurobranchidium of Blainv., Malac., pl. xliii, f. 3; but not as he thinks the Pleurobranchus tuberculatus of Meckel.
 \pm Aplusia, which cannot clean itsclf,-a name given by Aristotle to certain Zoophytes. Limneus erroncously applied it as above. The animals here spoken of were well known to the ancients, who styled them Sca-Hares, and atributed to them many fabulous properties.

[^41]: * Aplysiu brasiliana, Rang, pl. viii, 1, 2, 3;-A. dactylomela, Id., IX;-A. protea, Id., X, 1 ;-A. sorex, ld., X. 4, 5, $6 ;-$ A. tigrina, Id., NI;-A. maculata, Id. XII, 1-5;-A. marmorata, Blainv. Journ. de Phys., Janv., 1823, Rang, XII, 6, 7 ; -A. Keraudrenii, Id., XIII ;-A. Lessonii, Id., XIV;-A. camelus, Cuv., Ann. du Mus., and Rang, XV, 1 ;-A. albu, Cuv., Ib., and Rang, XV, 2,3 ;-A. napolitana, Id., XV, bis;-A. virescens, Risso, Hist. Nat. Mer., pl. 1, 7. It is well, however, to ohscrve, that most of the Aplysiee having been drawn from specimens prescrved in spirits, the truth of the specific charactcrs of some of them may be doubted.
 \dagger Dolabella Rumphii, Cuv., Ann. du Mus., V, xxix, 1: and Rumph. Thes. Amb., pl. x. 6, from the Molluccas, or Aplysiu Rumphii, Rang, pl. i;-Apl. ecaudata Rang, pl. ii ;-A. truncata, Id.;-A. teremidi, Id. III, 1;-A. gigas, Id., III, 4;A. Hasscltii, Id., XXIV, I.
 \ddagger Notarchus gelatinosus, Cuv., to which M. Rang associates the Bursatella Sarigniana, Descr. de l'Eg., Zool., Gaster., pl. ii, f. 1, 2, and Rang, Apl., pl. xx, and his Apl. Pleii, pl. xxi, and some small species.

[^42]: * Bursatella Leachii, Blainv., Malac., pl. xliii, f. 6.
 N.B. Authors have also approximated to the Aplysix the Apl. viridis, Montag., Lin. Trans., VII, pl. vii, which forms the genus Actanon of Oken, and which is at least closely allied to the Elysie timide, Risso, Hist. Nat. Mer., IV, pl. i, f. 3, 4 ; as I am not acquainted with the branchix of either, I cannot class them.
 \dagger The Sormet, Adans., Senegal, pl. i, f. 1, is a species closely allied to Bullæa; but I cannot establish a genus, or even a species, upou so imperfect a document.
 [FF (a) There are other rcasons than those above-mentioned for the mensure employed by Lamarck. The shell of Bulla Aperta is not only slightly concave, but it is very thin and fragile, and partially rolled inwards on itself. Indeed we may adduce Lamarck's division of the Linnæan genus bulla as a very happy specimen of the vast superiority of the natural over the artificial system, for up to the time at which he separated it into Bulliæa, Ovula, Physa, Terebellum, and Achatina, and adding the remainder of Bulla to the genera Pysula, and Bulimus, the Linnæan genus was a combination of the most discordant elements. Such as marine, fresh water, and land shells.-Eng. En.

[^43]: * The genus Bulla, Lin., not only comprisca the Aha, bit also the duriculce, Agatince, Plysce, Ovule and Terebella, inimals between which there is much difference. Brugières commenced thic work of reformation by separating the Agatince and the Auriculre, which he mited to the Lymnei in the genus Bulimus; M. de Lamarck finished it by creating all the gencra we have just named.
 + Gioenn having observed this stomach scparate from the animal, mistook it for a shell, and made a genns of it, to which he gave his own anme (The Tricle of Retzius, Cher, Brug.). Gioëni cven went so far as to describe its pretended habits. Draparnaud was the first who perceised this mixture of error and fiavd.
 \pm Add, Bulla macum; Bulla physis. Muller describes smaller ones, such as the Akicu butlata, Zool. Dan., LXXT, or Butu akere, Gm.

[^44]: * In the specimen from the British Musemm deseribed by M. de Blainville, Bullet. Pinl., $1819, p 178$; by the name of Gastroplax, the shell is, in fact, attached to the under parc of the foot, and by what means it is difficult to determine; the mantle, however, is so thin, that it secms as if it must have been protected by the shell. M. Reynaud hiss just brought to France a specimen whieh had lost its shell, but where, it appears, traces of the membranes which attaehed it to the mantle can be perecived, notwithstanding which, no remains of museles are visible. A similar shell is also.foumd in the Meliterranean; its animal, however, has not yet been observerl.
 + M. de Blanville makes a family of the Heteropona, which he names Nectopona, and unites them in his order of the Nuceeobranchiata with another family that he calls Preropoda, and which, of all my Pteropoda, only includes the Limacinu. He joins the Argonnuit with it, on account of some conjecture, of which I an iguorant.

[^45]: * This mode of natation induced léron to think that the natatory lamina was on the back, and the heart and branchix under the belly, and has given rise to many errors as respects the place of these animals. A simple inspection of their nervous system led me to suppose, in my Memoirs on the Mollusea, that they were analogous to the Gusteropodu. A more exact anatomical investigation, made since then, with that given by M. loli in his vol. III, fully eonfirms my supposition. The fact is, that there is but little difference between the Heteropodre and the Terfibranchiuta, notwithstanding which, M. Lamrillard believes their sexes to be seph.rated.
 + Forskahl comprisel all these animals in his genus PTerotracmea, for which name Brigiore substituted that of Finol. Peron having divded the genus, appropriated the name of Carinaria to those with a shell, and that of Firole to the others. Rondelet gives the Carinaria, but without its shell.-"De Inseet. Zooph. cap. XX."
 \ddagger Add, Carinaria depressa, Rang. Amn. des Se. Nat., Feb. 1529. p. 136.

[^46]: * We must not confound the Atlanle of Lesueur with the Atlus deseribed by him in the same place, and whieh, so confused is his deseription, I do not know how to class.
 \uparrow Voyage de Lapeyrouse, IV, p. 134, and pl. 63, f. 1-4.
 \ddagger Firola mutica;-F. gibbosa;-F. Forskalett - F. Cuviera, which is the Pterntracheet coronatu, Forsk.;-F. Fredericu, eopicd Malaeol. Blainv., pl. xlvii, f. $4 ;-$ F. Peronii.—Adda, Pterotruchea rufu, Quoy and Gaym., Voy. de Freyein., Zool. pl. 87, f. 2 and 3.
 § Firolöda Demarestia;-Fir, Blannilliana;-Fir., aculeala, Less.
 II We must not confound them with the Monophorex of M. Bory Saint-Vincent, (Yoy. aux Isles d'Afr.,) whiel are Pyrosome.

[^47]: * These observations are made from individual; presented to me ly M. Quoy. M. de Blainville makes a family of Philioroe, which he mames Psillosom, whd which is the third of his Aporobranchiula: the others are Hyale, \&e.
 + M. de Glainville's sub-class Paracphalophara J):vica.

[^48]: * For Murex, see Lister, SS1, Bastcr, O_{i}. Eubs., I, vi, 1, a; for Buccinum, Baster, Ib. Y, 2, 3.
 + 'They are the Paracenhalophora Dioire Asiphonobranchatu of Blainville.
 \pm This great genus constitntes the fanily Gomiostoma, Biam.
 § Troch. inermis, Climmn., V, clxxiii, $1712-13$;-Ti. Coontio, Id., clxiv, 1551 ;Tr. calcius, It., clxii. $153(\mathrm{i}-37$;-Ti. imbricalus, Iis., $1532-33 ;-T r$. luber, Id., clxv, $1573-74$ - 1 'r. sineitsis, Ib., $1564-65$;-Turbo pagodes, Id., clxiii, 1541 -42;-iuhbo techum-persicum, [1)., 1543-44.

[^49]: * Tr. perspecticus, L., Chemn., V.. clxxii, 1691-96;—Tr. sIramineus, Ib. 1699 ; —Tr. rariegalus, 1b., 1708-1709;-Tr. infundibuliformis, Ib., 1706-1707.
 \dagger Ecomphalus pentangulalus, Soworb., Min. Conch., I, pl. xlv. f. 2;-EE. nodosus, Id., xlvi, ふc.
 \ddagger This great genus constitutes the family Cricostoma of Blanville.
 § Turbo picu, L. List., 640, 30 ;-T. arghrostomus; Chemn., V, clxxrii, $1758-$ 61 ;-T. murgariluceus, Lb., 1762 ;-T. rersicolor, List., 576, 29;-T. mospilus. Chemn., V, clxxvi, $1742-43 ;-T$. gromulatus, Ib., $44-46 ;-T$. lutus, Ib., 48 , $49 ;-T$. dictetcmu, Id., p. $145 ;-T$ cincrous, Born., XII, 25, 26;-T. Iovrqualus; Chemn., X, p. 295 ;-T. undulutus, Ib., clxix, $1640-41$.

 II Turbo pelholatus, List., 5st, $39 ;-T$. cochlus, Ib., $\pm 0 ;-T$. chrysostomus, Chemı., V', elxxviii, 1766 ;-T. rugosus, List., 647, 41 ;-T. marmoralus, Id., 587, $46 ;-T$. sarmaticus, Chemn., V, clxxix, 1777-18, $1781 ;-$ T. cormulus, Ib., $1779-$ 80 ;-T. olcarius, Id., elxwviii, 7771,72 ;-T. radialus, It., clxxx, 1788-89;-T. imperialis, Ib., 1790;-T. coronalus, 1b., 1791-93;-T. camaliculatus, Id., clxxxi, $1794 ;-T$. sctosus, Ib., $95-96 ;-T$. spinosus, Ib., 1797;-T. sparctrius, Ib., 1798;-T. Moltkiunus, Ib.,99—1800;-T. Spcnylerianus, Ib., 1801-2;-T. castanea, Id., clxxxii, 1807,$1814 ;-T$. cremulatus, Ib., $1811-12 ;-T$. smarotydulus, Ib., 815-16;-T. ciduris, Chemn., V. elxxxiv;-T. helicinus, Born., XII,23-2ł.

[^50]: *Add, Turlio nodulosus, Chemn., 「, clxxiv, 1723-24:-T. carinalus, Bom., XIII, 3-4;-Argonumt", comu, Ficlitel and Moll., Test. Micros., I, a, e, or Lippiste, Monti.

 T. cxolefus, List., 591, 58 ;-T. Icrebru, Jd., 590, 54;-T. variegalus, Diartini, Iv, clii, 1423 ;-T. obsolelus, Bom., XIII, i.

 0 予 (a) This is the Wentletrap of the collectors. We remember seeiner one in Bullock's Museum, which was ralucd at 200 guineas, and also four spcimens were sold at one sale, which brought from \mathfrak{E} i 6 to $\mathfrak{E} 20$. Enf. ED.

[^51]: * The Cyclosfome and the ITelicines fom the order of the Pulmonfa Opereculata of M. de Férussac.
 + Add, Turbo lincina, List., 26, 24 :-T. Infeo, List., 25, $2: 3 ;-T$. dedius, Borno. XIII, 5, $6 ;-T$. limbulus, Chemn., IX, cxxiii, 1075.

 We should distinguish, among the fossils, the fyclostonat mumia of Lan., Brongm., Ann. du Mus., XV, xxii, 1.
 \ddagger Add, Valcota plenorbis, Drap., I, 34, 35;-1. mimutn, Id., 36-38.
 § They constitute the Ellipsostosia of M. de Mlainville.

[^52]: * Add, Cyclost. achafinum, Drap. I, 18;-C. impurum, Id., 19, 20, or Helix tentacululu, L., 太c.; and the small speeies of salt-water ponds described by Beudant, Ann, du Mus., XV, p. 199.

[^53]: * Add, Trochus labeo, Adans., Seneg., XII, List., 68, 442 ; Troch. Pharaonius, List., 637, 25 ;-Tr. rusticus, Chemn., V, clxx, 1645, 46;-Tr. nigerrimus, lb. 47; -Tr. agyptius, Id., clxxi, 1663,$4 ;-T r$. viridulus, $1 b$. 1677 ;-Tr. carneus, Ib . 1682 ;-Tr. allidus, Born., XI, 19, 20 ;-Tr. asper, Chemn., Ib., ckrvi, 1582 ;-Tr. cilrinus, Knorr., Del., I, x, 7 ;-Tr. granalum, Chemm., Y, clxx, 1654-55; Ti. crocatus, Born., XII, 11, 12 ;-Tubo atratus, Chemn., V, clxxvi, 1754-55;Tubo dentatus, Id., clxxviii, 1767, 8, \&c.
 + Buccinum tritonis, Chemn., IX, exx, 1035, 1036 ;-Helix solula, Born., XIlI, 18, 19.
 \ddagger Heli.e ampullacea, L., List., 130 ;-Bulimus urceus, Brrug., List., 125, 26.
 § Ampulla carinata, Oliv., Voy. en Turg., pl. xxxi, f. 7, copied Blainv., Malac., xxxiv, 3.
 || Montfort has changed the name Helicina into Pitomilla, but it has not been adopted, and can only be quoted as a synonyme.

 If The Hel striate, Blainv., Malac., xxxy, iv.

[^54]: * The Hel. nerilella, List., LXI, 59, enpied Blainv., Malac., xxxix, 2.
 + It is from this circumstance that M. de Férussac has been induced to class this subgenus with that of the Cyclostome in in order which he nanes the Pulmonere Gumembla. See the Monograph of this gemus by M. Giay, Kool. Journ., Sos. 1 and 2.
 from the S se of France and Madagascar.

 Add, itet. tiencata. Limn., Encyclop., pl. t58, f. :3, a-b;-Nicl. cuarclate, Id., Encyclop. pl. 458 , f. B, it-b., and a great many fos-il specics, among which are, Mel. semi p'uculu, Defr.;-Mel. C'mereri, Desh., Cog. Foss., des environs de I'aris, tome II, !]. xii, f. 1, 2:-Mol. constellata, Lam.
 § M. de Frominille desribes scren species in the Nouv. Bullet. des Sc. Nat. de la Soc. Jhil., $1814,1,7$, and M. Audoun, three, in the Deser. de l'Eg.; Riss. Freminillii, Cer., pl.iii, f. 20 ;-Riss. Desmurestii, Ib., 21 :-Riss. Orbignii, 1b., f. 22.

 I! Melan. burcinuädet, Féruss., Mém. de la Soc. d’Hist. Nit. de Paris, tome 1, M. vii, f. 1-11, ※゙e. See Soworly, No. XXII.
 11. 4 is, f. 2, n, b, Re.

[^55]: * Which must be catefully distinguished from the Actoons of Oken that appear to be allied to the Aplysia.
 + Toluta tomatilis, imd lifusciula, L. Mantini, II, xliii, 442, 443;-I. suicata, and V. solidule, 1b., 440, 441;-V. flammea, 1b., 439; V. flata, Ib. 444;-V. pusilla, Ib. 446.
 \ddagger Trocturs dolabratus, L. Ciacmn., V, clxwii, 1063,1064 ;-Buli nus ierclellum, Brug., List., 844, 72.
 § This genus forms the family of the Oxystoms, Blainv.
 If M. de Blainville forms his family of the Hemicrelostomet, fiom this genus.

[^56]: *For the species see the first div. of Gm. and Chemn., V, pl. clxxxvi-clexxix.

 + For the species see the third div. of Gm. and Chemn., V, pl. exc-cxciii, and Sowerby, Gen of Sh., No. XV.
 \ddagger Nerita perversa, Gm., a large fossil species; Chemn., IX, exiv, 975, 976.
 § Ade, Nerila terrila, Chemn., IX, exxiv, 1085.
 II Nerila pulligera, Chemn., loc. cit., 1878-1879;-N. virginea, List., 604, 606. - Nerila corona, Chemn., $1083,1084$.
 *. M. de Blainville places most of them among his hermaphroditical, non-symmetrical Parucephalophora; but they all appear to me to be dicecious.

[^57]: * Patclla hungarica, List., 544-32 ;-Pat. calyphta, Chemn., X, clxix, 1643 44 ;-Pal. mitrule, Gm., List., cxliv, 31.
 + Patella cormucopire, Lam., Knorr., Petrif., II, part ii, pl. 131, f. 3, and Blainv., Malac.
 \ddagger Patellu fornicata, List. 54.5, 33, $35 ;-P$. aculeata, Chemn., X, clxsiii, $1624-$ 25 :-P. Gorcensis, Martini, I, xiii, 131,132 ;- P. soleu, Naturf, XVIII, ii, 15 ; -P. rrepidula, Adans. Seneg., I, ii, $3 ;-P$. porcellone, List., 545, 34.
 § Pileolus plicatus, Sowerb.;-Pit. laris, Id., Genera of Shells, No. IX;-Pil. neritoides, Desh., Ann. des Sc. Niat., T, xiii, 3, a, b, c.

[^58]: * Patellu neritü̈lea, List., 545-36, and Naturf., XIII, v, 1, $2 ;-l^{3}{ }^{2}$. boibonica, Bory Saint-Vincent, Voy. I, xxxrii, 2; and for the animal, Quoy and Caym., Voy: de Ficercin., pl. 71, f. 3-6.
 + P'atella equestris, L., hist., 546-38;-Put. sinensis, Ib., 39; Pat trochiformis, Martini, I, xiii, 135 ;- P^{\prime} t. auricuht, Chemn., X, cixviii, $1628-29 ;-P a t$. phicata, Nat. Forsch., XVIII, 11, 12 ;-Put. striata, Ib., $1: 3$.
 \& Putclle ronforla, Nat. Forsch., 1N, iii, 34, Vill, 11-l4;-Pul. depressu, Ih., xviii, ii, 11.
 § Patellu sipho;-Siphonotite convima, Sowerh., Goin. of Shells, No. XII.; S. exigu, It., Ib. Sec Sivigny, Deser. de l'Es., Zool. Gaster., pl. iii, f. 3, and Copp., nl.i, f. 1. Some years ago Mi. Gray proposed a genus Gadinha, (Philos. Magaz., April 1824) which is preciscly the same as SiphonariA.

 II Siphonaria tristensis, Sowerb., luc. cit.

[^59]: * The Coriocolle noire, Blainv. Malac., XLII, f. 1. This animal is not deprived of a shell, as the autlor of the genus imerined, lut it is thin and flexible.
 + Besides the species in the Mirish Museum (Cr. Lecthii, Blainv. Malae., XLIf, 3), we have onc (Cr. corolinum, Cuv.) seut from Carolina by L. L'IIerminier.
 \ddagger They are the Pariucepialophora Dioüca Siphonobranchiuta of Blainville.
 § M. de Blainville uaites the Coni, Cyprece, Ovula, Terebella, and the Volutc, in a family which he calls Angiostoma.

 In placing here the genera with a straight apcrture, we must not be understood as meaning to approxinate them to the preceding family, but only to present them first, as posscssing the nost striking characters of all those which are furnished with a siphon.

 VOL. III.

[^60]: * For the species of this beautiful genus sec the article and the plates of Brugieres in the Encyel. Method., where they are extremely well described and figured, and the enumeration still more complete than in the Aun. du Mus. XV, by M. de Lamarck.
 \dagger Species with a crowned spire: Con. cedomulli, L., a shell much sought for, and of which there are many varietics, Encyel. Mcthod., pl. 316, f. 1 ; Con, marmorens, L., Enc., pl. 317, f. 5 ;-Con. arcmatus, Brug., Encycl., pl. 320, f. 6, \&c.

 Species with a simple spire: Con. litteratus, L., Eneycl., pl. 326, f. 1 ;-Con. tessellatus, Brug. Ene.. 11. 326, f. 7 ;-Con. viryo, Brug. Enc. pl. 325, f. 5, ふc.
 \ddagger For the species see the genus Cypraca, Ginel., and the figures collected by Brugières for the Encyelop., the Gen. of shellshy Sowerby, No. XVII, and particularly a Monograpl by M. Gray, published in the 'Kool. Journal, Nos. 2, 3, and 4.

[^61]: * Bulla ovrum, L., List., 711,65 , Encyclop., 358, 1.
 + Bulla rolva, L., List., 711, 63, Encycl., 357, 3 ; B. birostris, Encycl. 357, 1 ; Sowerb., Ib.
 \pm Bulla verrucosa, L., List., 712, 67, Encyc., 357, 5. from which we do not separate the Ultime, Montf.: or Bulle gillosa, L., List., 711, 64, Encyc. 357, 4.
 § Terebellum subulatum, Lam., Bulla terebellum, L. List., 736, f. 30, Encyc., 360, 1 ;-Tereb. courolutum, Lam., Sowcrb., Gen. of Shells, No. VI.

 II Oliv. subulata, Lam., Encyc., pl. 368, f. 6, a, b;-Vol. hiatula, L. ;-Vol. porphyria, Vol. olica, and, in general, all the cylindrical Volutæ of Gmel., p. 3438, et seq.

 If Exclusive of the Tornatellice and Pyramidelle already mentioned.

[^62]: * Such are IVo. episcopalis, List., 839, 66;-Vol. papalis, Ib. 67 ; and 840, 68 ; -Vol. cardinalis, 338, 65. Add, Vol. patricirchalis;-Tol. verlussa, 822, 40 ;-Vol. vulpocula, Martini, IV, cxlviii, 1366 ;-Tol. plicario, List., 820,37 ;-Vol. sanguisuga, List., 821, 8 ;-Vol. caffru, Martini, IV, cxlviii, 1369, 1850;-Vol. acus, Id., elvii, 1493,1494 ;-Vol. scabricula, Id., cxlix, 1388 , 1389 ;-Vol. naculosa, Ib., 1377 ;-Vol. nodulosa, Ib., 1385 ;-Vol. spadicca, Id., cl, 1392 ;-V. aurantia, Ib., 1393, 1394;-「. decussata, 1305 ;-V. turicu!a, 1370.
 + Voluta cancellata, L., Adans., VIII, 16 ;-Vol. reficulata, 830, 25, 8.c.-Somerb., Gien. of Shcils, No. V.
 \ddagger M. de Blainville makes a fanily of his Parecephatophora Dioïca Siphonobranchiata of this great genus. which he calls the Enotomostons.
 § Buccinum qndulsitum, I., List., 662, 14;-Bucc. glaciale, L.;-B. anglicum, List., 963,17 ;-B. porcciume. IInrtini, IV. cxxvi, 1213,1214 ;-B. lacissimum, Id., cxxvii, 1215,$1216 ;-13$. iyncum, Ib., $1217 ;-$ B. carinaum, Phips. Voy., XIX, 2 ; B. solulum, Naturf., XiVI, ii, 3,4 ;- . strigosum, Gm.,'No. 108 , Bonan., III, 38 ;B. glaberrimum, Martini, IV, cxxv, 1177,1182;-B. strigosum, Ib, 1183, 1185; B. oltusum, Ib., 1193 ;-B. coronatum, CXTM. 1115.1116.

[^63]: ＊Buccinum arcularia，List．，970，24， 25 ；－－13．pullus，List．，971，26；－13．gib－ bosuhum，List．，972，27，and 973，28；—13．fcssellatum，List．， 975,30 ；－h3．fossilc， Martini，III，xcir， 912,914 ；－B．murginatum，IU．cxx，1101， 1102 ；－B．reticula－ tum，List．，966． 21 ：－13．vulgutum，Martini，IV，cxxiv， 162,166 ；－B．stolutum， Ib．，1167， 1169 ；—B．glans，List．，981， 40 ；－B．papillosum，List．，969， 23 ；－B． nitidulum，Martini，IV，cxxr，1194， 1195.
 ＋Burrinum glabratum，List．，974， 29 ；—B．spiratum，List．，981，41 ；—B．चcy－ lanicum，Martini，IV，cxxii， 1119.
 \pm Ancillaria cinnamomea，Lamı，Mart．，II，p］．65，f． 731 ：Voluta ampla，Gm．， Mart．，Ib．f．722，and the species described by M．de Lamarck and figured in the Encye．Method．，393．Sce also the Monogriphi，No．36，1．72，of the Ancillariae by M．W．Swainson，Journ．of the Sc．and Arts，No．36，1． 272.
 § Buc．olearium，List．，985，44，and Sowerb．，Gen．of Shells，No． 29 ；－B．galea， List．，898， 18 ；－B．dolium，List．，899， 19 ；－B．fascialum，Brug．，Mart．，III，cxriii， 1011 ；－B．pomum，Id．，II，xxxvi，370， 371.
 ｜｜Bucc．nerdir，List．，984， 43.

[^64]: * Buccimum harpa, L., and the other species long confounded with it-List., 992 , 993, 994; Mart., III, cxix: Bucc. costatum, Ib. Messrs. Reynaud, Quoy and Gaymard have obscrved, that, under certain circumstances, the posterior part of the foot is spontaneously detached.
 † Buccinum persicum, List., 987, 46, 47;-B. patuhtm, Id., 989, 49 ;-B. hcemastoma, Id., 988, 48;-B. trochlea, B. lupillus, Id., 965, 18, 19 ;-Murex fucus, Id. 990,50;-Mur. listrix, Martini, ILI, ci, 974, 975 ;-Mur. mancinella., List., 956, 8, 957, 9-10;-Mur. hippocuslanum, List., 955, 990, 990, 991.
 + Buccinum monodon, Gm., Martini, III, lxix, 761 ;-Bucc. narval, Brug. ;-B. unicorne, Id.
 § Murcx ricinis, L., Scb., III, 1x, 37, 39, 42 ;-Mur. neriloüdcus, Gm., No. 43, List., S0t, 12-1\%.

[^65]: * Buccinum vibex, Martini, II, xxxv, 364, 365 ;-B. glaucum, List., 996, 60 ;B. erinaceous, List., 1015, 73.
 \dagger The Buccinum of the sccond division of Gmelin, except the B. cchinophorum, strigosum, No. 26, and tyrrhenum, which arc Cassidariæ. It must also be recollceted, that, among the true Cassides, Gmelin appears to have sereral repetitions.
 \pm Buccinum caudatum, L., List., 940,$36 ;-$ B. crhiniphorum, List., 1003,68 ;B. strigosum, Gm., No. 26, List., 1011,71, f.;-Bucc. (y)rrhcium, Bonam., III, 160.
 § The whole of the last subdivision of the Buccina, Gmelin, such as, Buccinum maculatum, L., 846, 74;-Bucc. cronulatum, L. List., 846, 75;-Bucc. dimidiatum, L., List., 843, 71 ;-Bucc. subulatum, L., List., 842,70 , \&c.
 M. de Blainville separates from them the genus subula, which he founds on a differenec in the animal, and morcover on the presence of an operculum.

 II Murcx vertagus, List., 1020, $83 ;-\mathrm{M}$. aluco, List., 1025, $57 ;-\mathrm{M}$. annularis, Martini, IV, clvii, $1486 ;-$ M. singulatus, Ib., $1492 ;-$ M. Tcrebella, Id., clv, 1458, 9;-M. fuscatus, Gualt., 56, H;-M. granulatus, Martini, IV, clvii, $1483 ;-M$. moluccanus, lb., 1484 , S. \&.c., with the numerous fossil speeics described by M. de Lamarck, Ann. du Mus. M. Deshayes lias scparated from the Cerithia, under the name of Nevinea, some small species, where the margin is prolonged into the aperture, and divides it into three distinct orifiecs.

 It is also near the Cerithia that we must place several fossil shells, which form the genus Nerinea of M. Defranee, and which is distinguished by strongly marked plicz on each whorl and on the columella, the centre of whieh, besides, is hollow throughout. Nine species arc already ascertained.

 If See Brongn., Ann. du Mns., XV, 367. In this subgenus should be plaeed the Ccrilhium atrum, Brug., List., pl. 115, f. 10 ;-Cer. paiustre, f. Ib., 836, f. 62 ;C. muricutum, Ib., 121, f. 1%, S.c., and among the fossils, the Potamida Lamarkii, Jronga., loc. cit. pl. xaij. f. 3.

[^66]: * This great genus forms the family siruonostoma, Blainv.
 + To which Linneus also added scoveral Purpure in which the canal is not salient, and all the Cerithia in which it is recurved.
 \ddagger Varices are knobs with which the animal borders its mouth, at each interruption in the growth of its shell.
 § Murex tribulus, List., 902, 22;-Mur. brandaris, List., 900, 20 ;-Mur. cornutus, List., 901 , 21 ;-Mur. scnegalensis, Gm., and the costalus of No. 86, Adans, Seneg. VIII, 19.

 II Murex haustellum, List., 903, 23 ;-Mur. caudatus, Martini, Conch., III, f. 1046, 10 ± 9;-Mur. pyrum.
 6. Murcx tubifer, Rnissy, Brug., Journ. d'Hist. Nat., I, xi, 3 ; Montfort, 614.

 * Murex ramosus, List., 946, 41, and all its varieties; Martini, III, cr, cx, cxi; -Mur. scorpio, Martini, cvi ;-Mur. saxatilis, Martini, cvii, cviii, and several others not yet well characterized.

 Hf Murex cutuceus, L., Scb., III, xlix, 63, 6s;-Mr. Wunculus, Martini, III, cix, 1018, 20 ;-Mui. miliaris, Id., i^{\cdots}, Vign., 36, 1-5;-Mu. pomum, Adans., IX, 22; —Mur. decussatus, Ib., 21.
 $\ddagger \ddagger$ Mur. lotorium, L., Martini, IV, cxxx, 12ะ6-9;-Mui. jemorale, Id., cxi, 1039; —Mer. trifucicr, Ioin., XI, 1, 2.

[^67]: * Mur. tritonis, L., List., 959, 12 ;-Mm. maculosus, Martini, IV, cxxxii, 1257, 1258 ;-Mur. anstralis, Lam., Martini, IV, cxxxvi, 12St;-Mur. pileare, Martini, IT, cxxx, 1243, 48, 49;-Mur. argus, Martini, IV, cxxxi, 1255, 1256 ;-Mur. rnbicula, Id., cxxxii, 1259, 1267.
 + Mur. mayellemicus, Martini, IT, cxxxix, 1297.
 \pm Mur. triptorus, Born., X, 18, 19;-Mur. obeliscus, Martini, III, cxi, 1033, 1037.
 § N.I3. They are the Mur. hufo, Montf. 574:-Mur. ranc, List., 995, 28;Mhur. reticularis, List., 935,30 ;-Mur. affinis, and the species or varietics of Martini, $1229,30,31,32,33,34$, and $1269,70,71,72,73,74,75,76$.
 ** Murex g!!rinus, List., 939, 34.
 It Mur. cochlidium, Sel. III, lii, 6;-Mur. morio, List., 925, 22 ;-Mur. canalicutatus, Matini, III, lxvii, 742, 743;-Mur. candiclus, Martini, IV, cxliv, 1339 ;Mur. ansatus, Id. Ib., 1340 ;-Mur. terigatus, Martini, cxli, 1319, 1320 ;-Mur. tongissimus, Ib., 1342;-Mur. mudatus, Ib., 1+33;-Mur. colus, L., List., 917 , 1,0;-Mur. striatulus, 1h., 1351, 1352;-Mur. pusio, List., 914, 7;-Mm. remucosus, Ib., 1349 , 1350 , \&ce, and the mumerous fossil specics described by M. de Lamarck.
 $\ddagger+$ Mum. islondicus, Martini, IV, cxli, 1312, 1:313, \&.c.;-Mur. antiques, Ib., cxxxviii, 1294, and List., 962, 15 ;-Mur. Ilespectus, Martini, 1295.
 §§ Mur, respertilio, Id., cxlii, 1:32:3, 24.
 IIII Mui. stramincus, Gm., Encyc. Nethod., 431, 1, a, b;--Strathiolaria cronulata, Lim.
 "T Mur. babilomius. L.. List.. 917, 11;-Mur. jatanus, Martini, 15: 138, and

[^68]: * Nearly all the Strombi comprised in the second and third division of Gmelin, observing, that owing to the various degrees of development acquired by the external margin, there are several repetitions.
 † Strombus lambis, Rondel., 79 :-Martini, III, 1xxxvi, 855 ;-Str. chiragra, List., 870 ;-Str. millepeda, List., 568,869 ;-Str. scorpius, List., 867.
 \ddagger Strombus pes pelccani, L., List., 865, 866 .
 § Strombus fusus, L., List., $854,11,12,916,9$.
 || Strombus amplus, Brander., Foss., Hant., VI, 76, or Rostellaria macroptcra, Lam.; Str. fissurella, Lam., Encycl. Method., p. 411, 3, a, b, which is not that of Martini, IV, clviii, $1498,1492, \mathbb{E}$.

[^69]: * Serpula lumbricalis, L., Adans., Senegal, XI, 1, and several new species.
 + Serpula triquetra, Gm., Born., Mus., pl. xviii, t. I4.
 \ddagger Magilus cmiqiqus, Montf. II, pl. 43, and Guettard, Mém., III, pl. lxxi, f. G.
 § Serpula anguina, L.;-Serpula muricata, Born., Mus., XVIII, 16.
 N.13. M. de Lamarek considered the Siliquaria and the Vermilie as neighbours of the Serpule. M. de Blainville has approximated then to the Vermeti; M. Audouin has lately obscrved and deseribed the animal, and to him do we owe what is stated above.

[^70]: * M. de Mlaiuville unites this order and the following one (the Chitones excepted) in his sub-class of the Paracephalophora Hermaphrodita.
 + The Paracephaloph. IIcrmaph. Olid., Blainv.
 \pm All the Halyotides, Gm., except the imperforata and the perversa.
 This genus, although it has been denied, most certainly has its counterpart among the fossils. M. Marcel de Scres has deseribed a species found in the calcarcous strata of Montpellier (IIal. Philberti), Am, des Sc. Nat. tome XII, pl. xly, f. A.

[^71]: * Halyot is imperforata, Gm., Chemn., \mathbf{X}, elxvi, 1600, 1601.
 * They are the Paracephalora Cervico-brancilde Branchifera, Blainv.
 \pm All the Patellæ of the fifth division of Gmelin, exeept Pat. fissura; among others, P^{\prime} at. greca, List., $527,1,2 ;-P$. nimbosa, List., 528,4 . We have a speeies in which the sliell, at least six times the size of the mantle, simply surrounds the hole of the summit like a ring,--Fissurcllu ammulata, Cur.
 § Patella fissura, L., List., 543, 28, \&c. The Palmaria, Montf., must be allied to this genus.

 II Patella ambigua, Chemn., CXCII, 1918.
 N.B. Fissurelle, Emargimula, and Parmaphori are also found fossil.

[^72]: * M. de Blainville, who ealls the order in whieh he places Doris CrecobranChitta, makes an order of the Patelle, and of the three preceding genera, which he names Cervicobranchitata, whieh be divides into the Retifera and the Branchifera. The Retifera are the l'atelle, because he supposes that they respire through the medium of a network in the eavity which is over their head. I have vainly sought for it, however, nor could I discover there any other organ of respiration than the cordon of lamella which extends round the under part of the margin of the mantle. Sce Anat. of the Patel a in my Mém. on the Mollusca.
 + I separate from the Patemis and arrange among the Trocmomis, all the animals comprised in the genera, Crepidula, Navicella, Calyptrea of M. de Lamarck, to which I add the Capuli ; and his genera Fissurelia, Emarginula, and Parmopiora, or Patella ambigua, Chemn., XI, 197, 1918, I place anong the Scutibranchiata. The Umbrella, Scutus, Montf.,-Patella umbrella, Martini II, vi, 18, is me of the Tectibranchiata. The Pat. anomala, Müll., belongs to the Brachiopoda and is my genus Orbiculus. The other species quoted by Gm. remain in the genus Patella.

[^73]: * The Chitonelli of Lamarck, and all the species of Chiton of authors, should be left in this genus, of which M. de Blainville has thought proper to make a separate class, called Powfraxiphora, supposing that it leals to the Articulated Animals.

 VOL. HIT.

[^74]: * Some naturalists arc of the opinion that the very minute bivalves, which in certain seasons fill the external branchix of the Anodontes and Mytilus, are not the progeny of those Mollusca, but a different and parasitic spccies. See, on this subject, the Disscrtation of M. Jacobsen. The difficulty scems to be removed by the observations of Sir Ev. Home.
 \dagger M. de Lamarck at first changed my name of Acephala into that of Acephalata. M. de Blainville forms a class, which he calls Acephalophora, from my Acephala and my Brachiopola.
 \ddagger M. de Lamarck, in his last work, has made his class of the Conchifera from my Teslaceous Acephala; and M. de Blainville has converted the same into his order of the Acephalophora Lamelifbranchiata: but it is always the same thing.

[^75]: * The spccies of Brugière, 173, f. 1, 23, which forms the genus Ac^rda, Lam., appears to be nothing more than a double epiphysis of the vertebra of some cetaceous animal. The Discine, Lam., are Orbiculæ; it is also thought that his Cranix should be approximated to them. The Jodamies of M. de France or Birostrites, Lam., are mere moulds of Sphervultes or at least of the bodies always found in their interior, although they do not adapt themselves to their form. See M. Charles Desmoulins on the Spherulites.

[^76]: * Sce Deshaycs, Ann. des Sc. Nat., June, 1825 ; and Ch. Desmoulins, luc. cit. Several Hippurites have been described by La Peyrouse under the improper name of Crthoceratitcs. The Cormucopice of Thompson, Journ de Plyys. an X, pl. ii, is also one of them.
 + The observations of M. Deshayes and Audouin cven lead us to belicre that, in a part of these shells, there were two muscular impressions.

[^77]: * The various species of Oysters, on account of their irregularity, are not ensily distinguished : to this genus are referred the Ost. orbicularis;-O.fornicata; O. sinensis;-O. Forskahlii;-O. rostratu;-O. virginica;-O. cornucopic;-O. senega-lensis;-O. stellata;-O. ovalis;-O. papyracca, and the Mytilus crista-gatti;-M. hyotis;-M. frons, Gmel., and those figured by Brugière in the Encye. Method., pl. 179, 188.

 It is almost certain, however, that several of these pretended species are mere varieties.

 The Ost. semi-cuurita, Gualt., 8t, H, is a young Aüculu hirundo.

 + Sce Brug., Encyc. Methorl., pl. 189.
 \ddagger Improperly styled by Poli the abdominal lrachea.

[^78]: * Add the ninety-one species of Ostrea, Gmel. ; we must remember, however, that some of them are far from established on a solid foundation. For the fossil species, consult Sowerby (Mineral Conehology), and Brongniart, App. Cuv., Oss. Foss. tome II, Env. de Paris.
 + Add, Ostrea glacialis, Chemn., VII, 1xviii, 652, 653 ;-Ostr. excauata, Ib., 654 ;-Ostr. fragilis, Ib., 650 ;-Ostr. hians, Gault., LXXXVIII, FF, G. For the fossil species, see Lamarck, Ann. du Mus., VIII, p. 461 ; Brocchi, Conch. Foss., and Sowerb., Min. Coneli.
 \ddagger Ostrea spondylö̈dea, Gm., Chemn., VIII, 1xxxii, 669, 670.
 § Some living species have very lately been referred to the genus Hinnita, Defr. M. Gray,-Ann. of Phil., August 1826,-describes one by the name of Hinnita gigantea; Sowerby,-Zool. Journ. IX, p. 67, adds a second by that of H. corallina; finally, M. Deshayes refers the Ostrea simuosa, L., to this genus, and describes a fourth living species under the name of Hinnila Defrancii; M. Defrance also admits two fossil species, the H. Cortesii, Blainv., Malac., pl. lxi, f. 1, and the H. Dubuissonii.

[^79]: * Playiostoma gigas, Sowerb., Encye. Method., Test., pl. 238, f. 3 ;-Pl. leevigatum, Parkins., Org. Rem.. III, pl. xiii, f. 6; and the other species given by Sowerby, Min. Conch., pl. 113, 114, and 382.
 \dagger Pachylos spinosus, Fr. Sowerb., Cuv., Oss. Foss., II, Env. de Paris, pl. iv, 2, A, B, C, and Blainv., Malac., pl. lv, f. 2: Pach. hoperi, Sowerb., 380.
 \ddagger Dianch, striata;-D. lata, Sowerb., Min. Conch., pl. 80.
 § Podops. truncata, Encyc. pl. 188, f. 2, 6, 7 ; Cuv., Oss. Foss. ; Env. de Paris, pl. v, f. 2 .
 N.B. M. de Blainville considers these four last genera as more nearly related to the Terebratula. M. Deshayes, on the contrary, Ann. des Sc. Nat. Dec. 1834, it proximates them to the Spondyli.
 || This foot escaped the notice of M. Poli.
 1: Anomia ephippium, Gm.;-A. сера;-A. clectrica;-A. squamula;-A. acu-leata;-A. squama;-A. panctata;-A. undulata,-and the species added by Brugières, Eneyc. Method., Vers., I, 70, et seq.; ard pl. 170, 71.

 The other Anomice of Gmelin are Placunc, Tercbratula, and Hyalc.

[^80]: * Anomia plueenta, Chemn., VIII, lxxix, 716 ;-An. sella, Ib., 714. Sec also pl. 173 and 17t, Encyc. Method., Vers.
 + Called by Poli "the abdominal trathea" in the Spondyli, \&c.
 \ddagger Spondylus gaderopus, Chemn., VII, xliv, et seq., IX, cxv;-Sp. regius, Id., xlvi, 471.
 § Spond. plicatus, L., Chemn. VIl, xlvii, 479, 482 ;-Plicat. agyplia, Savign., Fgyp. Coq. pl. xir, f. 5.

[^81]: * Ostrea vukella, Chemn., VIII, $1 \mathrm{xx}, 657$, of which the Ostrea anatina, Ib. 658 , 659 , is probable a more accidental variety.
 \dagger Mya culseli, Chemn., VI, ii, 10,$11 ;-V$. spongitrum, Lam., Savig., Eg., Coq!. pl. xiv, f. 2 ;-l. hians, Lam., Sav., Ib., f. 3.
 \ddagger Ostrea isognomem, Chemn., VII, lix, $584 ;-$ O. perna, Ib., $580 ;-0$. legumen, Ib., 578 ;-O. epippium, Ib., lviii, 576 ;-O. mylilö̈des, Herm., Nat. Berl., Schr. II, ix, 9 .
 § Ostrea picta, Im., Chemn., VII, lviii, 575, or Crentuta phasionoptera, Lam., Encyc. Method., Tist., pl. 216, f. 2 ;-Crenatula avicularis, Lam., Ann. du Mus, III, pl. ii, f. 3, 4;-Cr.myliloides, Id., Ib. f. 1 and 2. Sce also the great work on Egypt, Coq. pl. xii.
 || Gervilia solenoüls, Defr., Blainv., Malac., 1xi, 4;-G. pernoüles, Deslonchamps, Soc. Lin. du Calvado, I, 116.-G. siliqua, ld. 1b., $\mathbb{E c}$.

[^82]: * Inoceramus concentricus, Parkins., Cuv., Oss. Foss., II, pl. ri, f. I1;-Inocer. sulcalus, Id., Ib., f. 12.
 + Calillus Curieri, Brong., Cuv., Oss. Foss., II, pl. iv, f. 10.
 \pm Puliniles Adansonii, Defr., Blainv., Malac., lxii, bís, 3.
 § Etheria elliplira, Lam., Ann. du Mus. X, pl. xxix, and xwi ;--Eth. trigomula, 1b., 11. xxx;-Elh. semimularis, Ib., pl. xxxii, f. 1, 2 ;-Eh. transrersu, Ib., f. 3, 7 .

 Il Efh. Cailloudi, Voy. de Caillaud ì Méroé, II, pl. lxi, f. 23.

[^83]: * Several species are now made of it. Sce Lam., An. sans Verteb., VI, part I, p. 146 , et seq.
 \dagger M. Poli also calls it an abrominal trachea, just as erroneously as he applies the same name to the foot of the Pectines, \&e.
 \ddagger The whole genus Pinna may remain as it is in Gmelin : it is well to remember, however, that some of his species may be found to form but one. Sec also Lam., An. sans Vert., VI, part I, p. 130, ct seq., and Sowerb., Gen. of Shells, No. XXVI.
 § M. de Blainville forms his family of the Arcacea or Polyodontes, from the genus Arca.

[^84]: * The Daiphe, Poli.
 + Arca Nor, Chemn., VII, liii, 529, 531 ;-Arca barbata, Id., liv, 535, 537;A. ovata, Ib., 538 ;-A. magellanica, Ib., $539 ;-A$. reticulata, Ib. $540 ;$-A. candida, Id., lv, 542,$544 ;-1$. indica, Ib., 543 ;-A. cance!late, Schroed., Intr., 1II, ix, 2.
 \ddagger Arca cucullata, Chemn., VII, liii, 526, 525 ;-Cucullca crassatina, Lam., Ann. du Mus., VI, 338.
 § Areu antiquata, L. Chemn., VII, lv, 548, 549 ;-A. senilis, Id., lvi, 554, 556 ; -A. granosa, Ib., 557 ;-A. corbiculata, Ib., 558, 559 ;-A. rhomboüdca, Ib., 553 ;A. jumaicensis, List., 229, 64.
 $\|$ It forms the genus Trisis, Oken.
 - Arca pilost, L., Chemn., VII, lvii, 565,566;-Arc. glycimeris, Ib.. 564 ;-A. alcussala, Ib.,561;-A. aquilatera. Id., 562 ;-A. untata, Ib., $560 ;-$ A. marmorata, 1b., 563 ;-A. pectunculus, Id., lviii, 568,$569 ;-1$. pccinata, Ib., 570, 571.
 * Arcu prilecidu, Chemn., VlI, liv, 541 ;-Ircu rostralu, L., Jd., Iv, 550,551 ; - Arc. pella, Ib., 5 !fi;-Arco mucleus, Id., hiii, 57 t.

[^85]: * The Trigonie nacrée, Lam., Ann. du Mus., lxvii, 1.
 + Trig. scabra, Encyc. Method., pl. 237, f. 1 ;-Tr. nodulosa, Ib., 2 ;-Tr. naris, Ih., 3 ;-Tr. aspera, Ib. 4. Sce also Parkins., Org. Rem., III, pl. xii.

[^86]: * Add, Mytilus barbatus, L., Chemn., VIII, lxxxiv, 749 ;-M. anryulatus, Ib., 756 ; —M. bidens, Ib., 742, 745 ;-M. afer, Ib., lxxxiii, 739-741;-M. smaragdinus, Ib., 745 ;-M. versicolor, Ib., 748 ;-M. lineatus, 753 ;-M. exustus, Ib., $754 ;-M$. striatulus, Ib., 744 ;-M. bilocularis, Ib., lxxxii, 736 ;-M. vulgaris, Ib., $732 ;-$ M. sexatilis, Rumph., Mus. xlvi, D ;-M. fulgidus, Argenv. xxii, D; probably the same as the Mya perna, Gm., Chemn., VIII, lxxxiii, $738 ;-$ M. azureus, Ib., H;-M. murinus, Ib., $\mathrm{K} ;-$ M. puniceus, Adans., I, גv, $2 ;-$ M. nigcr, Ib., 3 ;-M. larigatus, Ib., 4, \&e.: some of these, however, may be mere varieties.
 \dagger M. Brongniart has formed them into a subgenus by the name of Mytiloida, Ap. Cuv. Oss. Foss. tome II, pl. iii, f. 4.
 \ddagger Mytilus modiolus, Chemn., VIII, lxxxv, $757-760$, and that of Müll., Zool. Lan., II, liii, which appears to be another species;-M. discors, Chemn., VIII, lxxxiv, $764-768 ;-$ M. testaccous, Knorr., Vergn., IV, v. 4, \&e.
 § M. Sowerby doults this fact, which is, however, well attested by M. Poli from ocular demonstration-Test. Neap., II, p. 215. The pl. xxxii of the same work, fig. $10,11,12,13$, also proves that the animal resembles that of a Mytilus, and not that of a Pholas or a Petricola.

 The mode in whieh the Lithodomi, Pholates, Pctricola, and some other bivalves perforate stones, has been the subject of mueh discussion; some of the disputants holding it to be effected by the mechanical action of the valves, and others simply by solution. See the Mém. of M. Fleuriau de Bellevue, Journ. de Phys., an X, p. 345 ; Poli, Test. Neap., II, 215, and Edw. Osler, Phil. Trans. part III, 1826, 1 . 342. All things eonsidered, the first of these opinions, whatever be the difficulties it presents, seems to us to come nearest to the truth.

[^87]: * Add, M. anatinus, Chemn., VIII, lxxxvi, 763 ;-M. fluviatilis, List., clvii, 12 ; -M. staynalis, Schrod, Fluv., I, 1 ;-M. zellensis, Ib., II, $1 ;-M$. dubius, Adans., XVII, 21 ; and the pl. 201, 202, 203, and 205, of the Encyc. Method., Test.
 + Irid. cxotica, Encyc. Method., Test., pl. 204 ;-Add Irid. nilotica, Caillaud, Voy. à Méroé, pl. lx, f. 11.
 \ddagger Sec Dcshayes, Mém. de la Soc. d'Hist. Nat. de Paris, 1527 , III, p. 1, pl. 1.
 § Numerous species, remarkable for size or form, inhabit the rivers and lakes of the United States. Messrs. Say and Barnes, who have described them, have established some new subgenera among them.
 $\|$ Hyria ruyosa, Encyc. Mcthod., pl. 247, 2.

[^88]: * Castalia ambigua, Lam., Blainv., Malac., LXVII, 4.
 + Chama antiquata, Chamn., VI, xwii, $488-491$;-Ch. trapezia;-Ch. semior-liculata;-Ch. cordata, Id., 502, 503; and among the fossil species, one of the most singular, Cardita aricularia, Lam., Ann. du Mus., IX, pl. ix, f. 6, provided it should not be scparated.
 \ddagger Chama caliculata, Chemn., VII, i, 500, 501 ;-Cardita crassicosta, Brug., Encyc. pl. 2.34 , f. 3.
 §Chama oblonga, Gm., Chemn., VII, 1, 504, 505, or Cardita carinata, Encyc., pl. 234, f. 2, or Cypricarde de Guinée, Blainv., Malac., LXV, bis, f. 6.
 || Chama coraliiophaga, Gm., Chemn., X, clxii, 1673, 1674, or Cardita dactylus, Brug., Encyc, pl. 234, f. 5 ;-Coralliophaya carditoüdes, Blainv., Malac., LXXVI, 3.
 - Venns imbricata, Chemn., VI, xxx, 314, 315, and the fossil species, Lam., Ann. du Mus., VII, and IX, pl. xxxi and xxxii.

[^89]: * Venus ponderosa, Chemn., VII, Ixix, A-D, or Crassalclla lumida, Lam., Am. du Muss., VI, 408. 1 ; perhaps the Mactra cygmus, Chemm., VI, xxi, 207 ;-Venus divaricata, Chemn., VI, xxx, 317-319. This genus also comprises many fossil species, particularly abundant near Paris. Sce the work of M. Deshayec.

 VOL. III.

[^90]: * Chama Lazarus, Chemn.. VII, li, 507, 509 ;-Ch. gryphoïdes, Ib., 510, 513 ;Ch. archinella, Id. lii, 522, 523 ;-Ch. macrophylla, Ib., 514,515 ;-Ch. foliacea, Ib., 531 ;-Ch. cilrea, Regenf., IV, 44 ;-Ch. bicornis, Ib., 516-520.
 + See the Conchiol. Foss. Subap. of Brocchi, and the Coq. Foss. des Env. de Paris of M. de Lamarck.
 \ddagger Fossil shclls from the jurassic strata. Dic arietina, Lam de Saussure, Voy. aux Alpes, I, pl. ii, f. 1-4.
 § Add Ch. mollkianc, Chemn., VII, xlviii, 484-487.

[^91]: * They form the family of the Conchacea, Blainv.
 + Cardium Cardissa, VI, xiv, 143-146;-Card. roseum, Ih., 147 ;-Card. monstrosum, Ib. 149, 150 ;-Card. hemicardium, Id., xi, $159-161$.
 The other Cardia of Gmelin may remain where they are, the C. gadilanum excepted, which is a Pectunculus. There are several fossil species described by Messrs. Lamarek,
 Brocchi, and Brongniart.

[^92]: * Donax rugosa, Chemn., VI, xxy, 250-252;-D. trenculus. Ib,, xxvi, 253, 254 ;-D. striata, Knorr.. Delic., VI, xxviii, S;-D. denticulata, Chemn., I, c. 256, 257 ;-D. faba, Ib., 266;-D. spingsa, Ib., 25 S . Fossil speeies are numorous in the environs of Paris. see Lamarek, Ann. du Mus., VIII, 139, aud Deshayes, Coq. foss. des Env. de Paris, I, pl. xvii, xviii.

 The Donax irroularis, from the Environs of Dax, described by M. Bastorat in the Mém. de la Soc. d'list. Nat. de Paris, t. II, pl. iv, f. 19, A, B, is the type of a new genus lately established-bullet. de la Soc. Lin. de Bourdeaux, II, by M. Charles Desmoulins, under the name of Gratelupia. It is distinguished from the Donaces by the presence of several dentiform lamellæ whieh accompany the cardinal tceth.

 Several specics of Vemus, and some Mactre, are mixed with these true Donaces by Gmelin.

 + Add Tellina riealis, Müll., Drap., X, 4, 5; Cyclas fontinalis, Drap., Ib., 8-12;-Cycl. caliculata, Ib., 13, 14 ;-Tellina lacustris, Gm., Chemn., XIII, 135 ; -Tcll. ammica, Ib., 134 ;-Tell. fluriatilis; Tell. fluminalis, Chemn., VI, xxx, 320.
 \ddagger Tell. fluminea, Chemn., Ib., 322, 323 ;-Vemus coaxans, Id., xxxii, 336, or Cyrena ceylanica, Lam., Encyc. Method., pen., pl. 302, f. 4 ;-Venus borealis, Id., VII, xxxix, 312, 314;-Cyclas cardiniana, Bose., Shells., III, xviii, 4. Fossil specics abound near Paris. Sce Deshayes, Coq. Foss., I, pl. 1s, I!

[^93]: * Venus islandica, Chemn., VI, xxxii, 342 , Encyc. pl. 301 , f. 1; a largc fossil species is found in the hills of Sicnnois and near Dax, of Bourdeaux.
 + The Egeric, Roiss., or Galathac, Brug., Encyc. 249, and Lam., Ann. du Mus., V, xxviii, and Venus hermaphrodita, Chemn., VI, xxxi, 327-329? or Venus subrividis, Gm.
 \ddagger Venus fimbiriata, Chemn., VII, 43, 448.
 § See Deshaycs, Coq. Foss. des Envir. de Paris, I. xiv ; Brongn., Mém. sur le Vicentur.
 || These are the threc divisions of Gmelin, but we must abstract from his genus Tellina: 1st. Tell. Knorrii, which is a polished Capsa; 2d. Tcll. inequiralvis, which is the genus Pandora; 3d. Tell. cornea; T. lucustris; T. amnica; T. fuminalis; T. fuminea; T.fuciatilis, which are Cyclades or Cyrenax.

[^94]: * Tell. hyatina, Chemn., VII, xi, 99 ;-Tell vilrea, Ib., 101.
 + Tellinides timorensis, Lam.
 \pm Tellina lactea.
 § Iemus pemsylranica, Chemn, VII, xxxvii, 394-396, xxxix, 40s, 409 ; V. cilentula, Id., xl, 427, 429.
 || Lucina saxorum, Lam., Deshayes, Coq. Foss. Iles Env. de Paris, I, pl. xv., f. 5, 6 ;-Luc. grata, Defi. ; Ibid. pl. גvi, f. 5, 6 ;-Luc. concentrica, Lam., Desh., IE., xvi., f. 11, 12.

 T Ungulina trensecrst, Kam., Sowcrb., Geb. of Shells, No. X.

[^95]: * These fantastic appellations of rulva and anus, have probably caused the cxtremity of the shell, which corresponds to the true anus of the animal, to be styled the anterior, and that where the mouth is situated, the posterior. We have restored to these extremities their true denominations. We must recollect that the ligament is always on the postcrior side of the summits.
 \dagger Venus litterata, Chemn., VII, xli;-V. rotunda, Ib., xlii, 441 ;-V. textilis, Ib., 442 ;-V. decussata, xliii, 456 ; \&ic.
 \ddagger Venus scotica, Hans Lerin, VIII, tab. 2, f. 3 ;-Crassina danmoniensis, Lam.; and among the fossil species, Ast. lucida, Sower., Min. Conch., 1I, pl. 137, f. 1 ;Ast. Osmalii, Lajonkcre, Soc. d'Hist. Nat. de Paris, I, tal. 6, f. 1.
 § Venus dysera, Chemn., VI, 27, 299 ;-Ven. plicuta, Encyc. pl. 275, 3, a, b; Ven crebisulica, Ib., f, a, 5, 6 .

 II Venus puerpera, Encyc., 278 :-Ven. corbis, Lam., Encyc. pl. 276, f. 4.
 II Venus gigantea, Encyc., 28, 3 ;-Ven. chione, Chemn., VI, 32, 3443 ;-Ven. erycina, Ib., 347 ;-Vein. maculuta, Ib., 33, 345.
 ** Ven. meretrix;-V'en. lusoria;-Vin. castrensis.
 $\dagger+$ Venus exoleta, Chcmn., ViI, 38, 4nt-the genus Orbiculus, Megerle.
 $\ddagger \ddagger$ Ven. scripta, Chemn., VII, 40, 422.

[^96]: * Jen. ligrina, Chemn., VII, 37, 20 ;-Ven. punctata, Ib. 397.
 \dagger Ven. pectinata, Chemn., VII, 39, 419-the genus Arthemis, Oken.
 \ddagger T'en. deflorata, Chemn., IV, ix, 79-82.
 § Ven. lapicida, Chemn., X, 172, 1664 , and the Rurellaria of M. Fleriau de Belleme; - Ven. perforans, Montag., Test. Brit. pl. iii, f. 6 ; - Donax irus? Chemn., VII; xxvi, 270.
 || See Encyc. Method., Vers, pl. 230, f. 1, 4, 5, 6.
 if Corbula gallica;-G. complanata;-G. ombonella, Desh., Coq. Foss., des Env. de Caris, t. I, 1l. 7, 8, 9.
 ** I'mus momstrosu, Chemn., V'II, 42, 445-446.

[^97]: * After abstracting the Larignones and Lutrarice, the genus Mactra of Gmelin m:ly remain as it is; the species, however, are far from bcing well distinguished. Add, Mya australis, Chemn., VI, iii. 19, 20.

 The Erycine, Lam., are neighbours of the Mactre, and are but badly characterizcd. See Ann. du Mus., IX, xxxi, and Deshayes, Coq. Foss., I, vi ; part of them, perhaps, belong to the Crassatellæ. The Anphidesme. Lain., or Ligulea, Montag., appear to approach the Mactræ, but they are too imperfcetly known to have any distinctive character assigned to them.
 \dagger Improperly called by Gmelin Mactra piperata.
 Add, Mactra papyracca, Chemn., VI, xxiii, 231 ;-Mact. complanata, Id., xxiv, 238 ; -Mya nicobarice, Id., iii, 17, 18.
 \ddagger M. de Blainville makes two families of this one, his Pyloridea and Adesmacea. The last includes Pholas, Tcredo, and Fistulana; thic first, all the others, and even Aspergillum. There are numerous gencra cstablished in this family too slightly characterized to permit us to adopt them.
 § N.B. Half the Myæ of Gmclin neither belong to this genns, nor even to this family, but to Vulsclla, Unio, Mactia, \&c.

[^98]: * Mactra lutraria, List., 415, 259; Chemn., VI, xxiv, 240, 241 ;-Mya oblonge, Id., Ib., ii, i 2 :-Acosta, Brit. Conch., XVII, 4 ; Gualt., 90 , A, fig. min.
 + Mya truncata, L., Chemn., VT, i, 1, 2 ;-M. arenaria, Ib., 3, 4.
 \ddagger Solen cuatinus, Chemu., VI, vi, 46-48.
 § Encye., 230, 6, under the name of Corbule:-An. hispidule, Cuv., An. sans vert., Egyp. Coq. pl. vii. f. S. I suspect that the Rupicol.e of F. de Bellevue (Voy. Roissy, MI, 440) must approach this subgenus. 'They live in the interior of stones, like the Petrioole, Pholades, Se.

 If New-Holland furnishes a sceond species, the Sol. australis, Lam.

[^99]: * Myu glycimeris, L., Chemn., VI, iii. A ncighbouring, but shorter species inhabits the Meditcrranean. Another fossil species is found near Bourdeaux.
 \dagger Panope de Fuujus, Mcsnard, Lagr. Ann. du Mus., IX, xii.
 Here should be the place of the Saxicava of M. F. de Bellevuc, small Testacca which perforate stones. Sce Rois., VI, 441.
 \ddagger Tellina inaquivaluis, Chemn., VI, xi, 106, and for the animal, Poli, II, xv, 7.
 § Mylilus pholudis, Müll., Zool., Dan., lxxxvii, 1, 2, 3, or Mya byssifcra, Fal)r., Grœonl.
 || Solen minulus, L., Chemn., VI, vi, 51, 52, or Mya arctica, Fabr., Gronl., which appears to be the same as the Hiat. ib une fenle, Bosc, Coq. III, xxi, 1;-the Hial. it deux fentes, IU., Ib., 2.

[^100]: * Solen ragina, Chemn., VI, iv, $20-28$;-S. siliqua, Ib., 29 ;-S. ensis, Ib., 30 ;
 -S. maximus, Ib., v, $35 ;-S$. cultcllus, Ib., 37.
 + Solen leyumen, Chemu., VI, v, 32, 34.
 \ddagger Solen strigilatus, Chemn., VI, vi, 41, 43;-S. radiatus, Id., v, 38-40;-S. minimus, Ib., $31 ;-S$. coarctatus, vi, 45 ;-S. vespertinus, Id., vii, 60. These two divisions have become the genus Solecurte of M. de Blainville.
 § Solen sanguinolentus, Chemn., VI, vii, 56 ;-S. roseus, Ib., 55.
 II Tellini yari, L., Poli, 15, 23;-Solen vespertimus, Chemn., VI, 7, 59 ;Psammobia maculosa, Lam., Egypt., Coq. pl. 8, f. 1;-Psamm. clongata, Lam., Egypt., pl. 8, f. 2.
 i Psammothea riolucer, Lam., \&̌e.
 N. 13 . These two genera are united in one by M. de Blainville, called Psammocola. On the whole, they difier but very slightly from the Sanguinolariac. Great care is requisite in studying the shell, as the teeth are generally brolien.

[^101]: * Add, Pholas orientalis, Ib., 860, which is, perhaps, a mere variety of dactylus:Phol. costata, Ib., 863 ;-Phol. crispata, Id., cii., 872,874 ;-Phol. mesilla, Ib., 867 , 871 ;-Phol. striata, Ib., 864, 866.

[^102]: * Teredoclaca, Gmel., Spengl., Naturfosch., XIII, 1 and 2, copied Encye. Method., Vers., pl. clxvii, f. 6-16. It is the Fistulana gregata, Lam.;-Tercdo utrieulus, Gm., Naturf., X, i, 10 ; probably the same as the Fistulana lagenula, Lam., Eneyc. Method., I, c, f. 23 ;-Fistulana elare, Lam., Ib., $17,22$.

 It is probable that the Pholas tereclula, Pall., Nov. Act. Petrop., II, vi, 25 is also a Fistulana.
 \dagger This tube lias been obscrved by Messrs. Turton, Deshaycs, and Ardouin.
 \pm Pholas hians, Chemn. X, el.xxii, 1678, 1679.
 § Id., 1681, a very different species from the preceding, not properly distinguished by Chemnitz.

 II Terctina personata, Lam., and Desh., Foss. de Par. I, pl. i, f. 23, 28.
 \$ Cl. erhinatr, Laın., Ann. du Mus., XII, xlii, 19, Cl. coronata, Desh., Foss., 1, v. 15, 16.

[^103]: * Add the Arrosoir à mancheltes, Savig., Egyp. Coq. pl. xiv, f. 9.
 + Since called by M. De Blainville Acelialuphora heterobranchiata. As to Lamarck, he makes a separate class of them, which he calls the Tunicata, and which he places between his Radiata and his Vermes; but these animals having a brain, nerves, a heart, vesscls, liver, \&c. this arrangement is inadmissible.

[^104]: * This has also happened to M. de Chamisso, in his Dissert. de Salpis, Berl., 1819 , and to others after him, but it is evident that there is no good reason for changing the denomination of parts in an animal merely because it swims on its back, with the head behind. It is thus that naturalists have been led into error with respect to the organization of the Pferofracheata, which always swim on their back, a mode of natation common to numberless Gasteropoda both testaccous and naked.
 \dagger Some authors assert that this tube is perforated at both cnds, and that the water traverses it; I have endeavoured to convince myself of the truth of this assertion, but in vain.
 \ddagger Chamisso, loc. cit., I. p. 4.
 § See my Mem. sur les Biphores, f. II.
 II Molothuriu Thalia, Gm., Brown's Jam., xliii, 3;-H. caudata, Ib., $4 ;-1 \%$. demulatu, Encyc. Mcthod., Vers., Ixxxviii ;-Salpa critata, Cuv., Ann. dı Mus., IV, Ixviii, 1, figured under the name of Dagysa by Home, Lect. on Compar. Anat. 11, lxiii ;-Salpa pinnata, Forsk., xxy, 13.

[^105]: * Salpa scutigera, Cuv. Ann. du Mus., IV, lxviii, 4, 5, probably the same as the Salpa gibba, Bosc., Vers, II, xx, v.
 \dagger Sulpa Tilesii, Cuv., loc. cit. $3 ;-S$. punctata, Forsk., xxv, C.;-S. pelagica, Bosc., loc. cit., 4 ; - S. infundibuliformis, Quoy and Gaym., Voy. de Freycin., Zool. 74, f. 13.
 \ddagger Salpa maxima, Forsk., xxxv, A;-S. fusiformis, Cuv., loc. cit., 10, perhaps the same as Forsk., xxxvi ;-S. mucronata, Ib., D;-S. aspera, Chamisso, f. iv ;S. runcinata, Id., f. v, G, H, I. But, according to the author, it is the aggregate generation of a species, of which the other generatian is cylindrical.
 § Salpa democratica, Forsk., xxxvi;-S. longicauda, Quoy and Gaym., loc. cit., pl. 73, f. 8 ;-S. constata, Ib., f. 2.

 II Salpa tricuspis. Ib., f. 6 ;-S. spinosa, Otto., Nov. Ac. Nat. Cur., t. pl. xlii, f. 1.

 T Holothuria zonaria, Gm., Pall., Spic., X, i, 17 ;-Thalia lingulata, Blumenb., Abb., 30.
 ** Sulpa octofora, Cuv., loc. cit., 7 ; perhaps the same as the small Dagysa, Home, loc. cit., lxxiii, 1 :-S. africana, Forsk., xxxvi, C ;-S. fasciata, Ib., D;S. confcderata, Ib., A ; perhaps the same as the S. gibba, Bosc., loc. cit., 1, 2, 3 ;S. polycratica, Ib., $\mathbf{F} ;-$ S. cylindrica, Cuv., loc. cit., 8 and 9 ;-Dagysa strumosa, Home, I, c., lxxi, I ;-S. ferruginea, Chamiss., X:-S. carulescens, Id., ix ;-S. vaginata, Id., vii, and several others.

 十卜 The whole genus Ascidia, Gm., to which must be added the Asc. gelatinosa, Zool. Dan. xliii ;-Asc. pyriformis, Ib., clvi ;-Salpa sipho, Forsk., xliii, C;-Ascidia microsma, Redi, Opusc., III, Pl., App., VII, the same as the Asc. sulcata, Coquebert, Bullet. des Sc. Avril, 1797, I, 1;-Asc. glandiformis, Coqueb., Ib.-N.B. VOL. III.

[^106]: The Ascidia canina, Müll., Zool. Dan., lv, Asc. intestinalis, Bohatsch, X, 4, and perhaps even the Asc. patula, Müll., lxv, and A. corruguta, Id., lxxix, 2, appear to form but one species. There are also some interversions of synonymes, and the species, gencrally, are far from being well ascertaincd.
 M. de Savigny has endeavoured to subdivide the Ascidix, Mem. sur les Anim. sans, vert., part II, 1816, into several sulgenera, such as,

 1st. The Cynthie, trhose body is sessile, and branchial sae lougitudinally plicated; their envelope is coriaccous ;

 2d. The Phallusief, which differ from the Cynthir in the branchial sac, which is not plicated ; their envelope is gelatinous;

 3d. The Clavellinie, whose branchial sac is without plicæ, and does not penetrate to the bottom of the envelope, and whose body is supported by a pediele; their envelope is gelatinous ;

 4 th. The Boltenia, whose body is pediculate, and the envelope coriaccous.
 He also takes into consideration the number and form of the tentacula which internally surouud the branchial orifice, but these cbaracters, which are partly anatomical, cannot be applied with certainty to a great number of species.
 M. Macleay (Lin. Trans., XIV, part III) establishes two more, Cristingia and Deñododoa, founded on similar characters.

 * Ascidia pechunculata, Edw., 356 ; and Asc. clavata, or Vorticella Boltenii, Gim.
 \dagger. It is to M. de Savigny that we are indebted for our recent knowledge of the singular organization of the whole of this family, formerly confounded with the Zoophytes, properly so called. At the same time, Messrs. Desmarets and Lesucur, made known the particular structure of the Botrylli add Pyrosome. Sec the excellent work of M. Savigny in his Mem. sur les anim. sans, verteb,, part II, fass. I.

[^107]: * See Desmarets and Lesucur, Bullet. des Se. May 1815 ;-Botryllus stellatus, Gærtner, or Alcyonium Schlosseri, Gm., Pall., Spie. Zool., X, iv, 1-5.
 † Bohryllus conglomeratus, Gært., or Alcyonium conglomeratum, Gm.; Pall., Spic. Zool. X, iv, 6.
 \ddagger See Desmarets and Lesueur, loc. cit.
 § Scveral of the Polyclina and Aplidia of Savigny.
 II P'yrosoma aflanticum, Péron., Ann. du Mus., IV, Ixxii ;-Pyrosoma gigas, Desmar., and Lesueur, Bullet. des Se. June 1815, pl. v, f. 2.

 TT The Pyrosome élégant, Lesueur, Bullet. des Sc., June 1815, pl. v, f. 2.
 ** It is from the number of strangulations, that is to say, the greater or less separation of the branchiæ, stomach, and ovary, that M. de Savigny has formed his Polyclinum, Aplidium, Didemmum, Eucelium, Diazona, Sigillina, \&e. which, in our opinion, need not be retained. Here, also, should come the Alcyomium ficus, Gm.; the Distomus rariolosus, Gertn., or Alcyonium assirlioildes, Gm., Pall., Spic. Zool., X, IV, 7.

[^108]: * The Eucolium, Savig. ; the Distomi are arranged in the samc manner.
 + The genus Diazona, Sav., consisting of a large and beautiful purple species discovered near Ivice by M. Delaroche.
 \ddagger The genus Sigillina, Sav., whose cylindrical branches are frequently a foot long, and the animals, slender as threads, but thrce or four inches.
 § The genus Synocium, Lam.
 I| Messrs. Audonin and Milne Edwards on the one hand, and M. de Blainville on the other, have lately verified this fact, which the observations of Spallanzani previously seemed to announce.
 - M. de Blainville has given to my Brachiopoda, the name of Palliobranchiata, and makes an order of them in his class of the Acephalophora.
 ** Linnæus, who knew but one of the valves, called it Patella unguis. Solander and Chemnitz, who were aware of its having two, called it, one, the Mytilus lingua, and the other, Pinna unguis. Brugieres knew its pedicle, and consequently made a genus of it by the name of Lingula, Encyc. Method., Vers, pl, 250. It is singular that before us, no one had remarked that it is well figured with its pedicle by Seba, loc. cit.

[^109]: * M. Defrance distinguishes upwards of two hundred.
 + Anomia scobinata, Gualt., 96, A;-An. aurita, Id., Ib., B;-An. retusa;-An. truncata, Chemn., VIII, Ixxvii, 711 ;-An. capensis, Ib., $703 ;-A n$. pubescens, Id., 1xxviii, 702 ;-An. detruncata, Ib., 705 ;-An. sanguinolenta, Ib., 706 ;-An. vitrea, Ib., 707, 709 ;-An. dorsata, Ib., 710, 711; An. psittacea, Ib. 713; An cranium, \&c. For the fossil species, sce Encyc. Method. Vers, pl. 239-246.
 \ddagger For this genus see Sowerb., Min. Conch. and the article Spirifcre of M. Dc. france, Dict. des Sc. Nat. t. L.
 § Thecidca moditerranea, Risso, Hist. Nat. de la Fr. Merid., IV, f, 183 ;-Th. radiata, Fauj. Mont. St Pierre, pl. xxvii, f. 8. Further, and more precisc obscrvations are requisite, to cnable us to class the MAGAS of Sowerby, the SrigocefHALA of Defrance, and some other neighbouring groups.

[^110]: * M. De Lamarck has changed this name into Cirripeda, making it a class. M. de Blainville also makes a class of them, but he changes the name to Nematopoda, and places them with the Chitoncs, in what he calls his tyne of the Malenrozaria.

[^111]: * This namc of Lepas formerly belonged to the Patella, Linnacus, supposing that some of thesc Cirrhopoda cxisted which had no shells, gave them the name of Triton: but the existence of these Tritons is not confirmed, and we are to conclude that Linnæus merely saw the animal of an Anatifa torn from its shell.
 \uparrow Add Lepas anserifora, Chemn., VIII, c. 856 ;-Anat. dentata, Brug., Encyc. Method., pl. 166, f. 6, or Pentalasmis fulcata, Leach, Edinb. Eneyc.

[^112]: * Lepas pollicipes, L., or Poll. cornucopia, Leach; Encyc. Method., pl. 226, f. 10 , 11 ;-Poll. villosus, Leach, Edinb. Encyc.
 † Lepas mitella, Chemn., VIII, 849, 850, Encyc. Method., pl. 266, f, 9, or Polylepe couronné, Blainv., Malac.;-Poll. scalpellum, Chemn., VIII, p. 294, or Polylepe vulgaire, Blainv., Malac., lxxxiv, f. 4. It is the genus Scalpellum, Leach, loc. cit.
 \ddagger Cineras villata, Leach, Edinb. Encyc., or Lepas coriacea, Poli, vi, 20, or Gymnolepas Cranchii, Blainv., Malac., 1xxxiv, 2.
 § Otion Curieri, Leach, or Lepas leporina, Poli, 1, vi, 21, or Lepas aurita, Chemn., VIII, pl. c. f. 857, 858, M. de Blainville unites Cineras and Otion in his genus Gymnolepa.
 \| Tetral. hirsutus, Cuv., Moll. Anatif., f. 14.
 N. B. The Lithotrias of Sowerby, converted by Blainville into Litholefa, may be, as is conjectured by Rang, merely an Anatifa accidentally fixed in a hole excavated by some bivalve.

 The Alepas, Rang, shonld be Anatifæ, whose cartilaginous mantle is without any shell whatever; I have never seen them. At all events, they must not be confounded with the Triton of Linnæus, which was the animal of an Anatifa separated from its mantle and shell.

[^113]: * Add, Lepas balanoïdes, Chemn., VIII, xcvii, 821 - 825 ;-L. tintinnabulum. Ib, 828-831;-L, minor, Ib. 827;-L. porosa, Id., xcviii, 836 ;-L. verruca, Ib., 840,841 ;-L. angusta, Ib., 835 ;-L. elongata, Ib., 838 ;-L. patellaris, Ib., 839 ; -L. spinosa, Ib., 840 ;-L. violacea, Id., xcix, 842 ;-L. tulipa, Ascan. Icon., X;L. cylindrica, Gronov., Zooph., XIX, 3, 4 ;-L. cariosa, Pall. Nov. Act. Petrop., II, vi. 24, A, B.
 \dagger Acasta Montugui, Leach, Edinh. Encyc., copied Blainv., Malac., lxxxv, 3 ; Lepas spongites, Poli, I, vi, 5.
 \ddagger Conia radiata, Blainv., Malac., lxxxv, 5.
 $\stackrel{+}{\S}$ Lepas porosus, Gm., Chemn., VIII, xcviii, 836, 837, Encyc. Method., pl. 165, f. 9,10 .
 \| Pyrgoma cancellata, Leach, loc. cit., copied Blainv., Malac. lxxxv, 5.
 II Lepas Stromii, Müll., Zool. Dan., III, xciv, 1-4.
 ** Creusia spinulosa, Leach, loc. cit., copied Blainv., Malac., lxxxv, 6.
 †† Lepas balænaris, L., Chemn., VIII, xcix, 845, 846 ;-L. Icsludinarius, Ib., 847, 848, which attaches itself to the shell of Tortoises.
 $\ddagger+$ The Tubicinella, Lam., Ann. du Mus., I, xxx, 1, 2.

[^114]: * Lepus diadema, Chemn., VIII, xcix, 843, 844.

[^115]: * M. Héroll has made a remarkable discovery on this subject, viz. that in the ovum of the Crustacea and Arachnides, the vitellus communicates with the interior by the back. See his Dissert. on the ovum of Spiders, Marburg, 1824, and that of M. Rathke on that of the Astaci, Lejrsic, 1829.

[^116]: * M. Carus has observed regular movements in the fluid which fills the bodies of certain larve of Inseets; but this movement does not take plaee in a system of closed vessels, as in the superior animals. See his treatise entitled "Discorery of a simple circulation of the blood, \&c." in German, Leipsie, 1827, 4 to.
 + On this subject see my Memoir on the nutrition of Inscets, printed 1799. Mem. de la Sor. d'Hist. Nat. de Paris. Bandouin, an vii, 4 to, p, 32 .
 \ddagger I cstablished this elass, distinguishing it by the colour of its blood and other attributes, in a Memoir read before the Institute in 1802. See Bullet. des Se.; Mesidor, an X, where I deseribed the organs of the circulation.
 M. Lamarck has adopted and named it, Annclides. Brugieres previously united it to the order of the intestinal worms, and before him, Limmeus placed part of these amimals among the Mollusea, and the rest among the Intestini.
 § It has been asserted that the Bloorl of the Aphrodite is not red. I think I have observed the eontrary in the Aphrodita squamata.

[^117]: * M. Savigny has proposed a division of the Annelides, to be founded on the presence or abscnce of these locomotory setæ ; those in which they are wanting being reduced to Leeches. M. de Blainvillc, who has adopted this idea, forms his class of the Entomozoarie Chetopodes with the Annelides that have setr, and that of the Entomozoarie Apodis with those which have none, but in mixing many of the Intestini with the Apodes, he has done what M. S. did not do.
 + See on this subject, the Mem. of M. Savigny on the invertebrate animals, and those of Messrs. Audouin and M. Edwards on the Annelides.

[^118]: * M. Savigny adds the Arenicole to this order, and changes its name to Serpulacea; M. Lamarck, adopting his plan, converts the Serpulacea into Sedentaria. The genera of my Tubicola form the family of the Amphitrites, Savigny, and those of the Amphitritea and Serpulacea, Lamarck. They form the order Entomozoaria Chetopoda Heterocrisina, Blainville, who, in defiance of his own definition, places there Spio and Polydorus.
 + The disk of the common Serpula being funnel-shaped, has induced naturalists to consider it as a proboscis, but it is not perforated, and in all the other species it is more or less claviform.
 \ddagger It is the same animal as the Amphitrite penicillus, Gm., or Proboscirlea, Brug., or Probosciplectanos, Finb. Column. Aquat., c, xi, p. 22.

[^119]: * They are the Gadeulariee, Lam. A single opereulum is seen, Berl., Schr., IN, iii, 6 .
 - The same as the Terelella bicormis, Abildg., Berl. Schr., IX. iii, 4; Scb., III, xvi, 7 , and as the Actiniu, or Aaimal-flower, Honse, Lect. on Comp. Anatom., II, p. 1. M. Savigny established his subdivision of the Serpula Crmospras, of which M. de Blainville has since made a genus, upon this spiral convolution of the branchice.

 Add, Terebclict stellula, Gm., Abilig., loc. cit. f. 5, remarkable for its opercuhim, which is composed of three plates strung together.
 \ddagger Serpula spirilhum, Pall., Nov. Act. Petrop., V, pl. v, f. 21 ;-Serp. spirorbis, Miill., Źfool. Dan. MI, lxxxvi, 1-6.
 § This name, in the works of Limmeus and Gmelin, designates varions animals, with factitious, and not transuded, tubes; we restrict its application to those which rescmble each other in their peculiar characters. M. Savigny employs it in the latter way, our first division cxecpied, which he places among his Scrpulie. Our Sabellæ are the Amphitrites of Lamarck.

 If This division is left by M. Savigny anong the Scrpulæ, and constitutes his Serpulet Spiramelle, of which M. de Blainville has since made his genus Spira MELLA.

 - The existence of this magnificent specics, and the calcarcons wature of its tube, are incontestable, notwithstanding the doubt expressed in the Dict. des Se., Nat., LV1I, p. 443, note. The Salilla bispiralis,-1mphitrile rolulacorris, Lin. Trans., VII, vii, differs but slightiy from it. I dare not assert it is the same as Seb., I, xxix, 1, crroneously cited by Pallas and Gmelin under Serpula giybalco, for that figure shows no disk.

[^120]: * The simple Sabelle of Savigny, Amphitrite reniformis, Müll., Ver., XVI, or Tubuluria penicillus, Id., Zool., 1xxxix, 1, 2, or Tercbella reniformis, Gm. ; Amph. infumlibuhum, Montag., Lin. Trans., IS, viii ;- 1 mph. resiculosa, Id. Ib., XI, v.
 + The Sabelle Astabta, Savig., such as the Sabella grandis, Cuv., or Indica, Sav.;-Tubuluriumugnifica, Slaaw, Lin. Trans., T, ix.
 \ddagger The Sabella Surograpuice, Savigny.
 N.B. On account of the imperfection of the figure of Ellis, Coral., pl. xxxiii, I do not know to which of these subdivisions we should refer the Amphitrite rentilabrum, Gm. or Stabella penicillus, L., Ed. XII.
 § Sal. rillosu, Cuv., a new species.
 II Tubukaria Fabricia, Gm., Fabr., Faun. Groenl., p. 450 -the genus Fabricia, Blainv.

 I Limneus, in his twelfth edition, had thus named an animal described by Kochler, and which might have belonged to this genus because it was thought to perforate stones. Lamarck has employed the same name-An. sans vert., p. 324, for a Nereis and for a Spio. The Terebelle, Gm., comprehend Amphinome, Nercides, Serpula, \&e. Messrs. Savigny, Montag., Lamarek, and Blainville, employ this name as above, which was proposed by me, Dict. des Se. Nat., II, p. 79.
 ** They are the simple Terebellas of Savigny; such as, Tercu. medusa, Sav., Eg., Annel., I,f. 3;-Ter, cirrhata, Gm., Müll., Ver., XV ;-Ter. gigantea, Montag.,

[^121]: * The Sablifariae, Lam.; the Hermeile, Savigny.
 + This is perhaps the place for the Amphitrite plumosa of Fab., Faun. Groml., p. 288, and Mïll., Zool. Dan., xc ; but their descriptions arc so obscure, and agree so little with cach other, that I dare not attempt to assign it. It forms the genus Pherusa, Blainville.
 \ddagger Siphostoma diplochaitos, Otto ;-Siph. uncinatu, Aud. and Edw., Litt., de la Fr., Annel., pl. ix, f. 1.
 § Monograph of the genus Dentalium, Mem. de la Soc. d'Hist. Nat. de Paris, t. II, p. 321.

[^122]: * Dent. elephantium, Martini, I, 1, 5, A;-Dent. aprinum, Ib., $\pm, \Lambda ;-D$. striafulum, Ib., 5, B;-D. arcualum, Gualt., X, G:-D. sexangulum.
 + Dent. dentulis, Rumpf., Mus., xli, 6 ;-D. fusciutum, Martini, Conch., I, 1, 3, B;-D. rectum, Gualt., X, $\mathrm{H}, \mathbb{\text { ® }}$.
 \ddagger Dent. entclis, Martini, I, i, 2, \&c.
 § M. Savigny has made a family of this genus by the name of Thflethusae, which has been adopted by his successors.

 II Add, Arenicola clatatu, Ranzani, dec. I, 1, 6, pl. i, f. 1, should it prove to be a distinct species.

 If This genus has very properly been withdrawn by Brugicres, from the Aphroditas of Pallas and the Terebelde of Gmelin. It forms the type of N. Savigny's family of the Amphinome, also adopted by his successors.

[^123]: * Tercbella carmantata, Gm., Amph. car., Pall., Miscell., VIII, 12, 13 ;-Ter. rostrata, 14-18;-Ter. complanata, Ib., 19-26;-Plcione alcyonia, Sav., Eg., Annel., II, f. 3.
 + Euphrosine laureata, Tal. Ib., f. 1;-E. mirtosa, Td., Ib., 2.
 N.B. The genus Aristrinia, Sav., Eg., Annel., pl. ii, f. 4, should also come near the Amphinomes; but it is only established on a mutilated speeimen.
 \ddagger Eunice, the name of a Nereis in Apollodorus. M. Sarigny makes it the name of a family, and ealls the genus Lcodice. M. de Blainville has changed these names, first to Branchionereis, and then to Nercidon.
 § Nereis norvegica, Gm., Müll., Zool. Dan., I, xxix, $1 ;-N$. pimata, Ib., 2 ;N. cuprea, Bose., Ver. I, v, 1 ;-Leodice galliea, and L. hispanica, Savig.-Add Leorl. antematu, Sav., Annel., V, 1 ;-Eunice bellii, Aud., and Edw., Litt., de la Fr., Annel., pl. iii, f. 1-4;-Eun. Tarassii, Ib., f. v, 11.

[^124]: * Nereis sanguinea, Montag., Lin. Trans., XI, pl. 3.
 + After the Eunices probably should come the Nereis crassa, Mïll., Yer., pl. xii, which, without having seen it, M. de Blainville proposes to refer to the genus Eteone, Sav., although the branchix of the latter are very different.
 \ddagger Lysilice Vulentina, Sav.;-L. Olympia, Id.;-L. galutinu, Id., Eg., Amncl., p. 53.
 § I unite the Aglauree and ©enones, Sav., and even certain species without tentacula, left among the Lysidices ly Messrs. Audouin and Edwards; Aylcura fulgida, Eg. Annel., V, 2 ;- Enone lucida, Ib., f. 3.
 || Nereis versicolor, Gin., Mrül., Wurm., VI ; -N. fimbriala, Id., viii, $1-3 ;-N$. pelagica, Id., vii, 1-3;-Tercbella rubra, Gm., Bommé, Mém. de Fless., VI, 357, f. 4, Λ, B;-Lycoris cegyptia, Eg., Annel., pl. iv, f. 1 ;-Lycoris mmtia, Id. Ib. f. 2; --Nereeis beaucoudrusii, Aud., and Edw., Littor. de la Fr., Anncl., pl. iv, f. 1-7;Ner. pulsatoria, Ib., f. s- 13.
 N.B. The Nereis verrucosa, Müll., Vcr., pl. vii, and incisa, Ott., Fabr., Soc. Hist. Nat. Copenlag., V, part I, pl. iv, f. l-3, secm to have the head of a Lycoris, but with long filanents in place of branchix: they require examiaation.

[^125]: * Nercis lamellifera alluntica, Pall., Nor. Aet. Petrop., 1I, pl. v, f. Jl-18, perhaps the same as the Nerciplyylle de Purelo, Blainv., Dict. des Sc. Niat.;-N. fiarde, Ott., Fubr., Soc. Hist. Nat. Copenhag., V', part I, pl. iv, f. 8-10.
 N. 13. The N. viridis, Müll., Ver., pl. xi, of which, without having seen it, M. Savigny proposes to make the genus EviahiA, and the two livomme, Risso, Europ. Merid., IV, P. 420 , also appear to me to be Phyllodoces: perhaps we should also so consider the Noreis pimmiger, Montag., Lin. Trans.. IX, vi, 3 ; and the Nereis stellifcra, Müll., Kool. Dan., pl. Mii, f. 1. of which, withont having seen it, Savigny proposes to make a genus by the name of Lempis; and the N. longe, Ott., Fabr., placed by Savig. with the N. flare in his gemus Eteone: . 11 these Annclites require to be earefully examined according to the detailed method of M . Savigny.

 We must not confound these Phyllodoees of Savigny with those of Ranzani, which are allied to the A phroditie, and particularly to the Polynoes.

 + Alciopa Reynandii, Aul., and F.dw., -from the Atlantic Ocean.- The pretended Nais Ruthke, Soc. Hist. Nat. Copen., l, patt T, 1l, iii, f. 15, may vory possibly be an Alciopa.
 \ddagger Spio scficomis, Ott., Fabr., Berl., Schr., VI, r, 1, 7 ;-Simo filicornis, Ib., S12. The Pombore, Bosc., Ver' 1, r, 7, appear to me to belong to this genus. Spio, the name of a Nereid.

[^126]: * Hesione splendida, Sar., Eg., Annel., pl. iii,f. 3 ;-II. festica, Id. Ib., 1. 41 ;II. pantherina, Risso, Eur. Merid., IV, p. 418.
 \dagger This is probably the place for the Nercis mismatica, and bifrons, Fabr., Soc. Hist. Nat. Conen. V, part 1, pl, iv, p. 17-2.3.
 \pm Lumbricus cirratus, Ott., Fabr., Faun. Groenl., f. 5, from which the Terebelle tentaculata, Montag., Lin. Trans., IX, and the Cirrhinere filigere, Blainv., pl., of the Dict. des Sc. Nat., N, do not appear to differ as to the genus;-Cirrh. Lumarkii, Aud., and Edw., Litt., de la Fr., Annel., 1l. vii. f. 1-t.

[^127]: * They are the Italilhées hermiones of Savigny, of which M. de Blainville has made his genus Hermione.
 + Littoral de la France, Annel., pl. i, f. 1-9.
 \pm Aphr. squamala, Pall., Misc., Zool., VII, 14 ; Littor., de la Fro, Amel., pl. i, f. 10-16;-Polyn. lavis, Aud., and Edw., Ib., pl. ii. f. 11-1S;-Apher. penctata, Müll., Ver., XIII;-Aphr. cirrhosa, Pall., Misc. Zool., VIII, 3-6;-Aphr. lepidota, Id., Ib., 1, $2 ;-$ Aphr. clara, Montag., Lin. Traus., IX, vii, which is at least closcly allicd to the Aphr. plana, Müll., Vcr., XIX;-Polynoe impaliens, Sav., Eg., Amel., pl. 3, f. 2;-Poly. muricata, Id., Ib., f. 1.
 § Sigalion Mathildre, Aud., and Edw., Littor. de la France, Anncl.
 II Acoëles Pleci, Aud., and Edw., Collect. of the Muserm.

[^128]: * N.B. 'The Phyllodoce maxillose of Ranzani, ealled Polyononte by Reinieri, and Fumolpe muxima by Oken, scems to be closely allied to the Acoetes; its proboseis and jaws are the same, and neither of the genera has, perhaps, been described from perfect specimens.

 There remain various Annelides so imperfectly deseribed, that we are unable to characterize them well; such are the Nereis cecen, Fabr., Soc. Hist. Nat. Copen. part I, pl. iv, f. 24-28;-N. longa, Id., Ih., f. 11-13;-N. aphroditoides, Ib., 4-7; Ib., 11-1:3;-Branchiaries qualrunguluhes, Montag. Lin. Trans., XII, p? xiv, f. 5 ;-Diploles hyalina, Id., Il)., f. 6 and 7 ; and the pretended Hirido branchiata, Arehib. Menzies, Lin. Trans. I, pl. xvii, f. 3. I have also omitted the Myrdanse and two or thee other genera of M. Savigny, on account of my having had no opportunity to re-examine them.

 1 It will be more minutely described by Mesers. Aud., and Cur., in the Anmales des Sciences Naturelles.
 \ddagger For the anatomy and physiology of the abranchiate Annelides, see the Memoir of M. Ant. Duyp, Ammales des Sciences Naturelles, Sent. 1825.

[^129]: * Conf. Montègre, Mem. du Mus., I, p. 242, pl. xii, and Leon Dufour, Am. des Sc. Nat. V, p. 17, and XIV, p. 216, and pl. xii, B, f. 1-4.

 Sce also the treatise of Morren, De Lambrici Terrestris Hisloria Naluruli nee non Anatomica, Bruss., 1829, 4 to.
 \dagger What is here stated is common to many species, first ascertained by M. Saviguy. He has distinguished twenty of them. See my Analyse des Travaux de l'Acad. des Sc., 1821. M. Dugès distinguishes six, but does not refer the exactly to those of M. Surigny.
 N. B. Müller and Fabricius speak of Lumbrici with two seta to each ring, of which Savigny proposes to make his genus Cliteldio, (lumbricus mimitus, Fab., Faun., Grocul., f. 4), and of others with four and six setw; but their desciptions require to be confirmed and completed ere their species can be classed.

[^130]: * IIypogron hirlum, Sav., Eg., Anncl., p. 104.
 + Trophonia barbala, Aud., and Edw., Littor., de la France, Annel., pl. x, fo $13-15$.
 \ddagger Neïs clinguis, Müll., Wurm., II ; -N. lilloralis, Id., Zool., Dan., lxxx.
 § Nrä̈s moboscidea, ld., Wurm., I, 1-4, of which Lamarels makes his genus Stylaria.

 II Nü̈s cligituta, Gm., caca, Müll., Ib., V, the genus Provo, Oken.
 if Nuïs rermicularis, Gm., Ræs., III, xciii, $1-7 ;-N$. serpentina, Id., xeiii, Müll., IV, 2—4;-Lumbricus turbifcx, Gm., Bonnet., Vers d'eau douce, III, 9, 10, Müll., Zool. Dan., lxxxiv ;-Lumbricus lincatus, Müll., Wurm., III, 4-5.
 **'Lumbricus lubicola, Müll., Zool. Dan., lxxv;-Lumb., sabellaris, Ib., civ, 5. M. Lamarck unites them with the Naïs tubifex, and makes it his genus Tubifex; it requires, howerer, a new examination.
 of Clymena amphistoma, Sav., Eg., Annel., pl i, f. ;-Cl. lumbricalis, Ott. Fabr., Aud. and Edw., Litt., de la France, Annel., pl. x, f. 1-6;-Cl. Ebiensis, Aud., and Edw., Ib., f. 8-12.

[^131]: * See Ménoires pour servir a l'Hist. Nut. des Sangues, by P. Thomas; a Menoir of Spix, Acad. Bav., 1813 ; and a third of M. Carena, Acad. Turin., t. XXV ; but especially the Systeme des Annélides, Savigny, and the Monographie des Ifirudines, Moquin-Tandon, Montpcllier, 1826, 4to. Sce also Esssai d'une Monographie de la famille des Hirudinées, cxtracted from the Dict. des Sc. Nat. ly M. de Blainv., Paris, 1827, Svo., and the article SAngsue of the same work, by Audouin.
 + M. de Blainville changes this name into Jatrobelide. For the varions medicinal Leeches, see the fig. of Messrs. Carena, Acad. Turin., t. XXV, pl. xi, and Mo-quin-Tandon pl, v.

[^132]: * This nane is changed by M. de Blainville to Hypobdellas.
 + There is a singular diversity of opinion with respeet to the faculty of drawing blool possessed by this animal. Limans says that nine of them will kill a horse. Messrs. Hnzard and Pelletier, on the contrary, in a Memoir, od hoc, presented to the Institute, and inserted in the Journal de Pharmacie, March 1825, assert that it attacks no vertebrated animal. M. de Blainville thinks this is owing to its having been confounded with a neighbouring specics, the Sangsue noire, which he makes the type of a genus called Pseudobierin, the jaws of which are mere folds of skin without any tecth. I think this fact worthy of examination. Both species devour the Lumbriei with avidity.
 \ddagger M. Moguin-Tandon changes this name to Limnatis.
 § M. de Blainville calls them Erpobdella. Oken had previously named them Helleo. Such are: Mir. vulyaris, L., or H. octoculata, Bergm., Stock., Mem., 1757, pl. vi, f. 5-8;-N. atomaria, Caren., L., C, pl. xii. See also pl. vi of MoquinTandon.
 || M. de Blainville changes this name to Geobdella.

[^133]: * Branchobdella ist:ici, Od., Mém. de la Soc. d'Hist. Nat. de Paris, t. I, pl. iv.
 † M. de Blainviric, who had named them Prscrcols, a name adopted by Lamarek, has again changed it to Icthyobnelra.
 \ddagger Add, Piscicola cephalota, Caren., pl. xii, f. 19, and Moq. Tand., pl. vii, f. 2 ;Piscir. tesselata, Moq. Tand., f. 3.
 § The Pontobdella, Leach and Blainv.
 || Add, Pontobdella arcoluta; -Pont. verrucatı; -Pont. spinulosu, Leach, Zool. Miscel., Ixiii, lxiv, lxv;-Hirulo rillutu, Chamiss., and Eisenhardt, Nov. Aet. Nat. Cur., t. X, pl. xxiv, f. 4.
 - The Polydora, Olien; Branchromdellion, Rudohbi; and the Bizanchiobdella, Blainv.
 ** It is the Bratnchelion torpedinis, Sav., but it mustnot be associated with the species found on the Tortoise (Hir bromchiata, Menzies, Lin. Trans., I, xiii, 3), which really appears to have branchix that rescmble a branch of feathers, and which it is requisite again to examine.

[^134]: * The Glossobdelle, Blainv.
 + Hirudo complanata, L., or sex:oculuta, Bergm., Stock. Mem., 1757, pl. vi, f. 12-14;-Hir. trioculuta, Ib., f. 9-11;-Hir. Myalina, L., Gm., Trembley, Polyp., pl. vii, f. 7 ;-Clespine paludosa, Moq. Tand., pl. iv, f. 3, \&c.
 \ddagger Epibdelle, Blainv. ;-Mir. hippoglossi, Mull., Zool. Dan., liv. 1-4.
 § Hir. grossa, Müll., Zool. Dan., xxi.

[^135]: * For the sake of brevity, I have designated them by the term Condylopes. This series of articulations, of which their lody is composed, has bcen compared by some Naturalists to a skeleton, or the vertebral column. But the use of this denomination is so much the more fallacious, in as much as these articulations or pretended vertebræ arc mere portions of thickencd skin, and as this skin is continuous, simply being thinner, and almost membranous at intervals or at the joints. A general character, which serves to distinguish these animals from all other Invertebrata, consists in their exuriability, or habit of changing their skin. The situation of the encephalon, pharynx, and eyes, as in the more clevated animals, cstablishes the limits of the back and abdomen, and of their respective appendages.
 + Dr. Leach forms a separate class of the Myriapoda. The Arachnides Trachearix, considered anatomically, might also constitute another, but they are so closely allied to the Pulmonarix in so many other particulars, that we have not thought proper to separate them.
 \ddagger Hexapoda. Those which have more than six, are termed by Savigny the Spiriopoda. I designate them more preciscly by the appellation of Hyperhexapoda, (more than six fect).
 § In many of the Crustacea the second portion of the coxa seems to form part of the thighs. The tibia, as in the Arachnides, is divided into two joints.

[^136]: * According to M. Ang. Odier, Mém. de lu Soc. d'Hist. Nat., 1823, t. I, p. 29 et sey., the substance of this envelope is of a peculiar nature, which he calls Chifine. IIestates that the phosphate of lime forms the great mass of ull the salts contaned in the teguments of Insects, while that in the shell of the Crustacea is but trifing, though it abounds in the earbonate, which is not found in the preceding animals. Other observations, those of M. Straus in particular, demonstrate that the tegrments here repiace the skin of the Vertebrata, or that they do not form a true skeleton. Those of M. Otiier also militate against all the analogies attempted upon this subject.
 - Occelli stemmata.
 \ddagger See the Memoir of Marcel de Serres on the simple and compound eyes of Inscets, Montpellier, 1815, 8ro. Also the observations of M. de Blainville on the eyes of the Crustacea, Bullet. de la Suc. Philoinulique. lie shall return to this subject at another period.
 § Anderen in tlic Arachnides, but under different forms, and with different functions.
 if As regards insects, and when they are claviform, or terminate in a club more or less developed, or furnished with numerous hairs. According to M. Robineau, Desvoidy, the intermediate antemne of the Crustacea Decapoda are the offactory

[^137]: * See the order Decapoda.

[^138]: * Isopoda.
 \dagger Stomapoda.
 \ddagger For this subgenus and the two following subgenera, sce the Dccaj,oda Macroura.
 § Auriliary juws, as they are termed by M. Savigny, at least when spealing of the Crustacea Decapoda. As the two superior ones, in the Amphipoda and Isopoda, form a sort of hip, he there calls them the auailiory lip. He distinguishes the jaws in Phalangium, a genus of Arachnides, as rrincipal jaus; those which are attached to the palpi-false palpi, according to him; and as supernumerory jurs, those which are attached to the first four feet. Those parts of the same inimals which have been considered as mandibles, are his mandibules succédune's. He admits of two auxiliary lips in the Scolopendra.

[^139]: * With respect to this term, and that of thorax, which are frequently employed in an arbitrary manner, see our gencral observations on the elass of Insects.
 + These organs are either pediculated and movable, or sessile and fixed. It is from this character that Lamarck has divided the Crustacea into two great sections, the Pediocles and the Sessiliocles; for which denominations, but restricting its application to the Malacosiraca, Doctor Leach has substituted those of Podopthalma and Edriopthalma. Gronovius was the first who had recourse to this distinction.
 + Although we poseess but few observations on the ncrous system of the Crustacea, all those which have been made support the truth of our divisions.
 § They might be still further divided into the Dentata and the Edronfata, according to the presence or absence of the mandibles. Jurine, jun., has alrcady proposed these divisions in his excellent MÍmnire sur l'Argule foliare.

 If The four anterior, when there are fourtecn, are formed by the last four postcrior foot-jaws. In the Decapoda, the sis foot-jaws belong to the math, zisd perform the office of maxillz.

[^140]: * In my work entitled Familles Nat. du Régne Animal, the Entomostraca are divided into four orders : the Lofhyroroda, Phyllopoda, Xifmosura, and the siphonostuma.

[^141]: * Behind the eornea, aceording to Blainville, is a ehoroides perforated with numerous holes; then a true erystalline, resting on a nervous ganglion, and divided into a multitude of little faseieuli.
 + We must, distinguish the pedunele-stipes,-and the stem-caudis funiculis. The peduncle is thieker, eylindrieal, and composed of three joints, a number which scems peeuliar to these organs in their imperfeet or rudimentary state. The stem is setirceous, and divided into a variable number of very small joints. That of the external antenma is simple, but that of the interior ones, consists of at least two filaments, and in several of the Deeapota Maeroura, of three. Passing gradually from these latter to the Brachyura, the antemm beeome shortened, so that, in several of the Quadrilatera, the lateral ones, at least, are very small. In this ease the two torminal divisions of the intermediate ones form a sort of bifurcated forceps, or unequal and articulated fingers.

[^142]: * M. Desmarest, in his IIstoire Naturelle des Crustaces lossiles, and in his Considérations Générales sur la Classe des Crustacés, has presented us, in relation to this point, with an ingenious nomenclature, based on the concordance of the portions of the external surface of the shell with the organs they cover. But, in addition to the fact that the shell of several Decapoda presents no impressions, or has them nearly obliterated, these denominations may be replaecd by others more siaple, more familiar, and relating to these same organs; as the middle or centre, the anterior and posterior extremities, the sides, \&c. : it appears uscless to increase our nomenclature
 + These observations are cxtracted from the exccllent memoir of Messrs. Audnuin and Edwards, published in the Ann. d'Ilist. Nat., t. XI, 283-314, and 352-.393. Sce also the Mém. du Mius. d'Hist. Nat., wherc M. Gcoffroy Saint-EXilaire has the Lobster.

[^143]: * Thesc learned naturalists compare them to the two lateral hearts of the Cephalopoda, and the analogy has been admitted by Baron Cuvier in his general report on the transactions of the Acad. Roy. des. Sc., for 1827 ; but the idea had bcen communieated by me to M . Audouin, and was a nceessary consequence of my theory of the circulation of the blood in the Crustacea, published in a note of my Esquisse d'une Distribution Generule du Règae Animal, p. 5. As the writers alluded to have taken no notice of what I have stated in this particular, hotlo in the pamphlet quoted, and in my work on the "Familics of the Animal Kingdom," I beg leave to produee that note. "I submit the following opinion to the judgment of Zootomists, and of M. Cavier in particular, viz. that in those of the Vertebrata possessed of a eireulation, the organ called heart represents, in its functions, a left ventricle, the arterial and dorsal trunk of Fishes and of the larvie of the Batraehians; that one or two arteries, which in the Ccphalopoda have the form of hearts, replace the right ventriele. The focus of the circulation, highly concentrated in the first of the Vertebrata, tius becomes gradually weaker, so that finally there is no cireulation whatever. The dorsal vessel of Insects would then be the mere rudiment of the lieart of the Mollusca and Crustacea." I will add, that twenty-five years ago, in my Hist. Nat. des Crust. et des Insectes, I rectificd the error of Roesel respecting the nervous eord of the spinal marrow, which had been taken for a ressel.
 + Sce general obscrvations on the family of the Macronra.
 + These observations are extracted from the Lecons d'Anatomie Compare of Baron Curicr. For other details and particular facts, see the Memoir of Messrs. Audouin and M. Edwards, loc. cit.

[^144]: * According to M. Straus, the anterior division of the body of the Limuli, that which is covered by a semi-lunar buekler, presents, besides the brain, no other ganglion but this, whence we may infer that the inferior organs of locomotion correspond to the parts of the mouth in the Decapoda, Stomapoda, and even in the Arachnides, and that those of the other division of the body, or of the sceond uekler; are analogous to the feet of the same Decapoda.
 + Messrs. Audouin and Edwards have observed in the Maia and in the Palinurus a nerve analogous to the one called Lyonet, in his Anatomic de la Chenille du Saule, "recurrent." The discoyery of the other gastric nerves is also due to them.

[^145]: * There is a long, tendinous and hairy lamina at its base.
 + The hand being placed on its edge, the finger is uppermost.
 \pm This suit of segments which, in the Crustacea of the first orders, immen diately succeed those to which the five last pairs of feet are attached, compose what I have termed the post-abdomen. The appellation of tail usually affixed to it, and which, in order to accommodate ourselves to common parlanee, we bave retained is very improper; it can only apply to the posterior terminal appendages of the bopy which extend considerably beyond it. See my Fam. Nat. du Regue Anim., p. 255, et seq.

[^146]: * The sections thus named are based on an ensemble of important anatomical characters, and generally correspond to the Linnæan genera, and sometimes also to those established by Fabricius in his earlicr works. These families are more extentensive than the sections thas named in my other writings: but if they be considered as first divisions of orders, and if what I have termed tribes be considered as families, it will be seen that the method is essentially the same. There is, then, the opinions of others to the contrary notwithstanding, no real discrepance in this respect. On the same principle, the subgencra, with the exception of some whose characters are too minute or too slightly marked, will become genera in a more detailed and special system.
 + The apparent number of scgments, which is usually seven, sometimes also varies according to the sex; it is less in the females. Dr. Leach has made great use of this consideration, which appears to us of but little importance, and opposed to the natural order.
 \ddagger Several of these filaments exist in the males, but in a rudimental state.

[^147]: ＊Those of the Macroura arc longer and narrower．It is on this difference that Fabricius established his order of the Exochnata．

 + See general obscrvations on the Decapoda．
 \ddagger This systematic arrangement of the Brachyura is artificial，or but little natural in some respects；in conscquence of which，we have somewhat altered it in our Familles Naturelles du Règne Animal．The Quanbilatira compose our first tribe，at the head of which arc the Ocypoder and other Land－Crabs，ending with the River－Crabs，or the Telphuse．The Arcuta form the sconal．That of the Chiptopoda appearing to us more closely allied to the proceding one than the Triangularia，will immediately follow，and be the third，and not the fourth，as in this method．Immediatcly after the Arcuata we will place those gencra whose flaws arc in the form of a crest，whose lateral antenne arc alriays recy short，and the third articulation of whose foot－jaws is triangular，and frequently entirc，or without any cmargination；such are the Mepali，Matute，Orithyire，and Mursice．
 Brachyura approaching the latter in the form of the same articulation，lut whose claws differ，and where the hateral antenna are saliont，advanced，and fre－ quently hairy，such as the Thic，Pirimele，and Alelecycli，will immediately precede these latter subgenera．As the Telphuse secm to be connceted with the Eriphire and the Pilumni，and as from these we naturally pass to Cancer properly so called， or the Cancer，Fab．，it follows that the Portuni and other natatory Arcuata should be at the head of this tribe．Then follow the Orbicularia，the Triangularia， and the Notorona．But of these the Dromice and the Dorippes should be placed higher in the scalc．The Ifomole，Lifhodes，and Ranince，appear to me to be of all the Bracliyura，those which are most closely allied to the Macrourn．The external foot－jaws of the Homole and of the Lithodes greatly rescmble those of the Macroura by thair length and projection．

 Although we have divided the Dccapoda into two genera only，in order to con－ form to modern systems，and to diminish the number of subgencra，our sections may be converted into tribes，corresponding to as many subgenera，to be afterwards divided into various smbecucric sections．

[^148]: * M. victor, Fab. ; Herbst., VI, 44.-M. planipes, Fab. ; Herbst., xlviii, 6 ; M. lunaris, Leach, Zool. Miscell., cxxvii, 3-5, var. ;-M. Peronii, Ib., tab., cad., 1-2. Perhaps we should refer the fossil species called by M. Desmarest, Porlune d'Héricalt, Hist. Nat. des Crust., Foss. V, 5, to this genus, or the Mursia, Leach.
 \dagger Polybius Henslowii, Leach, Malac. Brit., IX, B.
 \ddagger The tarsi of the intermediate fcet of the Portumni, Leach, are almost compressed into a fin; they might be placed after the Polybii.
 § Always wider and more oval than the preceding tarsi.

[^149]: * Podophthalmus spinosus, Latr., Gener. Crust. et Insect., I, 1, and II, 1; Leaeh, Zool., Miscell. cxlviii ; Portunis rigil, Fab.
 + Hist. Nat. des Crust. Foss., V, 6, 7, 8.
 \ddagger Genus Thadamita, Lat.

[^150]: * Porlumus Dufourii, Latr., Nouv. Dict. d'Hist. Nat., Ed. II. This species figurel in the Diet. Class. d'Hist. Nat. closely approaches the Cakcer hastatus, Lin., which he says is found in the Adriatic. The following are to be referred to the same division: Cancer pelayicus, Herbst., lviii, 55,-C. forecps, Ld., lv, 4 ; Leach, Zool., Miscell., liv;-C. senguinolentus, Herbst., VIII, 56, 57 ;-C. redomulli, Id., xxxix; C. reliculatus, Ib., l;-C. has/atus, Ib. Iv, i;-C. menestho, Ib., $3 ;-C$. pouticus, Ib. 5.
 + For the Mediterranean species sec Petagna, Risso and Olivi; for those on the western coast of France and the British seas, the Catalogue Mélhodiyuc des Crustarés du departement du. Calvados, by Brebisson, aut especially the execllent work of Dr. Leach, Malacosiraca Porlophthalmia Britunnice. M. Desmarest has well developed the system of this author in his Considérutions Gencreles sur les Crusfaces, an extremcly itseful book to those who make this branch of Zoology their study. Sce also nur article Porture, Eneyc. Methodiquc.

[^151]: * See the article Playoniquer, Eneyc, Methodique.

[^152]: * We had, at first, placed this subgenus, as well as the following one, among the Orbicularia.
 + See Consid. Génér. sur la Classe des Crust., Desmar., p. 88, 89.
 \pm Thiu polita, Leach, Zonl, Miscell. ciii.
 \$This name must be changed to avoid confounding the division with that of Nursie, another subgenus.
 \| Desmarcet, Consid. Génér, \&.e., 1X, 3.

[^153]: * IIcpatus fasciatus, Latr.; Desmar., Considér., IX, 2;-Calappa angustata Fabr.; Cancer princeps, Bosc.; Herbst., xxxvii, 2. Sce also his Cancer armadillus, VI, 42, 43.
 + I consider them, with respeet to their habits and some of the characters of their organization, as being the furthest removed from the other Decapoda; they should be placed at one of the extremities of that order.

[^154]: * Cancer cymodoce, Herbst., li, 5 ;-C. mfo-punctatus, Jd., xlvii, 6;-C. glaberrimus, Id., xx, 115. Sce the article Trapézie, Encye. Methodique.
 + Sce the article Pilumne, Encye. Method., and Desmarest, op. cit. p. 111.
 \ddagger The Potemophiles of the first edition of this work. That name having been already applied to a genus of Colcopterous lnsects, I have substituted the present one.-Sce this word in the second edition of the Nour. Diet. d'Hist. Nat. 'They are the Potamolice, Leath, Polemon, Savigny.
 § Sice Olivier Vor., en Eryple, pl. xxx, 2; and the plates of Nat. Hist., in the freat work on that country.

[^155]: * Sce also the subgenus Ocypode. I have made a new one called TrichodacTyLUs, with a fresh-water species from Brazil, analogous to the preceding ones, but with an alnost square shell, the third joint of the external foot-jaws forming an clongated triangle booked at the end, and the tirsi covered with a close down.

 The Graspus lessclatus, of the pl. (ecev, 2) of Nat. Hist., Encye. Method., is also the type of the new genus Mrias, bit one of too little importance to be treated of in detail in a work like this.

 + Sce the articke Rhombille, Eisye. Mcthodigue.

[^156]: * Gonoplax transversus, Latr., Encyc. Method., Hist. Nat., ccxcrii, 2 ;-Cancer brevis, Herbst., 1 x , 4. The Gonoplace de Latreille, a fossil species described by Desmarest, Hist. Nat. des Crust. Foss., IX, l-t, and perhaps also his G. incisé, IX, 5,6, may be a Macrophthalmus ; gencrally speaking, however, his fossil GonoHaces are Grlasimi. The species he calls Gélasime huisank, VIII, 7, 8, rocs not appear to differ from the living one which I have called the maracoani, Encyc. Method.,
 b., cexcri,

[^157]: * See the article Gélasime, Nouv. Dict. d'Hist. Nat., Ed. II, and the same article in the work of Desmarest on animals of that class. The Crabs, cielie-ete, cieticpanama, of Marcgrave, appear to mc synonymous with the Gelasimus pugilalor. According to the obssrvations of M. Marion, communicated to the Acad. Roy. des Sc., by M. de Blainville, this inequality of the forceps is peculiar to the males, at least such was the case in all the numerous spccimens examined by him in his voyage to the East Indies.
 \uparrow For the Ocypodes of the Western Continent, sce the obscrvations of M. Say, Journ. Ac. Nat. Sc. Phitad. His Ocyp. reticulatus is a Grapsus. Consult, also, the article Ocypode, Nouv. Dict. d'Hist Nat., and the work of M. Desmarest.

[^158]: * Lat., Gencr. Crust. et Insect., I, 40 ; Encyc., Mcthod., Atlas d'Hist. Nat. ecxcvii, 3 ; Desmar., Considér., XI, 2. This subgenus, and that of the Pinnotheres, in the first celition of this work, constituted part of the Orloicularia; but in their natural order they approaeh the Ocypodes, Gecarcini, \&e.
 + Pl. d'Hist. Nat., of the great work on Egypt.
 \ddagger For species sce Leach, Malac. Podoph. Britt., and Desmar., Considér. Génér. sur les Crust., 116.

[^159]: * Cancer cordatus, L.;-Cancer carnifex, Herbst., XLLI, 1 IV, 37 ;-C. gramhumi, Marcgrave. The tarsi have four ridges; there are two additional ones in the Gecarcini.

[^160]: * See the article Tourlourou in the Encyc. Methodiquc. Messis. Andouin and Edwards have lately eommunicated to the Aead. Roy. des Sc., some very eurjous remarks upon an organ peculiar to these animals, which form a sort of reservoir eapable of containing a certain quantity of water, and placed immediately above the branchix. This aecounts for the unusual convexity of the anterior sides of their thorax.
 $+P$. depressa, Lat. ; Herbst., III, $35 ;-P$. clarimana, Lat., Merbst., lix, 3 ; Desmar., Considér., XIV, 2. The tail appears to me to consist but of four distinet segments. The third, however, presents one or two deep and transverse lines. In the Grapsi there are seven segments, the third of which has an angular dilatation on each side of its base.

[^161]: * See Bose, Hist. Nat. des Crust.
 + See the Article Playusie, Encyc. Nethod., and the Histoire des Animaux sans vertèbres of Delamarck, genus Gropse.
 \ddagger The Orythiæ and the Dorippes, in a natural series, would, in my opinion, belong to this section, and lead to the Corystes; their shell is a truneated ovoid.

[^162]: * Leach Zool. Mise. III; Desmar., Consid.
 + Leucosia cylindurus, Fabr., Herbst., II, 29-31.

[^163]: * Malac. Brit., xxv.
 + See Desmar., Hist. Nat. des Crust. Foss,

[^164]: * P'uthen. horridu, Fall.; Kumph., Mus., IX, 1 ; Scba, III, xix, 16,17 ; Herbst, XIV, 88.
 + Panth. lungimana, Fab.; Rumph., Mus., VIII;-P.giraffa, Fab.; Herbst., XIX, 108,$109 ;-P . l a r$, Fab. ;-P. rubus, Latr.;-Concer contrarius, Herbst., lx , 3 ;-P.mucrocheles, Lat., Herbst., XIX, 107 ;-Cancer longimanus, L., fem., P. trigonomanu, Lat. ; Cancer prensor, Merbst., xti, 3.
 \ddagger Cencer asper, Penn., Brit. Zool., IV ; Eurynoma aspera, Leach, Malae. Brit., ズVII.
 § l'arthenope angulifions, Latr., Encye. Method.; ('ancer lonyimanus, Olivi.
 I| The first joint of the lateral antenne appearing to form part of the shell, has been mistaken by several naturalists, the second having been eonsidered by them as the first.

 I] Mithrax spinicinctus, Latr.; Desmar., Consid., p. 150;-Cancer, hispidus, IIerbst., XTIII, 100 ;-Cuncer aculeatus, Herlost., XIX, 104 ; C. spinipes, ejusd., XYII, 94. The Iachus hircus, Fab., is perhaps a congener.

[^165]: * Maia glabrt, Collect. du Mus. d'Hist. Nat. ; Maia hmulate, Risso, I, 4 ; Libinia lumulata, Desmar.
 + Pisa minila, Latr., Encyc. Method.- P. monoceros, [b.
 ${ }_{+}+$Pist chirayre, Latr., Encyc. Method, ; Desmar., Consil,
 § Pisa x!phias, Latr., Ib.;-cjuscl., Ib. P. aries;-P. harbiommis;-P. comi!era;—P. styx;-P. bicormulu;-P. Irisyinosu;- P. armalu, Leach, Nalac. Brit., XVII; Cancer muscosts? Lin.;- 1 . letroodon, Leach, Ib, xx.
 $\|$ Pisa heros, Latr., Encyc. Mcthod.
 9] Maia lamus, Lam. ; Cuncer comulo, Horbst., lix, (i.
 N.B. The genus Amathite of M. P. Roux, Hist. des Crust. de la Mediterr., \&e., liv. I, does not difier from my Pericera-it even appears to me to lave the same type. The Lithographic plates which accompany this work are distinctly and faithfully executed.

[^166]: * Cancer cristatus, L.; Immph., Mu:.. YIII, 1, the matc.-Cancer Jhijlïl, Herbst. lviii, 4; Desmar. Considér., $\mathrm{NJ}, 2$.
 + Cencer certernis, Merbst., lviii, „, from the Isle of Trance. M. Desmanest was mistaken in citing, as the lype, Consid. Gen. sur Ies Crust., fl. 153, the Maiu tuurus, Lamarck.
 \pm Two species, onc of which alpears to be allied to the Cuncer sumerciliosus. L.; Herbst, XIT, 89.

[^167]: * Cencer aruneus, L.; Leach, Nalac. Hrit., XXI, A; Herbst., XVII. 59; Hyas roarctata, Leach, Ih., xxi, 13.
 + Libinia canaliculata, Say, Journ. Acad. Nat. Sc. Philad. vol. I, p. 77, iv, 1; -L. emarginuta, Lcach, Zool. Misc., cviii.
 ${ }_{+}+$Doclrea Rissomii, Leach, Zool. Misc. Ixxiv. The Inachus weis and the T. hybridus, Fab., should be referred to it.
 § Egeria indica, Leach, Zool. Misc., lxiii; Inachus spinifer, Fab.

[^168]: * Hymenosomu orbiculeris, Desmar., Consid., גxvi, 1.
 + Cancer dodecos? L. ; Inachus scorpio, Fab. ;-Inachus Dorsetlensis, Leach, Malac. Brit., xxii, A;-Inachus phalangium, Fab.; Inachus dorynchus, Leeich, Ib.,

[^169]: xxii, 7, 8 ;-Inachus leptorinchues, ejusd., Ib., xxii, B; C'uncer tribulus, L.? Near the Intehi comes a new genus lately established by M. Guerin, called Eurypode, minutely described and carefully figured, Mém. du Mus. d’His., Nat. XY'. It approaches that of Inachus, but the ocular podicles are always salicnt; the post-ablodomen is composed of seven completely separate segments in both sexes, and the penultimate joint of the feet, or the metarsus, is inferiorly dilated and compressed.

 * Acheous Ciranchii, Leacl, Malae. Brit., xxi, C.
 \dagger Macropodia tenuirostris, Leach, Malac. 3rit., xxiii, 1-5; Inachus longirostris? Fab. ; Maciop. phalanguim, Leach, Ib., xxiii, 6.
 \ddagger Inachus sayittarius, Fab.; Leach, Zool. Misc., Ixvii.
 § Puctolus Boscii, Leach, Zooi. Misc., Ixviii.

[^170]: * Cancer maja, L. ; Perthenope maja, Pab.; Inuchus maju, Id.; Lithodes arctica, Leach, Malae. Brit., xxis. See also the Maja cemtitsehensis, Tiles., Mcm. Acad. Sit. Petcrob. 1 S12, V, V1.
 H Seremal of the Areuata, such as the Hepati, Nursig, Natute, among the swimmers, late a crested foreeps, and seem to be naturally allied to the Cryptopodia, so that this scetion should be placed higher in the scale. The same observatimn applics to the lant one, or that of the Notopoda, for some of them approach the Arcuata, and otisere the Orbientata and the Trigona.
 + In this divisinn come the following species of Fabricius: C. fuberculuta, Herbst., NilI, 7s; lviii, 1?-C. lophos, Heri)st., NIII, 77; ('. cristutus, Herbst.; x1, 3;-C. mumorutus, Herbst., x1, 2.-The Gucuiu uintu, Pison and Maregr., should probably be refered to this speeies, and, according to the citation of Barère, is the Crathe des paleturiers of the colonists of Cayenne. The Cancor hepaticus of Linnacus is also a Calappa.

[^171]: * Athra demressa, Lam., Hist. des Anim. sans Verteb. ; Cancer scruposus, L.; Cuncer polynome, Herbst., liii, 4, 5; Desmar., Consid., X, 2.
 + Pallhenope formicala, Fib.
 + Homola spinifions, Leach, Zool. Misc., Lxxxviii ; Cuncer spinifrons, Fab. Sce the article Homole, Nouv. Dict. d'Hist. Nat. Ed. II, and Desmar., Considér., XVIII, 1. The Dorippe Cucicri, Risso, belongs to this subgenus.

[^172]: * Dorippe lanalu; Cencer lanatus, L.; Desmar.. Considér., XVII, $2 ;-D$. affinis, Id.; Herbst., NI, 67 ;-Cancer mascurone, Herbst., XI, 68.
 + For the other species see Desmar., Consin. Gen. sull la Classe des Crusl.,
 136 , et seg. 1. 136, et sec.

[^173]: * Runina Aldrovandi, Ranz., Mcm. di Stor. Nat.; Desmar., Hist. Nat. des Crust. Foss., VI, xi, 1. The fig. $x, 5,6$, appears to us to belong to a Hippa rather than to a Ranina;-Ranina serrata, Lam.; Cancer raninus, L; Albunea scabra, Fab.; Rumph., Mus., VII, T. V.;-Ranina dorsipes, Lam.; dlbunert dorsipes, Fal.; Rumph., Mus., X, 3; Desmar., Considér., XIX, 2.

 The genus Symethis, Tab,, is unknown to us, but we presume it is allied to the Raminæ, or the first subgenera of the subsequent family.

 + These appendages consist of threc pieces, one of which serves as a base or pedicle to the others, and is artieulated with the penmitimate segment; the latter, in conjunction with them, usually forms a fan-like fin; but in the last subgenera of this family these appendages arc replaeed by sctaceous filaments. The false feet under the tail are similar in their structure to these natatory appendages. In the first subgenera they frequently do not excced threc or four pairs, and are smaller, or cenen mull in the malcs, the two anterior ones always excepted; the Pagura, as it appears to me, only have them on one side: the terminal pieces are often unequal. In the succceding ones, however, these fect are longer, and always form five pairs, the ova attached to them; and they are used by the animal in swimming. We observe that in the Macroura, where they arc fewer in number, or less dereloped as in those which we term the Anomata, the peduncle of the intermediate antennæ is longer in proportion than in the others, and that the tro or four last four feet are smaller. These Crustacea, in some respects, seem also allied to the Brachyura.

[^174]: * The sections which we are about to describe might form so many generic divisions, having for their basis the genera of Fabricius.

[^175]: * With the exception of the two that are anterior, these appendages in the males are mere rudiments, or are even wanting, a charaeter common to the Galathen Seyllari, and Palinuri. We should also observe that in these three subgenera the caudal fins are thinner or almose membranous at their posterior extremity. In this section, as well as in the Galathex, the thoracic portion to which the two posterior feet are attached forms a sort of petiole, so that these feet seem to be annexed to the tail.
 \uparrow M. Desmarest hesitatingly places the genus Posydon of Fabricius, who speaks of two species, near the Albuneæ; but aecording to the latter the anterior antenna are bifid, a eharaeter whieh does not belong to the Albuneæ. Owing to the imperfeet manner in which he describes this genus, we are not able to recognize it, or to appreciate its affinities.

[^176]: * Hippa alactyla, Fabo. ; H. cmeritus. Id. ; Cancer emeritus, L.; Emerita, Gronov., Zoop., xvii, 8, 9; Herbst., xxii, 3; Desmar., Considér., xxix, 2, in the seas of both Indies.
 - Remipes iestudinarius, Latr. ; Desmar., Consid., xxix, 1 ; Cuv., Règne Animal, IV, xii, 2.

[^177]: * Payurus laticauda, Cuv. Régn., Anim., IV, xii, 2; Desmar., Considér. p. 180, from the Isle of France. Very curious facts relating to the anatoiny of the preceding species have been published by M. Geoffroy Saint-Hilaire, from which however we do not draw similar eonclusions.

[^178]: * For the other species sce the article P'ayure, Encyc. Méthod.; the Atas d'Hist. Nat., of the same work; Desmarest, Consider. Gener. sur la Classe des Crust. ; the plates of the Yoy. de Freycinct. We should obscrec that in the figure of the Cancer meyistos, IIerbst., LXI, 1, the tail is false; this arises from the fact that the tail was wanting in the individual from which the drawing was made, the artist supplying it by copying the fin-tail of an ordinary Macroura.

[^179]: * Thenus inulicus, Leach; Scyllarus orientalis, Fab.; Kumph., Mus., II, D.; Herbst., XXX, i ; Encyc., Atl. d'Hist. Nat., CCCXIV; Desmar., Consid., XXXI, 1.
 + Add Scyllarus contarcticus; Fabr., Herlost., xxx, 2; Rumph., Mus., II, D. Sce the article Scyllure, Encyc. Méthodique.

[^180]: * M. Desmarest, Hist. Nat. des Crust. Foss., p. 132 , speaks of two other fossil species, the sceond of which, howerer, may probably belong to the subgenus Astaccous properly so called, and aproach the A. nomegicus of Fabricius.

 For the other living species, sec Amn. du Mus. d'Hist. Nat., t. II I, p. 391, et seq. ; the article Palinure, Encyc. Méthod., and its Atlas d'list. Nat.; that of Langousle, Nouv. Dict. d'Hist. Nat., Ed. II, aud the same in the work of Desmarest on the Crustacca. As respects the nervous system of the species that inhabits the French coast, sce Audouin and Elwards, op. cit. ; according to them, all the thoracic ganglions are as if soldered together, end to end.

[^181]: * According to a verbal communication from Doctor Leach, in the Galalhea amplectens, Fab., it is not only the two posteitor feet which are sinaller, but the penultimate likewise. This species would then form a separate genus.
 \dagger This species forms the «cmus Munid. L, Leach. Sce Desmar., Considér., page 191. The latter is mistaken howerer in attributing to the former the eredit of having been the first to discover the itlentity of this species with the lion of Rondelet. See my Hist. Gener. des Crust. et des Insectes., t. VI, I. 198.

[^182]: * Figlée lisse, Desmar., Considér., xxxiii, 2 ; Latr., Encyclop. Méthol., Atl., d'Ilist. Nat. cceviii, 2.
 + Sec the article Poreelleme, Nouv. Dict. d'Hist. Nat., Ed., II.; and Desmar., Consid. sur les Crust., p. 192-190.

[^183]: * For the European species, sce Desmar., Consid., p. 200-202, and pl. xxxiv, 2 of the same work.
 + Thulussinu litoralis, Risso, Crust., Il I, 2 ;-Gelice slclluta, Leach, Malac. Brit., xxxi, 1-9. Sec Desmar., Consid, 1). 203, 204.

[^184]: * Thalassina scorpionides, Lat. ; Cancer anomalus, Herbst., LXII ; Leach, Zool., Miscel., CXXX ; Desmar., Consid., KXXYI.
 + The left claw of the sccond pair scems to be monodactyle in the Calliamasse, and the penultimate joint dilated in to a palette.
 + This character is common to the following section, so that by it we might divide the Macroura, the Schizopoda exeepted, into two great divisions.

[^185]: * See his Mŕmoire sur le Brunchiodelle, inscried in the Mém. de la Soc. d'Hist. Nat. tome I, p. 69, et scy.

[^186]: * For the remaining species, sec Risso, Hist. Nat. des Crust. de Nicc ; Leach, Malac. Brit., XLI ; and the Nouv. Dict. d'Hist. Nat., Ed. II.

[^187]: * Alpheus eleguns, Risso, Crust., II, 4; Desmar., Consid., p. 22 s.
 - Alphous thyrenus, Risso, Crust., II, 2 ; Astacus lhyremus. Petag., V, 5 ; Des. mar., lb., 1. 229.
 \ddagger Alphcus malabaricus, Falb., and probably some other species, with which, however, I am not sufficiently aequainted. Sce Desmar., Consid., p. 222, 223.
 § To this subgenus should be referred the Pulcmon ditersimane, and P. marbié of Olivicr. Sce Desmar., Consid., p. 220.

 II Autonomea Olivii, Risso, Crust., p. 166 ; Cancer glaber, Oliv., Zool. Adriat., III, 4 ; Desmar., Consid., p. 251 , and 252.

 If Pandulus amulicornis, Leach, Malac. Brit., LI.; I'andulus narmal, Latr. ; Astacus nurwal, Fab. ; Pulamon pristis, Kisso; Cancer urmiger? Herbst. XXXIV., 4. See Desmar, Consid., p. 219, 220.

[^188]: * See the article Palemon, Encyclop. Méthod., and of the second edition of the Nouv. Dict. d'Hist. Nat., and Desmar., Consid., p. 236-238. Sce also in relation to the nervous system, the Mem. Cit. of Messrs. Audouin and Milne Edwards.

[^189]: * Leysmala selicauda, Risso, Crust., II, 1; Desmar., Consid., p. 238.
 + Alhtints mifescens, Leach, Malac. Brit., XLIV ; Desmar., Consid., p. 239, 240; de Bréb., Crust., du Calv., p. 23, 24.
 \pm Mysis Fuhricii, Leach; Encyc. Method., Atl. M'Hist. Nat., CCCXXXVI, 8, 9 ; Cetencer vculatus, Oth.; Fab., Grewl., fig. 1. Sce Desmar., Consid., p. 241, 242.

[^190]: * Cryplopus Defroncii, Latr., from the Mediterrauean.

[^191]: * Sce om gencral obscrvations on the Macroura. Neither this vessel nor the venous sinnses have been observed in the subsequent orders; but the heart preserves the same elongated form, and presents similar anterior arteries. From its sides also arise other arteries eorresponding to the articulations of the body. In addition to the pre-citerl Memoir, see the Leçons d'Anatomic Comparce of the Baron Cuvier.

[^192]: * They form two ranges of transverse and parallel strix.
 \dagger The seeond jaws of these Stomapoda no longer present the same form as those of the Deeapoda. They have the figure of an clongated triangle divided into four segments by transverse lines. The mandibles are bifureated and well dentated.
 \pm In all those where the four anterior feet are in the form of claws, the six last are natatory.

[^193]: * Some other analogous Orthoptera, such as the phyllium, rescmble leaves. The Phyllosomx, Crustacea of the same order, exhibit similar aftinities.

[^194]: * For the other speeics, sec the article Squille, and pl. of the Encyc. Method.; Desmar., Consid. In 11. XLII, he has given a detailed figure of the Squille qucue-rude.

[^195]: * Squilla scyllares, Fab.; Rumph. Mus., IIt, F;-siquilli chira!ra, Fab.; Desmar. Consid., XLllI. See the artiele Squille, of the Eneyclopedia Méthodique. + Sec Encyclop. Méthool., art. Squillc, S'quillu emsel, in? Wis:o.
 \ddagger Erishthus vilrous, Lat. Sec art. Sutille, Atl. N'Uist. Nidt. of the Encyclop. Méthod., pl. cceliv ; and Desmar. Consid., XLIT, 2, 3.
 § Alima hyaline, Lat., Encyclop. Mrithod., art. Squille, and Ibid. Atl. d'Hist. Nat., CCCLIV, S; Desmar, Consil., XLIV, 1.

[^196]: * Scc Encyclop. Méthod., and Nouv. Dict. Hist. Nat., Ed. II, article Phyllosmene also the work of Desmarest on the Crastacca and the Zoology of the Yoy. ile Freycinct. As respects their nervous system, the गhyllosomic seem to be intermediate between the preceding and subserpent Crustacea. Sce Audouin and Edwards, op. cit.

[^197]: "Sec Oniscus.

[^198]: * Cancer monoculoiles, Montag., Trans. Lin. Soc. X゙I, ii, 3;-Irypérie de Lesueur, Lat., Encyclop. Méthod., Atl. d’Hist. Nat., CCCXXVMII, 17, 18 ; Desmar. Consid., 1. 258.
 N.13. Near the Hyperix should be placed the genus Themrsto, Lat., carefully figiured and described in the Mcm. de la Soc. d'Hist. Nat., tome TV. As in the Hyperixe, the eyes are very large ind occuly the larser portion of the head; two of the antennax (the inferior), all terminated by a multi-ariculated stem tapering to a point, are cridently longer than the others. The part there called lewe infericure, is the ligula; those which appear to form the third pair of jaws are the first of the foot-jaws, and, as in the Amphipoda and Isopocia, close the mouth inferiorly under the form of a lip. The forr remaining foot-jaws are rery short, directed forwards and laid upon the month in such a way that they scem to constitute a part of it, so that if we do not count them, or if we merely consider the following locomotive and much more apparent organs as fect, this animal, like the Hyperia and Phosine, appears at the first glance to have bat ten fect insteal of fourtecn. The thitel pair of foot-jaws is terminated by a small didactyle forceps. The same prir of fect, properly so ealled, is mueh longer than the others; its penultimate joint is greatly clongated, and is armed with a range of small spines forming a sort of comb). But a single species is known.
 † Phros. macrophthalma, Kisso, Jour. de Thys., Oetob, 1822; Desmar., Ib., p. 259 ; Cencer galba, Montag., Trans, Lin. Soc., XI, ii, 2.

[^199]: * Phos. seminulutu, Risoo, Ih.; Desmar. The stem of the inferior antenne consists of two or three joints, white in Pl rosine it is inarticalate. 'I here also, the joints of the peduncles of the same antemax are shorter.
 +Sce Ann. des sic. Nat., Decemb. 1826, XLIX. 10, the male-11, the female.

[^200]: * Oniscus !fammarellus, Pall., Spic. Zool., Fascic., IX, is, 8; Concer gammarues lilloreus, Montag.; Desmal., Consid., p. 261, $\mathrm{KLV}, 3$.
 \dagger Oniscus locusta, Pall., Spic. Zool., Fascic. IX, iv, 7 ; Cancer gammames sultator, Montag. ; Desmar., Consicl., XLV, 11.
 \ddagger Atylus carinutus, Leach, Zool. Misc., LXIX; Desmar., Consid., p. 262, XLV, 4; Cammarus rarinatus, Fab.;-G. mugu': ejusil.; Plipps, Yoy. to the North Pole, XII, 2;
 of The third joint of the perluncle may be rery small and thus beeome assimilated to the following, or those of the stem; this peduncle, as in the Dexamines, then appears to consist of hut two joints. Aecording to the system of Leach the stem is understood to form another but coupound joint.

[^201]: * See Desmar., Consid., p. 265, 267.
 + Cancer palmahs, Montag., Trans. Lin. Soc., VII, 1. 69; Encyclop. Méthod., Atl. d'Hist. Nat.. CCCXXXVI, 31 ; Desmar., Consirl., XLV, 7.
 \ddagger Cancer gemmarus grosimamus, Montag., Trans. Lin., Soc., IX, iv. 5 ; Desmar. Consid., p. 264.
 § Cancer ribricalus, Montas., Trans. Lin. Soc., IX, p. 99 ; Encyclop. Méthod., Atl. d'Hist. Nat., CCCXXXVI, 33 ; Desmar., Consicl., XLY, 9 ;-Oniscus remeellus, Pall., Spie. Zool. Fascic., IX, iii, 18; Giummarus cancellus. Fab.

 If Phemes fusicole, Leach; Trans. Lin. Soc., XI, p. 360 ; Desmar., Consid., p. 268.

 - Cancer gammarus spinosus, Montag., Trans. Lin. Soc., XI, p. 3 ; Desmar., Consid., $\mathrm{XLT}^{r}, 6$.

[^202]: * Cancer articulosus, Montag., Trans. Lin. Soc. VII, 6; Desmar., Consid., p. 263, XLV, 5.
 \uparrow Podocerus rearicguius, Leach, Trans. Lin. Soc., II, p. 361 ; Desmar., Consid., p. 269.
 + Jassa pulchclla, Leach, Ibi, p. 361 ; Desmar., Consid., p. 269.

[^203]: * Sce Encyclop. Method., article Porlocire.
 \dagger This and the following section, in the first edition of the Riogne Animal, form the second of the Isopoda, that of the Phylibranchiata. But independently of our having discovered mandibular palpi in some of these Crustacea, the form of the subcandal appendages appears to us to approximate them much nearer to the Amphipoda than to the Isopoda. We may also observe that these animals, of which we have seen but very few, have not yet been well studied.
 \ddagger According to the figure of Slabber-Oniscus arenurius, Encyclop. Méthod., Atl. d'Hist. Nat., CCCXXX, 3, 4, -he number of fect is but cight; reasoning from analogy, I presume it to be fourteen; besides, if the figure be cxact, this genus would belong to the next section.
 § Eupheus ligiö̈les, Risso, Crust., III, 37 ; Desmar., Consid., 285 ;-Apseudes talpa, Leach;-Cancer yammarus talpa, Montag., Trans. Lin. Soc., IX, iv, 6 ; Desmar., Consid.: XLVI, 9. Sce the Gummarus heteroctilus, Viviani, Phosphor. Maris, II, ii, 12.
 N. B. The genus Rifaca, M. Edwards, Ann. des Sc. Nat. XIII. xiii, A, 292, differs from the preceding in the superior antennæ, which are stouter, longer, and bifid.

[^204]: *Typhis oromides, Kissu, Crust., II, 9 ; Desmar., Consid., p. 2S1, XLYI, 5.
 \uparrow Anceus forficuluris: Risso, Crust., II, 10 ; Desmar., Consid., XLYI, fi;-Ancous maxillaris: Gancer maxillaris, Montag., Trans. Lin. Soe, V II, vi, 2 ; Desmar. 1b., NLVI, 7.
 \ddagger Oniscus ceruleatus, Montag., Trans. Lin. Soc., XI, iv, 2 ; Eneyclop. Mrithod., Atl. d'Hist. Nit., CCCXXIX, 28, and CCCXXIX, 24, 25 ; Desmar., Consid., NLVI, s.
 § I can say nothing of the (\hat{r}, ergine, Risso: the number of its feet would seem to place it in the last section of the Amphipoda; while the manner, in which they terminate, and the number of the segments of the body, appear to throw it among the Isopoda.

[^205]: * We should also refer to the Leptomeræ, the S'quilla ventricosa, Müll., Zool. Dan., LVI, 1-3; Herbst., XXXVI, ii:-the Cancer linearis, L., is perhaps a congener. He describes it as having six feet, but does not include the head.

 VOL, 1 II.

[^206]: * A subgenus founded on a speeies from the coast of France, whieh appears to me undeseribed.
 + The Squillu lobata, Müll., Zool. Dan., LTI, 4, 6 ; his Gammarus quadritobatus, Ib., CXIY, 12 ; the Oniscus sonlopmelroildes, Pall, Spic. Zool. Fascie., IX, iv, 15, are Caprelle, but their specifie differences are not well characterized. The had referred the Cancer linearis, L., to the first, which, now appears doubtful. His Cancer filiformis is probahly a Caprella ; the Cencer phasma, Montag., Trans. Lin. Soc., Y゚II, vi, 2, is a congener. II s figure is copied Encye. Méthod., Atl. d'Hist. Nat. CCCXXYYT, 37. For details ennenuing this order and genus, sce the Nour. Dict. d'Hist. Nat., Ed. II, and the work of Desmarest on the Crustacea.
 \pm The lolygonata, Fab., with the exception of the genus Monoculus.
 Messrs. Audouin and Edwards-Ann. des Sc. Nat., Abont 1827, p. 379, 381heve published some interesting observations on the circulation of the Isopoda, and

[^207]: on that of the Ligiæ in particular. The heart resembles a long vessel extended above the dorsal surface of the intestine. From its anterior extremity arise three arteries, similar to those of the Deeapoda. Lateral branehes are also to be observed running from the heart towards the feet. On a level with the two first segments of the abdomen (the tail), that organ reeeives, from the right and left, small eanals (branchio-eardiac vessels) whieh seem to proeeed from the branehix. From their experiments on the Ligix, it would appear that the venous system is less complete than in the Deeapoda maeroura, and that the blood driven from the heart into various parts of the body, passes into lacunæ formed between the organs in the inferior part of the body whiel communicate freely with the afferent vessels of the branchix. The blood having traversed the respiratory apparatus, returns to the heart through the branchio-cardiae vessels. This disposition would form the transition from the cireulating system of the Deeapoda to that of eertain Branehiopoda. Aecording to Cuvier, the two anomalous cords which form the mediate portion of the nervous system of the Onisei-and, probably, of the other Isopoda and even of the Amphipoda-are not in complete juxtaposition, and may be distinguished throughout their whole course. There are nine ganglions withont counting the brain, but the two first and two last are so elosely approximated that we may reduce the number to seven. The second and six snbsequent ones furnish nerves to the seven pairs of feet; the four anterior, although, by the order of the parts, analogous to the four last foot-jaws of the Deeapoda, are true feet. The segments whieh inmediately follow, or those which form the tail, reeeive their nerves from the last ganglion; these segments may be considered as simple divisions of one seginent represented by this gang. lion; thus we find that the number of these posterior segments varies.

[^208]: * See the work of Desmarest, who has completely described this subgenus.
 + See our general observations on the Malacostraca with sessile eyes.

[^209]: * For other details consult Desmar., Consid., p. 292-294.
 + Cymothou astrum, Tab.; Desinar, Consid., XLTI, 6, 7 ;-C. imbricata, Fab. For the other specics, sec Desmar., loc. cit.
 \ddagger Sce Desmar., op. cit. p. 307, genera Nerocila and Lironeca, and various species of Cymothox of Risso, p, 310, 311.
 § Desmar., Consid., p. 306.
 || Desmar., Consid., Anilocre du Cap, XLVIII, 1.
 If Sesmar., Consid., p. 305.

[^210]: * Desmar., Consid., p. 304, AEgr enlailiéc, XLT゙II, 4, 5.
 \dagger Desmar., Consid., p. 304 .
 \pm Desmilu., Consid., p. 304.
 § Sce Encsc. Method., article Synodus.
 If Desmar., Consid., p. 303.
 - Desmar., Consid., p. 302 ; Nélocire de Suainson, XLVIII, 2.
 ** Desmar., Consid., p. 302.

[^211]: :* The Oniscus preyustator, figured in Parkinson, is allied to this speeies, or at least, appears to belong to the same section.

 + It folds over the posterior edge of the last segment, and in several, such as the Zuzaræ, and Niesæ, Leach, like an arch.

[^212]: * Desmar., Consid., p. 298.
 \dagger Desmar., Consid., p. 299-302. Sphérome denléc, XLVII, 3-Oniscus serratus, Fab.
 \ddagger Desmar., Consid., Nesée lidenté, XLVII, 2;-Cumpectric telue, Iu., It., 1.
 § Desinar., Consid., Cilicée de Latreille, XLJIII, 3.
 II Desmar., Consid., XLYIII, 4,
 * Desmar., Consid., p. 297.
 ** Desmar., Consid., Anthere gréte, XLVI, 1 ; ; Oniscus gracilis, Montag., Trans. Lin. Soc. IX, v, 6;-Gammarusheleroclitus, Vivian., Phosph. Mar., II, 11, 12.

[^213]: * Oniscus cntomon, L. ; Squilla entomon Deg., Inscet, VII, xxxii, 1, 2 ;-Idotu. tricuspidata, Latr.; Desm., Consid., XLVI, ii. For the other specics, sec Idotea, Nouv. Dict. d'Hist. Nat., Ed. II, and Desmar. op. cit.
 + Stenosoma lincare, Leach; Desmar. op. cit. Ib. xlvi, 12 ;-Stenosoma hecticum, Ib. ;-Idolea rividissima, Risso, Crust., III, §. For the other specics, sce Desmar. op. cit.

[^214]: * A name employed by Risso for a genus of the same class; I have consequently
 been obliged to replace it with another.

[^215]: * Tylos armadillo, Lat., fig, in the pl. d'Hist. Nat. of the great work on Egyptfrom the Mediterranean.
 † Oniscns syluestris, Fal.; Oniseus muscorum, Cuv., Journ. d’Hist. Nat. It, xxvi, 6, 8 ; C'oqueb., Ill, Icon. Inscct., Dec. I, vi, 12.
 a $\beta_{3}(a)$ Thesc "Pigs of St. Anthony" are American Wond-Lice-Boiled in milk they still constitute a favourite remedy with mumerous patients, and some few equally, intelligent practitioners, who attribute to them diuretic, absorbent, and aperient qualities. That they may act as an emetic, I can readily admit.-Eng. Ed.

[^216]: * Oniscu, murarius. Fab. ; Cuv., Journ. d'Hist. Nat., II, xxvi, 11, 13 ; Le Cloporte ordinaive, Gcoff.. Insect. II, xxii, 1; Cloporte aselle, Dce., Lnsect. ViI, xxxv. 3 ; Desmar. Consid., XLIX, 5.
 + Oniscus asellus, Cur., Ib.; Panz., Faun. Ins. Germ.,IX, xxi ; Cloportc ordinaire, var. C, Gcoff. ;-Porcelliolncis, Latr. ; Cloporte ordinaire, var. 13, Geoff.
 \ddagger Oniscus armadillo, L. ; Cus., Ib., 14, 15; Oniscus cinercus, Panz., Ib., Fascic. LẊII, xxii;-Oniscus variécutus, Vill., Entom., IV, xi, 16; Armadille pustulé, Desmar., Consid., LXIX, 6 ;-Armadille rles boufiques, Dumer., Dict., des Sc. Nat., III, p. 117, a species from Italy formerly cmployed by the apothecaries.

[^217]: * See Cypris.

[^218]: * The young of Daphnia, and of some ncighbouring subgencra, and probably also those of Cypris and Cytherea, with the exception of size, scarecly differ, if at all, from their parents on quitting the ess ; but those of Cyclops, the Phyllopa, and the Arguli, experience considerable changes while joung, either as respects the form of the body or the number of fect. These organs in some, the Arguli for instance, experienee changes which modify their uses.
 \uparrow If we cxcepted the Phyllopa, the last fect are thoracic, or foot.jaws (Cypris).

[^219]: * We will begin, however, with those Branchiopoda whose mandibles are furnished, with palpi ; they constitute the two first divisions of the Lophyropa.
 + And that of Binocle in the system of Geoffroy.
 \ddagger M. Straus appears to attribute this character exelusively to Cypris and Cytherea, whieh compose his order of the Ostrapoda; but from the obscrvations of Jurine, Sen., and Raudohr, it scems that it also belongs to Cyclops.

[^220]: * According to Straus, the first pair of fect; bnt although these parts by serving as oars perform their functions. I nevertheless consider them as analogons to the lateral antenne of the superior Crustacea and to the two supcrior oncs of a Cyclops, which here also concur with the feet in producing locomotion.
 + Müller gives eight to the Cytherex; reasoning from analogy, we may presume that he was mistaken.
 \pm This character applics especially to Daphnia, the most numerous subgenus of this division, and by analogy, to Polyphemus and Lynceus.

[^221]: * See the Hist. Nat. des Crust. et des Inscct., of Latreille, and the work of Desmarest on the Crustacea. This genus has not yet been completely described, and we have not been able to 1 Hocuic a single specimen of it.
 + Nebalia Herbstii, Leach, Zool. Miscell., XLV ; Desmar., Consid., XL, 5 ; Rand., Monoc. 1, 8 ?

 The Nébalic ventruc. Risso, Journ. de Plys., Octob. 1822, probably forms a peculiar subgenus in the section of the Schizopoda. In the Cyclops exiliens, Viviani, the thorax is divided into several segments, a circumstance which cxcludes it from the Nebalix. It also forms a new subgenus intermediate between the preceding and following onc.
 N.B. A nerv species of this genus, the N. Gcoff. Saint-Hil., Ib., XV, 1, has been very minntcly described by Milne Edwards. The head is terminated anteriorly by a rostrum articulated at base, or movcable and pointed ; the eyes are pedunculated; the superior antennex are inserted under them, and the second joint of the peduncle is furnished with a lamina; the mouth is surrounded with three pairs of appendages, which appear to correspond in their progressive order to the palpigerous mandibles and four jaws of the Crustacea. Dccapoda; bencath are placed five pairs of foliaceous and ciliatcd lamine which appear to be branchial, and furthce down are four pairs of bifid and natatory feet; the abdomen is composed of seven annnli, the first of which support two small rudimental filaments; the last is terminated by two clongated stylets furnished with long hairs. As it is extremely probable that there is, as usual, another pair of feet, the two inferior and branchial appendages above mentioned may very well represent that pair. In the other appendages we should find foot-jaws and the parts of the ligula: in that case the Nebalix must be referred to the last section of the Decapoda Macroura.

[^222]: * Near the Condyluræ should be placed the genus Cuma, M. Edwards, Ann. des Sc. Nat. XIII, xiii, B. The superior antennæ are rudimental, and consist of but one joint. The head is distinct from the thorax, which is divided into four segments, to the first of whieh are attached the four anterior fect, eaeh of the following having a pair ; all these fect are natatory, direeted forwards, and bave no hook at the end; the two first pairs alone are bifid.

 The genus Pontia, Id., Ib., XIV. appears to us to approach Cyelops. The head is distinet from the trunk, and terminated by a rostrum which is rather acute and appears to be formed of two pieces; it has two sessile cyes; four antennæ, the superior of whieh are setaecous, multi-artieulated and ciliated; the inferior are pediform, composed of a peduncle, serving as a base to two divisions or branches, each terminated by a pencil of hairs, one of them having two joints, the last widened at the end, and the other eonsisting of one. The thorax is divided into five annuli, and has six pairs of natatory and bifid feet. The abdomen is formed of two segments and terminated by two spatula-like appendages or fins.

 + Aecording to the successive order of the parts of the mouth in the Decapoda, the part situated immediately beneath the mandibles is the ligula; but the dentation of those here spoken of indicates maxillary organs. The ligula may have cscaped the notice of M. Jurine.

[^223]: * Desmar., Consid., p. 36\%. Fer the other species, see the same work, p. 361 -36t, T.lV ; Mïll., Entom., Ciclops; Jurine, Hist. des Monoc., J. 1-34, prem, fam, les Nonoc. à coquille univalve; Rand., Monoce, I, II, III.

[^224]: * It is probable there are but six. Sce Cypris, note \ddagger.
 + If thes eEntomostraea inhabit salt-water exclusively, it is easy to see that Jurine and other observers whose geographieal position limited their researches to the fresh-water genera, could not have spoken of the former. See Müll., Entom., Cythere, and Desmar., Consid., p. 387, 388, LV, 8.
 \ddagger Four aceording to Randohr, and eight aceording to Jurine; the first considering the two last as appendages of the males, and the seeond looking upon the palpi of the mandibles and the branchial laminæ of each upper jaw- the two first feet of his second division of the body, those which he says are composed of but one joint and terminated in a dentated spoon-as so many fect. The latter does not include in this number those whieh the former considers as sexual organs; he states themp. 161,166 -to be five jointed threads issuing laterally from the poueh of the matrix, of the use of which he is ignorant.
 § Interior lip, Randohr.
 II Forked in the Cypris sliigata, Id.
 \# Exterior lip, Id.

[^225]: * In the figure given by Randohr these feet consist of but thre joints, and the last is somewhat dilated and cmarginated at the end, with a hook in the middle of the emargination.
 \ddagger Sec the alimentary canal of the Daphnia mulex, figured by oturinc, $X, 7$, and Randohr, Monoc. Tab. V, ii, il, d, and x.

[^226]: * Sec Müll., Entom. genus Cypris; Hist. des Monoc., sccond divis., Mon. i corquilles bivalves, p. 159-179, XVII-XIX; Rand., Mon., IV; Straus, Mém. du Mus. d'Hist. Nat., VII, 1 ; Desmar., Consid., 1. 330-336, LV, 1-7. Des-marcst-Crust. Foss., XI, 8-has figured a fossil species which he calls Cymris fève, found in great abundance near the Gergovian mountain in the Puy-de-Dome, and between Vieliy-Les-Bains and Cussac.
 + Daphenia sctifera, Müll., Entom.
 \ddagger Daphia cristallina, Ejust. Ibid.
 § Ranluhr has given it is the Fig. II, tii, tab. V, of these autemix.

[^227]: * See the following article, Daplmior, 1, 250.

[^228]: * Such also is the opinion of Randohr, Monoc. pl. V, fig. II, iii, 6 ; and as he discovered it in the Daphnia sima, it is possible that, although but slightly visible in scveral species, this character may be common to this subgenus, and that of Lynceus. Selæeffer had previously noticed it.
 + The exterior jaws, in the language of Randohr ; Jurine not having separated these parts from the preceding ones, supposed that the latter were accompanied by a kind of valve and by a palpus. Hist. des Monoc. IX, f. 13-17.
 \ddagger According to Straus, Cypris and Cythere are not true Branchopoda, inasmach as their feet are not provided with branchie; but, as we have already observed, the seta and hairs of the two anterior ones and those of the antenne may cxercise the functions of branchix as well as those of the palpi and first jatws.

[^229]: * We omit various Idelails of the organization, becanse some can only be comprehented by means of drawings, and others appar common to most of the Branchiopota.

[^230]: * See Jurine, Hist. des Mon. p. 10 (i, et ser.

[^231]: * For the other species, sce Mcm. cit. of Straus; Mïll., Entom., and Jurine, Hist. des Mon. fam. II, p. 185-SS, and p. 181, 200. For the D. sima and D. longispina, see Rand., Monoc., V-VIl.
 \dagger Sce Mull., Entom., G. lynceus; Jurine, Monoc. p. 151, 158 ; and Desmar., Cousid., 375-378.
 \pm These animals represent among the Crustacea, the Myriapoda of the class of Insects.

[^232]: * In my work on the natural families of the animal kingdom, this subgentis, with that of Apus, couposes my family of the Aspidiphora; it apreximates to this one in the number of feet, and to the Daplnite in the shell.

[^233]: * Mém. sur le Chirocéphale printed at the end of the Hist, des Monoc. of the late Lewis Jurine, and previously published in the Journal de Physique.

[^234]: * Sce Mém. sur Ies Anim, sans Vcrtib., Savign. part. 1.

[^235]: * Cancer paludosus, Müll. Zool. Dan. XLVIII, 1-8; Herbst., XXXV, 3-5 ; Chirocephalus diaphanus? Prev., Journ. de Phys.; Jurin., Monoc., XX-XXII. See Desmar., Consid. LVI, 2-5. This last species is described in the Manucl du Naturaliste of Duchesne, undcr the name of Marteau d'eau douce.
 † Branchiopoda stagnalis, Lat., Hist. des Crust. et des Ins., IV, p. 297 ; Cuncer stagnalis, L.; Gammarus stagnalis, Fab.; Apus pisciformis, Sehæff.; Gammarus stagnalis, Herbst., XXX, 3-10.

[^236]: * Possibly analogous to the vesicles forming the second joint of the feet of the Daphnix.

[^237]: * Mém. sur les Anim. sans Verteb., Savig., part I, fasc. I.

[^238]: * They also seem to represent the two first foot-jaws.
 + Scheffer distinguishes them by the name of uterine feet. The preceding nine pairs, according to his phrascology, form forceps, those of the first oars, or true feet; finally, those whiel follow the uterine leet, or the twelfth pair and following ones, branchial feet. The vesicular sacs lengthen and lessen just as gradually ; their use is unknown.

[^239]: DS (a) The Molucilla alba, and cinerea, L.-Eng. Ed.

[^240]: * Fourtcen in several, according to Leach; those which he considers as the two first, however, appear to me to be two inferior antennæ. The Arguli, which scem to be the most favoured subgenus with respect to locomotiou, have but twelve fect.
 + In my Fum. Nat. du Rèrne Anim. they form two orders.

[^241]: * One on each side of the tooth that terminates this carina.

[^242]: * The two anterior feet may represent the mandibles of the Decapoda, the four following ones their jaws, and the last six their foot-jaws; those of the sccond shield would correspond to the thoracic feet.

[^243]: * Knorr, Monum, of the Deluge, I, pl. XIV; Desmar., Crust. fossil., XI, 6, 7. It would secm from these figures that the lateral spines of the second picce of the shell, in lieu of spines, merely form smaller tecth articulated at base ; but these articulations have perhaps disappeared.
 + This Limulus is perhaps the Kabulogani or Unkia of the Japancse, and represents the constellation of Cancer on their primitive Zodias.
 \ddagger See Nouv. Dict. d'Hist. Nat. Ed. II.; Desmar., Consirl., p. 344-358.

[^244]: * The composition of this rostrum or beak is not well known. It is evident, from the figure of the Argulus foliacous, given by Jurinc, Jun., that it contains a sucker; but is this the case with the others, and of how many pieces is it composed? I connot answer the question. I presume, however, that this siphon consists of the labrum, mandibles and the ligula which forms the sheath of the sucker. In the preceding Entomostraca, the four antcrior fect, whose form is very different from that of the following ones, would correspond to the four jaws of the Dccapoda.

[^245]: * The interval also frequently cxhibits other, but smaller or much less salient appendages.
 † In the Ann. Génér. des Sc. Phys., vol. III, p. 343, Brussels, is an cxtract from the observations of Dr. Surriray on the foetus of a species of Caligus which he believes to be the elongatus, and which is very common on the operculum of the Esox belone. That gentleman informs us, that, by pressing the two caudal threads of the animal in question, a number of transparent and membranous ora were extruded, each of which contained a living foctus, very different from the mother, and of which he gives a description. From these observations we might be induced

[^246]: to conclude that these threads are a kind of external oviducts ; but is there no mistake in this? I have studied these same organs in various specimens-preserved in spirits, it is truc-but could never discover auy body whatever.

 * Caligus piscinus, Lat. ; Cal. curtus, Müll. Entom. XXI, 1, 2 ; Monoculus piscinus, L.; Cal. Mulleri, Leach ; Desinar., Consid., L, 4; found on the Corl. The Oniscus lutosus, Slabber, Encyclop. Méthod., Atl. d'Hist. Nat. CCCXXX, 7, 8, from the fin-like appendages of its tail, seems to indicate a separate subgenus. The Binocle à queue en plumet, Geoff., might be placed in it.
 + A single living species found on the Shark. Sce the genus Nogaus, Desmar., Consid., p. 340.
 \ddagger Pandarus bicolor, Leach; Desmar., L. 5 ; Pandarus Boscii, Leach, Encyc. Brit. Suppl. I, xx. For the other species, see Desmar., Ib., p. 339.
 § Caligus productus, Müll., Entom. XXXI, 3, 4; Mbnoculus salmoneus, Fab.

[^247]: * Anthosoma Smithii, Leach; Desmar., Consid., L, 3 ; Caligus imbricaius, Risso.
 \dagger There are probably two more, as in the preeeding subgenera, but they are either indistinet or have such a peculiar form that they have not been recogenised.

[^248]: * In this ease, the genus may be approximated to the preceding one.
 + M. Eudes Deslongehamps, professor of the University of Caen, Count Rasoumowski, M. Dalman and other savans have since published new obserrations on thesc fossils. M. Victor Audouin, zcalously advocating the opinion of Brongniart, has contcsted that published by me, in which I approximate them to Chiton. The great difficulty was to prove the existence of feet, and this he has not done. The application of his theory of the thorax of Insects to the Trilobites, appears to ne so much the more doubtful, as, according to my view of the matter, the first amnuli of the abdomen of Insects alone represent the thorax of the Crustacea Decapoda.
 \pm M. Parkinson (Outlines of Oryctology) thinks he has perceived them, and suspects that they are unguiculated. Sce also the Entomostracite gremuleux, Brongn., Trilob., III, fi, Ann. des Sc. Nat. tome XV.

[^249]: * First edition of the Kègne Animal, tome III, p. 150, 151. Therc is no Branchiopoda known which can contract itself into the form of a ball. This character is peculiar to Typhis, Sphæroma, Tylos, and Armadillo among the Crustacea, and, among the class of apterous Insects, to Glomeris, a genus which is at the head of that class, and which leaves between it and the lattcr Crustacea a considcrable hiatus. The Calymenes, with respect to this contractility, evidently approach these latter Insects, the Typhes and Spharomæ; but it docs not appear that the posterior extremity of their body is provided with lateral natatory appendages, a negative character, which would remove them from the Sphæromæ, but approximate them to Armadillo, and particularly to Tylos, where the superior part of the thoracic segments is divided into threc. The study of a well-preserved specimen has convinced me that, like the Limuli, they had eyes placed against two prominences, and that the cornea was granulous or with facets. The non-existence of the superior antennæ also indicates a new affinity between these same Trilobites and the Limuli.
 \dagger The body of various Trilobites, and particularly of the Asaphi, seems to consist, exclusive of the shield, of twelve segments, well separated on the sides, and of another forming the post-abdomen, or a triangular or semi-lunar tail, whose divisions are superficial and do not cut its edges. In the Paradoxides, on the contrary, the lateral lobes terminate by well marked acute prolongations, and twenty-two of them can be distinctly counted. A species of Trilobite, mentioned by Count Rasoumowski in his memoir on fossils, Ann. des Sc. Nat. June, 1826, pl. xxviii, ii, which he presumes should constitute a new genus, is, in this respect, vcry remarkable. Its lateral lobes form very long thongs or slips tapering to a point. The feet of the pupx of the Culices are elongated, flattened, inarticulated laminæ terminated by threads and folded on the sides. They are in a rudimental state, and may be analogous to the lateral divisions of this species of Trilobite, allied to the Paradoxides.
 \ddagger The Squillæ, and various Amphipodous and Isopodous Crustacea have also several of their segments trisected by two impressed and longitudinal lines; but these lines are nearer to the edges and do not form depn sulci.

[^250]: * In the Asaphus Brongniarti, described and figured by M. E. Deslongchamps, the posterior angles of the shield, instead of beivg directed backwards as in the other species, are recurved.

[^251]: * A vague and improper appellation, for which we might substitute pmeumostoma, -air-mouth,-or spiraculum.
 \dagger See general observations on Insects.
 \ddagger Chelicerce, or forceps-antennce; the evident result of the comparison between them and the intermediate antennæ of various Crustacea, those of the Pæcilopoda particularly. It cannot then be said, strictly speaking, that the Arachnides are deprived of antennæ, a negative character, which, previous to us, had been exchusively attributed to them.

[^252]: * They only differ from lcgs, properly so called, by their tarsi, which are composed of a single joint, and are usually terminated by a sinall hook, resembling, in a word, the ordinary feet of the Crustacca. See our general observations on the first order.

 These jaws and palpi appear to correspond to the palpigcrous mandibles of the Decapoda, and to the two anterior feet of the Limuli. In Phalangium, the four following legs have a maxillary appendage at their origin, so that these four appendages are analogous to the four jaws of the preceding animals. I had described these parts, long before the publication of Savigny's memoirs on the invertcbrate animals, in a monograph of the specics of this genus proper to France. From these and precceding observations, it is evident that the composition of these animals is easily reduced to the same gencral type which characterizes all articulated animals with articulated feet. The Arachnides are not then a sort of acephalous Crustacea, as stated by this savant, usually so exact in his anatomical obscrvations, of which, unfortunately for the sciences, he has become the victim.
 \dagger Although Saviguy admits of two orifices, neither Straus nor myself can find but one; it must have been the effect of an optical illusion arising from the fact of his having only perceived the lateral extremities of the fissure, its middle being eoncealcd by the tongue with which its antcrior face is thickened in its mediate portion.

[^253]: * We have scen, according to the observations of Jurine, Jun., that they only acquire this faculty after the sixth changc. This fact is also applicable to the Lepidoptcra, and probably to other insects that frequently cast their skin, for caterpillars usually change it four times before they enter into the state of a chrysalis, whieh is a fifth. The insect does not become perfcet until after another, so that it changes its skin six times.
 + Sacs containing air-branchire, or fulfilling the functions of lungs, and distingrished by me from the latter by the name of pneumo-branchice.
 \ddagger The Pyenogonides exhibit no stigmata, and seem, in this respect, to approach the last of the Crustacea, such as Dichelestium, Cecrops, and other Siphonostomens Entomostraca. Savigny thinks they have a closer affinity to the Lremodipodi, from which, however, they are greatly removed, by the organization of the mouth as well as by their eyes and fect. We still bclievc, however, from the cnsemble of their charactcrs, that they rather belong to the class of Arachmides, and that they aproximate particularly to Phalangium, with which varions authors have arranged them. We also think that they may respire by the surface of their skin. At all events, we must await the results of anatomical investigation before we can decide.
 § Unogata, Fel).
 if The Tessarops of Rafin, acomeling to him, has but four eyes; I presume, however, that the lateral ones escaped his notice. See the subgenus Eresus.

[^254]: * According to Marsel de Serres, Mémoire sur le Vaisseau Dorsale des Insectes, the blood, in the Araneides and Scorpions, is first directed to the organs of respiration, and thence proceeds to various parts of the body through particular vesscls. Judging, however, from the affinity of these animals to the Crustacea, the circulation would seem to be effected in the contrary direction. See the Mcmoir of Treviranus on the Anatomy of Spiders and Scorpions.
 + Thesc parts are formed of a first very large and rentricose joint, one of whose superior angles, when the chelæ are didactyle, forms the fixed finger, and of a second joint, that which forms the opposite and moveable finger or the hook, when there is but one finger. In the latter case, as with several of the Crustacea, I will employ the term claw.
 \pm See our general obscrvations on the class.
 §. That of the Scorpions appears to be composed of four pieces, forming an elongated and pointed triangle, directed forwards; the two lateral ones however are cvidently formed by the first joint of the two anterior feet, and may be considered as two jaws analogous to the first. We sec by Mygale, Scorpio, \&c., that the palpi arc divided into six joints, of which, in the other Araneides, the first or radical onc, is anteriorly and internally dilated to form the maxilliform lobe. Even this lobe, in some specics, is articulated at base, and thus becomes a maxillary appendage of this same joint. Exclusive of this joint, the pulpus consists of but five, and such is the inost usual mode of supputation. In the Scorpions the morcable finger of the forceps, as in that of the Crustacea, forms the sixth joint.
 II In iny Fam. Nat. du Regnc Animal, I begin with the Pcdipalpi. M. Leon Dufour also thinks that the Scorpions should come first.

[^255]: * From all the observations that have been made on the mode of copulation of the Araneides, I am still inelined to believe that these appendages are the genital organs. I have vainly sought for particular organs on the base of the abdomen of a large male Mygale prescrved in spirits. We are not always to judge from analogy; for the sexual organs in the female Glomeris, Julus, and other Chilognatha, are situated near the mouth, a faet of which no second example is to be found.
 \dagger The term cephalo-thorax would he more striet and proper; not being in use, however, I have thought it best to avoid it; neither will I employ that of corselet, although generally admitted, beeause, with respect to the Coleoptera, Orthoptera, \&c, it only applies to the prothorax or first thoracic segment.
 \pm These holes are pierced in the last segment, which is frequently retracted. If it be strongly compressed, very small nammillæ, (at least in some species,) perforated at the extremity, are protruded - they are the true fusi or spinning apparatus. Some naturalists think that the two smaller mammille, situated in the middle of the four exterior oncs, furnish no silk.
 § 'This joint, or the first of the tibia, is a kind of patella.

[^256]: * The liver of the Scorpions is composed of pyramidal and fasciculated lobules, a rircumstance which seems to anounce a more adranced degree of organization,

[^257]: * For their developement and that of the foctus, sce the admirable work of Hérold.
 + Sec Treviranus, on the same subject.

[^258]: * Those of some exotic species are so strong, that small birds are cntangled in them; they even oppose a certain degrec of resistance to man.

[^259]: * They must at all events be organs of excitation.

[^260]: * See Walck., Faun. Franc., note to genus Atta.

 We knew nothing of the observations of M. Savigny on the Spiders, which accompany the plates of Nat. Hist. of the great work on Egypt, until long after our article relative to the same animals was printed.

 That gentlcman-Hist. Nat. ut sup,-establishes the following genera in the family of the Araneides : 1. Arradne, near that of Segestria, having but six cyes, of which the two intermediate posterior ones are further forwards ;-2. Lachesis, near Drassus, but with the hooks of the Cheliceræ, (forcipules, Savign.,) very small; -3. Erigone, also allied to Drassus as well as to Clubiona; thorax very high beforc ; second joint of the palpi spinous, and dilated into an angle or tooth at the extremity ;-4. Hersilia, allied to Agelena and Theridion of Walckenaer; feet long and slender, the superior nails bidentate; eyes united on an eminence, arranged in two transverse lines, and curved backwards; two very long fusi forming a tail; 5. Arachne, which does not appear to us to differ from Angelena;-6. Argyopes, Epeiræ whose anterior, lateral eyes are much smaller than the others;-7. Enyo, fifth family of the Theridion, Walck.;-8. Ocyale, sccond family of the Dolomedes, Id.

[^261]: * Section of the Territele of our first edition.
 + I have perceived, in the Atypi, vestiges of two other mammillx, those whiel, in the Spiders of the ensuing division, are placed between the four exterior ones, and are, there, very visible; as they are here but scarcely apparent, I have not thought it requisite to notice them.

[^262]: * See my memoir on the habits of the Avicularia in the Ann. du Mus. d'Hist. Nat. VIII, p. 456.
 \dagger For details concerning these and the following spccies, as well as for the other genera of this family, see the corresponding articles in the Nouv. Dict. d'Hist. Nat., where we treat of them at length.
 \ddagger The genus Cteniza, Lat., Fam. Nat. du Regne Animal.

[^263]: * On this point I am contradieted by M. Dufour. I was compelled again to examine the fact, and have convinced mysclf that I was not mistaken. It is possible the specimens he examined did not present this character.
 + See his excellent momoir entitled "Obscrvations sur quelques Araclinidés Quadripuhnonaires."

[^264]: * In the first memoir of M. Dalman upon the Inseets found in amber, that celebrated naturalist mentions ($\mathrm{p}, 25$) a spider which, it appenred to him, should be made the type of a new genus (Chalinura). The eyes are placed on a very high anterior tubcrele, four of them, of which the two anterior are very large and approximated, oceupying the centre. The external fusi are mueh clongated. From these characters it would seem that this spider approaches Mygale or some other analo. gous genus.

[^265]: * Dysderce erylhrina, Lat.; Walck., Tab. des Aran., V, 49, 50 ; Dufour, Ann. des Sc. Phys. V. Ixxiii, 7 ; Aranea rufipes, Fab. ; Dysdera parvula, Dufour, Tb.
 + Filistata bicolor, Lat.; Walck., Faun. Franç, Arach., VI, 1-3, A moderate size species is founded at Guadaloupe, the nale of which has long and slender legs, curved palpi, with the genital organs situated at the extremity of the last joint, and terminated by a slender and arcuated, or falciform hook.

[^266]: * I have scen, in a well preserved specimen, six fusi, of which the two superior were much the longest and terminated by an clongated joint, forming an clliptical lamina, and the other four small, the inferior ones particularly, and arranged in a square. The anus, placed under a little membranous projection resembling a clypeus, was furnished on cach side with a pencil of retractile hairs. Thesc pencils are the parts namod by Duforr pectiniform valres, and are distinct from the two intermediate fusi, which are concealed by the two inferior oncs.

[^267]: * For the other species sec Faun. Paris., Walck., and Tabl. des Aran., Id.
 + Add the Seg. senoculalu, Walck., Hist. des Aran., V, vii ; Aranea senoculata, L. ; Deg.

[^268]: * Aranca holosericea, L.; Degecr, Fab.; Walck., Hist. des Aran. IV, iii, fem.; - Aranea atrosc. Deg., Fab.: List., Aran., XXI, 21 ; Mlbin, Aran., X, 48, and XVII, 82. Sce also Tab. des Aran., and the Faun. Paris., Walekenaer.
 † Aranea domestica, L., Deg., Fab.; Clerek., Aran. Suee., pl. ii, tab. ix;Tegeneria civilis, Walek., Hist. des Aran., V, v;-Aranea labyrinthica, L., Fab.; Clerek, 几ran., Suce. pl, ii, tab. viii. See the Tab, des Aran., Walck.

[^269]: * Scytodes thoracica, Lat., Gen. Crust. et Inscet. I, v, 4; Walck. Hist. des Aran., I, x, and II, Suppl.
 + See the Tab, and Hist. des Aran., Walcken., the Ann. des Sc. Nat., and Ann. des Se. Phys. The Arance bipunctata, rcilimita, L., and the A. albo-maculata, Deg., \&c., should be referred to this genus.
 \ddagger This speeies is the type of the genus Latrodecta, Walek., which he distinguishes from that of Theridion by the difference in the respective length of the feet; in this, however, he appears to me to have crred.

 His Theridion benigmum, Hist. des Aran. fasc. V, viii, whose habits he has carcfully studicd, establishes its domiril between the clusters of grapes, and defends them from the attacks of various Insects.
 \& § Episinus trenculus, Lat. Gener. Crust. et Inscct. t. IV, p. 371. Italy, and environs of Paris.

[^270]: * Linyphia triangularis, Walek., Hist. des Aran., V, ix, female; Aranca resupina sylvesiris, De Gecr; Aranca montana, L. ; Clerck., Aran. Suce., Dl. III, Tab. 1; Aranea resupina domesiica, De Geer.

[^271]: * Lat., Gen. Crust. et Insect., I, 109 ; sec also sceond cdition of the Nouv. Dict. d'Hist. Nat., article Klobore.
 + Tetragnatha extense, Walck., Hist. des Aran., V, vi ; Aranea extensa, L., Fab., De Geer;-Aranea virescens? Fab.;-Aranea maxillosa, Id. Sce Tab. des Aran. of

[^272]: * The Ar. militaris, spinosa, cancriformis, hexacuntha, tctracantha, geminata, fomicata, of Fabricius. M. Vauthicr, one of our best painters of subjects of natural history, has described and figured, Ann. des Sc. Nat., I, 1. 161, a species of this division-curvicaudewhew is very remarkable for its posteriorly widened abdomen, terminated by two long areuated spines: it inhabits Java. These spinous species might form a peculiar subgenus.
 t. The $1 \cdot$. ilili"s, claripes, \&e., of Fabricius. His $i r$. maculata forms the genus Nephise, Leath. Se the Tab. and Hist. des. Aran. of Walckenaer.

[^273]: * M. Walckenaer places this genus in that series which is composed both of the Vagabundæ and the Sedentarix, such as the Alla or our Saltici, the Thomisi, Philodromi, Drassi, and Clubionce, and which have but two hooks to the tarsi.

[^274]: * For the other species, see the Tab. des Aran., Walck., and his Hist des Aran., fascie. IV, Sparassus roseus, \mathbf{X}, the malc ;-Ib., fascic. II, viii, the male. I think we should refer to this subgenus the Aranea renatoria, L., Sloane's Hist. of Jam., CCXXV, 1, 2; Nhamdiu, 2 ? Pison;-and another specics from India very analogous to the preceding, figured on Chinese drawings and paper-hangings.

[^275]: * In the first edition of this work, this subgenus formed our first division of the Thomisi.

[^276]: * Thomisus Lamarck. Lat., a species allied to the Aranea nolilis, Fab.;-T. canceritus, Walck., ejusı. ; T, leucosia; Aranearegia? Fab. ; -T. plagusius; $-T$.
 pinnotheres.

[^277]: ＊Sce the Tab．des Aran．，Walck；the Faune Franc．，Id．，and the Ann．des Sc． Phys．，for the Spauish species described by M．Dufour，sec nlsn Nouv．Dict．d＇Hist． Nat．scond edition，article Thomise．
 \dagger See Tab．des Aran．，Wralck．，IX，85， 56.
 \ddagger Sphasus heterophthalmus，Walck．，Hist．des Aran．fasc．III，tab）．viii，female ； Oxyopes variegatus，Lat．：Sphasus ilnious，Walch．，Ib．，Fase．IV，tah．viii，female； VOL．III．

[^278]: Oxyopes linealns, Lat., Gener., Crust. et Insect., I, v, 5, femalc. See article Oxyope, in the entomological part of the Encyelop. Méthod., the Tab. des Aran., Walck., and the Faune Française.

 * Arancers miralitis, Clerck, Aran. Suec., pl. v, tab. 10; Aran. rufo-fasciata, De Geer; Ar. obscura, Fab. See the Faune Française-Dolomèdes syltains-and the Ann. des Sc. Phys.-Dolomète spinimane, Dufour, V. Lxxvi, 3.
 \dagger Dolomedes maiginatus, Walck. ; Araneus undatus, Clerck, V, tab. 1 ; De Geer. Inscct. VII, xvi, fie. 13, 15; Panz., Faun., LXXI, 22 ;-Dolomedes fimbriatus, Walck; De Geer, Insect. VII, xvi, 9-11; Araneus fimbriatus, Clerck, V, tab. ix. These species compose the division of the shore Dolomedes of Walckenaer.

[^279]: * For the other species sec the Tabl. and Hist. des Aran. of Walckenaer, and the Faune Française, Aran. Id. See also the second edition of the Nouv. Diet. d'Hist. Nat., article Lyrose.

[^280]: * Eresus cimaberinus, Walck.; Arunea quatuor-gullata, Ross., Faun. Etrusc., II, 1, 8, 9; Coqueb., Illust. Ieon. Insect., dec. IMI, xxvii, 12;-Arance niyra, Petag., Specim. Insect. Culab. M. Dufour, Ann. des Se. Phys., has deseribed two Spranish speeics; one of them; the Eresus uctanthophilus-VI, xev, 3, 4-is my Erese rayé of the Nouv. Dict. d'Hist. Nat.; the other, Eresus imperiulis-V, lxix, 2-is closely allied to the Aranea nigra, Petagna, above quoted. These two species are figured in the Fanne Française, Aran., 11. IV, 3, 4, 5. See also on same plate, fig. 7 , the Eiès cindure.
 \dagger This division comprises the following Atti of W'alckenaer: bicolor, chuly, letes, niger, cuncous, mustorm, the franengossipes, De Geer.

[^281]: * Ach, Athus tardigradus, Walck., Hist. des Aran. V, iv, female. Sce his Tabl. des Aran.
 * For the remaining species of this subgenus, see the Aran. of the Faune Francaise. M. Walckenacr, author of that portion of the work, in his Tabl. des Arane, nentions a species enclosed in amber.

[^282]: * Phalangium reniforme, L.; Pall. Spic. Zool. fascic. IX, iii, 5, 6; Herbst. Monog. Phal., III; East Indies, the Scehclles; Herbst., Ib., IV, 1, South America; Tarantula reniformis, Fab.; Pall. Spic. Zool., IX, iii, 3, \&; Herbst. Ib. V, 1 ; ejusd. IV, 2, var.? the Antilles.
 † Phalungium caudatum, L. ; Pall. Spic. Zool. fascic. IX, iii, 1, 2, from Jara. South America produces another spccies described and figured in the Jour. de Phys. et d'Hist. Nat., 1777 ; the inhabitants of Martinque call it the Vincigrier, A third species, smaller than the preceding ones, and with fulvous fect, inhabits the peninsula beyond the Ganges.

[^283]: * Sce our preceding remarks on the circulation of the Arachnides Pulmonarice.
 + For the anatomy of the scorpion, sec Treviranus, Marcel de Serres, and Leon Dufour, Journ. de Phys., June 1817.

[^284]: * The tracheæ are vessels which receive the aerial fluid and distribute it to every part of the interior of the body, and thus remedy the want of circulation. They are of two kinds. Those that are tubular or elastic are formed of three membranes, the intermediate of which is composed of a cartilaginous elastic filament spirally contortcd ; the two others are cellular. The vesicular tracher consist of but two membranes of the latter description. They arc a kind of pneumatie pouches susceptible of being inflated and depressed. Aquatic Insects, and others that are acrial, are deprived of them. They communicate with each other by tubular tracher. In several of the Orthoptera, where they are well developed, cartilaginous arches, formed by appendages of the inferior semi-annuli of the abdomen, give points of attachment to the muscles which form them. The branchix are divided into two principal trunks which extend longitudinally throughout the body, one on each side, rcceiving air through lateral openings or stigmata, and then throwing off numcrous branches and twigs which distribute it. In several Insects, however, there are two other trunks more or less long, situated between the two preecding ones, and communicating with them. M. Marcel de Serres distinguishes them by the term pulmonary trachea: the others he calls arterial trachere. He also distinguishes two sorts of stigmata: one kind, or the ordinary stigmata, simple, and consisting of two membranous lips, furnished with transversc striæ or fibres, and opening merely by contraction; the others, which he calls tremaeres, are formed of one or two (usually two) horny, moveable pieces, opening and elosing like shutters. Dc Geer-Descript., Gryllus migratorius-compares them to eye-lids. They are peculiar to certain Orthoptera, and their position shows them to be the stigmata of the mesothorax. M. Leon Dufour-Ann. des Sc. Nat., May 1826 -has given cxccllent figures of these various kinds of stigmata, but without employing the names of the preceding authors. It would appear from his description of the abdominal stigmata, that they have the characters of the trémaderes, while those which he afterwards describes as different, are the ordinary stigmata. Our own opinion is that these differences are mere simple modifications of the lips. Reaumur, Mem., I, iv, 16, has figured a stigma of this latter kind, where the lips have an internal border, which, from all appearances, must be corneous. By supposing them to be almost entirely of this nature, we have the trémacre of M. de Serres. Certain aquatic larva have a peculiar respiratory apparatus, of which we shall speak hereafter.
 + The presence of trachere excludes a complete circulation, that is to say, the distribution of the blood to the different parts of the body, and its return from the organs of respiration to the heart. Thus, although some vessels have recently been diseovered in certain Insects-Phasmr-and, althongh they may possibly exist in varions Arachnides Trachearix, it does not exclude them from the general system. M. M. de Serres has observed that the intestinal tube of the Phalanginm gives off numerous cacea or vermiform appendages, whieh seem to have some analogy with the hepatic vessels, and that the trachea ramify over them ad infinitum.
 \ddagger Aecording to Müller the Iigdrachna umbrafa has six eyes: but may this not have ariscu from an optical illusion or some mistake?

[^285]: * I do not think it is peculiar to either sex.

[^286]: * Solpugu fatalis, Fab.: Herbst., Monog., Solp. I, i, Bengal;-S. ehelicornis, Fab., Herbst. Ib. II, 1;-Phalangium araneoides, Pall., Spieil. Zool., fascic. 1X, iij, 7, 8, 9. See also the Monog. of this genns by Herbst., and the Voy. of Pallas and Olivier.
 \uparrow Herm., Mem. Apter., V, $6 ;$ VI, 14.
 \ddagger See Leach, Monog, of the Scorpions, Zool. Miscell. III, tal). L11, 142; and a' menoir on the Insects found in copal by M. Dalman, where he describes and figures a species under the name of eucarmes, and mentions several others.
 $\sqrt{3}$ (a) Our author does not seem aware of the fact that two species of this gemus havebcen diseoverediby Mr. Say near the Rocky Mountains :they are, I.Gal. pallipes Say. Hairy; chelicera horizontal; fingers arcuated ; abdomen sub-depressed, livid. 2. Fal subulata, Id. Hairy; cheliceræ horizonal; thumb nearly rectilinear abd destitute of teeth; resembles the pallipes in form, size and colour, but the superior finger of the chelicere is untrmed and rectilinear, and the inferine arcuated with about two stout teeth. Long's Expedition. JI, p. 3.-Eng. En.

[^287]: * On the siphon of a large spccies of Phoxichilus brought from the Cape of Good Hope by the late M. Delalande, I observed longitudinal sutures, so that it appears to me to be composed of the labrum, ligula, and two jaws, all soldered together. In this case the palpi belong to the jaws.
 + According to Savigny they form the transition from the Arachnifes to the Crustacea. We place them here, but with some hesitation.
 \pm M. Milne Edwards, who has investigated the anatomy of thesc animals on the living subject, has told me that in the interior of these organs he observed lateral expansions of the intestinal canal, or cæca. I havc, in fact, observed traces of them under the form of blackish vessels, in various Nymphones. This induces me to believe that these animals respire by the skin, a character by which we might form them into a particular order, and one perhaps intcrmediate between the Arachnides and Apterous Insects of the order of the Parasita.

[^288]: * Müll. Zool. Dan., CXIX, 10-12, the femalc. Found on our coast by MM. Surirey and D'Orbigny.
 \uparrow Refer to this genus the Pycnogonum spinipes of Othon Fabricins, his variety of the P. grossipes, without antenne; the Phalangium aruleatum; the spinosum, Montag., Lin. Trans.; the Nymphon femoratum of the Acts of the Soc. of Nat. Hist. of Copenhag., 1797 ; the Nynphon hirtum, Fab., which perhaps does not differ from the Phal. spinipes and spinosum above quoted.
 \pm Pycnogonum grossipes, Oth. Fal). ; Mïll., Zool. Dan., CXIX, 5-9, the female; to compare with the Nymph. gracile and femoratum, Leach, Zool. Miscell., XIX, 1, 2. His genus Ammothea--A. carolinensis, Ib.-differs from Nymphon in the chelieere, which are much shorter than the mo th, the first segment or radical joint being very small. The palpi consist of nine joints, while those of the Nymphones have but five. In this genus, as well as in Phoxichilus and Pyonogonum, the second joint of the tarsi is very short. The tuberele on which the eyes are placed is sometimes situated on an elevation, which projects above the base of the anterior segment, or the mouth.
 § Huletra, Hermann.
 $\|$ The Trombidium longipes, Hermann, Jun., Mem. Apter, pl. I, s, is represented with ten legs, the two first very long. He allows but eight in the text.

[^289]: * If we suppose that the two superior jaws, with their palpi, represent the mandibles of the Crustacea Decapoda, the other four will also represent the jaws of the same animals, and the two jaws and infcrior lip of the triturating (Broyeurs) Insects. From M. Marcel de Serres we learn that the ganglion which immediately follows the brain is opposite to the third pair of legs, whieh, according to these approximations, are analogous to the first pair in Inscets; now, there also we find the same ganglion in the latter. See Myriapoda.
 + The hips, thighs, tibix, and tarsi are the same as in the preceding families. But the legs of the Araehnides Trachearix ure composed of short joints, whose relative proportious differ very gradually, so that these distinetions of parts are less apparent.
 \pm See the Monograph of this genus, published by Latreille at the end of the Histoire des Fourmis, and those of Herbst., and Hermann, Jun., Mem. Apter.

[^290]: * Gonoleptes horridus, Lin. Trans., XII, xxii, 16; from Brazil.
 \dagger Siro mbens, Lat., Gener. Crust. et Insect., I, vi, 2 ;-Acarus crussipes, Herm., Mem. Apter., III, f, and IX, Q. N.
 \ddagger Trogulus nepaformis, Lat. Gener. Crust. and Insect., I, vi, 1; Phalangium tricarinatum, J.-South of France, Spain.

[^291]: * T. fuliginosum, Herm. Mem. Apt. I, 3;-T. bicolor, Ib. II, 2 ;-T. assimile, Ib., 3 ; T. curtipes, Ib., 4;-T. trigonum, Ib. 5 ;-T. trimaculatum, Ib., 6.
 + Erythrcus phalangioides, Lat. ; Trombidium phalangioides, Herm., Ib., I, 10 ; -Trombidium quisquilliarum, Ib., 9 ; -Tromb. parietinum, Ib., 12 ;-T. pusillum, Ib., II, 4 ;-T. murorum, Ib., 5.
 \ddagger Gamasus marginatus, Lat. ; Acarus marginatus, Herm., Mem. Apter., VI, 6, found on the corpus callosum of the human brain;-Trombidium longipes, Herm., Ib., 1, 8 ;-Acarus coleoptratorum, Fab. ; De Geer, Mem. Insect., VII, vi, 5 ;-Acarus hirundinis, Herm., Ib., I, 13 ;-Ac. vespertilionis, Ib. 14; Trombidium bipustulatum, Ib., II, 10 ;-Tromb. socium, Ib., II, 13 ;-Tromb. tiliarium, Ib., 12 ;-Tromb. telarium, Ib., 15 : these three species live in society on leaves, covering them with extremely fine and silky filaments;-Tromb. celer, Ib., 14 ;-Acarus gallince, De Geer, Insect, VII, vi, 13.

[^292]: * Acarus eruditus, Schrank., Enum. Insect. Aust., No. 1058, Tab. II, 1; ejusd., peciculus musculi, Ib., No. 1024, I, 5.
 + See Hermann, Mem. Apter., genus Notaspis; and Olivier, Encyc. Method., Insect., article Oribate.
 \ddagger Acarus vegetans, De Geer, Inscct., VII, vii, 15. The Acarus spinitarsus, Herm. Mem. Apter. VI, vi, 5, perhaps forms a genus intermediate between this and the preceding one.
 § Acarus domesticus, De Geer, Ib., V, 1-4;-Acarus siro, Fab. ;-Ac. scabici, Ib., 12, 13. Sce the dissert. of Dr. Galet;-Ac. farince, Ib., $15 ;$-Ac. avicularum, Ib ., VI, 9 ;-Ac. passerinus, Ib., 12, remarkable for the size of its third pair of legs ;Ac. dimidiatus, Herm., Mem. Apter. VT, 4 ;-Trombidium exprelpe, Ib., II, s.

[^293]: * Scirus longirostris, Herm., Mem. Apter. VI, 2 ;-S. latirostris, Ib., II, III;S. setirostris, Ib., III, 12 ; IX, T.
 + Acarus sambuci, Schrank, and perhaps the following Trombidia of Hermann; Tr. miniatum, 1, 7;-Tr. papillosum, II, 6;-Tr. squammatum, Ib., 7. The second is even elosely allied to the species whieh serves as a type to the genus.

[^294]: * Acarus cgyptius, L. ; Herm. Mem. Apter., IV, 9 ; L. IV, 13 ;-Acarus rhinocerotis, De Geer, Insect., VII, xxxviii, 5. 6 ;-Acarus americanus, L.;-Ac. nigua, De Geer, Ib., XXVII, 9, 13. See the genus Ixodes of Fabricius, and the work of Leach on the apterous Insects of Linnæus-Trans. Lin. Soc., XI.
 \dagger Hydrachna, Herm.

[^295]: * Atax extendens, Fab. ; Müll., IX, 4.
 + Atax geographicus, Fab. ; Müll., VIII, 3, 5 ; At globator, Fab. ; Müll., IX, I.
 \ddagger Acarus aquaticus, L. ;-Acarus aquaticus holosericeus, De Geer, Insect., VII ; ix, 15, 20 ;-Trombidium aquaticum, Herm., Mem. Apter. I, ii.
 § Cares vespertilionis, Lat., Gener. Crust. et Inseet. I, 161.
 II Trombidium insectorum, Herm., Mem. Apter. I, 16 ; Ge Geer, Inseet., VII, vii, 5 ;-Tromb. latirostre, Herm., Ib., 15 ;-Tromb. cornutum, Ib., II, ii ; Tromb.
 Geer, Ib., VII, 9 ;-Tromb. culicis, Herm. Ib.; De Geer, Ib., VII, 12 ;-Tromb. lapidum, Herm., Ib., VII, 7.

[^296]: * Acarus parasiticus, De Geer, VII, vii, 7 ;-Trombidiun parasiticum, Hermann.
 + Ocypete rubra, Leach, Lin. Trans., XI, 396. On the Tipula.

[^297]: * Anatomists are greatly divided with respect to the nature of this organ; some eonsider it as a true heart; others, among whom is the Baron Cuvier, deny it this quality, an opinion which appears to us to be fully confirmed by the admirable researches of M. Marcel de Serres-"Memoire Sur le Vaisscau Dorsal des Insectes" —published in the Mém. du Mus. d'Hist. Nat. According to the latter it secretes fat, which is subsequently elaborated in the adipose tissue which surrounds it. Lyonet says that it contains a gummy substance of an orange colour. Some very recent observations appear to establish the existence of certain very small vessels; lut in addition to the fact that this circulation must be very partial. Insects would still greatly differ, in this respect, from the Crustacea, inasmuch as the hlood does not return to the heart. M. Straus in his report-Bullet. Univers., de M. le Baron de Férussac-on a Memoir of M. Hérold on this subject, has intimated his own opinion on the matter as deluced from his anatomical investigations of the Mclolontha. "The dorsal vessel," says that gentleman, "is the true heart of Inscets, leing, as in the higher animals, the locomotive organ of the blood, which, instead of being contained in vessels, is diffused throughout the general cavity of the body. This heart occupics all the length of the back of the abdomen, and terminates anteriorly by a single non-ramificd artery which earries the blood into the head where it diffuses it, and whence it returns into the abdomen in consequence of its accumulation in the head, to again enter the lieart; to this all the circulation in Insects is reduced, they having mercly a single artery without branches and no veins. The alre of the beart are not muscular as is asserted by Hérold they are merely fibrous liganents which keep the dorsal vessel in its place. The heart, that is to say the abdominal part of the vessel (in the Melolontha rulyaris) is divided, internally, into cight chambers, separated from cach other ly two converging valvulæ, which allow the transmission of the blood from behind forwards, and from one chanber to another, into the artery which runs to the head, but which prevent it from retrograding. At the lateral and anterior part of each chamber, are

[^298]: tra, there is none in the second segment or mesothorax; but in the following one or the metathorax, there are two pairs, one anterior, which being situated near the articulation of this segment with the preceding, may be considered as belonging to the lattcr, and the other smaller, and placed close to that of the first abdominal segment.

[^299]: * See what we have stated respecting the ligula, in our general remarks on the three classes.
 + This latter naturalist, whom I shall have frequent occasion to mention, has published, with the most minute detail, every thing relative to the digestive system of Insects, in a series of admirable Memoirs, whieh have enriched the Amales des scionces Naturclles. Well arranged resume of the whole by M. Victor Audouin may he found in the Diet. Class. d'Hist. Nat., article Insectes.

[^300]: * My Ifomotenes (similar to the end) or the Ametobolia of Leach.
 \dagger Its surface is divided into several little regions or areae called the clypeus (nose of Kirby), the face, the front, the verlex or summit, and the cheeks. The term clypeus being equivocal, I have substituted for it that of episfome or overmouth. It gives insertion to the labrum or upper lip.

[^301]: * With respect to this, see what is stated in the general remarks which prccede the particular cxposition of cach class. The inferior lip appears to us to be a mere modification of the second jaws of the Crustacca Decapoda, combined with their ligula. The changes gradnally cffected in these parts in the Crustacca, Archnides, and Myriapoda, seem to authorize this idea. According to this hypothesis, the six thoracic legs are analogous to the foot-jaws, a fact already recognized with regard to the Crustacea of the genus Apus. The five first abdominal segments of the Hexapoda will then represent those, which, in the Crustacea Dccapoda, bear the legs properly so callcd, or the third and four following pairs of the Amphipoda and Isopoda. All the obscrvations that have been published on the thorax of Insects, although otherwisc usefnl, will neccssarily be liable to continual changes, when that part of the body is compared in the three classes of articulated animals provided with articulated fect. In this respect our nomenclature is far from being fixed.

[^302]: * This term, here, is synonymous with that of thorax. In order to avoid confusion, I think it would be better to restrict the application of the former to the Linnæan Aptera with more than six legs, and where those organs are borne by particular scgments, that is, where the head is distinct from the trunk. With respect to the Crustacea in which these parts of the body are confounded, the thorax might be called thoracida; and cephalo-thorax in the Arachnides, animals presenting the same character, but in which the trunk or thorax is more simple and provided with fewer appendages. The Entomostraca, in this respect, approach the latter, but as they belong to another class, the term thoracida should still be applied to them; that of thorax would then be exclusively appropriated to the Hexapoda.
 \dagger This segment should not be restricted, in the Hymenoptera, to this superior, very short, and transverse division of the thorax, on the sides of which the second

[^303]: wings are inserted. It is also formed of that portion of the thorax whieh extends backwards to the origin of the abdomen, a eircumstance whicl evidently demonstrates the position of the two last stigmata of the trunk, they being placed on the sides of this extremity, behind the wings, and above the last pair of legs. I am even of the opinion that this observation will apply to all winged Insects. Their metathorax should be divided, at least above, into two parts or semi-scgments, one, in the Tetraptera, bearing the second wings and destitute of stigmata, and the other furnished with them ; sometimes this latter portion, as in nearly all Insects, the Hymenoptera with a pcdiculated abdomen, the Rhipiptera and Diptera excepted, appears to belong to abdomen sometimes it is incorporated with the trunk or thorax and closes it posteriorly, as in those last mentioned. In the Orthoptera, Hymenoptera, Lepidoptera and Diptera, the two anterior or thoracic scgments are placed between the prothorax and the mesothorax. The abdomen will then consist of nine complete seg. ments, the three last of whieh compose the organs of generation.

[^304]: * The exposition of the parts of the thorax, and a fixed nomenclature created for them, says the Baron in his report, should naturally be placed at the head of the work. The trunk of Insects is always divisible into three annuli, each of which bears a pair of legs, called by M. Audouin, from their position, the prothorax, the mesothorax, and the metathorax. Besides these legs, the mesothorax bears the first pair of wings, and the metathorax the sccond. Each of these three segments is composed of four parts: one inferior, two lateral (forming the pectus), and a fourth superior, which constitutes the back: the inferior is called the stermum; the lateral portion, or the fank, is divided into three principal parts, onc which is attached to the sternum, called epistermu, another behind the first, and to which the coxa is articulated, the epimera (épimére). A little moveable piece, hitherto unknown, which serves to unite the epimera and the coxa, is named trochantinus, (trochantin) by way of distinguishing it from trochanter. The third piecc of the flank, which in the mesothorax and metathorax is situated before the episternum and under the wing, is called the hypothera. Sometimes there is also a sinall corneous piece round the stigma, styied the peritrema. The superior portion of cach segment, which the author calls tergum, is divided into four picces, named, from their position in each ring, proscutum, scutum, and postscutellum. The first is frcquently, and the fourth almost always, concealcd in the interior. Naturalists have seldom distinguished any other part of the mesothorax but the scutellum, which is frequently remarkable for its large size and its configuration, although an analogous piece is found in the three segments. Thus the trunk of Insects may be divided into thirty-three principal parts, and, if we count the hypothera, the number will ainount to forty-three, more or less visible in the intcrior. From these pieces. besides, arise various internal productions, which, on account of their uses and importance, require to be named : thus, from the posterior portion of the sternum of each segment, a vertical apophysis arises internally, sonctimes shaped like a \mathbf{Y}, called by M. Audouin the entothorax. It furnishes insertions to muscles and protects the medullary cord ; an analogous one is scen in the head and somctimes in the first annuli of the abdomen. Other iuternal prominences result from the prolongation of the external neighbouring pieces that are soldered together. M. Audouin names them apodema (apodémes). Some of them give insertion to muscles, others to the wings:-finally, there are other small moveable pieccs either internally and between the muscles, or at the basc of the wings, which our author stylcs the (épidémes) epidema. We have stated that the principal picces, or vestiges of them, are always to be found, but they are frcquently far from being separable. In particular genera, or in certain orders, many are only to be distinguished by traces of sutures. M. Audonin-Dict. Class. d'Hist. Nat., art. Insectes-has since substituted the name of paraptera for that of hypoptera. That of entothorax will also be changed, in some situations, into entocephala, relative to the head-and into entoguster, as respects the abdomen. He remarks that the head of Inscets is composed of several segments. We have also obscrved. that the rostrum of the Cicadx, representing the lower lip, is not attached to the head but to the inembrane which

[^305]: unites it with the thorax, and thus also we find that the two medullary cords form two contiguous ganglions under the mouth. In accordance with these views, we consider the first segment of the body of the Scolopendræ, that which bears the two hooks, as an analogous division of the head. It seems that Knoch had distinguished the epimera by the names of scapule and parapleura, the post-pectus by that of acetabulum, while the mediopectus was his peristothium. The first joint of the four posterior coxæ, in most of the Coleoptera, forms a transverse plate, enclosed in the flanks, and is the piece, as far as I can judge, that he calls the marium.

 * See general observations on the Hymenoptera.

[^306]: * The Inscet is supposed to be at rest. The rapid vibration of these organs appeais to us to be one of the principal causes of the humming produced by these animals. The explanations hitherto given of it are not satisfactory.
 + They are, in my opinion, appendages of the trachea of the first abdominal segment, and correspond to that space, perforated with a small hole, adjacent to the anterior side of an opening, with a membranous and internal diaphragm, that is seen on each side in the same segment in several species of Acrydium. Sce my Mém. sur les Append. Artic. des Insect., in the Mém. du Mus. d'Hist. Nat.
 \pm For their chemicai composition, sce Odier, Mcm. cit. in the Mcm. de la Soc. d'Hist. Nat.; and the article Jusectes of the same work.

 VOL. I.

[^307]: * M. Kirby, in his Monograph of the Bees of England, desiguates the two anterior tarsi by the name of hands. The first joint is the palm,-palma. This gentleman, in conjunction with M. Spence, has published a very complete and detailed work on the elements of Entomology.
 + The gencrating organs of the male consists of an apparatas for the elaboration of the scmen, and of the parts proper to copulation. The preparatory apparatus is composed of testes, vasa deferentin, and vesiculae seminales. The copu* lating instrument is a penis provided with an armature consisting of surrounding parts, of various forms, acting like pincers or forceps, with which the male seizes the posterior cxtromity of the body of the female. The sexual apparatus of the latter is composed of an ovary, thic rcceptacle or calyx formed by its base and the oviduct. For more minute details, sce the memoirs of M. Dufour, Ann. des Sc. Nat., and the Disscrtation of Hegetschweiler, Zurich, 1820.
 \ddagger M. Audouin supposes, that, in a great number of Insects, the ova are fecundated, as they descend, in a sac situated near the anus; but this idea requires to be confirmed by experiment, and one of those naturalists who have most closely studied the anatomy of these animals, M. Dufour, is of a different opinion.

[^308]: * The Pulex, the female Mutilla, the Working Ants, and some few other Insects excepted.
 + Pupa obtecta, L.
 + Pupa coarctatu, L.

[^309]: 访芌 (a) "Se dépouillent eneore de leurs ailes," is the unguarded expression of our author. It is not the wings alone, but the entire animal, after attaining its perfect condition, that is thus divested of its external pellicle, eren to the slender, setaceous appendages which terminate the posteriou extremity of the body. It is the common May-fly of America.-ENG. ED.

[^310]: * Cur., Tabl. Elém. de l'Hist. Nat. des Anim., and Leçons d’Anat. Compar.; Lamarck, Syst. des Anim. sans Vertèb. ; Latr., Prćcis des Caract. Génér. des Insect., and Gen. Crust. et Insect. For more minute details, sce also the excellent clementary work of Kirby and Spence.

[^311]: * Twisted wings. The parts taken for elytra are not so. See this order.
 \dagger Wings folded like a fan.
 \pm Destitute of wings and seutellum.
 § They undergo metamorphoses and aequire organs of loeomotion which they did not possess at first. This character is common to the following orders, but in the latter the metamorphosis developes another sort of locomotive organs-the wings.

[^312]: part of the abdomen, while in the latter and in the Diptera it is incorporated with the thorax.

 * Formed, as we presume, by picces analogous to the epaulette or plerygode of the Lepidoptera.
 + The Mitosata, Fab.
 \ddagger The annuli of the body of Inseets are usually provided with two stigmata. If those of the Seolopendre, particularly the larger speeics, those which have twentyone pairs of feet, be thus considered, it will be found that they are alternately destitute of, and provided with, two stigmata, and that thus, compared with these latter animals, they are in fact but semi-anmuli. Each complete segment will then have two pairs of feet, one of which is supernumerary, since, in other Insects, the annuli furnished with feet have but two.

[^313]: * Chilognata, Lat. or the genus Iulus, Lin.
 \dagger The lower lip composed of the two pairs of jaws of the Crustacea, according to Savigny.

[^314]: * See Bullet. Génér. et Univers. of the Baron Férussac, Decemb., 182:3. The observations of Savi, an extract of which is contained in this work, were published in a memoir, intitled "Osservazioni per servire alla storia di una specie di Julus communissima" Bologna, 1817. 'The same savant published another in 1819 on the Julus foetidissimus.
 \dagger Iulus ovalis, L.; Gronov., Zooph., pl. XVII, 4, 5;-Oniscus zonatus, Panz. Fam. Insect. Germ., IX, xxiii ; Glomeris marginata, Leach, Zool. Miscell., CXXX1I; -Omaiscus pustulatus, Fab.; Panz., Ib., XNII.

[^315]: * Sce the two memoirs of Savi already quoted, and Leach, Zool. Niscell., III, for an account of these two specics and some others that inhabit England. Add Iutus indus, L.; De Geer, YII, xliii, 7; Scb., Mins. II, xxiv, 4, 5;-Seb., Mus. I, lxxxi, 5 ;-Schet., Ablandl, I, iii, 7. [Add of the American species the I. impressus, purctutus, anmelatus, lactarius, marginatus, and pusillus.]
 + The Iuli cumplanatus (Zool. Misccll. CXXXT, A), depresse, stigma, tridentatus, Fab.; his Scolopendre? dorsalis and clypeata. [Amer. species, P. serratus gramulatus, Say, and the Iulus virginiensis, Drury.]
 \ddagger The species, unknown before Leach, appear to be proper to England. Sce pl. cxxxiv of his Zoological Miscellany, vol. III.
 \S There is a second species, P. fasciculatus, Say, that inhabits the southern section of the United States. See Jour. Ac. Nat. Sc. of Phil. II, part I, p. 108.
 \| Chilopoda, Lat, or the genus Scolopendra, Lin, \&c.

[^316]: * A part analogous to the lower lip of the Chilognatha, representing, in my opinion, the tongue of the Crustacea, but also eapable of fulfiling the function of jaws; Savigny calls it the first auxiliary lip.

 F The sceond auxiliary lip of the same naturalist. It is not annexed to the head, but to the anterior extremity of the first semi-segment. The two hooked feet, by the union and dilatation of their first joint, form a plate rescmbling a mentum and lip. The same segment bears the two first ordinary fect. In the Scolopendre proper of Leach, the two first stigmata are situated under the third half-segment, the first not counted; the second and following one will compose the first complete ring, and then the two first stigmatar are found, as in other Insects, placed on a space corresponding to the prothorax. This second anxiliary lip may thus represent the inferior lip of the grindiag Hexapoda. But here the phargnx is placed before that lip, whereas in the Myriapoda it is situated before the first auxiliary lip. It is from these considerations and affinities, and from others furnished by the Entomostraea and Arachnides, that I consider the feet of the Hexapola as analogous to the six foot-jaws of the Crustacea Dceapoda.
 \ddagger In this case they are but semi-annuli. See our general observations on the order.

[^317]: * Dr. Leach makes two pairs more by including the palpi and the hook-like feet of the head.
 + The Scolopendre it dingl-hnit galles of Geoffroy which appears to differ from the the S. coleoptrala, Panz., Fam. Insect. Germ., L, xii, and from that of Linnæus:Iulus araneoides, Pall., Spicil. Zool., IX, iv, 16 ;-Scolopendra longicornis, Fab., of Tranquebar. Sec also Leach, Zool. Niscell., Cermatia livida, CXXXVI, and Lin. Trans. XIV.
 \ddagger L. verriegutus, lecrilubrum, Leach, Lin. Trans., XT. See also vol. ItI. of his Zoological Misceliany.

[^318]: * Scolopendra morsitans, L.; De Geer, Insect., VII, xliii, 1. For the other species, see Zool. Miscell., III ; the Scolopendra giganiea, L., Brown, Jam., XLII, 4, and other large but perfectly described species.
 + Crytops hortensis, Zool. Miscell.; CXNXIX ; Id., Ib., Cryfops Satignii.
 \ddagger S. elceliica, L. ; Erisch., Insect., MI, viii, I;-T. occillentulis, L. ; List. Itin. vi ;-S. phosphorea, L.-it fell from the clouds on the decks of a vessel one hundred miles from the continent. Sce Zool. Miscell., III, Gcophitus muritimus; CXL, 1, 2; -G. Lonyicornis, tab. ead., 3-6, and some other species.

 VOL. III.

[^319]: * Lepisma polypoda, L.; L. saccharina, Vill., Entom. Lin., IV, xi, I ; Roem. Gener. Insect., XXIX, 1; Forlicine cylindrique, Geoff. ;-Lepisma thezeana, Fab. ;Petrobius maritimus, Leach, Zool. Miscell., CXLT.

[^320]: * Podura arborect, L. ; De Geer, Inseet. VII, ii, 1-7;-P. niralis, L. ; De Geer, Ib., 8-10;-P. aquatica, L. ; De Geer, Ib., ii, 17 ;-P. plumbea, L. ; De Geer, Ib., iii, 1-4;-P. ambulans, L. ; De Geer, Ib., 5-6;-P. aqualica grisea, De Geer, Ib., ii, 18, 21.
 The Pod. vaga, villosa, cincta, annulata, pusilla, lignorum, fimetaria, Fab.
 + Podura atra, L.; De Geer, Ib., iii, 7-14; the Pod. viridis, polppoda, minuta, and signata, Fab.

[^321]: * Parasita, Lat.-Anoplura, Leach.

[^322]: * Zool. Miscell., III.
 \dagger For those species which live on Man, see the splendid work of Alibert on the diseases of the skin.
 \ddagger Zool. Miscell., CXLVI ; P. suis, Panz., Faun. Inscet. Gcrm. LI, xvi, 1.
 The P. cervi, Panz., Ib., xv, belongs to the'genus Melophagus, of the Diptera.

[^323]: * Pediculus sternc hirundinis, L. ; De Geer, Inseet., VII, iv, 12 ;-Ped. corvi coracis, L.; De Geer, Ib., ii ;-Ricinus fringilla, De Geer, Ib., 5, 6, 7 ;-Ped. tinnunculi, Panz., IU., xvii.
 \dagger Ricinus gallinc, De Geer, Ib., 15-on the Coek, Partridge, and Pheasant;R. emberiza, De Geer, Ib., 9;-R. mergi, De Geer, Ib., 13, 14 ;-R. canis, De Geer, Ib., 16 ;-Pediculus paronis, Panz., Ib. xix; Lat., Hist. Nat. des Fourm., 389, xii, 5. See also Panz., Ib.. pl. xxv-xxiv. His Pediculus ardece, XVIII, appears to be the same as the Ricin du plongeon, De Geer, IV, 13.

[^324]: * See our general observations on the class of Insects.
 \dagger Siphonaptera, Lat.
 \ddagger Rosel represents but two; Kirby and Straus, however, have observed one more. According to the latter, the two scales which cover the basc of the rostrum are palpi.

[^325]: * M. Duméril has given an excellent figure of this animal in his work, Consid. Gen. sur la Classe des Insectes, and in the Dict. des Se. Naturelles.

[^326]: * The Elcutherata, Fab.
 + For the anatomieal elaraeters of the Colcoptcra, sec Ann. des Sc. Nat. VIII, p. 36, where the resume is given by M. Duméril.
 \ddagger In some of the Brachélytra two small yellowish points have been obscrved, that have been taken for oeelli ; but without, as I imagine, any careful examination, partieularly as the Forficulæ, a genus of the Orthoptera that is nearest to the Coleoptera, exhibit none.

[^327]: * The internal membrane, on each side, behind presents a stigma, a eharacter which I believe had not yet been observed, although it was presumed to exist.
 + The mesothorax is always short and narrow, and the metathorax frequently spacious, and longitudinally suleated in the middle.
 \ddagger If we may judge from analogy, the Coleoptera, termed Monomera, have probably three joints in the tarsi, the two first of which cseape observation; this seetion and that of the Dimera have been suppressed.
 § Aeeording to M. Dufour the Silphe, a genus of our fourth family, also present one ; it is unique, however, or but on one side.

[^328]: * Carnassiers, Cuv.-Adephage, Clairv. This family, which is one of the largest of the Colcoptera, already illustrated by the labours of Weber, Clairville, and Bonelli, with respect to the method, will finally be reluced to order, as regards the species, if Count Dejean continue his "Species des Coleopteres," four volumes of which are now published, a work remarkable for the exactness of its descriptions.

[^329]: * M. Leon Dufour, Ann. des Sc. Nat., VIII, p. 36, gives the following resumé of the anatomical characters of the Insects of this division :-
 "The Carabici are hunters and carnivorous. The length of their alimentary canal. is not more than twice that of the body. The osophagus is short; it is followed by a museulo-mcmbranous, very dilatable, well-developed crop; then comes an oval or rounded gizzard with cellular and clastic parictes, armed internally with moveable horny appendages fitted for grinding, and furnished with a valve at each orifice. The chilific centricle which succeeds to it is of a soft expansilc texturc, always studded with larger or smaller papillie, and narrowed behind. The small intestine is short. The cacum has the form of a crop. The rcctum is short in both sexes. The hrpatic vessels, but two in number, describe various arcs in their flexures, and arc implanted by four separate insertions, around the termination of the chylific ventricle. The testes are (each formed by the agglomerated circumvolutions of a single spermatic ressel, sometimes almost naked, and at others invested by an adipose layer, a sort of tunica raginalis. The rasa deforentia are often folded into an epididymus. The resicula seminales, only two in number, are filiform. The ductus jaculans is short, the pcris slender and elongated, and the copulating armature more or less complicated. The oraries have but from seven to twelve ovigerous sheaths to cach, multilocnlar, and united in a single conoid fasciculus. The oriduct is short. The scbaceous gland is composed of a secreting vessel, sometimes filiform, and at others enlarged at the

[^330]: * Cicindela megalocephala, Fab. ; Oliv., II, 33, 11, 12 ; C. carolina, Oliv. Ib., xi, 2 ;-Megacephala cuphratica, Hist. Nat. des Coleop. d'Eur., I, 1, 2. For the other species, see Dejean, Species des Coleoptères, I, p. 6, et seq. In the United States, Meg. carolina and Meg. virginica, both beantiful speeies.
 + Cicindela tristis, Fab.; Oliv., Coleopt., II, 33, iii, 35 ; Oxycheila tristis, Dej., Speeies Gener. des Coleop. I, p. 16 ;-Cicindela bipustulata, Lat. ; Voy. de Humb. et Bonpl. ; Obser. d'Anat. et de Zool., No. XIII, xvi, $1,2$.
 \ddagger Cicindela 4-notata, Hist. Nat. des Coleop. d'Europ., I, i, 6 ; Euprosophus 4 -notatus, Dej., Spec. Gener. des Coleopt. I, p, 151.

[^331]: * Add, Cicindela sylvatica, L.; Clairv., Entom. Helv., II., xxiv., A ;-C. simata, Fab. ; Clairv., Ib., B, b;-C. germenica, L.; Panz., Eaun. Inscet. Gcrm. VI, v. For these and other European species, the Hist. Nat. des Coleop. d'Eur. of Lat. and Dej., fascic. I, p. 37, ct seq.-and in general the Species Gener. of Count Dejean ; see also the work of Curtis on English Insects.

 约 (a) Add the C. unicolor, 6-guttata, rugifrons, patruela, concentanea, signata, blanda and the C. lepida, Le C., nov. spec. ined.; the C. obliquata, repanda, albohirta, laticincta, formosa, marginata, variegata, unipunctata, marginipemis, abdominalis, 12-guttata, flexuosa, obscura, pusilla, punctata, pulchra, and the C. denticulata hamorrhoidalis and splendida, new species of Hentz.-Eng. Ed,

[^332]: * Sce the Entomologix Braziliante Specimen of Klüg; the Spec. Gen. des Coleop. of Count Dcjcan, I, p. 152, et scq., and the Supp. to vol. II of the Hist. Nat. des Coleop. d'Eur., fascic. I, p. 35 ; the Entom. Imp. Russ. of M. Gotthelf Fischer, I; Gener. Insect. p. 98.
 \dagger Sec Lat., Dej. Hist. Nat. des Coleop. d’Eur., fascic. I, p. 63 ; the Spec. Gen. des Colcop. Dej., I, 57, and the Supp. to vol. II; and particularly the memoir of Bonclli on this genus.
 \ddagger See the works just quoted. The speeics which I have described and figured under the name of longicollis is distinct fiom the Fabrician specics of the same appellation; it is the Colliuris emarginata, Dcj., Spec. Gener., I, p. 165.

[^333]: * Idem.
 \dagger In Cicindela the radical joint is free, and it is on this account that the palpi consist of four ; but here it is eutirely adherent and forms but one base which is not counted.

[^334]: * Although several Insects of the north of Africa have becn discovered in the south of Spain and Italy, not a solitary species of Anthia or Graphipterus has ever been found there.
 + See Hist. Nat. des Coleop. d'Eur., fascic. II ; the Species des Colcop., Dej., I ; the excellent Synonymia Insectorum of Schœenherr ; and the zoological portion of the Voy. de Cailland, where I have described and figured the Inscets collceted by him in Africa.
 \ddagger See Hist. Nat. des Coleop. d'Eur., fascic. II, and the Species des Coleop., I, Dej. The Anthia exclamationis, Fab., is a Graphipterus, figured Dict. d'Hist. Nat. $\boldsymbol{X}, \mathrm{E}, 2,7$, under the name of trilinée.

[^335]: * Mém. sur le Brachine tirailleur, Ann. du Mus. d'Hist. Nat. XVII, 70, 5, and the Ann. des Sc. Nat. VI, p. 320.
 \dagger See Hist. Nat. des Coleop. d'Eur., and the Species des Coleop., Dej., 1.

[^336]: * See op. cit. ut sup. Add of American species Brach. alternans, quadripennis, fumans, cephalotes.

[^337]: * See Entom. Brazil., of Klüg; the Spec. Gener., of Dej., I, p. 170 ; Hist. Nat. des Colcop. d'Eur., fascic. II, vii, 6. The species figured-C. cyanocephalafrom the penultimate joint of the tarsi forms a particular division. It is found in Bengal. All the others, the principal of which is the Attelabus pensylranicus, L., belong to America, and have all the joints of the tarsi entirc. American specics, C. pensyluanica, rufipes.
 \dagger Odacantha lorsalis, Fab.
 \ddagger The Odacantha tripustulata, Fab., is a specics of Notoxus.
 § Galerila olens, Fab.; Clairv. Entom. Helv. II, xvii, A, a; Hist. Nat. des Coleop. d'Eur., fasc. II, x, 3.

[^338]: * Galerita fusciolata, Fab. ; Clairr., Ib., B3, b; Hist. Nat. des Coleop. d'Eur. Ib., 4 ;-Polistichus discoideus, Ib. 5. Sce the Spec. des Coleop., Dej. I, p. 194.
 + Helluo costatus, Hist. Nat. des Colcop. d'Eur., fascic. II, vi, 5 ;-Galerita hirta, Fab. Sec the Species Gener. Dej. I, p. 253.

 An undescribed species from Brazil appears to me to form a new subgenus by its filiform palpi, of which the last joint is cylindrical.
 \ddagger The Dryptr arc also allied to Cychrus, and seem to conncet the Cicindelite with the Carabici Grandipalpi. Scveral sections of this family seem to connect themselves with the Cicindela like so many branches. Most of the other families of Insects are similarly situated, or form ramified trunks-in a word, continuous series do not exist in naturc.
 § For the other specics, see Hist. Nat. des Colcop. d'Eur., fascic. II, x, 2; and the Species Gcucr. des Coleop. Dej. I, 182.

[^339]: * See the Hist. Nat. des Colcop. U'Eur.; and Spec. Gener. des Coleop. Dej., I.
 + See the Hist. Nat. des Col. d'Eur., fascic. II. ; Spec. des Coleop., Dej., I. ; and chicfly the Entom. Brasil. Specim., of Klüg. All the known species belong to South America.

[^340]: * See Klüg's excellent Monograph of this genus : also the Hist. Nat. Col. d'Eur., and the Spec. des Coleop., Dcj., I. All the species belong to intratropical America.
 + Somewhat narrowed posteriorly in Demetrias and Dromius, but not fixed to the thorax by a patella.
 \ddagger See Hist. Nat. Col. d'Eur., fascic. II, and III, and Seec. Gen. des Colcop. I.
 § See op, cit.

[^341]: * See op. cit.

 Add of American species, the Leb. analis, villala, quadrivitlata fuscata, maginir collis, viridis, and the L. borea, solea, and grandis, of Hentz, new species.
 \uparrow Op, cit.
 \pm Dejean. Spec. I, p. 279 : all the species foreign to Europe. Near this sub. genus may perhaps be placed that of the Hexagonia, Kirby, Lin. Trans., XIV.

[^342]: [.F (a) In the United States: C. signata, and C. ©rata, Dcj.-Eng. Ed.

[^343]: * Siagona rufipes, Lat. Gener. Crust. et Insect., 1., vii, 9 ; Cucujus rufipes, Fab. ; -Siagona fuscipes, Dej., Spec. I, 1. 359.
 + The Siag. atrata, depressa (Gulerita depressa, Fab.), Fejus, (Galeritia flejus, Fab.) Schupetii, Dej., Ib.;-Scarites, levigatus, Herbst. Col. CLXXV, 6.

[^344]: * Refer to this subgenus the Scarites depressus, and Sc. marginatus, Fab. and Oliv. Sce the Spec. Gen. des Coleop. I, p. 405 : the Entomological Observations of Bonelli : and the work of Palisot de Beauvois on the Insects collected by him in America and Africa.
 $0 \leqslant 3(a)$ All the Pasimachi hitherto discovercd are peculiar to North America. But four speeies are known, the P. depressus, marginatus, sublceris, and the P. subsulcatus, Say.-Eng.Ed.

[^345]: * Oxyistomus cylindricus, Dej. Spec. I, p. 410. Brazil.
 \dagger Camptodontus rayemensis, Ib. II, p. 477.
 \ddagger Tencbrio fossar, L. ; Scarites arenarius, Fab.; Clairv. Entom. Hclr., II., viii, A, a. The Clivinx of Count Dejcan, Spec. 1, 411, 1-7.
 § Clivinx, S-21, of Count Dejean; but the eighth, or the arctica, scems to present the characters of a Cephalotus.

[^346]: * Harpalus momilicornis, Lat. Gener. Crust. et Insect. I, 206 ; Morio monilicornis, Dej.. Spec. I, p, 430 ; Scarites Georgice, Palis. de Jhenuv. VII, xv, 5 ;-Morio brasiliensis, Dej. Ib.;-Morio orientalis, Id., Ib.
 + Ozena dentipes, Oliv., Encyelop. Method.;-Ozcena Royerii, Dej., Spec. p. 434 ; -Ozana brumea, Id, Ib. ;-Ozana Gyllhenalii, Id. Ib.
 \ddagger Dejean, Spee. I, p. 439, first division of Ditomus. The Caratues calydomius of Fabricius, according to a label affixed by him to a speeimen taken from the collection of M. Desfontaines, forms a speeies very distinct from the Difomus calydonius of Dejean. The mandibles of the male are forked or divided, as it were, into two horns; the middle horn terminates in a point or rather is hastate at the extremity. The Calosoma longicornis of Fabricius is probably the female of this species or of another that is closely allied to it.
 § Second division of Ditomus of Count Dejean, Ib., p. 444.

[^347]: * Scarites rufus, Oliv., Col. JlI, 36, 11, 13, a, b; Rossi, Faun. Etruse. I, iv, 3 ; Apotomus rufus, Dej,, spec. I, p. 450 ;-Apotomus testaccus, Id., Ib., p. 451.
 + This appellation harmonizes with those of the two following sections, and is founded on an exchusive eharacter: it therefore seems to me to be preferable to that of Harpalici, employed by Bonelli.
 \ddagger The ligula, as in the two following sections, is always remarkably salient, olstuse or truncated at the end, and accompanied by two distinet, membranous paraglossæ in the form of aurieles.
 § If the Cyelosomi have the four anterior tarsi dilated, they will form a fourth division on account of the two teeth in the emargination of the mentum.
 || The head large; paraglossæ rather broad in comparison with the true ligula, and rounded at the end; second joint of the antenure somewhat shorter than the third; intermediate tarsi of the males rather less dilated than the anterior.
 I. Harpalus megacephalus, Lat., Gener. Crust. et Insect. I, p. 206 ; Carabus megacephalus, Fab.; Ross. Faun. Etruse., Append., tab. III, H ; Acinopus megacephalus, Dej. Catal.

[^348]: * Acinopus macuipentis, Dcj.; Dactus piclus, Fisch., Entom. Russ. II, xxvi, 2, xlvi, 2 ; D. villalus, Id. Ib., 7, va:.? Dilomu villiyer, Germ.; D. chloroticus, Id. Ib. \uparrow For the other species, sec the Catalogne, Eic. of Count Dcjean, genus Ifarpatues, p. 14, and for their synonymes Schonherr's Synonymia Insectorum, and the Famn. Aust. of Duftschmid. Fabricius has described but few of them, of which we will mention those he ealls "calignosus, ruficornis, linolatus, lardus, heros, analis, farilabris, 天ic. The Carabus signalus and hirlipes of Panzer also constitute a part of this subecnus.
 \pm See Catalogue, \&c., Dejean, p. 1 .
 vol. Ill.
 C C

[^349]: the others on aceount of its exterior palpi, all of which are terminated by a securiform joint. The first is similarly distinguished, inasmuch as the termination of the labial palpi of the males is the same. The Omaseus viridicollis of Mac Leay-Annul. Javan.-is congenerie. In the genera Catadromus and Lesticus, the last joint of the same palpi is, however, slightly securiform, or becomes gradually thiekened towards the extremity. The intermediate lobe of the mentum projeets and almost in a point in the first, and is but slightly elongated and almost truneated in the seeond, which, like the preeeding, consists of Insects proper to India. The last joint of the labial palpi in Distrigus and Abacetus is almost eylindrieal. The intermediate lobe of the emargination of the mentum is almost null in the former ; in the latter it is very apparent and rounded. These Carabici are, as yct, foreign to Europe and Ameriea.

 The Scarite hottentot of Olivier, which we have placed in the subgenus Fcronia, is removed from the speeies that formed the genus Stcropus, by its intermediate tibix which are strongly arcuated. It is from this charaeter that Count Dejean has separated this insect from the Feronire, and formed the genus Camproscelis. The last joint of the exterior palpi being strongly securiform in Myas, that genus should also be distinguished from the Feroniæ.

 Count Dejean has observed that in the genus Pelor, of Bonelli, the tooth of the middle of the emargination of the mentum is bifid, while it is entire in Zabrus. He retains, as we have already stated, his genus Amare, but if the characters assigned to it be compared with those of the Feroniæ, the slightness of this generic distinetion will soon be pereeived. The last joint of the palpi of the Amarre is slightly oval ; it is cylindrical or slightly seeuriform in the Feronix. His genus Tefragonoderus differs but very little from that of Amara. The tooth in the middle of the emargination of the mentum is truncated and entirc, or without a fissure.

 * Carabus giblus, Fab.; Labrus gibbus, Clairv., Entom. Helv., II. xi. For the other species, see Cataloguc, \&c. of Dejean, and the third rolume of his Speeies, Gener., \&c. The apterous specics, such as the Blaps spinipes, Fab. ; Panz. Faun. Insect. German., XCVI, 2, form the genus Pelor.

[^350]: * Sce the Catalogue of Dejcan. Germar in the Fauna Insectorum Europe has figured two species: Pogonus halophilus, X, i ; Irarpalus luridipennis, VIII, 2, allied to the Pogonus pallidipennis of the first.
 - Harpahs circumfusus, Germ. Insect. Spee. Nov. I, 26 ?
 \ddagger Shorter species, whose thorax widens from before posteriorly, constitute the genus Leirus of some authors. The Scolyfus ficuosus, Fab., seems referable to this division, but according to Count Dejean the four anterior tarsi are dilated: it ap-

[^351]: * The Platysmæ deseribed and figured by M. Fiselier-Entom. Russ., II, xiv, 4, 5 ;-arc probably analogous Abaces.
 + For the other species, see the Catalogue of Count Dejean, and the Faun. Aust. of Duftsclımid.
 \ddagger For the other species, see Dcjean's Catalogue and the Entom. Russ., Fiseher, II, p. 123, xix, f. 1; xxxvii, 8, 9. I eoincide with the opinion of the latter, that the G. myosodus, Meg., does not essentially difficr from Pterostichus.
 § See Dcjean's Cataloguc, and the Inseet. Spee. Nor., Germar, I, p. 26, et seq. Some speeies, such as the Molops forricola (Scarites yagates, Id. XI, i,) and the Steropus hottentotus (Srariles hottentotus, Oliv., Col. 111, 36, 11, 19) were formerly plaeed among the Scerites. The Cerabus mudidus, Fab., Faun. Inscet., Eur., V, 2, a common species in some of the southern departments of Franee is a Steropus. Count Dejean forms a new gentis with the St. hottentotus on aceount of the anterior legs, the tibix of which are arcuated, and of some other eharaeters.
 || Caralus Paykulii, Ross., Faun. Etrusc., I, tab. V, f. C,-Percus ebenus, Charp.

[^352]: Hor. Entom. V, i. See also the Ann. des Se. Nat. and Ann. des Se. Phys., of MM. Bory de Saint-Vincient, Drapicz and Van-Mons. I refer the Abux corsicus, Dej., to the same subgenus.

 * Other species, analogous in the form of their labial palpi, but with stouter mandibles, in which the tooth of the mentum is much larger, and peculiar to the East Indies form the genus Trigonomola of Count Dejean, the characters of which are given in the third rolume of his Species des Coleoptères. Here also should be placed the genus Pseudomorpha of Kirby, Lin. Trans. XIV, 9 S.
 + Carabus cephaloles, Fab.; Panz., laun. Insect. Germ., LXXXIII, 1 ; Entom. Ind., p. 62.
 \pm Stomis pumicatus, Clairv. Entom. IIcly. II, vi.

[^353]: * This subgenus was established by M. Kirby on one of the Carabici (Catascopus Harduickii, Trans. Lin. Soc. XIV, iii, 1; Hist. Nat. des Coleop. d’Eur. II, vii. 8) of the East Indies, which has a green head and thoras, the clytra of a greenish-blue with punctuated strixe, and the under part of the body almost blackish. M. Mac Leay, Jun.-Annul. Javan. I, p. 14-places the Catascopi in his family of the Harpalides, directly after the Chlænii, and refers to it the C. elegans, Fab., whieh M. Weber arranges with the Elaphri. He distinguishes them from another neighbouring subgenus, which he establishes under the name of Periculus, by the antenna, the scoond and third joints of which are nearly equal in Iength, whilst here the third is the longest ; by the mandibles which are short, thick, and eurved, instead of heing directed forwards and nearly parallel ; by the palpi which are short, thick, with the last joint ovoid and almost truncated, whilst thosc of the Pericali are slender and cylindrical ; and finally by the head, which is wider than the thorax, a eircumstance that docs not occur in the Catascopi. Besides this, the eyes of the Perieali are very glohular and protuberant, giving them some resemblance to the Elaphri and Ciciudelæ. Il̆e describes hut one species-Pericalus cicindeloides, 1, 2 ; we are still, however, ignorant of their sexual difference, particularly as respects the tarsi. The form of the lignla of the Catascopi and that of their tibix remove them from Elaphrus and Tachys. These insects approximate most nearly to the Chlonii, Anehomeni, Sphodri, Eec. Sereral of the Simplicimani have the extremity of their elytra strongly simuous, and in this respect are hardly distinguished from the Truncetipenness.

[^354]: * Carabus leucopthalmus, L.; Carabus planus, Fab.; Panz. Faun. Inseet Germ. XI, 4. In the Sphodrus terricolu-Curubus terricolu, Payk.; Oliv., Col. III, XXXV, ii, 124 -the hooks of the taisi present some small dentations, as in the following subgenus.
 + The Sphodri janthimus, complanatus, and several others of Count Dejean, which are distinguished from the true Sphodri by the abbreviation of the third joint of the antenna, and by the dentations of the hooks of the tarsi. These two subgenera are almost insensibly confounded with each other. M1. Fischer has figured several species of both under the generie appellation of Sphodrus in his Entom. Russ. Vol. II.
 \ddagger Carabus metanocephalus, Fab.; Panz., Faun. Inscet. Germ. XXX, 19;-C. cisteloides, Ib., XI, 12;-C. fuscus, Fab.;-C. frigidus, 1d. See the Catalogne, \&c. Dej., and the Inseet. Spec. Nov., Germar, I, p. 13.
 §Carabus rivalis, Illig. ; Panz. Ib. NXXTII, 19.
 隹 (a) Fomerly Ctenipus, Lat., who recommends the substitution of the above name for his own, as we have already the genus Ctenopus.-Eng. Eid.

[^355]: * Carabus flaricornis, Fab.; Preysl., Bohem. Insect., I, iii, 6, and some other species of the Cape of Good Hope.
 + Platynus complanatus, Bon.; Carabus angusticollis, Fab.; Panz. Faun. Insect. Germ., LXXIII, 9;-Platynus blandus, Germ., Inscet. Spec. Nov., I, p. 12;-Carabus scrobiculatus, Fab.;-Harpalus livens, Gyll.
 \ddagger Harpalus vichues, Gyll.; Panz., IU., XXXTII, 38 ;-Carabus marginatus, Fab.; Panz., Ib. XXX, 14 ;-Carab. 6-punctutus, Fab. ; Panz. Ib. AXX, 13, and XXXVIII, 17 ?-C. parun-penctatus, Fab.; Panz., Ib. XCII, 4 ;-C. \&-punctatus, Fab. ; Oliv., Col. III, 35, xiii, 158. Sec Cataloguc, Dcj., who has formed a new genus of the A. rotundatum, and some others.
 $0_{3}(a)$ Amcrican species; Plat. crythropus, Dcj.;-P. angustatus, Id. Species III, p. 97-99.-ENG. Ed.
 (b) The genus, here alluded to hy onr author, is the Olistmopes, Dej., who, while he seems strongly inclined to form but one scction of Agonum and Anchomenus, from the occasional, almost total, obliteration of the distinguishing characters of each, so that in some cascs it is hardly possible to say whether an Insect should be referred to the first or the sccond, has deemed it necessary to separate the above species, which differ from Agonum in scveral essential characters, and principally in the abscnce of the tooth of the middle of the emargination of the mentum. See his Spccies, \&c., III, p. 176, and add A. octopunctatum (Feronia octopunctata, Say), cupripenne, nitidulum, morosum, femoratum, melanarium, sic. \&ic.-EnG. Ed.

[^356]: * Rembus politus, Fab. ; Herbst., Arehiv. XXIX, 2 ;-R. impressus, Dej. ; Carab. impressus, Fab.
 + See Dej. Spee. II, 283. They are the Die. chalybous, alternans, furvus (D. elongatus, Say), simplex and politus-all, I lelieve, that have as yet been aseertained.
 \ddagger Carabus agricola, Oliv., Col. III, 35, YT, $53 ;-C$. silphoides, Fab.; Sturm, III, lxxiv, a;-C. emarginatus, Oliv., Ib., X1II, 150 -Carabus cassidcus, Fab.;-C. depressus, Payk.;Sturm, Ib, LXXIT, o, O ;-C. Mofmanseggii, Panz. Faun. Inseet. Germ., LXXXIX, 5, Sce Spec. Dcj. II, p, 405-411.
 § Carabus lipustulatus, Fab, Clairy., Entom. Irelv. II, xiii ;-C. peltutus, Illig. ; Panz. Ib, XXxYIt, 20. See Spec. Dcj. II, p. $405-\frac{1}{1} 11$.

[^357]: * Pclecium cyanipes, Kirby, Lin. Trans. XII, xxi, 1.
 + A subgenus founded on certain specics from Brazil, which have the appcarance of the Abax, Bonelli.
 \ddagger Carabus crux-major, Fab. ; Clairv., Entom. Hclv. II, xv ;-Carabus notulatus, Fab.,-Cychrus reflexus, Fab.; Oliv., Col. III, 35, viii, 77 ;-Carabus angulatus, Fab.; Oliv., Ib., vii, 76 ;-Panagéc ì quatre taches, Cuv., Reg. Anim. IV, xiv, 1. See the article Panagée, Encyc. Method., and the Species, Dej., II, p. 283 et seq.

[^358]: * Loricera cenea, Lat. ; Carabus pilicornis, Fab. ; Panz. Faun. Inseet. Germ., XI, 10 ; Oliv., Col. III, 35, xi, 119 ; Dcj. Spee. 1I, p. 293 (c).
 + Carabus rufipes, Fab.; C. excaratus, Payk.: Panz. Ib. XXXIV, 2. Two other species are mentioned by Count Dejean in his Species, one from Portugal, the other from North America.
 \ddagger It is frequently more dilated in the males-a fact very evident in Procerus.
 § A more eharacteristic denomination than that of Abdominales which we formerly

[^359]: * Cychrus rostrafus, Fab. ; Panz. Faun. Inscet. Germ.. LXXIV, 6 ; Clairv., Entom. Helv., II, xix, A ;-C. attcmutus, Fab.; Panz. Ib. IT, 3 ; Clairv. Ib., xix, B;-C. italicus, Bonel., Obs. Entom., Mcm. of the Acad. of Tur. See Dej. Spec. II, p. 4, et seq.
 + Cychus clecatus, Fab.; Knoch, Bcytr., I, viii, 12 ; Dej. Spec. II, p. 17, et seq.
 \ddagger Dej. Spec. II, p. 14. et seq.

[^360]: * Carabus scabrosus, Fab. ; C. gigas, Creutz., Entom. I, 11, 13;-C. scabrosus, Oliv., Col. III, 35, viii, 83, long ago described and figured by Mouffet, Insect. Theat. 159 ;-P.tauricus, Dej. Spec. II, 2t; Carabus scabrosus, Fischer, Entom. Russ., I, 11, 1, b, l, f;-Proccrus caucasicus, Dej., Ib. p. 25 ; Carabus scubrosus, Fisch., Ib., c, e. Another but undescribed species has been found in Mount Lebanon by M. Labillardière.
 + Carabus coriaceus, Fab., Panz. Faun. Insect. Germ., LXXXI, 1. See the Spec. Dej. II, 1. 26, et seq.

[^361]: * Carabus hispanes, Fab.; Germ., Faun. Inscet. Europ. YIII, 2 ;-C. cyaneus, Fab., Panz. Faun. Insect. Germ. LNXXI, 2 ;-C. Cieutzeri, Fab. ; Panz. Ib. CIX, 1;-C. depressus, Bonel. ; C. osscticus, Dej. ; Plectes osseticus, Fisch., Jntom. Russ. II, xxxiii, 3 ;-C. Fabricii, Panz. Ib., CIX, 6 ;-C. imegularis, Fab. ; Panz. Ib., V, $4 ;-$ C. pyrenaus, Dufour. - The two last belong to the genus Cechenus of Fischer. Their head is wider in proportion than those of the preecding species or the Plectes, Fiseher.
 + Add the C. auro-nitens, Fab. ; Panz. Ib. IV, 7;-C. nitens, Fab.; Panz. Ib: LXXXV, 2 ;-C. colatus Fab.; Panz. Ib. LXXXVII, 3;-C. puruurascens, Fab.; Panz. Ib., IV, 5 ;-C. calenatus, Fab.; Panz. Ilb., LXXXVII, $4 ;$-C. catcnula-
 Panz. [b. LIVI, 2 ;-É. monili, Fab.; Panz. Ib. CVIII, 1 ;-C. consitus, Panz. Ib. 3 ;-C. canceliatus, Fab.; Panz. Ib. LXXXV, 1;-C. arvensis, Fab.; Panz. Ib. LXXIV, 3, LNXXI, 3;-C. morbillosus, Fab.; l'anz. Ib. LNXXI, 5;-C. granulatus, Fab.; Panz. Ib, 6:-C. violacrs, Fab.; Famz. Ib. IV, 4;-C. marginalis, Fab. ; Panz. Ib. XNXIX, 7;-C. glabratus, Fab.; Panz. IU. INXIV, 4 ;-C. convexus, Fab. ; Panz. Ib. 5 ;-C. ha;tensis, Fab.; Panz, Tb. T, 2 ;-C. notu?osus, Mab.; Panz. Ib. LXXXIV, 4;-C. syluetris, Fab.; Panz. Jb. Y, 3;-C. gcmatus, Fab.;
 Ib. CVIII, $2 ;-C$. Limeci, Panz. Jb. CIX, $5 ;-$ © (ngusíatus, Panz. Ib. 1. For the other species of this subgenus, and the synonymes of the whole, sce the Spee., Dej. II, r. 30-189.
 [GF (a) Oi the species that inhabit Morth America. We have as yet only diseovered the C. Beauroisi, curinatus, Lherminier? lineuiopmaciutus (sriutus, Say), ind sylrosus and vinctus. The mountains of New Hampshire, and Mainc particularly, probably contain several others, and it is to be hoped that some friend of the science, within reach of those localitics, will soon chable us to cularge our catalogne of this interesting genus.-Eng. Ed.

[^362]: * Add C. inquisitor, Fab. ; Panz. Faun. Inscet. Germ. LXXXI, 7;-C. reticulatum, Fab.; Panz. Ib. 9 ;-C. inclayutor, Fab. ; Clairv., Ent. Helr. II, xxi, B;-C. scrutator, Fab.; Leach, Zool. Miscell. XCIII; C. cutidum, Fab.; Oliv., Col.1II, 35, IV, 45, and II, 21.-The C. porculatum of Fabricius is a Helops. See Dej. Spee. II, p. 190, et scq. Add the C. calidum, luxutum, Sayi and scrutator. Count Dejcan is mistaken in supposing the calidum to be a common species.
 \uparrow The Pogonophori are closely allicd to the Loricera.

[^363]: * Carabus spinibarbis, Fab. ; Leistus cceruleus, Clairv. Entom. Helv., II, xxiii, A, a;-C. spinilabris, Fab.; Leistrus rufescens, Ib. B, b;-C. rufescens, Fab.; Carabus terminutus, Panz., Faun. Inscet. Germ., VII, ii. For the other speeies, see Spec. Dej., II, p. 212, et seq.
 + Nebria arenaria, Lat. Gener. Crust. et Insect., I, 2, vii, $6 ;$ Carabus brevicolls, Fab. ; Panz. Ib. XI, 8 ; Clairv. Ib. XXII, B;-C. subulosus, Fab.; Clairv, Ib. A ; Panz. Ib. XXXI, 4 ;-C. Picicornis, Fab.; Panz. Ib. XCII, I ;-C. psammodes, Ross., Faun. Etrusc., Mant. 1, v. M.
 \ddagger The C. Helvigii, Panz. Ib. LXXXIX, 4, is an Alpæus. Sce Spee. Dej. II, p. 221 , et seq.
 § See Eneyclop. Méthod., artiele Omophron; Entom. Helv., II, xxvi; Lat., Gener. Crust. et Insect. I, 225, vii, 7, and the Spec. Dej., II, p. 257, et sed.

[^364]: * Carabus borealis, Fab. ; Nebria borealis, Gyllenh. ; Panz. Faun. Insect. Germ., LXXV, S.
 + Carabus multipunclatus, Fal.; Panz. Ib. KI, 5.
 \pm For the other species, sce Dei. Spec. II, p. 268, et scq.

[^365]: * Cicindela aquatica, L. ; Elaphres aquaticus, Fab.; Panz., Faun. Inscet. Germ., XX, 3; Elaphrus bigutcaus, Fab., and to which Count Dejean refers his C. semipenctutes. Sce Spec. II, p. 276 , et seri.

 This division, in a natural scrics, shoułl probably be płaced directly after that of the Carabici Quadrumani. In the genus Masoreus, Dcjean, (p. 420), the two antcrior tarsi of the males resemble those of Harpali; the cmargination of the montum is destitute of a tooth as in Stenolonhus, Acupalpus, 是c.; but the maxillary palpi torminate nearly as in Bembidio:s; the two last joints are united and form one body, the penultimate mercly being rather shorter than the last and obconical, and the latter, cylindrical and truncated.

 The genera Pogomus and Cardiadenus of Count Dejcan appear to us to be connected with the Amerce of Bonelli, notwithstanding the difference in their tarsi. From what we obscrve in the Cicintelete and the Carabici Grandipapi, cvidently matural divisions, it may be scen that the tiusi vary according to the sex, and that if we ehicfly depend on characicrs drawn from these parts, wo may form sections, methodiical it is truc, but whein are in direct opposition to the natural order.

 + This subgenus may be thus divided. In some the thorax is less depressed, is at least as long as it is wide, much neirowel postcrioriy than beforc, cordiform and truncatel, with the postcrior angles very short or but slightly clongated.

 Those in wheh this part of the body presents no decided impression at its posterior angles, and whose cyes are very large, and cause the head to appear wider than the thorax, form the genus Tachymus of Megerle.

 Those whose cyes, as in all the following divisions, are less prominent, so that the thorax is not wider than the head, but otherwise presenting similar characters, constitute the Bembidizm properly so called of Dcjean.

 The Count, with Megcric, places in the genus Lopha those in which the thorax, heving thic same form and proportions, presents at each posterior angle a marked impression, so that these angles are well bordered.

 The others have a flatter body, the thmax wider than it is long, and proportionably less narrowed posteriorly ; its posterior angles always exhibit a strong impression, and a little oblique carina.

[^366]: Certain species, whose thorax, although narrowed near the posterior angles, is less than in the others, so that the posterior margin is scarcely narrower than the anterior, eompose the genus Nolaphus, Dej. and Mcgerle.

 Among those in which the thorax is considerably narrowed behind, its length is sometimes only a little greater than its width, and it has the form of a truncated heart: such are the Peryphus of these naturalists. Sometimes much shortcr in proportion, its form approaches that of a cup or of a heart with a very broad base ; in some it is even rounded at the posterior angles. They form the genus Lcja of the same. The Tachypi, on account of the extraordinary protuberance of their eyes, and other relations to the Elaphri, are sufficiently distinct; but such is far from being the case with the other genera; it is impossible to mark them by rigorous charactcrs. Those which might be drawn from the respective and comparative length of the second and third joint of the antennæ, appear to ne to be also uncertain. See the Catal. de la Coll. des Coleop., of Dejean.

 * Add Carabus tricolor, Fab.;-C. modestus;-cursor; biguttatus;-4-guttatus ; -guttula, Id.;-C. minutus, Panz. Faun. Insect. Germ. XXXVII1, 10 ;-C. pygmeus, Fab.;-Panz. Ib. 11 ;-C. articulatus, Panz. Il. XXX, 21 ;-Cicindela quadrimaculata, L;-Carabus pulchellus, Panz. Ib. XXXVIII, 8 ; XL, 5 ;-C. doris, Panz. Ib. 9 ;-Elaphrus rupestris, Fah.; Panz. Ib. XL, 6 ;-C. decorus, Panz. Ib. LXXIII, 4 ;-C. ustulatus, L. ;-Panz. Tb. XL, 7, 9 ;-C. bipunctatus, L. ; Oliv. Col. III, 35, xiv, 163 ;-Elaphrus muficollis, Panz. Ib. XXXVIII, 21 ;-Elaphrus impressus, Fab.; Panz. Ib. NL, 8 ;-Elaphrus paludosus, Ib. XX, 4.
 + Trechus rubcns, Clairv., Entom. Helv., II, ii, B, b. The Carabus meridianus, whieh lie figures in the same plate, A, a, is a Stenolophus.-Caralus micros, Panz., Faun. Insect, Gcrm. XL, 4.-The genus Masoreus of Ziegler and Dejean appears to me to approaeh that of Trechus. The species on which it is founded is closely allicd to the Harpahus collaris of Gyllenhal. The maxillary palpi, as in Trechus, have a fusiform termination, the pennltimate joint morcly being a little shorter than the last. The anterior tarsi are slightly dilated in the males. This Inscet scems to conncet Trechus with various small species of the Stenolophus of Dejean.

 The Blcmi of thesc same savans are a kind of narrower and more elongated Trechi with a subisometrical thorax, in the form of a reversed and truncated triangle, with much larger mandibles that project beyond the labrum. They are found along the sca-coast of Frauce, under stones, and even in the sea.

[^367]: * According to M. Leon Dufour, their crop is terminated behind by an annular roll (bourrelet) a character not found in the preceding tribe. Their cacum forms a natatory bladder. Their pectus contains two pnemmatic sacs, while the tracheæ of the other parts are tubular. The adipose splanchnic tissuc possesses the characters of a truc epiploon or mesentery. Their stigmata also differ from those of the Terrestrial Carnivora.

[^368]: * Doctor Leach has established his genus Agaeus-Zool. Miscel. IIT, p. 69 and and 72 -on this character. Certain slight dificrences in the form and relative proportions of the joints of the cxtcrior maxiliary palpi have also induced him to cstablish some others, such as Hridaticus (D. İylneri, trenseresalis, stagnalis, 4-vililutus) : Acrluus (D. sulcatus) : and Trogus (D. lateralis). The last is the only one that can be retained on account of some other characters. The tibie of the posterior legs are short and very wide, and the tarsi are only terminated by a single hook.

 To the species above quoted add D. sulcatus, Fall. ; Clair., Entom. ITclv., II, xx ; -D. costalis, Oliv. Col. III, 40, 1, 7;-D. punctatus, Ib. I, G, 1) and I, e;-D.

[^369]: * The Hyd. gibba, ovatis, scriptu, Fab. ; Hyphydrus lyratus, Sehoenh., Synon. Insect., II, iv, 1.
 + The Dytisei incqualis, reticulatus, confluens, picipes, piclus, gemimus, lineatus, haTensis, duodecim-pustulatus, dorselis, sex-pushtatus, patustris, rlepressus, lituratus, plamus, erythrocephahus, nigrita, gramutaris, Fab. Sce Schonherv, Synon. Inscet. II, genus Hyphydrus;-Panz., Iudex Entom., genus Mydroporus ;-and Clairv., Entom. Helv. II, the same genus.
 \ddagger Dytiscus crassicornis, Fab.; Clairv., Entom. Helv., II, xxxii.
 § The Dytisci fuluus, impressus and obliquus, Fab. See Latr., Gener. Crust. et Insect., I, p. 234 ; Clairv., Entom. Helv., II, genus Hoplitus, XXXI; Panz., Iud. Entom., genus id., and Schœnherr, Synonym. Insect. II, genus Cnemidotus.
 $\|$ But seven are distinctly visible, the first and last of which are the longest.

[^370]: * M. Leon Dufour, Ann. des Sc. Nat., Oct. 1521 , has published some anatomical obecrvations on these Insects. The small intustine is remarkable for its length. The cxeum is not lateral as in Dysticus. The genital organs of the males differ from those of the other Carnivora.

[^371]: * For the other speeies see Oliv., Col. III, No. 41, and Sehœenh., Synon. Inseet., II, No. 55. The Giyr. minutus and bicolor, Fal., are also found in the vieinity of Paris. The largest of the species, all of which are forcign to Europe, have no apparent seutel and but four palpi.
 M. Mac-Leny, Jun.-Annul. Javan. I, p. 30-forms a partieular genus, Dineutes, with those in which the labrum is not ciliate, the palpi are elavate, the anterior legs the length of the body, and the termination of the antenna is partly pointed. He quotes but a single species, the D. politus.
 [is (a) Add to speeies of Gyrinus, the Gyr. americanus, emarginatus, analis and limbatus.-Eng. Ed.

[^372]: * According to M. Dufour, the only cssential difference between their alimentary canal and that of the carnirorous Coleoptcra consists in the absence of the crop. Their biliary vessels are inserted at the same lateral point, and, at lcast in some species, prescnt near the middle a knot or vesiele, not observed in any other Insects. Their sexual apparatus differs greatly from that of the carnivorous Coleoptera. See Ann. des Sc. Nat., Oetob. 1825.
 + Add O. maxillosus, Fab.; Panz, Ib., 20. The remaining Oxypori of Fabricius belong to subgenera of our fourth section. See Oliv. Encyc. Méthod., genus Oxypore, and the Coleopteva Mieroptera, Gravenhorst.
 Wit Staphylinus ulmi, Oliv.; Ross., Faun. Etrusc., I, v, 6 ; Panz., Ib., LXXXVIII, 4 ; Latr., Gencr. Crust. ct Inscct., I, 28t.

[^373]: * See the Monograph of this family-Coleoptera Mieroptera-by Gravenhorst ; Panz., Index, Entom., pars 1, p. 20s, et seq. ; Lat. ib., 1, 285. Refer to this genus the following species of Olivicr: aureus, chens, hamorrhoidatis, oculutus, erythrocephalus, similis, cyaneus, pubescens, cupreus, stercorarius, brumipes, pilosus, politus, amamus, besides those above deseribed.
 + The Staphylini fulyitus, fulmineus, myropterus, clegans, clongatus, ochraccus, alternans, melanocephalus, Gravenhorst.

[^374]: * Pinophilus latipes, Grav., Nortl America. In bis Mantissa it is united to the following genus.
 + See Gravenhorst, Coleop., Microp., and Lat. Gencr. Crust. et Inscet., I, 2 S9. The L. elongatum (S'. clongatis, L.) is figned by Panz., Ib. IX, 12 ;-Staphylinus linearis, Oliv., Col. III, 2, iv. 38. See also Gyllenh., Insect. Suee. I, pars I, p. 363, et seq., and the Catalogue of Count Dejeari, p. 24 .
 \ddagger M. Leferre has brought en Inseet from Sicily allied to Pæderus, hut cvidently forming a new genus. The fourth and last joint of the maxillary palpi is here very distinet, and gives them a clavate termination. The last joint of the antemme is ovoido-conical and larger than the penultimate. The head is connected with the thorax by an elongated pediele, on a level with the former at its origin. The thorax is narrow and elongated. The two anterior tarsi are greatly dilated; the first joint of the others is very long, and their penultimate appeared to me emarginated or bifid. I will distinguish the genus by the name of Procirkus, and this species shall be dedicated to the zealous naturalist who discovered it.
 § Sce Latr., Gener. Crust. ct Insect., I, 1. 290, ct seq. ; and Gyllenh., Insect. Suec. I, pars II, 1. 372.

[^375]: * Evcesthetus scaber, Grav. ; Germ., Faun. Insect. Europ. VII, 13 ; Gyll., Ib., p. 461. A new species has been discovercd by M. Blondel, Jun. in the vicinity of Versailles.
 † Add Staphylinus Juno, Payk. ;-Prederus proboscidens, Oliv., Col. III, 44, I, 5 ; —Staph. clacicornis, Tanz., Faun. Inscet. Germ. XXVII, 2. See Gravenhorst, Coleop. Mierop. ; Lat., Gener. Crust. et Insect., genus Stenus, and Gyll., Ibid., p. 463.
 \ddagger With the exception of the Tachini, the anterior tarsi are no longer remarkably dilated.
 § See Encyc. Méthod., article Oxytele; the Monog. cit. of Gravenhorst, and the Insect. Suec., Gyll., I, pars II, P. 444.

[^376]: * See Dalman, Anal. Entom. p. 23; his Z. fronticornis, IV, f. 1, appears to be the Oxytchus bicornis, Oliv., Encyc. Méthod. The one he calls penicillatus, Ib.f.2, appears to be closcly allied to the Piestus sulcatus, Gravenhorst. The Leptochirus scoriaceus, Germ., Insect. Spec. Nov. I, 1, is a very distinct species.
 + Siagonum quadricorne, Kirby and Spence, Introd. to Entom. I, 1, 5 ; Blondel, Ann. des Sc. Nat. Λ vril 1817, XVII, 14-17.
 \ddagger Omalium rugnsum, Gravenhorst, and other species with short elytra.
 § See Gravenhorst, Encyc. Méthod., art. Omalie, and Gyll., Ib., p. 198.
 I| See Latr., Gcner. Crust. et Insect., I, 296, 297 ; Gravenhorst and Gyllenhal genus Anthophagus.

 If See Lat. Gencr. Crust. et Insect., IV, 377 ; Omalium porcatum, Gyll., Insect. Suec., I, pars II, p. 211 ; Micropeplus porcutus, Charp., Horæ Entom., VIII, 9 ; O. staphylinoides, Gyll., Ib. p. 213.

[^377]: * See Lat., Ib. I, p. 298, and the Omal. ovatum and macropterum of Gravenhorst.
 + Staphylinus canaliculatus, Fab. ; Panz., Ib. XXVII, 13 ;-Staphylinus impressus, Oliv., Col., Ib., v, 41 ;-S. bolcti, L.; Oliv., Col., Il., iii, 25 ;-S. collaris, ejusd., Ib. vi, 53 ;-S. socialis, ejusd., Ib., iii, 25, and generally the three first families of the genus Aleochara, of Gravenhorst, Col. Mie., II. See also Gyllenhal, Inseet. Suee. I, pars II, p. 377. We should remark, however, that neither this author nor Gravenhorst has assigned clear and rigorous characters to the Aleocharæ and Lomechusæ; both these genera demand revision.
 \pm In some, the thorax is smooth and without an elevated margin; sueh are the Aleoeharæ bipunctata, lamuginosa, nilida (Stapluylinus bipustulatus, L.; Oliv., Col., III, $42, \mathrm{v}, 44$), fumata, nana, Gravenh., or his families III-VI, Col. Mierop., II. The margin of the thorax is turned up in the others forming lis genus Lomcchusa; L. paradoxa; Stapliylinus emarginalus, Oliv., Ib., ii, 12 ;-L. dentata, Grav.; Sta= phylinus strumosus, Payk., V.
 § Oxyporus subtcraneus, Fab.;-O. bipustulatus, cjusd., Panz., Faun. Insect. Germ., XVI, 21 ;-O. marginellus, Panz., Ib., IX, 13 ; Staplyylinus fuscipes, Ib., XXVII, 12 ;-Oxyporus suturalis, Ib., XVIII, 20 ;-O. pygmceus, Ib. 27 ;-O. ไunulatus, Ibid., XXII, 19, 15 ;-Staphylimus atricapillus, F.;-Oxypomes mordarius, Panz., Ibid, XXVI, 18 ;-Stapluplinues striatus, Oliv., Ib., v, 47 ; S. lunatus, L. See also for this, as well as the following subgenus, the Insect. Suee., Gyll., I,
 pars I. Some excellent remarks will there be found respeeting the sellall pars I. Some excellent remarks will there be found respecting the sexual differences of several speeies, the applieation of which may he rendered highly useful.

 Those Tachini in which, as in the atricapillus, the thorax is nearly as long as it

[^378]: * The Cebrioncs are an exception, and approximate, in this respect, to the Elaterides; but the inferior extremity of the præsternum does not advance under the head. The mandibles project, are arcuated and simple; the palpi filiform ; the legs non-retractile, and the two anterior oncs somewhat removed, at basc, from the anterior extremity of the thorax, and elosely approximated.
 + The Insects of this tribe also differ from all others of the family in their tracheæ which are vesicular-in the rest they are tubular. See Obs. Anatom., of M. Leon Dufour.

[^379]: * See the other species quoted by Fabrieius, Syst. Eleut., II, 218 ; and as to the divisions that are to be established in the genus, see Schonherr, Insect. Synon.
 + Buprestis emarginata, Fab. ; Oliv., Ib. X, 116; Germ., Faun. Insect. Europ., III, 9 ;-Bup. lineola, ejusd., Ib., 10.
 (a) Add of this beautiful and numerous genus the B. confluenta, lateralis, atropurpurcus, 6-guttata, gibbicollis, granulata, viridicornis, geminata, divaricata, longipes, cyanipes, campestris, \&e. \&e., for the deseriptions of which, see say's paper on Coleopterous Insects, \&c.; Jour. Acad. Nat: Se. of Philad. III, p. 159, et seq.Eng. Ed.

[^380]: * Melasis baprestoides, Oliv., II, 30, 1, 1;-Mclasis clateroides, Illig., differing, according to him, from the Elater buprestoides, Lin.

[^381]: * I have seen threc speeies, all from Brazil. One of them has many points of resemblance to the Melasis tuberculata, Dalman-Anal. Entom. The maxille terminate in a very small and pointed lobc.
 + Count Mannerheim has publishod a splendid Monograph of this subgenus, an extract from whieh, with the plates, is found in the third volume of the Annales des Seiences Naturelles, accompanied by some observations from mysclf on the too great cxtent given to the subgenus by that author. The speeies he calls the capucinus is in my opinion the only one that belongs to it, and such was the original idea of him who established it.

 II Elater oralis, Germ. ;-Elater fuscus, Fab., and some others from the East Indies, collected there by M. de Labillardiere.

[^382]: * Dalm., Ephem. Entom., 1824. His Lissomus punctulatus is closely allied to the Drapetes castaneus of Count Dejean, and the Elater larigutus of Fabricius.

 One species of this subgenus is found in Europe, the Elater equestris, Fab. ; Panz., Faun. Insect. Germ., XXXI, 21.
 N. B. Messis. Lepelletier and Serville-Eneyclop. Méthod., Insect., X, 594-have formed a little group, with various speeies of Elater, composed of three genera, and characterized by the presence of the elongated and lobe-like pellets with which the inferior surface of the four first joints of the tarsi are furnished. The first of these genera, Lissone, or the Lissomus, Dalm., is distinguished from the two others by the antennæ which are closely approximated at base; in the others they are remote. Those of the genus Tetralobus are flabelliform in the males. In the third or Pericallus, they are simply serrated in both sexes. The Elater flabellicornis, Fab., belongs to the first, and consequently this genus is a division of that which I have named Hemirhipus. The Elaterides ligneus, suturalis, furcatus, \&e., Fab., belong to Pericallus, which will then comprise all the species of my Ctenicera, whose tarsi present the general charaeter above mentioned.
 † Fab., Syst. Eleut., I, 101 ; Lat., Gener. Crust. et Inscet., I, viii, 7, and II, 44 ; Dalm., Ephem. Entom., 1S24, p.29. This genus is also found in the sonthern section of North Ameriea, where however it is very rare.
 \ddagger Elater dermestoides, L. ; E. clavicornis, Oliv., Coll. II, 31, VIII, 85, a, h; Dermestes adstrictor, Fab. ; Panz., Faun. Insect. Germ. LXXV, 15. Its larva inhabits oak wood.

[^383]: * Lat., Gener. Crust. et Insect., M $^{\top}, 375$. The Malasis sphondyloines, Germ., Faun. Insect. Eur., XI, 5, is closely allied to the female of the species which is the type of the subgenus. 'The Melasis picea, Palisot de Beanvois, Insect. d'Afi', et d'Amer., VII, 1, has also some analogy to the Ceropliyta.

 ## \dagger Eunemis filum, Manner.

 \pm Elater Habellicornis, Fab. ;-E. fascicularis, Id., \&c.
 § The Elat. pectinicornis, cuprous, hamatodes, Fab.; -the Taupin double croix, Cuv., Règn, Anim. IV, xiv, 3.

[^384]: * The anterior extremity of the head is sometimes on a level with the labrum, or on the same horizontal plane; at others it is more elevated, and terminated suddenly; but these differenees, frequently impereeptible, eannot be used to establish generie sections-my genus Ludia requires a re-examination.
 + M. de la Cordaire who has examined the living Inseet informs me than the principal reservoir of the phosphoric matter is situated inferiorly near the junction of the thorax with the abdomen.

[^385]: * For the remaining species, scc Oliv., Ib.; Panz. Faun. Inscet. Germ., and his Ind. Entom.; Herbst., Col., and Palisot de Beauvois, Inscet. d'Afr. et d'Amér. The genus of Dima of M. Ziegler, a specics of which, called clateroides, has been figured by M. Charpentier in his Hore Entomol., YI, 8, presents no character by which I can clearly distinguish it from the precceding onc.
 + Sce Fischer, Entom. Russ., II, p. 153. This subgenus comprises the Elater linearis, L., of which his mesomelas is a mere varicty; the E. borealis, Gyll., and his E. cinctus.
 \ddagger Count Dejean liaving collected but a single specimen, I could not dissect it, and therefore was unable to study its characters in detail. Two Insects from Java present a similar appearance, only here, and probably in the females, the antenme are simply sermated. The mandibles appeared to me to terminate in an entire or chentated point. The last joint of the palpi is somewhat larger and abmost obconical. If the mandibles of the Phylloceri be similar, these exotic species must be their congeners.

 US (a) Of the numerous and beautiful species of Elatcrides, we will add the E. areolatus, dorsalis, bellus, recticollis, obesus, erytropus, ocu'atus, myons, convexa, triangularis, mancus, basilaris, auripilis, abbreriata, biseclus, rubricollis, ©ic., icc., むic. See Say's paper on Coleop. Insects, \&ic. Jour. Ac. Nat. Sc. of Philad. IHI, 1. 167, et seq.-Eng. Ed.

[^386]: * Cebrio brevicornis, Oliv., Col. II, 30, his, I, 2, a, b, c; Tenebrio dubius, Rossi, Faun. Etrusc. I, 1, 2. This female, on account of her antennie, appeared to me to form a now genus, which I accordingly cstablished under the nane of Hammonia. A species is found at the Cape of Good Hope, each joint of whose antenne throws out a long and linear branch from the base of its internal side, and whose palpi terminate in an ovoid joint, and not in the form of a reversed cone, as in the other species. This latter may be separated from them.
 + Palisot de Beawois, Insect. d'Afr'. et d'Am., I, 1, 2, a, b.
 \ddagger The Ccb. fuscus and mficollis, Fab., have the form of the species he ealls the gigas. The seeond was hrought from Sieily by M. Lefévre. The Cebrio femoratus, of Germar, does not belong to the genus Anelastes of Kirby, as I once sup. posed.

[^387]: * The third is longer than the preceding and following onc, whilst in Cebrio, this joint and the second arc shorter than the fourth and following ones. These organs, like those of the Elaterides, seem to be composed of twelve joints, the eleventh being suddenly contraeted near the extremity, and terminated by a point having the appearance of a little conieal or triangular joint.
 † Sandalus petrophya, Knoch, N. Beyt., I, p. 131, v. 5,- S. niger, Id. Ib.

[^388]: * Rhinicera marginata, Lat., Cuv., Règn. Anim. III; Kirby, Lin. Trans., XII, xxi, 3 ;-Polyfomus marginatus, Dalm., Anal. Entom. p. $22 ;-P$.fenoratus, Id. Ib. 21 ;-P. mystacinus, Id. Ib. 22 ; Ilispa mystacina, Fab. ; Drur. Ins. III, viii, 7. I have seen another species in the collection of Count Dejean, entirely fulvous, sent to him from America by Major Le Conte.
 \dagger Ptylodactyla elaterina, Illig.; Pyrochroa nitida, De Geer, Ins., T, xiii, 6-17.
 \ddagger Atopa cerrina, Fab.: A. cincrea, var., Id.; Plinus testaceo-rillosus, De Geer, IV, ix, 8 ; Cistela cerrina, Oliv., Col., III, 54, 1, 2, a.
 § The first division of Cyphon, Fab.
 II The second division of Cyphon, Fab. Sce the Catalogue, \&e. of Dejean.

[^389]: * Eucynelus hcemorrhoidelis, Germ., Faun. Insect. Europ. V, ii. Sce Catal., \&c., Dej.
 + Cyphon palustris, Germ., Ib, IV, 3.
 YOL. III.

[^390]: * The Lyc. latissimus, rostratus, proboscidens, ※゙c., of Fabricius. For the other species, sec Schæuherr, Synon. Ins., I, pars III, App., where several are described and figured.
 \dagger The Lyc. reticulatus, bicolor, serraticomis, fasciatus, aurora, sic.
 \pm See Encyc. Méthod., articlc Omalise.

[^391]: * Besides the experiments detailed in the Ann. de Chimic, sce the Ann. Génér. des Sc. Phys., of Messrs. Bory de Saint-Vineent, Drapiez et Van Mons. VIII, p. 31, where will be found the researches of M. Grotthuss on the phosphorescence of the Lampyris italica.

[^392]: * Lampyris plumicornis, Lat., Voy. de MM. Mumboldt and Bonpl., Zool. XVI, 4 ; Amyletes apicalis, Germ., Insect. Spec. Nor., p. 67.
 † Illig., Mag., VI, p. 342 .

[^393]: * Sce Amn. des Sc. Nat., Juillet et Aout 1524, and Bullet. de la Soc. Philom., Avril 1824.
 i- + For the other species, see Schocnherr, Synon. Insect., II, Y. 60, and Panz., Ind. Entom., p. 91.

[^394]: * Lat. Gen. Crust. et Insect. I, 261 ; Schœnh., Id. II, p. 73 ; Panz., ld., p. 73. The Teleph. biguttatus and minimus of Olivier belong to this genus.

[^395]: * See op, cit. and Schœuh., Synon, Iusect., II, p. 67.
 + For the other specics, sec Fabricius; the Mélyres of Olivier, 6-17; Panz, Ind. Entom, p. 143 ; Lat., Gener. Crust. et Inscet. I, י. 264 ; Germ., Insect. Spec. Nov. Brazil produces tolerably large ones, some of which form a particular division.
 \pm M. viridis, Fab. ; Oliv., Col. II, 21, i, i ;-M. addominalis, Fab. ; Oliv., Ib., I, 7; Opatrum granulatum, Fab.; Coqueb., Illust. Icon. Insect., III, xax; 7.

[^396]: * Catalogue, \&c., Dej., p. 115 ; Notoxus Illiyeri, Schœen., Synon. Inscct., I, 2, p. $53, \mathrm{IV}, 7$, a. I refer to the same division of Melyrides, a new subgenus which I will call Diglobicerus. The antennæ consist of but ten distinct joints, of which the two last are larger and globular. It is founded on an insect sent to me by M. Lefébure de Cérisy.

[^397]: * Tillus clongatus, Oliv., Col. II, 22, 1, 1; Chrysomela clongata, L. ;-Clerus unifasciutus, Fab.; Oliv., IY. 76, ii, 21. The antenne of the first are serrated from the fourth joint, and the thorax is cylindrical. In the second, the antennæ from the sixth joint terminate in a serrated club. The thoran is narrowed posteriorly. The last joint of the maxillary palpi is longer, in proportion, than that of the first species, and is compressed.
 \dagger The inscets of this subdivision compose the genus Clairon, properly so called, of Geoffroy; M. Dufour admits that the posterior tarsi consist of five joints, the first of which is very short ; the same joint is rudinental in the intermediate tarsi, and wantingin the two that are an terior.

[^398]: * Altelabus formicarius, L. ; Clervs formicorius, Oliv., Col. IV, 76, 1, 13 ; Clerus mutillarius, Fab. ; Oliv., Ib., I, 12.
 \dagger Alielabus mollis, L.; Clerus moilis, Oliv., Ib., I. 10.
 \pm The genital organ of the male is mueh more complicated than that of the Melyrides, Lampy:ides, and other Melacodermi. The last abdominal annulus is widely emarginated. They and the Peltes of Fabricius are the only Coleoptera which hare six biliary vesscls-they are inserted into the ciccum.

[^399]: * Sce Olivicr, genus Necrobie and Schocnh., Synon. Insect. I, 2, p. 50.
 + Tillus seraticornis, Oliv., Coll. II, 22, 1, 2;-T. W'eberi, Fab.;-T. damicornis, Id.;-T. dermestö̈des, Schefi., Elem. Entom., 138 ;-Corynetes sanguinicollis, Fab. See Schœnh., Synon. Insect., I, 2, p. 46.

[^400]: * It appears to me that this species belongs to the genus Henobia of the Catalogue of Dejean. It differs from Ptinus in the antenne, which are more remote from each other, and slightly scrrated, and particularly in the tarsi which are short and composed of wide and almost cordiform joints, the last one particularly ; the hooks of the latter are almost always concealed. In Ptinus these tarsi are straight ; and their last joint resembles a reversed cone. The antenne are approximated at base.
 + For the synonymes of the speeies of this genus, see Sehæenh., Synon. Inseet. II, 106 .
 \pm Ptinus scotias, Fab.; Oliv., Col. Ib. I, 2; Panz., Faun. Insect. Germ., V, 8 ; -P. sulcatus, Fab.

[^401]: * Ptilinus pectinicornis, Fab. ; Oliv., Col. II, 17, bis, 1, 1 ;-P. pectinatus, Fab.; -P. serratus, Id. ; Ptinus denticomis, var.; Panz., Ib. VI, 9 ; XXXV, 9.
 + Plilinus pallens, Germ.;-Pimus serricornis, Fab, In the Ochina hederre, the antemme are somewhat larger than those of the Xylctini, rather less serrated, the seeond and third joints almost equal in length. I have not examined the other speeies of Oehinx mentioned by Count Dejean in his Catalogue:
 \ddagger Dorcatoma dresdensis, Herbst., Col, IV. xxxix, 8.

[^402]: * See Schonh., Synon. Insect., I, 2, p. 101. Some of the species of Fabricius belong to the genus Cis.

[^403]: * The Lymexylon proboscideum of Olivier, from which he took his description, and which is now in the cabinct of Count de Jousselin of Versailles, should form a separate genus. See also the Lymexylon fabellicorne of Panzer, Faun. Insect. Germ., XI, 10.
 \dagger The last joint, at least that of the maxillary palpi, is somewhat thicker and aimost ovoid.
 \ddagger Cupes Capitata, Fab.; Lat., Gener. Crust. et Inseet., I, viii, 2; Coqueb., Illust. Icon. Inseet., III, xxx, 1.

[^404]: * Rhysoiles acuruds, Dalm., Aumbect. Entota, ! 93. This specirs hat lately been ciscovered hy N. Lén Dufum in the Pemenes.
 + An approximation which apperse in us to result from the orreans of manducation and the habita.
 vol. 111.

[^405]: * Mustigus palpalis, Lat., Gener. Crust. et Inseet., i, 281 ; viii, 5. Sec Schœnh. Synon. Inscet. I, ii, p. 59, and Klïg, Entom. Monog., p. 163.
 \dagger Scydmanus Helwigii, Fab.; Notoxus minutus, Panz., Faun. Insect. Germ. XXIII, 5 ;-S. Godarli, Lat., I, viii, 6 ;-S. hirlicollis? Gyll.;-S. minutus, Id.; Anthicus minutus, Fab. See Schœenherr, Synon. Inseet. I, ii, p. 57. M. Duros, of the King's body-guard, who is peeuliarly fortunate in discovering small species, has deteeted the S. clacalus, Gyll., in an Ant-hill near Paris. This fact, with some others, confirms me in my opinion that these Insects, with the Pselaphii, immediately follow the Brachelytra.

[^406]: * Hist. Monog., p. 101, et sea.
 + Hister picipes, Tab.; Payk., Ib., VIII. 5;--H. fituicomis, Id., VIIT, 6;-II. oblongus, Id., İ, 3.
 \pm A. punctatus, Id., VII, 5.
 § The II. globosus, Payk., YIII, 2, is referred by Leach to his genus Abrous, and also the II. minutus, Id., VIII, 1; to his Onthophilus, he refers the Hist. striatus.

[^407]: Payk., Ib., XI, 1 ;-1H. sulrahts, X, 8 ;-the hispidus, Id., XI, 2, appears to be congeneric. The genus Ceutocerus of Germar, Insect. Spec. Not., I, p. S5, 1, 2 , from the form of the antenne, lems, \&ce, would naturally seem to come atter the Histeroides, but the elytra cover the albdomen and the mandibles are not salient. I have never seen a specimen of this genus.

 * Dentations, however, are sometimes found on the internal side, as in Sphrerites.
 + Dufts., Faun. Aust., I, p. 206; Hister glabratus, Fab. ; Sturm, I, xx; Serapus, Fisch., Mem. of the Soc. of Nat. Hist. of Moscow.

[^408]: * For the other specics, sec Falb., Oliv., and Schœenherr, I, ii, p. 117.
 + Silpha littoralis, Fab., Oliv., Col., II, i, 8, a, b, c;-S. surinamensis, Fab., Oliv., Ib., II;-S. lachrymasa, Schreib., Lin. Trans., VI, xx, 5;-S. indica, Fab., \&cc.

[^409]: * Silpha simuata, Fab.; Oliv., Ib., II, 12 ;-S. dispar, Illig., Gyllenh., \&c.
 † Add, S. rugosa, Fab.; Oliv., II, Ib., 17 ;-S, laponica, Fab.
 \ddagger Add, S. opaca, Fab.; Herbst., Col., LI, $16 ;-S$. tristis, Illig., \&c.

[^410]: * S. atrata, Fab.;-S. pedemontana, Id., var. ; Oliv., Ib., I, 6.
 + Argyrtes castaneus, Gyllen., Inscct., Suec. I, iii, p. 682; Mycctophayus castaneus, Fab.; M. spinipes, Panz., Faun. Insect. Germ. XXIV, 20. I suspect the A. submger, Dej., is merely the female.

[^411]: * Lat. Gener. Crust. et Insect., II, p. 26. See the Monograph of this genus, published by M. Spence in the Lin. Trans., and Paykull and Gyllenhal.
 + Lat. Ib., p. 30, V1II, ii ; Oliv., Encyclop. Méthod., article Myleque.
 3 (a) Oliv., Col. II, 20. The Americans bave a: least one species, the S. 4-gultatum, Knoch, Melsh. Catal., if not another, the S. 4-pustulatum? Id. Ib. Sce Say, Journ. of the Acad. of Nat. Sc. of Philad. III, 199.-ENG. Ed.

[^412]: * Lat. Gener. Crust. et Insect. II, p. ก, and I, xvi, 1 .
 + See Fabricius, Gyllenhal, and Schouherr.
 \pm Some of the species of Fabricius should apparantly be referred to his genus Engis.

[^413]: * Sce Fabricius, Olivier, Gyllenhal, Schoenherr, \&c.
 + See Gyllenh., Insect. Suec. I, p. 245.
 \pm See Schenh., Synon. Insect. I, ii, p. 95.
 || Certain Cytophagi, or at least their males, according to some authors are heteromerous.

[^414]: * See Fab., Syst. Eleut.
 + Sec Schænh., Synon. Insect., I, ii. p. 96.
 The antenne of the Antherophagi are proportionally thicker, composed of more transsersal joints, and terminated almost gradually in a club; from the scond to the cighth they are nearly equal. The Cryptophayus sitaceus, Gyll., has a projection in the form of a tooth or horn on eaci side of the infcrior surface of the head. The Triphylla of Megerl. and Dcj. only differ from the Crytophagi in the number of their tarsial joints.
 \pm Niitdula orbrculata, Gyllenh.

[^415]: * The only exceptions are found in the Dermestes undatus (Megatoma) of Fabricius, and the Limnichi, Ziegl.
 + Add D. vulpinus, murinus, affinis, laniarius, tasselatus, trifasciatus, Gyll., Insect. Suec., I, p. 145, et seq.
 \ddagger Add the Dermestes megatoma, Fab., of which his macellarius appears to be the female;-D. emarginatus, Gyll.;-D. undatus, Fab. The presteraum in this latter species projects over the mouth.

[^416]: * Byrrhus sericeus, Duft. ; B. pygmeus, Sturm.
 + Dermestes serra, Fab. ; Attagemus serra, Lat., Hist. Nat. des Crust. et des Insect., IX, p. 244 ; Megatoma serra, Id., Gener. Crust. et Insect, I, viii, 10 ; Anthrenius riennensis, Herbst., Col. VII, cxv, 10, k.
 \pm Anthremus clongutus, Fab). A. rufieornis, Lat. Gen. Crust. et Insect., II, p. 59 ; -A. versicolor, Creutz., Ent. Vers., I, ii, 21, a;-Dermestes subfaseiatus, Gyll., Insect. Suec., I, p. 155.

 II See Oliv. Ib., and Fabricius, Syst. Elcut., I, p. 106.
 § Megatoma rufitarsis, Lat., Gener. Crust. et Insect., II, p. 35 ; Dermestes rufitarsis, Panz., Faun. Insect. Germ., xxxv, 6.

[^417]: * In the Anthreni all the tibix fold against the posterior side of the thighs ; but in the others, the two that are anterior are flexed towards the had, and the other behind.
 + Lat., Ib., II, p. 4:3; Oliv., Encyc. Nédhod., article Nosodemle.
 \ddagger Anthrenus hirtus, Fab.; Panz., Maun. Yissct. Gerin., XI, 16.
 II Byrrhus evinaceus, Ziegl.:-3. sefiger, Illig.

[^418]: * For the other specics, see Fabricius, Olivicr, Schoenherr, Gyllenhal, \&c.

 The genus Murnidius, Leach, according to that gentleman, belongs to this tribe. The antennx are composed of but ten joints, the last of which forms an ovoido-globular club. Sce Lin. Trans., XIII, p. 41.

 + The Potamophili excepted.
 \ddagger We might also divide the section in the following manner:-
 I. Antennæ composed of cleven joints.
 A. Antennæ clavate and very short.
 a. Tibix spinous; tarsi quadri-articulated.

 Heterocerles.
 b. Tibix simple; five joints in the tarsi.

 Potamophilus. Dryors.
 B. Antenne filiform or slightly enlarged near the end, as long as the head and thorax.

 ## Elemis.

[^419]: * Regn. Anim., III, p. 26 s .
 + Parnus acuminatus, Fab.; Panz., Faun. Insect. Germ., PT, 8;-Dryops picipes, Oliv., III, 41, 1, 2 .

[^420]: * Latr. Gen. Crust. et Insect., II, 55 ; Schœnh., Synon. Insect, I, ii, p. 116 The Dryops Dumerilii presents some differences in the length of the legs, the form of the antennæ and thorax, which have induced Doctor Leach to form a separate genus-Dryops-for it. The other specics re-enter Purmus.

 卜 Latr., Ib., II, p. 49; Schœnh., Ib. I, ii, p. 117 ; Gyllenh., Inscct. Succ. I, p. 551 .
 \ddagger Macronychus quadrituberculatus, Müll.; Illig., Mag., V'; Lat., Gener. Crust. et Insect., II, p. 58 ; Parnus obscurus, Fab. ; Germ., Inscet. Spec. Nov., I, p. 89.
 || Pimelia pygmaa, Fab., Georissus pygmous, Gyll., Inscct. Succ., I, iii, p. 675 ; Trox dubius, Panz., Faun. Insect. Germ. LXXII, 5.

[^421]: * "The conformation and structure of the male organs of generation in the Palpicornes fully justify the position in the cntomological scrics, assigned to them by M. Latreille."-Leon Dufour, Ann. des Sc. Nat., VI, 1. 172.
 + The Elophori of Fabricius, those species excepted which belong to the following subgenera.

[^422]: * Elophorus elongatus, Fab.;-15. crenatus, Id.;-lrevis, Gyllenh. See Germ., Insect. Spee. Nov. I, p. 90.
 $+E$. pyymaus, Fab.;-Hydrana riparia, Lat.;-Itydrena margipallens, Lat.; - Elophorus marinus, Gyll. See Germ., Ib., p. so.
 \ddagger E. minimus, Fab. Gyll.; Kiyprenu ripariu, Kugel. ; IT. lonyipalpis, Schnonh., Germ., Faun. Insect., Eur. VIII, 6. For the other species, see Germ., Inscet. Spee. Nov., I, p. 93.
 § Spercheus emarginatus, Fab.; Panz., Faun. Inscet. Germ., XCI, \&. M. Bourdon, a French naturalist who is now exploring Colombia, first diseovered this species in the vieinity of Paris.
 || It would seem to come more naturally near that of Berosus, Leaeh; but on aceount of the number of the antennal segments, I think it best to place it direetly after Spereheus. This order, however, might be reversed by commeneing with those subgenera which have nime joints in the antenme, and cnding with those in which there are three legs, or with Globaria and Spereheus.

[^423]: * Zool. Miscel., III, p. 94.

[^424]: * To the Hydrous, Leach, besides the piceus,, refcr the following speeies of Fabricius: the aler, olivaceus, rufipes, \&c. Those, which the latter calls carciboides, ellipticus, \&c., are Hydrophili properly so called of Leach.
 † H. griseus, truncatelhus, Fab.

[^425]: * The Hydrobii scarabroides, melanocephalus, orbiculuris, \&e.
 + H. luridus, Fab.
 \pm See Elater and several other genera of the Coleoptera.
 § The Sphæridia unipunctatum, melanocephalum, \&-.; Zool., Miscell., III, p. 95.
 If For the other species, see Olivier, Sehœenherr, Gyllenhal, Dejean, \&ic.

