


$$
x+
$$

## THE MECHANICAL

 ENGINEER'S EFERENCE BOOKA HAND-BOOK OF

ГABLES, FORMULAS, AND METHODS OR ENGINEERS, STUDENTS, ,AND DRAFTSMEN

## BY

HI.NRY HARRISON SUPLEE, B.Sc., M.E.
MEMBER AMERICAN SOCIETY OF MECHANICAL ENGINEERS MEMBRE DE LA SOCIÉTÉ DES INGÉNIEURS CIVILS DE FRANCE MITGLIED DES VEREINES DEUTSCHER INGENIEURE MEMBER OF THE FRANKLIN INSTITUTE

THIRD EDITION, REVISED AND ENLARGED


PHILADELPHIA $છ$ LONDON
J. B. LIPPINCOTT COMPANY

Copyright, 1903, by J. B. Lippincott Company, Copyright, 1904, by J. B. Lippincott Company. Copyright, 1907, by J. B. Lippincott Company.


Electrotyped and Printed by J. B Lippincott Company, Philadelphia, U. S. A.

## PREFACE

IN preparing a hand-book for engineering reference it is necessary to select from among a great mass of detailed information the matter which shall be most generally available. Naturally, the differentiation which hastaken place in the science of engineering makes it desirable that some one department of work shall predominate, and, as indicated in the title, this book is devoted principally to the presentation of tables, formulas, and reference data for mechanical engineers. It istherefore, purposely full in the portions relating to machine design and to such information as will render it useful in the drawing room and in the designing department, the intention being to render it arailable broadly in furnishing a record of general principals, as well as of detailed methods.

The many and varying rules and formulas existing in this connection have been carefully examined, and only those which in the judgment of the author are most generally applicable have been given, since the presentation of a mass of data, much of it contradictory, throws the burden of selection upon the user. In this portion of the work the author has sought to relieve the user of the necessity of selecting from among a mass of contradictory information the matter of the most general value, leaving special work to be conducted-as it should be-under the control of special investigation.

In view of the fact that the metric system has been under active discussion of late, a number of the tables have been presented in both British and metric units, so that those engineers who are desirous of using the latter system may do so. Among these tables may be mentioned the metric steam tables, which render it convenient for steam computations to be made in the metric system.

This work is intended to be a successor to the well-known pocket-book written many years ago by the late John W. Nystrom, and published by Messrs. J. B. Lippincott Company. The plates and stock of that valuable work having been destroyed by fire in 1899, certain of the information therein contained has been utilized, with such modifications as are necessary to meet engineering problems and needs of the present.

Among the valuable works to which acknowledgments are due in the preparation of this hand-book may be mentioned Reuleaux's "Constructor," Unwin's "Machine Design," Weisbach's "Ingenieur," "Des Ingenieurs Taschenbuch Hütte," the Smithsonian Physical Tables, and the hand-books of the Pencoyd Iron Works and the Passaic Steel Company, as well as the various authorities mentioned in the text.

## HENRY HARRISON SUPLEE.

December, 1903.

## PREFACE TO THE SECOND EDITION

In this edition such errors as have been discovered in the first edition have been corrected, some matter has been added in the Appendix, and the Index has been enlarged.
H. H. S.

September, 1904.

## PREFACE TO THE THIRD EDITION

The third edition of this work has been extensively revised and enlarged, nearly 100 pages of new matter having been added, including extensions of the mathematical tables, data upon ball bearings, machine elements, fuel tests, steam turbines, and electrical installations. The errors discovered since the appearance of the second edition have been corrected, and the whole work re-indexed, the index being made fuller and more detailed.

The author desires to express his appreciation of the interest and assistance extended by many friends, and especially to acknowledge the valued work of Mr. C. H. Tutton in re-computing and extending the tables for the computation of the perimeter of the ellipse.
H. H. S.

June, 1907.

## CONTENTS

PAGE
Mathematics. ..... 5
Factor Table ..... 7
Powers and Roots ..... 25
Interest ..... 58
Weights and Measures ..... 60
Monetary Systems ..... 63
Metric System ..... 65
Metric Conversion Tables ..... 66
Algebra ..... 78
Binomial Theorem ..... 78
Arithmetical Progression ..... 79
Geometrical Progression ..... 79
Equations ..... 80
Logarithms ..... 81
Table of Logarithms ..... 84
Geometry ..... 107
Table of Chords ..... 109
Table of Polygons ..... 110
The Circle ..... 111
Tables of Circles ..... 112
Ares and Segments of Circles ..... 121
The Ellipse ..... 128
The Parabola ..... 132
The Hyperbola ..... 134
Areas of Plane Figures ..... 135
Surfaces of Solids ..... 137
Volumes of Solids ..... 138
Mathematics.-Continued. ..... PAGE
Trigonometry ..... 140
Trigonometric Tables ..... 141
Natural Trigonometric Functions ..... 142
Logarithmic Trigonometric Functions ..... 187
Differential and Integral Calculus ..... 238
Mechanics ..... 242
Statics ..... 242
Funicular Polygons ..... 245
Centre of Gravity ..... 250
Statics of Framed Structures ..... 255
Wind Stresses ..... 262
Framed Beams ..... 263
Bridge Trusses ..... 265
Motion ..... 267
Falling Bodies ..... 267
Accelerated Motion ..... 267
Retarded Motion ..... 268
Tables of Falling Bodies ..... 270
Leverage ..... 275
Dynamics ..... 276
Revolving Bodies ..... 280
Radius of Gyration ..... 281
Central Forces ..... 282
Pendulum ..... 284
Impact ..... 286
Friction ..... 288
Journal Friction ..... 289
Materials of Engineering ..... 290
Specific Gravity ..... 292
Weight of Iron ..... 294
Weight of Sheet-metal ..... 302
Materials of Engineering.-Continued. ..... PAGE
Weight of Spheres ..... 305
Weight of Cast-iron Pipe ..... 307
Weight of Rivets ..... 309
Weight of Bolts ..... 310
Screw Threads ..... 312
Machine Screws ..... 316
Pipe Dimensions ..... 318
Boiler Tubes ..... 323
Wire Gauges ..... 324
Weight of Wire ..... 325
Chain ..... 327
Glass ..... 328
Slate ..... 329
Tin Plate ..... 330
Lead Pipe ..... 331
Corrugated Iron ..... 332
Timber ..... 333
Board Measure ..... 334
Spikes and Nails ..... 335
Screws ..... 336
Extra Strong Pipe ..... 337
Riveted Hydraulic Pipe ..... 339
Standard Flanges ..... 341
Cast-iron Pipe Fittings ..... 347
Angle, Globe, and Check Valves ..... 351
Gate Valves ..... 352
Pipe Unions ..... 353
Eye Bars ..... 355
Wire Rope ..... 357
Steel Wire ..... 365
Strength of Materials ..... 366
Tension ..... 368
Strength of Materials. - Continued. ..... page
Compression ..... 370
Shearing ..... 370
Bending ..... 371
Elements of Rolled Sections ..... 373
Structural Sections ..... 376
Rolled Beams ..... 380
Rolled Channels ..... 382
Bending Moments of Beams ..... 384
Thrust ..... 388
Struts. ..... 390
Z-Bars ..... 396
Tee Bars ..... 399
Angle Bars ..... 400
Cast-iron Columns ..... 411
Torsion ..... 413
Internal Pressure ..... 417
Springs ..... 418
Specifications for Structural Steel ..... 423
Timber. ..... 425
Wooden Beams ..... 428
Wooden Pillars ..... 430
Tables of Strength of Materials ..... 431
Machine Design ..... 436
Riveting ..... 436
Bolts ..... 440
Keyed Fastenings ..... 443
Journals ..... 444
Pivots ..... 447
Shafting ..... 448
Bearings ..... 454
Ball and Roller Bearings ..... 460
Couplings ..... 462
Machine Design.-Continued. ..... PAGE
Levers ..... 465
Cranks ..... 467
Connecting Rods ..... 468
Eccentrics ..... 471
Cross-heads ..... 473
Gearing ..... 474
Belts and Pulleys ..... 493
Rope Transmission ..... 504
Heat ..... 507
Thermometers ..... 508
Coefficients of Expansion ..... 512
Fusing-points ..... 515
Expansion of Gases ..... 515
Heat Units ..... 516
Specific Heat ..... 521
Latent Heat ..... 522
Radiation ..... 523
Heat Emission ..... 524
Heating ..... 526
Air ..... 528
Compression and Expansion of Air ..... 529
Air Transmission ..... 532
Compressed Air ..... 533
Flow of Air ..... 536
Movement of Air ..... 541
Air Friction ..... 542
Atmospheric Pressure ..... 546
Barometric Tables ..... 547
Nater ..... 551
Tables of Properties of Water ..... 552
Water.-Continued. page
Water-heads and Pressures ..... 557
Water-heads and Velocities ..... 560
Flow of Water through Pipes ..... 561
Flow of Water in Open Channels ..... 569
Wèir Measurement of Water ..... 573
Miner's Inch ..... 575
Water Power ..... 576
Contents of Pipes ..... 577
Tank Measurement ..... 579
Water-wheels ..... 581
Turbines ..... 587
Pumps ..... 590
Duty Trials of Pumping Engines ..... 596
Hydraulic Ram ..... 600
Hydrometers ..... 601
Hydrostatics ..... 601
Hydraulic Transmission of Power ..... 605
Fuel ..... 608
Calorific Values of Fuels ..... 609
Heating Values of Coals ..... 610
Liquid Fuels ..... 622
Gas Fuels ..... 622
Steam ..... 623
Steam Tables ..... 625
Flow of Steam ..... 630
Moisture in Steam ..... 633
Steam Boilers ..... 634
Factors of Evaporation ..... 636
Boiler Trials ..... 637
Chimneys ..... 647
Steam Boilers. - Continued. ..... PAGE
Chimney Flues ..... 650
Draft Pressures ..... 652
Steam-boiler Details ..... 653
Boiler Pressures ..... 664
Boiler Specifications ..... 670
Safety Valves ..... 674
Incrustation in Boilers ..... 677
Steam Engines ..... 680
Hyperbolic Logarithms ..... 682
Expansion of Steam ..... 686
Economical Point of Cut-off ..... 688
Multiple-expansion Engines ..... 691
Indicator Diagrams ..... 692
Engine Performance ..... 695
Steam-engine Testing ..... 697
Steam-engine Performances ..... 717
Steam-engine Proportions ..... 721
Valve Gears ..... 724
Link Motions ..... 726
Slide Valves ..... 727
Condensers ..... 730
Locomotives ..... 735
Steamships ..... 737
Steam Turbine ..... 744
Internal=combustion Motors ..... 749
Gas Engines ..... 750
Gas-engine Testing ..... 752
Electric Power ..... 760
Electric Cables ..... 763
Wire Tables ..... 764
Electric Power.-Continued. ..... PAGE
National Electric Code ..... 767
Wiring Formulas ..... 823
Standardization ..... 826
Electric Driving ..... 839
Power Required for Tools ..... 840
Electric Cranes ..... 843
Choice of Motors and Systems ..... 845
Speed Variation ..... 846
Motor Tests ..... 850
The Cost of Power ..... 861
Water-power Plant Costs ..... 861
Water-power Costs ..... 862
Summary of Boiler Tests ..... 862
Summary of Engine Tests ..... 863
Steam-plant Costs ..... 864
Steam-power Costs ..... 865
Gas-power Systems ..... 865
Gas-power Costs ..... 867
Electric-power Costs ..... 867
Miscellaneous ..... 872
Index ..... 879

# The <br> <br> Mechanical Engineer's <br> <br> Mechanical Engineer's Reference Book 

## MATHEMATICS.

Thr engineer should use mechanical appliances for mathematical computations whenever possible, including the slide-rule in some of its various modifications, but the following tables will also be found useful:

## MULTIPLICATION TABLE.

By the use of the following table products of numbers from 1 to 10 by numbers from 1 to 100 may be obtained directly, and of larger numbers by successive operations, as follows :

$$
67 \times 489=67 \times 400+67 \times 80+67 \times 9=\left\{\begin{array}{c}
26800 \\
5360 \\
603
\end{array}\right\}=32763
$$

If both factors consist of more than three figures, one of the factors may be modified and the operation performed as follows:

$$
854 \times 279=850 \times 279+4 \times 279
$$

Here we subtract 4 from 854 and then get the product of 850 by 279 from the table, and add to this the product of 4 by 279 , also readily taken from the table; thus:

$$
\begin{aligned}
850 \times 279+4 \times 279 & \left.=\begin{array}{r}
170000 \\
59500 \\
7650
\end{array}\right\}+\left\{\begin{array}{r}
800 \\
280 \\
36
\end{array}\right\} \\
& =\overline{237150}+\overline{1116}=238266 .
\end{aligned}
$$

| 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
| 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
| 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
| 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
| 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |

Multiplication Table.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 |
| 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 |
| 14 | 28 | 42 | 56 | 70 | 81 | 98 | 112 | 126 |
| 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 |
| 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 |
| 17 | 34 | 51 | 68 | 85 | 102 | 119 | 136 | 153 |
| 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | 162 |
| 19 | 38 | 57 | 76 | 95 | 114 | 133 | 152 | 171 |
| 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
| 21 | 42 | 63 | 84 | 105 | 126 | 147 | 168 | 189 |
| 22 | 44 | 66 | 88 | 110 | 132 | 154 | 176 | 198 |
| 23 | 46 | 69 | 92 | 115 | 138 | 161 | 184 | 207 |
| 24 | 48 | 72 | 96 | 120 | 144 | 168 | 192 | 216 |
| 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 |
| 26 | 52 | 78 | 104 | 130 | 156 | 182 | 208 | 234 |
| 27 | 54 | 81 | 108 | 135 | 162 | 189 | 216 | 243 |
| 28 | 56 | 84 | 112 | 140 | 168 | 196 | 224 | 252 |
| 29 | 58 | 87 | 116 | 145 | 174 | 203 | 232 | 261 |
| 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 |
| 31 | 62 | 93 | 124 | 155 | 186 | 217 | 248 | 279 |
| 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256 | 288 |
| 33 | 66 | 99 | 132 | 165 | 198 | 231 | 264 | 297 |
| 34 | 68 | 102 | 136 | 170 | 204 | 238 | 272 | 306 |
| 35 | 70 | 105 | 140 | 175 | 210 | 245 | 280 | 315 |
| 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 |
| 37 | 74 | 111 | 148 | 185 | 222 | 259 | 296 | 333 |
| 38 | 76 | 114 | 152 | 190 | 228 | 266 | 304 | 342 |
| 39 | 78 | 117 | 156 | 195 | 234 | 273 | 312 | 351 |
| 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 |
| 41 | 82 | 123 | 164 | 205 | 246 | 287 | 328 | 369 |
| 42 | 84 | 126 | 168 | 210 | 252 | 294 | 336 | 378 |
| 43 | 86 | 129 | 172 | 215 | 258 | 301 | 344 | 387 |
| 44 | 88 | 132 | 176 | 220 | 264 | 308 | 352 | 396 |
| 45 | 90 | 135 | 180 | 225 | 270 | 315 | 360 | 405 |
| 46 | 92 | 138 | 184 | 230 | 276 | 322 | 368 | 414 |
| 47 | 94 | 141 | 188 | 235 | 282 | 329 | 376 | 423 |
| 48 | 96 | 144 | 192 | 240 | 288 | 336 | 384 | 432 |
| 49 | 98 | 147 | 196 | 245 | 294 | 343 | 392 | 441 |
| 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
| 51 | 102 | 153 | 204 | 255 | 306 | 357 | 408 | 459 |
| 52 | 104 | 156 | 208 | 260 | 312 | 364 | 416 | 468 |
| 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 |
| 54 | 108 | 162 | 216 | 270 | 324 | 378 | 432 | 486 |
| 55 | 110 | 165 | 220 |  | 330 |  | 440 | 495 |
| 56 | 112 | 168 | 224 | 280 | 336 | 392 | 448 | 504 |
| 57 | 114 | 171 | 228 | 285 | 342 | 399 | 456 | 513 |
| 58 | 116 | 174 | 232 | 290 | 348 | 406 | 464 | 522 |
| 59 | 118 | 177 | 236 | 295 | 354 | 413 | 472 | 531 |
| 60 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | 540 |
| 61 | 122 | 183 | 244 | 305 | 366 | 427 | 488 | 549 |
| 62 | 124 | 186 | 248 | 310 | 372 | 434 | 496 | 558 |
| 63 | 126 | 189 | 252 | 315 | 378 | 441 | $50-4$ | 567 |
| 64 | 128 | 192 | 256 | 320 | 384 | 418 | 512 | 576 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65 | 130 | 195 | 260 | 325 | 390 | 455 | 520 | 585 |
| 66 | 132 | 198 | 264 | 330 | 396 | 462 | 528 | 594 |
| 67 | 134 | 201 | 268 | 335 | 402 | 469 | 536 | 603 |
| 68 | 136 | 204 | 272 | 340 | 408 | 476 | 544 | 612 |
| 69 | 138 | 207 | 276 | 345 | 414 | 483 | 552 | 621 |
| 70 | 140 | 210 | 280 | 350 | 420 | 490 | 560 | 630 |
| 71 | 142 | 213 | 284 | 355 | 426 | 497 | 568 | 639 |
| 72 | 144 | 216 | 288 | 360 | 432 | 504 | 576 | 648 |
| 73 | 146 | 219 | 292 | 365 | 438 | 511 | 584 | 657 |
| 74 | 148 | 222 | 296 | 370 | 444 | 518 | 592 | 666 |
| 75 | 150 | 225 | 300 | 375 | 450 | 525 | 600 | 675 |
| 76 | 152 | 228 | $30 \pm$ | 380 | 456 | 532 | 608 | 684 |
| 77 | 154 | 231 | 308 | 385 | 462 | 539 | 616 | 693 |
| 78 | 156 | 234 | 312 | 390 | 468 | 546 | 624 | 702 |
| 79 | 158 | 237 | 316 | 395 | 474 | 553 | 632 | 711 |
| 80 | 160 | 240 | 320 | 400 | 480 | 560 | 640 | 720 |
| 81 | 162 | 243 | 324 | 405 | 486 | 567 | 648 | 729 |
| 82 | 164 | 246 | 328 | 410 | 492 | 574 | 656 | 738 |
| 83 | 166 | 249 | 332 | 415 | 498 | 581 | 664 | 747 |
| 84 | 168 | 252 | 336 | 420 | 504 | 588 | 672 | 756 |
|  | 170 | 255 | 340 | 425 | 510 | 595 | 680 | 765 |
| 86 | 172 | 258 | 344 | 430 | 516 | 602 | 688 | 774 |
| 87 | 174 | 261 | 348 | 435 | 522 | 609 | 696 | 783 |
| 88 | 176 | 264 | 352 | 440 | 528 | 616 | 704 | 792 |
| 89 | 178 | 267 | 356 | 445 | 534 | 623 | 712 | 801 |
| 90 | 180 | 270 | 360 | 450 | 540 | 630 | 720 | 810 |
| 91 | 182 | 273 | 364 | 455 | 546 | 637 | 728 | 819 |
| 92 | 184 | 276 | 368 | 460 | 552 | 644 | 736 | 828 |
| 93 | 186 | 279 | 372 | 465 | 558 | 651 | 744 | 837 |
| 94 | 188 | 282 | 376 | 470 | 564 | 658 | 752 | 846 |
|  | 190 | 285 | 380 | 475 | 570 | 665 | 760 | 855 |
| 96 | 192 | 288 | 384 | 480 | 576 | 672 | 768 | 864 |
| 97 | 194 | 291 | 388 | 485 | 582 | 679 | 776 | 873 |
| 98 | 196 | 294 | 392 | 490 | 588 | 686 | 784 | 882 |
| 99 | 198 | 297 | 396 | 495 | 594 | 693 | 792 | 891 |

## FACTOR TABLE.

It is often desirable to know whether a number is a prime number or a product of two or more factors. The following table gives the factors of all numbers not divisible by 2,3 , or 5 up to 9599 , and shows all prime numbers up to 9595 .

If the last figure of a number is divisible by 2 , the whole number is divisible by 2. Thus 26154 is divisible by 2 .

If the sum of the digits of which a number is composed is divisible by 3 , the number is divisible by 3. Thus the sum of the digits of 26154 is equal to 18 , which is divisible by 3 ; hence the whole number is divisible by 3 .

Any number ending with 0 or 5 is divisible by 5 .
It is therefore possible to discorer by inspection whether a number is divisible by 2,3 , or 5 , and such a division will bring most large numbersnot prime numbers-within the compass of the table.

To use the table, look along the top lines of the successive sections for the hundreds, and in the vertical columns at the left for the units and tens. The factors will be found at the intersection. If no factors are given, the number is a prime.

Thus given the number 5203 , which is not divisible by 2,3 , or 5 , according to the above rules, we find under 5200 , and opposite 3 , the factors $11 \times$ $11 \times 43=5203$. In like manner we see that 5233 is a prime number, and so on for any other number.

Factor Table.


Factor Table.



Factor Table.
11


Factor Table.

| N | 2400 | 2700 | 3000 | 3300 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 7.7 .7 .7 | $37 \quad 73$ |  | - |
| 7 | 29 . 83 | . | 31 . 97 | - |
| 11 |  |  |  | $7 \cdot 11 \cdot 43$ |
| 13 | 19 . 127 | . | 23 . 131 | . |
| 17 | . | 11. 13.19 | 7 . 431 | 31 . 107 |
| 19 | 41 . 59 |  | . | . |
| 23 | . | 7 . 389 | - | - |
| 29 | 7 . 347 |  | 13 . 233 | . |
| 31 | $11 \cdot 13 \cdot 17$ |  | 7 . . 433 | - |
| 37 |  | 7. $17 \cdot 23$ |  | $47 \quad . \quad 71$ |
| 41 | - |  | - | 13 . 257 |
| 43 | $7 \quad 349$ | 13 . 211 | 17 . 179 | . |
| 47 | . | 41 . 67 | 11 . 277 | - |
| 49 | 31 - 79 | - | . | 17 . 197 |
| 53 | 11 . 223 |  | 43 . 71 | 7 . 479 |
| 59 |  | 31 . 89 | 7 . 19.23 | . |
| 61 | 23 . 107 | 11 . 251 | . | - |
| 67 | . | . | - | 7 - 13 . 37 |
| 71 | 7 . 353 | 17 . 163 | $37 \ldots 83$ | - |
| 73 | . | 47 . 59 | 7 . 439 | - |
| 77 | - | . | 17 . 181 | 11 . 307 |
| 79 | 37 . 67 | $7 \quad .397$ | . | 31 . 109 |
| 83 | 13 . 191 | 11. 11 . 23 | - | 17 . 199 |
| 89 | 19 . 131 |  | - | . |
| 91 | 47 . 53 | - | 11 . 281 | - |
| 97 | 11 . 227 | - | 19 . 163 | $43 \quad 79$ |
| N | 2500 | 2800 | 3100 | 3400 |
| 1 | 41 . 61 | - | 7 . 4.43 | 19 . 179 |
| 3 |  | - | 29 . 107 | 41 . 83 |
| 7 | 23 . 109 | 7 . 401 | 13 . 239 | . |
| 9 | 13 . 193 | 53 . 53 | . | 7 . 487 |
| 13 | 13 . 359 | 29 . 97 | 11 . 283 | . |
| 19 | 11 . 229 | . | . | 13, . 263 |
| 21 | . | 7 . 13.31 | - | 11 . 311 |
| 27 | 7. $19 \cdot 19$ | 11 . 257 | 53 - 59 | 23 . 149 |
| 31 |  | 19 . 149 | 31 . 101 | 47 . 73 |
| 33 | 17 . 149 | . | 13 . 241 | . |
| 37 | 43 . 59 |  | - | 7 . 491 |
| 39 | . | 17 . 167 | 43 . 73 | 19 . 181 |
| 43 | - |  | 7 . 449 | 11 . 313 |
| 49 | - | $7 \cdot 11 \cdot 37$ | 47 . 67 | . |
| 51 | - |  | 23 - 137 | 7 - 17 - 29 |


| N |  | 2500 | 2800 | 3100 |  | 3400 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 |  |  | - | 7. 11 . 41 |  | - |  |
| 61 | 13 | - 197 | . | 29 . 109 |  | . |  |
| 63 | 11 | - 233 | 7 . 409 |  |  | - |  |
| 67 | 17 | - 151 | 47 . 61 | . |  | . |  |
| 69 | 7 | - 367 | 19 . 151 | . |  | . |  |
| 73 | 31 | - 83 | $13 \cdot 13 \cdot 17$ | 19 . 167 | 23 | - | 151 |
| 79 |  |  |  | $11 \cdot 17 \cdot 17$ | 7 | 7 | 71 |
| 81 | 29 | - 89 | 43.67 |  | 59 | . | 59 |
| 87 | 13 | - 199 | . | - | 11 | . | 317 |
| 91 |  | - | 7 . 7 . 59 |  |  | - |  |
| 93 |  |  | 11 . 263 | 31 . 103 | 7 | . | 499 |
| 97 |  | 7.53 |  | 23 . 139 | 13 | . | 269 |
| 99 |  | . 113 | 13 . 223 | 7 . 457 |  | . |  |
| N |  | 2600 | 2900 | 3200 |  | 3500 |  |
| 3 | 19 | . 137 | - | . | 31 | . | 113 |
| 9 |  |  |  |  | 11 | . 11 | 29 |
| 11 | 7 | - 373 | 41 . 71 | 13. 13.19 |  | . |  |
| 17 |  | . |  | . |  | - |  |
| 21 |  | . | 23 . 127 | - | 7 | - | 503 |
| 23 | 43 | - 61 | 37 . 79 | 11 . 293 | 13 | . | 271 |
| 27. | 37 | - 71 | . | 7 . 461 |  | . |  |
| 29 | 11 | - 239 | 29 . 101 | . |  | . |  |
| 33 |  |  | 7 . 419 | 53 . 61 |  | . |  |
| 39 | 7 . | . 13.29 | . | 41 - 79 |  | . |  |
| 41 | 19 | - 139 | 17 . 173 | 7 . 463 |  | - |  |
| 47 |  |  | 7 . 421 | 17 . 191 |  | . |  |
| 51 | 11 | - 241 | 13 . 227 | . | 53 | . | 67 |
| 53 | 7 | - 379 | . | - | 11 | . 17 | 19 |
| 57 |  | - |  | . |  | - |  |
| 59 |  | . | 11 . 269 | . |  | . |  |
| 63 |  | - | . | $13 \cdot 251$ | 7 | . | 509 |
| 69 | 17 | - 157 | . | 7 . 467 | 43 | . | 83 |
| 71 |  | . |  | - |  | - |  |
| 77 |  |  | 13 . 229 | 29 . 113 | 7 | 7 | 73 |
| 81 | 7 | - 383 | 11 . 271 | $17 \quad 193$ |  | . |  |
| 83 |  |  | 19 . 157 | 7 . $7 \cdot 67$ |  | - |  |
| 87 |  | . | 29 . 103 | 19 . 173 | 17 | - | 211 |
| 89 |  | - | 7 . 7 . 61 | 11.13 . 23 | 37 | . | 97 |
| 93 |  | . | 41.73 | 37 . 89 |  | - |  |
| 99 |  | . | . |  | 59 | . | 61 |

Factor Table.


Factor Table.

| N | 3700 | 4000 | 4300 |  | 4600 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | 13. $17 \cdot 17$ |  |  |  | - |  |
| 61 |  | 31 . 131 | $7 \cdot 7 \cdot 89$ | 59 | - | 79 |
| 63 | 53 . 71 | 17 . 239 | . |  | - |  |
| 67 | . | $7 \cdot 7 \cdot 83$ | 11 . 397 | 13 | . | 359 |
| 69 | - | 13 . 313 | 17 . 257 | 7 | 23 | 29 |
| 73 | 7.7.7.11 | - | - |  | . |  |
| 79 |  |  | 29 . 151 |  | - |  |
| 81 | 19 . 199 | $7 \cdot 11 \cdot 53$ | 13 . 337 | 31 | . | 151 |
| 87 | 7 . 541 | 61 . 67 | 41 . 107 | 43 | . | 109 |
| 91 | 17 . 223 | - |  |  |  |  |
| 93 |  |  | 23 . 191 | 13 | . 19 | 19 |
| 97 |  | $17 \quad 241$ |  | 7 | . 11 | . 61 |
| 99 | 29 . 131 | . | 53 . 83 | 37 | . | 127 |
| N | 3800 | 4100 | 4400 |  | 4700 |  |
| 3 | - | 11 . 373 | $7 \cdot 17 \cdot 37$ |  | - |  |
| 9 | 13 . 293 | 7 . 587 |  | 17 | . | 277 |
| 11 | 37 . 103 | . | 11 . 401 | 7 | . | 673 |
| 17 | 11 . 347 | 23 . 179 | 7 . 631 | 53 | . | 89 |
| 21 |  | 13 . 317 | . ${ }^{\text {a }}$ |  | . |  |
| 23 |  | 7. $19 \cdot 31$ | - |  | - |  |
| 27 | 43 - 89 | . | 19 . 233 | 29 | - | 163 |
| 29 | 7 . 547 | - | 43 . 103 |  | - |  |
| 33 |  |  | 11. 13.31 |  | - |  |
| 39 | 11 . 349 | - | 23.193 | 7 | . | 677 |
| 41 | 23 . 167 | 41 . 101 | . | 11 | - | 431 |
| 47 | - | 11 . $13 \cdot 29$ | . | 47 | . | 101 |
| 51 | - | 7 . 593 |  |  | - |  |
| 53 |  |  | 61 . 73 | 7 | 7 | 97 |
| 57 | 7. 19. 29 | . |  | 67 | . | 71 |
| 59 | 17 . 227 |  | 7.7.7.13 |  |  |  |
| 63 |  | 23 . 181 |  | 11 | - | 433 |
| 69 | 53 . 73 | 11 . 379 | $41 \cdot 109$ | 19 | . | 251 |
| 71 | $7 \cdot 7 \cdot 79$ | 43 . 97 | 17 . 263 | 13 | - |  |
| 77 |  |  | 11.11 .37 | 17 | . | 281 |
| 81 |  | 37 - 113 | . | 7 | . | 683 |
| 83 | 11 . 353 | 47 - 89 | - |  | . |  |
| 87 | $13 \cdot 13 \cdot 23$ | 53 - 79 | $7 \quad 641$ |  | - |  |
| 89 |  | 59 . 71 | 67 . 67 |  | . |  |
| 93 | 17 . 229 | 7 . 599 |  |  | - |  |
| 99 | 7 . 557 | $13 \cdot 17 \cdot 19$ | 11 . 409 |  |  |  |

Factor Table.

| N | 4800 | 5100 | 5400 | 5700 |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | - | 11 . 491 |  |
| 7 | 11. 19.23 | . | . | 13 . 439 |
| 11 | 17 . 283 | 19 . 269 | 7 . 773 | . |
| 13 |  |  | - | 29 . 197 |
| 17 | - | 7. 17.43 | - |  |
| 19 | 61 . 79 |  | . | 7. 19 . 43 |
| 23 | 7 . 13 . 53 | 47 . 109 | 11. 17.29 | 59 . 97 |
| 29 | 11 . 439 | 23 . 223 | 61 . 89 | 17 . 337 |
| 31 |  | 7 . 733 |  | 11 . 521 |
| . 37 | 7 - 691 | 11 . 467 | - | - |
| 41 | 47 . 103 | 53 . 97 | . | . |
| 43 | 29 . 167 | 37 . 139 | - | - |
| 47 | 37 . 131 |  | 13 . 419 | 7 . 821 |
| 49 | 13 . 373 | 19 . 271 | . | . |
| 53 | 23 . 211 | . | 7 . 19.41 | 11 . 523 |
| 59 | 43 . 113 | 7 . 11.67 | 53 . 103 | 13 . 443 |
| 61 | . | 13 . 397 | 43 . 127 | 823 |
| 67 | 31 . 157 | . | $7 \cdot 11 \cdot 71$ | 73 - 79 |
| 71 |  |  |  | 29 . 199 |
| 73 | 11 . 443 | 7 . 739 | 13 . 421 | 23 . 251 |
| 77 | - ${ }^{\text {b }}$ | 31 . 167 | - | 53 . 109 |
| 79 | $7 \cdot 17 \cdot 41$ | . | . | . |
| 83 | 19 . 257 | 71.73 | . | - |
| 89 |  |  | 11 . 499 | 7 . 827 |
| 91 | 67 - 73 | 29.179 | $17 \cdot 17 \cdot 19$ |  |
| 97 | 59 . 83 | . | 23 . 239 | 11 • $17 \cdot 31$ |
| N | 4900 | 5200 | 5500 | 5800 |
| 1 | $13 \cdot 13 \cdot 29$ | 7 . 743 | - | - |
| 3 |  | 11.11 . 43 | - | 7 - 829 |
| 7 | 7 . 701 | 41 . 127 | - | - |
| 9 |  |  | 7 . 787 | 37 . 157 |
| 13 | $17 \cdot 17 \cdot 17$ | 13.401 | 37 . 149 | . |
| 19 |  | 17 . 307 | - | $11 \cdot 23 \cdot 23$ |
| 21 | $7 \cdot 19 \cdot 37$ | 23 . 227 | . | . |
| 27 | 13 . 379 | - |  | - |
| 31 | - | - |  | $7 \cdot 7 \cdot 7 \cdot 17$ |
| 33 | - | - | 11 . 503 | 19 - 307 |
| 37 |  |  | 7 . 7.113 | 13 . 449 |
| 39 | 11 . 449 | 13. 13.31 | 29 . 191 | . |
| 43 |  | 7 . 7 . 107 | 23 . 241 | - |
| 49 | 7 . 7.101 | 29.181 | $31 \quad 179$ | . |
| 51 | . | 59 . 89 | $7 \cdot 13 \cdot 61$ | - |


| N | 4900 | 5200 | 5500 | 5800 |
| :---: | :---: | :---: | :---: | :---: |
| 57 |  | 7 . 751 | - | - |
| 61 | 11. 11.41 |  | 67 . 83 | . |
| 63 | 7 . 709 | 19 . 277 |  | 11 . 13 . 41 |
| 67 |  | 23 . 229 | 19 . 293 | . |
| 69 |  | 11 . 479 | . | - |
| 73 |  |  | . | 7 . 839 |
| 79 | 13 . 383 |  | $7 \quad 797$ | . |
| 81 | 17 . 293 |  |  |  |
| 87 |  | 17 . 311 | 37 . 151 | 7 . 29 . 29 |
| 91 | 7 . 23.31 | 11. $13 \cdot 37$ |  | 43 . 137 |
| 93 |  | 67 . 79 | $7 \cdot 17$. 47 | 71 . 83 |
| 97 | 19 . 263 |  | 29 . 193 | . |
| 99 |  | 7 . 757 | 11 . 509 | 17 - 347 |
| N | 5000 | 5300 | 5600 | 5900 |
| 3 | . | . | 13 . 431 | . |
| 9 | - |  | 71 . 79 | 19 . 311 |
| 11 | . | 47 . 113 | 31 . 181 | 23 . 257 |
| 17 | 29 . 173 | 13 . 409 | 41 . 137 | 61 . 97 |
| 21 | . | 17 . 313 | $7 \cdot 11 \cdot 73$ | 31 . 191 |
| 23 | . | . |  | . |
| 27 | 11 . 457 | 7 . 761 | 17 . 331 |  |
| 29 | 47 . 107 | 73 . 73 | 13 . 433 | 7.7.11.11 |
| 33 | 7 . 719 |  | 43 . 131 | 17 . 349 |
| 39 |  | 19 . 281 | . | . |
| 41 | 71 . 71 | $7 \cdot 7 \cdot 109$ | - | 13 . 457 |
| 47 | $7 \cdot 7 \cdot 103$ | . | . | 19 . 313 |
| 51 |  |  | - | 11. . 541 |
| 53 | 31 . 163 | 53 - 101 | . |  |
| 57 | 13 . 389 | 11 . 487 | . | 7 . 23 . 37 |
| 59 |  | 23 . 233 |  | 59 . 101 |
| 63 | 61 . 83 | 31.173 | 7 . 809 | 67 . 89 |
| 69 | 37 . 137 | 7 . 13.59 | . | 47 . 127 |
| 71 | 11 . 461 | 41 . 131 | 53 . 107 | 7 . 853 |
| 77 |  | 19 . 283 | $7 \quad 811$ | 43 . 139 |
| 81 |  |  | $13 \cdot 19.23$ |  |
| 83 | $13 \cdot 17 \cdot 23$ | 7 . 769 | . | 31 . 193 |
| 87 |  |  | 11 . 11.47 |  |
| 89 | 7 . 727 | 17 . 317 |  | 53 . 113 |
| 93 | 11 . 463 |  |  | 13 . 461 |
| 99 |  |  | $41 \quad 139$ | 7 - 857 |



Factor Table.



Factor Table.

| N | 7300 | 7600 | 7900 | 8200 |
| :---: | :---: | :---: | :---: | :---: |
| 57 | 7 . 1051 | 13. 19.31 | 73 . 109 | 23 . 359 |
| 61 | 17 . 433 | 47 . 163 | 19 . 419 | 11 . 751 |
| 63 | 37 . 199 | 79 . 97 |  |  |
| 67 | 53 . 139 | $11 \cdot 17 \cdot 41$ | 31 . 257 | 7 . 1181 |
| 69 |  |  | 13 . 613 | . |
| 73 | 73 . 101 |  | $7 \cdot 17 \cdot 67$ | - |
| 79 | 47 . 157 | 7 . 1097 | 79 . 101 | 17 . 487 |
| 81 | $11.11 \cdot 61$ | . | 23 . 347 | 7.7 .13 .13 |
| 87 | 83 . 89 | . | 7 . 7.163 | . |
| 91 | 19 . 389 |  | 61 . 131 | . |
| 93 |  | 7. 7 . 157 |  | . |
| 97 | 13 . 569 | 43 . 179 | 11 . 727 |  |
| 99 | 7.7 .151 |  | 19 . 421 | 43 . 193 |
| N | 7400 | 7700 | 8000 | 8300 |
| 3 | 11 . 673 | . | 53 . 151 | $19 \cdot 19$. 23 |
| 9 | 31 . 239 | 13 . 593 | . | 7 . 1187 |
| 11 | . | 11 . 701 | - | . |
| 17 | - |  | - | - |
| 21 | 41 . 181 | 7 - 1103 | $13 \cdot 617$ | 53 - 157 |
| 23 | 13 . 571 | . | 71 . 113 | 7 . 29 . 41 |
| 27 | 7 . 1061 |  | 23 . 349 | 11 . 757 |
| 29 | $17 \cdot 19.23$ | 59 . 131 | $7 \cdot 31 \cdot 37$ | - |
| 33 |  | 11. 19.37 | 29 . 277 | 13 . 641 |
| 39 | 43 . 173 | 71 . 109 | . | 31 . 269 |
| 41 | 7 . 1063 | . | 11.17 .43 | 19 . 439 |
| 47 | 11 . 677 | 61 . 127 | 13 . 619 | 17 . 491 |
| 51 |  | 23 . 337 | 83 . 97 | 7. . 1193 |
| 53 | 29 - 257 | . | . | . |
| 57 | . | . | 7 . 1151 | 61 . 137 |
| 59 |  |  |  | 13 . 643 |
| 63 | 17 . 439 | 7 . 1109 | 11 . 733 | . |
| 69 | 7 . 11.97 | 17 . 457 |  | - |
| 71 | 31 . 241 | 19 . 409 | 7 . 1153 | 11 . 761 |
| 77 |  | 7 . 11.101 | 41 . 197 |  |
| 81 |  | 31 . 251 |  | $17 \cdot 17 \cdot 29$ |
| 83 | 7 . 1069 | 43 . 181 | 59 . 137 | 83 . 101 |
| 87 | - | 13 . 599 | . | - |
| 89 |  |  |  |  |
| 93 | $59 \cdot 127$ |  |  | 7 . 11 . 109 |
| 99 | . | 11 - 709 | $7 \cdot 13.89$ | 37 . 227 |


| N | 8400 | 8700 | 9000 | 9300 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 31 . 271 | 7 . 11.113 | - | 71 . 131 |
| 7 | 7 . 1201 | . | - | 41 - 227 |
| 11 | $13 \cdot 647$ | 31 . 281 | - |  |
| 13 | 47 : 179 |  | . | $67 \quad 139$ |
| 17 | 19 . 443 | 23 . 379 | 71 - 127 | 7.11.11.11 |
| 19 | . | . | 29 . 311 | - |
| 23 | . | $11 \cdot 13 \cdot 61$ | 7 . 1289 | - |
| 29 |  | 7 . 29.43 |  | $19 \quad 491$ |
| 31 |  |  | 11 . 821 | 7 . $31 \cdot 43$ |
| 37 | 11.13 .59 | . | 7 . 1291 | . |
| 41 | 23 . 367 |  | - | . |
| 43 | . | 7 . 1249 | - | - |
| 47 | - |  | 83 . 109 | $13 \cdot 719$ |
| 49 | 7 . $17 \cdot 71$ | $13 \cdot 673$ | . |  |
| 53 | 79 . 107 | - | 11 . 823 | $47 \quad 199$ |
| 59 | 11 . 769 | 19 . 461 | . | 7 . 7 . 191 |
| 61 | . | - | $13 \cdot 17$. 41 | 11. $23 \cdot 37$ |
| 67 | - | $11 \cdot 797$ |  | $17 \cdot 19 \cdot 29$ |
| 71 | $43 \quad 197$ | 7.7.179 | 47 . 193 | . |
| 73 | $37 \quad 229$ | 31 . 283 | 43 . 211 | 7 . 13.103 |
| 77 | $7 \cdot 7.173$ | 67 . 131 | 29 . 313 | - |
| 79 | 61 . 139 |  | 7 . 1297 | 83 . 113 |
| 83 | 17 . 499 |  | 31 . 293 | 11 . 853 |
| 89 | 13 . 653 | $11 \cdot 17 \cdot 47$ | 61 . 149 | 41 . 229 |
| 91 | 7 . 1213 | 59 . 149 |  |  |
| 97 | 29 . 293 | 19 . 463 | 11 . 827 | . |
| N | 8500 | 8800 | 9100 | 9400 |
| 1 | - | 13.677 | 19 . 479 | 7 . 17.79 |
| 3 | 11 . 773 | . |  |  |
| 7 | $47 \quad 181$ | - | 7 . 1301 | 23 - 409 |
| 9 | 67 . 127 | 23 . 383 | . | 97 . 97 |
| 13 | . | 7 . 1259 | $13 \cdot 701$ | . |
| 19 | $7 \quad .1217$ | . | 11 . 829 | . |
| 21 | . |  | 7 . 1303 |  |
| 27 | $10 \cdot 19$ | $7 \cdot 13 \cdot 97$ |  | 11 . 857 |
| 31 | 19 . 449 |  | 23 . 397 | . |
| 33 | $7 \cdot 23.53$ | 11. $11 \cdot 73$ | . | - |
| 37 | . | . |  | . |
| 39 | . | - | 13 . 19.37 |  |
| 43 | - | 37 . 239 | 41 . 223 | 7 . 19 . 71 |
| 49 | 83 . 103 |  | 7 . 1307 | 11 . 859 |
| 51 | 17 . 503 | $53 \quad 167$ | . | 13 . 727 |

Factor Table.

| N | 8500 | 8800 | 9100 | 9400 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | 43 . 199 | 17 . 521 | . | 7 | 7 | 193 |
| 61 | 7 . 1223 |  |  |  | . |  |
| 63 |  |  | 7.7.11.17 |  |  |  |
| 67 | 13 . 659 |  | 89 . 103 |  |  |  |
| 69 | 11 : 19.41 | 7.7 .181 | 53 . 173 | 17 | . | 557 |
| 73 |  | 19 . 467 |  |  | . |  |
| 79 | $23 \cdot 373$ | 13 . 683 | 67 . 137 |  |  |  |
| 81 |  | 83 . 107 |  | 19 | . | 499 |
| 87 | 31 . 277 |  |  | 53 | . | 179 |
| 91 | 11. 11.71 | 17 . 523 | 7 . 13.101 |  |  |  |
| 93 | 13 . 661 |  | 29 . 317 | 11 | . | 863 |
| 97 |  | 7.31 .41 | 17 . 541 |  |  |  |
| 99 | . | 11 . 809 |  | 7 | 23 |  |
| N | 8600 | 8900 | 9200 |  | 500 |  |
| 3 | 7 . 1229 | 29 . 307 | - | 13 | 17 | 43 |
| 9 | . | 59 . 151 | - | 37 | . | 257 |
| 11 | 79 . 109 | 7 . 19.67 | 61 . 151 |  |  |  |
| 17 | 7 . 1231 | 37 . 241 | 13 . 709 | 31 | . | 307 |
| 21 | 37 . 233 | 11 . 811 | . |  |  |  |
| 23 | . | . | 23 . 401 | 89 | . | 107 |
| 27 | . | 79 . 113 |  | 7 |  | 1361 |
| 29 |  |  | 11 . 839 | 13 | . | 733 |
| 33 | 89 . 97 |  | 7 . 1319 |  |  |  |
| 39 | 53 . 163 | 7 . 1277 |  |  |  |  |
| 41 | . | - |  | 7 | 29 |  |
| 47 | - | 23 . 389 | 7 . 1321 |  |  |  |
| 51 | 41 - 211 |  | 11. 29.29 |  |  |  |
| 53 | 17 . 509 | 7 . 1279 | 19 . 487 | 41 | . | 233 |
| 57 | 11 . 787 | 13. 13.53 | . | 19 | . | 503 |
| 59 | 7 . 1237 | 17. $17 \cdot 31$ | 47 . 197 | 11 | 11 |  |
| 63 | . |  | 59 . 157 | 73 | . | 131 |
| 69 | . |  | 13. 23.31 | 7 | . | 1367 |
| 71 | $13 \cdot 23 \cdot 29$ |  | 73 . 127 | 17 | . | 563 |
| 77 |  | 47 - 191 |  | 61 |  | 157 |
| 81 |  | 7 . 1283 |  | 11 | 13 | . 67 |
| 83 | 19 . 457 | 13 - 691 | - | 7 | 37 |  |
| 87 | $7 \cdot 17 \cdot 73$ | 11.19 .43 | 37 • 251 |  |  |  |
| 89 | . | 89 . 101 | 7 . 1327 | 43 | . | 223 |
| 93 |  | $17 \cdot 23 \cdot 23$ |  | 53 | . | 181 |
| 99 | - |  | 17 . 547 | 29 | . | 331 |

## FRACTIONS.

There are two methods of indicating subdivisions in general use,-one by continual bisection, as on the common foot-rule, in which the inch is divided into halves, quarters, eighths, sixteenths, etc., the other by division into tenths, hundredths, thousandths, etc. Since the latter is based on the same principle as our system of numeration, it is desirable for general use, and the following conversion table will enable the common fractions to be converted into their equivalent decimals.

## Fractions Reduced to Equivalent Decimals

| $\begin{aligned} & \frac{1}{64} \\ & \frac{1}{34} \\ & \frac{3}{32} \\ & \frac{3}{64} \\ & \frac{14}{16} \end{aligned}$ | $\begin{aligned} & .015625 \\ & .03125 \\ & .046875 \\ & .0625 \end{aligned}$ | $\frac{17}{67}$ $\frac{9}{32}$ $\frac{12}{4}$ $\frac{6}{4}$ 16 | $\begin{aligned} & .265625 \\ & .28125 \\ & .296875 \\ & .3125 \end{aligned}$ |  | $\begin{aligned} & .515625 \\ & .53125 \\ & .546875 \\ & .5625 \end{aligned}$ |  | $\begin{aligned} & .765625 \\ & .78125 \\ & .796875 \\ & .865 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{5}{64}$ <br> $\frac{63}{32}$ <br> $\frac{7}{7}$ <br> $1 / 8$ <br> $1 / 8$ | .078125 . 09375 .109375 . 125 |  | $\begin{aligned} & .328125 \\ & . .34375 \\ & .359375 \\ & .375 \end{aligned}$ |  | $\begin{aligned} & .578125 \\ & .59375 \\ & .609375 \\ & .625 \end{aligned}$ |  | $\begin{aligned} & .828125 \\ & .84375 \\ & .859375 \\ & .875 \end{aligned}$ |
| $\begin{aligned} & \frac{94}{64} \\ & \frac{9}{32} \\ & \frac{12}{64} \\ & \frac{3}{14} \end{aligned}$ | $\begin{aligned} & .140625 \\ & .15625 \\ & .171875 \\ & .1875 \end{aligned}$ |  | $\begin{aligned} & .390625 \\ & .40625 \\ & .421875 \\ & .4375 \end{aligned}$ |  | . 640625 . 65625 . 671875 . 6875 |  | $\begin{aligned} & .890625 \\ & .90 \geq 25 \\ & .921875 \\ & .9375 \end{aligned}$ |
|  | $\begin{aligned} & .203125 \\ & .21875 \\ & .234375 \\ & .25 \end{aligned}$ |  | . 453125 .46875 484375 . 5 |  | $\begin{aligned} & .703125 \\ & .71875 \\ & .734375 \\ & .75 \end{aligned}$ | $\begin{aligned} & \frac{61}{64} \\ & \frac{31}{2} \\ & \frac{63}{2} \\ & \frac{64}{4} \end{aligned}$ | $\begin{aligned} & .953125 \\ & .96875 \\ & .984375 \end{aligned}$ <br> 1. |

Conversion of Inches and Eighths into Decimals of a Foot.

| Inches. | Fractions of an Inch. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1/8 | 1/4 | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 |
| 0 | . 0000 | . 01042 | . 02083 | . 03125 |  |  |  |  |
|  | . 08333 | . 093775 | . 10117 | . 11458 | . 125 | . 13542 | . 14583 | . 15625 |
| 3 | . 1656 | . 177708 | . 1875 | . 198792 | . 20833 | . 21875 | . 22917 | . 23958 |
| 4 | . 33333 | . 34375 | . 35417 | . 286458 | . 29156 | . 30208 | . 3125 | . 322292 |
| 5 | . 41666 | . 42708 | . 4375 | . 44792 | . 45883 | . 38542 | . 39584 | . 40625 |
| 6 |  | . 51041 | . 52083 | . 53125 | . 54166 | . 558208 | -. 47917 | . 48959 |
| 7 | . 58333 | . 59375 | . 60416 | . 61458 | . 625 | . .65208 | . 6625 | . 67292 |
| 8 | . 66567 | . 67708 | . 68750 | . 59792 | . 70833 | . .71875 | . 642917 | . 65625 |
| 9 | . 75 | . 76041 | . 77083 | . 78125 | . 79167 | . 80208 | . 8125 | . 732292 |
| 10 | ${ }^{.} 83333$ | . 84375 | . 85417 | . 86458 | . 875 | . 88542 | . 89584 | . 90625 |
| 12 | ${ }^{1} 91$ foot | . 92708 | . 9375 | . 94792 | . 95833 | . 96875 | . 97917 | . 98958 |
| 12 | 1 foot. | foot. |

$\frac{1}{16}$ in. $=0.005208 \mathrm{ft} . ; \frac{1}{32} \mathrm{in} .=0.00265 \mathrm{ft} . ; \frac{1}{64} \mathrm{in} .=0.001375 \mathrm{ft}$.
Any common fraction may be converted into its equivalent decimal by dividing the numerator by the denominator, a fraction really being merely a form of indicating division, and the decimal being the result of the per-

## Powers and Roots.

Any number multiplied by itself is said to be raised to its second power, or squared; any number multiplied by itself twice is said to be raised to its third power, or cubed, etc. It is clear from this that erery squared number, or second power, is composed of two equal factors, and either one of these equal factors is called the square root of the number. In like manner every cubed number is composed of the product of three equal factors, and any one of these equal factors is called the cube root of the number.

The rules for extracting the square and cube roots of numbers will be found in any arithmetic. A simple method, for the use of the engineer and mechanic, is that of factoring, based on the above statement that the square root is one of the two equal factors of a number, and the cube root one of three equal factors, etc.

Find, by inspection the probable desired root, divide the number by this assumed root, and the quotient will be one factor, the divisor being the other. Add these two factors together and divide by 2, and the result will be the square root, nearly. Use this result as a new divisor by which to divide the original number, and the new quotient will be found very nearly equal to the divisor. Again add divisor and quotient together and divide by 2 , and the result will be the desired root very closely indeed. This method of approximation may be repeated as often as necessary, and the degree of approximation to the true root seen as the work is continued.

For the cube root, divide the given number by an assumed root, and the quotient again by the same divisor, and add the two equal divisors and the quotient together, and divide by 3 . The result will be the cube root, nearly. Use the result thus obtained for a new divisor, twice, and divide the sum of the three factors by 3 and a result approaching the correct root very nearly will be found. This may be repeated again, and the result will become more and more precise.

This principle may be applied to the finding of any root, as will readily be seen.

When a table of logarithms is at hand, as on pages 84 to 106 of this handbook, the simplest method is to find the logarithm of the given number, and divide it by 2 for the logarithm of the square root, by 3 for the logarithm of the cube root, and so on for any higher root.

Since squares, cubes, square roots, and cube roots are much used, the following table is given for all numbers up to 1600 . If much work is to be done in this line, reference may be made to Barlow's Tables (Spon). which give the squares, cubes, square roots, and cube roots of all numbers up to 10,000.

In the right hand column of the following table the reciprocals of the numbers in the first column are given, these being the quotients resulting from the division of unity by the given numbers.

## Roots or Decimal Numbers

from 0.01 to $\mathbf{1 . 0 0}$

| Number. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Number. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.01 | 0.10000 | 0.21544 | 0.51 | 0.71414 | 0.79896 |
| 0.02 | 0.14142 | 0.27144 | 0.52 | 0.72111 | 0.80415 |
| 0.03 | 0.17321 | 0.31072 | 0.53 | 0.72801 | 0.80927 |
| 0.04 | 0.20000 | 0.34200 | 054 | 0.73485 | 0.81433 |
| 0.05 | 0.22361 | 0.36840 | 0.55 | 0.74162 | 0.81932 |
| 0.06 | 0.24495 | 0.39149 | 0.56 | 0.74833 | 0.82426 |
| 0.07 | 0.26458 | 0.41213 | 0.57 | 0.75498 | 0.82913 |
| 0.08 | 0.28284 | 0.43089 | 0.58 | 0.76158 | 0.83396 |
| 0.09 | 0.30000 | 0.44814 | 0.59 | 0.76811 | 0.83872 |
| 0.10 | 0.31623 | $0.46+16$ | 0.60 | 0.77460 | 0.84343 |
| 0.11 | 0.33166 | 0.47914 | 0.61 | 0.78102 | 0.84809 |
| 0.12 | 0.34641 | 0.49324 | 0.62 | 0.78740 | 0.85270 |
| 0.13 | 0.36056 | 0.50658 | 0.63 | 0.79373 | 0.85726 |
| 0.14 | 0.37417 | 0.51925 | 0.64 | 0.80000 | 0.86177 |
| 0.15 | 0.38730 | 0.53133 | 0.65 | 0.80623 | 0.86624 - |
| 0.16 | 0.40000 | 0.54288 | 0.66 | 0.81240 | 0.87066 |
| 0.17 | 0.41231 | 0.55397 | 0.67 | 0.81844 | 0.87503 |
| 0.18 | 0.42426 | 0.56462 | 0.68 | 0.82462 | 0.87937 |
| 0.19 | 0.42589 | 0.57489 | 0.69 | 0.83066 | 0.88366 |
| 0.20 | 0.44721 | 0.58480 | 0.70 | 0.83666 | 0.88790 |
| 0.21 | 0.45826 | 0.59439 | 0.71 | 0.84261 | 0.89211 |
| 0.22 | 0.46904 | 0.60368 | 0.72 | 0.84853 | 0.89628 |
| 0.23 | 0.47958 | 0.61269 | 0.73 | 0.85440 | 0.90041 |
| 0.24 | 0.48990 | 0.62145 | 0.74 | 0.86023 | 0.90450 |
| 0.25 | 0.50000 | 0.62996 | 0.75 | 0.86603 | 0.90856 |
| 0.26 | 0.50990 | 0.63825 | 0.76 | 0.87178 | 0.91258 |
| 0.27 | 0.51962 | 0.64633 | 0.77 | 0.87750 | 0.91657 |
| 0.28 | 0.52915 | 0.65421 | 0.78 | 0.88318 | 0.92052 |
| 0.29 | 0.53852 | 0.66191 | 0.79 | 0.88882 | 0.92443 |
| 0.30 | 0.54772 | 0.66943 | 0.80 | 0.89443 | 0.92832 |
| 0.31 | 0.55678 | 0.67679 | 0.81 | 0.90000 | 0.93217 |
| 0.32 | 0.56569 | 0.68399 | 0.82 | 0.90554 | 0.93599 |
| 0.33 | 0.57446 | 0.69104 | 0.83 | 0.91104 | 0.93978 |
| 0.34 | 0.58310 | 0.69795 | 0.84 | 0.91652 | 0.94354 |
| 0.35 | 0.59161 | 0.70473 | 0.85 | 0.92195 | 0.94727 |
| 0.36 | 0.60000 | 0.71138 | 0.86 | 0.92736 | 0.95097 |
| 0.37 | 0.60828 | 0.71791 | 0.87 | 0.93274 | 0.95464 |
| 0.38 | 0.61644 | 0.72432 | 0.88 | 0.93808 | 0.95828 |
| 0.39 | 0.62450 | 0.73061 | 0.89 | 0.94340 | 0.96190 |
| 0.40 | 0.63246 | 0.73681 | 0.90 | 0.94868 | 0.96549 |
| 0.41 | 0.64031 | 0.74290 | 0.91 | 0.95394 | 0.96905 |
| 0.42 | 0.64807 | 0.74889 | 0.92 | 0.95917 | 0.97259 |
| 0.43 | 0.65574 | 0.75478 | 0.93 | 0.96437 | 0.97610 |
| 0.44 | 0.66332 | 0.76059 | 0.94 | 0.97954 | 0.97959 |
| 0.45 | 0.67082 | 0.76631 | 0.95 | 0.97468 | 0.98305 |
| 0.46 | 0.67823 | 0.77194 | 0.96 | 0.97980 | 0.98648 |
| 0.47 | 0.68557 | 0.77750 | 0.97 | 0.98489 | 0.98990 |
| 0.48 | 0.69282 | 0.78297 | 0.98 | 0.98995 | 0.99329 |
| 0.49 | 0.70000 | 0.78837 | 0.99 | 0.99499 | 0.99666 |
| 0.50 | 0.70711 | 0.79370 | 1.00 | 1.00000 | 1.00000 |


| Number. | Squares. | Cubes. | $\overline{\text { Roots. }}$ | $\sqrt[3]{\text { Ruots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1.0000000 | 1.0000000 | 1.000000000 |
| 2 | 4 | 8 | 1.4142136 | 1.2599210 | . 500000000 |
| 3 | 9 | 27 | 1.7320508 | 1.4422496 | . 333333333 |
| 4 | 16 | 64 | 2.0000000 | 1.5874011 | . 250000000 |
| 5 | 25 | 125 | 2.2360680 | 1.7099759 | . 200000000 |
| 6 | 36 | 216 | 2.4494897 | 1.8171206 | . 166666667 |
| 7 | 49 | 343 | 2.6457513 | 1.9129312 | . 142857143 |
| 8 | 64 | 512 | 2.8284271 | 2.0000000 | . 125000000 |
| 9 | 81 | 729 | 3.0000000 | 2.0800837 | . 111111111 |
| 10 | 100 | 1000 | 3.1622777 | 2.1544347 | . 100000000 |
| 11 | 121 | 1331 | 3.3166248 | 2.2239801 | . 090909091 |
| 12 | 144 | 1728 | 3.4641016 | 2.2894286 | . 083333333 |
| 13 | 169 | 2197 | 3.6055513 | 2.3513347 | . 076923077 |
| 14 | 196 | 2744 | 3.7416574 | 2.4101422 | . 071428571 |
| 15 | 225 | 3375 | 3.8729833 | 2.4662121 | . 066666667 |
| 16 | 256 | 4096 | 4.0000000 | 2.5198421 | . 062500000 |
| -17 | 289 | 4913 | 4.1231056 | 2.5712816 | . 058823529 |
| 18 | 324 | 5832 | 4.2426407 | 2.6207414 | . 055555556 |
| 19 | 361 | 6859 | 4.3588989 | 2.6684016 | . 052631579 |
| 20 | 400 | 8000 | 4.4721360 | 2.7144177. | . 050000000 |
| 21 | 441 | 9261 | 4.5825757 | 2.7589243 | . 047619048 |
| 22 | 484 | 10648 | 4.6904158 | 2.8020393 | . 045454545 |
| 23 | 529 | 12167. | 4.7958315 | 2.843 .8670 | . 043478261 |
| 24 | 576 | 13824 | 4.8989795 | 2.8844991 | . 041666667 |
| 25 | 625 | 15625 | 5.0000000 | 2.9240177 | . 040000000 |
| 26 | 676 | 17576 | 5.0990195 | 2.9624960 | . 038461538 |
| 27 | 729 | 19683 | 5.1961524 | 3.0000000 | . 037037037 |
| 28 | 784 | 21952 | 5.2915026 | 3.0365889 | . 035714286 |
| 29 | 841 | 24389 | 5.3851648 | 3.0723168 | . 034482759 |
| 30 | 900 | 27000 | 5.4772256 | 3.1072325 | . 033333333 |
| 31 | 961 | 29791 | 5.5677644 | 3.1413806 | . 032258065 |
| 32 | 1024 | 32768 | 5.6568542 | 3.1748021 | . 031250000 |
| 33 | 1089 | 35937 | 5.7445626 | 3.2075343 | . 030303030 |
| 34 | 1156 | 39304 | 5.8309519 | 3.2396118 | . 029411765 |
| 35 | 1225 | 42875 | 5.9160798 | 3.2710663 | . 028571429 |
| 36 | 1296 | 46656 | 6.0000000 | 3.3019272 | . 027777778 |
| 37 | 1369 | 50653 | 6.0827625 | 3.3322218 | . 027027027 |
| 38 | 1444 | 54872 | 6.1644140 | 3.3619754 | . 026315789 |
| 39 | 1521 | 59319 | 6.2449980 | $3.391{ }^{\text {² }} 2114$ | . 025641026 |
| 40 | 1600 | 64000 | 6.3245553 | 3.4199519 | . 025000000 |
| 41 | 1681 | 68921 | 6.4031242 | 3.4482172 | . 024390244 |
| 42 | 1764 | 74088 | 6.4807407 | 3.4760266 | . 023809524 |
| 43 | 1849 | 79507 | 6.5574385 | 3.5033981 | . 023255814 |
| 44 | 1936 | 85184 | 6.6332496 | 3.5303483 | . 022727273 |
| 45 | 2025 | 91125 | -6.708 2039 | 3.5568933 | . 022222222 |
| 46 | 2116 | 97336 | 6.7823300 | 3.5830479 | . 021739130 |
| 47 | 2209 | 103823 | 6.8556546 | 3.6088261 | . 021276600 |
| 48 | 2304 | 110592 | 6.9282032 | 3.6342411 | . 020833333 |
| 49 | 2401 | 117649 | 7.0000000 | 3.6593057 | . 020408163 |
| 50 | 2500 | 125000 | 7.0710678 | 3.6840314 | . 020000000 |
| 51 | 2601 | 132651 | 7.1414281 | 3.7084298 | . 019607843 |
| 52 | 2704 | 140608 | 7.2111026 | 3.7325111 | . 019230769 |


| Number. | Squares. | Cubes. | $\checkmark$ Roots. | $\sqrt[3]{\text { Roots }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 53 | 2809 | 148877 | 7.2801099 | 3.7562858 | . 018867925 |
| 54 | 2916 | 157464 | 7.3484692 | 3.7797631 | . 018518519 |
| 55 | 3025 | 166375 | 7.4161985 | 3.8029525 | . 018181818 |
| 56 | 3136 | 175616 | 7.4833148 | 3.8258624 | . 017857143 |
| 57 | 3249 | 185193 | 7.5498344 | 3.8485011 | . 017543860 |
| 58 | 3364 | 195112 | 7.6157731 | 3.8708766 | . 017241379 |
| 59 | 3481 | 205379 | 7.6811457 | 3.8929965 | . 016949153 |
| 60 | 3600 | 216000 | 7.7459667 | 3.9148676 | . 016666667 |
| 61 | 3721 | 226981 | 7.8102497 | 3.9304972 | . 016393443 |
| 62 | 3844 | 238328 | 7.8740079 | 3.9578915 | . 016129032 |
| 63 | 3969 | 250047 | 7.9372539 | 3.9790571 | . 015873016 |
| 64 | 4096 | 262144 | 8.0000000 | 4.0000000 | . 015625000 |
| 65 | 4225 | 274625 | 8.0622577 | 4.02207256 | . 015384615 |
| 66 | 4356 | 287496 | 8.1240384 | 4.0412401 | . 015151515 |
| 67 | 4489 | 300763 | 8.1853528 | 4.0615480 | . 014925373 |
| 68 | 4624 | 314432 | 8.2462113 | 4.0816551 | . 014705882 |
| 69 | 4761 | 328509 | 8.3066239 | 4.1015661 | . 014492754 |
| 70 | 4900 | 343000 | 8.3666003 | 4.1212853 | . 014285714 |
| 71 | 5041 | 357911 | 8.4261498 | 4.1408178 | . 014084517 |
| 72 | 5184 | 373248 | 8.4852814 | 4.1601676 | . 013888889 |
| 73 | 5329 | 389017 | 8.5440037 | 4.1793390 | . 013698630 |
| 74 | 5476 | 405224 | 8.6023253 | 4.1983364 | . 013513514 |
| 75 | 5625 | 421875 | 8.6602540 | 4.2171633 | . 013333333 |
| 76 | 5776 | 438976 | 8.7177979 | 4.2358236 | . 013157895 |
| 77 | 5929 | 456533 | 8.7749644 | 4.2543210 | . 012987013 |
| 78 | 6084 | 474552 | 8.8317609 | 4.2726586 | . 012820513 |
| 79 | 6241 | 493039 | 8.8881944 | 4.2908404 | . 012658228 |
| 80 | 6400 | 512000 | 8.9442719 | 4.3088695 | . 012500000 |
| 81 | 6561 | 531441 | 9.0000000 | 4.3267487 | . 012345679 |
| 82 | 6724 | 551368 | 9.0553851 | 4.3444815 | . 012195122 |
| 83 | 6889 | 571787 | 9.1104336 | 4.3620707 | . 012048193 |
| 84 | 7056 | 592704 | 9.1651514 | 4.3795191 | . 011904762 |
| 85 | 7225 | 614125 | 9.2195445 | 4.3968296 | . 011764706 |
| 86 | 7396 | 636056 | 9.2736185 | 4.4140049 | . 011627907 |
| 87 | 7569 | 658503 | 9.3273791 | 4.4310476 | . 011494253 |
| 88 | 7744 | 681472 | 9.3808315 | 4.4479692 | . 011363636 |
| 89 | 7921 | 704969 | 9.4339811 | 4.4647451 | . 011235955 |
| 90 | 8100 | 729000 | 9.4868330 | 4.4814047 | . 011111111 |
| 91 | 8281 | 753571 | 9.5393920 | 4.4979414 | . 010989011 |
| 92 | 8464 | 778688 | 9.5916630 | 4.5143574 | . 010869565 |
| 93 | 8649 | 804357 | 9.6436508 | 4.5306549 , | . 010752688 |
| 94 | 8836 | 830584 | 9.6953597 | 4.5468359 | . 010638298 |
| 95 | 9025 | 857375 | 9.7467943 | 4.5629026 | . 010526316 |
| 96 | 9216 | 884736 | 9.7979590 | 4.5788570 | . 010416667 |
| 97 | 9409 | 912673 | 9.8488578 | 4.5947009 | . 010309278 |
| 98 | 9604 | 941192 | 9.8994949 | 4.6104363 | . 010204082 |
| 99 | 9801 | 970299 | 9.9498744 | 4.6260650 | . 010101010 |
| 100 | 10000 | 1000000 | 10.0000000 | 4.6415888 | . 010000000 |
| 101 | 10201 | 1030301 | 10.0498756 | 4.6570095 | . 009900990 |
| 102 | 10404 | 1061208 | 10.0995049 | 4.6723287 | . 009803922 |
| 103 | 10609 | 1092727 | 10.1488916 | 4.6875482 | . 009708738 |
| 104 | 10816 | 1124864 | 10.1980390 | 4.7026694 | . 009615385 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 105 | 11025 | 1157625 | 10.2469508 | 4.7176940 | . 009523810 |
| 106 | 11236 | 1191016 | 10.2956301 | 4.7326235 | . 009433962 |
| 107 | 11449 | 1225043 | 10.3440804 | 4.7474594 | . 009345794 |
| 108 | 11664 | 1259712 | 10.3923048 | 4.7622032 | . 009259259 |
| 109 | 11881 | 1295029 | 10.4403065 | 4.7768562 | . 009174312 |
| 110 | 12100 | 1331000 | 10.4880885 | 4.7914199 | . 009090909 |
| 111 | 12321 | 1367631 | 10.5356538 | 4.8058995 | . 009009009 |
| 112 | 12544 | 1404928 | 10.5830052 | 4.8202845 | . 008928571 |
| 113 | 12769 | 1442897 | 10.6301458 | 4.8345881 | . 008849558 |
| 114 | 12996 | 1481544 | 10.6770783 | 4.8488076 | . 008771930 |
| 115 | 13225 | 1520875 | 10.7238053 | 4.8629442 | . 008695652 |
| 116 | 13456 | 1560896 | 10.7703296 | 4.8769990 | . 008620690 |
| 117 | 13689 | 1601613 | 10.8166538 | 4.89097 .32 | . 008547009 |
| 118 | 13924 | 1643032 | 10.8627805 | 4.9018681 | . 008474576 |
| 119 | 14161 | 1685159 | 10.9087121 | 4.9186847 | . 008403361 |
| 120 | 14400 | 1728000 | 10.9544512 | 4.9324242 | . 008333333 |
| 121 | 14641 | 1771561 | 11.0000000 | 4.9160874 | . 008264463 |
| 122 | 14884 | 1815848 | 11.0453610 | 4.9596757 | . 008196721 |
| 123 | 15129 | 1860867 | 11.0905365 | 4.9731898 | . 008130081 |
| 124 | 15376 | 1906624 | 11.1355287 | 4.9866310 | . 008064516 |
| 125 | 15625 | 1953125 | 11.1803399 | 5.0000000 | . 008000000 |
| 126 | 15876 | 2000376 | 11.2249722 | 5.0132979 | . 007936508 |
| 127 | 16129 | 2048383 | 11.2694277 | 5.0265257 | . 007874016 |
| 128 | 16384 | 2097152 | 11.3137085 | 5.0396842 | . 007812500 |
| 129 | 16641 | 2146689 | 11.3578167 | 5.0527743 | . 007751938 |
| 130 | 16900 | 2197000 | 11.4017543 | 5.0657970 | . 007692308 |
| 131 | 17161 | 2248091 | 11.4455231 | 5.0787531 | . 007633588 |
| 132 | 17424 | 2299968 | 11.4891253 | 5.0916434 | . 007575758 |
| 133 | 17689 | 2352637 | 11.5325626 | 5.1044687 | . 007518797 |
| 134 | 17956 | 2406104 | 11.5758369 | 5.1172299 | . 007462687 |
| 135 | 18225 | 2460375 | 11.6189500 | 5.1299278 | . 007407407 |
| 136 | 18496 | 2515456 | 11.6619038 | 5.1425632 | . 007352941 |
| 137 | 18769 | 2571353 | 11.7046999 | 5.1551367 | . 007299270 |
| 138 | 19044 | 2628072 | 11.7473401 | 5.1676493 | . 007246377 |
| 139 | 19321 | 2685619 | 11.7898261 | 5.1801015 | . 007194245 |
| 140 | 19600 | 2744000 | 11.8321596 | 5.1924941 | . 007142857 |
| 141 | 19881 | 2803221 | 11.8743421 | 5.2048279 | . 007092199 |
| 142 | 20164 | 2863288 | 11.9163753 | 5.2171034 | . 007042254 |
| 143 | 20449 | 2924207 | 11.9582607 | 5.2293215 | . 006993007 |
| 144 | 20736 | 2985984 | 12.0000000 | 5.2414828 | . 006944444 |
| 145 | 21025 | 3048625 | 12.0415946 | 5.2535579 | . 006896552 |
| 146 | 21316 | 3112136 | 12.0830460 | 5.2656374 | . 006849315 |
| 147 | 21609 | 3176523 | 12.1243557 | 5.2776321 | . 006802721 |
| 148 | 21904 | 3241792 | 12.1655251 | 5.2895725 | . 006756757 |
| 149 | 22201 | 3307949 | 12.2065556 | 5.3014592 | . 006711409 |
| 150 | 22500 | 3375000 | 12.2474487 | 5.3132928 | . 006666667 |
| 151 | 22801 | 3442951 | 12.2882057 | 5.3250740 | . 006622517 |
| 152 | 23104 | 3511008 | 12.3288280 | 5.3368033 | . 006578947 |
| 153 | 23409 | 3581577 | 12.3693169 | 5.3484812 | . 006535948 |
| 154 | 23716 | 3652264 | 12.4096736 | 5.3601084 | . 006493506 |
| 155 | 24025 | 3723875 | 12.4498996 | 5.3716854 | . 006451613 |
| 156 | 24336 | 3796416 | 12.4899960 | 5.3832126 | . 006410256 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $i^{3} \overline{\text { Roots }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 157 | 24649 | 3869893 | 12.5299641 | 5.3946907 | . 006369427 |
| 158 | 24964 | 3944312 | 12.5698051 | 5.4061202 | . 006329114 |
| 159 | 25281 | 4019679 | 12.6095202 | 5.4175015 | . 006289308 |
| 160 | 25600 | 4096000 | 12.6491106 | 5.4288352 | . 006250000 |
| 161 | 2.921 | 4173281 | 12.6885775 | 5.4401218 | . 006211180 |
| 162 | 26244 | 4251528 | 12.7279221 | 5.4513618 | . 006172840 |
| 163 | 26569 | 43330747 | 12.7671453 | 5.4625556 | . 006134969 |
| 164 | 26896 | 4410944 | 12.8062485 | 5.4737037 | . 006097561 |
| 165 | 27225 | 4492125 | 12.8452326 | 5.4848066 | . 006060606 |
| 166 | 27556 | 4574296 | 12.8840987 | 5.4958647 | . 006024096 |
| 167 | 27889 | 4657463 | 12.9228480 | 5.5068784 | . 005988024 |
| 168 | 28224 | 4741632 | 12.9614814 | 5.5178484 | . 005952381 |
| 169 | 28561 | 4826809 | 13.0000000 | 5.5287748 | . 005917160 |
| 170 | 28900 | 4913000 | 13.0384048 | 5.5396583 | . 005882353 |
| 171 | 29241 | 5000211 | 13.0766968 | 5.5504991 | . 005847953 |
| 172 | 29584 | 5088448 | 13.1148770 | 5.5612978 | . 005813953 |
| 173 | 29929 | 5177717 | 13.1529464 | 5.5720546 | . 005780347 |
| 174 | 30276 | 5268024 | 13.1909060 | 5.5827702 | . 005747126 |
| 175 | 30625 | 5359375 | 13.2287566 | 5.5934447 | . 005714286 |
| 176 | 30976 | 5451776 | 13.2664992 | 5.6040787 | . 005681818 |
| 177 | 31329 | 5545233 | 13.3041347 | 5.6146724 | . 005649718 |
| 178 | 31684 | 5639752 | 13.3416641 | 5.6252263 | . 005617978 |
| 179 | 32041 | 5735339 | 13.3790882 | 5.6357408 | . 005586592 |
| 180 | 32400 | 5832000 | 13.4164079 | 5.6462162 | . 005555556 |
| 181 | 32761 | 5929741 | 13.4536240 | 5.6566528 | . 005524862 |
| 182 | 33124 | 6028568 | 13.4907376 | 5.6670511 | . 005494505 |
| 183 | 33489 | 6128487 | 13.5277493 | 5.6774114 | . 005464481 |
| 184 | 33856 | 6229504 | 13.5646600 | 5.6877340 | . 005434783 |
| 185 | 34225 | 6331625 | 13.6014705 | 5.6980192 | . 005405405 |
| 186 | 34596 | 6434856 | 13.6381817 | 5.7082675 | . 005376344 |
| 187 | 34969 | 6539203 | 13.6747943 | 5.7184791 | . 005347594 |
| 188 | 35344 | 6644672 | 13.7113092 | 5.7286543 | . 005319149 |
| 189 | 35721 | 6751269 | 13.7477271 | 5.7387936 | . 005291005 |
| 190 | 36100 | 6859000 | 13.7840488 | 5.7488971 | . 005263158 |
| 191 | 36481 | 6967871 | 13.8202750 | 5.7589652 | . 005235602 |
| 192 | 36864 | 7077888 | 13.8564065 | 5.7689982 | . 005208333 |
| 193 | 37249 | 7189517 | 13.8924400 | 5.7789966 | . 005181347 |
| 194 | 37636 | 7301384 | 13.9283883 | 5.7889604 | . 005154639 |
| 195 | 38025 | 7414875 | 13.9642400 | 5.7988900 | . 005128205 |
| 196 | 38416 | 7529536 | 14.0000000 | 5.8087857 | . 005102041 |
| 197 | 38809 | 7645373 | 14.0356688 | 5.8186479 | . 005076142 |
| 198 | 39204 | 7762392 | 14.0712473 | 5.8284867 | . 005050505 |
| 199 | 39601 | 7880599 | 14.1067360 | 5.8382725 | . 005025126 |
| 200 | 40000 | 8000000 | 14.1421356 | 5.8480355 | . 005000000 |
| 201 | 40401 | 8120601 | 14.1774469 | 5.8577660 | -. 004975124 |
| 202 | 40804 | 8242408 | 14.2126704 | 5.8674673 | . 004950495 |
| 203 | 41209 | 8365427 | 14.2478068 | 5.8771307 | . 004926108 |
| 204 | 41616 | 8489664 | 14.2828569 | 5.8867653 | . 004901961 |
| 205 | 42025 | 8615125 | 14.3178211 | 5.8963685 | . 004878049 |
| 206 | 42436 | 8741816 | 14.3527001 | 5.9059406 | . 004854369 |
| 207 | 42849 | 8869743 | 14.3874946 | 5.9154817 | . 004830918 |
| 208 | 43264 | 8998912 | 14.4222051 | 5.9249921 | . 004807692 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 209 | 43681 | 9129329 | 14.4568323 | 5.9344721 | . 004784689 |
| 210 | 44100 | 9261000 | 14.4913767 | 5.9439220 | . 004761905 |
| 211 | 44521 | 9393931 | 14.5258390 | 5.9533418 | . 004739336 |
| 212 | 44944 | 9528128 | 14.5602198 | 5.9627320 | . 004716981 |
| 213 | 45369 | 9663597 | 14.5945195 | 5.9720926 | . 004694836 |
| 214 | 45796 | 9800344 | 14.6287388 | 5.9814240 | . 004672897 |
| 215 | 46225 | 9938375 | 14.6628783 | 5.9907264 | . 004651163 |
| 216 | 46656 | 10077696 | 14.6969385 | 6.0000000 | . 004629630 |
| 217 | 47089 | 10218313 | 14.7309199 | 6.0092450 | . 004608295 |
| 218 | 47524 | 10360232 | 14.7648231 | 6.0184617 | . 004587156 |
| 219 | 47961 | 10503459 | 14.7986486 | 6.0276502 | . 004566210 |
| 220 | 48400 | 10648000 | 14.8323970 | 6.0368107 | . 00454.455 |
| 221 | 48841 | 10793861 | 14.8660687 | 6.0459435 | . 004524887 |
| 222 | 49281 | 10941048 | 14.8996644 | 6.0550489 | . 004504505 |
| 223 | 49729 | 11089567 | 14.9331845 | 6.0641270 | . 004484305 |
| 224 | 50176 | 11239424 | 14.9666295 | 6.0731779 | . 004464286 |
| 225 | 50625 | 11390625 | 15.0000000 | 6.0824020 | . 004444444 |
| 226 | 51076 | 11543176 | 15.0332964 | 6.0991994 | . 004424779 |
| 227 | 51529 | 11697083 | 15.0665192 | 6.1001702 | . 004405286 |
| 228 | 51984 | 11852352 | 15.0996689 | 6.1091147 | . 004385965 |
| 229 | 52441 | 12008989 | 15.1327460 | 6.1180332 | . 004366812 |
| 230 | 52900 | 12167000 | 15.1657509 | 6.1269257 | . 004347826 |
| 231 | ธ3 361 | 12326391 | 15.1986842 | 6.1357924 | . 004329004 |
| 232 | 53824 | 12487168 | 15.2315462 | 6.1446337 | . 004310345 |
| 233 | 54289 | 12649337 | 15.2643375 | 6.1534495 | . 004291845 |
| 234 | 54756 | 12812904 | 15.2970 .585 | 6.1622401 | . 004273504 |
| 235 | 55225 | 12977875 | 15.3297097 | 6.1710058 | . 004255319 |
| 236 | 55696 | 13144256 | 15.3622915 | 6.1797466 | . 004237288 |
| 237 | 56169 | 13312053 | 15.3948043 | 6.1884628 | . 004219409 |
| 238 | 56644 | 13481272 | 15.4272486 | 6.1971544 | . 004201681 |
| 239 | 57121 | 13651919 | 15.4596248 | 6.2058218 | . 004184100 |
| 240 | 57600 | 13824000 | 15.4919334 | 6.2144650 | . 004166667 |
| 241 | 58081 | 13997521 | 15.5241747 | 6.2230813 | . 004149378 |
| 242 | 58564 | 14172488 | 15.5563492 | 6.2316797 | . 004132231 |
| 243 | 59049 | 14348907 | 15.5884573 | 6.2402515 | . 004115226 |
| 244 | 59536 | 14526784 | 15.6204994 | 6.2487998 | . 004098361 |
| 245 | 60025 | 14706125 | 15.6524758 | 6.2573248 | . 004081633 |
| 246 | 60516 | 14886936 | 15.6843871 | 6.2658266 | . 004065041 |
| 247 | 61009 | 15069223 | 15.7162336 | 6.2743054 | . 004018583 |
| 248 | 61504 | 15252992 | 15.7480157 | 6.2827613 | . 004032258 |
| 249 | 62001 | 15438249 | 15.7797338 | 6.2911946 | . 004016064 |
| 250 | 62500 | 15625000 | 15.8113883 | 6.2996053 | . 004000000 |
| 251 | 63001 | 15813251 | 15.8429795 | 6.3079935 | . 003984064 |
| 252 | 63504 | 16003008 | 15.8745079 | 6.3163596 | . 003968254 |
| 253 | 64009 | 16194277 | 15.9059737 | 6.3247035 | . 003952569 |
| 254 | 64516 | 16387064 | 15.9373775 | 6.3330256 | . 003937008 |
| 255 | 65025 | 16581375 | 15.9687194 | 6.3413257 | . 003921569 |
| 256 | 65536 | 16777216 | 16.0000000 | 6.3496042 | . 003906250 |
| 257 | 66049 | 16974593 | 16.0312195 | 6.3578611 | . 003891051 |
| 258 | 66564 | 17173512 | 16.0623784 | 6.3660968 | . 003875969 |
| 259 | 67081 | 17373979 | 16.0934769 | 6.3743111 | . 003861004 |
| 260 | 67600 | 17576000 | 16.1245155 | 6.3825043 | . 003816154 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 261 | 68121 | 17779581 | 16.1554944 | 6.3906765 | . 003831418 |
| 262 | 68644 | 17984728 | 16.1864141 | 6.3988279 | . 003816794 |
| 263 | 69169 | 18191447 | 16.2172747 | 6.4069585 | . 003802281 |
| 264 | 69696 | 18399744 | 16.2480768 | 6.4150687 | . 003787879 |
| 265 | 70225 | 18609625 | 16.2788206 | 6.4231583 | . 003773585 |
| 266 | 70756 | 18821096 | 16.3095064 | 6.4312276 | . 003759398 |
| 267 | 71289 | 19034163 | 16.3401346 | 6.4392767 | . 003745318 |
| 268 | 71824 | 19248832 | 16.3707055 | 6.4473057 | . 003731343 |
| 269 | 72361 | 19465109 | 16.4012195 | 6.4553148 | . 003717472 |
| 270 | 72900 | 19683000 | 16.4316767 | 6.4633041 | . 003703704 |
| 271 | 73441 | 19902511 | 16.4620776 | 6.4712736 | . 003690037 |
| 272 | 73984 | 20123643 | 16.4924225 | 6.4792236 | . 003676471 |
| 273 | 74529 | 20346417 | 16.5227116 | 6.4871541 | . 003663004 |
| 274 | 75076 | 20570824 | 16.5529454 | 6.4950653 | . 003649635 |
| 275 | 75625 | 20796875 | 16.5831240 | 6.5029572 | . 003636364 |
| 276 | 76176 | 21024576 | 16.6132477 | 6.5108800 | . 003623188 |
| 277 | 76729 | 21253933 | 16.6433170 | 6.5186839 | . 003610108 |
| 278 | 77284 | 21484952 | 16.6733320 | 6.5265189 | . 003597122 |
| 279 | 77841 | 21717639 | 16.7032931 | 6.5343351 | . 003584229 |
| 280 | 78400 | 21952000 | 16.7332005 | 6.5421326 | . 003571429 |
| 281 | 78961 | 22188041 | 16.7630546 | 6.5499116 | . 003558719 |
| 282 | 79524 | 22425768 | 16.7928556 | 6.5576722 | . 003546099 |
| 283 | 80089 | 22665187 | 16.8226038 | 65654144 | . 003533569 |
| 284 | 80656 | 22906304 | 16.8522995 | 6.5731385 | . 003521127 |
| 285 | 81225 | 23149125 | 16.8819430 | 6.5808443 | . 003508772 |
| 286 | 81796 | 23393656 | 16.9115345 | 6.5885323 | . 003496503 |
| 287 | 82369 | 23639903 | 16.9410743 | 6.5962023 | . 003484321 |
| 288 | 82944 | 23887872 | 16.9705627 | 6.6038545 | . 003472222 |
| 289 | 83521 | 24137569 | 17.0000000 | 6.6114890 | . 003460208 |
| 290 | 84100 | 24389000 | 17.0293864 | 6.6191060 | . 003448276 |
| 291 | 84681 | 24642171 | 17.0587221 | 6.6267054 | . 003436426 |
| 292 | 85264 | 24897088 | 17.0880075 | 6.6342854 | . 003424658 |
| 293 | 85849 | 25153757 | 17.1172428 | 6.6418 .522 | . 003412969 |
| 294 | 86436 | 25412184 | 17.1464282 | 6.6493998 | . 003401361 |
| 295 | 87025 | 25672375 | 17.1755640 | 6.6569302 | . 003389831 |
| 296 | 87616 | 25934336 | 17.2046505 | 6.6644437 | . 003378378 |
| 297 | 88209 | 26198073 | 17.2336879 | 6.6719403 | . 003367003 |
| 298 | 88804 | 26463592 | 17.2626765 | 6.6794200 | . 003355705 |
| 299 | 89401 | 26730899 | 17.2916165 | 6.6868831 | . 003344482 |
| 300 | 90000 | 27000000 | 17.3205081 | 6.6943295 | . 003333333 |
| 301 | 90601 | 27270901 | 17.3493516 | 6.7017593 | . 003322259 |
| 302 | 91204 | 27513608 | 17.3781472 | 6.7091729 | . 003311258 |
| 303 | 91809 | 27818127 | 17.4068952 | 6.7165700 | . 003301330 |
| 304 | 92416 | 28094464 | 17.4355958 | 6.7239508 | . 003289474 |
| 305 | 93025 | 28372625 | 17.4642492 | 6.7313155 | . 003278689 |
| 306 | 93636 | 28652616 | 17.4928557 | 6.73866 .11 | . 003267974 |
| 307 | 94249 | 28934443 | 17.5:21 4155 | 6.7459967 | . 003257329 |
| 308 | 94864 | 29218112 | 17.5499288 | 6.7533134 | . 003246753 |
| 309 | 95481 | 29503609 | 17.5783958 | 6.7606143 | . 003236246 |
| 310 | 96100 | 29791000 | 17.6068169 | 6.7678995 | . 003225806 |
| 311 | 96721 | 30080231 | 17.6351921 | 6.7751690 | . 003215434 |
| 312 | 97344 | 30371328 | 17.6635217 | 6.7824229 | . 003205128 |


| Sumber. | Squares. | Cubes. | 1 Roots. | $\sqrt[3]{3}$ Roots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 313 | 97969 | 30664297 | 17.6918060 | 6.7896613 | . 003194888 |
| 314 | 98596 | 30959144 | 17.7200451 | 6.7968844 | . 003184713 |
| 315 | 99225 | 3125.58 | 17.7482393 | 6.8040921 | . 003174603 |
| 316 | 99856 | 31.554496 | 17.7763888 | 6.8112847 | . 003164557 |
| 317 | 100489 | 3185013 | 17.804 4938 | 6.8184620 | . 003154574 |
| 318 | 101124 | 32157432 | 17.8325545 | 6.8256242 | . 003144654 |
| 319 | 101761 | 32461759 | 17.8605711 | 6.8327714 | . 003134796 |
| 320 | 102400 | 32768000 | 17.888 5438 | 6.839 .9037 | . 003125000 |
| 321 | 103041 | 33076161 | 17.9164729 | 6.8470213 | . 003115265 |
| 322 | 103684 | 33386248 | 17.9443584 | 6.854 .1240 | . 003105590 |
| 323 | 104329 | 33698267 | 17.9722008 | 6.8612120 | . 003095975 |
| 324 | 104976 | 34012224 | 18.0000000 | 6.8682855 | . 003086420 |
| 325 | 105625 | 34328125 | 18.0277564 | 6.8753433 | . $0030 \div 6923$ |
| 326 | 106276 | 34645976 | 18.0554701 | 6.8823888 | . 003067485 |
| 327 | 106929 | 34965783 | 18.0831413 | 6.8894188 | . 003048104 |
| 328 | 107584 | 35287552 | 18.1107703 | 6.8964345 | . 003048780 |
| 329 | 108241 | 35611289 | 18.1383571 | 6.9034359 | . 003039514 |
| 330 | 108900 | 35937000 | 18.1659021 | 6.9104232 | . 003030303 |
| 331 | 109561 | 36264691 | 18.1934054 | 6.9173964 | . 003021148 |
| 332 | 110224 | 36594368 | 18.2208672 | 6.9243556 | . 003012048 |
| 333 | 110889 | 36926037 | 18.2482876 | 6.9313088 | . 003003003 |
| 334 | 111556 | 37259704 | 18.2756669 | 6.9382321 | . 002994012 |
| 335 | 112225 | 37595375 | 18.3030052 | 6.9451496 | . 002985075 |
| 336 | 112896 | 379330506 | 18.3303028 | 6.9520 .533 | . 002976190 |
| 337 | 113569 | 38272753 | 18.3575598 | 6.9589434 | . 002967359 |
| 338 | 114244 | 38614472 | 18.3847763 | 6.9658198 | . 002958580 |
| 339 | 114921 | 38958219 | 18.4119526 | 6.9726826 | . 002949853 |
| 340 | 115600 | 39304000 | 18.4390889 | 6.9795321 | . 002911176 |
| 341 | 116281 | 39651821 | 18.4661853 | 6.9863681 | . 002932551 |
| 342 | 116964 | 40001688 | 18.4932420 | 6.9931906 | . 002929877 |
| 343 | 117649 | 40353607 | 18.5202592 | 7.0000000 | . 002915452 |
| 344 | 118336 | 40707584 | 18.5472370 | 7.0067962 | . 002906977 |
| 34.5 | 119025 | 41063625 | 18.5741756 | 7.0135791 | . 002898551 |
| 346 | 119716 | 41421736 | 18.6010752 | 7.0203490 | . 002890173 |
| 347 | 120409 | 41781923 | 18.6279360 | 7.0271058 | . 002881844 |
| 348 | 121104 | 42144192 | 18.6547581 | 7.0338497 | . 002873563 |
| 349 | 121801 | 42508549 | 18.6815417 | 7.0405860 | . 002865330 |
| 350 | 122500 | 42875000 | 18.708 2869 | 7.0472987 | . 002857143 |
| 351 | 123201 | 43243551 | 18.7349940 | 7.0540041 | . 002849003 |
| 352 | 123904 | 43614208 | 18.7616630 | 7.0606967 | . 002840909 |
| 35. | 124609 | 43986977 | 18.7882942 | 7.0673767 | . 002832861 |
| 354 | 125316 | 44361864 | 18.8148877 | $7.074 \pm 0440$ | . 002824859 |
| 355 | 126025 | 44738875 | 18.8414437 | 7.0806988 | . 002816901 |
| 356 | 126736 | 45118016 | 18.8679623 | 7.0873411 | . 002808989 |
| 357 | 127449 | 45499293 | 18.8944436 | 7.0939709 | . 002801120 |
| 358 | 128164 | 45882712 | 18.9208879 | 7.1005885 | . 002793296 |
| 359 | 128881 | 46268279 | 18.9472953 | 7.1071937 | . 002785515 |
| 360 | 129600 | 46656000 | 18.9736660 | 7.1137866 | . 002777778 |
| 361 | 130321 | 47045881 | 19.0000000 | -7.120 3674 | . 002770083 |
| 362 | 131044 | 47437928 | 19.0262976 | 7.1269360 | .002 762431 |
| 363 | 131769 | 47832147 | 19.0525589 | 7.1334925 | . 002754821 |
| 364 | 132496 | 48228544 | 19.0787840 | 7.1400370 | . 002747253 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roois. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 365 | 133225 | 48627125 | 19.1049732 | 7.1465695 | . 002739726 |
| 366 | 133956 | 49027896 | 19.1311265 | 7.1530901 | . 002732240 |
| 367 | 134689 | 49430863 | 19.1572441 | 7.1595988 | . 002724796 |
| 368 | 135424 | 49836032 | 19.1833261 | 7.1660957 | . 002717391 |
| 369 | 136161 | 50243409 | 19.2093727 | 7.1725809 | . 002710027 |
| 370 | 136900 | 50653000 | 19.2353841 | 7.1790544 | . 002702703 |
| 371 | 137641 | 51064811 | 19.2613603 | 7.1855162 | . 002695418 |
| 372 | 138384 | 51478848 | 19.2873015 | 7.1919663 | . 002688172 |
| 373 | 139129 | 51895117 | 19.3132079 | 7.1984050 | . 002680965 |
| 374 | 139876 | 52313624 | 19.3390796 | 7.2048322 | . 002673797 |
| 375 | 140625 | 52734375 | 19.3649167 | 7.2112479 | . 002666667 |
| 376 | 141376 | 53157376 | 19.3907194 | 7.2176522 | . 002659574 |
| 377 | 142129 | 53582633 | 19.4164878 | 7.2240450 | . 002652520 |
| 378 | 142884 | 54010152 | 19.4422221 | 7.2304268 | . 002645503 |
| 379 | 143641 | 54439939 | 19.4679223 | 7.2367972 | . 002638521 |
| 380 | 144400 | 54872000 | 19.4935887 | 7.2431565 | . 002631579 |
| 381 | 145161 | 55306341 | 19.5192213 | 7.2495045 | . 002624672 |
| 382 | 145924 | 55742968 | 19.5448203 | 7.2558415 | . 002617801 |
| 383 | 146689 | 56181887 | 19.5703858 | 7.2621675 | . 002610966 |
| 384 | 147456 | 56623104 | 19.5959179 | 7.2684824 | . 002604167 |
| 385 | 148225 | 57066625 | 19.6214169 | 7.2747864 | . 002597403 |
| 386 | 148996 | 57512456 | 19.6468827 | 7.2810794 | . 002590674 |
| 387 | 149769 | 57960603 | 19.6723156 | 7.2873617 | . 002583979 |
| 388 | 150544 | 58411072 | 19.6977156 | 7.2936330 | . 002577320 |
| 389 | 151321 | 58863869 | 19.7230829 | 7.2998936 | . 002570694 |
| 390 | 152100 | 59319000 | 19.7484177 | 7.3061436 | . 002564103 |
| 391 | 152881 | 59776471 | 19.7737199 | 7.3123828 | . 002557545 |
| 392 | 153664 | 60236288 | 19.7989899 | 7.3186114 | . 002551020 |
| 393 | 154449 | 60698457 | 19.8242276 | 7.3248295 | . 002544529 |
| 394 | 155236 | 61162984 | 19.8494332 | 7.3310369 | . 002538071 |
| 395 | 156025 | 61629875 | 19.8746069 | 7.3372339 | . 002531646 |
| 396 | 156816 | 62099136 | 19.8997487 | 7.3434205 | . 002525253 |
| 397 | 157609 | 62570773 | 19.9248588 | 7.3495966 | . 002518892 |
| 398 | 158404 | 63044792 | 19.9499373 | 7.3557624 | . 002512563 |
| 399 | 159201 | 63521199 | 19.974 .9844 | 7.3619178 | . 002506266 |
| 400 | 160000 | 64000000 | 20.0000000 | 7.3680630 | . 002500000 |
| 401 | 160801 | 64481201 | 20.0249844 | 7.3741979 | . 002493766 |
| 402 | 161604 | 64964808 | 20.0499377 | 7.3803227 | . 002487562 |
| 403 | 162409 | 65450827 | 20.0748599 | 7.3864373 | . 002481390 |
| 404 | 163216 | 65939264 | 20.0997512 | 7.3925418 | . 002475248 |
| 405 | 164025 | 66430125 | 20.1246118 | 7.3986363 | . 002469136 |
| 406 | 164836 | 66923416 | 20.1494417 | 7.4047206 | . 002463054 |
| 407 | 165649 | 67419143 | 20.1742410 | 7.4107950 | . 002457002 |
| 408 | 166464 | 67917312 | 20.1990099 | 7.4168595 | . 002450980 |
| 409 | 167281 | 68417929 | 20.2237484 | 7.4229142 | . 002444988 |
| 410 | 168100 | 68921000 | 20.2484567 | 7.4289589 | . 002439024 |
| 411 | 168921 | 69426531 | 20.2731349 | 7.4349938 | . 002433090 |
| 412 | 169744 | 69934528 | 20.2977831 | 7.4410189 | . 002427184 |
| 413 | 170569 | 70444997 | 20.3224014 | 7.4470343 | . 002421308 |
| 414 | 171396 | 70957944 | 20.3469899 | 7.4530399 | . 002415459 |
| 415 | 172225 | 71473375 | 20.3715488 | 7.4590359 | . 002409639 |
| 416 | 173056 | 71991296 | 20.3960781 | 7.4650223 | . 002406846 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roats. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 417 | 173889 | 72511713 | 20.4205779 | 7.4709991 | . 002398082 |
| 418 | 174724 | 73034632 | 20.4450483 | 7.4769664 | . 002392344 |
| 419 | 175561 | 73560059 | 20.4694895 | 7.4829242 | . 002386635 |
| 420 | 176400 | 74088000 | 20.4939015 | 7.4888724 | . 002380952 |
| 421 | 177241 | 74618461 | 20.5182845 | 7.4948113 | . 002375297 |
| 422 | 178084 | 75151448 | 20.5426386 | 7.5007406 | . 002369668 |
| 423 | 178929 | 75686967 | 20.5669638 | 7.5066607 | . 002364066 |
| 424 | 179776 | 76225024 | 20.5912603 | 7.5125715 | . 002358491 |
| 425 | 180625 | 76765625 | 20.6155281 | 7.5184730 | . 002352941 |
| 426 | 181476 | 77308776 | 20.6397674 | 7.5243652 | . 002347418 |
| 427 | 182329 | 77854483 | 20.6639783 | 7.5302482 | . 002341920 |
| 428 | 183184 | 78402752 | 20.6881609 | 7.5361221 | . 002336449 |
| 429 | 184041 | 78953589 | 20.7123152 | 7.5419867 | . 002331002 |
| 430 | 184900 | 79507000 | 20.7364414 | 7.5478423 | . 002325581 |
| 431 | 185761 | 80062991 | 20.7605395 | 7.5536888 | . 002320186 |
| 432 | 186624 | 80621568 | 20.7846097 | 7.5595263 | . 002314815 |
| 433 | 187489 | 81182737 | 20.8086520 | 7.5653548 | . 002309469 |
| 434 | 188356 | 81746504 | 20.8326667 | 7.5711743 | . 002304147 |
| 435 | 189225 | 82312875 | 20.8566536 | 7.5769849 | . 002298851 |
| 436 | 190096 | 82881856 | 20.8806130 | 7.5827865 | . 002293578 |
| 437 | 190969 | 83453453 | 20.9045450 | 7.5885793 | . 002288330 |
| 438 | 191844 | 84027672 | 20.9284495 | 7.5943633 | . 002283105 |
| 439 | 192721 | 84604519 | 20.9523268 | 7.6001385 | . 002277904 |
| 440 | 193600 | 85184000 | 20.9761770 | 7.6059049 | . 002272727 |
| 441 | 194481 | 85766121 | 21.0000000 | 7.6116626 | . 002267574 |
| 442 | 195364 | 86350888 | 21.0237960 | 7.6174116 | . 002262443 |
| 443 | 196249 | 86938307 | 21.0475652 | 7.6231519 | . 002257336 |
| 444 | 197136 | 87528384 | 21.0713075 | 7.6288837 | . 002252252 |
| 445 | 198025 | 88121125 | 21.0950231 | 7.6346067 | . 002247191 |
| 446 | 198916 | 88716536 | 21.1187121 | 7.6403213 | . 002242152 |
| 447 | 199809 | 89314623 | 21.1423745 | 7.6460272 | . 002237136 |
| 448 | 200704 | 89915392 | 21.1660105 | 7.6517247 | . 002232143 |
| 449 | 201601 | 90518849 | 21.1896201 | 7.6574138 | . 002227171 |
| 450 | 202500 | 91125000 | 21.2132034 | 7.6630943 | . 002222222 |
| 451 | 203401 | 91733851 | 21.2367606 | 7.6687665 | . 002217295 |
| 452 | 204304 | 92345408 | 21.2602916 | 7.6744303 | . 002212389 |
| 453 | 205209 | 92959677 | 21.2837967 | 7.6800857 | . 002207506 |
| 454 | 206116 | 93576664 | 21.3072758 | 7.6857328 | . 002202643 |
| 455 | 207025 | 94196375 | 21.3307290 | 7.6913717 | . 002197802 |
| 456 | 207936 | 94818816 | 21.3541565 | 7.6970023 | . 002192982 |
| 457 | 208849 | 95443993 | 21.3775583 | 7.7026246 | . 002188184 |
| 458 | 209764 | 96071912 | 21.4009346 | 7.7082388 | . 002183406 |
| 459 | 210681 | 96702579 | 21.4242853 | 7.7138448 | . 002178649 |
| 460 | 211600 | 97336000 | 21.4476106 | 7.7194426 | . 002173913 |
| 461 | 212521 | 97972181 | 21.4709106 | 7.7250325 | . 002169197 |
| 462 | 213444 | 98611128 | 21.4941853 | 7.7306141 | . 002164502 |
| 463 | 214369 | 99252847 | 21.5174348 | 7.7361877 | . 002159827 |
| 464 | 215296 | 99897344 | 21.5406592 | 7.7417532 | ,002 155172 |
| 465 | 216225 | 100544625 | 21.5638587 | 7.7473109 | . 002150538 |
| 466 | 217156 | 101194696 | 21.5870331 | 7.7528606 | . 002145923 |
| 467 | 218089 | 101847563 | 21.6101828 | 7.7584023 | . 002141328 |
| 468 | 219024 | 102503232 | 21.6333077 | 7.7639361 | . 002136752 |


| Number. | Squares. | Cubes. | 1 Routs. | $r^{3}$ Roots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 469 | 219961 | 103161709 | 21.6564078 | 7.7694620 | . 002132196 |
| 470 | 220900 | 103823000 | 21.6794834 | 7.7549801 | . 002127660 |
| 471 | 221841 | 104487111 | 21.7025344 | 7.7804904 | . 002193142 |
| 472 | 222784 | 105154048 | 21.7255610 | 7.7859928 | . 002118644 |
| 473 | 223729 | 105828817 | 21.7485632 | 7.7914875 | . 002114 16.) |
| 474 | 224676 | 106496424 | 21.7115411 | 7.796974 .5 | . 002109705 |
| 475 | 225625 | 107171875 | 21.7944947 | 7.8024538 | . 002105263 |
| 476 | 226576 | 107850176 | 21.8174242 | 7.8079354 | . 002100840 |
| $47 \%$ | 227529 | 108531333 | 21.8403297 | 7.8133892 | . 002096436 |
| 478 | 228484 | 109215352 | 21.8632111 | 7.8188456 | . 002092050 |
| 479 | 229441 | 109902239 | 21.8860686 | 7.8242942 | . 002087683 |
| 480 | 230400 | 110592000 | 21.9089023 | 7.8297353 | . 002083333 |
| 481 | 231361 | 111284641 | 21.9317122 | 7.8351688 | . 002079002 |
| 482 | 232324 | 111980168 | 21.9544984 | 7.8405949 | . 002074689 |
| 483 | 233289 | 112678587 | 21.9772610 | 7.8460134 | . 002070393 |
| 484 | 234256 | 113379904 | 22.0000000 | 7.8514244 | . 002066116 |
| 485 | 235225 | 114084125 | 22.0227155 | 7.8568281 | . 002061856 |
| 486 | 236196 | 114791256 | 22.0454077 | 7.8622242 | . 002057613 |
| 487 | 237169 | 115501303 | 22.0680765 | 7.8676130 | . 002053388 |
| 488 | 238144 | 116214272 | 22.0907220 | 7.8729944 | . 002049180 |
| 489 | 239121 | 116930169 | 22.1133444 | 7.8783684 | . 002044990 |
| 490 | 240100 | 117649000 | 22.1359436 | 7.8837352 | . 002040816 |
| 491 | 241081 | 118370771 | 22.1585198 | 7.8890946 | . 002036660 |
| 492 | 242064 | 119095488 | 22.1810730 | 7.8944468 | . 002032520 |
| 493 | 243049 | 119823157 | 22.2036033 | 7.8997917 | . 002028398 |
| 494 | 244036 | 120553784 | 22.2261108 | 7.9051294 | . 002024291 |
| 495 | 245025 | 121287375 | 22.2485955 | 7.9104599 | . 002020202 |
| 496 | 246016 | 122023936 | 22.2710575 | 7.9157832 | . 002016129 |
| 497 | 247009 | 122763473 | 22.2934968 | 7.9210994 | . 002012072 |
| 498 | 248004 | 123505992 | 22.3159136 | 7.9264085 | . 002008032 |
| 499 | 249001 | 124251499 | 22.3383079 | 7.9317104 | . 002004008 |
| 500 | 250000 | 125000000 | 22.3606798 | 7.9370053 | . 002000000 |
| 501 | 251001 | 125751501 | 22.3830293 | 7.9422931 | . 001996008 |
| 502 | 252004 | 126506008 | 22.4053565 | 7.9475739 | . 001992082 |
| 503 | 253009 | 127263527 | 22.4276615 | 7.9528477 | . 001988072 |
| 504 | 254016 | 128024064 | 22.4499443 | 7.9581144 | . 001984127 |
| 505 | 255025 | 128787625 | 22.4722051 | 7.9633743 | . 001980198 |
| 506 | 256036 | 129554216 | 22.4944438 | 7.9686271 | . 001976285 |
| 507 | 257049 | 130323843 | 22.5166605 | 7.9738731 | . 001972387 |
| 508 | 258064 | 131096512 | 22.5388553 | 7.9791122 | . 001968504 |
| 509 | 259081 | 131872229 | 22.5610283 | 7.9843444 | . 001964637 |
| 510 | 260100 | 132651000 | 22.5831796 | 7.9895697 | . 001960784 |
| 511 | 261121 | 133432831 | 22.6053091 | 7.9947883 , | . 001956917 |
| 512 | 262144 | 134217728 | 22.6274170 | 8.0000000 | . 001953125 |
| 513 | 263169 | 135005697 | 22.6495033 | 8.0052049 | . 001949318 |
| 514 | 264196 | 135796744 | 22.6715681 | 8.0104032 | . 001945525 |
| 515 | 265 225 | 136590875 | 22.6936114 | 8.0155946 | . 001911748 |
| 516 | 266256 | 137388096 | 22.7156334 | 8.0207794 | . 001937984 |
| 517 | 267289 | 138188413 | 22.7376341 | 8.0259574 | . 001934236 |
| 518 | 268324 | 138991832 | 22.759 6134 | 8.0311257 | . 001930502 |
| 519 | 269361 | 139798359 | 22.7815715 | 8.0362935 | . 001926782 |
| 520 | 270400 | 140608000 | 22.8035055 | 8.0414 .515 | . 001923077 |


| Number. | Squares. | Cubes. | 1 Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 271441 | 141420761 | 22.8254244 | 8.0466030 | . 001919386 |
| 522 | 272484 | 142236648 | 22.8473193 | 8.0517479 | . 001915709 |
| 523 | 273529 | 143055667 | 22.8691933 | 8.0568862 | . 001912046 |
| 524 | 274576 | 143877824 | 22.8910463 | 8.0620180 | . 001908397 |
| 525 | 275625 | 144703125 | 22.9128785 | 8.0671432 | . 001904762 |
| 526 | 276676 | 145531576 | 22.9346899 | 8.0722620 | . 001901141 |
| 527 | 277729 | 146363183 | 22.9564806 | 8.0773743 | . 001897533 |
| 52.8 | 278784 | 147197952 | 2.29782506 | 8.0824800 | . 001893939 |
| 529 | 279841 | 148035889 | 23.0000000 | 8.0875794 | . 001890359 |
| 530 | 280900 | 148877000 | 23.0217289 | 8.0926723 | . 001886792 |
| 531 | 281961 | $149721^{\prime} 291$ | 23.0434372 | 8.0977589 | . 001883239 |
| 532 | 283024 | 150568768 | 23.0651252 | 8.1028390 | . 001879699 |
| 533 | 284089 | 151419437 | 23.0867928 | 8.1079128 | . 001876173 |
| 534 | 285156 | 152273304 | 23.1084400 | 8.1129803 | . 001872659 |
| 535 | 286225 | 153130375 | 23.1300670 | 8.1180414 | . 001869159 |
| 536 | 287296 | 153990656 | 23.1516738 | 8.1230962 | . 001865672 |
| 537 | 288369 | 154854153 | 23.1732605 | 8.1281447 | . 001862197 |
| 538 | 289444 | 155720872 | 23.1948270 | 8.1331870 | . 001858736 |
| 539 | 290521 | 156590819 | 23.2163735 | 8.1382230 | . 001855288 |
| 540 | 291600 | 157464000 | 23.2379001 | 8.1432529 | . 001851852 |
| 541 | 292681 | 158340421 | 23.2594067 | 8.1482765 | . 001848429 |
| 542 | 293764 | 159220088 | 23.2808935 | 8.1532939 | . 001845018 |
| 543 | 294849 | 160103007 | 23.3023604 | 8.1583051 | . 001841621 |
| 544 | 295936 | 160989184 | 23.3238076 | 8.1633102 | . 001838235 |
| 545 | 297025 | 161878625 | 23.3452351 | 8.1683092 | . 001834862 |
| 546 | 298116 | 162771336 | 23.3666429 | 8.1733020 | . 001831502 |
| 547 | 299209 | 163667323 | 23.3880311 | 8.1782888 | . 001828154 |
| 548 | 300304 | 164566592 | 23.4093998 | 8.1832695 | . 001824818 |
| 549 | 301401 | 165469149 | 23.4307490 | 8.1882441 | . 001821494 |
| 550 | 302500 | 166375000 | 23.4520788 | 8.1932127 | . 001818182 |
| 551 | 303601 | 167284151 | 23.4733892 | 8.1981753 | . 001814882 |
| 552 | 304704 | 168196608 | 23.4946802 | 8.2031319 | . 001811594 |
| 553 | 305809 | 169112377 | 23.5159520 | 8.2080825 | . 001808318 |
| 554 | 306916 | 170031454 | 23.5372016 | 8.2130271 | . 001805054 |
| 555 | 308025 | 170953875 | 23.5584380 | 8.2179657 | . 001801802 |
| 550 | 309136 | 171879616 | 23.5796522 | 8.2228985 | . 001798561 |
| 557 | 310249 | 172808693 | 23.6008474 | 8.2278254 | . 001795332 |
| 558 | 311364 | 173741112 | 23.6220236 | 8.2327463 | . 001792115 |
| 559 | 312481 | 174676879 | 23.6431808 | 8.2376614 | . 001788909 |
| 560 | 313600 | 175616000 | 23.6643191 | 8.2425706 | . 001785714 |
| 561 | 314721 | 176558481 | 23.6854386 | 8.2474740 | . 001782531 |
| 562 | 315844 | 177504328 | 23.7065392 | 8.2523715 | . 001779359 |
| 563 | 316969 | 178453547 | 23.7276210 | 8.2572635 | . 001776199 |
| 564 | 318096 | 179406144 | 23.7486842 | 8.2621492 | . 001773050 |
| 565 | 319225 | 180362125 | 23.7697285 | 8.2670294 | . 001769912 |
| 566 | 320356 | 181321496 | 23.7907545 | 8.2719039 | . 001766784 |
| 567 | 321489 | 182284263 | 23.8117618 | 8.2767726 | . 001763668 |
| 568 | 322624 | 183250432 | 23.8327506 | 8.2816255 | . 001760563 |
| 569 | 323761 | 184220009 | 23.8537209 | 8.25649218 | . 001757469 |
| 570 | 324900 | 185193000 | 23.8746728 | 8.2913444 | . 001754386 |
| 571 | $3 \div 6041$ | 186169411 | 23.8956063 | 8.2961903 | . 001751313 |
| 572 | 327184 | 187149248 | 23.9165215 | 8.3010304 | . 001748252 |


| Number. | Squares. | Cubes. | $1 /$ Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 573 | 328329 | 188132517 | 23.9374184 | 8.3058651 | . 001745201 |
| 574 | 329476 | 189119224 | 23.9582971 | 8.3106941 | . 001742160 |
| 575 | 330625 | 190109375 | 23.9791576 | 8.3155175 | . 001739130 |
| 576 | 331776 | 191102976 | 24.0000000 | 8.3203353 | . 001736111 |
| 577 | 332927 | 192100033 | 24.0208243 | 8.3251475 | . 001733102 |
| 578 | 334084 | 193100552 | 24.0416306 | 8.3299542 | . 001730104 |
| 579 | 335241 | 194104539 | 24.0624188 | 8.3347553 | . 001727116 |
| 580 | 336400 | 195112000 | 24.0831891 | 8.3395509 | . 001724138 |
| 581 | 337561 | 196122941 | 24.1039416 | 8.3443410 | . 001721170 |
| 582 | 338724 | 197137368 | 24.1246762 | 8.3491256 | . 001718213 |
| 583 | 339889 | 198155287 | 24.1453929 | 8.3539047 | . 001715266 |
| 584 | 341056 | 199176704 | 24.1660919 | 8.3586784 | . 001712329 |
| 585 | 342225 | 200201625 | 24.1867732 | 8.3634466 | . 001709402 |
| 586 | 343396 | 201230056 | 24.2074369 | 8.3682095 | . 001706485 |
| 587 | 344569 | 202262003 | 24.2280829 | 8.3729668 | . 001703578 |
| 588 | 345744 | 203297472 | 24.2487113 | 8.3777188 | . 001700680 |
| 589 | 346921 | 204336469 | 24.2693222 | 8.3824653 | . 001697793 |
| 590 | 348100 | 205379000 | 24.2899156 | 8.3872065 | . 001694915 |
| 591 | 349281 | 206425071 | 24.3104996 | 8.3919428 | . 001692047 |
| 592 | 350464 | 207474688 | 24.3310501 | 8.3966729 | . 001689189 |
| 593 | 351649 | 208527857 | 24.3515913 | 8.4013981 | . 001686341 |
| 594 | 352836 | 209584584 | 24.3721152 | 8.4061180 | . 001683502 |
| 595 | 354025 | 210644875 | 24.3926218 | 8.4108326 | . 001680672 |
| 596 | 355216 | 211708736 | 24.4131112 | 8.4155419 | . 001677852 |
| 597 | 356409 | 212776173 | 24.4335834 | 8.4202460 | . 001675042 |
| 598 | 357604 | 213847192 | 24.4540385 | 8.4249448 | . 001672241 |
| 599 | 358801 | 214921799 | 24.4744765 | 8.4296383 | . 001669449 |
| 600 | 360000 | 216000000 | 24.4948974 | 8.4343267 | . 001666667 |
| 601 | 361201 | 217081801 | 24.5153013 | 8.4390098 | . 001663894 |
| 602 | 362404 | 218167208 | 24.5356883 | 8.4436877 | . 001661130 |
| 603 | 363609 | 219256227 | 24.5560583 | 8.4483605 | . 001658375 |
| 604 | 364816 | 220348864 | 24.5764115 | 8.4530281 | . 001655629 |
| 605 | 366025 | 221445125 | 24.5967478 | 8.4576906 | . 001652893 |
| 606 | 367236 | 222545016 | 24.6170673 | 8.4623479 | . 001650165 |
| 607 | 368449 | 223648543 | 24.6373700 | 8.4670001 | . 001647446 |
| 608 | 369664 | 224755712 | 24.6576560 | 8.4716471 | . 001644737 |
| 609 | 370881 | 225866529 | 24.6779254 | 8.4762892 | . 001642036 |
| 610 | 372100 | 226981000 | 24.6981781 | 8.4809261 | . 001639344 |
| 611 | 373321 | 228099131 | 24.7184142 | 8.4855579 | . 001636661 |
| 612 | 374544 | 229220928 | 24.7386338 | 8.4901848 | . 001633987 |
| 613 | 375769 | 230346397 | 24.7588368 | 8.4948065 | . 001631321 |
| 614 | 376996 | 231475544 | 24.7790234 | 8.4994233 | . 001628664 |
| 615 | 378225 | 232608375 | 24.7991935 | 8.5040350 | . 001626016 |
| 616 | 379456 | 233744896 | 24.8193473 | 8.5086417 . | . 001623377 |
| 617 | 380689 | 234885113 | 24.8394847 | 8.5132435 | . 001620746 |
| 618 | 381924 | 236029032 | 24.8596058 | 8.5178403 | . 001618123 |
| 619 | 383161 | 237176659 | 24.8797106 | 8.5224331 | . 001615509 |
| 620 | 384400 | 238328000 | 24.8997992 | 8.5270189 | . 001612903 |
| 621 | 385641 | 239483061 | 24.9198716 | 8.5316009 | . 001610306 |
| 622 | 386884 | 240641848 | 24.9399278 | 8.5361780 | . 001607717 |
| 623 | 388129 | 241804367 | 24.9599679 | 8.5407501 | . 001605136 |
| 624 | 389376 | 242970624 | 24.9799920 | 8.5453173 | . 001602564 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 625 | 390625 | 244140625 | 25.0000000 | 8.5498797 | . 001600000 |
| 626 | 391876 | 245134376 | 25.0199920 | 8.5544372 | . 001597444 |
| 627 | 393129 | 246491883 | 25.0399681 | 8.5589899 | . 001594896 |
| 628 | 394384 | 247673152 | 25.0599282 | 8.5635377 | . 001592357 |
| 629 | 395641 | 248858189 | 25.0798724 | 8.5680807 | . 001589825 |
| 630 | 396900 | 250047000 | 25.0998008 | 8.5726189 | . 001587302 |
| 631 | 398161 | 251239591 | 25.1197134 | 8.5771523 | . 001584785 |
| 632 | 399424 | 252435968 | 25.1396102 | 8.5816809 | . 001582278 |
| 633 | 400689 | 253636137 | 25.1594913 | 8.5862247 | . 001579779 |
| 634 | 401956 | 254840104 | 25.1793566 | 8.5907238 | . 001577287 |
| 635 | 403225 | 256047875 | 25.1992063 | 8.5952380 | . 001574803 |
| 636 | 404496 | 257259456 | 25.2190404 | 8.5997476 | . 001572327 |
| 637 | 405769 | 258474853 | 25.2388589 | 8.6042525 | . 001569859 |
| 638 | 407044 | 259694072 | 25.2586619 | 8.6087526 | . 001567398 |
| 639 | 408321 | 260917119 | 25.2784493 | 8.6132480 | . 001564945 |
| 640 | 409600 | 262144000 | 25.2982213 | 8.6177388 | . 001562500 |
| 641 | 410881 | 263374721 | 25.3179778 | 8.6222248 | . 001560062 |
| 642 | 412164 | 264609288 | 25.3377189 | 8.6267063 | . 001557632 |
| 643 | 413449 | 265847707 | 25.3574447 | 8.6311830 | . 001555210 |
| 644 | 414736 | 267089984 | 25.3771551 | 8.6356551 | . 001552795 |
| 645 | 416025 | 268336125 | 25.3968502 | 8.6401226 | . 001550388 |
| 646 | 417316 | 269585136 | 25.4165302 | 8.6445855 | . 001547988 |
| 647 | 418609 | 270840023 | 25.4361947 | 8.6490437 | . 001545595 |
| 648 | 419904 | 272097792 | 25.4558441 | 8.6534974 | . 001543210 |
| 649 | 421201 | 273359449 | 25.4754784 | 8.6579465 | . 001540832 |
| 650 | 422500 | 274625000 | 25.4950976 | 8.6623911 | . 001538462 |
| 651 | 423801 | 275894451 | 25.5147013 | 8.6668310 | . 001536098 |
| 652 | 425104 | 277167808 | 25.5342907 | 8.6712665 | . 001533742 |
| 653 | 426409 | 278445077 | 25.5538647 | 8.6756974 | . 001531394 |
| 654 | 427716 | 279726261 | 25.5734237 | 8.6801237 | . 001529052 |
| 655 | 429025 | 281011375 | 25.5929678 | 8.6845456 | . 001526718 |
| 656 | 430336 | 282300416 | 25.6124969 | 8.6889630 | . 001524390 |
| 657 | 431649 | 283593393 | 25.6320112 | 8.6933759 | . 001522070 |
| 658 | 432964 | 284890312 | 25.6515107 | 8.6977843 | . 001519757 |
| 659 | 434281 | 286191179 | 25.6709953 | 8.7021882 | . 001517451 |
| 660 | 435600 | 287496000 | 25.6904652 | 8.7065877 | . 001515152 |
| 661 | 436921 | 288804781 | 25.7099203 | 8.7109827 | . 001512859 |
| 662 | 438244 | 290117528 | 25.7293607 | 8.7153734 | . 001510574 |
| 663 | 439569 | 291434247 | 25.7487864 | 8.7197596 | . 001508296 |
| 664 | 440896 | 292754944 | 25.7681975 | 8.7241414 | . 001506024 |
| 665 | 442225 | 294079625 | 25.7875939 | 8.7285187 | . 001503759 |
| 666 | 443556 | 295408296 | 25.8069758 | 8.7328918 | . 001501502 |
| 667 | 444889 | 296740963 | 25.8263431 | 8.7372604 | . 001499250 |
| 668 | 446224 | 298077632 | 25.8456960 | 8.7416246 | . 001497006 |
| 669 | 447561 | 299418309 | 25.8650343 | 8.7459846 | . 001494768 |
| 670 | 448900 | 300763000 | 25.8843582 | 8.7503401 | . 001492537 |
| 671 | 450241 | 302111711 | 25.9036677 | 8.7546913 | . 001490313 |
| 672 | 451584 | 303464448 | 25.9229628 | 8.7590383 | . 001488095 |
| 673 | 452929 | 304821217 | 25.9422435 | 8.7633809 | . 001485884 |
| 674 | 454276 | 306182024 | 25.9615100 | 8.7677192 | . 001483680 |
| 675 | 455625 | 307546875 | 25.9807621 | 8.7720532 | . 001481481 |
| 676 | 456976 | 308915776 | 26.0000000 | 8.7763830 | . 001479290 |


| Number. | Squares. | Cubes. | 1 Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 677 | 458329 | 310288733 | 26.0192237 | 8.7807084 | . 001477105 |
| 678 | 459684 | 311665752 | 26.0384331 | 8.7850296 | . 001474926 |
| 679 | 461041 | 313046839 | 26.0576284 | 8.7893466 | . 001472754 |
| 680 | 462400 | 314432000 | 26.0768096 | 8.7936593 | . 001470588 |
| 681 | 463761 | 315821241 | 26.0959767 | 8.7979679 | . 001468429 |
| 682 | 465124 | 317214568 | 26.1151297 | 8.8022721 | . 001466276 |
| 683 | 466489 | 318611987 | 26.1342687 | 8.806572 | . 001464129 |
| 684 | 467 S56 | 320013504 | 26.1533937 | 8.8108681 | . 001461988 |
| 685 | 469225 | 321419125 | 26.1725017 | S.815 1598 | . 001459854 |
| 686 | 470596 | 322828856 | 26.1916017 | 8.8194474 | . 001457726 |
| 687 | 471969 | 324242703 | 26.2106818 | 8.8237307 | . 001455604 |
| 688 | 473344 | 325660672 | 26.2297541 | 8.8280099 | . 001453488 |
| 689 | 474721 | 3:2 082769 | 26.2488095 | 8.8322850 | . 001451379 |
| 690 | 476100 | 328509000 | 26.2678511 | 8.8365559 | . 001449275 |
| 691 | 477481 | 329939371 | 26.2868789 | 8.8408227 | . 001447178 |
| 692 | 478864 | 331373888 | 26.3058929 | 8.8450854 | . 001445087 |
| 693 | 480249 | 332812557 | 26.3248932 | 8.8493440 | . 001443001 |
| 694 | 481636 | 334255384 | 26.3438797 | 8.8535985 | . 001440922 |
| 695 | 483025 | 335702375 | 26.3628527 | 8.8578489 | . 001438849 |
| 696 | 484416 | 337153536 | 26.3818119 | 8.8620952 | . 001436782 |
| 697 | 485809 | 338608873 | 26.4007576 | 8.8663375 | . 001434720 |
| 698 | 487204 | 340068392 | 26.4196896 | 8.8705757 | . 001432665 |
| 699 | 488601 | 341532099 | 26.4386081 | 8.8748099 | . 001430615 |
| 700 | 490000 | 343000000 | 26.4575131 | 8.8790400 | . 001428571 |
| 701 | 491401 | 344472101 | 26.4764046 | 8.8832661 | . 001426534 |
| 702 | 492804 | . 345948408 | 26.4952826 | 8.8874882 | . 001424501 |
| 703 | 494209 | 347428927 | 26.5141472 | 8.8917063 | . 001422475 |
| 704 | 495616 | 348913664 | 26.5329983 | 8.8959204 | . 001420455 |
| 705 | 497025 | 350402625 | 26.5518361 | 8.9001304 | . 001418440 |
| 706 | 498436 | 351895816 | 26.5706605 | 8.9043366 | . 001416431 |
| 707 | 499849 | 353393243 | 26.5894716 | 8.9085387 | . 001414427 |
| 708 | 501264 | 354894912 | 26.6082694 | 8.9127369 | . 001412429 |
| 709 | 502681 | 356400829 | 26.6270539 | 8.9169311 | . 001410437 |
| 710 | 504100 | 357911000 | 26.6458252 | 8.9211214 | . 001408451 |
| 711 | 505521 | 359425431 | 26.6645833 | 8.9253078 | . 001406470 |
| 712 | 506944 | 360944128 | 26.6833281 | 8.9294902 | . 001404494 |
| 713 | 508369 | 362467097 | 26.7020598 | 8.9336687 | . 001402525 |
| 714 | 509796 | 363994344 | 26.7207784 | 8.9378433 | . 001400560 |
| 715 | 511225 | 365525875 | 26.7394839 | 8.9420140 | . 001398601 |
| 716 | 512656 | 367061696 | 26.7581763 | 8.9461809 | . 001396648 |
| 717 | 514089 | 368601813 | 26.7768557 | 8.9503438 | . 001394700 |
| 718 | 515524 | 370146232 | 26.7955220 | 8.9545029 | . 001392758 |
| 719 | 516961 | 371694959 | 26.8141754 | 8.9586581 | . 001390821 |
| 720 | 518400 | 373248000 | 26.8328157 | 8.9628095 | . 001388889 |
| 721 | 519841 | 374805361 | 26.8514432 | 8.9669570 | . 001386963 |
| 722 | 521284 | 376367048 | 26.8700577 | 8.9711007 | . 001385042 |
| 723 | 522729 | 377933067 | 26.8886593 | 8.9752406 | . 001383126 |
| 724 | 524176 | 379503424 | 26.9072481 | 8.9793766 | . 001381215 |
| 725 | 525625 | 381078125 | 26.9258240 | 8.9835089 | . 001379310 |
| 726 | 527076 | 382657176 | 26.9443872 | 8.9876373 | . 001377410 |
| 727 | 528529 | 384240583 | 26.9629375 | 8.9917620 | . 001375516 |
| 728 | 529984 | 355828352 | 26.9814751 | 8.9958899 | . 001373626 |


| Number. | Squares. | Cubes. | 1 Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 729 | 531441 | 387420489 | 27.0000000 | 9.0000000 | . 001371742 |
| 730 | 532900 | 389017000 | 27.0185122 | 9.0041134 | . 001369863 |
| 731 | 534361 | 390617891 | 27.0370117 | 9.0082229 | . 001367989 |
| 732 | 535824 | 392223168 | 27.0554985 | 9.0123288 | . 001366120 |
| 733 | 537289 | 393832837 | 27.07397 .27 | 9.0164309 | . 001364256 |
| 73.1 | 538756 | 395446904 | 27.09243 -14 | 9.0205293 | . 001362398 |
| 735 | 540225 | 397065375 | 27.1108834 | 9.0246239 | . 001360544 |
| 736 | 541696 | 398688256 | $\because 2.1293199$ | 9.0287149 | . 001358696 |
| 737 | 543169 | 400315 55:; | 27.1477149 | 9.0328021 | . 001356852 |
| 738 | 544644 | 401947272 | 27.1661554 | 9.0368857 | . 001355014 |
| 739 | 546121 | 403583419 | 27.1845544 | 9.0409655 | . 001353180 |
| 740 | 547600 | 405224000 | 27.2029140 | 9.0450419 | . 001351351 |
| 741 | 549081 | 406869021 | 27.2913152 | 9.0491142 | . 001349528 |
| 742 | 550564 | 408518488 | 27.2396769 | 9.0531831 | . 001347709 |
| 743 | 552049 | 410172407 | 27.2580263 | 9.0572482 | . 001345895 |
| 744 | 553536 | 411830784 | 27.2763634 | 9.0613098 | . 001344086 |
| 745 | 555025 | 413493625 | 27.2946881 | 9.0653677 | . 001342282 |
| 746 | 556516 | 415160936 | 27.3130006 | 9.0694220 | . 001340483 |
| 747 | 558009 | 416832723 | 27.3313007 | 9.0734726 | . 001338688 |
| 748 | 559504 | 418508992 | 27.3495887 | 9.0775197 | . 001336898 |
| 749 | 561001 | 420189749 | 27.3678644 | 9.0815631 | . 001335113 |
| 750 | 562500 | 421875000 | 27.3861279 | 9.0856030 | . 001333333 |
| 751 | 564001 | 423564751 | 27.4043792 | 9.0896352 | . 001331558 |
| 752 | 565504 | 425259008 | 27.4226184 | 9.0936719 | . 001329787 |
| 753 | 567009 | 426957777 | 27.4408455 | 9.0977010 | . 001328021 |
| 754 | 568516 | 428661064 | 27.4590604 | 9.1017265 | . 001326260 |
| 755 | 570025 | 430368875 | 27.4772633 | 9.1057485 | . 001324503 |
| 756 | 571536 | 432081 216 | 27.4954542 | 9.1097669 | . 001322751 |
| 757 | 573049 | 433798093 | 27.5136330 | 9.1137818 | . 001321004 |
| 758 | 574564 | 435519512 | 27.5317998 | 9.1177931 | . 001319261 |
| 759 | 576081 | 437245479 | 27.5199546 | 9.1218010 | . 001317523 |
| 760 | 577600 | 438976000 | 27.5680975 | 9.1258053 | . 001315789 |
| 761 | 579121 | 440711081 | 27.5862284 | 9.1298061 | . 001314060 |
| 762 | 580644 | 442450728 | 27.6043475 | 9.1338034 | . 001312336 |
| 763 | 582169 | 444194997 | 27.6224546 | 9.1377971 | . 001310616 |
| 764 | 583696 | 445943744 | 27.6405499 | 9.1417874 | . 001308901 |
| 765 | 585225 | 447697125 | 27.6586334 | 9.1457742 | . 001307190 |
| 766 | 586756 | 449455096 | 27.6767050 | 9.1497576 | . 001305483 |
| 767 | 588289 | 451217663 | 27.6947648 | 9.1537375 | . 001303781 |
| 768 | 589824 | 452984832 | 27.7128129 | 9.1577139 | . 001302083 |
| 769 | 591361 | 454756609 | 27.7308192 | 9.1616869 | . 001300390 |
| 770 | 592900 | 456533000 | 27.7488739 | 9.1656565 | . 001298701 |
| 771 | 594441 | 458314011 | 27.7668868 | 9.1696225 | . 001297017 |
| 772 | 595984 | 460099648 | 27.7848880 | 9.1735852 | . 001295337 |
| 773 | 597529 | 461889917 | 27.8028715 | 9.1775145 | . 001293661 |
| 774 | 599076 | 463684824 | 27.8208555 | 9.1815003 | . 001291990 |
| 775 | 600625 | 465484375 | 27.8388218 | $9.185 \cdot 4.27$ | . 001290323 |
| 776 | 602176 | 467288576 | 27.8567766 | 9.1894018 | . 001288660 |
| 777 | 603729 | 469097433 | 27.8747197 | 9.1933 .174 | . 001287001 |
| 778 | 605284 | 470910952 | 27.8926514 | 9.1972897 | . 001285347 |
| 779 | 606841 | 472729139 | 27.9105715 | 9.2012286 | . 001283697 |
| 780 | 608400 | 47455000 | 27.9284801 | 9.2051641 | . 001282051 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 781 | 609961 | 476379541 | 27.9463772 | 9.2090962 | . 001280410 |
| 782 | 611524 | 478211768 | 27.9642629 | 9.2130250 | . 001278772 |
| 783 | 613089 | 480048687 | 27.9821372 | 9.2169505 | . 001277139 |
| 784 | 614656 | 481890304 | 28.0000000 | 9.2208726 | . 001275510 |
| 785 | 616225 | 483736625 | 28.0178515 | 9.2247914 | . 001273885 |
| 786 | 617796 | 485587656 | 28.0356915 | 9.2287068 | . 001272265 |
| 787 | 619369 | 487443403 | 28.0535203 | 9.2326189 | . 001270648 |
| 788 | 620944 | 489303872 | 28.0713377 | 9.2365277 | . 001269036 |
| 789 | 622521 | 491169069 | 28.0891438 | 9.2404333 | . 001267427 |
| 790 | 624100 | 493039000 | 28.1069386 | 9.2443355 | . 001265823 |
| 791 | 625681 | 494913671 | 28.1247222 | 9.2482344 | . 001264223 |
| 792 | 627264 | 496793088 | 28.1424946 | 9.2521300 | . 001262626 |
| 793 | 628849 | 498677257 | 28.1602557 | 9.2560224 | . 001261034 |
| 794 | 630436 | 500566184 | 28.1780056 | 9.2599114 | . 001259446 |
| 795 | 632025 | 502459875 | 28.1957444 | 9.2637973 | . 001257862 |
| 796 | 633616 | 504358336 | 28.2134720 | 9.2676798 | . 001256281 |
| 797 | 635209 | 506261573 | 28.2311884 | 9.2715592 | . 001254705 |
| 798 | 636804 | 508169592 | 28.2488938 | 9.2754352 | . 001253133 |
| 799 | 638401 | 510082399 | 28.2665881 | 9.2793081 | . 001251564 |
| 800 | 640000 | 512000000 | 28.2842712 | 9.2831777 | . 001250000 |
| 801 | 641601 | 513922401 | 28.3019434 | 9.2870444 | . 001248439 |
| 802 | 643204 | 515849608 | 28.3196045 | 9.2909072 | . 001246883 |
| 803 | 644809 | 517781627 | 28.3372546 | 9.2947671 | . 001245330 |
| 804 | 646416 | 519718464 | 28.3548938 | 9.2986239 | . 001243781 |
| 805 | 648025 | 521660125 | 28.3725219 | 9.3024775 | . 001242236 |
| 806 | 649636 | 523606616 | 28.3901391 | 9.3063278 | . 001240695 |
| 807 | 651249 | 525557943 | 28.4077454 | 9.3101750 | . 001239157 |
| 808 | 652864 | 527514112 | 28.4253408 | 9.3140190 | . 001237624 |
| 809 | 654481 | 529475129 | 28.4429253 | 9.3178599 | . 001236094 |
| 810 | 656100 | 531441000 | 28.4604989 | 9.3216975 | . 001234568 |
| 811 | 657721 | 533411731 | 28.4780617 | 9.3255320 | . 001233046 |
| 812 | 659344 | 535387328 | 28.4956137 | 9.3293634 | . 001231527 |
| 813 | 660969 | 537367797 | 28.5131549 | 9.3331916 | . 001230012 |
| 814 | 662596 | 539353144 | 28.5306852 | 9.3370167 | . 001228501 |
| 815 | 664225 | 541343375 | 28.5482048 | 9.3408386 | . 001226994 |
| 816 | 665856 | 543338496 | 28.5657137 | 9.3446575 | . 001225499 |
| 817 | 667489 | 545338513 | 28.5832119 | 9.3484731 | . 001223990 |
| 818 | 669124 | 547343432 | 28.6006993 | 9.3522857 | . 001222494 |
| 819 | 670761 | 549353259 | 28.6181760 | 9.3560952 | . 001221001 |
| 820 | 672400 | 551368000 | 28.6356421 | 9.3599016 | . 001219512 |
| 821 | 674041 | 553387661 | 28.6530976 | 9.3637049 | . 001218027 |
| 822 | 675684 | 555412248 | 28.6705424 | 9.3675051 | . 001216545 |
| 823 | 677329 | 557441767 | 28.6879716 | 9.3713022 , | . 001215067 |
| 824 | 678976 | 559476224 | 28.7054002 | 9.3750963 | . 001213592 |
| 825 | 680625 | 561515625 | 28.7228132 | 9.3788873 | . 001212121 |
| 826 | 682276 | 563559976 | 28.7402157 | 9.3826752 | . 001210654 |
| 827 | 683929 | 565609283 | 28.7576077 | 9.3864600 | . 001209190 |
| 828 | 685584 | 567663552 | 28.7749891 | 9.3902419 | . 001207729 |
| 829 | 687241 | 569722789 | 28.7923601 | 9.3940206 | . 001206273 |
| 830 | 688900 | 571787000 | 28.8097206 | 9.3977964 | . 001204819 |
| 831 | 690561 | 573856191 | 28.8270706 | 9.4015691 | . 001203369 |
| 832 | 692224 | 575930368 | 28.8444102 | 9.4053387 | . 001201923 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 833 | 693889 | 578009537 | 28.8617394 | 9.4091054 | . 001200480 |
| 834 | 695556 | 580093704 | 28.8790582 | 9.4128690 | . 001199041 |
| 835 | 697225 | 582182875 | 28.8963666 | 9.4166297 | . 001197605 |
| 836 | 698896 | 584277056 | 28.9136646 | 9.4203873 | . 001196172 |
| 837 | 700569 | 586376253 | 28.9309523 | 9.4241420 | . 001194743 |
| 838 | 702244 | 588480472 | 28.9482297 | 9.4278936 | . 001193317 |
| 839 | 703921 | 590589719 | 28.9654967 | 9.4316423 | . 001191895 |
| 840 | 705600 | 592704000 | 28.9827535 | 9.4353800 | . 001190476 |
| 841 | 707281 | 594823321 | 29.0000000 | 9.4391307 | . 001189061 |
| 842 | 708964 | 596947688 | 29.0172363 | 9.4428704 | . 001187648 |
| 843 | 710649 | 599077107 | 29.0344623 | 9.4466072 | . 001186240 |
| 844 | 712336 | 601211584 | 29.0516781 | 9.4503410 | . 001184834 |
| 845 | 714025. | 603351125 | 29.0688837 | 9.4540719 | . 001183432 |
| 846 | 715716 | 605495736 | 29.0860791 | 9.4577999 | . 001182033 |
| 847 | 717409 | 607645423 | 29.1032644 | 9.4615249 | . 001180638 |
| 848 | 719104 | 609800192 | 29.1204396 | 9.4652470 | . 001179245 |
| 849 | 720801 | 611960049 | 29.1376046 | 9.4689661 | . 001177856 |
| 850 | 722500 | 614125000 | 29.1547595 | 9.4726824 | . 001176471 |
| 851 | 724201 | 616295051 | 29.1719043 | 9.4763957 | . 001175088 |
| 852 | 725904 | 618470208 | 29.1890390 | 9.4801061 | . 001173709 |
| 853 | 727609 | 620650477 | 29.2061637 | 9.4838136 | . 001172333 |
| 854 | 729316 | 622835864 | 29.2232784 | 9.4875182 | . 001170960 |
| 855 | 731025 | 625026375 | 29.2403830 | 9.4912200 | . 001169591 |
| 856 | 732736 | 627222016 | 29.2574777 | 9.4949188 | . 001168224 |
| 857 | 734449 | 629422793 | 29.2745623 | 9.4986147 | . 001166861 |
| 858 | 736164 | 631628712 | 29.2916370 | 9.5023078 | . 001165501 |
| 859 | 737881 | 633839779 | 29.3087018 | 9.5059980 | . 00116414 |
| 860 | 739600 | 636056000 | 29.3257566 | 9.5096854 | . 001162791 |
| 861 | 741321 | 638277381 | 29.3428015 | 9.5133699 | . 001161440 |
| 862 | 743044 | 640503928 | 29.3598365 | 9.5170515 | . 001160093 |
| 863 | 744769 | 642735647 | 29.3768616 | 9.5207303 | . 001158749 |
| 864 | 746496 | 644972544 | 29.3938769 | 9.5244063 | . 001157407 |
| 865 | 748225 | 617214625 | 29.4108823 | 9.5280794 | . 001156069 |
| 866 | 749956 | 649461896 | 29.4278779 | 9.5317497 | . 001154734 |
| 867 | 751689 | 651714363 | 29.4448637 | 9.5354172 | . 001153403 |
| 868 | 753424 | 653972032 | 29.4618397 | 9.5390818 | . 001152074 |
| 869 | 755161 | 656234909 | 29.4788059 | 9.5427437 | . 001150748 |
| 870 | 756900 | 658503000 | 29.4957624 | 9.5464027 | . 001149425 |
| 871 | 758641 | 660776311 | 29.5127091 | 9.5500589 | . 001148106 |
| 872 | 760384 | 663054848 | 29.5296461 | 9.5537123 | . 001146789 |
| 873 | 762129 | 665338617 | 29.5465734 | 9.5573630 | . 001145475 |
| 874 | 763876 | 667627624 | 29.5634910 | 9.5610108 | . 001144165 |
| 875 | 765625 | 669921875 | 29.5803989 | 9.5646559 | . 001142857 |
| 876 | 767376 | 672221376 | 29.5972972 | 9.5682782 | . 001141553 |
| 877 | 769129 | 674526133 | 29.6141858 | 9.5719377 | . 001140251 |
| 878 | 770884 | 676836152 | 29.6310648 | 9.5755745 | . 001138952 |
| 879 | 772641 | 679151439 | 29.6479342 | 9.5792085 | . 001137656 |
| 880 | 774400 | 681472000 | 29.6647939 | 9.5828397 | . 001136364 |
| 881 | 776161 | 683797841 | 29.6816442 | 9.5864682 | . 001135074 |
| 882 | 777924 | 686128968 | 29.6984848 | 9.5900937 | . 001133787 |
| 883 | 779689 | 688465387 | 29.7153159 | 9.5937169 | . 001132503 |
| 884 | 781456 | 690807104 | 29.7321375 | 9.5973373 | . 001131222 |


| Number. | Squares. | Cubes. | 1 Routs. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 885 | 783225 | 693154125 | 29.7489 .196 | 9.6009548 | . 001129944 |
| 886 | 784996 | 695506456 | 29.7657521 | 9.6045696 | . 001128668 |
| 887 | 786769 | 697864103 | 29.7825452 | 9.6081817 | . 001127396 |
| 888 | 788544 | 700227072 | $29.7993: 89$ | 9.6117911 | . 001126126 |
| 889 | 790321 | 702595369 | 29.8161030 | 9.6153977 | . 001124859 |
| 890 | 792100 | 704969000 | 29.8328678 | 9.6190017 | . 001123596 |
| S91 | 793881 | 707347971 | 29.8496231 | 9.6226030 | . 001122334 |
| 89: | 795664 | 707932288 | 29.8663690 | 9.6262016 | . 001121076 |
| 893 | 797449 | 712121957 | 29.8831056 | 9.6297975 | . 001119 S 21 |
| 894 | 799236 | 714516984 | 29.8998328 | 9.6333907 | . 001118568 |
| 895 | 801025 | 716917375 | 29.9165506 | 9.6369812 | . 001117818 |
| 896 | 802816 | 719323136 | 29.9332591 | 9.6405690 | . 001116071 |
| 897 | 804609 - | 721734273 | 29.9499583 | 9.6441542 | . 001114827 |
| 898 | 806404 | 724150792 | 29.9666481 | 9.6477367 | . 001113586 |
| 899 | 808201 | 726572699 | 29.9833287 | 9.6513166 | . 001112347 |
| 900 | 810000 | 729000000 | 30.0000000 | 9.6548938 | . 001111111 |
| 901 | 811801 | 731432701 | 30.0166621 | 9.6584684 | . 001109878 |
| 902 | 813604 | 73387080 S | 30.0333148 | 9.6620403 | . 001108647 |
| 903 | 815409 | 736314327 | 30.0499584 | 9.6656096 | . 001107420 |
| 904 | 817216 | 738763264 | 30.0665928 | 9.6691762 | . 001106195 |
| 905 | 819 025 | 741217625 | 30.0832179 | 9.6727403 | . 001104972 |
| 906 | 820836 | 743677416 | 30.0998339 | 9.6763017 | . 001103753 |
| 907 | 822649 | 746142643 | 30.1164407 | 9.6798604 | . 001102536 |
| 908 | 824464 | 748613312 | 30.1330383 | 9.6834166 | . 001101322 |
| 909 | 826281 | 751089429 | 30.1496269 | 9.6869701 | . 001100110 |
| 910 | 828100 | 753571000 | 30.1662063 | 9.6905211 | . 001098901 |
| 911 | 829921 | 756058031 | 30.1827765 | 9.6940694 | . 001097695 |
| 912 | 831744 | 758550828 | 30.1993377 | 9.6976151 | . 001096491 |
| 913 | 833569 | 761048497 | 30.2158899 | 9.7011583 | . 001095290 |
| 914 | 835396 | 763551944 | 30.2324329 | 9.7046989 | . 001094092 |
| 915 | 837225 | 766060875 | 30.2489669 | 9.7082369 | . 001092896 |
| 916 | 839056 | 768575296 | 30.2654919 | 9.7117723 | . 001091703 |
| 917 | 810889 | 771095213 | 30.2820079 | 9.7153051 | . 001090513 |
| 918 | $8427 \cdot 4$ | 773620632 | 30.2985148 | 9.7188354 | . 00108932.5 |
| 919 | 844561 | 776151559 | 30.3150128 | 9.7223631 | . 001088139 |
| 920 | 846400 | 778688000 | 30.3315018 | 9.7258883 | . 001086957 |
| 921 | 848241 | 781229961 | 30.3479818 | 9.729 4109 | . 001085776 |
| 922 | 850084 | 783777448 | 30.3644529 | 9.7329309 | . 001084599 |
| 923 | 851929 | 786330467 | 30.3809151 | 9.7364484 | . 001083423 |
| 924 | 853776 | 788889024 | 30.3973683 | 9.7399634 | . 001082251 |
| 925 | 855625 | 791453125 | 30.4138127 | 9.7434758 | . 001081081 |
| 926 | 857476 | 794022776 | 30.4302481 | 9.7469857 | . 001079 914 |
| 927 | 859329 | 796597983 | 30.4466747 | 9.7504930 - | . 001078749 |
| 928 | 861184 | 799178752 | 30.4630924 | 9.7539979 | . 001077586 |
| 929 | 863041 | 801765089 | 30.4795013 | 9.7575002 | . 001076426 |
| 930 | 864900 | 804357000 | 30.4959014 | 9.7610001 | . 001075269 |
| 931 | 866761 | 806954491 | 30.5122926 | $9.76+4974$ | . 001074114 |
| 932 | 868624 | 809557568 | 30.5286750 | 9.7679922 | . 001072961 |
| 933 | 870489 | 812166237 | 30.5450487 | 9.7714845 | . 001071811 |
| 934 | 872356 | 814780504 | 30.5614136 | 9.7749743 | . 001070664 |
| 935 | 874225 | 817400375 | 30.5777697 | 9.7784616 | . 001069519 |
| 936 | 876096 | 820025856 | 30.5941171 | $9.7819466^{\circ}$ | . 001068876 |


| Number. | Squares. | Cubes. | Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 987 | 877969 | 822656953 | 30.610 .4557 | 9.7854288 | . 001067236 |
| 9:8 | 879844 | 825293672 | 30.6267857 | 9.788 9087 | . 001066098 |
| 939 | 881721 | 827936019 | 30.6431069 | 9.7923861 | . 001064963 |
| 910 | \$83.600 | 8:30 584000 | 30.6594194 | 9.7958611 | . 001063830 |
| 911. | 88.) 481 | 833237621 | 30.6757233 | 9.7993336 | . 001062699 |
| 912 | 887364 | 835896888 | 30.6920185 | 9.8028036 | . 001061571 |
| 943 | 889249 | 838561807 | 30.7083051 | 9.8062711 | . 001060445 |
| 944 | 891136 | 811232384 | 30.7245830 | 9.8097362 | . 001059322 |
| 945 | 893025 | 813908625 | 30.7408523 | 9.8131989 | . 001058201 |
| 946 | 894916 | 846590536 | 30.7571130 | 9.8166591 | . 001057082 |
| 947 | 896809 | 819278123 | 30.7733651 | 9.8201169 | . 001055966 |
| 948 | 898704 | 851971392 | 30.7896086 | 9.8235723 | . 001054852 |
| $9+9$ | 900601 | 854670349 | 30.8058436 | 9.8270252 | . 001053741 |
| 950 | 902500 | 857375000 | 30.8220700 | 9.8304757 | . 001052632 |
| 951 | 904401 | 860085351 | 30.8382879 | 9.8339238 | . 001051525 |
| 952 | 906304 | 862801408 | 30.8544972 | 9.8373695 | . 001050420 |
| 953 | 908209 | 865523177 | 30.8706981 | 9.8408127 | . 001049318 |
| 954 | 910116 | 868250664 | 30.8868904 | 9.8442536 | . 001048218 |
| 95.) | 912025 | 870983875 | 30.9030743 | 9.8476920 | . 001047120 |
| 9.56 | 913936 | 873722816 | 30.9192477 | 9.8511280 | . 001046025 |
| 9.5 | 915849 | 876467493 | 30.9354166 | 9.8545617 | . 001044932 |
| 958 | 917764 | 879217912 | 30.9515751 | 9.8579929 | . 001043841 |
| 959 | 919681 | 881974079 | 30.9677251 | 9.8614218 | . 001042753 |
| 960 | 921600 | 884736000 | 30.9838668 | 9.8648483 | . 001041667 |
| 961 | 923521 | 887503681 | 31.0000000 | 9.8682724 | . 001040583 |
| 962 | 92544 | 890277128 | 31.0161248 | 9.8716941 | . 001039501 |
| 963 | 927369 | 893056347 | 31.0322413 | 9.8751135 | . 001038422 |
| 964 | 929296 | 895841344 | 31.0483494 | 9.8785305 | . 001037344 |
| 965 | 931225 | 898632125 | 31.0644491 | 9.8819451 | . 001036269 |
| 966 | 933156 | 901428696 | 31.0805405 | 9.8853574 | . 001055197 |
| 967 | 935089 | 904231063 | 31.0966236 | 9.8887673 | . 001034126 |
| 968 | 937024 | 907039232 | 31.1126984 | 9.8921749 | . 001033058 |
| 969 | 938961 | 909853209 | 31.1287648 | 9.8955801 | . 001031992 |
| 970 | 910900 | 912673000 | 31.1448230 | 9.8989830 | . 001030928 |
| 971 | 942841 | 915498611 | 31.1608729 | 9.9023835 | . 001029866 |
| 972 | 944784 | 918330048 | 31.1769145 | 9.9057817 | . 001028807 |
| 973 | 916729 | 921167317 | 31.1929479 | 9.9091776 | . 001027749 |
| 974 | 948676 | 924010424 | 31.2089731 | 9.9125712 | . 001026694 |
| 97. | 950625 | 926859375 | 31.2249900 | 9.9159624 | . 001025641 |
| 976 | 952576 | 929714176 | 31.2409987 | 9.9193513 | . 001024590 |
| 977 | 954529 | 932574833 | 31.2569992 | 9.9227379 | . 001023541 |
| 978 | 956484 | 935441352 | 31.2729915 | 9.9261222 | . 001022495 |
| 979 | 958441 | 938313739 | 31.2889757 | 9.9295042 | . 001021450 |
| 980 | 960400 | 941192000 | 31.3049517 | 9.9328839 | . 001020408 |
| 981 | 962361. | 944076141 | 31.3209195 | 9.9362613 | . 001019168 |
| 982 | 964324 | 946966168 | 31.3368792 | 9.9396363 | . 001018330 |
| 983 | 966289 | 949 S62 057 | 31.3528308 | 9.9.93 0092 | . 001017294 |
| 984 | 968256 | 952763904 | 31.3687743 | 9.9463797 | . 001016260 |
| 985 | 970225 | 955671625 | 31.3847097 | 9.9497479 | . 001015228 |
| 986 | 972196 | 958585256 | 31.4006369 | 9.9531138 | . 001014199 |
| 987 | 974169 | 961504803 | 31.4165561 | 9.9564775 | . 001013171 |
| 958 | 976144 | 964430272 | 31.4324673 | 9.9598389 | . 001012146 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 989 | 978121 | 967361669 | 31.4483704 | 9.9631981 | . 001011122 |
| 990 | 980100 | 970299000 | 31.4642654 | 9.9665549 | . 001010101 |
| 991 | 982081 | 973242271 | 31.4801525 | 9.9699055 | . 001009082 |
| 992 | 984064 | 976191488 | 31.4960315 | 9.9732619 | . 001008065 |
| 993 | 986049 | 979146657 | 31.5119025 | 9.9766120 | . 001007049 |
| 994 | 988036 | 982107784 | 31.5277655 | 9.9799599 | . 001006036 |
| 995 | 990025 | 985074875 | 31.5436206 | 9.9833055 | . 001005025 |
| 996 | 992016 | 988047936 | 31.5594677 | 9.9866488 | . 001004016 |
| 997 | 994009 | 991026973 | 31.5753068 | 9.9899900 | . 001003009 |
| 998 | 996004 | 994011992 | 31.5911380 | 9.9933289 | . 001002004 |
| 999 | 998001 | 997002999 | 31.6069613 | 9.9966656 | . 001001001 |
| 1000 | 1000000 | 1000000000 | 31.6227766 | 10.0000000 | . 001000000 |
| 1001 | 1002001 | 1003003001 | 31.6385840 | 10.0033222 | . 0009990010 |
| 1002 | 1004004 | 1006012008 | 31.6543866 | 10.0066622 | . 0009980040 |
| 1003 | 1006009 | 1009027027 | 31.6701752 | 10.0099899 | . 0009970090 |
| 1004 | 1008016 | 1012048064 | 31.6859590 | 10.0133155 | . 0009960159 |
| 1005 | 1010025 | 1015075125 | 31.7017349 | 10.0166389 | . 0009950249 |
| 1006 | 1012036 | 1018108216 | 31.7175030 | 10.0199601 | . 0009940358 |
| 1007 | 1014049 | 1021147343 | 31.7332633 | 10.0232791 | . 0009930487 |
| 1008 | 1016064 | 1024192512 | 31.7490157 | 10.0265958 | . 0009920635 |
| 1009 | 1018081 | 1027243729 | 31.7647603 | 10.0299104 | . 0009910803 |
| 1010 | 1020100 | 1030301000 | 31.7804972 | 10.0332228 | . 0009900990 |
| 1011 | 1022121 | 1033364331 | 31.7962262 | 10.0365330 | . 0009891197 |
| 1012 | 1024144 | 1036433728 | 31.8119474 | 10.0398410 | . 0009881423 |
| 1013 | 1026169 | 1039509197 | 31.8276609 | 10.0431469 | . 0009871668 |
| 1014 | 1028196 | 1042590744 | 31.8433666 | 10.0464506 | . 0009861933 |
| 1015 | 1030225 | 1045678375 | 31.8590646 | 10.0497521 | . 0009852217 |
| 1016 | 1032256 | 1048772096 | 31.8747549 | 10.0530514 | . 0009842520 |
| 1017 | 1034289 | 1051871913 | 31.8904374 | 10.0563485 | . 0009832812 |
| 1018 | 1036324 | 1054977832 | 31.9061123 | 10.0596435 | . 0009823183 |
| 1019 | 1038361 | 1058089859 | 31.9217794 | 10.0629364 | . 0009813543 |
| 1020 | 1040400 | 1061208000 | 31.9374388 | 10.0662271 | . 0009803922 |
| 1021 | 1042441 | 1064332261 | 31.9530906 | 10.0695156 | . 00009794319 |
| 1022 | 1044484 | 1067462648 | 31.9687347 | 10.0728020 | . 0009784736 |
| 1023 | 1046529 | 1070599167 | 31.9843712 | 10.0760863 | . 0009775171 |
| 1024 | 1048576 | 1073741824 | 32.0000000 | 10.0793684 | . 0009765625 |
| 1025 | 1050625 | 1076890625 | 32.0156212 | 10.0826484 | . 0009756098 |
| 1026 | 1052676 | 1080045576 | 32.0312348 | 10.0859262 | . 0009746589 |
| 1027 | 1054729 | 1083206683 | 32.0468407 | 10.0892019 | . 0009737098 |
| 1028 | 1056784 | 1086373952 | 32.0624391 | 10.0924755 | . 0009727626 |
| 1029 | 1058841 | 1089547389 | 32.0780298 | 10.0957469 | . 0009718173 |
| 1030 | 1060900 | 1092727000 | 32.0936131 | 10.0990163 | . 0009708738 |
| 1031 | 1062961 | 1095912791 | 32.1091887 | 10.1022835 | . 0009699321 |
| 1032 | 1065024 | 1099104768 | 32.1247568 | 10.1055487 | . 0009689922 |
| 1033 | 1067089 | 1102302937 | 32.1403173 | 10.1088117 | . 0009680542 |
| 1034 | 1069156 | 1105507304 | 32.1558704 | 10.1120726 | . 0009671180 |
| 1035 | 1071225 | 1108717875 | 32.1714159 | 10.1153314 | . 0009661836 |
| 1036 | 1073296 | 1111934656 | 32.1869539 | 10.1185882 | . 0009652510 |
| 1037 | 1075369 | 1115157653 | 32.2024844 | 10.1218428 | . 0009643202 |
| 1038 | 1077444 | 1118386872 | 32.2180074 | 10.1250953 | . 0009633911 |
| 1039 | 1079521 | 1121622319 | 32.2335229 | 10.1283457 | . 0009624639 |
| 1040 | 1081600 | 1124864000 | 32.2490310 | 10.1315941 | . 0009615385 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1041 | 1083681 | 1128111921 | 32.264.5316 | 10.1348103 | . 0009606148 |
| 1042 | 1085764 | 1131366088 | 32.2800248 | 10.1380845 | . 0009596929 |
| 1043 | 1087849 | 1134626507 | 32.2955105 | 10.1413266 | . 0009587728 |
| 1044 | 1089936 | 1137893184 | 32.3109888 | 10.1445667 | . 0009578544 |
| 1045 | 1092025 | 1141166125 | 32.3264598 | 10.1478047 | . 0009569378 |
| 1046 | 1094116 | 1144445336 | 32.3419233 | 10.1510406 | . 0009560229 |
| 1047 | 1096209 | 1147730823 | 32.3573794 | 10.1542744 | . 0009551098 |
| 1048 | 1098304 | 1151022592 | 32.372 .8281 | 10.1575062 | . 0009541985 |
| 1049 | 1100401 | 1154320649 | 32.3882695 | 10.1607359 | . 0009532888 |
| 1050 | 1102500 | 1157625000 | 32.4037035 | 10.1639636 | . 0009523810 |
| 1051 | 1104601 | 1160935651 | 32.4191301 | 10.1671893 | . 0009514748 |
| 1052 | 1106704 | 1164252608 | 32.4345495 | 10.1704129 | . 0009505703 |
| 1053 | 1108809 | 1167575877 | 32.4499615 | 10.1736344 | . 0009496676 |
| 1054 | 1110916 | 1170905464 | 32.4653662 | 10.1768539 | . 0009487666 |
| 1055 | 1113025 | 1174241375 | 32.4807635 | 10.1800714 | . 0009478673 |
| 1056 | 1115136 | 1177583616 | 32.4961536 | 10.1832868 | . 0009469697 |
| 1057 | 1117249 | 1180932193 | 32.5115364 | 10.1865002 | . 0009460738 |
| 1058 | 1119364 | 1184287112 | 32.5269119 | 10.1897116 | . 0009451796 |
| 1059 | 1121481 | 1187648379 | 32.5422802 | 10.1929209 | . 0009442871 |
| 1060 | 1123600 | 1191016000 | 32.5576412 | 10.1961283 | . 0009433962 |
| 1061 | 1125721 | 1194389981 | 32.5729949 | 10.1993336 | . 0009425071 |
| 1062 | 1127844 | 1197770328 | 32.5883415 | 10.2025369 | . 0009416196 |
| 1063 | 1129969 | 1201157047 | 32.6035807 | 10.2057382 | . 0009407338 |
| 1064 | 1132096 | 1204550144 | 32.6190129 | 10.2089375 | . 0009398496 |
| 1065 | 1134225 | 1207949625 | 32.6343377 | 10.2121347 | . 0009389671 |
| 1066 | 1136356 | 1211355496 | 32.6496554 | 10.2153300 | . 0009380863 |
| 1067 | 1138489 | 1214767763 | 32.6649659 | 10.2185233 | . 0009372071 |
| 1068 | 1140624 | 1218186432 | 32.6802693 | 10.2217146 | . 0009363296 |
| 1069 | 1142761 | 1221611509 | 32.6955654 | 10.2249039 | . 0009354537 |
| 1070 | 1144900 | 1225043000 | 32.7108544 | 10.2280912 | . 0009345794 |
| 1071 | 1147041 | 1228480911 | 32.7261363 | 10.2312766 | . 0009337068 |
| 1072 | 1149184 | 1231925248 | 32.7414111 | 10.2344599 | . 0009328358 |
| 1073 | 1151329 | 1235376017 | 32.7566787 | 102376413 | . 0009319664 |
| 1074 | 1153476 | 1238833224 | 32.7719392 | 10.2408207 | . 0009310987 |
| 1075 | 1155625 | 1242296875 | 32.7871926 | 10.2439981 | . 0009302326 |
| 1076 | 1157776 | 1245766976 | -32.802 4398 | 10.2471735 | . 0009293650 |
| 1077 | 1159929 | 1249243533 | 32.8176782 | 10.2503470 | . 0009285051 |
| 1078 | 1162084 | 1252726552 | 32.8329103 | 10.2535186 | . 0009276438 |
| 1079 | 1164241 | 1256216039 | 32.8481354 | 10.2566881 | . 0009267811 |
| 1080 | 1166400 | 1259712000 | 32.8633535 | 10.2598557 | . 0009259259 |
| 1081 | 1168561 | 1263214441 | 32.8785644 | 10.2630213 | . 0009250694 |
| 1082 | 1170724 | 1266723368 | 32.8937684 | 10.2661850 | . 0009242144 |
| 1083 | 1172889 | 1270238787 | 32.9089653 | 10.2693467 | . 0009233610 |
| 1084 | 1175056 | 1273760704 | 32.9241553 | 10.2725065 | . 0009225092 |
| 1085 | 1177225 | 1277289125 | 32.9393382 | 10.2756644 | . 0009216590 |
| 1086 | 1179396 | 1280824056 | 32.9545141 | 10.2788203 | . 0009208103 |
| 1087 | 1181569 | 1284365503 | 32.9696830 | 10.2819743 | . 0009199632 |
| 1088 | 1183744 | 1287913472 | 32.9848450 | 10.2851264 | . 0009191176 |
| 1089 | 1185921 | 1291467969 | 33.0000000 | 10.2882765 | . 0009182736 |
| 1090 | 1188100 | 1295029000 | 33.0151480 | 10.2914247 | . 0009174312 |
| 1091 | 1190281 | 1298596571 | 33.0302891 | 10.2945709 | . 0009165903 |
| 1092 | 1192464 | 1302170688 | 33.0454233 | 10.2977153 | . 0009157509 |


| Number. | Squares. | t'ubes. | 1 Roots. | $r^{3}$ Roots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1093 | 1194649 | 1305751357 | 33.060 5.50 .5 | 10.3008577 | . 0009149131 |
| 1094 | 1196836 | 1309338584 | 33.0756708 | 10.3039982 | . 0009140768 |
| 1095 | 119902 | 1312932375 | 33.0907843 | 10.3071368 | . 0009132420 |
| 1096 | 1201216 | 1316532736 | 33.1058907 | 10.3102735 | . $00091240{ }_{\text {\% }}$ |
| 1097 | 1203409 | 1320139673 | 33.120 9903 | 10.3134083 | . 000911572 |
| 1098 | 1205604 | 1323753192 | 33.1360830 | 10.3165411 | . 0009107468 |
| 1099 | 1207801 | 1327373299 | 33.151 1689 | 10.3196721 | . 00090991.81 |
| 1100 | 1210000 | 1331000000 | 33.1662479 | 10.3228012 | . 000909090 O |
| 1101 | 1212201 | 1334633301 | 33.1813200 | 10.3259284 | . 0009082652 |
| 1102 | 1214404 | 1338273208 | 33.1963853 | 10.3290537 | . 0009074410 |
| 1103 | 1216609 | 1341919727 | 33.2114438 | 10.3321770 | . 0009066183 |
| 1104 | 1218816 | 1345572864 | 33.2266955 | 10.3352985 | . 0009057971 |
| 1105 | 1221025 | 1349232625 | 33.2415403 | 10.3384181 | . 0009049774 |
| 1106 | 1223236 | 1352899016 | 33.2565783 | 10.3415358 | . 0009041591 |
| 1107 | 1225449 | 1356572043 | 33.2716095 | 10.3446517 | . 0009033424 |
| 1108 | 1227664 | 1360251712 | 33.2866339 | 10.3477657 | . 0009025271 |
| 1109 | 1229881 | 1363938029 | 33.3016516 | 10.3508778 | . 0009017133 |
| 1110 | 1232100 | 1367631000 | 33.3166625 | 10.3539880 | . 0009009009 |
| 1111 | 1234321 | 1371330631 | 33.3316666 | 10.3570964 | . 0009000900 |
| 1112 | 1236544 | 1375036928 | 33.3466640 | 10.3602029 | . 0008992806 |
| 1113 | 1238769 | 1378749897 | 33.3616546 | 10.3633076 | . 0008984726 |
| 1114 | 1240996 | 1382469544 | 33.3766385 | 10.3664103 | . 0008976661 |
| 1115 | 1243225 | 1386195875 | 33.3916157 | 10.3695113 | . 0008968610 |
| 1116 | 1245456 | 1389928896 | 33.4065862 | 10.3726103 | . 0008960753 |
| 1117 | 1247689 | 1393668613 | 33.4215499 | 10.3757076 | . 0008952551 |
| 1118 | 1249924 | 1397415032 | 33.4365070 | 10.3788030 | . 000894454 |
| 1119 | 1252161 | 1401168159 | 33.4514573 | 10.3818965 | . 0008936550 |
| 1120 | 1254400 | 1404928000 | 33.4664011 | 10.3849882 | . 0008928571 |
| 1121 | 1256641 | 1408694561 | 33.4813381 | 10.3880781 | . 0008960607 |
| 1122 | 1258884 | 1412467848 | 33.4962684 | 10.3911661 | . 0008922656 |
| 1123 | 1261129 | 1416247867 | 33.5111921 | 10.3942527 | . 0008904720 |
| 1124 | 1263376 | 1420034624 | 33.5261092 | 10.3973366 | . 0008896797 |
| 1125 | 1265625 | 1423828125 | 33.5410196 | 10.4004192 | . 0008888889 |
| 1126 | 1267876 | 1427628376 | 33.5559234 | 10.4034999 | . 000888099 - |
| 1127 | 1270129 | 1431435383 | 33.5708206 | 10.4065787 | . 000887311 |
| 1128 | 1272384 | 1435249152 | 33.5857112 | 10.4096557 | . 0008865248 |
| 1129 | 1274641 | 1439069689 | 33.6005952 | 10.4127310 | . 0008857396 |
| 1130 | 1276900 | 1442897000 | 33.6154726 | 10.4158044 | . 0008849558 |
| 1131 | 1279161 | 1446731091 | 33.6303434 | 10.4188760 | . 0008841733 |
| 1132 | 1281424 | 1450571968 | 33.6452077 | 10.4219458 | . 0008833922 |
| 1133 | 1283689 | 1454419637 | 33.6600658 | 10.4250138 | . 0008826125 |
| 1134 | 1285956 | 1458274104 | 33.6749165 | 10.4280800 | . 0008818342 |
| 1135 | 1288225 | 1462135375 | 33.6897610 | 10.4311443 | . 0008810573 |
| 1136 | 1290496 | 1466003456 | 33.7045991 | $10.4342069^{\circ}$ | . 0008802817 |
| 1137 | 1292769 | 1469878853 | 33.7174306 | 10.4372677 | . 0008795075 |
| ¿138 | 129.5044 | 1473760072 | 33.7340556 | 10.4403677 | . 0008787346 |
| 1139 | 1297321 | 1477 (i48 619 | 33.7490741 | 10.443 .3839 | . 0008779631 |
| 1140 | 1299660 | 1481544000 | 33.7638860 | 10.4464393 | . 0008771930 |
| 11.41 | 1301881 | 1485446221 | 33.7786915 | 10.4494929 | . 0008764242 |
| 1142 | $1: 304164$ | 1489355288 | 33.7934905 | 10.4525448 | . 0008756567 |
| 1143 | 1306449 | 1493271207 | 33.8082830 | 10.4555948 | . 0008748906 |
| 1134 | 1308736 | 1497193984 | 33.8230691 | 10.4556431 | . 0008741259 |

Powers and Roots.

| Number. | Squares. | Cubes. | $1 /$ Roots. | 13 Roots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1145 | 1311025 | 1501123625 | 33.8378486 | 10.4616896 | . 0008733624 |
| 1146 | 1313316 | 1505060136 | 33.8526218 | 10.4647343 | . 0008726003 |
| 1147 | 1315609 | 1509003523 | 33.8673884 | 10.4677773 | . 0008718396 |
| 1148 | 1317904 | 1.512953792 | 33.8821487 | 10.4708158 | . 0008710801 |
| 1149 | 1320201 | 1516910949 | 33.896902 .5 | 10.4738579 | . 0008703220 |
| 1150 | 1322500 | 1520875000 | 33.9116499 | 10.4768955 | . 0008695652 |
| 1151 | 1324801 | 1524845951 | 33.9263909 | 10.4799314 | . 0008688097 |
| 1152 | 1327104 | 1528823808 | 33.9411255 | 10.4829656 | . 0008680556 |
| 1153 | 1329409 | 1532808577 | 33.9558537 | 10.4859980 | . 0008673027 |
| 1154 | 1331716 | 1536800264 | 33.9705755 | 10.4890286 | .0008665511 |
| 1155 | 1334025 | 1540798875 | 33.9852910 | 10.4920575 | . 0008658009 |
| 1156 | 1336336 | 1544804416 | 34.0000000 | 10.4950817 | .0008650519 |
| 1157 | 1338649 | 1548816893 | 34.0147027 | 10.4981101 | . 0008643042 |
| 1158 | 1340964 | 1552836312 | 34.0293990 | 10.5011337 | . 0008635579 |
| 1159 | 1343281 | 1556862679 | 34.0440890 | 10.5041556 | .0008628128 |
| 1160 | 1345600 | 1560896000 | 34.0587727 | 10.5071757 | . 0008620690 |
| 1161 | 1347921 | 1564936281 | 34.0734501 | 10.5101942 | . 0008613264 |
| 1162 | 1350244 | 1568983528 | 34.0881211 | 10.5132109 | . 0008605852 |
| 1163 | 1352569 | 1573037747 | 34.0127858 | 10.5162259 | . 0008598452 |
| 1164 | 1354896 | 1577098944 | 34.1174442 | 10.5192391 | .0008591065 |
| 1165 | 1357225 | 1581167125 | 34.132 0963 | 10.5222506 | .0008583691 |
| 1166 | 1359556 | 1585242296 | 34.1467422 | 10.5252604 | . 0008576329 |
| 1167 | 1361889 | 1589324463 | 34.1613817 | 10.5282685 | . 0008568980 |
| 1168 | 1364224 | 1593413632 | 34.1760150 | 10.5312749 | . 0008561644 |
| 1169 | 1366561 | 1597509809 | 34.1906420 | 10.5342795 | . 0008554320 |
| 1170 | 1368900 | 1601613000 | 34.2052627 | 10.5372825 | . 0008857009 |
| 1171 | 1371241 | 1605723211 | 34.2198773 | 10.5402837 | . 0008559710 |
| 1172 | 1373584 | 1609840448 | 34.2344855 | 10.5432832 | . 0008532423 |
| 1173 | 1375929 | 1613964717 | 34.2490875 | 10.5462810 | . 0008525149 |
| 1174 | 1378276 | 1618096024 | 34.2636834 | 10.549274 | . 0008517888 |
| 1175 | 1380625 | 1622234375 | 34.2782730 | 10.5522715 | . 0008510638 |
| 1176 | 1382976 | 1626379776 | 34.2928564 | 10.5552642 | . 0008503401 |
| 1177 | 1385329 | 1630532233 | 34.3074336 | 10.5582552 | . 0008496177 |
| 1178 | 1387684 | 1634691752 | 34.3220046 | 10.5612445 | . 0008488964 |
| 1179 | 1390041 | 1638858339 | 34.3365694 | 10.5642322 | . 0008481764 |
| 1180 | 1392400 | 1643032000 | 34.3511281 | 10.5672181 | . 0008471576 |
| 1181 | 1394761 | 1647212741 | 34.3656805 | 10.5702024 | . 0008467401 |
| 1182 | 1397124 | 1651400568 | 34.3802268 | 10.5731849 | . 0008460237 |
| 1183 | 1399489 | 1655595487 | 34.3947670 | 10.5761658 | . 0008453085 |
| 1184 | 14018.56 | 1659797504 | 34.4093011 | 10.5791449 | . 0008445946 |
| 1185 | 1404225 | 1664006625 | 34.4238289 | 10.5821225 | . 0008438819 |
| 1186 | 1406596 | 1668222856 | 34.4383507 | 10.5850983 | . 0008431703 |
| 1187 | 1408969 | 1672446203 | 34.4528663 | 10.5880725 | . 0008424600 |
| 1188 | 1411344 | 1676676672 | 34.4673759 | 10.5910450 | . 0008417508 |
| 1189 | 1413721 | 1680914629 | 34.4818793 | 10.5940158 | . 0008410429 |
| 1190 | 1416100 | 1685159000 | 34.4963766 | 10.5969850 | . 0008403361 |
| 1191 | 1418481 | 1689410871 | 34.5108678 | 10.5999525 | . 0008396306 |
| 1192 | 1420864 | 1693669888 | 34.5253530 | 10.6029184 | . 0008389262 |
| 1193 | 1423249 | 1697936057 | 34.5398321 | 10.6058826 | . 0008382320 |
| 1194 | 1425636 | 1702209384 | 34.5543051 | 10.6088451 | . 0008375209 |
| 1195 | 1428025 | 1706489875 | 34.5687720 | 10.6118060 | . 0008368201 |
| 1196 | 1430416 | 1710777536 | 34.5832329 | 10.6147652 | . 0008361204 |

Powers and Roots.

| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1197 | 1432809 | 1715072373 | 34.5976879 | 10.6177228 | . 0008354219 |
| 1198 | 1435204 | 1719374392 | 34.6121366 | 10.6206788 | . 0008347245 |
| 1199 | 1437601 | 1723683599 | 34.6265794 | 10.6236331 | . 0008340284 |
| 1200 | 1440000 | 1728000000 | 34.6410162 | 10.6265857 | . 0008333333 |
| 1201 | 1442401 | 1732323601 | 34.6554469 | 10.6295367 | . 0008326395 |
| 1202 | 1444804 | 1736654408 | 34.6698716 | 10.6324860 | . 0008319468 |
| 1203 | 1447209 | 1740992427 | 34.6842904 | 10.6354338 | . 0008312552 |
| 1204 | 1449616 | 1745337664 | 34.6987031 | 10.6383799 | . 0008305648 |
| 1205 | 1452025 | 1749690125 | 34.7131099 | 10.6413244 | . 0008298755 |
| 1206 | 1454436 | 1754049816 | 34.7275107 | 10.6442672 | . 0008291874 |
| 1207 | 1456849 | 1758416743 | 34.7419055 | 10.6472085 | . 0008285004 |
| 1208 | 1459264 | 1762790912 | 34.7562944 | 10.6501480 | . 0008278146 |
| 1209 | 1461681 | 1767172329 | 34.7706773 | 10.6530860 | . 0008271299 |
| 1210 | 1464100 | 1771561000 | 34.7850543 | 10.6560223 | . 0008264463 |
| 1211 | 1466521 | 1775956931 | 34.7994253 | 10.6589570 | . 0008257638 |
| 1212 | 1468944 | 1780360128 | 34.8137904 | 10.6618902 | . 0008250825 |
| 1213 | 1471369 | 1784770597 | 34.8281495 | 10.6648217 | . 0008244023 |
| 1214 | 1473796 | 1789188344 | 34.8425028 | 10.6677516 | . 0008237232 |
| 1215 | 1476225 | 1793613375 | 34.8568501 | 10.6706799 | . 0008230453 |
| 1216 | 1478656 | 1798045696 | 34.8711915 | 10.6736066 | . 0008223684 |
| 1217 | 1481089 | 1802485313 | 34.8855271 | 10.6765317 | . 0008216927 |
| 1218 | 1483524 | 1806932232 | 34.8998567 | 10.6794552 | . 0008210181 |
| 1219 | 1485961 | 1811386459 | 34.9141805 | 10.6823771 | . 0008203445 |
| 1220 | 1488400 | 1815848000 | 34.9284984 | 10.6852973 | . 0008196721 |
| 1221 | 1490841 | 1820316861 | 34.9428104 | 10.6882160 | . 0008190008 |
| 1222 | 1493284 | 1824793048 | 34.9571166 | 10.6911331 | . 0008183306 |
| 1223 | 1495729 | 1829276567 | 34.9714169 | 10.6940486 | . 0008176615 |
| 1224 | 1498176 | 1833764247 | 34.9857114 | 10.6969625 | . 0008169935 |
| 1225 | 1500625 | 1838265625 | 35.0000000 | 10.6998748 | . 0008163265 |
| 1226 | 1503276 | 1842771176 | 35.0142828 | 10.7027855 | . 0008156607 |
| 1227 | 1505529 | 1847284083 | 35.0285598 | 10.7056947 | 0008149959 |
| 1228 | 1507984 | 1851804352 | 35.0428309 | 10.7086023 | . 0008143322 |
| 1229 | 1510441 | 1856331989 | 35.0570963 | 10.7115083 | . 0008136696 |
| 1230 | 1512900 | 1860867000 | 35.0713558 | 10.7144127 | . 0008130081 |
| 1231 | 1515361 | 1865409391 | 35.0856096 | 10.7173155 | . 0008123477 |
| 1232 | 1517824 | 1869959168 | 35.0998575 | 10.7202168 | . 0008116883 |
| 1233 | 1520289 | 1874516337 | 35.1140997 | 10.7231165 | . 0008110300 |
| 1234 | 1522756 | 1879080904 | 35.1283361 | 10.7260146 | . 0008103728 |
| 1235 | 1525225 | 1883652875 | 35.1425668 | 10.7289112 | . 0008097166 |
| 1236 | 1527696 | 1888232256 | 35.1567917 | 10.7318062 | . 0008090615 |
| 1237 | 1530169 | 1892819053 | 35.1710108 | 10.7346997 | . 0008084074 |
| 1238 | 1532644 | 1897413272 | 35.1852242 | 10.7375916 | . 0008077544 |
| 1239 | 1535121 | 1902014919. | 35.1994318 | 10.7404819 , | . 0008071025 |
| 1240 | 1537600 | 1906624000 | 35.2136337 | 10.7433707 | . 0008064516 |
| 1241 | 1540081 | 1911240521 | 35.2278299 | 10.7462579 | . 0008058018 |
| 1242 | 1542564 | 1915864488 | 35.2420204 | 10.7491436 | . 0008051530 |
| 1243 | 1545049 | 1920495907 | 35.2562051 | 10.7520277 | . 0008045052 |
| 1244 | 1547536 | 1925134784 | 35.2703842 | 10.7549103 | . 0008038585 |
| 1245 | 1550025 | 1929781125 | 35.2845575 | 10.7577913 | . 0008032129 |
| 1246 | 1552516 | 1934434936 | 35.2987252 | 10.7606708 | . 0008025682 |
| 1247 | 1555009 | 1939096223 | 35.3128872 | 10.7635488 | . 0008019246 |
| 1248 | 1557504 | 1943764992 | 35.3270435 | 10.7664252 | . 0008012821 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1249 | 1560001 | 1948441249 | 35.3411941 | 10.7693001 | . 0008006405 |
| 1250 | 1562500 | 1953125000 | 35.3553391 | 10.7721735 | . 0008000000 |
| 1251 | 1565001 | 1957816251 | 35.3694784 | 10.7750453 | . 0007993605 |
| 1252 | 1567504 | 1962515008 | 35.3836120 | 10.7779156 | . 0007987220 |
| 1253 | 1570009 | 1967221277 | 35.3977400 | 10.7807843 | . 0007980846 |
| 1254 | 1572516 | 1971935064 | 35.4118624 | 10.7836516 | . 0007974482 |
| 1255 | 1575025 | 1976656375 | 35.4259792 | 10.7865173 | . 0007968127 |
| 1256 | 1577536 | 1981385216 | 35.4400903 | 10.7893815 | . 0007961783 |
| 1257 | 1580049 | 1986121593 | 35.4541958 | 10.7922441 | . 0007955449 |
| 1258 | 1582564 | 1990865512 | 35.4682957 | 10.7951053 | . 0007949126 |
| 1259 | 1585081 | 1995616979 | 35.4823900 | 10.7979649 | . 0007942812 |
| 1260 | 1587600 | 2000376000 | 35.4964787 | 10.8008230 | . 0007936508 |
| 1261 | 1590121 | 2005142581 | 35.5105618 | 10.8036797 | . 0067930214 |
| 1262 | 1592644 | 2009916728 | 35.5246393 | 10.8065348 | . 0007923930 |
| 1263 | 1595169 | 2014698447 | 35.5387113 | 10.8093884 | . 0007917656 |
| 1264 | 1597696 | 2019487744 | 35.5527777 | 10.8122404 | . 0007911392 |
| 1265 | 1600225 | 2024284625 | 35.5668385 | 10.8150909 | . 0007905138 |
| 1266 | 1602756 | 2029089096 | 35.5808937 | 10.8179400 | . 0007898894 |
| 1267 | 1605289 | 2033901163 | 35.5949434 | 10.8207876 | . 0007892660 |
| 1268 | 1607824 | 2038720832 | 35.6089876 | 10.8236336 | . 0007886435 |
| 1269 | 1610361 | 2043548109 | 35.6230262 | 10.8264782 | . 0007880221 |
| 1270 | 1612900 | 2048383000 | 35.6370593 | 10.8293213 | . 0007874016 |
| 1271 | 1615441 | 2053225511 | 35.6510869 | 10.8321629 | . 0007867821 |
| 1272 | 1617984 | 2058075648 | 35.6651090 | 10.8350030 | . 0007861635 |
| 1273 | 1620529 | 2062933417 | 35.6791255 | 10.8378416 | . 0007855460 |
| 1274 | 1623076 | 2067798824 | 35.6931366 | 10.8406788 | . 0007849294 |
| 1275 | 1625625 | 2072671875 | 35.7071421 | 10.8435144 | . 0007843137 |
| 1276 | 1628176 | 2077552576 | 35.7211422 | 10.8463485 | . 0007836991 |
| 1277 | 1630729 | 2082440933 | 35.7351367 | 10.8491812 | . 0007830854 |
| 1278 | 1633284 | 2087336952 | 35.7491258 | 10.8520125 | . 0007824726 |
| 1279 | 1635841 | 2092240639 | 35.7631095 | 10.8548422 | . 0007818608 |
| 1280 | 1638400 | 2097152000 | 35.7770876 | 10.8576704 | . 0007812500 |
| 1281 | 1640961 | 2102071811 | 35.7910603 | 10.8604972 | . 0007806401 |
| 1282 | 1643524 | 2106997768 | 35.8050276 | 10.8633225 | . 0007800312 |
| 1283 | 1646089 | 2111932187 | 35.8189894 | 10.8661454 | . 0007794232 |
| 1284 | 1648656 | 2116874304 | 35.8329457 | 10.8689687 | . 0007788162 |
| 1285 | 1651225 | 2121824125 | 35.8468966 | 10.8717897 | . 0007782101 |
| 1286 | 1653796 | 2126781656 | 35.8608421 | 10.8746091 | . 0007776050 |
| 1287 | 1656369 | 2131746903 | 35.8747822 | 10.8774271 | . 0007770008 |
| 1288 | 1658944 | 2136719872 | 35.8887169 | 10.8802436 | . 0007763975 |
| 1289 | 1661521 | 2141700569 | 35.9026461 | 10.8830587 | . 0007757952 |
| 1290 | 1664100 | 2146689000 | 35.9165699 | 10.8858723 | . 0007751938 |
| 1291 | 1666681 | 2151685171 | 359304884 | 10.8886845 | . 0007745933 |
| 1292 | 1669264 | 2156689088 | 35.9444015 | 10.8914952 | . 0007739938 |
| 1293 | 1671849 | 2161700757 | 35.9583092 | 10.8943044 | . 0007733952 |
| 1294 | 1674436 | 2166720184 | 35.9722115 | 10.8971123 | . 0007727975 |
| 1295 | 1677025 | 2171747375 | 35.9861084 | 10.8999186 | . 0007722008 |
| 1296 | 1679616 | 2176782336 | 36.0000000 | 10.9027235 | . 0007716049 |
| 1297 | 1682209 | 2181825073 | 36.0138862 | 10.9055269 | . 0007710100 |
| 1298 | 1684804 | 2186875592 | 36.0277671 | 10.9083290 | . 0007704160 |
| 1299 | 1687401 | 2191933899 | 36.0416426 | 10.9111296 | . 0007698229 |
| 1300 | 1690000 | 2197000000 | 36.0555128 | 10.9139287 | . 0007692308 |

Powers and Roots.

| Number. | Squares. | Cubes. | $1 /$ Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1301 | 1692601 | 2202073901 | 36.0693776 | 10.9167265 | . 0007686395 |
| 1302 | 1695204 | 2207155608 | 36.0832371 | 10.9195228 | . 0007680492 |
| 1303 | 1697809 | 2212245127 | 36.0970913 | 10.9223177 | . 0007674579 |
| 1301 | 1700416 | 2217342464 | 36.1109402 | 10.9251111 | . 0007668712 |
| 1305 | 1703025 | 2222447625 | 36.1247837 | 10.9279031 | . 0007662835 |
| 1306 | 1705636 | 2227560616 | 36.1386220 | 10.9306937 | . 0007656968 |
| 1307 | 1708249 | 2232681443 | 36.1524550 | 10.9334829 | . 0007651109 |
| 1308 | 1710864 | 2237810112 | 36.1662826 | 10.9362706 | . 0007645260 |
| 1309 | 1713481 | 2242946629 | 36.1801050 | 10.9390569 | . 0007639419 |
| 1310 | 1716100 | 2248091000 | 36.1939221 | 10.9418418 | . 0007633588 |
| 1311 | 1718721 | 2253243231 | 36.2077340 | 10.9446253 | . 0007627765 |
| 1312 | 1721344 | 2258403328 | 36.2215406 | 10.9475074 | . 0007621951 |
| 1313 | 1723969 | 2263571297 | 36.2353419 | 10.9501880 | . 0007616446 |
| 1314 | 1726596 | 2268747144 | 36.2491379 | 10.9529673 | . 0007610350 |
| 1315 | 1729295 | 2273930875 | 36.2626287 | 10.9557451 | . 0007604563 |
| 1316 | 1731856 | 2279122496 | 36.2767143 | 10.9585215 | . 0007598784 |
| 1317 | 1734489 | 2284322013 | 36.2904246 | 10.9612965 | . 0007593014 |
| 1318 | 1737124 | 2289529432 | 36.3042697 | 10.9640701 | . 0007587253 |
| 1319 | 1739761 | 2294744759 | 36.3180396 | 10.9668423 | . 0007581501 |
| 1320 | 1742400 | 2299968000 | 36.3318042 | 10.9696131 | . 0007575758 |
| 1321 | 1745041 | 2305199161 | 36.3455637 | 10.9723825 | . 0007570023 |
| 1322 | 1747684 | 2310438248 | 36.3593179 | 10.9751505 | . 0007564297 |
| 1323 | 1750329 | 2315685267 | 36.3730670 | 10.9779171 | . 0007558579 |
| 1324 | 1752976 | 2320940224 | 36.3868108 | 10.9806823 | . 0007552870 |
| 1325 | 1755625 | 2326203125 | 36.4005494 | 10.9834462 | . 00075471.70 |
| 1326 | 1758276 | 2331473976 | 36.4142829 | 10.9862086 | . 0007541478 |
| 1327 | 1760929 | 2336752783 | 36.4280112 | 10.9889696 | . 0007535795 |
| 1328 | 1763584 | 2342039552 | 36.4417343 | 10.9917293 | . 0007530120 |
| 1329 | 1766241 | 2347334289 | 36.4554523 | 10.9944876 | . 0007524454 |
| 1330 | 1768900 | 2352637000 | 36.46916 .50 | 10.9972445 | . 0007518797 |
| 1331 | 1771561 | 2357947691 | 36.4828727 | 11.0000000 | . 0007513148 |
| 1332 | 1774224 | 2363266368 . | 36.4965752 | 11.0027541 | . 0007507508 |
| 1333 | 1776889 | 2368593037 | 36.5102725 | 11.0055069 | . 0007501875 |
| 1334 | 1779556 | 2373927704 | 36.5239647 | 11.0082583 | . 0007496252 |
| 1335 | 1782225 | 2379270375 | 36.5376518 | 11.0110082 | . 0007490637 |
| 1336 | 1784896 | 2384621056 | 36.5513388 | 11.0137569 | . 0007485030 |
| 1337 | 1787569 | 2389979753 | 36.5650106 | 11.0165041 | . 0007479432 |
| 1338 | 1790244 | 2395346472 | 36.5786823 | 11.0192500 | . 0007473842 |
| 1339 | 1792921 | 2400721219 | 36.5923489 | 11.0219945 | . 0007468260 |
| 1340 | 1795600 | 2406104000 | 36.6060104 | 11.0247377 | . 0007462687 |
| 1341 | 1798281 | 2411494821 | 36.6196668 | 11.0274795 | . 0007457122 |
| 1342 | 1800964 | 2416893688 | 36.6333181 | 11.0302199 | . 0007451565 |
| 1343 | 1803649 | 2422300607 | 36.6469144 | 11.0329590 | . 0007446016 |
| 1344 | 1806336 | 2427715584 | 36.6606056 | 11.0356967 | . 0007440476 |
| 1345 | 1809025 | 2433138625 | 36.6742416 | 11.0384330 | . 0007434944 |
| 1346 | 1811716 | 2438569736 | 36.6878726 | 11.0411680 | . 0007429421 |
| 1347 | 1814409 | 2444008923 | 36.7014986 | 11.0439017 | . 0007423905 |
| 1348 | 1817104 | 2449456192 | 36.7151195 | 11.0466339 | . 0007418398 |
| 1349 | 1819801 | 2454911549 | 36.7287353 | 11.0493649 | . 0007412898 |
| 1350 | 1822500 | 2460375000 | 36.7423461 | 11.0520945 | . 0007407407 |
| 1351 | 1825201 | 2465846551 | 36.7559519 | 11.0548227 | . 0007401924 |
| 1852 | 1827904 | 2471326208 | 86.769 5526 | 11.0 .575497 | . 0007396450 |


| Number. | Squares. | Cubes. | 1 Roots. | $3^{3}$ Roots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1353 | 1830609 | 2476813977 | 36.7831483 | 11.0602752 | . 0007390983 |
| 1354 | 1833316 | 2482309864 | 36.7967390 | 11.0629994 | . 0007385524 |
| 1355 | 1836025 | 2487813875 | 36.8103246 | 11.0657222 | . 0007380074 |
| 1356 | 1838736 | 2493326016 | 36.8239053 | 11.0684437 | . 0007374631 |
| 1357 | 1841449 | 2498846293 | 36.8374809 | 11.0711639 | . 0007369197 |
| 1358 | 1844164 | 2504374712 | 36.8510515 | 11.0738828 | . 0007363770 |
| 1359 | 1846881 | 2509911279 | 36.8646172 | 11.0766003 | . 0007358352 |
| 1360 | 1849600 | 2515456000 | 36.8781718 | 11.0793165 | . 0007352941 |
| 1361 | 1852321 | 2521008881 | 36.8917335 | 11.0820314 | . 0007347539 |
| 1362 | 1855044 | 2526569928 | 36.9052842 | 11.0847449 | . 0007342144 |
| 1363 | 1857769 | 2532139147 | 36.9188299 | 11.0874571 | . 0007336757 |
| 1364 | 1860496 | 2537716544 | 36.9323706 | 11.0901679 | . 0007331378 |
| 1365 | 1863225 | 2543302125 | 36.9459064 | 11.0928775 | . 0007326007 |
| 1366 | 1865956 | 2548895896 | 36.9594372 | 11.0955857 | . 0007320644 |
| 1367 | 1868689 | 2554497863 | 36.9729631 | 11.0982926 | . 0007315289 |
| 1368 | 1871424 | 2560108032 | 36.9864840 | 11.1009982 | . 0007309942 |
| 1369 | 1874161 | 2565726409 | 37.0000000 | 11.1037025 | . 0007304602 |
| 1370 | 1876900 | 2571353000 | 37.0135110 | 11.1064054 | . 0007299270 |
| 1371 | 1879641 | 2576987811 | 37.0270172 | 11.1091070 | . 0007293946 |
| 137: | 1882384 | 2582630848 | 37.0405184 | 11.1118073 | . 0007288630 |
| 1373 | 1885129 | 2588282117 | 37.0540146 | 11.1145064 | . 0007283321 |
| 1374 | 1887876 | 2593941624 | 37.0675060 | 11.1172041 | . 0007278020 |
| 1375 | 1890625 | 2599609375 | 37.0899924 | 11.1199004 | . 0007272727 |
| 1376 | 1893376 | 2605285376 | 37.0944740 | 11.122595 .5 | . 0007267442 |
| 1377 | 1896129 | 2610969633 | 37.1079506 | 11.1252893 | . 0007262164 |
| 1378 | 1898884 | 2616662152 | 37.12142 .2 | 11.1279817 | . 0007256894 |
| 1379 | 1901641 | 2622362939 | 37.1348893 | 11.1306729 | . 0007251632 |
| 1380 | 1904400 | 2628072000 | 37.1483512 | 11.1333628 | . 0007246377 |
| 1381 | 1907161 | 2633789341 | 37.1618084 | 11.1360514 | . 0007241130 |
| 1382 | 1909924 | 2639514968 | 37.1752606 | 11.1387386 | . 0007235890 |
| 1383 | 1912689 | 2645248887 | 37.1887079 | 11.1414246 | . 0007230658 |
| 1384 | 1915456 | 2650991104 | 37.2021505 | 11.1441093 | . 0007225434 |
| 1385 | 1918225 | 2656741625 | 37.2155881 | 11.1467926 | . 0007220217 |
| 1386 | 1920996 | 2662500456 | 37.2290209 | 11.1494747 | . 0007215007 |
| 1387 | 1923769 | 2668267603 | 37.2424489 | 11.1521555 | . 0007209805 |
| 1388 | 192654 | 2674043072 | 37.2558720 | 11.1548350 | . 0007204611 |
| 1389 | 1929321 | 2679826869 | 37.2692903 | 11.1575133 | . 0007199424 |
| 1390 | 1932100 | 2685619000 | 37.2827037 | 11.1601903 | . 0007194245 |
| 1391 | 1934881 | 2691419471 | 37.2961124 | 11.1628659 | . 0007189073 |
| 1392 | 1937664 | 2697228288 | 37.3095162 | 11.1655403 | . 0007183908 |
| 1393 | 1940449 | 2703045457 | 37.3229152 | 11.1682134 | . 0007178751 |
| 1394 | 1943236 | 2708870984 | 37.3363094 | 11.1708852 | . 0007173601 |
| 1395 | 1946025 | 2714704875 | 37.3496988 | 11.1735558 | . 0007168459 |
| 1396 | 1948816 | 2720547136 | 37.3630834 | 11.1 1:5 2250 | . 0007163324 |
| 1397 | 1951609 | 2726397773 | 37.3764632 | 11.1788930 | . 0007158196 |
| 1398 | 1954404 | 2732256792 | 37.3898382 | 11.1815598 | . 0007153076 |
| 1399 | 1957201 | 2738124199 | 37.4032084 | 11.1842252 | . 0007147963 |
| 1400 | 1960000 | 2744000000 | 37.4165738 | 11.1868894 | . 0007142857 |
| 1401 | 1962801 | 2749884201 | 37.4299345 | 11.1895523 | . 0007137759 |
| 1402 | 1965604 | 2755776808 | 37.4432904 | 11.1922139 | . 0007132668 |
| 1403 | 1968409 | 2761677827 | 37.4566416 | 11.1948743 | . 00071275084 |
| 1404 | 1971216 | 2767587264 | 37.4699880 | 11.1975334 | . 0007122507 |


| Number. | Squares. | Cubes. | $\checkmark$ 'Roots. | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1405 | 1974025 | 2773505123 | 37.4833296 | 11.2001913 | . 0007117438 |
| 1406 | 1976836 | 2779431416 | 37.4966665 | 11.2028479 | . 0007112376 |
| 1407 | 1979649 | 2785366143 | 37.5099987 | 11.2055032 | . 0007107321 |
| 1408 | 1982464 | 2791309312 | 37.5233261 | 11.2081573 | . 0007102273 |
| 1409 | 1985281 | 2797260929 | 37.5366487 | 11.2108101 | . 0007097232 |
| 1410 | 1988100 | 2803221000 | 37.5499667 | 11.2134617 | . 0007092199 |
| 1411 | 1990921 | 2809189531 | 37.5632799 | 11.2161120 | . 0007087172 |
| 1412 | 1993744 | 2815166528 | 37.5765885 | 11.2187611 | . 0007082153 |
| 1413 | 1996569 | 2821151997 | 37.5898922 | 11.2214089 | . 0007077141 |
| 1414 | 1999396 | 2827145944 | 37.6031913 | 11.2240054 | . 0007072136 |
| 1415 | 2002225 | 2833148375 | 37.6164857 | 11.2267007 | . 0007067138 |
| 1416 | 2005056 | 2839159296 | 37.6297754 | 11.2293448 | . 0007062147 |
| 1417 | 2007889 | 2845178713 | 37.6430604 | 11.2319876 | . 0007057163 |
| 1418 | 2010724 | 2851206632 | 37.6563407 | 11.2346292 | . 0007052186 |
| 1419 | 2013561 | 2857243059 | 37.6696164 | 11.2372696 | . 0007047216 |
| 1420 | 2016400 | 2863288000 | 37.6828874 | 11.2399087 | . 0007042254 |
| 1421 | 2019241 | 2869341461 | 37.6961536 | 11.2425465 | . 0007037298 |
| 1422 | 2022084 | 2875403448 | 37.7094153 | 11.2451831 | . 0007032349 |
| 1423 | 2024929 | 2881473967 | 37.7226722 | 11.2478185 | . 0007027407 |
| 1424 | 2027776 | 2887553024 | 37.7359245 | 11.2504527 | . 0007022472 |
| 1425 | 2030625 | 2893640625 | 37.7491722 | 11.2530856 | . 0007017544 |
| 1426 | 2033476 | 2899736776 | 37.7624152 | 11.2557173 | . 0007012623 |
| 1427 | 2036329 | 2905841483 | 37.7756535 | 11.2583478 | . 0007007708 |
| 1428 | 2039184 | 2911954752 | 37.7888873 | 11.2609770 | . 0007002801 |
| 1429 | 2042041 | 2918076589 | 37.8021163 | 11.2636050 | . 0006997901 |
| 1430 | 2044900 | 2924207000 | 37.8153408 | 11.2662318 | . 0006993007 |
| 1431 | 2047761 | 2930345991 | 37.8285606 | 11.2688573 | . 0006988120 |
| 1432 | 2050624 | 2936493568 | 37.8417759 | 11.2714816 | . 0006983240 |
| 1433 | 2053489 | 2942649737 | 37.8549864 | 11.2741047 | . 0006978367 |
| 1434 | 2056356 | 2948814504 | 37.8681924 | 11.2767266 | . 0006973501 |
| 1435 | 2059225 | 2954987875 | 37.8813938 | 11.2793472 | . 0006968641 |
| 1436 | 2062096 | 2961169856 | 37.8945906 | 11.2819866 | . 0006963788 |
| 1437 | 2064969 | 2967360453 | 37.9077828 | 11.2845849 | . 0006958942 |
| 1438 | 2067844 | 2973559672 | 37.9209704 | 11.2872019 | . 0006954103 |
| 1439 | 2070721 | 2979767519 | 37.9341535 | 11.2898177 | . 0006949270 |
| 1440 | 2073600 | 2985984000 | 37.9473319 | 11.2924323 | . 0006944444 |
| 1441 | 2076481 | 2992209121 | 37.9605058 | 11.2950457 | . 0006939625 |
| 1442 | 2079364 | 2998442888 | 37.9736751 | 11.2976579 | . 0006934813 |
| 1443 | 2082249 | 3004685307 | 37.9868398 | 11.3002688 | . 0006930007 |
| 1444 | 2085136 | 3010936384 | 38.0000000 | 11.3028786 | . 0006925208 |
| 1445 | 2088025 | 3017196125 | 38.0131556 | 11.3054871 | . 0006920415 |
| 1446 | 2090916 | 3023464536 | 38.0263067 | 11.3080945 | . 0006915629 |
| 1447 | 2093809 | 3029741623 | 38.0394532 | 11.3107006 | . 0006910850 |
| 1448 | 2096704 | 3036027392 | 38.0525952 | 11.3133056 | . 0006906078 |
| 1449 | 2099601 | 3042321849 | 38.0657326 | 11.3159094 | . 0006901312 |
| 1450 | 2102500 | 3048625000 | 38.0788655 | 11.3185119 | . 0006896552 |
| 1451 | 2105401 | 3054936851 | 38.0919939 | 11.3211132 | . 0006891799 |
| 1452 | 2108304 | 3061257408 | 38.1051178 | 11.3237134 | . 0006887052 |
| 1453 | 2111209 | 3067586777 | 38.1182371 | 11.3263124 | . 0006882312 |
| 1454 | 2114116 | 3073924664 | 38.1313519 | 11.3289102 | . 0006877579 |
| 1455 | 2117025 | 3080271375 | 38.1444622 | 11.3315067 | . 0006872852 |
| 1456 | 2119936 | 3086626816 | 38.1575681 | 11.3341022 | . 0006868132 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1457 | 2122849 | 3092990993 | 38.1706693 | 11.3366964 | . 0006863412 |
| 1458 | 2125764 | 3099363912 | 38.1837662 | 11.3392894 | . 0006858711 |
| 1459 | 2128681 | 3105745579 | 38.1968585 | 11.3418813 | . 0006854010 |
| 1460 | 2131600 | 3112136000 | 38.2099463 | 11.3444719 | . 0006849315 |
| 1461 | 2134521 | 3118535181 | 38.2230297 | 11.3470614 | . 0006844627 |
| 1462 | 2137444 | 3124943128 | 38.2361085 | 11.3496497 | . 0006839945 |
| 1463 | 2140369 | 3131359847 | 38.2491829 | 11.3522368 | . 0006835270 |
| 1464 | 2143296 | 3137785344 | 38.2622529 | 11.3548227 | . 0006830601 |
| 1465 | 2146225 | 3144219625 | 38.2753184 | 11.3574075 | . 0006825939 |
| 1466 | 2149156 | 3150662696 | 38.2883794. | 11.3599911 | . 0006821282 |
| 1467 | 2152089 | 3157114563 | 38.3014360 | 11.3625735 | . 0006816633 |
| 1468 | 2155024 | 3163575232 | 38.3144881 | 11.3651547 | . 0006811989 |
| 1469 | 2157961 | 3170044709 | 38.3275358 | 11.3677347 | . 0006807352 |
| 1470 | 2160900 | 3176523000 | 38.3405790 | 11.3703136 | . 0006802721 |
| 1471 | 2163841 | 3183010111 | 38.3536178 | 11.3728914 | . 0006798097 |
| 1472 | 2166784 | 3189506048 | 38.3666522 | 11.3754679 | . 0006793478 |
| 1473 | 2169729 | 3196010817 | 38.3796821 | 11.3780433 | . 0006788866 |
| 1474 | 2172676 | 3202524424 | 38.3927076 | 11.3806175 | . 0006784261 |
| 1475 | 2175625 | 3209046875 | 38.4057287 | 11.3831906 | . 0006779661 |
| 1476 | 2178576 | 3215578176 | 38.4187454 | 11.3857625 | . 0006775068 |
| 1477 | 2181529 | 3222118333 | 38.4317577 | 11.3883332 | . 0006770481 |
| 1478 | 2184484 | 3228667352 | 38.4447656 | 11.3909028 | . 0006765900 |
| 1479 | 2187441 | 3235225239 | 38.4577691 | 11.3934712 | . 0006761325 |
| 1480 | 2190400 | 3241792000 | 38.4707681 | 11.3960384 | . 0006756757 |
| 1481 | 2193361 | 3248367641 | 38.4837627 | 11.3986045 | . 0006752194 |
| 1482 | 2196324 | 3254952168 | 38.4967530 | 11.4011695 | . 0006747638 |
| 1483 | 2199289 | 3261545587 | 38.5097390 | 11.4037332 | . 0006743088 |
| 1484 | 2202256 | 3268147904 | 38.5227206 | 11.4062959 | . 0006738544 |
| 1485 | 2205225 | 3274759125 | 38.5356977 | 11.4088574 | . 0006734007 |
| 1486 | 2208196 | 3281379256 | 38.5486705 | 11.4114177 | . 0006729474 |
| 1487 | 2211169 | 3288008303 | 38.5616389 | 11.4139769 | . 0006724950 |
| 1488 | 2214144 | 3294646272 | 38.5746030 | 11.4165349 | . 0006720430 |
| 1489 | 2217121 | 3301293169 | 38.5875627 | 11.4190918 | . 0006715917 |
| 1490 | 2220100 | 3307949000 | 38.6005181 | 11.4206476 | . 0006711409 |
| 1491 | 2223081 | 3314613771 | 38.6134691 | 11.4242022 | . 0006706908 |
| 1492 | 2226064 | 3321287488 | 38.6264158 | 11.4267556 | . 0006702413 |
| 1493 | 2229049 | 3327970157 | 38.6393582 | 11.4293079 | . 0006697924 |
| 1494 | 2232036 | 3334661784 | 38.6522962 | 11.4318591 | . 0006693440 |
| 1495 | 2235025 | 3341362375 | 38.6652299 | 11.4344092 | . 0006688963 |
| 1496 | 2238016 | 3348071936 | 38.6781593 | 11.4369581 | . 0006684492 |
| 1497 | 2241009 | 3354790473 | 38.6910843 | 11.4395059 | . 0006680027 |
| 1498 | 2244004 | 3361517992 | 38.7040050 | 11.4420525 | . 0006675567 |
| 1499 | 2247001 | 3368254499 | 38.7169214 | 11.4445980 | . 0006671114 |
| 1500 | 2250000 | 3375000000 | 38.7298335 | 11.4471424 | . 0006666667 |
| 1501 | 2253001 | 3381754501 | 38.7427412 | 11.4496857 | . 0006662225 |
| 1502 | 2256004 | 3388518008 | 38.7556447 | 11.4522278 | . 0006657790 |
| 1503 | 2259009 | 3395290527 | 38.7685439 | 11.4547688 | . 0006553360 |
| 1504 | 2262016 | 3402072064 | 38.7814389 | 11.4573087 | . 0006648936 |
| 1505 | 2265025 | 3408862625 | 38.7943294 | 11.4598476 | . 0006644518 |
| 1506 | 2268036 | 3415662216 | 38.8072158 | 11.4623850 | . 0006640106 |
| 1507 | 2271049 | 3422470843 | 38.8200978 | 11.4649215 | . 0006635700 |
| 1508 | 2274064 | 3429288512 | 38.8329757 | 11.4674568 | . 0006631300 |


| Number. | Squares. | Cubes. | $\sqrt{\text { Roots. }}$ | $\sqrt[3]{\text { Roots. }}$ | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1509 | 2277081 | 3436115229 | 38.8458491 | 11.4699911 | . 0006626905 |
| 1510 | 2280100 | 3442951000 | 38.8587184 | 11.4725242 | . 0006622517 |
| 1511 | 2283121 | 3449795831 | 38.8715834 | 11.4750562 | . 0006618134 |
| 1512 | 2286144 | 3456649728 | 38.8844442 | 11.4775871 | . 0006613757 |
| 1513 | 2289169 | 3463512697 | 38.8973006 | 11.4801169 | . 0006609385 |
| 1514 | 2292196 | 3470384744 | 38.9101529 | 11.4826455 | . 0006605020 |
| 1515 | 2295225 | 3477265875 | 38.9230009 | 11.4851731 | . 0006600660 |
| 1516 | 2298256 | 3484156096 | 38.9358447 | 11.4876995 | . 0006596306 |
| 1517 | 2301289 | 3491055413 | 38.9486841 | 11.4902249 | . 0006591958 |
| 1518 | 2304324 | 3597963832 | 38.9615194 | 11.4927491 | . 0006587615 |
| 1519 | 2307361 | 3504881359 | 38.9743505 | 11.4952722 | . 0006583278 |
| 1520 | 2310400 | 3511808000 | 38.9871774 | 11.4977942 | . 0006578947 |
| 1521 | 2313441 | 3518743761 | 39.0000000 | 11.5003151 | . 0006574622 |
| 1522 | 2316484 | 3525688648 | 39.0128184 | 11.5028348 | . 0006570302 |
| 1523 | 2319529 | 3532642667 | 39.0256326 | 11.5053535 | . 0006565988 |
| 1524 | 2322576 | 3539605824 | 39.0384426 | 11.5078711 | . 0006561680 |
| 1525 | 2325625 | 3546578125 | 39.0512483 | 11.5103876 | . 0006557377 |
| 1526 | 2328676 | 3553559576 | 39.0640499 | 11.5129030 | . 0006553080 |
| 1527 | 2331729 | 3560558183 | 39.0768473 | 11.5154173 | . 0006548788 |
| 1528 | 2334784 | 3567549552 | 39.0896406 | 11.5179305 | . 0006544503 |
| 1529 | 2337841 | 3574558889 | 39.1024296 | 11.5204425 | . 0006540222 |
| 1530 | 2340900 | 3581577000 | 39.1152144 | 11.5229535 | . 0006535948 |
| 1531 | 2343961 | 3588604291 | 39.1279951 | 11.5254634 | . 0006531679 |
| 1532 | 2347024 | 3595640768 | 39.1407716 | 11.5279722 | . 0006527415 |
| 1533 | 2350089 | 3602686437 | 39.1535439 | 11.5304799 | . 0006523157 |
| 1534 | 2353156 | 3609741304 | 39.1663120 | 11.5329865 | . 0006518905 |
| 1535 | 2356225 | 3616805375 | 39.1790760 | 11.5354920 | . 0006514658 |
| 1536 | 2359296 | 3623878656 | 39.1918359 | 11.5379965 | . 0006510417 |
| 1537 | 2362369 | 3630961153 | 39.2045915 | 11.5404998 | . 0006506181 |
| 1538 | 2365444 | 3638052872 | 39.2173431 | 11.5430021 | . 0006501951 |
| 1539 | 2368521 | 3645153819 | 39.2300905 | 11.5455033 | . 0006497726 |
| 1540 | 2371600 | 3652264000 | 39.2428337 | 11.5480034 | . 0006493506 |
| 1541 | 2374681 | 3657983421 | 39.2555728 | 11.5505025 | . 0006489293 |
| 1542 | 2377764 | 3666512088 | 39.2683078 | 11.5530004 | . 0006485084 |
| 1543 | 2380849 | 3673650007 | 39.2810387 | 11.5554972 | . 0006480881 |
| 1544 | 2383936 | 3680797184 | 39.2937654 | 11.5579931 | . 0006476684 |
| 1545 | 2387025 | 3687953625 | 39.3064880 | 11.5604878 | . 0006472492 |
| 1546 | 2390116 | 3695119336 | 39.3192065 | 11.5629815 | . 0006468305 |
| 1547 | 2393209 | 3702294323 | 39.3319208 | 11.5654740 | . 0006464124 |
| 1548 | 2396304 | 3709478592 | 39.3446311 | 11.5679655 | . 0006459948 |
| 1549 | 2399401 | 3716672149 | 39.3573373 | 11.5704559 | . 0006455778 |
| 1550 | 2402500 | 3723875000 | 39.3700394 | 11.5729453 | . 0006451613 |
| 1551 | 2405601 | 3731087151 | 39.3827373 | 11.5754336 | . 0006447453 |
| 1552 | 2408704 | 3738308608 | 39.3954312 | 11.5779208 | . 0006443299 |
| 1553 | 2411809 | 3745539377 | 39.4081210 | 11.5804069 | . 0006439150 |
| 1554 | 2414916 | 3752779464 | 39.4208067 | 11.5828919 | . 0006435006 |
| 1555 | 2418025 | 3760028875 | 39.4334883 | 11.5853759 | . 0006430868 |
| 1556 | 2421136 | 3767287616 | 39.4461658 | 11.5878588 | . 0006426735 |
| 1557 | '2424 249 | 3774555693 | 39.4588393 | 11.5903407 | . 0006422608 |
| 1558 | 2427364 | 3781833112 | 39.4715087 | 11.5928215 | . 0006418485 |
| 1559 | 2430481 | 3789119879 | 39.4841740 | 11.5953013 | . 0006414368 |
| 1560 | 2433600 | 3796416000 | 39.4968353 | 11.5977799 | . 0006410256 |


| Number. | Squares. | Cubes. | Routs. | $1{ }^{3}$ Ruots. | Reciprocals. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1561 | 2436721 | 3803721481 | 39.5094925 | 11.6002576 | . 0006406150 |
| 1562 | 2439814 | 3811036328 | 39.5221457 | 11.6027342 | . 0006402049 |
| 1563 | 2442969 | 3818360517 | 39.5347948 | 11.6052097 | . 0006397953 |
| 1564 | 2446096 | 3825641444 | 39.5474399 | 11.6076841 | . 0006393862 |
| 1565 | 2449225 | 3833037125 | 39.5600809 | 11.6101575 | . 0006389776 |
| 1566 | 2452356 | 3840389496 | 39.5727179 | 11.6126299 | . 0006385696 |
| 1567 | 2455489 | 3847751263 | 39.5853508 | 11.6151012 | . 0006381621 |
| 1568 | 2458624 | 3855123432 | 39.5979797 | 11.6175715 | . 0006377551 |
| 1569 | 2461761 | 3862503009 | 39.6106046 | 11.620 0407 | . 0006373486 |
| 1570 | $\bigcirc 464900$ | 3869883000 | 39.623 22\% 5 | 11.622 5088 | . 0006369427 |
| 1571 | 2468041 | 3877 292 411 | 39.6358424 | 11.6249759 | . 0006365372 |
| $15 \%$ | 2471184 | 3884701248 | $39.648455{ }^{2}$ | 11.6274420 | . 0006361323 |
| 1573 | 2474329 | 3892119157 | $39.66106+40$ | 11.629 9070 | . 0006357279 |
| 1574 | 2477476 | 3899547224 | 39.6736688 | 11.63: 3710 | . 0006353240 |
| 1575 | 2480625 | 3906984375 | 39.6862696 | 11.6348339 | . 0006349206 |
| 1576 | 2483776 | 3914430976 | 39.6988665 | 11.6372957 | . 0006345178 |
| 1577 | 2486929 | 3921887033 | 39.7114593 | 11.6397566 | . 0006341154 |
| 1578 | 2490084 | 3929352552 | 39.7240481 | 11.6422164 | . 0006337136 |
| 1579 | 2493241 | 3936827539 | 39.7366329 | 11.6446751 | . 0006333122 |
| 1580 | 2496400 | 3944312000 | 39.7492138 | 11.6471329 | . 0006329114 |
| 1581 | 2499561 | 3951805941 | 39.7617907 | 11.6495895 | . 0006325111 |
| 1582 | 2502724 | 3959309368 | 39.7743636 | 11.652 0452 | . 0006321113 |
| 1583 | 2505889 | 3966822287 | 39.7869325 | 11.6544998 | . 0006317119 |
| 1584 | 2509056 | 3974344704 | 39.7994976 | 11.6569534 | . 0006313131 |
| 1585 | 2512225 | 3981876625 | 39.8120585 | 11.6594059 | . 0006309148 |
| 1586 | 2515396 | 3989418056 | 39.8246155 | 11.6618574 | . 0006305170 |
| 1587 | 2518569 | 3996969003 | 39.8371686 | 11.6643079 | . 0006301197 |
| 1588 | 2521744 | 4004529472 | 39.8497177 | 11.6667574 | . 0006297229 |
| 1589 | 2524921 | 4012099469 | 39.8622628 | 11.6692058 | . 0006293266 |
| 1590 | 2528100 | 4014679000 | 39.8748040 | 11.6716532 | . 0006289308 |
| 1591 | 2531281 | 4027268071 | 39.8873413 | 11.6740996 | . 0006285355 |
| 1592 | 2534464 | 4034866688 | 39.8998777 | 11.6765449 | . 0006281407 |
| 1593 | 2537649 | 4042474857 | 39.9124041 | 11.6789892 | . 0006277464 |
| 1594 | 2540836 | 4050092584 | 39.9249295 | 11.6814325 | . 0006273526 |
| 1595 | 2544025 | 4057719875 | 39.9374511 | 11.6838748 | . 0006269592 |
| 1596 | 2547216 | 4065356736 | 39.9499687 | 11.6863161 | . 0006265664 |
| 1597 | 2550409 | 4073003173 | 39.9624824 | 11.6887563 | . 0006261741 |
| 1598 | 2553604 | 4080659192 | 39.9749922 | 11.6911955 | . 0006257822 |
| 1599 | 2556801 | 4088324799 | 39.9874980 | 11.6936337 | . 0006253909 |
| 1600 | 2560000 | 4096000000 | 40.0000000 | 11.6960709 | . 0006250000 |

The use of the table of powers and roots may be extended far beyond its apparent limits by the observance of the following rules:

Remembering that the extraction of the square root of a number is simply the separating it into two equal factors, we have : to extract the square root of any whole number and decimal, when the whole number is within the limits of the table, simply find the square root of the whole number in the table and divide the given number and decimal by this root. The quotient will be another factor, very nearly equal to the required root. Add the divisor and the quotient together and divide by two, and the result will be the true root to a very close degree of approximation.

Thus, let it be required to find the square ront of 346.285 .
We find from the table that the square root of 316 is 18.6010752 , or, for moderate precision, 18.6011 , which is, of course, too small.

We then have $346.285 \div 18.6011=18.6163$, so that we have the number
346.285 , composed of the two factors, $18.6011 \times 18.6163$, which are very nearly equal. Adding them together and dividing by 2 , we get

$$
\sqrt{346.285}=\frac{18.6011+18.6163}{2}=18.6087
$$

The true root is 18.60873 .
To extract the cube root of a whole number and decimal we proceed in a similar manner, remembering that the cube root is one of three equal factors, so that we divide twice by the cube root of the whole number and then take the mean of the two divisors and the final quotient,-i.e., of the three nearly equal factors.

Thus, to find the cube root of 346.285 , we find in the table $\sqrt[3]{346}=$ 7.0203490 , or, for moderate precision, $=7.02035$.

We then have $346.285 \div 7.02035=49.32588$ and $49.32588 \div 7.02035=7.02612$, and we have

$$
\sqrt[3]{346.285}=\frac{7.02035+7.02035+7.02612}{3}=7.02227
$$

The true root is 7.02226 .
If the square root or the cube root of a number larger than 1600 is required, look for the nearest number in the column of squares or cubes, as the case may be, and the approximate root will be the corresponding number in the first column. By using this as the divisor the given number may be resolved into two or three nearly equal factors, and their mean will be the required root, very nearly.

Thus, if it is required to find the square root of 569,245 , we look in the column of squares and find the nearest number to be 570,025 , and the corresponding number in the first column is 755 . Taking this as a divisor, we have

$$
\frac{569,245}{755}=753.935, \quad \text { and } \quad \frac{755+753.935}{2}=754.476 .
$$

The true root is 754.483.

## INTEREST.

## Simple Interest.

Interest is money paid for use of money which is lent for a certain time.

## Notation.

$c=$ the amount lent ;
$r=$ interest on the amount, $c$;
$p=$ per cent. in the certain time.
Analogy,

$$
c: r=100: p
$$

If $p$ is the per cent. on 100 in one year, then $t=$ time in years for the standing capital $c$ and the interest $r$.

Analogy,

$$
c: r=100: p t .
$$

From this analogy we obtain the equations:

1. Interest, $\quad r=\frac{c p t}{100}$.
2. Capital, $\quad c=\frac{100 r}{p t}$.
3. Per cent., $\quad p=\frac{100 r}{c t}$.
4. Time in years, $t=\frac{100 r}{c p}$.

Now for any question in Simple Interest there is one equation which gives the answer. If the time is given in months, weeks, or days, multiply the 100 correspondingly by $12,52,365$.

Example 1. What is the interest on $\$ 3789.35$, for 3 years and 5 months, at 6 per cent. per annum?
$t=3 \times 12+5=41$ months; from the Equation 1 we have,

$$
\text { Interest, } \quad r=\frac{3789.35 \times 6 \times 41}{12 \times 100}=776.81 \text { dollars. }
$$

Example 2. A capital $c=469.78$ dollars, returned interest $r=150.72$ dollars in time $t=4$ years and 7 months. Required the per cent. per annum?
$t=4 \times 12+7=55$ months; from the Equation 2 we have,

Per cent., $\quad p=\frac{12 \times 100 \times 150.72}{469.78 \times 55}=7$ per cent.
Example 3. What amount is required to return interest $r=345$ dollars in 6 years, at 5 per cent. per annum?

From the Equation 3 we have,

$$
\text { Capital, } \quad c=\frac{100 \times 345}{5 \times 6}=1150 \text { dollars. }
$$

Example 4. An amount $c=2365$ dollars is to stand until the interest $r=550$ dollars, at $p=6$ per cent. per annum. How long must the amount stand?

From the Equation 4 we have,

$$
\text { Time, } \quad t=\frac{100 \times 550}{2365 \times 6}=3.876 \text { years. }
$$

$12 \times 0.876=10.512$ months, $4 \times 0.512=2.048$ weeks; the time $t=3$ years, 10 months, and 2 weeks.

## Compound Interest.

Compound Interest is when the interest is added to the capital for each year, and the sum is the capital for the following year.

1. Amount, $a=c(1+p)^{n} . \mid$ 3. Per cent., $\quad p=\sqrt[n]{\frac{a}{c}}-1$.
2. Capital, $c=\frac{a}{(1+p)^{n}}$.
3. Number of years, $n=\frac{\log \cdot a-\log \cdot c}{\log \cdot(1+p)}$.

40 In these formulas $p$ must be expressed in hundredths.
Example 1. A capital $c=8650$ standing with compound interest at $p=5$ per cent. What will it amount to in $n=9$ years?

Amount $a=8650(1.05)^{9}=13,419$ dollars.
Example 2. A man commenced business with $c=300$ dollars: after $n=5$ years he had $a=6875$ dollars. At what rate did his money increase, and how soon will he have a fortune of 50,000 dollars?

The first question, or the percentage, will be answered by the Formula 3.

$$
p=\sqrt[5]{\frac{6875}{300}-1=\sqrt[5]{22.9166-1}=0.87, \text { or } 87 \text { per cent. } . \text {. } 10 .}
$$

The time from the commencement of business until the fortune is completed will be answered from the Formula 4.

$$
n=\frac{\log \cdot 50,000-\log \cdot 300}{\log .187}=\frac{4.69897-2.47712}{0.2720048}=8.169 \text { years }
$$

or 8 years and 2 months.
Compound Interest Table, oalculated from Formula 1.

| $n$ | Compound Interest. |  |  | $n$ | Compound Interest. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Years. | 5 per cent. | 6 per cent. | 7 per cent. | Years. | 5 per cent. | 6 per cent. | 7 per cent. |
| 1 | 1.0500 | 1.0600 | 1.0700 | 17 | 2.2920 | 2.6928 | 3.1588 |
| 2 | 1.1025 | 1.1236 | 1.1449 | 18 | 2.4066 | 2.8543 | 3.3799 |
| 3 | 1.1576 | 1.1910 | 1.2250 | 19 | 2.5269 | 3.0256 | 3.6165 |
| 4 | 1.2155 | 1.2625 | 1.3108 | 20 | 2.6533 | 3.2071 | 3.8697 |
| 5 | 1.2770 | 1.3382 | 1.4025 | 21 | 2.7859 | 3.3995 | 4.1406 |
| 6 | 1.3400 | 1.4185 | 1.5007 | 22 | 2.9252 | 3.6035 | 4.4304 |
| 7 | 1.4071 | 1.5036 | 1.6058 | 23 | 3.0715 | 3.8197 | 4.7405 |
| 8 | 1.4774 | 1.5938 | 1.7182 | 24 | 3.2251 | 4.0487 | 5.0724 |
| 9 | 1.5513 | 1.6895 | 1.8385 | 25 | 3.3864 | 4.2919 | 5.4274 |
| 10 | 1.6289 | 1.7908 | 1.9671 | 30 | 4.3219 | 5.7435 | 7.6123 |
| 11 | 1.7103 | 1.8983 | 2.1048 | 35 | 5.5166 | 7.6861 | 10.6766 |
| 12 | 1.7958 | 2.0122 | 2.2522 | 40 | 7.0400 | 10.2858 | 14.9745 |
| 13 | 1.8856 | 2.1329 | 2.4098 | 45 | 8.9850 | 13.7646 | 21.0025 |
| 14 | 1.9799 | 2.2609 | 2.5785 | 50 | 11.6792 | 18.4190 | 29.4570 |
| 15 | 2.0789 | 2.3965 | 2.7599 | 60 | 18.6792 | 32.9878 | 57.9466 |
| 16 | 2.1829 | 2.5403 | 2.9522 |  |  |  |  |

This table shows the value of one unit of money at the rates of 5,6 , and 7 per cent. per annum, compound interest, up to 60 years.

Example 1. What is the amount of 864 pounds sterling for 12 years, at 6 per cent. compound interest?

Table, $2.01219 \times 864=1738.53216$, or $£ 173810$ s. 7.7 d .
Example 2. What is the amount of 3450 dollars for 18 years, at 5 per cent. compound interest?

Table, $2.40661 \times 3450=8302.80$ dollars.
When the interest is compounded in more or less than one year, at the rate of interest per year, and $m=$ the number of months in which the interest is compounded;
then, instead of $p$ in the formulas, put $\frac{m p}{12}$, and instead of $n$, put $\frac{1-2 n}{m}$.
Example 3. A capital of 500 dollars bears compound interest semiannually at 5 per cent. per annum; what will it amount to in 10 years?

$$
m=6 \text { months, } p=\frac{m p}{12}=\frac{6 \times 0.05}{12}=0.025, \text { and } n=\frac{12 \times 10}{6}=20 \text {; }
$$

then, $a=c(1+p)^{n}=500(1+0.025)^{20}=8193.11$ dollars, the answer.
$\log .(1+0.025)=0.0107239$
20
0.2144780
$\log .500=\underline{2.6989700}$
Amount,

$$
8193.11=2.9134480
$$

## WEIGHTS AND MEASURES.

There are now but two really important systems of weights and measures in use in civilized countries,-the English and the metric. Many of the older English tables are falling into disuse, volumes of all kinds being expressed in cubic feet, solutions in percentages instead of grains per gallon, and similar simplifications.

The metric system is used every where in Europe, except in Great Britain, and it is also extensively used in America, except in the United States and Canada.

The following tables will be found to cover practically all necessary requirements:

## Measures of Length-United States and Great Britain.

12 inches $=1$ foot.
3 feet $=1$ yard $=36$ inches.
$51 / 2$ yards $=1 \mathrm{rod}=161 / 2$ feet $=198$ inches.
40 rods $=1$ furlong $=220$ yards $=660$ feet.
8 furlongs $=1$ mile $=320$ rods $=1760$ yards $=5280$ feet.
Of the above, the inch and the foot are most frequently used by mechanies. The ordinary two-foot rule has the inches subdivided by the system of repeated halving, thus giving $1 / 2,1 / 4,1 / 8$, and $\frac{1}{16}$ of an inch; and this is sometimes carried as far as to include 32 ds and 64 ths. This system, however, is now used principally by carpenters, builders, etc., while machinists are generally using scales, calipers, and measuring tools which have the inch subdivided into 10ths, 100 ths , and 1000 ths.

The yard is much used by shopkeepers for measuring cloth, carpet, and fabrics generally, and is by them also subdivided into halves, quarters, and eighths.

For long distances the mile is universally used, and portions of a mile are given either in furlongs and feet or in halves and quarters.

For engineering measurements steel tapes are much used,- 100 feet long, with the feet subdivided into 10 ths instead of inches, thus giving 10ths, 100 ths , and 1000 ths of the length of the tape.

The mile given in the above table is called the statute mile, and is always used on land. The nautical mile, used only at sea, is equal to 6080 feet, being about 15 per cent. longer than the statute mile.

A knot is not a distance, but a rate of speed, corresponding to 1 nauti-
cal mile per hour. The expression "knots per hour" is incorrect, as the time element is included in the word knot.

The only other system of measures of length which is extensively used is the Metric System.

## Metrical Measures of Length-Used generally on the Continent of Europe.

## The unit is the Metre $=39.37$ inches.

The metre is subdivided decimally and multiplied decimally, as below :

> 1 millimetre $=\frac{10}{100}$ metre $=0.03937$ inches.
> 1 centimetre $=\frac{100}{100}$ metre $=0.3937$ inches.
> 1 decimetre $=10$ metre $=3.937$ inches.
> 1 metre $=39.37$ inches $=3.2808$ feet.
> 1 dekametre $=10$ metres $=32.8087$ feet.
> 1 hectometre $=100$ metres $=328.0869$ feet.
> 1 kilometre $=1000$ metres $=3280.869$ feet $=0.621$ mile

In using the metric system it is important to think of the metre as a main unit and the subdivisions as decimals of it. In mechanical and scientific work the metre and the millimetre are usually employed, and sometimes the centimetre, the decimetre more rarely. In the machine shop, for instance, measurements are usually given directly in millimetres, as 325 mm ., not $3 \mathrm{dcm} ., 2 \mathrm{~cm} ., 5 \mathrm{~mm}$.

For longer distances the kilometre is used exclusively, and should be kept in mind as the unit of out-door measurement, with the metre, its ${ }^{1}$ part, for all subdivisions, the dekametre and hectometre being hardly used at all. It is very desirable that the student should learn the values of these measurements directly from the use of a metric scale, and not by transformation into English measures. When such transformations must be roughly made, however, it will be convenient to remember the following:

> 1 millimetre $=\frac{\pi}{2}$ inch, approximately.
> 1 decimetre $=4$ inches, approximately.
> 1 metre $=3$ feet and $33 /$ inches, very closely.
> 1 kilometre $=5 / 8$ of a mile, nearly.

An approximate rule to convert metres to feet is to multiply by 3 and add 10 per cent. Thus, 100 metres would be $300+30=330$ feet, while it really is equal to 328 feet, the error being less than 1 per cent.

## Measures of Weight-United States and British.

The commercial system is the Avoirdupois; the unit being the pound of 7000 grains.

The system for weighing gold and silver is called Troy Weight, of which the pound contains 5760 grains.

For medicines and drugs the Apothecaries' System is used, the grain and pound being the same as ir. Troy Weight, but the subdivisions of the pound being different.

## Avoirdupoi $z^{\text {or Commercial Weight. }}$

$$
\begin{aligned}
& 1 \text { dram }=27.34375 \text { grains. } \\
& 16 \text { drams }=1 \text { ounce }=4371 / 2 \text { grains. } \\
& 16 \text { ounces }=1 \text { pound }=7000 \text { grains. } \\
& 14 \text { pounds }=1 \text { stone. } \\
& 28 \text { pounds }=1 \text { quarter. } \\
& 4 \text { quarters }=1 \text { hundredweight }=112 \text { pounds. } \\
& 20 \text { hundred weight }=1 \text { ton }=2240 \text { pounds. }
\end{aligned}
$$

It will be noticed that the "hundredweight" (so called) is 12 pounds more than 100 pounds, this having been the allowance for loss in handling merchandise in old times. The ton of 2240 pounds is sometimes called the long ton in commerce, as distinguished from the short ton of 2000 pounds. When no explanation is made, the long ton of 2240 pounds is the legal value of the ton, but in engineering calculations, such as the load upon a bridge, the pressure of a mass of earthwork, or the lifting capacity of a crane, it is customary to use the word ton to mean 2000 pounds. In prac-
tice a hundredweight (used as one word) means always 112 pounds, while a hundred pounds means 100 pounds exactly.

## Troy Weight.

1 pennyweight $=24$ grains.
20 pennyweights $=1$ ounce $=480$ grains.
12 ounces $=1$ pound Troy $=5760$ grains.

## Apothecaries' Weight.

1 scruple $=20$ grains .
3 scruples $=1$ dram = 60 grains.
8 drams $=1$ ounce $=480$ grains .
12 ounces $=1$ pound $=5760$ grains.

## Measures of Weight-Metric System.

The metric unit of weight is the Gramme, which is the weight of a cubic centimetre of pure water at a temperature of $4^{\circ} \mathrm{C}$., and which is equal to 15.432 grains. The gramme is subdivided and multiplied decimally, as follows :

> 1 milligram $=$ rov gramme $=0.015432$ grains. 1 centigram $=100$ gramme $=0.15432$ grains. 1 decigram $=10$ gramme $=1.432$ grains. 1 gramme $=1$ gramme $=15.432$ grains. 1 dekagram $=10$ grammes $=154.32$ grains. 1 hectogram $=100$ grammes $=153.2$ grains. 1 kilogram $=1000$ grammes $=2.2046$ pounds. 1 myriagram $=10,000$ grammes $=22.046$ pounds.

In practice many of these subdivisions and multiples are rarely used. The gramme and the milligram are used by chemists and physicists all over the world. The kilogram is used almost everywhere on the continent of Europe except in Russia, and its subdivisions are generally referred to as $\frac{1}{10}$ kilo, $\frac{1}{2}$ kilo, etc., instead of the tabular names, while the multiples are similarly named at 10 kilos, 100 kilos, etc. It will be noticed that the metric ton, or tonne, as it is written in. France, is very nearly the same as the English long ton, so nearly that for ordinary commercial purposes they may be considered the same.

## Measures of Volume.

Measures of Volume are not the same in the United States and in Great Britain, and hence it should always be stated as to which is meant.

In the United States the systems for Liquid and for Dry Measures of volume are also different from each other, while in England both liquid and dry substances are measured by the same system.

## Liquid Measure-U. S. A. only.

The unit of volume is the Gallon $=231$ cubic inches. The gallon is subdivided and multiplied as follows:

$$
\begin{aligned}
& 4 \text { gills }=1 \text { pint }=28.875 \text { cubic inches. } \\
& 2 \text { pints }=1 \text { quart }=57.750 \text { cubic inches. } \\
& 4 \text { quarts }=1 \text { gallon }=231 \text { cubic inches. } \\
& 63 \text { gallons }=1 \text { hogshead. } \\
& 2 \text { hogsheads }=1 \text { pipe or butt. } \\
& 2 \text { pipes }=1 \text { tun. }
\end{aligned}
$$

Of the above measures the pint and quart are most frequently used. The barrel is not a standard volume, although in the United States and in England a wine barrel is supposed to contain $311 / 2$ gallons, but in referring to a barrel in liquid measure the number of gallons it contains should be stated.

A cylinder 7 inches in diameter and 6 inches high contains almost precisely a gallon, and a gallon of pure water at its greatest density weighs 8.33888 pounds. Ordinarily it may be taken at 8.34 pounds, A cubic foot contains 7.48052 United States gallons,

## Dry Measure-U. S. A. only.

The unit of dry measure is the Bushel $=2150.42$ cubic inches. The bushel is subdivided as follows:

$$
\begin{aligned}
& 2 \text { pints }=1 \text { quart }=67.2 \text { cubic inches. } \\
& 4 \text { quarts }=1 \text { gallon }=268.8 \text { cubic inches. } \\
& 2 \text { gallons }=1 \text { peck }=537.6 \text { cubic inches. } \\
& 4 \text { pecks }=1 \text { struck bushel }=2150.42 \text { cubic inches. }
\end{aligned}
$$

The barrel is not a legalized unit in dry measure, and its value should always be stated in gallons or in pounds weight of the substance it contains. A barrel of flour is equal to 196 pounds.

## British Measures of Volume.

In the British or Imperial system the same measures are used both for liquid and for dry measure. The unit of the system is the Imperial Gallon $=277.274$ cubic inches. This is intended to be equal to 10 pounds avoirdupois weight of pure water at a temperature of $62^{\circ}$ Fahrenheit.

The imperial gallon is subdivided and multiplied as follows:

$$
\begin{aligned}
& 4 \text { gills }=1 \text { pint }=1.25 \text { pounds water. } \\
& 2 \text { pints }=1 \text { quart }=2.50 \text { pounds water. } \\
& 2 \text { quarts }=1 \text { pottle }=5.00 \text { pounds water. } \\
& 2 \text { pottles }=1 \text { gallon }=10.00 \text { pounds water. } \\
& 2 \text { gallons }=1 \text { peck }=20.00 \text { pounds water. } \\
& 4 \text { peks }=1 \text { bushel }=80.00 \text { pounds water. } \\
& 4 \text { bushels }=1 \text { coomb }=320.00 \text { pounds water. } \\
& 2 \text { coombs }=1 \text { quarter }=640.00 \text { pounds water. }
\end{aligned}
$$

The measures above the gallon are used for dry measures exclusively, and it is customary to state all quantities above the bushel in bushels.

## Metric Measures of Volume.

The unit of volume is the Litre $=1$ cubic decimetre. This is subdivided and multiplied decimally, as follows:

Liquid.

$$
\begin{aligned}
& 1 \text { millilitre }=\frac{1}{10} \text { litre. } \\
& 1 \text { centilitre }=\frac{100}{10} \text { litre. } \\
& 1 \text { decilitre } \frac{1}{10} \text { litre. } \\
& 1 \text { litre }=1 \text { litre. }
\end{aligned}
$$

The principal measure used is the litre itself, and in trade the $1 / 2$ litre is often used, this being a little more than a pint ( $1 / 2$ litre $=1.056$ pint), and so convenient that the fact of its not being a decimal equivalent is overlooked. For chemical and physical measurements the cubic centimetre is much used, and called by this name, c.c., and not millilitre, which latter it really is.

The unit of dry measure in the metric system is supposed to be the Stere $=1$ cubic metre, but in practice the term cubic metre is very generally used, and the subdivisions and multiples so named,-i.e., Io cubic metre, 100 cubic metres, etc.

## MONETARY SYSTEMS.

The various systems used for the money of different countries are too numerous to be described here, but a few of the most important will be given.

## United States and Canada.

The unit is the Dollar (\$), subdivided and multiplied decimally. The dollar is divided into 100 cents, and the other units are as follows:

1 dime $=10$ cents $=\frac{1}{10}$ dollar.
1 dollar = 100 cents.
10 dollars = 1 eagle.

Besides these decimal units there are coins as follows :

$$
1 / 4 \text { dollar }=25 \text { cents. }
$$

$1 / 2$ dollar $=50$ cents.
Double eagle $=20$ dollars.
These coins are made for convenience, but are not known by their names in reckoning, the quarter- and half-dollar being counted as 25 and 50 cents, and the double eagle, as well as the eagle, as so many dollars.

## Great Britain.

The unit is the Pound Sterling, or Sovereign (£), subdirided as follows :
The penny $=\frac{1}{2} \frac{1}{2}$ pound.
1 shilling $=12$ pence $=$ about 24 cents.
1 pound $=20$ shillings $=240$ pence $=$ about $\$ 4.86$.
Besides these there are the following coins:

> Half-penny $=1 / 2$ penny.
> Crown $=5$ shiflings.
> Half-crown $=21 / 2$ shillings.
> Florin $=2$ shillings.

But the calculations are all made in pounds, shillings, and pence. The Guinea, often used in giving prices, is equal to 21 shillings, but it has not been coined for many years.

## Latin Monetary Union.

On the Continent of Europe the following countries have formed themselres into the Latin Monetary Union, and use the same system,-i.e., France, Belgium, Switzerland, Italy, and Greece. The unit is the Franc, called Lira in Italy and Drachma in Greece.

The franc is subdivided into 100 centimes,-Centesemi in Italy, Lepta in Greece. There are also gold pieces of 20 francs and silver coins $=1 / 2$ franc, besides minor coins of nickel, but these have no special names, all the reckoning being done in francs and 100ths. The equivalent value of the franc in United States money is about 19.3 cents.

## Germany.

The unit is the Mark = about 24 cents, subdivided into 100 pfennigs. There are gold coins of 20 marks, but all the reckoning is done in marks and 100 ths.

Besides the tables and terms already described, there are many other calculations made in trade and commerce which cannot be given here, but which must be learned by actual experience. There are many words, such as net, gross, rebate, tare, tret, etc., etc., for the meanings of which the reader must refer to the dictionary.

There are two ratios, however, which are of sufficient interest to be described here. The "fineness" (so called) of gold or silver is determined by the number of parts of pure gold or silver there are in lo 000 parts of the alloy. The metal is, of course, pure only when it contains no alloy whatever, and is then $\frac{1000}{100}$ fine. The standard alloy for gold for United States coinage is 900 parts of pure gold and 100 parts alloy, and hence is $\frac{900}{1000}$ fine.

Of this alloy the gold dollar contains 25.8 grains, the eagle 258 grains, and the double eagle 516 grains.

The standard "fineness" for silver is also $\frac{900}{1000}$, and the standard dollar contains 412.5 grains of this alloy.

## THE METRIC SYSTEM.

The principal advantage of the metric system consists in its use of the decimal subdivisions. The attempt to consider the metre as $\frac{1}{10,000,000}$ of a quadrant of the earth's surface has been abandoned, and it is now held only to be the length of the standard known as the Mètre des Archives, copies of which are issued by the Bureau Internationale des Poids et Mésures, at Breteuil, near Paris.

The kilogramme was originally intended to be the weight of a cubic decimetre or litre of pure water at the temperature of maximum density, but it is really now considered only as the weight of a platinum standard. At the same time, this relation between the unit of weight and a standard volume of water is sufficiently close for the specific gravity of any substance to be considered as equal to the weight of a cubic decimetre of that substance. In all hydraulic measurements a cubic metre of water is equal in weight to the metric tonne of 1000 kilogrammes, a most convenient fact in the determination of the power developed by a given fall and volume of water.

## The French Metrical System.

The French units of weight, measure, and coin are arranged into a perfect decimal system, except those of time and the circle. The division and multiplication of the units are expressed by Latin and Greek names, as follows:

## Latin, Division.

Milli $=1000$ th of the unit.
Centi $=100$ th of the unit.
Deci $=10$ th of the unit.
Metre, litre, stere, are, franc, gramme.

Greek, Multiplication.
Deca $=10$ times the unit.
Hecato $=100$ times the unit.
Kilio $=1000$ times the unit.
Myrio $=10000$ times the unit.

## French Measure of Length.

|  |  |
| :--- | :--- |
| 1 millimetre | $=0.03937$ inch. |
| 1 centimetre | $=0.3937$ inch. |
| 1 decimetre | $=3.937$ inches. |
| 1 metre (unit) | $=39.37$ inches. |
| 1 sea mile | $=1853.25$ metres. |
| 1 kilometre | $=0.53959$ sea mile. |


1 statute mile $=\quad 1.60935$ kilomets. 1 kilometre $=49.7096$ chains.

## French Measure of Surface.

| 1 square metre | $=10.764$ square feet. | 1 are | $=1076.4$ square feet. |
| :--- | :--- | :--- | :--- |
| 1 are | $=100$ square metres. | 1 decare | $=107.64$ square feet. |
| 1 decare | $=10$ ares. | 1 hectare | $=2.41$ Eng. acres. |
| 1 hectare | $=100$ ares. | 1 square mile | $=259$ hectares. |

## French Measure of Volume.

| 1 stere (cubic <br> metre |  |  |  |
| :--- | :--- | :--- | :--- |
| 1 stere | $=10$ decasteres. | 1 stere <br> 1 | $=35.314$ Eng. cubic feet. |
|  | $=1000$ litres. | $=61.023$ Eng. cub. inches. |  |
| 1 litre | 1 gallon | $=3.7854$ litres. |  |
| 1 decistere | $=1$ cubic decimetre. | 1 decistere $=2.838$ bushels (nearly). |  |
|  | $=3.5314$ cubic feet. |  |  |

## French Measure of Weight.

1 ton
$=1$ cubic metre distilled water.
1 ton
$=1000$ kilogrammes.
1 kilogramme $=1000$ grammes.
1 hectogramme $=100$ grammes .
1 decagramme $=10$ grammes.
1 gramme $=1$ cubic centimetre
distilled water.
1 French ton $=0.9842$ Eng. ton.

1 gramme $=10$ decigrammes. 1 decigramme $=10$ centigrammes. 1 centigramme $=10$ milligrammes.
1 kilogramme $=2.20462$ pounds avoirdupois.
1 Eng. pound $=0.45359$ kilograms.
1 gramme $=15.43$ grains troy.
1 English ton $=1.016$ French tons

Conversion of English Inches into Centimetres.

| Inches. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cm. | ('in. | Cm. | Cm. | Cm . | Cm. | Cm. | Cm. | Cm. | Cm. |
| 0 | 0.000 | 2.540 | 5.080 | 7.620 | 10.16 | 12.70 | 15.24 | 17.78 | 20.32 | 22.86 |
| 10 | 25.40 | 27.94 | 30.48 | 33.02 | 35.56 | 38.10 | 40.64 | 43.18 | 4.$) .72$ | 48.26 |
| 20 | 50.80 | 53.34 | 55.88 | 58.42 | 60.96 | 63.50 | 66.04 | 68.58 | 71.12 | 73.66 |
| 30 | 76.20 | 78.74 | 81.28 | 83.82 | 86.36 | 88.90 | 91.44 | 93.98 | 96.52 | 99.06 |
| 40 | 101.60 | 104.14 | 106.68 | 109.22 | 111.76 | 114.30 | 116.84 | 119.38 | 121.92 | 124.46 |
| 50 | 127.00 | 129.54 | 132.08 | 134.62 | 137.16 | 139.70 | 142.24 | 144.78 | 147.32 | 149.86 |
| 60 | 152.40 | 154.94 | 157.48 | 160.02 | 162.56 | 165.10 | 167.64 | 170.18 | 172.72 | 175.26 |
| 70 | 177.80 | 180.34 | 182.88 | 185.42 | 187.96 | 190.50 | 193.04 | 195.58 | 198.12 | 200.96 |
| 80 | 203.20 | 205.74 | 208.28 | 210.82 | 213.36 | 215.90 | 218.44 | 220.98 | 223.52 | 226.06 |
| 90 | 228.60 | 231.14 | 233.68 | 236.22 | 238.76 | 241.30 | 243.84 | 246.38 | 248.92 | 251.46 |
| 100 | 254.00 | 256.54 | 259.08 | 261.62 | 264.16 | 266.70 | 269.24 | 271.78 | 274.32 | 276.85 |

## Conversion of Centimetres into English Inches.

| Cm. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inch. |
| 0 | 0.000 | 0.394 | 0.787 | 1.181 | 1.575 | 1.969 | 2.362 | 2.756 | 3.150 | 3.543 |
| 10 | 3.937 | 4.331 | 4.742 | 5.118 | 5.512 | 5.906 | 6.299 | 6.693 | 7.087 | 7.480 |
| 20 | 7.874 | 8.268 | 8.662 | 9.055 | 9.449 | 9.843 | 10.236 | 10.630 | 11.024 | 11.418 |
| 30 | 11.811 | 12.205 | 12.599 | 12.992 | 13.386 | 13.780 | 14.173 | 14.567 | 14.961 | 15.355 |
| 40 | 15.748 | 16.142 | 16.536 | 16.929 | 17.323 | 17.717 | 18.111 | 18.504 | 18.898 | 19.292 |
| 50 | 19.685 | 20.079 | 20.473 | 20.867 | 21.260 | 21.654 | 22.048 | 22.441 | 22.835 | 23.229 |
| 60 | 23.622 | 24.016 | 24.410 | 24.804 | 25.197 | 25.591 | 25.985 | 26.378 | 26.772 | 27.166 |
| 70 | 27.560 | 27.953 | 28.347 | 28.741 | 29.134 | 29.528 | 29.922 | 30.316 | 30.709 | 31.103 |
| 80 | 31.497 | 31.890 | 32.284 | 32.678 | 33.071 | 33.465 | 33.859 | 34.253 | 34.646 | 35.040 |
| 90 | 35.434 | 35.827 | 36.221 | 36.615 | 37.009 | 37.402 | 37.796 | 38.190 | 38.583 | 38.977 |
| 100 | 39.370 | 39.764 | 40.158 | 40.552 | 40.945 | 41.339 | 41.733 | 42.126 | 42.520 | 42.914 |

## Conversion of English Feet into Metres.

| Feet. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | Met. | Met. | Met. | M | M | M | Met. | M | Met. |
| 0 | 0.000 | 0.3048 | 0.6096 | 0.9144 | 1.2192 | 1.5239 | 1.8287 | 2.1335 | 2.4383 | 2.7431 |
| 10 | 3.0479 | 3.3527 | 3.6575 | 3.9623 | 4.2671 | 4.5719 | 4.8767 | 5.1815 | 5.4863 | 5.7911 |
| 20 | 6.0359 | 6.4006 | 6.7055 | 7.0102 | 7.3150 | 7.6198 | 7.9246 | 8.2294 | 8.5342 | 8.8390 |
| 30 | 9.1438 | 9.4486 | 9.7534 | 10.058 | 10.363 | 10.668 | 10.972 | 11.277 | 11.582 | 11.887 |
| 40 | 12.192 | 12.496 | 12.801 | 13.106 | 13.411 | 13.716 | 14.020 | 14.325 | 14.630 | 14.93 |
| 50 | 15.239 | 15.544 | 15.849 | 16.154 | 16.459 | 16.763 | 17.068 | 17.373 | 17.678 | 17.98 |
| 60 | 18.287 | 18.592 | 18.897 | 19.202 | 19.507 | 19.811 | 20.116 | 20.421 | 20.726 | 21.03 |
| 70 | 21.335 | 21.640 | 21.945 | 22.250 | 22.555 | 22.859 | 23.164 | 23.469 | 23.774 | 24.079 |
| 80 90 | 24.383 | 24.688 | ${ }_{28}^{24.943}$ | 25.298 | 25.602 | 25.907 | 26.212 | 26.517 | 26.822 | 27.126 |
| 90 100 | 27.431 30.479 | 27.736 30.784 | 28.041 31.089 | 28.346 31.391 | 28.651 31.698 | 28.955 32.003 | 29.260 32.308 | 29.565 32.613 | 29.870 32.918 | 30.17 |

Conversion of Metres into English Feet.

| Metres. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | et. | Fe | Feet. |  |
| 0 | 0.000 | 3.2809 | 6.5618 | 9.8427 | 13.123 | 16.404 | 19.685 | 22.966 | 26.247 | 29.528 |
| 10 | 32.809 | 36.090 | 39.371 | 42.651 | 45.932 | 49.213 | 52.494 | 55.775 | 59.056 | 62.337 |
| 20 | 65.618 | 68.899 | 72.179 | 75.461 | 78.741 | 82.022 | 85.303 | 88.584 | 91.865 | 95.146 |
| 30 | 98.427 | 101.71 | 104.99 | 108.27 | 111.55 | 114.83 | 118.11 | 121.39 | 124.67 | 127.96 |
| 40 | 131.24 | 134.52 | 137.80 | 141.08 | 144.36 | 147.64 | 150.92 | 154.20 | 157.48 | 160.76 |
| 50 | 164.04 | 167.33 | 170.61 | 173.89 | 177.17 | 180.45 | 183.73 | 187.01 | 190.29 | 193.57 |
| 60 | 196.85 | 200.13 | 203.42 | 206.70 | 209.98 | 213.26 | 216.54 | 219.82 | 223.10 | 226.38 |
| 70 | 229.66 | 232.94 | 236.22 | 239.51 | 242.79 | 246.07 | 249.35 | 252.63 | 255.91 | 259.19 |
| 80 | 262.47 | 265.75 | 269.03 | 272.31 | 275.60 | 278.88 | 282.16 | 285.44 | 288.72 | 292.00 |
| 90 | 295.28 | 298.56 | 301.84 | 305.12 | 308.40 | 311.69 | 314.97 | 318.25 | 321.53 | 324.8 |
| 00 | 328.09 \| | 331.37 | 334.65 | 337.93 | 341.21 | 344.49 | 347.78 | 351.06 | 354.34 | 357. |

Conversion of English Statute=miles into Kilometres.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Kilo. |  | Kilo. | Kilo. | Kilo. |  |
|  |  |  | 3.2186 |  |  |  |  |  |  |  |
| $10$ | $16.09: 3$ | $17.702$ | $19.312$ | $20.921$ | ${ }_{2}^{20.530}$ | $24.139$ | $25.749$ | $27.358$ | $28.967$ | $30.57$ |
| $20$ | $\begin{array}{\|c} 32.186 \\ 18.70 \end{array}$ | 33.795 49.888 | 35.405 51.498 | 37.014 53.107 | 38.623 | 40.232 56.325 | 41.842 | 43.451 59.544 | 45.060 | $46.67$ |
| 40 | 64.372 | 65.981 | 67.591 | 69.200 | 70.809 | 72.418 | 74.028 | 75.637 | 77.246 | 78.8 |
| 50 | 80.465 | 82.074 | 88.681 | 85.293 | 86.902 | 88.511 | 90.121 | 91.730 | 93.339 | 94.94 |
| 60 | 96.558 | 98.167 | 99.777 | 101.39 | 102.99 | 104.60 | 106.21 | 107.8 | 109.43 | 111.0 |
| 70 | 112.65 | 114.26 | 115.87 | 117.48 | 119.08 | 120.69 | 122.30 | 123.91 | 125.52 | 127.13 |
| 80 | 128.74 | 130.35 | 131.96 | 133.57 | 135.17 | 136.78 | 138.39 | 140.00 | 141.61 | 143.2 |
|  | 144.85 160.93 | 146.44 162.53 | 148.05 164.14 | 149.66 165.75 | 151.26 167.35 | 152.87 | 154.48 170.57 | 156.09 172.18 | 157.70 173.79 | 179.31 |
| 100 |  |  |  |  |  |  |  |  | 173. |  |

Conversion of Kilometres into English Statute=miles.

| Kilom. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mil | Mi | Mi | Miles. | Miles. | Miles. | Miles. | s. | s. | Miles |
| 0 | 0.0000 | 0.6214 | 1.2427 | 1.8641 | 2.4855 | 3.1069 | 3.7282 | 4.3497 | 4.9711 | 5.5 |
| 10 | $6.2138$ | 6.8352 | 7.4565 | 8.0780 | 8.6994 | 9.3208 | 9.9421 | 10.562 | 11.185 | $11.805$ |
| 20 | $\left\lvert\, \begin{array}{\|c\|} 12.427 \\ 10 \end{array}\right.$ | $\begin{aligned} & 13.049 \\ & 10.92 \end{aligned}$ | $\begin{aligned} & 13.670 \\ & 19884 \end{aligned}$ | $14.292$ | 14.913 | 15.534 21 | 16.156 | 16.776 | $17.399$ | $\begin{aligned} & 18.019 \\ & 24.233 \end{aligned}$ |
| 30 | 18.641 24.855 | 19.263 | 19.884 26.098 | 20.506 26.720 | 21.127 27.341 | 21.748 27.962 | 22.370 28.584 | 22.990 29.204 | 23.613 29.827 | 24.233 |
| 50 | 31.069 | 31.690 | 32.311 | 32.933 | 33.554 | 34.175 | 34.797 | 35.417 | 36.040 | 36.66 |
| 60 | 37.282 | 37.904 | 38.525 | 39.147 | 39.768 | 40.389 | 41.011 | 41.631 | 42.254 | 42.87 |
| 70 | 43.497 | 44.118 | 44.739 | 45.361 | 45.982 | 46.603 | 47.225 | 47.845 | 48.468 | 49.08 |
| 80 | 49.711 | 50.332 | 50.953 | 51.575 | 52.196 | 52.817 | 53.439 | 54.059 | 54.682 | 55.30 |
| 90 | 55.924 | 56.545 | 57.166 | 57.788 | 58.409 | 59.030 | 59.652 | 60.272 | 60.895 | 61.51 |
| 100 | 62.138 | 62.759 | 63.380 | 64.002 |  |  |  | 66.486 | 67.10 |  |

Conversion of Sea=miles into Kilometres.

| Sea-miles: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kilo. | Kilo. | Kil | Kil | Ki | Ki | Kilo. | Ki | K | Kilo |
| 0 | 0.0000 | 1.8532 | 3.7046 | 5.5596 | 7.4128 | 9.2660 | 11.119 | 12.972 | 14.825 | 16 |
| 10 | 18.532 | 20.386 | 22.237 | 24.128 | 25.945 | 27.798 | 29.651 | 31.504 | 33.357 51.889 | 53.85 |
| 20 | 37.064 | 38.918 | 40.769 | 42.660 | 44.477 | 46.331 | 48.183 | 50.036 | 51.889 | 53.85 |
| 30 | 55.596 | 57.450 | 59.301 | 61.192 | 63.009 | 64.863 | 66.715 | 68.568 | 70.421 | 72.38 |
| 40 | 74.128 | 75.982 | 77.833 | 79.724 | 81.541 | 83.396 | 85.247 | 87.100 | 88.953 | 109.91 |
| 50 60 | 92.660 111.19 | 94.514 113.05 | 96.365 | 98.256 116.79 | 118.61 | 101.92 | 103.78 | 105.63 | 107.48 | 109. |
| 70 | 129.72 | 131.58 | 133.43 | 135.32 | 137.14 | 139.98 | 140.74 | 142.69 | 144.54 | 146.5 |
| so | 148.25 | 150.11 | 151.96 | 153.85 | 155.67 | 157.52 | 159.27 | 161.22 | 163.07 | 165.0 |
| 90 | 166.78 | 168.64 | 170.49 | 172.38 | 174.20 | 176.05 | 177.80 | 179.75 | 181.60 | 183.5 |
| 100 | 185.32 | 187.18 | 189.03 | 190.88 | 192.73 | 194.58 | 196.44 | 19 | 200.14 | 201.9 |

## Conversion of Kilometres into Sea=miles.

| Kilom. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sea-m. | Se | Sea | ea | sea-m. |  |  |  |  |  |
|  | 0.0000 | 0.5396 | 1.0792 | 1.6188 | 2.1584 | 2.6880 | 3.2375 | 3.7711 | 4.3167 | 4.8563 |
| 10 | 5.3959 | 5.9356 | 6.4751 | 7.0147 | 7.5543 | 8.0839 | 8.6331 | 9.1730 | 9.7126 | 10.252 |
| 20 | 10.792 | 11.331 | 11.870 | 12.410 | 12.950 | 13.480 | 14.029 | 14.568 | 15.108 | 15.647 |
| 30 | 16.188 | 16.727 | 17.265 | 17.806 | 18.345 | 18.876 | 19.424 | 19.965 | 20.504 | 21.044 |
| 40 | 21.584 | 22.123 | 22.661 | 23.202 | 23.740 | 24.271 | 24.819 | 25.360 | 25.900 | 26.439 |
| 50 | 26.980 | 27.519 | 28.059 | 28.598 | 29.135 | 29.667 | 30.214 | 30.757 | 31.296 | 31.835 |
| 60 | 32.375 | 32.915 | 33.456 | 33.994 | 31.530 | 35.063 | 3.509 | 36.151 | 36.692 | 37.231 |
| 70 | 37.771 | 38.310 | 38.852 | 39.390 | 39.925 | 40.459 | 41.004 | 41.574 | 42.088 |  |
| 00 | 43.167 | 43.705 | $4+284$ | 44.786 | 45.320 | 45.855 | 46.399 | 46.943 | 47.483 | 48.023 |
| 90 | 48.563 | 49.103 | 49.644 | 50.182 | 50.715 | 51.251 | 51.794 | 52.339 | 52.879 | 53.419 |
| 100 | 53.959 | 54.498 | 55.038 | 55.575 | 56.117 | 56.658 | 57.198 | 57.737 | 58.275 | 58.816 |

The Metric System.
Conversion of Square Inches into Square Centimetres.

| Square in. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Cm}^{2}$. |
| 0 | 0.0000 | 6.4515 | 12.903 | 19.354 | 25.806 | 32.257 | 38.709 | 45.160 | 51.612 | 58.063 |
| 10 | 64.515 | 70.967 | 77.418 | 83.869 | 90.321 | 96.772 | 103.22 | 109.67 | 116.12 | 122.57 |
| 20 | 129.03 | 135.48 | 141.93 | 148.38 | 154.83 | 161.29 | 167.74 | 174.19 | 180.64 | 187.09 |
| 30 | 193.54 | 199.99 | 206.44 | 212.89 | 219.34 | 225.80 | 231.25 | 238.70 | 245.15 | 251.60 |
| 40 | 258.06 | 264.51 | 270.96 | 277.41 | 283.86 | 290.32 | 296.77 | 303.22 | 309.67 | 316.12 |
| 50 | 322.57 | 329.02 | 335.47 | 341.92 | 348.37 | 354.83 | 361.28 | 367.73 | 374.18 | 380.63 |
| 60 | 387.09 | 393.54 | 399.99 | 406.44 | 412.89 | 419.35 | 425.80 | 432.25 | 438.70 | 445.15 |
| 70 | 451.60 | 458.05 | 464.50 | 470.95 | 477.40 | 483.86 | 490.31 | 496.76 | 503.21 | 509.66 |
| 80 | 516.12 | 522.57 | 529.02 | 535.47 | 541.92 | 548.38 | 554.83 | 561.28 | 567.73 | 574.18 |
| 90 | 580.63 | 587.08 | 593.53 | 599.98 | 606.43 | 612.89 | 619.34 | 625.79 | 632.24 | 638.69 |
| 100 | 645.15 | 651.60 | 658.05 | 664.50 | 670.95 | 677.41 | 683.86 | 690.31 | 696.76 | 703.21 |

Conversion of Square Centimetres into Square Inches.

| Square cm. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{In}^{2}$. | In ${ }^{2}$. | In ${ }^{2}$. | $\mathbf{I n}^{2}$. | In ${ }^{2}$. | $\mathrm{In}^{2}$. | In ${ }^{2}$. | $\mathrm{In}^{2}$. | In?. | In ${ }^{2}$. |
| 0 | 0.0000 | 0.1550 | 0.3100 | 0.4650 | 0.6200 | 0.7750 | 0.9300 | 1.0850 | 1.2400 | 1.3950 |
| 10 | 1.5500 | 1.7050 | 1.8600 | 2.0150 | 2.1700 | 2.3250 | 2.4800 | 2.6350 | 2.7900 | 2.9450 |
| 20 | 3.1000 | 3.2550 | 3.4100 | 3.5650 | 3.7200 | 3.8750 | 4.0300 | 4.1850 | 4.3400 | 4.4950 |
| 30 | 4.6501 | 4.8051 | 4.9601 | 5.1151 | 5.2701 | 5.4251 | 5.5801 | 5.7351 | 5.8901 | 6.0451 |
| 40 | 6.2001 | 6.3551 | 6.5101 | 6.6651 | 6.8201 | 6.9751 | 7.1301 | 7.2851 | 7.4401 | 7.5951 |
| 50 | 7.7501 | 7.9051 | 8.0601 | 8.2151 | 8.3701 | 8.5251 | 8.6801 | 8.8351 | 8.9901 | 9.1451 |
| 60 | 9.3002 | 9.4552 | 9.6102 | 9.7652 | 9.9202 | 10.075 | 10.230 | 10.385 | 10.540 | 10.695 |
| 70 | 10.850 | 11.040 | 11.160 | 11.315 | 11.470 | 11.625 | 11.780 | 11.935 | 12.090 | 12.245 |
| 80 | 12.400 | 12.555 | 12.710 | 12.865 | 13.020 | 13.175 | 13.330 | 13.485 | 13.640 | 13.795 |
| 90 | 13.950 | 14.105 | 14.260 | 14.415 | 14.570 | 14.725 | 14.880 | 15.035 | 15.190 | 15.345 |
| 100 | 15.500 | 15.655 | 15.810 | 15.965 | 16.120 | 16.275 | 16.430 | 16.585 | 16.740 | 16.895 |

Conversion of Cubic Inches into Cubic Centimetres.

| Cubic in. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Cm}^{3}$. |
| 0 | 0.0000 | 16.383 | 32.773 | 49.160 | 65.546 | 81.933 | 98.320 | 114.71 | 131.01 | 147.48 |
| 10 | 163.87 | 180.26 | 196.64 | 213.03 | 229.41 | 245.80 | 262.19 | 278.58 | 294.88 | 311.35 |
| 20 | 327.73 | 344.12 | 360.50 | 376.89 | 393.27 | 409.66 | 426.05 | 442.44 | 458.74 | 475.21 |
| 30 | 491.60 | 507.99 | 524.37 | 540.76 | 557.14 | 573.53 | 569.92 | 606.31 | 622.61 | 639.08 |
| 40 | 655.46 | 671.85 | 688.23 | 704.52 | 721.00 | 737.39 | 753.78 | 770.17 | 786.47 | 802.94 |
| 50 | 819.33 | 835.72 | 851.10 | 868.49 | 884.87 | 901.26 | 917.65 | 934.04 | 950.34 | 966.81 |
| 60 | 983.20 | 999.59 | 1016.0 | 1032.4 | 1048.7 | 1065.1 | 1081.5 | 1097.9 | 1114.2 | 1130.7 |
| 70 | 1147.1 | 1168.5 | 1179.9 | 1196.3 | 1212.6 | 1229.0 | 1245.4 | 1261.8 | 1278.1 | 1294.6 |
| 80 | 1310.9 | 1327.3 | 1343.7 | 1360.1 | 1376.4 | 1392.8 | 1409.2 | 1425.6 | 1441.9 | 1458.4 |
| 90 | 1474.8 | 1491.2 | 1507.6 | 1524.0 | 1540.3 | 1556.7 | 1573.1 | 1589.5 | 1605.8 | 1622.3 |
| 100 | 1638.7 | 1655.1 | 1671.5 | 1687.9 | 1704.2 | 1720.6 | 1737.0 | 1753.4 | 1769.7 | 1786.2 |

## Conversion of Cubic Centimetres into Cubic Inches.

| Cubic cm. | 0 | 1 | 2 | 3 |  |  |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{In}^{3}$. | $\mathrm{In}^{3}$. | $\mathrm{In}^{3}$. | $\mathrm{In}^{3}$. | In |  |  |  | In ${ }^{3}$. |  |
| 0 | 0.0000 | 0.0610 | 0.1221 | 0.1831 | 0.2441 | 0.3051 | 0.3661 | 0.4272 | 0.4882 | 0.5492 |
| 10 | 0.6102 | 0.6712 | 0.7323 | 0.7933 | 0.8543 | 0.9153 | 0.9763 | 1.0374 | 1.0984 | 1.1594 |
| 30 | 1.2205 | 1.2815 | 1.3426 | 1.4036 | 1.4646 | 1.5256 | 1.5866 2.1969 | 1.6477 2.2580 | 1.7087 | 1.7697 |
| 40 | 2.4410 | 2.5020 | 2.5631 | 2.6241 | 2.6851 | 2.7461 | 2.8071 | 2.8682 | 2.9292 | 2.9902 |
| 50 | 3.0513 | 3.1123 | 3.1734 | 3.2344 | 3.2954 | 3.3564 | 3.4174 | 3.4785 | 3.5395 | 600 |
| 60 | 3.6615 | 3.7225 | 3.7836 | 3.8446 | 3.9056 | 3.9666 | 4.0276 | 4.0887 | 4.1497 | 4.2107 |
| 70 | 4.2718 | 4.3328 | 4.3939 | 4.4549 | 4.5159 | 4.5769 | 4.6379 | 4.6990 | 4.7600 | 4.8210 |
| 80 | 4.8820 | 4.9430 | 5.0041 | 5.0651 | 5.1261 | 5.1871 | 5.2481 | 5.3092 | 5.3702 | 5.4312 |
| 90 | 5.4923 | 5.5533 | 5.6144 | 5.6754 | 5.7364 | 5.7974 | 5.8584 | 5.9195 | 5.9805 | 6.0115 |
| 100 | 6.1025 | 6.1635 | 6.2246 | 6.2856 | 6.3466 | 6.4076 | 6.4686 | 6.5297 | 6.590 | 6.6517 |

Conversion of Cubic Yards into Cubic Métres.

| Cubi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | Met ${ }^{3}$ | Met ${ }^{3}$. |  |  |  | Met ${ }^{3}$. | Met ${ }^{3}$. |  |  |
| 0 | 0.0000 | 0.76 | 1.5 | 2.2936 | 3.0 | 3.82 | 4.5872 | 5.35 | 6.1163 | 8 |
| 10 | 7.6453 | 8.4098 | 9.1744 | 9.9389 | 10.703 | 11.468 | 12.232 | 12.997 | 13.761 | 14.526 |
| 20 | 15.291 | 16.055 | 16.820 | 17.585 | 18.349 | 19.114 | 19.878 | 20.643 | 21.407 | 22.172 |
| 30 | 22.936 | 23.700 | 24.455 | 25.230 | 25.994 | 26.759 | 27.523 | 28.288 | 29.052 | 29.817 |
| 40 | 30.581 | 31.345 | 32.110 | 32.875 | 33.639 | 34.404 | 35.168 | 35.933 | 36.797 | 37.462 |
| 50 | 38.226 | 38.990 | 39.755 | 40.520 | 41.284 | 42.049 | 42.813 | 43.578 | 44.342 | 45.107 |
| 60 | 45.872 | 46.636 | 47.401 | 48.166 | 48.930 | 49.695 | 50.459 | 51.224 | 51.988 | 52.753 |
| 70 80 | $\left\|\begin{array}{l} 5.517 \\ 61163 \end{array}\right\|$ | 54.281 61.927 | 55.046 62.692 | 55.811 63.457 | 56.575 64.221 | 57.340 64.986 | 58.104 65.750 | 58.869 66.515 | 59.633 67.279 | 60.398 68.044 |
| 80 90 | $\begin{aligned} & 61.163 \\ & 68.808 \end{aligned}$ | $\begin{aligned} & 61.927 \\ & 69.572 \end{aligned}$ | 62.692 | 63.857 71.102 | 64.221 71.866 | 64.986 | 65.750 73.395 | 66.515 | 67.279 <br> 74.924 | 68.044 |
| 100 | 76.453 | 77.217 | 77.982 | 78.747 | 79.511 | 80.276 | 81.040 | 81.805 | $\mid 82.569$ | 83.334 |

Conversion of Cubic Metres into Cubic Yards.

| Cubic met. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yds ${ }^{3}$. | Yds ${ }^{3}$ | Yds ${ }^{3}$. | Yds ${ }^{3}$. | Yds ${ }^{3}$. | Yds ${ }^{3}$. | Yds ${ }^{3}$ | Y $\mathrm{ds}^{3}$. | Yd | Yd |
| 0 | 0.0000 | 1.3080 | 2.6160 | 3.9240 | 5.2329 | 6.5399 | 7.8479 | 9.1559 | 10.464 | 11.772 |
| 10 | 13.080 | 14.388 | 15.696 | 17.004 | 18.313 | 19.620 | 20.928 | 22.236 | 23.544 | 24.852 |
| 20 | 26.160 | 27.468 | ${ }_{41.856}^{28.776}$ | 30.084 | 31.393 | 32.700 | 34.008 | 35.316 | 36.624 49 | 37.932 |
| 40 | 52.319 | 53.627 | 54.935 | 56.243 | 57.552 | 48.859 | 60.167 | 41.475 | 62.783 | 63.091 |
| 50 | 65.399 | 66.707 | 68.015 | 69.323 | 70.632 | 71.939 | 73.247 | 74.545 | 75.86 | 77.171 |
| 60 | 78.479 | 79.787 | 81.095 | 82.403 | 83.712 | 85.019 | 86.327 | 87.535 | 88.943 | 90.251 |
| 70 | 91.559 | 92.867 | 94.175 | 95.483 | 96.792 | 98.099 | 99.407 | 100.71 | 102.02 | 103.33 |
| 80 | 104.63 | 105.94 | 107.25 | 108.56 | 109.87 | 111.17 | 112.48 | 113.79 | 115.10 | 116.41 |
| 90 100 | 117.72 | 119.03 | 120.34 | 121.64 | 122.95 | 124.26 | 125.57 | 126.88 | 128.18 | 129.49 |
| 00 | 130.80 | 132.11 | 133.42 | 134.72 | 136.03 | 137.34 | 138.65 | 139.96 | 141.26 | 142.5 |

Conversion of U. S. Gallons into Litres.

|  | 0 | 1 | 2 | 3 |  |  |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Litres. | Li | Li | Li | Li | s. | Litres, | Litres, | Litres. |  |
| 0 |  | 3.7853 | 7.5706 | 11.356 | 15.141 | 18.946 | 22.712 | 26.497 | 30.282 |  |
| 10 |  | 41.638 | 45.423 | 49.209 | 52.994 | 56.799 | 60.565 | 64.350 | 68.135 | 71.921 |
| 20 | 75.706 | 79.491 | 83.276 | 87.062 | 90.847 | 94.652 | 98.418 | 102.20 | 105.99 | 109.77 |
| 30 | 113.56 | 117.34 | 121.13 | 124.92 | 128.66 | 132.50 | 136.27 | 140.06 | 143.84 | 147.63 |
| 40 | 151.42 | 155.22 | 158.99 | 162.78 | 166.56 | 170.36 | 174.13 | 177.92 | 181.70 | 185.49 |
| 50 | 189.46 | 193.24 | 197.03 | 200.82 | 204.60 | 208.40 | 212.17 | 215.96 | 219.74 | 223.53 |
| 60 | 227.12 | 230.90 | 234.69 | 238.48 | 242.26 | 246.06 | 249.83 | 253.62 | 257.40 | 261.19 |
| 70 | 264.97 | 268.75 | 272.54 | 276.33 | 280.11 | 283.91 | 286.68 | 291.47 | 295.2 | 299.04 |
| 80 | 302.82 | 306.60 | 310.39 | 314.18 | 317.96 | 321.76 | 324.53 | 329.32 | 333.10 | 336.89 |
| 90 | 340.68 | 344.46 | 348.25 | 352.04 | 355.82 | 359.62 | 363.39 | 367.18 | 370.96 | 374.75 |
| 100 | 378.53 | 382.31 | 386.10 | 389.89 | 393.67 | 397.47 | 401.24 | 405.03 | 408.81 | 412.60 |

Conversion of Litres into U. S. Gallons.

| Litres. | 0 | 1 | 2 |  |  | 5 |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gal. |
| 0 | 0.0000 | 0.2642 | 0.5284 | 0.7925 | 1.0567 | 1.3209 | 1.5851 | 1.8492 | 2.1134 | 2.3776 |
| 10 | 2.6418 | 2.9060 | 3.1702 | 3.4343 | 3.6985 | 3.9627 | 4.2269 | 4.4910 | 4.7552 | 5.0194 |
| 20 | $\begin{aligned} & 5.2866 \\ & 7 \\ & 7 \end{aligned}$ | 5.5478 | 5.8120 8.4538 | 6.0761 8.7179 | 6.3403 8.9821 | 6.6045 9.2463 | 6.8687 9.5105 | 7.1328 | 7.3970 10.030 | 7.6612 10.303 |
| 40 | 10.567 | 10.831 | 11.095 | 11.360 | 11.624 | 11.888 | 12.152 | 12.416 | 12.680 | 12.945 |
| 50 | 13.209 | 13.473 | 13.737 | 14.002 | 14.266 | 14.530 | 14.794 | 15.058 | 15.322 | 15.587 |
| 60 | 15.851 | 16.115 | 16.379 | 16.644 | 16.908 | 17.172 | 17.436 | 17.700 | 17.964 | 18.229 |
| 70 | 18.492 | 18.756 | 19.020 | 19.284 | 19.549 | 19.813 | 20.077 | 20.341 | 20.605 | 20.870 |
| 80 | 21.134 | 21.398 | 21.662 | 21.926 | 22.191 | 22.455 | 22.719 | 22.983 | 23.247 | ${ }_{2} 23.512$ |
| 90 | 23.776 | 24.040 | 24.304 | 24.568 | 24.832 | 25.097 | 25.361 | 25.625 | 25.889 | 26.154 |
| 100 | 26.418 | 26.682 | 26.946 | 27.210 | 27.475 | 27.739 | 28.003 | 28.267 | 28.531 | 28.796 |

## Conversion of Yards into Metres.

| Yards. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Met. | Met. | Met. | Met. | Met. |  |  |  |  | Met. |
|  | 0.0000 | 0.9144 | 1.8288 | 2.7432 | 3.6576 | 4.5719 | 5.4863 | 6.4007 | 7.3151 | 8.2295 |
| 10 | 9.1439 | 10.058 | 10.973 | 11.887 | 12.801 | 13.716 | 14.630 | 15.544 | 16.458 | 17.373 |
| 20 | 18.288 | 19.202 | 20.117 | 21.031 | 21.945 | 22.860 | 23.774 | 24.689 | 25.603 | 26.51 |
| 30 | 27.432 | 28.346 | 29.260 | 30.174 | 31.088 | 32.003 | 32.917 | 33.832 | 34.746 | 35.66 |
| 40 | 36.576 | 37.490 | 38.404 | 39.318 | 40.232 | 41.147 | 42.061 | 42.976 | 43.890 | 44.805 |
| 50 | 45.719 | 46.634 | 47.548 | 48.462 | 49.376 | 50.291 | 51.205 | 52.120 | 53.034 | 53.94 |
| 60 | 54.863 | 55.778 | 56.692 | 57.606 | 58.520 | 59.435 | 60.349 | 61.264 | 62.178 | 63.09 |
| 70 | 64.007 | 64.922 | 65.836 | 66.750 | 67.664 | 68.578 | 69.493 | 70.408 | 71.322 | 72.23 |
| 80 | 73.151 | 74.066 | 74.980 | 75.894 | 76.808 | 77.723 | 78.637 | 79.552 | 80.466 | 81.38 |
| 90 | 82.295 | 83.210 | 84.124 | 85.038 | 85.952 | 86.867 | 87.781 | 88.696 | 89.610 | 90.52 |
| 100 | 91.439 | 92.353 | 93.267 | 94.181 | 95 | 96.010 | 96.924 | 97.839 | 98. | 99.66 |

Conversion of Metres into Yards.

| Metres. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yds. | Yds. | Yds. | Y | Yds. | Yds. | Yds. | Yds. | I'ds. |  |
| 0 | 0.0000 | 1.0936 | 2.1872 | 3.2809 | 4.3745 | 5.4681 | 6.5617 | $7.65 \overline{3}$ | 8.7490 | 26 |
| 10 | 10.936 | 12.029 | 13.122 | 14.217 | 15.310 | 16.404 | 17.498 | 18.591 | 19.68 .5 | 20.778 |
| 20 | 21.872 | 22.966 | 24.059 | 25.153 | 26.247 | 27.340 | 28.434 | 29.527 | 30.621 | 31.71 |
| 30 | 32.809 | 33.900 | 34.993 | 36.090 | 37.184 | 38.277 | 39.371 | 40.464 | 41.558 | 42.65 |
| 40 | 43.745 | 44.839 | 45.932 | 47.026 | 48.120 | 49.213 | 50.307 | 51.400 | 52.544 | 53.58 |
| 50 | 54.681 | 55.775 | 56.868 | 57.962 | 59.056 | 60.149 | 61.243 | 62.336 | 63.430 | 64.52 |
| 60 | 65.617 | 66.711 | 67.804 | 68.898 | 69.992 | 71.085 | 72.179 | 73.272 | 74.366 | 75.460 |
| 70 | 76.553 87.490 | 77.647 | 78.740 89.677 | 79.834 90.771 | 80.928 91.865 | 82.021 92.958 | 83.115 94.052 | $\begin{aligned} & 84.208 \\ & 95.145 \end{aligned}$ | $\begin{aligned} & 8.302 \\ & 96 \end{aligned}$ | 86.39 |
| 90 | 87.490 98.426 | 89.582 | 89.671 | 90.771 101.71 | 91.86. 102.80 | 103.89 | 91.052 104.99 | 95.145 106.08 | 96.239 | 108.2 |
| 100 | 109.36 | 110.45 | 111.55 | 112.64 | 113.73 | 114.83 |  | 117.02 | 118.11 | 119.2 |

Conversion of Square Yards into Square Metres.

| Sq. yards. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Met2. | Met². | Met ${ }^{2}$. | Met ${ }^{2}$. | Met2. | Met? | Met². |  |  |  |
| 0 | 0.0000 | 0.8361 | 1.6722 | 2.5803 | 3.3444 |  | 5.0167 | 5.8528 | 6.6889 |  |
| 10 |  | 9.1972 | 10.033 | 10.941 | 11.706 | $12.542$ | $13.378$ | 14.214 | 15.050 | 15. |
| 20 | 16.722 25.083 | 17.558 25.919 | 18.394 26.755 | 19.102 | 20.066 28.431 | 20.903 29.264 | 21.739 30.100 | 22.575 30.936 | 23.411 | 4.24 |
| 30 40 | 25.083 33.444 | 25.919 34.280 | 26.755 35.116 | 27.663 36.024 | 28.431 36.788 | 29.264 37.625 | 30.100 38.461 | 30.936 39.297 | 31.712 40.13 |  |
| 50 | 41.805 | 42.641 | 43.477 | 44.385 | 45.149 | 45.986 | 46.822 | 47.658 | 48.494 | 9.33 |
| 60 | 50.167 | 51.003 | 51.839 | 52.747 | 53.511 | 54.348 | 55.184 | 56.020 | 56.856 | 7.692 |
| 70 | 58.528 | 59.364 | 60.190 | 61.108 | 61.872 | 62.709 | 63.545 | 64.381 | 65.217 | 66.05 |
| 80 | 66.889 | 67.725 | 68.561 | 69.469 | 70.233 | 71.070 | 71.906 | 72.742 | 73.578 | 74.414 |
| 90 100 | 75.250 | 76.086 | 76.922 | 77.830 | 78.594 | 79.431 | 80.267 | 81.103 | 81.939 | 82.775 91.136 |
| 100 |  |  |  |  | 86.9 | 87.792 | 88.6 | 89.461 | 90.300 | 91.13 |

Conversion of Square Metres into Square Yards.

| Sq. | 0 | 1 | 2 | 3 | 4 | 5 |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yds? | Yds? | Yds². | Yds ${ }^{\text {² }}$ | $\mathrm{Y} d \mathrm{~s}^{2}$. | Yd | Y | Yd, $s^{2}$. | Yds². | Yds². |
| 0 | 0.0000 | 1.1960 | 2.3920 | 3.5880 | 4.7840 | 5.9800 | 7.1760 | 8.3720 | 9.5681 | 10.764 |
| 10 | 11.960 | 13.156 | 14.352 | 15.548 | 16.744 | 17.910 | 19.136 | 20.332 | 21.528 | 22.724 |
| 20 | 23.920 | 25.116 | 26.312 | 27.508 | 28.704 | 29.900 | 31.096 | 32.292 | 33.488 | 34.684 |
| 30 | 35.880 | 37.076 | 38.272 | 39.468 | 40.664 | 41.860 | 43.056 | 44.252 | 45.448 | 46.644 |
| 40 | 47.840 | 49.036 | 50.232 | 51.428 | 52.624 | 53.820 | 55.016 | 56.212 | 57.408 | 58.604 |
| 50 | 59.800 | 60.996 | 62.192 | 63.388 | 63.584 | 65.780 | 66.976 | 68.172 | 69.368 | 70.564 |
| 60 70 | 71.760 | 72.956 | 74.152 | 75.348 87.309 | 76.544 88.505 | 77.740 89 | 78.936 90.897 | 80.132 | 81.328 93 | 82.524 |
| 70 | 83.721 | 84.917 96.877 | 88.113 | 87.309 | 88.505 100.46 | 89.701 | 90.897 102.86 | 92.093 104.06 | 93.289 105.25 | 94.485 106.44 |
| 90 | 107.64 | 108.84 | 110.03 | 111.24 | 112.44 | 113.62 | 114.81 | 116.01 | 117.21 | 118.40 |
| 100 | 119.60 | 120.80 | 121.99 | 123.19 | 124.38 | 125.58 | 126.77\| | 127.97 | 129.17 | 130.36 |

The Metric Sistem.
Conversion of Hectares into Acres.

| Hectares. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Acres. | Acres. | Acres. | Ac | Ac | Ac | Ac | Acr | A | Acres. |
| 0 | 0.0000 | 2.4711 | 4.9122 | 7.4133 | 9.8844 | 12.355 | 14.836 | 17.298 | 19.769 | 22.240 |
| 10 | 24.711 | 27.182 | 29.653 | 32.124 | 34.695 | 37.046 | 39.547 | 42.009 | 44.480 | 46.951 |
| 20 | 49.422 | 51.893 | 54.364 | 56.835 | 59.306 | 61.757 | 64.258 | 66.720 | 68.191 | 71.662 |
| 30 | 74.133 | 76.604 | 79.075 | 81.546 | 84.017 | 86.468 | 88.969 | 91.431 | 93.902 | 96.373 |
| 40 | 98.844 | 101.31 | 103.79 | 106.26 | 108.73 | 111.18 | 113.68 | 116.14 | 118.61 | 121.08 |
| 50 | 123.55 | 126.02 | 128.49 | 130.96 | 133.43 | 135.88 | 138.38 | 140.85 | 143.32 | 145.79 |
| 60 | 148.36 | 150.83 | 153.30 | 155.77 | 158.24 | 160.69 | 163.19 | 165.66 | 168.13 | 170.60 |
| 70 | 172.95 | 175.45 | 177.92 | 180.39 | 182.86 | 185.31 | 187.81 | 190.28 | 192.75 | 195.22 |
| 80 | 197.69 | 200.16 | 202.63 | 205.10 | 207.57 | 210.02 | 212.52 | 214.99 | 217.46 | 219.93 |
| 90 | 222.40 | 224.87 | 227.34 | 229.81 | 232.28 | 234.73 | 237.23 | 239.70 | ${ }^{242.17}$ | 244.64 |
| 100 | 247.11 | 249.58 | 252.05 | 254 | 256. | 259.44 | 261.94 | 264.41 | 266.88 | 269.35 |

Conversion of Acres into Hectares.

| Acres. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hect. | H |
| 0 | 0.000 | 0.4047 | 0.8093 | 1.2140 | 1.6187 | 2.0234 | 2.4280 | 2.8327 | 3.2374 | 3.6420 |
| 10 | 4.0468 | 4.4515 | 4.8561 | 5.2608 | 5.6655 | 6.0702 | 6.4748 | 6.8795 | 7.2782 | 7.6888 |
| 20 | 8.0936 | 8.4983 | 8.9029 | 9.3076 | 9.7123 | 10.117 | 10.521 | 10.926 | 11.331 | 11.735 |
| 30 | 12.140 | 12.545 | 12.949 | 13.354 | 13.759 | 14.163 | 14.568 | 14.973 | 15.377 | 15.782 |
| 40 | 16.187 | 16.592 | 16.996 | 17.401 | 17.806 | 18.210 | 18.615 | 19.020 | 19.414 | 19.829 |
| 50 | 20.234 | 20.639 | 21.043 | 21.448 | 21.853 | 22.257 | 22.662 | 23.067 | 23.471 | 23.876 |
| 60 | 24.280 | 24.685 | 25.089 | 25.494 | 25.899 | 26.303 | 26.708 | 27.113 | 27.517 | 27.922 |
| 70 | 28.327 | 28.732 | 29.136 | 29.541 | 29.946 | 30.350 | 30.755 | 31.160 | 31.564 | 31.969 |
| 80 | 32.374 | 32.779 | 33.183 | 33.588 | 33.993 | 34.397 | 34.802 | 35.207 | 35.611 | 36.016 |
| 90 | 36.420 | 36.825 | 37.229 | 37.634 | 38.039 | 38.443 | 38.848 | 39.253 | 39.657 | 40.062 |
| 100 | 40.468 | 40.873 | 41.277 | 41.682 | 42.087 | 42.491 | 42.89 | 43.301 | 43.6 | 44.110 |

Conversion of Square Miles into Square Kilometres.

| Sq. miles. | 0 | 1 | 2 | 3 |  | 5 | 6 | 7 | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kil. | Kil2. | K | Kil2. | Ki | Ki | Ki | K | Kil ${ }^{2}$. | Kil ${ }^{2}$. |
| 0 | 0.0000 | 2.5899 | 5.1798 | 7.7697 | 10.359 | 12.929 | 15.539 | 18.129 | 20.718 | 23.309 |
| 10 | 25.899 | 28.490 | 31.079 | 33.669 | 36.259 | 38.829 | 41.439 | 44.029 | 46.619 | 49.209 |
| 20 | 51.798 | 54.388 | 56.978 | 59.568 | 62.158 | 64.728 | 67.338 | 69.928 | 72.518 | 75.108 |
| 30 | 77.697 | 80.287 | 82.877 | 85.467 | 88.057 | 90.627 | 93.238 | 96.828 | 98.417 | 101.01 |
| 40 | 103.59 | 106.18 | 108.77 | 111.36 | 113.95 | 116.52 | 119.13 | 121.72 | 124.31 | 126.90 |
| 50 | 129.29 | 131.88 | 134.47 | 137.06 | 139.65 | 142.22 | 144.83 | 147.42 | 150.01 | 152.50 |
| 60 | 155.39 | 157.98 | 160.57 | 163.16 | 165.75 | 168.32 | 170.93 | 173.52 | 176.11 | 178.70 |
| 70 | 181.29 | 183.88 | 186.47 | 188.06 | 191.65 | 194.22 | 196.83 | 199.42 | 202.01 | 201.60 |
| 80 | 207.19 | 209.77 | 212.36 | 214.95 | 217.55 | 220.11 | 222.73 | 225.31 | 227.91 | 230.50 |
| 90 | 233.09 | 235.68 | 238.27 | 240.86 | 243.45 | 216.02 | 248.63 | 251.22 | 253.81 | 256.40 |
| 100 | 258.99 | 261.58 | 264.17 | 266.76 | 269,35 | 271.92 |  | 97 |  | 282.20 |

Conversion of Square Kilometres into Square Miles.

| sq. kilom. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sq. | Sq. m. | Sq. m | Sq. m. |  |
| 0 | 0.0000 | 0.3861 | 0.7722 | 1.1583 | 1.5445 | 1.9304 | 2.3166 | 2.7028 | 3.0890 | 3.4749 |
| 10 | 3.8612 | 4.2471 | 4.6334 | 5.0195 | 5.4057 | 5.7916 | 6.1778 | 6.5640 | 6.9502 | 7.3362 |
| 20 | 7.7224 | 8.1081 | 8.4946 | 8.8807 | 9.2669 | 9.6528 | 10.039 | 10.425 | 10.811 | 11.197 |
| 30 | 11.583 | 11.969 | 12.355 | 12.741 | 13.127 | 13.513 | 13.899 | 14.286 | 14.672 | 15.058 |
| 40 | 15.445 | 15.830 | 16.217 | 16.603 | 16.989 | 17.375 | 17.761 | 18.146 | 18.534 | 18.920 |
| 50 | 19.304 | 19.691 | 20.076 | 20.462 | 20.848 | 21.234 | 21.620 | 22.007 | 22.393 | 22.779 |
| 60 | 23.166 | 23.552 | 23.938 | 24.324 | 24.710 | 25.096 | 25.482 | 25.869 | 26.245 | 26.641 |
| 70 | 27.028 | 27.413 | 27.800 | 28.186 | 28.572 | 28.958 | 29.344 | 29.731 | 30.117 | 30.503 |
| 80 | 30.890 | 31.274 | 31.662 | 32.048 | 32.434 | 32.820 | 33.206 | 33.593 | 33.979 | 34.365 |
| 90 | 34.749 | 35.135 | 35.521 | 35.907 | 36.293 | 36.679 | 37.065 | 37.452 | 37.838 | 38.224 |
| 100 | 38.612 | 38.996 | 39.384 | 39.770 | 40.156 | 40.542 | 40.928 | 41.315 | 41.701 | 42.087 |

Conversion of Cubic Feet into Cubic Decimetres.

| Cubic feet. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Dm}^{3}$. |
| 0 | 0.0000 | 28.316 | 56.632 | 84.948 | 113.26 | 141.58 | 169.90 | 198.21 | 226.53 | 254.84 |
| 10 | 283.16 | 311.47 | 339.79 | 368.11 | 396.42 | 424.74 | 453.06 | 481.37 | 509.69 | 538.00 |
| 20 | 566.32 | 594.64 | 622.95 | 651.27 | 679.58 | 707.90 | 736.22 | 764.53 | 792.85 | 821.16 |
| 30 | 849.48 | 877.80 | 906.11 | 934.43 | 962.74 | 991.06 | 1019.4 | 1047.7 | 1076.0 | 1104.3 |
| 40 | 1132.6 | 1160.8 | 1189.2 | 1217.5 | 1245.9 | 1274.2 | 1302.5 | 1330.8 | 1359.1 | 1387.4 |
| 50 | 1415.8 | 1444.0 | 1472.4 | 1500.7 | 1529.1 | 1557.4 | 1585.7 | 1614.0 | 1642.3 | 1670.6 |
| 60 | 1698.9 | 1727.2 | 1755.5 | 1783.8 | 1812.2 | 1840.5 | 1868.8 | 1897.1 | 1925.4 | 1953.7 |
| 70 | 1982.1 | 2010.3 | 2038.7 | 2067.0 | 2095.4 | 2123.7 | 2152.0 | 2180.3 | 2208.6 | 2236.9 |
| 80 | 2265.3 | 2293.5 | 2321.9 | 2350.2 | 2378.6 | 2406.9 | 2435.2 | 2463.5 | 2491.8 | 2520.1 |
| 90 | 2548.4 | 2576.6 | 2605.0 | 2633.3 | 2661.6 | 2690.0 | 2718.3 | 2746.6 | 2774.9 | 2803.2 |
| 100 | 2831.6 | 2859.8 | 2888.2 | 2916.5 | 2944.9 | 2973.2 | 3001.5 | 3029.8 | 3058.1 | 3086.4 |

Conversion of Cubic Decimetres into Cubic Feet.

| Cubic dm. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Ft}^{3}$. | ${ }^{3}$. | Ft ${ }^{3}$. | Ft3. | Ft ${ }^{3}$. | Ft ${ }^{\text {}}$ | Ft | Ft | $\mathrm{Ft}^{3}$. | Ft ${ }^{3}$ |
| 0 | 0.0000 | 0.0353 | 0.0706 | 0.1059 | 0.1413 | 0.1766 | 0.2119 | 0.2472 | 0.2825 | 0.3178 |
| 10 | 0.3531 | 0.3884 | 0.4237 | 0.4590 | 0.4944 | 0.5297 | 0.5540 | 0.6003 | 0.6356 | 0.6709 |
| 20 | 0.7063 | 0.7416 | 0.7766 | 0.8122 | 0.8476 | 0.8829 | 0.9182 | 0.9535 | 0.9888 | 1.0241 |
| 30 | 1.0594 | 1.0947 | 1.1300 | 1.1653 | 1.2007 | 1.2360 | 1.2713 | 1.3066 | 1.3419 | 1.3772 |
| 40 | 1.4126 | 1.4479 | 1.4832 | 1.5185 | 1.5539 | 1.5892 | 1.6245 | 1.6608 | 1.6951 | 1.7304 |
| 50 | 1.7658 | 1.8011 | 1.8364 | 1.8717 | 1.9071 | 1.9424 | 1.9777 | 2.0130 | 2.0483 | 2.0836 |
| 60 | 2.1189 | 2.1542 | 2.1895 | 2.2248 | 2.2602 | 2.2955 | 2.3308 | 2.3661 | 2.4014 | 2.4367 |
| 70 | 2.4721 | 2.5074 | 2.5427 | 2.5780 | 2.6134 | 2.6487 | 2.6840 | 2.7193 | 2.7546 | 2.7899 |
| 80 | 2.8252 | 2.8605 | 2.8958 | 2.9311 | 2.9665 | 3.0018 | 3.0371 | 3.0724 | 3.1077 | 3.1430 |
| 90 | 3.1784 | 3.2137 | 3.2490 | 3.2843 | 3.3197 | 3.3550 | 3.3903 | 3.4256 | 3.4609 | 3.4962 |
| 100 | 3.5315 | 3.5668 | 3.6021 | 3.6374 | 3.6728 | 3.7081 | 3.7434 | 3.7787 | 3.8140 | 3.8493 |

Pounds per Square Foot into Kilogrammes per Square Metre.

| Lbs. pr $\mathrm{ft}^{2}$. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | K. $\mathrm{m}^{2}$. |
| 0 | 0.0000 | 4.8825 | 9.7650 | 14.647 | 19.530 | 24.413 | 29.295 | 34.177 | 39.006 | 43.943 |
| 10 | 48.825 | 53.707 | 58.590 | 63.472 | 68.355 | 73.238 | 78.120 | 83.002 | 87.831 | 92.768 |
| 20 | 97.650 | 102.53 | 107.41 | 112.30 | 117.18 | 122.06 | 126.94 | 131.83 | 136.66 | 141.59 |
| 30 | 146.47 | 151.35 | 156.23 | 161.12 | 165.90 | 170.88 | 175.76 | 180.65 | 185.47 | 190.41 |
| 40 | 195.30 | 200.13 | 205.06 | 209.95 | 214.83 | 219.71 | 224.59 | 229.48 | 234.30 | 239.24 |
| 50 | 244.13 | 249.01 | 253.89 | 258.78 | 263.66 | 268.54 | 273.42 | 278.31 | 283.13 | 288.08 |
| 60 | 292.95 | 297.83 | 302.71 | 307.60 | 312.48 | 317.36 | 322.24 | 327.13 | 331.95 | 336.89 |
| 70 | 341.77 | 346.65 | 351.53 | 356.42 | 361.20 | 366.18 | 371.06 | 375.95 | 380.77 | 385.71 |
| 80 | 390.06 | 394.94 | 399.82 | 404.71 | 409.59 | 414.47 | 419.35 | 424.24 | 429.06 | 434.00 |
| 90 | 439.43 | 444.31 | 449.19 | 454.08 | 458.96 | 463.34 | 468.72 | 473.61 | 478.43 | 483.37 |
| 100 | 488.25 | 493.13 | 498.01 | 502.90 | 507.78 | 512.66 | 517.54 | 522.43 | 527.25 | 532.19 |

Kilogrammes per Square Metre into Pounds per Square Foot.

| K. per $\mathrm{m}^{2}$. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lb. $\mathrm{ft}^{2}$ | Lb. $\mathrm{ft}^{2}$ | Lb. $\mathrm{ft}^{2}$ | Lb. $\mathrm{ft}^{2}$ | Lb. ft ${ }^{2}$ | Lb. $\mathrm{ft}^{2}$ |
| 0 | 0.0000 | 0.2048 | 0.4096 | 0.6144 | 0.8192 | 1.0240 | 1.2289 | 1.4337 | 1.6385 | 1.8433 |
| 10 | 2.0481 | 2.2529 | 2.4577 | 2.6625 | 2.8673 | 3.0721 | 3.2770 | 3.4818 | 3.6866 | 3.8914 |
| 20 | 4.0962 | 4.3010 | 4.5058 | 4.7106 | 4.9154 | 5.1202 | 5.3251 | 5.5299 | 5.7347 | 5.9395 |
| 30 | 6.1444 | 6.3492 | 6.5540 | 6.7588 | 6.9636 | 7.1684 | 7.3733 | 7.5781 | 7.7829 | 7.9877 |
| 40 | 8.1925 | 8.3973 | 8.6021 | 8.8069 | 9.0117 | 9.2165 | 9.4214 | 9.6262 | 9.8310 | 10.036 |
| 50 | 10.240 | 10.445 | 10.649 | 10.854 | 11.059 | 11.264 | 11.469 | 11.674 | 11.878 | 12.083 |
| 60 | 12.289 | 12.494 | 12.698 | 12.903 | 13.108 | 13.313 | 13.518 | 13.723 | 13.927 | 14.132 |
| 70 | 14.337 | 14.542 | 14.746 | 14.951 | 15.156 | 15.361 | 15.566 | 15.771 | 15.975 | 16.180 |
| 80 | 16.385 | 16.590 | 16.794 | 16.999 | 17.204 | 17.409 | 17.614 | 17.819 | 18.023 | 18.228 |
| 90 | 18.433 | 18.638 | 18.842 | 19.047 | 19.252 | 19.457 | 19.662 | 19.867 | 20.071 | 20.276 |
| 100 | 20.481 | 20.686 | 20.890 | 21.095 | 21.300 | 21.505 | 21.710 | 21.915 | 22.119 | 22.324 |

Pounds per Square Inch into Atmospheric Pressure.

| Lbs. pr in ${ }^{2}$. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | At. |
| $\mathbf{0}$ | 0.0000 | 0.0680 | 0.1361 | 0.2041 | 0.2722 | 0.3402 | 0.4082 | 0.4762 | 0.5443 | 0.6124 |
| 10 | 0.6804 | 0.7484 | 0.8165 | 0.8845 | 0.9526 | 1.0206 | 1.0886 | 1.1567 | 1.2247 | 1.2928 |
| 20 | 1.3608 | 1.4288 | 1.496 | 1.5649 | 1.6330 | 1.7010 | 1.769 | 1.8371 | 1.9501 | 1.9732 |
| 30 | 2.0413 | 2.1093 | 2.1774 | 2.2454 | 2.3135 | 2.3814 | 2.4495 | 2.5176 | 2.5856 | 2.6537 |
| 40 | 2.7217 | 2.7897 | 2.8578 | 2.9258 | 2.9939 | 3.0619 | 3.1299 | 3.1980 | 3.260 | 3.3341 |
| 50 | 3.4021 | 3.4701 | 3.5382 | 3.6062 | 3.6743 | 3.7423 | 3.103 | 3.8784 | 3.9464 | 4.0145 |
| 60 | 4.0825 | 4.1505 | 4.2186 | 4.2866 | 4.3547 | 4.4227 | 4.4907 | 4.5588 | 4.6268 | 4.6949 |
| 70 | 4.7630 | 4.8310 | 4.8991 | 4.9671 | 5.0532 | 5.1031 | 5.172 | 5.2393 | 5.3073 | 5.3754 |
| 80 | 5.4434 | 5.5114 | 5.5795 | 5.6475 | 5.7156 | 5.7836 | 5.8516 | 5.9197 | 5.9877 | 6.0558 |
| 90 | 6.1238 | 6.1918 | 6.2599 | 6.3279 | 6.3960 | 6.4640 | 6.5320 | 6.6001 | 6.6681 | 6.7362 |
| 100 | 6.8042 | 6.8722 | 6.9403 | 7.0083 | 7.0764 | 7.1444 | 7.2124 | 7.2805 | 7.3485 | 7.4166 |

Atmospheric Pressure into Pounds per Square Inch.

| Atm. pres. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lb.in ${ }^{2}$ |
| 0 | 0.0000 | 14.697 | 29.393 | 44.090 | 58.787 | 73.483 | 88.180 | 102.87 | 117.57 | 132 |
| 10 | 146.97 | 161.67 | 176.36 | 191.06 | 205.76 | 220.45 | 235.15 | 249.84 | $264.54$ | 279.2 |
| 20 | 293.93 | 308.63 | 323.32 | 338.02 | 352.72 | 367.41 | 382.11 | 396.80 | 411.50 | 426.20 |
| 30 | 440.90 | 455.60 | 470.29 | 484.99 | 499.69 | 514.38 | 529.08 | 543.77 | 558.47 | 573.17 |
|  | 587.87 | 602.57 | 617.26 | 631.96 | 646.66 | 661.35 | 676.05 | 690.74 | 705.44 |  |
| 50 | 734.83 | 749.53 | 764.22 | 778.92 | 793.62 | 808.31 | 823.01 | 837.70 | 852.40 | 867.10 |
| 60 | 881.80 | 896.50 | 911.19 | 925.89 | 940.59 | 955.28 | 969.98 | 984.67 | 999.37 | 1014.1 |
| 70 | 1028.7 | 1043.4 | 1058.1 | 1072.8 | 1087.5 | 1102.2 | 1116.9 | 1131.6 | 1146.3 | 1161.0 |
| 80 | 1175.7 | 1190.4 | 1205.1 | 1219.8 | 1234.5 | 1249.2 | 1263.9 | 1278.6 | 1293.3 | 308.0 |
| 90 | 1322.7 | 1337.4 | 1352.1 | 1366.8 | 1381.5 | 1396.2 | 1410.9 | 1425.6 | 1439.3 | 1455.0 |
| 100 | 1469.7 | 1484.4 | 1499.1 | 1513.8 | 1528.5 | 1543 | 1557.9 | 1572.6 | 1586.3 | 1602 |

Pounds per Square Inch into Kilogrammes per Square Centimetre.

| Lbs. prin ${ }^{2}$. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | K. $\mathrm{cm}^{2}$ | K.cm ${ }^{2}$ | K. $\mathrm{cm}^{2}$ | K. $\mathrm{cm}^{2}$ | K.cm ${ }^{2}$ | K. $\mathrm{cm}^{2}$ | K.cm ${ }^{2}$ | K. $\mathrm{cm}^{2}$ | K. $\mathrm{cm}^{2}$ | K.cm ${ }^{2}$ |
| 0 | 0.0000 | 0.0703 | 0.1406 | 0.2109 | 0.2812 | 0.3515 | 0.4218 | 0.4921 | 0.5625 | 0.6328 |
| 10 | 0.7031 | 0.7734 | 0.8437 | 0.9140 | 0.9843 | 1.0546 | 1.1249 | 1.1952 | 1.2655 | 1.3358 |
| 20 | 1.4062 | 1.4765 | 1.5468 | 1.6171 | 1.6874 | 1.7577 | 1.8280 | 1.8983 | 1.9686 | 2.0389 |
| 30 | 2.1092 | 2.1795 | 2.2498 | 2.3202 | 2.3905 | 2.4608 | 2.5311 | 2.6014 | 2.6717 | 2.7420 |
| 40 | 2.8123 | 2.8826 | 2.9529 | 3.0232 | 3.0935 | 3.1639 | 3.2342 | 3.3045 | 3.3748 | 3.445 |
| 50 | 3.5154 | 3.5857 | 3.6560 | 3.7263 | 3.7966 | 3.8669 | 3.9372 | 4.0075 | 4.0779 | 4.148 |
| 60 | 4.2185 | 4.2888 | 4.3591 | 4.4294 | 4.4997 | 4.5700 | 4.6403 | 4.7106 | 4.7809 | 4.8512 |
| 70 | 4.9216 | 4.9919 | 5.0622 | 5.1325 | 5.2028 | 5.2731 | 5.3434 | 5.4137 | 5.4840 | 5.5543 |
| 80 | 5.6246 | 5.6949 | 5.7652 | 5.8356 | 5.9059 | 5.9762 | 6.0465 | 6.1168 | 6.1871 | 6.257 |
| 90 | 6.3277 | 6.3980 | 6.4683 | 6.5386 | 6.6089 | 6.6793 | 6.7496 | 6.8199 | 6.8902 | 6.9605 |
| 100 | 7.0308 | 7.1011 | 7.1714 | 7.2417 | 7.3120 | 7.38 | 7.4526 | 7.5229 | 7.5 | 7 |

Kilogrammes per Square Centimetre into Pounds per Square Inch.

| K. per cm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$| 0 |
| :---: |

 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
284.46 \& 298.69 \& 312.91 \& 327.13 \& 341.36 \& 355.58 \& 369.80 \& 384.03 \& 398.25 \& 412.47 <br>
\hline

 

426.70 \& 440.92 \& 455.14 \& 469.36 \& 483.59 \& 497.81 \& 512.03 \& 526.26 \& 540.48 <br>
568.93 \& 583.15 \& 597.37 \& 611.60 \& 625.82 \& 640.04 \& 654.27 \& 668.49 \& 682.71 <br>
\hline
\end{tabular}



 | 995.62 | 1009.8 | 1024.1 | 1038.3 | 1052.5 | 1066.7 | 1081.0 | 1095.2 | 1109.4 | 1123.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllll}1137.8 & 1152.1 & 1166.3 & 1180.5 & 1194.7 & 1209.0 & 1223.2 & 1237.4 & 1251.6 & 1265.9 \\ 1280.1 & 1294.3 & 1308.5 & 13227 & 1337.0 & 13512 & 1365.4 & 1379.6 & 1393 . & 1408.1\end{array}$




Conversion of English Pounds into Kilogrammes.

| Eng. lbs. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kilo. |
| 0 | 0.000 | 0.453 | 0.907 | 1.361 | 1.814 | 2.268 | 2.722 | 3.175 | 3.629 | 4.082 |
| 10 | 4.536 | 4.989 | 5.443 | 5.897 | 6.350 | 6.804 | 7.258 | 7.711 | 8.165 | 8.618 |
| 20 | 9.072 | 9.525 | 9.979 | 10.43 | 10.89 | 11.34 | 11.79 | 12.25 | 12.70 | 13.15 |
| 30 | 13.61 | 14.06 | 14.52 | 14.97 | 15.42 | 15.88 | 16.33 | 16.78 | 17.24 | 17.69 |
| 40 | 18.14 | 18.59 | 19.05 | 19.50 | 19.95 | 20.41 | 20.86 | 21.31 | 21.77 | 22.22 |
| 50 | 22.68 | 23.13 | 23.59 | 24.04 | 24.49 | 24.95 | 25.40 | 25.85 | 26.31 | 26.76 |
| 60 | 27.22 | 27.67 | 28.13 | 28.58 | 29.03 | 29.49 | 29.94 | 30.39 | 30.85 | 31.30 |
| 70 | 31.75 | 32.20 | 32.66 | 33.11 | 33.56 | 34.02 | 34.47 | 34.92 | 35.38 | 35.83 |
| 80 | 36.29 | 36.74 | 37.20 | 37.65 | 38.10 | 38.56 | 39.01 | 39.46 | 39.92 | 40.37 |
| 90 | 40.82 | 41.27 | 41.73 | 42.18 | 42.63 | 43.09 | 43.54 | 43.99 | 44.45 | 44.90 |
| 100 | 45.36 | 45.81 | 46.27 | 46.72 | 47.17 | 47.63 | 48.08 | 48.53 | 48.99 | 49.44 |

Conversion of Kilogrammes into English Pounds.

| Fr. kilo. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lbs. |
| $\mathbf{0}$ | 0.000 | 2.205 | 4.410 | $\mathbf{6 . 6 1 5}$ | 8.820 | 11.02 | 13.23 | 15.43 | 17.64 | 19.84 |
| 10 | 22.05 | 24.25 | 26.46 | 28.67 | 30.87 | 33.07 | 35.28 | 37.48 | 39.69 | 41.89 |
| 20 | 44.10 | 46.30 | 48.51 | 50.72 | 52.92 | 55.12 | 57.33 | 59.53 | 61.74 | 63.94 |
| 30 | 66.15 | 68.35 | 70.56 | 72.77 | 74.97 | 77.17 | 79.38 | 81.58 | 83.79 | 85.99 |
| 40 | 88.20 | 90.40 | 92.61 | 94.82 | 97.02 | 99.22 | 101.4 | 103.6 | 105.8 | 108.0 |
| 50 | 110.2 | 112.5 | 114.6 | 116.8 | 119.0 | 121.2 | 123.4 | 125.6 | 127.8 | 130.0 |
| 60 | 132.3 | 134.5 | 136.7 | 138.9 | 141.1 | 143.3 | 145.5 | 147.7 | 149.9 | 152.1 |
| 70 | 154.3 | 156.5 | 158.7 | 160.9 | 163.1 | 165.3 | 167.5 | 169.7 | 171.9 | 174.1 |
| 80 | 176.4 | 178.6 | 180.8 | 183.0 | 185.2 | 187.4 | 189.6 | 191.8 | 194.0 | 196.2 |
| 90 | 198.4 | 200.6 | 202.8 | 205.0 | 207.2 | 209.4 | 211.6 | 213.8 | 216.0 | 218.2 |
| 100 | 220.5 | 222.7 | 224.9 | 227.1 | 229.3 | 231.5 | 233.7 | 235.9 | 238.1 | 240.3 |

Conversion of English Tons into Metric Tons.

| Eng. tons. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M. | M. ton | M. ton | M. ton | M. ton | M. | M.ton | M. ton | M. ton | M.ton |
| 0 | 0.000 | 1.016 | 2.032 | 3.048 | 4.064 | 5.080 | 6.096 | 7.112 | 8.128 | 9.144 |
| 10 | 10.16 | 11.18 | 12.19 | 13.21 | 14.12 | 15.24 | 16.26 | 17.27 | 18.29 | 19.30 |
| 20 | 20.32 | 21.34 | 22.35 | 23.37 | 24.38 | 25.40 | 26.42 | 27.43 | 28.45 | 29.46 |
| 30 | 30.48 | 31.50 | 32.51 | 33.53 | 34.54 | 35.56 | 36.58 | 37.59 | 38.61 | 39.62 |
| 40 | 40.64 | 41.66 | 42.67 | 43.69 | 44.70 | 45.74 | 46.74 | 47.75 | 48.77 | 49.78 |
| 50 | 50.80 | 51.82 | 52.83 | 53.85 | 54.86 | 55.88 | 56.90 | 57.90 | 58.93 | 59.94 |
| 60 | 60.96 | 61.97 | 62.99 | 64.01 | 65.02 | 66.04 | 67.06 | 68.07 | 69.09 | 70.10 |
| 70 | 71.12 | 72.14 | 73.15 | 74.17 | 75.18 | 76.20 | 77.22 | 78.23 | 79.25 | 80.26 |
| 80 | 81.28 | 82.29 | 83.31 | 84.33 | 85.34 | 86.36 | 87.38 | 88.39 | 89.41 | 90.42 |
| 90 | 91.44 | 92.46 | 93.47 | 94.49 | 95.50 | 96.52 | 97.54 | 98.55 | 99.57 | 100.6 |
| 100 | 101.6 | 102.6 | 103.6 | 104.6 | 105.7 | 106.7 | 107.7 | 108.7 | 109.7 | 110.7 |

Conversion of Metric Tons into English Tons.

| Fr.m.ton. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E. ton |
| 0 | 0.000 | 0.984 | 1.969 | 2.953 | 3.937 | 4.921 | 5.906 | 6.890 | 7.874 | 8.858 |
| 10 | 9.843 | 10.83 | 11.81 | 12.79 | 13.78 | 14.76. | 15.75 | 16.73 | 17.72 | 18.70 |
| 20 | 19.69 | 20.67 | 21.66 | 22.64 | 23.63 | 24.61 | 25.60 | 26.58 | 27.56 | 28.55 |
| 30 | 29.53 | 30.51 | 31.50 | 32.48 | 33.47 | 34.45 | 35.44 | 36.42 | 37.40 | 38.39 |
| 40 | 39.37 | 40.35 | 41.34 | 42.32 | 43.31 | 44.29 | 45.28 | 46.26 | 47.24 | 48.23 |
| 50 | 49.21 | 50.19 | 51.18 | 52.16 | 53.15 | 54.13 | 55.12 | 56.10 | 57.08 | 58.07 |
| 60 | 59.06 | 60.04 | 61.03 | 62.01 | 63.00 | 63.98 | 64.97 | 65.95 | 66.93 | 67.92 |
| 70 | 68.90 | 69.88 | 70.87 | 71.85 | 72.84 | 73.82 | 74.81 | 75.79 | 76.77 | 77.76 |
| 80 | 78.74 | 79.72 | 80.71 | 81.69 | 82.68 | 83.66 | 84.65 | 85.63 | 86.61 | 87.60 |
| 90 | 88.58 | 89.56 | 90.55 | 91.53 | 92.52 | 93.50 | 94.49 | 95.47 | 96.45 | 97.44 |
| 100 | 98.43 | 99.41 | 100.4 | 101.4 | 102.4 | 103.3 | 104.3 | 105.3 | 106.3 | 107.3 |

Conversion of English Ounces Avoirdupois into French Grammes.

| g. ozs. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gram | Gr | Gr | Grams | Grams | Grams | Gram | Gram | Gram | Gra |
| 0 | 0.0000 | 28.3 | 56.697 | 85.046 | 113.39 | 141.74 | 170.09 | 198.44 | 226.79 | 25 |
| 10 | 283.48 | 311.83 | 340.18 | 368.52 | 396.87 | 425.22 | 453.57 | 481.92 | 510.27 | 538. |
| 20 | 566.97 | 595.32 | 623.67 | 652.01 | 680.36 | 708.71 | 737.06 | 765.41 | 793.76 | 82.11 |
| 30 | 850.46 | 878.81 | 907.16 | 935.50 | 963.85 | 992.20 | 1020.5 | 1048.9 | 1077.2 | 1105.6 |
| 40 | 1133.9 | 1162.2 | 1190.6 | 1218.9 | 1247.3 | 1275.6 | 1304.0 | 1332.3 | 1360.7 | 1389.0 |
| 50 | 1417.4 | 1445.7 | 1474.1 | 1502.4 | 1530.8 | 1559.1 | 1587.5 | 1615.8 | 1644.2 | 1672.5 |
| 60 | 1700.9 | 1729.2 | 1756.6 | 1785.9 | 1814.3 | 1842.9 | 1871.0 | 1899.3 | 1927.7 | 1956.0 |
| 70 | 1984.4 | 2012.7 | 2041.1 | 2079.4 | 2097.8 | 2126.1 | 2154.5 | 2182.8 | 2211.2 | 2239.5 |
| 80 | 2267.9 | 2296.2 | 2324.6 | 2352.9 | 2381.3 | 2409.6 | 2438.0 | 2466.3 | 2494.7 | 2523.0 |
| 90 | 2551.4 | 2579.7 | 2608.1 | 2636.4 | 2664.8 | 2693.1 | 2721.5 | 2739.8 | 2778.2 | 2806.5 |
| 00 | 2834.8 | 2863.1 | 2891 | 2919.8 | 2948 | 2976.5 | 3004.9 | 3033.2 | 3061 | 3089.9 |

Conversion of French Grammes into English Ounces Avoirdupois.

| Fr. grams. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | zs. | zs. | Ozs. |
| 0 | 0.0000 | 0.0353 | 0.0705 | 0.1058 | 0.1411 | 0.1768 | 0.2116 | 0.2469 | 0.2822 | 0.3175 |
| 10 | 0.3527 | 0.3880 | 0.4232 | 0.4585 | 0.4938 | 0.5295 | 0.5643 | 0.5996 | 0.6349 | 0.6702 |
| 20 | 0.7055 | 0.7408 | 0.7760 | 0.8113 | 0.8466 | 0.8823 | 0.9171 | 0.9524 | 0.9877 | 1.0230 |
| 30 | 1.0582 | 1.0935 | 1.1287 | 1.1640 | 1.1993 | 1.2350 | 1.2698 | 1.3051 | 1.3404 | 1.3757 |
| 40 | 1.4110 | 1.4463 | 1.4815 | 1.5168 | 1.5521 | 1.5878 | 1.6226 | 1.6579 | 1.6932 | 1.7285 |
| 50 | 1.7687 | 1.8040 | 1.8392 | 1.8745 | 1.9098 | 1.945 .5 | 1.9803 | 2.0156 | 2.0509 | 2.0862 |
| 60 | 2.1165 | 2.1518 | 2.1870 | 2.2223 | 2.2576 | 2.2933 | 2.3281 | 2.3634 | 2.3987 | 2.4340 |
| 70 | 2.4692 | 2.5045 | 2.5397 | 2.5750 | 2.6103 | 2.6460 | 2.6808 | 2.7161 | 2.7514 | 2.7867 |
| 80 90 | 2.8220 | 2.8573 | 2.8925 | 2.9278 | 2.9631 | 2.9988 | 3.0336 | 3.0689 | 3.1042 | 3.1395 |
| 90 | 3.1747 | 3.2100 | 3.2452 | 3.2805 | 3.3158 | 3.3515 | 3.3863 | 3.4216 | 3.4569 | 3.4922 |
| 100 | 3.5275 | 3.5628 | 3.5980 | 3.6333 | 3.6686 | 3.7043 | 3.739 | 3.7744 | 3.80 | 3.8450 |

## Conversion of English Grains Troy into French Grammes.

| Eng.grains | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gram | Gr | Gr | Grams | Grams | Grams | Grams | Gr | Gr | Grams |
| 0 | 0.0000 | 0.0648 | 0.1296 | 0.1944 | 0.2592 | 0.3240 | 0.3888 | 0.4535 | 0.5183 | 0.58 |
| 10 | 0.6479 | 0.7127 | 0.7775 | 0.8423 | 0.9071 | 0.9719 | 1.0367 | 1.1014 | 1.1662 | 1.2310 |
| 20 | 1.2959 | 1.3607 | 1.4255 | 1.4903 | 1.5551 | 1.6199 | 1.6847 | 1.7494 | 1.8142 | 1.8890 |
| 30 | 1.9438 | 2.0086 | 2.0731 | 2.1382 | 2.2030 | 2.2678 | 2.3326 | 2.3973 | 2.4621 | 2.5269 |
| 40 | 2.5918 | 2.6566 | 2.7214 | 2.7862 | 2.8510 | 2.9158 | 2.9806 | 3.0453 | 3.1101 | 3.1749 |
| 50 | 3.2398 | 3.3046 | 3.3691 | 3.4342 | 3.4990 | 3.5638 | 3.6286 | 3.6933 | 3.7581 | 3.8229 |
| ${ }_{6} 0$ | 3.8877 | 3.9525 | 4.0173 | 4.0821 | 4.1469 | 4.2117 | 4.2765 | 4.3412 | 4.4060 | 4.4708 |
| 70 | 4.5357 | 4.6005 | 4.6653 | 4.7301 | 4.7919 | 4.8597 | 4.9215 | 4.9892 | 5.0540 | 5.1188 |
| 80 | 5.1830 | 5.2484 | 5.3132 | 5.3780 | 5.4128 | 5.5076 | 5.5724 | 5.6371 | 5.7019 | 5.7667 |
| 90 | 5.8316 | 5.8964 | 5.9612 | 6.0260 | 6.0908 | 6.1556 | 6.2204 | 6.2851 | 6.3499 | 6.4147 |
| 100 | 6.4795 | 6.5443 | 6.6091 | 6.6739 | 6.7387 | 6.8035 | 6.8 | 6.9 | 6.9978 | - |

Conversion of French Grammes into English Grains Troy.

| Fr | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Grs. | s. | Grs. |
| 0 | 0.0000 | 15.433 | 30.866 | 46.299 | 61.732 | 77.165 | 92.599 | 108.03 | 123.46 | 138.90 |
| 10 | 154.33 | 169.76 | 185.19 | 200.63 | 216.06 | 231.49 | 246.93 | 262.36 | 277.79 | 293.23 |
| 30 | 308.66 | 324.09 | 339.52 | 354.96 | 370.39 | 385.82 | 401.26 | 416.69 | 432.12 | 447.56 |
| 40 | 617.65 | 632.75 | 648.18 | 663.95 | 679.38 | 694.81 | 709.92 | 725.35 | 740.78 | 756.2 |
| 50 | 771.65 | 787.08 | 802.52 | 817.95 | 833.38 | 848.8: | 864.25 | 879.68 | 895.11 | 910.55 |
| 60 | 925.99 | 941.42 | 956.85 | 972.29 | 987.72 | 1003.1 | 1018.6 | 1034.0 | 1049.4 | 1064.9 |
| 70 | 1080.3 | 109.7 | 1111.2 | 1126.6 | 1142.0 | 1157.5 | 1172.9 | 1188.3 | 1203.7 | 1219.2 |
| 80 | 1234.6 | 1250.0 | 1265.5 | 1280.1 | 1296.3 | 1311.8 | 1327.2 | 1342.6 | 1358.1 | 1373.5 |
| 90 | 1389.0 | 1404.4 | 1419.8 | 1435.3 | 1450.7 | 1466.1 | 1481.6 | 1497.0 | 1512.4 | 1527.9 |
| 100 | 1543.3 | 1558.7 | 1574.1 | 1589.6 | 1605.0 | 1620.4 | 1635.9 | 1651.3 | 1666.7 | 1682.2 |

Horse=power into Cheval=vapeur.

| H.-power. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C.-v. | C.-v. | C.-r | C.- | C. | C. | C. | C. | C.-v. |  |
| 0 | 0.0000 | 1.0136 | 2.0272 | 3.0408 | 4.0544 | 5.0680 | 6.0816 | 7.0952 | 8.1088 | 9.1 |
| 10 | 10.136 | 11.150 | 12.163 | 13.176 | 14.190 | 15.204 | 16.218 | 17.231 | 18.245 | 19.2 |
| $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | 20.272 30.408 | 21.308 | 22.299 32.435 | 23.313 33.449 | 24.326 34.462 | 25.240 35.476 | 26.354 36.49 | 27.367 37.503 | 28.381 38.517 | 29.394 39.530 |
| 40 | 40.544 | 41.557 | 42.571 | 43.585 | 44.598 | 45.612 | 46.626 | 47.639 | 48.653 |  |
| 50 | 50.680 | 51.693 | 52.707 | 53.721 | 54.734 | 55.748 | 56.762 | 57.775 | 58.789 | 59.80 |
| 60 | 60.816 | 61.829 | 62.843 | 63.857 | 64.870 | 65.884 | 66.898 | 67.911 | 68.925 | 69.93 |
| 70 | 70.952 | 71.965 | 72.979 | 73.993 | 75.006 | 76.020 | 77.034 | 78.047 | 79.061 | 80.074 |
| 80 | 81.088 | 82.102 | 83.115 | 84.129 | 85.142 | 86.156 | 87.170 | 88.183 | 89.197 | 90.21 |
| 90 100 | 91.224 | 92.338 | 93.251 | 94.265 | 95.278 | 96.292 | 97.306 | 98.319 | 99.333 | 100.3 |
| 100 | 101.36 | 102.37 | 103.30 | 104.40 | 105.41 | 106.43 | 107.44 | 108.45 | 109.47 | 110.4 |

Cheval=vapeur into Horse=power.

| Chev.-vap. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | H.-p. |
| $\mathbf{0}$ | 0.0000 | 0.9863 | 1.9726 | 2.9589 | 3.9452 | 4.9315 | 5.9178 | 6.9041 | 7.8904 | 8.8767 |
| 10 | 9.8630 | 10.849 | 11.835 | 12.822 | 13.808 | 14.794 | 15.781 | 16.767 | 17.753 | 18.739 |
| 20 | 19.726 | 20.712 | 21.69 | 22.685 | 23.67 | 24.657 | 25.644 | 26.630 | 27.616 | 28.602 |
| 30 | 29.589 | 30.575 | 31.561 | 32.548 | 33.534 | 34.520 | 35.507 | 36.493 | 37.479 | 38.465 |
| 40 | 39.452 | 40.438 | 41.424 | 42.411 | 43.397 | 44.383 | 45.370 | 46.356 | 47.342 | 48.328 |
| 50 | 49.35 | 50.301 | 51.28 | 52.274 | 53.260 | 54.246 | 55.233 | 56.219 | 57.205 | 58.191 |
| 60 | 59.178 | 60.164 | 61.150 | 62.137 | 63.123 | 64.109 | 65.096 | 66.082 | 67.068 | 68.054 |
| 70 | 69.041 | 70.027 | 71.013 | 71.990 | 72.986 | 73.972 | 74.959 | 75.945 | 76.941 | 77.917 |
| 80 | 78.904 | 79.890 | 80.876 | 81.863 | 82.849 | 83.835 | 84.822 | 85.808 | 86.794 | 87.780 |
| 90 | 88.767 | 89.753 | 90.739 | 91.726 | 92.712 | 93.698 | 94.785 | 95.671 | 96.657 | 97.643 |
| 100 | 98.630 | 99.616 | 100.60 | 101.59 | 102.57 | $\mathbf{1 0 3 . 5 6}$ | 104.55 | 105.53 | 106.52 | 107.50 |

Foot=pounds into Kilogrammetres.

| Foot-lbs. | 0 | 1 | 2 | 3 |  | 5 |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kgm. | K |  |  | Kgm. |  |  |  |  |  |
| 0 | 0.0000 | 0.1382 | 0.2764 | 0.4146 | 0.5528 | 0.6910 | 0.8292 | 0.9674 | 1.1056 | 1.2 |
| 10 | 1.3820 | 1.5202 | 1.6584 | 1.7966 | 1.9348 | 2.0731 | 2.2112 | 2.3494 | 2.4876 | 2.6 |
| 20 30 | 2.7640 4.1460 | 2.9022 | 3.0404 4.4224 | 3.1786 4.5606 | 3.3168 | 3.4552 | 3.5933 | 3.7315 | 3.8696 | 4.00 |
| 30 40 | 4.1460 5.5280 | 4.2842 | 4.4224 | 4.5606 | 4.6988 | 4.8370 | 4.9751 | 5.1134 | 5.2517 | 5.38 |
| 50 | 6.9100 | 7.0482 | 7.1864 | 7.3246 | 7.4628 | 7.6010 | 7.7393 | 7.8775 | 8.0155 | 8.15 |
| 60 | 8.2920 | 8.4303 | 8.5684 | 8.7066 | 8.8448 | 8.9830 | 9.1212 | 9.2594 | 9.3976 | 9.535 |
| 70 | 9.6740 | 9.8122 | 9.9504 | 10.088 | 10.227 | 10.365 | 10.503 | 10.641 | 10.779 | 10.91 |
| 80 | 11.056 | 11.194 | 11.322 | 11.570 | 11.609 | 11.747 | 11.885 | 12.023 | 12.161 | 12. |
| 100 | 13.820 | 13.958 | 14.096 | 14.235 | 14.373 | 14.511 | 14.649 | 14.787 | 14.925 | 14. |

Kilogrammetres into Foot=pounds.

| Kgm. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ft.-lb. | Ft.-lb. | Ft.-lb. | Ft.-lb. | Ft.-1b. | Ft.-lb. | Ft.-lb. | Ft.-lb. |  |  |
| 0 | 0.0000 | 7.2334 | 14.467 | 21.700 | 28.934 | 36.166 | 43.400 | 50.734 |  | 65. |
| 10 | 72.334 | 79.567 | 87.101 | 94.034 | 101.27 | 108.50 | 115.74 | $\left\|\begin{array}{c} 0.107 \\ 123.07 \end{array}\right\|$ | $130.20$ | 137. |
| 20 | 144.67 | 151.90 | 158.43 | 166.37 | 173.60 | 180.84 | 188.08 | 195.40 | 202.54 | 209.77 |
| 30 | 217.00 289.34 | 224.23 | 231.77 304 | 238.70 311.04 | 245.93 | 253.17 | ${ }^{260.41}$ | 267.73 340 | 274.87 347 | 282.10 |
| 50 | 361.66 | 368.89 | ${ }_{376.43}$ | 383.36 | 318.59 | 325.50 397.82 | 405.07 | 340.07 | 347.21 | 426.7 |
| 60 | 434.00 | 441.23 | 448.77 | 455.70 | 462.93 | 470.17 | 477.41 | 484.73 | 491.87 | 499.10 |
| 70 | 507.34 | 514.57 | 522.11 | 529.04 | 536.27 | 543.50 | 550.75 | 558.07 | 565.21 | 572.44 |
| 80 | 578.68 | 585.91 | 593.45 | 599.38 | 607.61 | 614.85 | 622.09 | 629.41 | 636.55 | 643.78 |
| 90 100 | 651.00 | ${ }^{658.23}$ | 665.77 | 672.70 | 679.93 | 687.17 | 694.41 | 701.73 | 708.87 | 716.10 |
| 100 |  | 730.57 | 738.11 | 745.04 | 752.27 | 759.51 | 766.75 | 774.07 | 781.21 | 788.4 |

Conversion of Foot-tons into Tonnes-metres.

| oot-tons. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T. | T. | T. | T. | T. | T. | T.-m. | T.-m. | T.-m. |  |
| 0 | 0.0000 | 0.3097 | 0.6194 | 0.9291 | 1.2382 | 1.5484 | 1.8581 | 2.1678 | 2.4775 | 2.7872 |
| 10 | 3.0969 | 3.3166 | 3.7163 | 4.0260 | 4.3356 | 4.6453 | 4.9550 | 5.2667 | 5.5744 | 5.8841 |
| 20 | 6.1938 | 6.4135 | 6.8132 | 7.1229 | 7.4325 | 7.7422 | 8.0519 | 8.3636 | 8.6713 | 8.9810 |
| 30 | 9.2906 | 9.6003 | 9.9100 | 10.219 | 10.529 | 10.839 | 11.149 | 11.460 | 11.76 | 12.078 |
| 40 | 12.387 | 12.697 | 13.006 | 13.316 | 13.626 | 13.935 | 14.245 | 14.557 | 14.864 | 15.174 |
| 50 | 15.484 | 15.794 | 16.103 | 16.413 | 16.723 | 17.032 | 17.342 | 17.654 | 17.961 | 18.271 |
| 60 | 18.581 | 18.891 | 19.200 | 19.510 | 19.820 | 20.129 | 20.439 | 20.751 | 21.058 | 21.368 |
| 70 | 21.678 | 21.988 | 22.297 | 22607 | 22.917 | 23.226 | 23.536 | 23.848 | 24.155 | 24.465 |
| 80 | ${ }_{2}^{24.775}$ | 25.085 | 25.394 | 25.704 28.801 | 26.014 | 26.323 29.420 | 26.633 29.730 | 26.945 30.042 | 27.252 30.349 | 27.562 30.659 |
| 90 100 | 27.872 30.969 | 28.182 31.279 | 28.491 31.588 | 28.801 31.898 | 29.111 32.208 | 29.420 | 29.730 32.827 | 30.042 33.139 | 30.349 33.446 | 30.659 33.756 |

Cónversion of Tonnes-metres into Foot=tons.

| T.-metres. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | F.-tn. |
| 0 | 0.0000 | 3.2290 | 6.4581 | 9.6871 | 12.916 | 16.145 | 19.374 | 22.60 | 25.832 | 29.061 |
| 10 | 32.290 | 35.519 | 38.758 | 41.977 | 45.206 | 48.435 | 51.664 | 54.893 | 58.122 | 61.351 |
| 20 | 64.581 | 67.810 | 71.049 | 74.268 | 77.497 | 80.726 | 83.955 | 87.184 | 90.413 | 93.642 |
| 30 | 96.871 | 100.10 | 103.34 | 106.56 | 109.79 | 113.0 | 116.24 | 119.47 | 122.70 | 125.93 |
| 40 | 129.16 | 133.39 | 135.63 | 138.85 | 142.07 | 145.30 | 148.53 | 151.76 | 154.99 | 158.22 |
| 50 | 161.45 | 164.68 | 167.92 | 171.14 | 174.36 | 177.59 | 180.82 | 184.05 | 187.28 | 190.51 |
| 60 | 193.74 | 196.97 | 200.21 | 203.43 | 206.65 | 209.88 | 213.11 | 216.34 | 219.57 | 222.80 |
| 70 | 226.03 | 229.26 | 232.50 | 235.72 | 238.94 | 242.17 | 245.40 | 248.63 | 251.86 | 255.09 |
| 80 | 258.32 | 261.55 | 264.79 | 268.01 | 271.23 | 244.46 | 277.69 | 280.92 | 284.15 | 287.38 |
| 90 | 290.61 | 293.84 | 297.08 | 300.30 | 303.52 | 306.75 | 309.98 | 313.21 | 316.44 | 319.67 |
| 100 | 322.90 | 326.13 | 329.37 | 332.59 | 335.81 | 339.04 | 342.27 | 345.50 | 348.73 | 351.96 |

## British Thermal Units into French Calories.

| B. T. U | 0 | 1 | 2 | 3 | 4 |  | 6 |  |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cal. |  |
| 0 | 0.0000 | 0.2520 | 0.5040 | 0.7560 | 1.0080 | 1.2600 | 1.5120 | 1.7640 | 2.0160 | 2.2680 |
| 10 | 2.5200 | 2.7720 | 3.0240 | 3.2760 | 3.5280 | 3.7800 | 4.0320 | 4.2840 | 4.5360 | 4.7880 |
| 20 | 5.0399 | 5.2919 | 5.5439 | 5.7959 | 6.0478 | 6.2699 | 6.5419 | 6.8039 | 7.0559 | 7.3079 |
| 30 | 7.5600 | 7.8120 | 8.0640 | 8.3160 | 8.5680 | 8.8200 | 9.0720 | 9.3340 | 9.5760 | 9.8280 |
| 40 | 10.080 | 10.332 | 10.584 | 10.836 | 11.088 | 11.340 | 11.512 | 11.844 | 12.096 | 12.348 |
| 50 | 12.600 | 12.852 | 13.104 | 13.356 | 13.608 | 13.860 | 14.112 | 14.364 | 14.616 | 14.868 |
| 60 | 15.120 | 15.372 | 15.624 | 15.876 | 16.128 | 16.380 | 16.632 | 16.884 | 17.136 | 17.388 |
| 70 | 17.640 | 17.892 | 18.144 | 18.396 | 18.648 | 18.900 | 19.152 | 19.404 | 19.656 | 19.908 |
| 80 | 20.160 | 20.412 | 20.664 | 20.916 | 21.168 | 21.420 | 21.672 | 21.924 | 22.176 | 22.428 |
| 90 100 | 22.680 25.200 | 22.932 | 23.184 25.704 | 23.436 25.956 | 23.688 26.208 | 23.940 26.460 | 24.192 26.712 | 24.444 26.964 | 24.696 27.216 | 24.948 27.468 |

French Calories into British Thermal Units.

| Calories. | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T. U. |
| 0 | 0.000 | 3.9683 | 7.9366 | 11.905 | 15.873 | 19.842 | 23.810 | 27.778 | 31.746 | 35.715 |
| 10 | 39.683 | 43.651 | 47.620 | 51.598 | 55.520 | 59.525 | 63.493 | 67.461 | 71.429 | 75.398 |
| 20 | 79.366 | 83.334 | 87.303 | 91.271 | 95.203 | 99.208 | 103.17 | 107.14 | 111.11 | 15.08 |
| 30 | 119.05 | 123.02 | 126.98 | 130.95 | 134.89 | 138.89 | 142.86 | 146.83 | 150.80 | 154.777 |
| 40 | 158.73 | 162.70 | 166.66 | 170.62 | 174.57 | 178.57 | 182.54 | 186.51 | 190.48 | 194.45 |
| 50 | 198.42 | 202.39 | 206.35 | 210.39 | 214.26 | 218.26 | 222.23 | 226.20 | 230.16 | 234.14 |
| 60 | 238.10 | 242.07 | 246.03 | 250.00 | 253.94 | 258.94 | 261.91 | 265.88 | 269.85 | 273.82 |
| 70 | 277.78 | 281.75 | 285.72 | 289.68 | 293.62 | 297.62 | 301.59 | 305.56 | 309.53 | 313.50 |
| 80 | 317.46 | 321.43 | 325.40 | 329.36 | 333.29 | 337.0 | 341.27 | 345.24 | 349.20 | 353.18 |
| 90 | 357.15 | 361.12 | 365.09 | 369.05 | 372.98 | 376.99 | 380.96 | 384.93 | 388.90 | 392.87 |
| 100 | 396.83 | 400.80 | 404.77 | 408.73 | 412.67 | 416.67 | 420.64 | 424.61 | 428.58 | 432.55 |

## ALGEBRA.

For the detailed operations of Algebra the reader is referred to the numerous good text-books upon the subject, and only a few of the more important and generally practical matters will here be given in convenient form for reference.

Remembering that multiplication is represented in algebra by placing the two quantities next each other, without any intermediate sign, we have $a a=a^{2}, a a a=a^{3}$, etc.; also $a$ multiplied by $b$ is written $a b, a$ divided by $b$ is written $\frac{a}{b}$, etc.

From an examination of these facts we are able to place the rules regarding exponents in a form in which they can be conveniently remembered.

$$
\begin{aligned}
a \alpha a & =a^{3} ; \text { dividing this by } a \text { we get } \\
a a & =a^{2} ; \text { dividing again by } a \text { we get } \\
a & =a .
\end{aligned}
$$

In each case we see that dividing any power of $a$ by $a$ is simply subtracting unity from the exponent. Proceeding, we see that

$$
\begin{aligned}
& \frac{a^{0}}{a}=a^{1-1}=a^{0}=1 \\
& \frac{a^{0}}{a}=a^{0-1}=a^{-1}=\frac{1}{a} \\
& \frac{a^{-1}}{a}=a^{-1-1}=a^{-2}=\frac{1}{a^{2}}, \text { etc. }
\end{aligned}
$$

This shows why a negative exponent to any quantity means the reciprocal of the same power with a positive exponent.

## Binomial Theorem.

The binomial theorem enables any power of the sum or difference of two quantities to be determined. For any value of $n$ we have

$$
(a \pm b)^{n}=a^{n} \pm n a^{n-1} b+\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2} \pm \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^{3}+\ldots
$$

An examination of this will show that the right-hand side consists of the quantities $a$ and $b$ arranged according to the ascending and descending powers. Thus, when $n=2$, we have $a^{2}+a b+b^{2} ;$ for $n^{3}$ we have $a^{3}+$ $a^{2} b+a b^{2}+b^{3}$, and so on.

The coefficients must be computed for each power, or they may be tabulated as below.

Table of Binomial Coefficients.

| Exponents. | Terms. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1 | 2 | 1 |  |  |  |  |  |  |  |  |  |  |
| 3 | 1 | 3 | 3 |  |  |  |  |  |  |  |  |  |  |
| 4 | 1 | 4 | 6 | 4 | 1 |  |  |  |  |  |  |  |  |
| 5 | 1 | 5 | 10 | 10 | 5 | 1 |  |  |  |  |  |  |  |
| 6 | 1 | ${ }_{6}$ | 15 | 20 | 15 | 6 | 1 |  |  |  |  |  |  |
| 7 | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 |  |  |  |  |  |
| 8 | 1 | 8 | ${ }_{36} 2$ | 56 | 70 | 56 | 28 | 8 | 1 |  |  |  |  |
| 10 | 1 | 10 | 4 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | 1 |  |  |
| 11 | 1 | 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | 1 |  |
| 12 | 1 | 12 | 66 | 220 | 495 | 792 | 924 | 792 | 495 | 220 | 66 | 12 | 1 |

Thus,

$$
\begin{aligned}
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} ; \\
& (a+b)^{7}=a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{\prime \prime} b^{4}+21 a^{2} b^{5}+7 a b^{6}+b^{7}
\end{aligned}
$$

## ARITHMETICAL PROGRESSION.

Arithmetical Progression is a series of numbers, as 2, 4, 6, 8, 10, 12, etc., or $18,15,12,9,6,3$, in which every successive term is increased or diminished by a constant number.

## Letters denote

$$
\begin{aligned}
& a=\text { the first term of the series. } \\
& b=\text { any other term whose number from } a \text { is } n . \\
& u=\text { number of terms within } a \text { and } b . \\
& d=\text { the difference between any two adjacent terms. } \\
& S=\text { the sum of all the terms. }
\end{aligned}
$$

In the series $2,5,8,11, a=2, b=11, n=4, d=3$, and $S=26$.
When the series is decreasing, take the first term $=b$ and the last term $=a$.

The accompanying table contains all the formulas or questions in Arithmetical Progressions, and the nature of the question will tell which formula is to be used.

## Formulas for Arithmetical Progressions.

1. $a=b-d(n-1)$.
2. $a=\frac{2 S}{n}-b$.
3. $a=\frac{S}{n}-\frac{d}{2}(n-1)$.
4. $b=a+d(n-1)$.
5. $b=\frac{2 S}{n}-a$.
6. $\quad b=\frac{S}{n}+\frac{d}{2}(n-1)$.
7. $n=\frac{b-a}{d}+1$.
8. $n=\frac{2 S}{a+b}$.
9. $d=\frac{b-a}{n-1}$.
10. $d=\frac{(b+a)(b-a)}{2 S-a-b}$.
11. $d=\frac{2(S-a n)}{n(n-1)}$.
12. $d=\frac{2(b n-S)}{n(n-1)}$.
13. $S=\frac{n(a+b)}{2}$.
14. $S=\frac{(a+b)(b+d-a)}{2 d}$.
15. $S=n\left[a+\frac{d}{2}(n-1)\right]$.
16. $S=n\left[b-\frac{d}{2}(n-1)\right]$.
17. $a=\frac{d}{2} \quad \pm \sqrt{\left(b+\frac{d}{2}\right)^{2}-2 d S}$.
18. $b=-\frac{b}{2} \pm \sqrt{\left(a-\frac{d}{2}\right)^{2}+2 d S}$.
19. $n=\frac{1}{2}-\frac{a}{d} \pm \sqrt{\left(\frac{1}{2}-\frac{a}{d}\right)^{2}+\frac{2 S}{d}}$.
20. $n=\frac{1}{2}+\frac{b}{d} \pm \sqrt{\left(\frac{1}{2}+\frac{b}{d}\right)^{2}-\frac{2 S}{d}}$.

## GEOMETRICAL PROGRESSION.

Geometrical Progression is a series of numbers, as $2: 4: 8: 16: 32$, etc., or $729: 243: 81: 27: 9:$, etc., in which every successive term is multiplied or divided by a constant factor.

## Notation.

$a=$ the first term of the series;
$b=$ any other term whose number from $a$ is $n$;
$n=$ number of terms within $a$ and $b$, inclusive;
$r=$ ratio, or the factor by which the terms are multiplied or divided;
$S=$ Sum of the terms.
In the series $1: 3: 9: 27:, a=1, b=27, n=4, r=3, S=40$, inclusive.
The accompanying table contains all the formulas or questions in Geometrical Progressions. The nature of the question will tell which formula is to be used.

## Formulas for Geometrical Progressions.

1. $a=\frac{b}{r^{n-1}}$.
2. $a=S-r(S-b)$.
3. $a=S_{r^{n}-1}^{r-1}$.
4. $b=a r^{n-1}$.
5. $\quad b=S-\frac{S-a}{r}$.
6. $\quad b=S\left(\frac{r-1}{r^{n}-1}\right)^{n-1}$.
7. $r=\sqrt[n-1]{\frac{b}{a}}$.
8. $r=\frac{S-a}{S-b}$.
9. $a r^{n}+S-r S-a=0$.
10. $S=\frac{b r-a}{r-1}$.
11. $S=\frac{a\left(r^{n}-1\right)}{r-1}$.
12. $S=\frac{b\left(r^{n}-1\right)}{(r-1) r^{n-1}}$.
13. $n=1+\frac{\log . b-\log \cdot a}{\log \cdot r}$.
14. $n=1+\frac{\log \cdot b-\log \cdot a}{\log \cdot(S-a)-\log \cdot(S-b)}$.
15. $n=\frac{\log .[a+S(r-1)]-\log . a}{\log . r}$.
16. $n=1+\frac{\log . b-\log .[b r-S(r-1)]}{\log \cdot r}$.
17. $S=\frac{b^{n-1} \sqrt{b}-a \sqrt[n-1]{a}}{\sqrt[n-1]{b}-\sqrt[n-1]{a}}$.

## SPECIAL SERIES.

Among the great variety of series occurring in practical mathematics the following will be found convenient for reference :

1. $1+2+3+4+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots n=\frac{n(n+1)}{2}$.
2. $2+4+6+8+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .2 n=n(n+1)$.
3. $1+3+5+7+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(2 n-1)=n^{2}$.
4. $\mathbf{1}^{2}+2^{2}+3^{2}+4^{2}$
$n^{2}=\frac{n(n+1)(2 n+1)}{1 \cdot 2 \cdot 3}$.
5. $\mathbf{1}^{3}+2^{3}+3^{3}+4^{3}$ $n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

## EQUATIONS.

Equations of the first degree need not be discussed here. Their solution may be found in any elementary algebra.

Equations of the second degree may be reduced to one of three forms, and solved respectively as follows:

1. $x^{2}+p x+q=0 ; x=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}}-q$.

$$
a x^{2}+b x+c=0 ; x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x^{2 n}+p x^{n}+q=0 ; x=\sqrt[n]{-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}}
$$

3. When $x \pm y=s$ and $x y=p$, we have

$$
x=\frac{s+\sqrt{s^{2} \mp 4 p}}{2} ; y= \pm \frac{s-\sqrt{s^{2} \mp 4 p}}{2} .
$$

## LOGARITHMS.

There are four fundamental rules for operations with powers:

$$
a^{m} \cdot a^{n}=a^{m+n} .
$$

That is, the product of any two powers of a number is equal to the number raised to a power whose exponent is the sum of the exponents of the two factors.

$$
\frac{a^{m}}{a^{n}}=a^{m-n} .
$$

Or, the quotient of two powers is equal to the number raised to a power whose exponent is the difference of the exponents of divisor and dividend.

$$
\left(a^{n}\right)^{m}=a^{m n} .
$$

Or, any power may be raised to a higher power by multiplying the two exponents.

$$
\sqrt[n]{ } a^{m}=a^{\frac{m}{n}}
$$

Or, any root of any power may be extracted by dividing the exponent by the index of the root.

If we take any number, such as 2 , and use it as the base of a geometrfcal series, we will see that the exponents form an arithmetical series. Thus, the exponent of $1=0$, of $2=1$, of $4=2$, of $8=3$, etc.; or, proceeding, we may arrange the following little table:

| Powers. | Exponents. | Powers. | Exponents. | Powers. | Exponents. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1024 | 10 | 1048576 | 20 |
| 2 | 1 | 2048 | 11 | 2097152 | 21 |
| 4 | 2 | 4096 | 12 | 4194304 | 22 |
| 8 | 3 | 8192 | 13 | 8388608 | 23 |
| 16 | 4 | 16384 | 14 | 16777216 | 24 |
| 32 | 5 | 32768 | 15 |  |  |
| 64 | 6 | 65536 | 16 |  |  |
| 128 | 7 | 131072 | 17 |  |  |
| 256 | 9 | 262144 | 18 |  |  |
| 512 | 9 | 524288 | 19 |  |  |

Suppose now we wish to multiply 128 by 512 , we see that $128=2^{7}$ and $512=2^{9}$; hence, $128 \times 512=2^{7+9}=2^{16}$, and in the table, opposite the
exponent 16, we find the power 65536, which is the product of the two factors, obtained by the simple addition of the exponents.

Again,

$$
\frac{512}{128}=\frac{2^{9}}{2^{7}}=2^{9-7}=2^{2}=4
$$

To raise a number to a power, such as 16 to the fifth power, we have $16=2^{4}$ and $\left(2^{4}\right)^{5}=2^{20}=1048576$.

Again, the seventh root of 2097152 is formed as follows:

$$
2097152=2^{21} \text { and } \sqrt[7]{2^{21}}=2^{\frac{21}{7}}=2^{3}=8
$$

In the small table of the powers of 2 given above there are many gaps, because only those powers which have whole exponents are given. For all the numbers between 16 and 32, for example, the exponents will be decimals, and will be greater than 4 and less than 5 , etc. In practice, the base used is not 2, but 10, and all the intermediate exponents have been computed to many decimals, these forming a table of logarithms.

## Table of Logarithms of Numbers.

Pages 84 to 106 give the mantissas, or decimal portions of the logarithms, of all whole numbers from 1 to 10009 . The characteristics, or whole numbers, which, with these decimals, form the complete logarithms, are found as follows:

The logarithm of $1=0$, of $10=1$, of $100=2$, of $1000=3$, etc.; hence, the logarithm of any number between 100 and 1000 must lie between 2 and 3 , and be greater than 2 and less than 3 , and so for any number. Therefore we have the rule that the whole portion of a logarithm of any number is one less than there are figures in the number. The decimal portion for any number below 10009 is taken directly from the table. Thus,

$$
\log .365=2.56229
$$

the decimal portion, 56229 , being found directly opposite 365 in the table, and the whole portion being 2 , or 1 less than the number of places in 365 .

In like manner we have

$$
\begin{aligned}
& \text { log. } 36.5=1.56229, \\
& \text { log. } 3.65=0.56229 .
\end{aligned}
$$

The mantissa, or decimal portion, is always positive, but the characteristic is negative when the number is less than unity. Thus,

$$
\begin{aligned}
& \log \cdot 0.365=1.56229, \\
& \log \cdot 0.0365=\overline{2} .56229, \\
& \log \cdot 0.00365=\overline{3} .56229,
\end{aligned}
$$

the minus being placed over the characteristic to show that it applies to that portion only, and not to the mantissa.

If the given number has more than three places, the mantissa is found in the body of the table. Thus, the logarithm of $1873=3.27254$, the figures 0.27 being found opposite 187, and the 254 on the same horizontal line under 3.

If the last three figures of the mantissa are preceded by an asterisk, the first two figures are to be taken from the next line below, in the first column. Thus,

$$
\log .3897=3.59073
$$

in which, opposite 389 , we find 58 , and then, passing on under 7 , we find *073, the asterisk indicating that we are to go one line below, taking out 59 , not 58 , for the first two figures of the mantissa, giving us 0.59073 , as above.

The table, as will be seen, enables the logarithm of any number of four places to be taken out at once. If the number of which the logarithm is required has more than four places, the logarithm can be found from the table, as follows:

In the column at the extreme right of each page, under the heading P. P. (Proportional Parts), will be found in the black figures the differences between any logarithm and the next succeeding logarithm for the adjoin-
ing portions of the table. The smaller figures in the same column form little multiplication tables, in which these differences are multiplied by $0.1,0.2,0.3$, etc.

The use of these proportional parts and their decimal parts is best shown by actual example. Suppose it is desired to find the logarithm of 18702. Opposite 187 and under 0 in the table we find the mantissa, 0.27184 . The proportional part, or difference at this point between one logarithm and the next, is 23 , or, in other words, there is a difference of 23 between the last two figures of the logarithm of 1870 and 1871 . For 0.1 difference in the number, the difference in the logarithms would be 2.3 ; for 0.2 , it would be 4.6 , etc., as shown in the small table under 23 in the column P. P. For 2 points additional, therefore, we simply add 4.6 to the logarithm of 1870, and we have the logarithm of 18702. Thus,

$$
\begin{aligned}
& \log .1870=0.27184 \\
& \text { p. p. for } 2=\frac{4.6}{\log .18702=}=\frac{4.271886}{4.27189} \text {, or }
\end{aligned}
$$

Again, let it be required to find the logarithm of 35.797 .

$$
\begin{aligned}
& \log .35 .79=1.55376 \quad \text { p. p. }=12 \\
& \text { p. p. for } 7=\frac{8.4}{\log . ~} 35.797=\frac{1.553844}{}
\end{aligned}
$$

If the given number has six or more figures the method is the same, except that the proportional part is reduced one-tenth for each additional figure. Thus, the logarithm of 3725.96 is found as follows :

$$
\begin{aligned}
& \log .3725=3.57113 \quad \text { p. p. }=11 \\
& \text { p. p. for } 9=0.9 \\
& \text { p. p. for } 6=0.66 \\
& \log .3725 .96=\frac{0.5712356,}{} \text { or } 3.57124
\end{aligned}
$$

The operation of finding the number corresponding to a given logarithm is the reverse of the preceding. Thus, the number corresponding to the logarithm 2.73921 is found as follows:

In the table the next smaller logarithm is

$$
\text { 73918, and its number } \quad=548.00
$$

The given log. $=73924$
and the difference $=\frac{6}{6}$
The nearest difference in the table $=5.6=$ corresponding to
Subtracting $\overline{0.4}$ corresponding to
Hence, the number is
$\overline{5485} \overline{5}$
Since the characteristic $=2$, there must be one more place before the decimal point ; hence,

$$
\text { log. } 2.73924=\text { num. } \quad 518.575
$$

Num. 100 to 139. Log. 000 to 145.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 00 | 000 | 043 | 087 | 130 | 173 | 217 | 260 | 303 | 346 | 389 |  | 44 | 43 |
| 101 |  | 432 | 475 | 518 | 561 | 604 | 647 | 689 | 732 | 775 | 817 |  |  |  |
| 102 |  | 860 | 903 | 945 | 988 | *030 | *072 | *115 | *157 | *199 | *242 | 2 | 8.8 | 8.6 |
| 103 | 01 | 284 | 326 | 368 | 410 | 452 | 494 | 536 | 578 | 620 | 662 | 3 | 13.2 | 2.9 |
| 104 |  | 703 | 745 | 787 | 828 | 870 | 912 | 953 | 995 | *036 | *078 | 4 | 17.6 22.0 | 17.2 21.5 |
| 105 | 02 | 119 | 160 | 202 | 243 | 284 | 325 | 366 | 407 | 449 | 490 | 6 | 26.4 | 5.8 |
| 106 |  | 531 | 572 | 612 | 653 | 694 | 735 | 776 | 816 | 857 | 898 | 7 | 35.2 |  |
| 107 |  | 938 | 979 | *019 | *060 | *100 | *141 | *181 | *222 | *262 | *302 | 9 | 39.6 |  |
| 108 | 03 | 342 | 383 | 423 | 463 | 503 | 543 | 583 | 623 | 663 | 703 |  |  |  |
| 109 |  | 743 | 782 | 822 | 862 | 902 | 941 | 981 | *021 | *060 | *100 |  |  |  |
| 110 | 04 | 139 | 179 | 218 | 258 | 297 | 336 | 376 | 415 | 454 | 493 | 1 | 4.2 | 8.2 |
| 111 |  | 532 | 571 | 610 | 650 | 689 | 727 | 766 | 805 | 844 | 883 | 3 | 12.6 | 12.3 |
| 112 |  | 922 | 961 | 999 | *038 | *077 | *115 | *154 | *192 | *231 | *269 | 4 | 16.8 | 6.4 |
| 113 | 05 | 308 | 346 | 385 | 423 | 461 | 500 | 538 | 576 | 614 | 652 | 5 | 21.0 |  |
| 114 |  | 690 | 729 | 767 | 805 | 843 | 881 | 918 | 956 | 994 | *032 | 7 | 29.4 <br> 33.6 |  |
| 115 | 06 | 070 | 108 | 145 | 183 | 221 | 258 | 296 | 333 | 371 | 408 | - | 37.8 |  |
| 116 |  | 446 | 483 | 521 | 558 | 595 | 633 | 670 | 707 | 744 | 781 |  |  |  |
| 117 |  | 819 | 856 | 893 | 930 | 967 | *004 | *041 | *078 | *115 | *151 |  |  |  |
| 118 | 07 | 188 | 225 | 262 | 298 | 335 | 372 | 408 | 445 | 482 | 518 |  | 4.0 | 3. |
| 119 |  | 555 | 591 | 628 | 664 | 700 | 737 | 773 | 809 | 846 | 882 | 2 | 8.0 | 11.7 |
| 120 |  | 918 | 954 | 990 | *027 | *063 | *099 | *13 | *171 | *207 | *243 | 4 | 16.0 |  |
| 121 | 08 | 279 | 314 | 350 | 386 | 422 | 458 | 493 | 529 | 565 | 600 | 5 | 24.0 |  |
| 122 |  | 636 | 672 | 707 | 743 | 778 | 814 | 849 | 884 | 920 | 955 |  | 28.0 | 27 |
| 123 |  | 991 | *026 | *061 | *096 | *132 | *167 | *202 | *237 | *272 | *307 | 9 | 32.0 |  |
| 124 | 09 | 342 | 377 | 412 | 447 | 482 | 517 | 552 | 587 | 62 | 656 | 9 |  |  |
| 125 |  | 691 | 726 | 760 | 795 | 830 | 864 | 899 | 934 | 968 | *003 |  | 38 |  |
| 126 | 10 | 037 | 072 | 106 | 140 | 175 | 209 | 243 | 278 | 312 | 346 |  | 3.8 | 3. |
| 127 |  | 380 | 415 | 449 | 483 | 51 | 551 | 585 | 619 | 653 | 687 | 2 |  | 7. |
| 128 |  | 721 | 755 | 789 | 823 | 857 | 890 | 924 | 958 | 992 | *025 | 3 | 11.4 | 11.1 |
| 129 | 11 | 059 | 093 | 126 | 160 | 193 | 227 | 261 | 294 | 327 | 36 | 5 | 11.8 19.0 22.8 | 18.5 22.2 |
| 130 |  | 394 | 428 | 461 | 494 | 528 | 561 | 594 | 628 | 661 | 694 | 7 | 26.6 | 25.9 |
| 131 |  | 727 | 760 | 793 | 826 | 860 | 893 | 926 | 959 | 992 | *024 | 8 | 30.4 | 29. |
| 132 | 12 | 057 | 090 | 123 | 166 | 189 | 222 | 254 | 287 | 320 | 352 | 9 |  |  |
| 133 |  | 385 | 418 | 450 | 483 | 516 | 548 | 581 | 613 | 646 | 678 |  | 36 | 35 |
| 134 |  | 710 | 743 | 775 | 808 | 840 | 872 | 905 | 937 | 969 | *001 |  |  |  |
| 135 | 13 | 033 | 066 | 098 | 130 | 162 | 194 | 226 | 258 | 290 | 322 | 2 | 7.2 | 7.0 |
| 136 |  | 354 | 386 | 418 | 450 | 481 | 513 | 545 | 577 | 609 | 640 | 3 | 10.8 | 10.5 |
| 137 |  | 672 | 704 | 735 | 767 | 799 | 830 | 862 | 893 | 925 | 956 | 4 | 18.0 | 17.5 |
| 138 |  | 988 | *019 | *051 | *082 | *114 | *145 | *176 | *208 | *239 | *270 | 7 | 21.6 | 1.0 |
| 139 | 14 | 301 | 333 | 364 | 395 | 426 | 457 | 489 | 520 | 551 | 582 | 8 | 28.2 | 24.5 |
| 140 |  | 613 | 644 | 675 | 706 | 737 | 768 | 799 | 829 | 860 | 891 | 9 | 32.4 | 31.5 |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. P. |  |

Num. 140 to 179. Log. 146 to 255.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 140 | 14 | 613 | 644 | 675 | 706 | 737 | 768 | 799 | 829 | 860 | 891 |  | 34 | 33 |
| 141 |  | 922 | 953 | 983 | *014 | *045 | *076 | *106 | *137 | *168 | *198 |  |  |  |
| 142 | 15 | 229 | 259 | 290 | 320 | 351 | 381 | 412 | 442 | 473 | 503 | 2 | 3.4 | 3.6 |
| 143 |  | 534 | 564 | 594 | 625 | 655 | 685 | 715 | 746 | 776 | 806 | . | 10.2 | 9.9 |
| 144 |  | 836 | 866 | 897 | 927 | 957 | 987 | *017 | *047 | *077 | *107 | 4 | 13.6 | 13.2 16.5 |
| 145 | 16 | 137 | 167 | 197 | 227 | 256 | 286 | 316 | 346 | 376 | 406 |  | 20.4 |  |
| 146 |  | 455 | 465 | 495 | 524 | 554 | 584 | 613 | 643 | 673 | 702 | 8 | 27.2 |  |
| 147 |  | 732 | 761 | 791 | 820 | 850 | 879 | 909 | 938 | 967 | 997 |  | 30.6 | 29.7 |
| 148 | 17 | 026 | 056 | 085 | 114 | 143 | 173 | 202 | 231 | 260 | 289 |  |  |  |
| 149 |  | 319 | 348 | 377 | 406 | 435 | 464 | 493 | 522 | 551 | 580 |  |  |  |
| 150 |  | 609 | 638 | 667 | 696 | 725 | 754 | 782 | 811 | 840 | 869 | 1 | 3.2 | 3.1 |
| 151 |  | 898 | 926 | 955 | 984 | *013 | *041 | *070 | *099 | *127 | *156 | 3 | 9.6 | 9.3 |
| 152 | 18 | 184 | 213 | 241 | 270 | 298 | 327 | 355 | 384 | 412 | 441 | 4 | 12.8 |  |
| 153 |  | 469 | 498 | 526 | 554 | 583 | 611 | 639 | 667 | 696 | 724 | 5 | 19.0 |  |
| 154 |  | 752 | 780 | 808 | 837 | 865 | 893 | 921 | 949 | 977 | *005 | 7 | 22.4 |  |
| 155 | 19 | 033 | 061 | 089 | 117 | 145 | 173 | 201 | 229 | 257 | 285 | 8 | 28.8 | 27.9 |
| 156 |  | 312 | 340 | 368 | 396 | 424 | 451 | 479 | 507 | 535 | 562 |  | 30 | 29 |
| 157 |  | 590 | 618 | 645 | 673 | 700 | 728 | 756 | 783 | 811 | 838 |  |  |  |
| 158 |  | 866 | 893 | 921 | 948 | 976 | *003 | *030 | *058 | *085 | *112 | 1 | 3.0 | 2.9 |
| 159 | 20 | 140 | 167 | 194 | 222 | 249 | 276 | 303 | 330 | 358 | 385 | 2 | 6.0 9.0 |  |
| 160 |  | 412 | 439 | 466 | 493 | 520 | 548 | 575 | 602 | 629 | 656 | 4 | 12.0 |  |
| 161 |  | 683 | 710 | 737 | 763 | 790 | 817 | 844 | 871 | 898 | 925 | 6 | 18.0 |  |
| 162 |  | 952 | 978 | *005 | *032 | *059 | *085 | *112 | *139 | *165 | *192 |  | 21.0 | 20.3 |
| 163 | 21 | 219 | 245 | 272 | 299 | 325 | 352 | 378 | 405 | 431 | 458 |  | 24.0 | 23.2 |
| 164 |  | 484 | 511 | 537 | 564 | 590 | 617 | 643 | 669 | 696 | 722 |  |  |  |
| 165 |  | 748 | 775 | 801 | 827 | 854 | 880 | 906 | 932 | 958 | 985 |  | 28 | 27 |
| 166 | 22 | 011 | 037 | 063 | 089 | 115 | 141 | 167 | 194 | 220 | 246 |  | 2.8 | 2.7 |
| 167 |  | 272 | 298 | 324 | 350 | 376 | 401 | 427 | 453 | 479 | 505 | ${ }_{2}^{2}$ | 5.6 |  |
| 168 |  | 531 | 557 | 583 | 608 | 634 | 660 | 686 | 712 | 737 | 763 | 4 | 11.2 |  |
| 169 |  | 789 | 814 | 840 | 866 | 891 | 917 | 943 | 968 | 994 | *019 | 5 | 14.0 |  |
| 170 | 23 | 045 | 070 | 096 | 121 | 147 | 172 | 198 | 223 | 249 | 274 |  | 16.8 | 16.2 18.9 |
| 171 |  | 300 | 325 | 350 | 376 | 401 | 426 | 452 | 477 | 502 | 528 |  | ${ }_{22}^{22.4}$ |  |
| 172 |  | 553 | 578 | 603 | 629 | 654 | 679 | 704 | 729 | 754 | 779 |  |  |  |
| 173 |  | 805 | 830 | 855 | 880 | 905 | 930 | 955 | 980 | *005 | *030 |  | 26 | 25 |
| 174 | 24 | 055 | 080 | 105 | 130 | 155 | 180 | 204 | 229 | 254 | 279 |  | 2.6 | 2.5 |
| 175 |  | 304 | 329 | 353 | 378 | 403 | 428 | 452 | 477 | 502 | 527 | ${ }_{2}$ | 5.2 |  |
| 176 |  | 551 | 576 | 601 | 625 | 650 | 674 | 699 | 724 | 748 | 773 | 3 |  | 10.0 |
| 177 |  | 797 | 822 | 846 | 871 | 895 | 920 | 944 | 969 | 993 | *018 |  |  |  |
| 178 | 25 | 042 | 066 | 091 | 115 | 139 | 164 | 188 | 212 | 237 | 261 | 7 | 15.6 | 15.0 |
| 179 |  | 285 | 310 | 334 | 358 | 382 | 406 | 431 | 455 | 479 | 503 |  | 20.8 | 17.0 |
| 180 |  | 527 | 551 | 575 | 600 | 624 | 648 | 672 | 696 | 720 | 744 |  | 23.4 | 22.5 |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. P. |  |

Logarithms of Numbers.

Num. 180 to 219. Log. 255 to 342.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 25 | 527 | 551 | 575 | 600 | 624 | 648 | 672 | 696 | 720 | 744 |  | 24 |
| 181 |  | 768 | 792 | 816 | 840 | 864 | 888 | 912 | 935 | 959 | 983 |  |  |
| 182 | 26 | 007 | 031 | 055 | 079 | 102 | 126 | 150 | 174 | 198 | 221 |  |  |
| 183 |  | 245 | 269 | 293 | 316 | 340 | 364 | 387 | 411 | 435 | 458 |  | , |
| 184 |  | 482 | 505 | 529 | 553 | 576 | 600 | 623 | 647 | 670 | 694 |  | 9.6 12.0 |
| 185 |  | 717 | 741 | 764 | 788 | 811 | 834 | 858 | 881 | 905 | 928 |  | 14.4 |
| 186 |  | 951 | 975 | 988 | *021 | *045 | *068 | *091 | *114 | *138 | *161 |  | 19.2 |
| 187 | 27 | 184 | 207 | 231 | 254 | 277 | 300 | 323 | 346 | 370 | 393 |  | 21.6 |
| 188 |  | 416 | 439 | 462 | 485 | 508 | 531 | 554 | 577 | 600 | 623 |  |  |
| 189 |  | 646 | 669 | 692 | 715 | 738 | 761 | 784 | 807 | 830 | 852 |  | 23 |
| 190 |  | 875 | 898 | 921 | 944 | 967 | 989 | *012 | *035 | *058 | *081 |  | 2.3 4.6 |
| 191 | 28 | 103 | 126 | 149 | 171 | 194 | 217 | 240 | 262 | 285 | 307 | 3 | 6.9 |
| 192 |  | 330 | 353 | 375 | 398 | 421 | 443 | 466 | 488 | 511 | 533 |  | 9.2 |
| 193 |  | 556 | 578 | 601 | 623 | 646 | 668 | 691 | 713 | 735 | 758 |  | 13.8 |
| 194 |  | 780 | 803 | 825 | 847 | 870 | 892 | 914 | 937 | 959 | 981 |  | 16.1 |
| 195 | 29 | 003 | 026 | 048 | 070 | 092 | 115 | 137 | 159 | 181 | 203 |  | 20.7 |
| 196 |  | 226 | 248 | 270 | 292 | 314 | 336 | 358 | 380 | 403 | 425 |  |  |
| 197 |  | 447 | 469 | 491 | 513 | 535 | 557 | 579 | 601 | 623 | 645 |  |  |
| 198 |  | 667 | 688 | 710 | 732 | 754 | 776 | 798 | 820 | 842 | S63 |  |  |
| 199 |  | 885 | 907 | 929 | 951 | 973 | 994 | *016 | *038 | *060 | *081 |  | 4.4 6.6 |
| 200 | 30 | 103 | 125 | 146 | 168 | 190 | 211 | 233 | 255 | 276 | 298 |  | 8.8 |
| 201 |  | 320 | 341 | 363 | 384 | 406 | 428 | 449 | 471 | 492 | 514 |  | 13.2 |
| 202 |  | 535 | 557 | 578 | 600 | 621 | 643 | 664 | 685 | 707 | 728 |  | 15.4 |
| 203 |  | 750 | 771 | 792 | 814 | 835 | 856 | 878 | 899 | 920 | 942 |  | 17.6 |
| 204 |  | 963 | 984 | *006 | *027 | *048 | *069 | *091 | *112 | *133 | *154 |  |  |
| 205 | 31 | 175 | 197 | 218 | 239 | 260 | 281 | 302 | 323 | 345 | 366 |  | 21 |
| 206 |  | 387 | 408 | 429 | 450 | 471 | 492 | 513 | 534 | 555 | 576 |  |  |
| 207 |  | 597 | 618 | 639 | 660 | 681 | 702 | 723 | 744 | 765 | 785 |  | 4.2 |
| 208 |  | 806 | 827 | 848 | 869 | 890 | 911 | 931 | 952 | 973 | 994 |  | 8.4 |
| 209 | 32 | 015 | 035 | 056 | 077 | 098 | 118 | 139 | 160 | 181 | 201 |  | 10.5 |
| 210 |  | 222 | 243 | 263 | 284 | 305 | 325 | 346 | 366 | 387 | 408 |  | 14.7 |
| 211 |  | 428 | 449 | 469 | 490 | 510 | 531 | 552 | 572 | 593 | 613 |  | 16.8 |
| 212 |  | 634 | 654 | 675 | 695 | 715 | 736 | 756 | 777 | 797 | 818 |  |  |
| 213 |  | 838 | 858 | 879 | 899 | 919 | 940 | 960 | 980 | *001 | *021 |  | 20 |
| 214 | 33 | 041 | 062 | 082 | 102 | 122 | 143 | 163 | 183 | 203 | 224 |  |  |
| 215 |  | 244 | 264 | 284 | 304 | 325 | 345 | 365 | 385 | 405 | 425 |  | 4.0 |
| 216 |  | 445 | 465 | 486 | 506 | 526 | 546 | 566 | 586 | 606 | 626 | 3 4 | 6.0 |
| 217 |  | 646 | 666 | 686 | 706 | 726 | 746 | 766 | 786 | 806 | 826 | 5 | 0.0 |
| 218 |  | 846 | 866 | 885 | 905 | 925 | 15 | 965 | 985 | *005 | *025 | 6 | 12.0 |
| 219 | 34 | 044 | 064 | 084 | 104 | 124 | 143 | 163 | 183 | 203 | 223 |  | 14.0 |
| 220 |  | 242 | 262 | 282 | 301 | 321 | 341 | 361 | 380 | 400 | 420 |  | 8.017 |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. P. |

Num. 220 to 259. Log. 342 to 414.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 220 | 34 | 242 | 262 | 282 | 301 | 321 | 341 | 361 | 380 | 400 | 420 | 20 |  |
| 221 |  | 439 | 459 | 479 | 498 | 518 | 537 | 557 | 577 | 596 | 616 |  |  |
| 222 |  | 635 | 655 | 674 | 694 | 713 | 733 | 753 | 772 | 792 | 811 |  | 2.0 |
| 223 |  | 830 | 850 | 869 | 889 | 908 | 928 | 947 | 967 | 986 | *005 | 2 | 4.0 |
| 224 | 35 | 025 | 044 | 064 | 083 | 102 | 122 | 141 | 160 | 180 | 199 | 3 | 6.0 8.0 |
| 225 |  | 218 | 238 | 257 | 276 | 295 | 315 | 334 | 353 | 372 | 392 | 5 | 10.0 12.0 |
| 226 |  | 411 | 430 | 449 | 468 | 488 | 507 | 526 | 545 | 564 | 583 | 7 | 14.0 |
| 227 |  | 603 | 622 | 641 | 660 | 679 | 698 | 717 | 736 | 755 | 774 | 8 | 16.0 |
| 228 |  | 793 | 813 | 832 | 851 | 870 | 889 | 908 | 927 | 946 | 965 | 9 |  |
| 229 |  | 984 | *003 | *021 | *040 | *059 | *078 | *097 | *116 | *135 | *154 |  |  |
| 230 | 36 | 173 | 192 | 211 | 229 | 248 | 267 | 286 | 305 | 324 | 342 | 19 |  |
| 231 |  | 361 | 380 | 399 | 418 | 436 | 455 | 474 | 493 | 511 | 530 |  |  |
| 232 |  | 549 | 568 | 586 | 605 | 624 | 642 | 661 | 680 | 698 | 717 | 1 1.9 <br> 2 3.8 <br> 3 5.7 <br> 4 7.6 <br> 5 9.5 <br> 6 11.4 <br> 7 13.3 <br> 8 15.2 <br> 9 17.1 |  |
| 233 |  | 736 | 754 | 773 | 791 | 810 | 829 | 847 | 866 | 884 | 903 |  |  |
| 234 |  | 922 | 940 | 959 | 977 | 996 | *014 | *033 | *051 | *070 | *088 |  |  |
| 235 | 37 | 107 | 125 | 144 | 162 | 181 | 199 | 218 | 236 | 254 | 273 |  |  |
| 236 |  | 291 | 310 | 328 | 346 | 365 | 383 | 401 | 420 | 438 | 457 |  |  |
| 237 |  | 475 | 493 | 511 | 530 | 548 | 566 | 585 | 603 | 621 | 639 |  |  |
| 238 |  | 658 | 676 | 694 | 712 | 731 | 749 | 767 | 785 | 803 | 822 |  |  |
| 239 |  | 840 | 858 | 876 | 894 | 912 | 931 | 949 | 967 | 985 | *003 |  |  |
| 240 | 38 | 021 | 039 | 057 | 075 | 093 | 112 | 130 | 148 | 166 | 184 | 18 |  |
| 241 |  | 202 | 220 | 238 | 256 | 274 | 292 | 310 | 328 | 346 | 364 |  |  |
| 242 |  | 382 | 399 | 417 | 435 | 453 | 471 | 489 | 507 | 525 | 543 |  |  |
| 243 |  | 561 | 578 | 596 | 614 | 632 | 650 | 668 | 686 | 703 | 721 | 1 1.8 <br> 2 3.6 <br> 3 5.4 <br> 4 7.2 <br> 5 9.0 <br> 6 10.8 <br> 7 12.6 <br> 8 12.6 <br> 9 16.4 |  |
| 244 |  | 739 | 757 | 775 | 792 | 810 | 828 | 846 | 863 | 881 | 899 |  |  |
| 245 |  | 917 | 934 | 952 | 970 | 987 | *005 | *023 | *041 | *058 | *076 |  |  |
| 246 | 39 | 094 | 111 | 129 | 146 | 164 | 182 | 199 | 217 | 235 | 252 |  |  |
| 247 |  | 270 | 287 | 305 | 322 | 340 | 358 | 375 | 393 | 410 | 428 |  |  |
| 248 |  | 445 | 463 | 480 | 498 | 515 | 533 | 550 | 568 | 585 | 602 |  |  |
| 249 |  | 620 | 637 | 655 | 672 | 690 | 707 | 724 | 742 | 759 | 777 |  |  |
| 250 |  | 794 | 811 | 829 | 816 | 863 | 881 | 898 | 915 | 933 | 950 |  |  |
| 251 |  | 967 | 985 | *002 | *019 | *037 | *054 | *071 | *088 | *106 | *123 |  |  |
| 252 | 40 | 140 | 157 | 175 | 192 | 209 | 226 | 243 | 261 | 278 | 295 | 17 |  |
| 253 |  | 312 | 329 | 346 | 364 | 381 | 398 | 415 | 432 | 449 | 466 |  |  |
| 254 |  | 483 | 500 | 518 | 535 | 552 | 569 | 586 | 603 | 620 | 637 | 1 1.7 <br> 2 3.4 <br> 3 5.1 <br> 4 6.8 <br> 5 8.5 <br> 6 10.2 <br> 7 11.9 <br> 8 13.6 <br> 9 15.3 |  |
| 255 |  | 654 | 671 | 688 | 705 | 722 | 739 | 756 | 773 | 790 | 807 |  |  |
| 256 |  | 824 | 841 | 858 | 875 | 892 | 909 | 926 | 943 | 960 | 976 |  |  |
| 257 |  | 993 | *010 | *027 | *044 | *061 | *078 | *095 | *111 | *128 | *145 |  |  |
| 258 | 41 | 162 | 179 | 196 | 212 | 229 | 246 | 263 | 280 | 296 | 313 |  |  |
| 259 |  | 330 | 347 | 363 | 380 | 397 | 414 | 430 | 447 | 464 | 481 |  |  |
| 260 |  | 497 | 514 | 531 | 547 | 564 | 581 | 597 | 614 | 631 | 647 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |

Num. 260 to 299. Log. 414 to 476.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 260 | 41 | 497 | 514 | 531 | 547 | 564 | 581 | 597 | 614 | 631 | 647 | 17 |  |
| 261 |  | 664 | 681 | 697 | 714 | 731 | 747 | 764 | 780 | 797 | 814 |  |  |
| 262 |  | 830 | 847 | 863 | 880 | 896 | 913 | 929 | 946 | 963 | 979 |  |  |
| 263 |  | 996 | *012 | *029 | *045 | *062 | *078 | *095 | *111 | *127 | 144 |  |  |
| 264 | 42 | 160 | 177 | 193 | 210 | 226 | 243 | 259 | 275 | 292 | 308 |  |  |
| 265 |  | 325 | 341 | 357 | 374 | 390 | 406 | 423 | 439 | 455 | 472 | 1 1.7 <br> 2 3.4 <br> 3 5.1 <br> 4 6.8 <br> 5 8.5 <br> 6 10.2 <br> 7 11.9 <br> 8 13.6 <br> 9 15.3 |  |
| 266 |  | 488 | 504 | 521 | 537 | 553 | 570 | 586 | 602 | 619 | 635 |  |  |
| 267 |  | 651 | 667 | 684 | 700 | 716 | 732 | 749 | 765 | 781 | 797 |  |  |
| 268 |  | 813 | 830 | 846 | 862 | 878 | 894 | 911 | 927 | 943 | 959 |  |  |
| 269 |  | 975 | 991 | *008 | *024 | *040 | *056 | *072 | *088 | *104 | *120 |  |  |
| 270 | 43 | 136 | 152 | 169 | 185 | 201 | 217 | 233 | 249 | 265 | 281 |  |  |
| 271 |  | 297 | 313 | 329 | 345 | 361 | 377 | 393 | 409 | 425 | 441 |  |  |
| 272 |  | 457 | 473 | 489 | 505 | 521 | 537 | 553 | 569 | 584 | 600 |  |  |
| 273 |  | 616 | 632 | 648 | 664 | 680 | 696 | 712 | 727 | 743 | 759 |  |  |
| 274 |  | 775 | 791 | 807 | 823 | 838 | 854 | 870 | 886 | 902 | 917 |  |  |
| 275 |  | 933 | 949 | 965 | 981 | 996 | *012 | *028 | *044 | *059 | *075 | 16 |  |
| 276 | 44 | 091 | 107 | 122 | 138 | 154 | 170 | 185 | 201 | 217 | 232 |  |  |
| 277 |  | 248 | 264 | 279 | 295 | 311 | 326 | 342 | 358 | 373 | 389 |  |  |
| 278 |  | 404 | 420 | 436 | 451 | 467 | 483 | 498 | 514 | 529 | 545 | 1 1.6 <br> 2 3.2 <br> 3 4.8 <br> 4 6.4 <br> 5 8.0 <br> 6 9.6 <br> 7 11.2 <br> 8 12.8 <br> 9 14.4 |  |
| 279 |  | 560 | 576 | 592 | 607 | 623 | 638 | 654 | 669 | 685 | 700 |  |  |
| 280 |  | 716 | 731 | 747 | 762 | 778 | 793 | 809 | 824 | 840 | 855 |  |  |
| 281 |  | 871 | 886 | 902 | 917 | 932 | 948 | 963 | 979 | 994 | *010 |  |  |
| 282 | 45 | 025 | 040 | 056 | 071 | 086 | 102 | 117 | 133 | 148 | 163 |  |  |
| 283 |  | 179 | 194 | 209 | 225 | 240 | 255 | 271 | 286 | 301 | 317 |  |  |
| 284 |  | 332 | 347 | 362 | 378 | 393 | 408 | 423 | 439 | 454 | 469 |  |  |
| 285 |  | 484 | 500 | 515 | 530 | 545 | 561 | 576 | 591 | 606 | 621 |  |  |
| 286 |  | 637 | 652 | 667 | 682 | 697 | 712 | 728 | 743 | 758 | 773 |  |  |
| 287 |  | 788 | 803 | 818 | 834 | 849 | 864 | 879 | 894 | 909 | 924 |  |  |
| 288 |  | 939 | 954 | 969 | 984 | *000 | *015 | *030 | *045 | *060 | *075 |  |  |
| 289 | 46 | 090 | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 | 225 | 15 |  |
| 290 |  | 240 | 255 | 270 | 285 | 300 | 315 | 330 | 345 | 359 | 374 | 1 1.5 <br> 2 3.0 <br> 3 4.5 <br> 4 6.0 <br> 5 7.5 <br> 6 9.0 <br> 7 10.5 <br> 8 12.0 <br> 9 13.5 |  |
| 291 |  | 389 | 404 | 419 | 434 | 449 | 464 | 479 | 494 | 509 | 523 |  |  |
| 292 |  | 538 | 553 | 568 | 583 | 598 | 613 | 627 | 642 | 657 | 672 |  |  |
| 293 |  | 687 | 702 | 716 | 731 | 746 | 761 | 776 | 790 | 805 | 820 |  |  |
| 294 |  | 835 | 850 | 864 | 879 | 894 | 909 | 923 | 938 | 953 | 967 |  |  |
| 295 |  | 982 | 997 | *012 | *026 | *041 | *056 | *070 | *085 | *100 | *114 |  |  |
| 296 | 47 | 129 | 144 | 159 | 173 | 188 | 202 | 217 | 232 | 246 | 261 |  |  |
| 297 |  | 276 | 290 | 305 | 319 | 334 | 349 | 363 | 378 | 392 | 407 |  |  |
| 298 |  | 422 | 436 | 451 | 465 | 480 | 494 | 509 | 524 | 538 | 553 |  |  |
| 299 |  | 567 | 582 | 596 | 611 | 625 | 640 | 654 | 669 | 683 | 698 |  |  |
| 300 |  | 712 | 727 | 741 | 756 | 770 | 784 | 799 | 813 | 828 | 842 |  |  |
| N | $L$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |

Num. 300 to 339. Log. 477 to 531.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 47 | 712 | 727 | 741 | 756 | 770 | 784 | 799 | 813 | 828 | 842 | 14 |  |
| 301 |  | 857 | 871 | 885 | 900 | 914 | 929 | 943 | 958 | 972 | 986 |  |  |
| 302 | 48 | 001 | 015 | 029 | 044 | 058 | 073 | 087 | 101 | 116 | 130 |  |  |
| 303 |  | 144 | 159 | 173 | 187 | 202 | 216 | 230 | 244 | 259 | 273 |  |  |
| 304 |  | 287 | 302 | 316 | 330 | 344 | 359 | 373 | 387 | 401 | 416 |  |  |
| 305 |  | 430 | 444 | 458 | 473 | 487 | 501 | 515 | 530 | 544 | 558 |  |  |
| 306 |  | 572 | 586 | 601 | 615 | 629 | 643 | 657 | 671 | 686 | 700 |  |  |
| 307 |  | 714 | 728 | 742 | 756 | 770 | 785 | 799 | 813 | 827 | 841 |  |  |
| 308 |  | 855 | 869 | 883 | 897 | 911 | 926 | 940 | 954 | 968 | 982 |  |  |
| 309 |  | 996 | *010 | *024 | *038 | *052 | *066 | *080 | *094 | *108 | *122 |  |  |
| 310 | 49 | 136 | 150 | 164 | 178 | 192 | 206 | 220 | 234 | 248 | 262 |  |  |
| 311 |  | 276 | 290 | 304 | 318 | 332 | 346 | 360 | 374 | 388 | 402 |  |  |
| 312 |  | 415 | 429 | 443 | 457 | 471 | 485 | 499 | 513 | 527 | 541 |  |  |
| 313 |  | 554 | 568 | 582 | 596 | 610 | 624 | 638 | 651 | 665 | 679 |  |  |
| 314 |  | 693 | 707 | 721 | 734 | 748 | 762 | 776 | 790 | 803 | 817 |  |  |
| 315 |  | 831 | 845 | 859 | 872 | 886 | 900 | 914 | 927 | 941 | 955 | 13 |  |
| 316 |  | 969 | 982 | 996 | *010 | *024 | *037 | *051 | *065 | *079 | *092 |  |  |
| 317 | 50 | 106 | 120 | 133 | 147 | 161 | 174 | 188 | 202 | 215 | 229 |  |  |
| 318 |  | 243 | 256 | 270 | 284 | 297 | 311 | 325 | 338 | 352 | 365 | 1 1.3 <br> 2 2.6 <br> 3 3.9 <br> 4 5.2 <br> 5 6.5 <br> 6 7.8 <br> 7 9.1 <br> 8 10.4 <br> 9 11.7 |  |
| 319 |  | 379 | 393 | 406 | 420 | 433 | 447 | 461 | 474 | 488 | 501 |  |  |
| 320 |  | 515 | 529 | 542 | 556 | 569 | 583 | 596 | 610 | 623 | 637 |  |  |
| 321 |  | 651 | 664 | 678 | 691 | 705 | 718 | 732 | 745 | 759 | 772 |  |  |
| 322 |  | 786 | 799 | 813 | 826 | 840 | 853 | 866 | 880 | 893 | 907 |  |  |
| 323 |  | 920 | 934 | 947 | 961 | 974 | 987 | *001 | *014 | *028 | *041 |  |  |
| 324 | 51 | 055 | 068 | 081 | 095 | 108 | 121 | 135 | 148 | 162 | 175 |  |  |
| 325 |  | 188 | 202 | 215 | 228 | 242 | 255 | 268 | 282 | 295 | 308 | 12 |  |
| 326 |  | 322 | 335 | 348 | 362 | 375 | 388 | 402 | 415 | 428 | 441 |  |  |
| 327 |  | 455 | 468 | 481 | 495 | 508 | 521 | 534 | 548 | 561 | 574 |  |  |
| 328 |  | 587 | 601 | 614 | 627 | 640 | 654 | 667 | 680 | 693 | 706 |  |  |
| 329 |  | 720 | 733 | 746 | 759 | 772 | 786 | 799 | 812 | 825 | 838 |  |  |
| 330 |  | 851 | 865 | 878 | 891 | 904 | 917 | 930 | 943 | 957 | 970 |   <br> 1 1.2 <br> 2 2.4 <br> 3 3.6 <br> 4 4.8 <br> 5 6.0 <br> 6 7.2 <br> 7 8.4 <br> 8 9.6 <br> 9 10.8 |  |
| 331 |  | 983 | 996 | *009 | *022 | *035 | *048 | *061 | *075 | *088 | *101 |  |  |
| 332 | 52 | 114 | 127 | 140 | 153 | 166 | 179 | 192 | 205 | 218 | 231 |  |  |
| 333 |  | 244 | 257 | 270 | 284 | 297. | 310 | 323 | 336 | 349 | 362 |  |  |
| 334 |  | 375 | 388 | 401 | 414 | 427 | 440 | 453 | 466 | 479 | 492 |  |  |
| 335 |  | 504 | 517 | 530 | 543 | 556 | 569 | 582 | 595 | 608 | 621 |  |  |
| 336 |  | 634 | 647 | 660 | 673 | 686 | 699 | 711 | 724 | 737 | 750 |  |  |
| 337 |  | 763 | 776 | 789 | 802 | 815 | 827 | 840 | 853 | 866 | 879 |  |  |
| 338 |  | 892 | 905 | 917 | 930 | 943 | 956 | 969 | 982 | 994 | *007 |  |  |
| 339 | 53 | 020 | 033 | 046 | 058 | 071 | 084 | 097 | 110 | 122 | 135 |  |  |
| 340 |  | 148 | 161 | 173 | 186 | 199 | 212 | 224 | 237 | 250 | 263 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | $\dot{5}$ | 6 | 7 | 8 | 9 | P. P. |  |

Logarithms of Numbers.
Num. 340 to 379. Log. 531 to 579.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 340 | 53 | 148 | 161 | 173 | 186 | 199 | 212 | 224 | 237 | 250 | 263 | 13 |  |
| 341 |  | 275 | 288 | 301 | 314 | 326 | 339 | 352 | 364 | 377 | 390 |  |  |
| 342 |  | 403 | 415 | 428 | 441 | 453 | 466 | 479 | 491 | 504 | 517 |  |  |
| 343 |  | 529 | 542 | 555 | 567 | 580 | 593 | 605 | 618 | 631 | 643 |  |  |
| 344 |  | 656 | 668 | 681 | 694 | 706 | 719 | 732 | 744 | 757 | 769 |  |  |
| 345 |  | 782 | 794 | 807 | 820 | 832 | 845 | 857 | 870 | 882 | 895 | 1 1.3 <br> 2 2.6 <br> 3 3.9 <br> 4 5.2 <br> 5 6.5 <br> 6 7.8 <br> 7 9.1 <br> 8 10.4 <br> 9 11.7 |  |
| 346 |  | 908 | 920 | 933 | 945 | 958 | 970 | 983 | 995 | *008 | *020 |  |  |
| 347 | 54 | 033 | 045 | 058 | 070 | 083 | 095 | 108 | 120 | 133 | 145 |  |  |
| 348 |  | 158 | 170 | 183 | 195 | 208 | 220 | 233 | 245 | 258 | 270 |  |  |
| 349 |  | 283 | 295 | 307 | 320 | 332 | 345 | 357 | 370 | 382 | 394 |  |  |
| 350 |  | 407 | 419 | 432 | 444 | 456 | 469 | 481 | 494 | 506 | 518 |  |  |
| 351 |  | 531 | 543 | 555 | 568 | 580 | 593 | 605 | 617 | 630 | 642 |  |  |
| 352 |  | 654 | 667 | 679 | 691 | 704 | 716 | 728 | 741 | 753 | 765 |  |  |
| 353 |  | 777 | 790 | 802 | 814 | 827. | 839 | 851 | 864 | 876 | 888 |  |  |
| 354 |  | 900 | 913 | 925 | 937 | 949 | 962 | 974 | 986 | 998 | *011 |  |  |
| 355 | 55 | 023 | 035 | 047 | 060 | 072 | 084 | 096 | 108 | 121 | 133 | 12 |  |
| 356 |  | 145 | 157 | 169 | 182 | 194 | 206 | 218 | 230 | 242 | 255 |  |  |
| 357 |  | 267 | 279 | 291 | 303 | 315 | 328 | 340 | 352 | 364 | 376 |  |  |
| 358 |  | 388 | 400 | 413 | 425 | 437 | 449 | 461 | 473 | 485 | 497 | 1 1.2 <br> 2 2.4 <br> 3 3.6 <br> 4 4.8 <br> 5 6.0 <br> 6 7.2 <br> 7 8.4 <br> 8 9.6 <br> 9 10.8 |  |
| 359 |  | 509 | 522 | 534 | 546 | 558 | 570 | 582 | 594 | 606 | 618 |  |  |
| 360 |  | 630 | 642 | 654 | 666 | 678 | 691 | 703 | 715 | 727 | 739 |  |  |
| 361 |  | 751 | 763 | 775 | 787 | 799 | 811 | 823 | 835 | 847 | 859 |  |  |
| 362 |  | 871 | 883 | 895 | 907 | 919 | 931 | 943 | 955 | 967 | 979 |  |  |
| 363 |  | 991 | *003 | *015 | *027 | *038 | *050 | *062 | *074 | *086 | *098 |  |  |
| 364 | 56 | 110 | 122 | 134 | 146 | 158 | 170 | 182 | 194 | 205 | 217 |  |  |
| 365 |  | 229 | 241 | 253 | 265 | 277 | 289 | 301 | 312 | 324 | 336 |  |  |
| 366 |  | 348 | 360 | 372 | 384 | 396 | 407 | 419 | 431 | 443 | 455 |  |  |
| 367 |  | 467 | 478 | 490 | 502 | 514 | 526 | 538 | 549 | 561 | 573 |  |  |
| 368 |  | 585 | 597 | 608 | 620 | 632 | 644 | 656 | 667 | 679 | 691 |  |  |
| 369 |  | 703 | 714 | 726 | 738 | 750 | 761 | 773 | 785 | 797 | 808 |  | 11 |
| 370 |  | 820 | 832 | 844 | 855 | 867 | 879 | 891 | 902 | 914 | 926 | 1 1.1 <br> 2 2.2 <br> 3 3.3 <br> 4 4.4 <br> 5 5.5 <br> 6 6.6 <br> 7 7.7 <br> 8 8.8 <br> 9 9.9 |  |
| 371 |  | 937 | 949 | 961 | 972 | 984 | 996 | *008 | *019 | *031 | *043 |  |  |
| 372 | 57 | 054 | 066 | 078 | 089 | 101 | 113 | 124 | 136 | 148 | 159 |  |  |
| 373 |  | 171 | 183 | 194 | 206 | 217 | 229 | 241 | 252 | 264 | 276 |  |  |
| 374 |  | 287 | 299 | 310 | 322 | 334 | 345 | 357 | 368 | 380 | 392 |  |  |
| 375 |  | 403 | 415 | 426 | 438 | 449 | 461 | 473 | 484 | 496 | 507 |  |  |
| 376 |  | 519 | 530 | 542 | 553 | 565 | 576 | 588 | 600 | 611 | 623 |  |  |
| 377 |  | 634 | 646 | 657 | 669 | 680 | 692 | 703 | 715 | 726 | 738 |  |  |
| 378 |  | 749 | 761 | 772 | 784 | 795 | 807 | 818 | 830 | 841 | 852 |  |  |
| 379 |  | 864 | 875 | 887 | 898 | 910 | 921 | 933 | 944 | 955 | 967 |  |  |
| 380 |  | 978 | 990 | *001 | *013 | *024 | *035 | *047 | *058 | *070 | *081 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |

Num. 380 to 419. Log. 579 to 623.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 57 | 978 | 990 | *001 | *013 | *024 | *035 | *047 | *058 | *070 | *081 | 11 |  |
| 381 | 58 | 092 | 104 | 115 | 127 | 138 | 149 | 161 | 172 | 184 | 195 |  |  |
| 382 |  | 206 | 218 | 229 | 240 | 252 | 263 | 274 | 286 | 297 | 309 |  |  |
| 383 |  | 320 | 331 | 343 | 354 | 365 | 377 | 388 | 399 | 410 | 422 |  |  |
| 384 |  | 433 | 444 | 456 | 467 | 478 | 490 | 501 | 512 | 524 | 535 |  |  |
| 385 |  | 546 | 557 | 569 | 580 | 591 | 602 | 614 | 625 | 636 | 647 | 1 1.1 <br> 2 2.2 <br> 3 3.3 <br> 4 4.4 <br> 5 5.5 <br> 6 6.6 <br> 7 7.7 <br> 8 8.8 <br> 9 9.9 |  |
| 386 |  | 659 | 670 | 681 | 692 | 704 | 715 | 726 | 737 | 749 | 760 |  |  |
| 387 |  | 771 | 782 | 794 | 805 | 816 | 827 | 838 | 850 | 861 | 872 |  |  |
| 388 |  | 883 | 894 | 906 | 917 | 928 | 939 | 950 | 961 | 973 | 984 |  |  |
| 389 |  | 995 | *006 | *017 | *028 | *040 | *051 | *062 | *073 | *084 | *095 |  |  |
| 390 | 59 | 106 | 118 | 129 | 140 | 151 | 162 | 173 | 184 | 195 | 207 |  |  |
| 391 |  | 218 | 229 | 240 | 251 | 262 | 273 | 284 | 295 | 306 | 318 |  |  |
| 392 |  | 329 | 340 | 351 | 362 | 373 | 384 | 395 | 406 | 417 | 428 |  |  |
| 393 |  | 439 | 450 | 461 | 472 | 483 | 494 | 506 | 517 | 528 | 539 |  |  |
| 394 |  | 550 | 561 | 572 | 583 | 594 | 605 | 616 | 627 | 638 | 649 |  |  |
| 395 |  | 660 | 671 | 682 | 693 | 704 | 715 | 726 | 737 | 748 | 759 | 10 |  |
| 396 |  | 770 | 780 | 791 | 802 | 813 | 824 | 835 | 846 | 857 | 868 |  |  |
| 397 |  | 879 | 890 | 901 | 912 | 923 | 934 | 945 | 956 | 966 | 977 |  |  |
| 398 |  | 988 | 999 | *010 | *021 | *032 | *043 | *0.54 | *065 | *076 | *086 | $\begin{array}{l\|l} 1 & 1.0 \\ 2 & 2.0 \\ 3 & 3.0 \\ 4 & 4.0 \\ 5 & 5.0 \\ 6 & 6.0 \\ 7 & 7.0 \\ 8 & 8.0 \\ 9 & 9.0 \end{array}$ |  |
| 399 | 60 | 097 | 108 | 119 | 130 | 141 | 152 | 163 | 173 | 184 | 195 |  |  |
| 400 |  | 206 | 217 | 228 | 239 | 249 | 260 | 271 | 282 | 293 | 304 |  |  |
| 401 |  | 314 | 325 | 336 | 347 | 358 | 369 | 379 | 390 | 401 | 412 |  |  |
| 402 |  | 423 | 433 | 444 | 455 | 466 | 477 | 487 | 498 | 509 | 520 |  |  |
| 403 |  | 531 | 541 | 552 | 563 | 574 | 584 | 595 | 606 | 617 | 627 |  |  |
| 404 |  | 638 | 649 | 660 | 670 | 681 | 692 | 703 | 713 | 724 | 735 |  |  |
| 405 |  | 746 | 756 | 767 | 778 | 788 | 799 | 810 | 821 | 831 | 842 |  |  |
| 406 |  | 853 | 863 | 874 | 885 | 895 | 906 | 917 | 927 | 938 | 949 |  |  |
| 407 |  | 959 | 970 | 981 | 991 | *002 | *013 *023 *034 *045 *055 |  |  |  |  |  |  |
| 408 | 61 | 066 | 077 | 087 | 098 | 109 | 119 | 130 | 140 | 151 | 162 |  |  |
| 409 |  | 172 | 183 | 194 | 204 | 215 | 225 | 236 | 247 | 257 | 268 |  |  |
| 410 |  | 278 | 289 | 300 | 310 | 321 | 331 | 342 | 352 | 363 | 374 |  |  |
| 411 |  | 384 | 395 | 405 | 416 | 426 | 437 | 448 | 458 | 469 | 479 |  |  |
| 412 |  | - 490 | 500 | 511 | 521 | 532 | 542 | 553 | 563 | 574 | 584 |  |  |
| 413 |  | 595 | 606 | 616 | 627 | 637 | 648 | 658 | 669 | 679 | 690 |  |  |
| 414 |  | 700 | 711 | 721 | 731 | 742 | 752 | 763 | 773 | 784 | 794 |  |  |
| 415 |  | 805 | 815 | 826 | 836 | 847 | 857 | 868 | S78 | 888 | 899 |  |  |
| 416 |  | 909 | 920 | 930 | 941 | 951 | 962 | 972 | 982 | 993 | *003 |  |  |
| 417 | 62 | 014 | 024 | 034 | 045 | 055 | 066 | 076 | 086 | 097 | 107 |  |  |
| 418 |  | 118 | 128 | 138 | 149 | 159 | 170 | 180 | 190 | 201 | 211 |  |  |
| 419 |  | 221 | 232 | 242 | 252 | 263 | 273 | 284 | 294 | 304 | 315 |  |  |
| 420 |  | 325 | 335 | 346 | 356 | 366 | 377 | 387 | 397 | 408 | 418 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. |

Num. 420 to 459. Log. 623 to 662.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 420 | 62 | 325 | 335 | 346 | 356 | 366 | 377 | 387 | 397 | 408 | 418 |  |
| 421 |  | 428 | 439 | 449 | 459 | 469 | 480 | 490 | 500 | 511 | 521 |  |
| 422 |  | 531 | 542 | 552 | 562 | 572 | 583 | 593 | 603 | 613 | 624 |  |
| 423 |  | 634 | 644 | 655 | 665 | 675 | 685 | 696 | 706 | 716 | 726 |  |
| 424 |  | 737 | 747 | 757 | 767 | 778 | 788 | 798 | 808 | 818 | 829 |  |
| 425 |  | 839 | 849 | 859 | 870 | 880 | 890 | 900 | 910 | 921 | 931 |  |
| 426 |  | 941 | 951 | 961 | 972 | 982 | 992 | *002 | *012 | *022 | *033 |  |
| 427 | 63 | 043 | 053 | 063 | 073 | 083 | 094 | 104 | 114 | 124 | 134 |  |
| 428 |  | 144 | 155 | 165 | 175 | 185 | 195 | 205 | 215 | 225 | 236 |  |
| 429 |  | 246 | 256 | 266 | 276 | 286 | 296 | 306 | 317 | 327 | 337 | 10 |
| 430 |  | 347 | 357 | 367 | 377 | 387 | 397 | 407 | 417 | 428 | 438 | 1 1.0 <br> 2 2.0 |
| 431. |  | 448 | 458 | 468 | 478 | 488 | 498 | 508 | 518 | 528 | 538 | 3 3.0 |
| 432 |  | 548 | 558 | 568 | 579 | 589 | 599 | 609 | 619 | 629 | 639 | 4 4.0 |
| 433 |  | 649 | 659 | 669 | 679 | 689 | 699 | 709 | 719 | 729 | 739 |   <br>  5.0 <br> 6 6.0 |
| 434 |  | 749 | 759 | 769 | 779 | 789 | 799 | 809 | 819 | 829 | 839 | 7 7.0 <br> 8 8.0 |
| 435 |  | 849 | 859 | 869 | 879 | 889 | 899 | 909 | 919 | 929 | 939 | 9.0 |
| 436 |  | 949 | 959 | 969 | 979 | 988 | 998 | *008 | *018 | *028 | *038 |  |
| 437 | 64 | 048 | 058 | 068 | 078 | 088 | 098 | 108 | 118 | 128 | 137 |  |
| 438 |  | 147 | 157 | 167 | 177 | 187 | 197 | 207 | 217 | 227 | 237 |  |
| 439 |  | 246 | 256 | 266 | 276 | 286 | 296 | 306 | 316 | 326 | 335 |  |
| 440 |  | 345 | 355 | 365 | 375 | 385 | 395 | 404 | 414 | 424 | 434 |  |
| 441 |  | 444 | 454 | 464 | 473 | 483 | 493 | 503 | 513 | 523 | 532 |  |
| 442 |  | 542 | 552 | 562 | 572 | 582 | 591 | 601 | 611 | 621 | 631 |  |
| 443 |  | 640 | 650 | 660 | 670 | 680 | 689 | 699 | 709 | 719 | 729 |  |
| 444 |  | 738 | 748 | 758 | 768 | 777 | 787 | 797 | 807 | 816 | 826 |  |
| 445 |  | 836 | 846 | 856 | 865 | 875 | 885 | 895 | 904 | 914 | 924 | 9 |
| 446 |  | 933 | 943 | 953 | 963 | 972 | 982 | 992 | *002 | *011 | *021 | $1 \mid 0.9$ |
| 447 | 65 | 031 | 040 | 050 | 060 | 070 | 079 | 089 | 099 | 108 | 118 | 2 1.8 <br> 3  <br> 2  |
| 448 |  | 128 | 137 | 147 | 157 | 167 | 176 | 186 | 196 | 205 | 215 | 4 4 |
| 449 |  | 225 | 234 | 244 | 254 | 263 | 273 | 283 | 292 | 302 | 312 | 5 4.5 <br> 6 5.4 |
| 450 |  | 321 | 331 | 341 | 350 | 360 | 369 | 379 | 389 | 398 | 408 | 7 5.4 <br> 7 6.3 |
| 451 |  | 418 | 427 | 437 | 447 | 456 | 466 | 475 | 485 | 495 | 504 | 7.2 |
| 452 |  | 514 | 523 | 533 | 543 | 552 | 562 | 571 | 581 | 591 | $600 \cdot$ |  |
| 453 |  | 610 | 619 | 629 | 639 | 648 | 658 | 667 | 677 | 686 | 696 |  |
| 454 |  | 706 | 715 | 725 | 734 | 744 | 753 | 763 | 772 | 782 | 792 |  |
| 455 |  | 801 | 811 | 820 | 830 | 839 | 849 | 858 | 868 | 877 | 887 |  |
| 456 |  | 896 | 906 | 916 | 925 | 935 | 944 | 954 | 963 | 973 | 982 |  |
| 457 |  | 992 | *001 | *011 | *020 | *030 | *039 | *049 | *058 | *068 | *077 |  |
| 458 | 66 | 087 | 096 | 106 | 115 | 124 | 134 | 143 | 153 | 162 | 172 |  |
| 459 |  | 181 | 191 | 200 | 210 | 219 | 229 | 238 | 247 | 257 | 266 |  |
| 460 |  | 276 | 285 | 295 | 304 | 314 | 323 | 332 | 342 | 351 | 361 |  |
| N | L. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 460 to 499. Log. 662 to 698.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 460 | 66 | 276 | 285 | 295 | 304 | 314 | 323 | 332 | 342 | 351 | 361 |  |
| 461 |  | 370 | 380 | 389 | 398 | 408 | 417 | 427 | 436 | 445 | 455 |  |
| 462 |  | 464 | 474 | 483 | 492 | 502 | 511 | 521 | 530 | 539 | 549 |  |
| 463 |  | 558 | 567 | 577 | 586 | 596 | 605 | 614 | 624 | 633 | 642 |  |
| 464 |  | 652 | 661 | 671 | 680 | 689 | 699 | 708 | 717 | 727 | 736 |  |
| 465 |  | 745 | 755 | 764 | 773 | 783 | 792 | 801 | 811 | 820 | 829 |  |
| 466 |  | 839 | 848 | 857 | 867 | 876 | 885 | 894 | 904 | 913 | 922 |  |
| 467 |  | 932 | 941 | 950 | 960 | 969 | 978 | 987 | 997 | *006 | *015 |  |
| 468 | 67 | 025 | 034 | 043 | 052 | 062 | 071 | 080 | 089 | 099 | 108 | 10 |
| 469 |  | 117 | 127 | 136 | 145 | 154 | 164 | 173 | 182 | 191 | 201 | 10 |
| 470 |  | 210 | 219 | 228 | 237 | 247 | 256 | 265 | 274 | 284 | 293 | 1 1.0 <br> 2 2.0 |
| 471 |  | 302 | 311 | 321 | 330 | 339 | 348 | 357 | 367 | 376 | 385 | 38.0 |
| 472 |  | 394 | 403 | 413 | 422 | 431 | 440 | 449 | 459 | 468 | 477 | $4{ }^{4} 4.0$ |
| 473 |  | 486 | 495 | 504 | 514 | 523 | 532 | 541 | 550 | 560 | 569 |   <br> 6 6.0 |
| 474 |  | 578 | 587 | 596 | 605 | 614 | 624 | 633 | 642 | 651 | 660 | 7 7.0 <br> 8 8.0 |
| 475 |  | 669 | 679 | 688 | 697 | 706 | 715 | 724 | 733 | 742 | 752 |  |
| 476 |  | 761 | 770 | 779 | 788 | 797 | 806 | 815 | 825 | 834 | 843 |  |
| 477 |  | 852 | 861 | 870 | 879 | 888 | 897 | 906 | 916 | 925 | 934 |  |
| 478 |  | 943 | 952 | 961 | 970 | 979 | 988 | 997 | *006 | *015 | *024 |  |
| 479 | 68 | 034 | 043 | 052 | 061 | 070 | 079 | 088 | 097 | 106 | 115 |  |
| 480 |  | 124 | 133 | 142 | 151 | 160 | 169 | 178 | 187 | 196 | 205 |  |
| 481 |  | 215 | 224 | 233 | 242 | 251 | 260 | 269 | 278 | 287 | 296 |  |
| 482 |  | 305 | 314 | 323 | 332 | 341 | 350 | 359 | 368 | 377 | 386 |  |
| 483 |  | 395 | 404 | 413 | 422 | 431 | 440 | 449 | 458 | 467 | 476 |  |
| 484 |  | 485 | 494 | 502 | 511 | 520 | 529 | 538 | 547 | 556 | 565 |  |
| 485 |  | 574 | 583 | 592 | 601 | 610 | 619 | 628 | 637 | 646 | 655 | 9 |
| 486 |  | 664 | 673 | 681 | 690 | 699 | 708 | 717 | 726 | 735 | 744 |  |
| 487 |  | 753 | 762 | 771 | 780 | 789 | 797 | 806 | 815 | 824 | 833 | 2 1.8 <br> 3 2.8 |
| 488 |  | 842 | 851 | 860 | 869 | 878 | 886 | 895 | 904 | 913 | 922 |   <br> 4 2.6 |
| 489 |  | 931 | 940 | 949 | 958 | 966 | 975 | 984 | 993 | *002 | *011 | 54.5 |
| 490 | 69 | 020 | 028 | 037 | 046 | 055 | 064 | 073 | 082 | 090 | 099 | 6 5.4 <br> 7 6.3 |
| 491 |  | 108 | 117 | 126 | 135 | 144 | 152 | 162 | 170 | 179 | 188 | 88 |
| 492 |  | 197 | 205 | 214 | 223 | 232 | 241 | 249 | 258 | 267 | 276 |  |
| 493 |  | 285 | 294 | 302 | 311 | 320 | 329 | 338 | 346 | 355 | 364 |  |
| 494 |  | 373 | 381 | 390 | 399 | 408 | 417 | 425 | 434 | 443 | 452 |  |
| 495 |  | 461 | 469 | 478 | 487 | 496 | 504 | 513 | 522 | 531 | 539 |  |
| 496 |  | 548 | 557 | 566 | 574 | 583 | 592 | 601 | 609 | 618 | 627 |  |
| 497 |  | 636 | 644 | 653 | 662 | 671 | 679 | 688 | 697 | 705 | 714 |  |
| 498 |  | 723 | 732 | 740 | 749 | 758 | 767 | 775 | 784 | 793 | 801 |  |
| 499 |  | 810 | 819 | 827 | 836 | 845 | 854 | 862 | 871 | 880 | 888 |  |
| 500 |  | 897 | 906 | 914 | 923 | 932 | 940 | 949 | 958 | 966 | 975 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 500 to 539. Log. 698 to 732.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500 | 69 | 897 | 906 | 91. | 922 | 932 | 940 | 949 | 958 | 966 | 975 |  |
| 501 |  | 984 | 992 | *001 | *010 | *018 | *027 | *036 | *044 | *053 | *062 |  |
| 502 | 70 | 070 | 079 | 088 | 096 | 105 | 114 | 122 | 131 | 140 | 148 |  |
| 503 |  | 157 | 165 | 174 | 183 | 191 | 200 | 209 | 217 | 226 | 234 |  |
| 504 |  | 243 | 252 | 260 | 269 | 278 | 286 | 295 | 303 | 312 | 321 |  |
| 505 |  | 329 | 338 | 346 | 355 | 364 | 372 | 381 | 389 | 398 | 406 |  |
| 506 |  | 415 | 424 | 432 | 441 | 449 | 458 | 467 | 475 | 484 | 492 |  |
| 507 |  | 501 | 509 | 518 | 526 | 535 | 544 | 552 | 561 | 569 | 578 |  |
| 508 |  | 586 | 595 | 603 | 612 | 621 | 629 | 638 | 646 | 655 | 663 |  |
| 509 |  | 672 | 680 | 689 | 697 | 706 | 714 | 723 | 731 | 740 | 749 |  |
| 510 |  | 757 | 766 | 774 | 783 | 791 | 800 | 808 | 817 | 825 | 834 | 1 0.9 <br> 2 1.8 |
| 511 |  | 842 | 851 | 859 | 868 | 876 | 885 | 893 | 902 | 910 | 919 | 32.7 |
| 512 |  | 927 | 935 | 944 | 952 | 961 | 969 | 978 | 986 | 995 | *003 | 4 3.6 <br> 5 4.5 |
| 513 | 71 | 012 | 020 | 029 | 037 | 046 | 054 | 063 | 071 | 079 | 088 | $\begin{array}{lll}5 & 4.5 \\ 6 & 5.4\end{array}$ |
| 514 |  | 096 | 105 | 113 | 122 | 130 | 139 | 147 | 155 | 164 | 172 | 7 6.3 <br> 8 7.2 |
| 515 |  | 181 | 189 | 198 | 206 | 214 | 223 | 231 | 240 | 248 | 257 | 9.1 |
| 516 |  | 265 | 273 | 282 | 290 | 299 | 307 | 315 | 324 | 332 | 341 |  |
| 517 |  | 349 | 357 | 366 | 374 | 383 | 391 | 399 | 408 | 416 | 425 |  |
| 518 |  | 433 | 441 | 450 | 458 | 466 | 475 | 483 | 492 | 500 | 508 |  |
| 519 |  | 517 | 525 | 533 | 542 | 550 | 559 | 567 | 575 | 584 | 592 |  |
| 520 |  | 600 | 609 | 617 | 625 | 634 | 642 | 650 | 659 | 667 | 675 |  |
| 521 |  | 684 | 692 | 700 | 709 | 717 | 725 | 734 | 742 | 750 | 759 |  |
| 522 |  | 767 | 775 | 784 | 792 | 800 | 809 | 817 | 825 | 834 | 842 |  |
| 523 |  | 850 | 858 | 867 | 875 | 883 | 892 | 900 | 908 | 917 | 925 |  |
| 524 |  | 933 | 941 | 950 | 958 | 966 | 975 | 983 | 991 | 999 | *008 |  |
| 525 | 72 | 016 | 024 | 032 | 041 | 049 | 057 | 066 | 074 | 082 | 090 | 8 |
| 526 |  | 099 | 107 | 115 | 123 | 132 | 140 | 148 | 156 | 165 | 173 |  |
| 527 |  | 181 | 189 | 198 | 206 | 214 | 222 | 230 | 239 | 247 | 255 | 2 1.6 <br> 3 2.4 <br>   |
| 528 |  | 263 | 272 | 280 | 288 | 296 | 304 | 313 | 321 | 329 | 337 | 3 2.4 <br> 4 3.2 |
| 529 |  | 346 | 354 | 362 | 370 | 378 | 387 | 395 | 403 | 411 | 419 | 5 4.0 <br> 6 4.8 |
| 530 |  | 428 | 436 | 444 | 452 | 460 | 469 | 477 | 485 | 493 | 501 | 7 5.8 |
| 531 |  | 509 | 518 | 526 | 534 | 542 | 550 | 558 | 567 | 575 | 583 | 8 6.4 <br> 9 7.2 |
| 532 |  | 591 | 599 | 607 | 616 | 624 | 632 | 640 | 648 | 656 | 665 |  |
| 533 |  | 673 | 681 | 689 | 697 | 705 | 713 | 722 | 730 | 738 | 746 |  |
| 534 |  | 754 | 762 | 770 | 779 | . 787 | 795 | 803 | 811 | 819 | 827 |  |
| 535 |  | 835 | 843 | 852 | 860 | 868 | 876 | 884 | 892 | 900 | 908 |  |
| 536 |  | 916 | 925 | 933 | 941 | 949 | 957 | 965 | 973 | 981 | 989 |  |
| 537 |  | 997 | *006 | *014 | *022 | *030 | *038 | *046 | *054 | 062 | *070 |  |
| 538 | 73 | 078 | 086 | 094 | 102 | 111 | 119 | 127 | 135 | 143 | 151 |  |
| 539 |  | 159 | 167 | 175 | 183 | 191 | 199 | 207 | 215 | 223 | 231 |  |
| 540 |  | 239 | 247 | 255 | 263 | 272 | 280 | 288 | 296 | 304 | 312 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 540 to 579. Log. 732 to 763.


Num. 580 to 619. Log. 763 to 792.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 580 | 76 | 343 | 350 | 358 | 365 | 373 | 380 | 388 | 395 | 403 | 410 |  | 8 |
| 581 |  | 418 | 425 | 433 | 440 | 448 | 455 | 462 | 470 | 477 | 485 |  |  |
| 582 |  | 492 | 500 | 507 | 515 | 522 | 530 | 537 | 545 | 552 | 559 | 2 | . 5 |
| 583 |  | 567 | 574 | 582 | 589 | 597 | 604 | 612 | 619 | 626 | 634 | 3 | 2.4 |
| 584 |  | 641 | 649 | 656 | 664 | 671 | 678 | 686 | 693 | 701 | 708 |  | 3.2 4.0 |
| 585 |  | 716 | 723 | 730 | 738 | 745 | 753 | 780 | 768 | 775 | 782 |  |  |
| 586 |  | 790 | 797 | 805 | 812 | 819 | 827 | 834 | 842 | 849 | 856 |  |  |
| 587 |  | 864 | 871 | 879 | 886 | 893 | 901 | 908 | 916 | 923 | 930 |  |  |
| 588 |  | 938 | 945 | 953 | 960 | 967 | 975 | 982 | 989 | 997 | *004 |  |  |
| 589 | 77 | 012 | 019 | 026 | 034 | 041 | 048 | 056 | 063 | 070 | 078 |  |  |
| 590 |  | 085 | 093 | 100 | 107 | 115 | 122 | 129 | 137 | 144 | 151 |  |  |
| 591 |  | 159 | 166 | 173 | 181 | 188 | 195 | 203 | 210 | 217 | 225 |  |  |
| 592 |  | 232 | 240 | 247 | 254 | 262 | 269 | 276 | 283 | 291 | 298 |  |  |
| 593 |  | 305 | 313 | 320 | 327 | 335 | 342 | 349 | 357 | 364 | 371 |  |  |
| 594 |  | 379 | 386 | 393 | 401 | 408 | 415 | 422 | 430 | 437 | 444 |  |  |
| 595 |  | 452 | 459 | 466 | 474 | 481 | 488 | 495 | 503 | 510 | 517 | 7 |  |
| 596 |  | 525 | 532 | 539 | 546 | 554 | 561 | 568 | 576 | 583 | 590 |  |  |
| 597 |  | 597 | 605 | 612 | 619 | 627 | 634 | 641 | 648 | 656 | 663 |  |  |
| 598 |  | 670 | 677 | 685 | 692 | 699 | 706 | 714 | 721 | 728 | 735 |  |  |
| 599 |  | 743 | 750 | 757 | 764 | 772 | 779 | 786 | 793 | 801 | 808 | 1  <br> 1 0.7 <br> 2 1.4 <br> 3 2.1 <br> 4 2.8 <br> 5 3.5 <br> 6 4.2 <br> 7 4.9 <br> 8 5.6 <br> 9 6.3 |  |
| 600 |  | 815 | 822 | 830 | 837 | 844 | 851 | 859 | 866 | 873 | 880 |  |  |
| 601 |  | 887 | 895 | 902 | 909 | 916 | 924 | 931 | 938 | 945 | 952 |  |  |
| 602 |  | 960 | 967 | 974 | 981 | 988 | 996 | *003 | *010 | *017 | *025 |  |  |
| 603 | 78 | 032 | 039 | 046 | 053 | 061 | 068 | 075 | 082 | 089 | 097 |  |  |
| 604 |  | 104 | 111 | 118 | 125 | 132 | 140 | 147 | 154 | 161 | 168 |  |  |
| 605 |  | 176 | 183 | 190 | 197 | 204 | 211 | 219 | 226 | 233 | 240 |  |  |
| 606 |  | 247 | 254 | 262 | 269 | 276 | 283 | 290 | 297 | 305 | 312 |  |  |
| 607 |  | 319 | 326 | 333 | 340 | 347 | 355 | 362 | 369 | 376 | 383 |  |  |
| 608 |  | 390 | 398 | 405 | 412 | 419 | 426 | 433 | 440 | 447 | 455 |  |  |
| 609 |  | 462 | 469 | 476 | 483 | 490 | 497 | 504 | 512 | 519 | 526 |  |  |
| 610 |  | 533 | 540 | 547 | 554 | 561 | 569 | 576 | 583 | 590 | 597 |  |  |
| 611 |  | 604 | 611 | 618 | 625 | 633 | 640 | 647 | 654 | 661 | 668 |  |  |
| 612 |  | 675 | 682 | 689 | 696 | 704 | 711 | 718 | 725 | 732 | 739 |  |  |
| 613 |  | 746 | 753 | 760 | 767 | 774 | 781 | 789 | 796 | 802 | 810 |  |  |
| 614 |  | 817 | 824 | 831 | 838 | 845 | 852 | 859 | 866 | 873 | 880 |  |  |
| 615 |  | 888 | 895 | 902 | 909 | 916 | 923 | 930 | 937 | 944 | 951 |  |  |
| 616 |  | 958 | 965 | 972 | 979 | 986 | $993 * 000 * 007 * 014 * 021$ |  |  |  |  |  |  |
| 617 | 79 | 029 | 036 | 043 | 050 | 057 | 064 | 071 | 078 | 085 | 092 |  |  |
| 618 |  | 099 | 106 | 113 | 120 | 127 | 134 | 141 | 148 | 155 | 162 |  |  |
| 619 |  | 169 | 176 | 183 | 190 | 197 | 204 | 211 | 218 | 225 | 232 |  |  |
| 620 |  | 239 | 246 | 253 | 260 | 267 | 274 | 281 | 288 | 295 | 302 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. | P. |

Num. 620 to 659. Log. 792 to 819.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 620 | 79 | 239 | 246 | 253 | 260 | 267 | 274 | 281 | 288 | 295 | 302 |  |
| 621 |  | 309 | 316 | 323 | 330 | 337 | 344 | 351 | 358 | 365 | 372 |  |
| 622 |  | 379 | 386 | 393 | 400 | 407 | 414 | 421 | 428 | 435 | 442 |  |
| 623 |  | 449 | 456 | 463 | 470 | 477 | 484 | 491 | 498 | 505 | 511 |  |
| 624 |  | 518 | 525 | 532 | 539 | 546 | 553 | 560 | 567 | 574 | 581 |  |
| 625 |  | 588 | 595 | 602 | 609 | 616 | 623 | 630 | 637 | 644 | 650 |  |
| 626 |  | 657 | 664 | 671 | 678 | 685 | 692 | 699 | 706 | 713 | 720 |  |
| 627 |  | 727 | 734 | 741 | 748 | 754 | 761 | 768 | 775 | 782 | 789 |  |
| 628 |  | 796 | 803 | 810 | 817 | 824 | 831 | 837 | 844 | 851 | 858 |  |
| 629 |  | 865 | 872 | 879 | 886 | 893 | 900 | 906 | 913 | 920 | 927 |  |
| 630 |  | 934 | 941 | 948 | 955 | 962 | 969 | 975 | 982 | 989 | 996 |  |
| 631 | 80 | 003 | 010 | 017 | 024 | 030 | 037 | 044 | 051 | 058 | 065 |  |
| 632 |  | 072 | 079 | 085 | 092 | 099 | 106 | 113 | 120 | 127 | 134 |  |
| 633 |  | 140 | 147 | 154 | 161 | 168 | 175 | 182 | 188 | 195 | 202 |  |
| 634 |  | 209 | 216 | 223 | 229 | 236 | 243 | 250 | 257 | 264 | 271 |  |
| 635 |  | 277 | 284 | 291 | 298 | 305 | 312 | 318 | 325 | 332 | 339 |  |
| 636 |  | 346 | 353 | 359 | 366 | 373 | 380 | 387 | 393 | 400. | 407 |  |
| 637 |  | 414 | 421 | 428 | 434 | 441 | 448 | 455 | 462 | 468 | 475 | 7 |
| 638 |  | 482 | 489 | 496 | 502 | 509 | 516 | 523 | 530 | 536 | 543 | $1{ }^{1} 0.7$ |
| 639 |  | 550 | 557 | 564 | 570 | 577 | 584 | 591 | 598 | 604 | 611 | 2 1.4 <br> 3 2.1 |
| 640 |  | 618 | 625 | 632 | 638 | 645 | 652 | 659 | 665 | 672 | 679 | 4 2.8 <br> 5 3.5 |
| 641 |  | 686 | 693 | 699 | 706 | 713 | 720 | 726 | 733 | 740 | 747 | $\begin{array}{ll}5 \\ 6 & 4.2\end{array}$ |
| 642 |  | 754 | 760 | 767 | 774 | 781 | 787 | 794 | 801 | 808 | 814 | 74.9 |
| 643 |  | 821 | 828 | 835 | 841 | 848 | 855 | 862 | 868 | 875 | 882 | 8 5.6 <br> 9 6.3 |
| 644 |  | 889 | 895 | 902 | 909 | 916 | 922 | 929 | 936 | 943 | 949 |  |
| 645 |  | 956 | 963 | 969 | 976 | 983 | 990 | 996 | *003 | *010 | *017 |  |
| 646 | 81 | 023 | 030 | 037 | 043 | 050 | 057 | 064 | 070 | 077 | 084 |  |
| 647 |  | 090 | 097 | 104 | 111 | 117 | 124 | 131 | 137 | 144 | 151 |  |
| 648 |  | 158 | 164 | 171 | 178 | 184 | 191 | 198 | 204 | 211 | 218 |  |
| 649 |  | 224 | 231 | 238 | 245 | 251 | 258 | 265 | 271 | 278 | 285 |  |
| 650 |  | 291 | 298 | 305 | 311 | 318 | 325 | 331 | 338 | 345 | 351 |  |
| 651 |  | 358 | 365 | 371 | 378 | 385 | 391 | 398 | 405 | 411 | 418 |  |
| 652 |  | 425 | 431 | 438 | 445 | 451 | 458 | 465 | 471 | 478 | 485 |  |
| 653 |  | 491 | 498 | 505 | 511 | 518 | 525 | 531 | 538 | 544 | 551 |  |
| 654 |  | 558 | 564 | 571 | 578 | 584 | 591 | 598 | 604 | 611 | 617 |  |
| 655 |  | 624 | 631 | 637 | 644 | 651 | 657 | 664 | 671 | 677 | 684 |  |
| 656 |  | 690 | 697 | 704 | 710 | 717 | $723{ }^{\circ}$ | 730 | 737 | 743 | 750 |  |
| 657 |  | 757 | 763 | 770 | 776 | 783 | 790 | 796 | 803 | 809 | 816 |  |
| 658 |  | 823 | 829 | 836 | 842 | 849 | 856 | 862 | 869 | 875 | 882 |  |
| 659 |  | 889 | 895 | 902 | 908 | 915 | 921 | 928 | 935 | 941 | 948 |  |
| 660 |  | 954 | 961 | 968 | 974 | 981 | 987 | 994 | *000 | *007 | *014 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 660 to 699 . Log. 819 to 845.


Num. 700 to 739. Log. 845 to 869.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 700 | 84 | 510 | 516 | 522 | 528 | 535 | 541 | 547 | 553 | 559 | 566 |  |  |
| 701 |  | 572 | 578 | 584 | 590 | 597 | 603 | 609 | 615 | 621 | 628 |  |  |
| 702 |  | 634 | 640 | 646 | 652 | 658 | 665 | 671 | 677 | 683 | 689 |  |  |
| 703 |  | 696 | 702 | 708 | 714 | 720 | 726 | 733 | 739 | 745 | 751 |  |  |
| 704 |  | 757 | 763 | 770 | 776 | 782 | 788 | 794 | 800 | 807 | 813 |  |  |
| 705 |  | 819 | 82.5 | 831 | 837 | 844 | 850 | 856 | 862 | 868 | 874 |  |  |
| 706 |  | 880 | 887 | 893 | 899 | 905 | 911 | 917 | 924 | 930 | 936 |  |  |
| 707 |  | 942 | 948 | 954 | 960 | 967 | 973 | 979 | 985 | 991 | 997 |  |  |
| 708 | 85 | 003 | 009 | 016 | 022 | 028 | 034 | 040 | 046 | 052 | 058 |  |  |
| 709 |  | 065 | 071 | 077 | 083 | 089 | 095 | 101 | 107 | 114 | 120 |  |  |
| 710 |  | 126 | 132 | 138 | 144 | 150 | 156 | 163 | 169 | 175 | 181 |  |  |
| 711 |  | 187 | 193 | 199 | 205 | 211 | 217 | 224 | 230 | 236 | 242 |  |  |
| 712 |  | 248 | 254 | 260 | 266 | 272 | 278 | 285 | 291 | 297 | 303 |  |  |
| 713 |  | 309 | 315 | 321 | 327 | 333 | 339 | 345 | 352 | 358 | 364 |  |  |
| 714 |  | 370 | 376 | 382 | 388 | 394 | 400 | 406 | 412 | 418 | 425 |  |  |
| 715 |  | 431 | 437 | 443 | 449 | 455 | 461 | 467 | 473 | 479 | 485 |  |  |
| 716 |  | 491 | 497 | 503 | 509 | 516 | 522 | 528 | 534 | 540 | 546 |  |  |
| 717 |  | 552 | 558 | 564 | 570 | 576 | 582 | 588 | 594 | 600 | 606 |  | 6 |
| 718 |  | 612 | 618 | 625 | 631 | 637 | 643 | 649 | 655 | 661 | 667 |  |  |
| 719 |  | 673 | 679 | 685 | 691 | 697 | 703 | 709 | 715 | 721 | 727 | $\stackrel{1}{2}$ | 0.6 1.2 |
| 720 |  | 733 | 739 | 745 | 751 | 757 | 763 | 769 | 775 | 781 | 788 | 3 | 1.8 2.4 |
| 721 |  | 794 | 800 | 806 | 812 | 818 | 824 | 830 | 836 | 842 | 848 | 5 | 3.0 |
| 722 |  | 854 | 860 | 866 | 872 | 878 | 884 | 890 | 896 | 902 | 908 | 6 | 3.6 |
| 723 |  | 914 | 920 | 926 | 932 | 938 | 944 | 950 | 956 | 962 | 968 | 8 | 4.2 |
| 724 |  | 974 | 980 | 986 | 992 | 998 | *004 | *010 | *016 | *022 | *028 | 8 | 5.4 |
| 725 | 86 | 034 | 040 | 046 | 052 | 058 | 064 | 070 | 076 | 082 | 088 |  |  |
| 726 |  | 094 | 100 | 106 | 112 | 118 | 124 | 130 | 136 | 141 | 147 |  |  |
| 727 |  | 153 | 159 | 165 | 171 | 177 | 183 | 189 | 195 | 201 | 207 |  |  |
| 728 |  | 213 | 219 | 225 | 231 | 237 | 243 | 249 | 255 | 261 | 267 |  |  |
| 729 |  | 273 | 279 | 285 | 291 | 297 | 303 | 308 | 314 | 320 | 326 |  |  |
| 730 |  | 332 | 338 | 344 | 350 | 356 | 362 | 368 | 374 | 380 | 386 |  |  |
| 731 |  | 392 | 398 | 404 | 410 | 415 | 421 | 427 | 433 | 439 | 445 |  |  |
| 732 |  | 451 | 457 | 463 | 469 | 475 | 481 | 487 | 493 | 499 | 504 |  |  |
| 733 |  | 510 | 516 | 522 | 528 | 534 | 540 | 546 | 552 | 558 | 564 |  |  |
| 734 |  | 570 | 576 | 581 | 587 | 593 | 599 | 605 | 611 | 617 | 623 |  |  |
| 735 |  | 629 | 635 | 641 | 646 | 652 | 658 | 664 | 670 | 676 | 682 |  |  |
| 736 |  | 688 | 694 | 700 | 705 | 711 | 717 | 723 | 729 | 735 | 741 |  |  |
| 737 |  | 747 | 753 | 759 | 764 | 770 | 776 | 782 | 788 | 794 | 800 |  |  |
| 738 |  | 806 | 812 | 817 | 823 | 829 | 835 | 841 | 847 | 853 | 859 |  |  |
| 739 |  | 864 | 870 | 876 | 882 | 888 | 894 | 900 | 906 | 911 | 917 |  |  |
| 740 |  | 923 | 929 | 935 | 941 | 947 | 953 | 958 | 964 | 970 | 976 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. |

Num. 740 to 779. Log. 869 to 892.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 740 | 86 | 923 | 929 | 935 | 941 | 947 | 953 | 958 | 964 | 970 | 976 |  |  |
| 741 |  | 982 | 988 | 994 | 999 | *005 | *011 | *017 | *023 | *029 | *035 |  |  |
| 742 | 87 | 040 | 046 | 052 | 058 | 064 | 070 | 075 | 081 | 087 | 093 |  |  |
| 743 |  | 099 | 105 | 111 | 116 | 122 | 128 | 134 | 140 | 146 | 151 |  |  |
| 744 |  | 157 | 163 | 169 | 175 | 181 | 186 | 192 | 198 | 204 | 210 |  |  |
| 745 |  | 216 | 221 | 227 | 233 | 239 | 245 | 251 | 256 | 262 | 268 |  |  |
| 746 |  | 274 | 280 | 286 | 291 | 297 | 303 | 309 | 315 | 320 | 326 |  |  |
| 747 |  | 332 | 338 | 344 | 349 | 355 | 361 | 367 | 373 | 379 | 384 |  |  |
| 748 |  | 390 | 396 | 402 | 408 | 413 | 419 | 425 | 431 | 437 | 442 |  |  |
| 749 |  | 448 | 454 | 460 | 466 | 471 | 477 | 483 | 489 | 495 | 500 |  |  |
| 750 |  | 506 | 512 | 518 | 523 | 529 | 535 | 541 | 547 | 552 | 558 |  |  |
| 751 |  | 564 | 570 | 576 | 581 | 587 | 593 | 599 | 604 | 610 | 616 |  |  |
| 752 |  | 622 | 628 | 633 | 639 | 645 | 651 | 656 | 662 | 668 | 674 |  |  |
| 753 |  | 679 | 685 | 691 | 697 | 703 | 708 | 714 | 720 | 726 | 731 |  |  |
| 754 |  | 737 | 743 | 749 | 754 | 760 | 766 | 772 | 777 | 783 | 789 |  |  |
| 755 |  | 795 | 800 | 806 | 812 | 818 | 823 | 829 | 835 | 841 | 846 |  |  |
| 756 |  | 852 | 858 | 864 | 869 | 875 | 881 | 887 | 892 | 898 | 904 |  |  |
| 757 |  | 910 | 915 | 921 | 927 | 933 | 938 | 944 | 950 | 955 | 961 |  | 6 |
| 758 |  | 967 | 973 | 978 | 984 | 990 | 996 | *001 | *007 | *013 | *018 |  |  |
| 759 | 88 | 024 | 030 | 036 | 041 | 047 | 053 | 058 | 064 | 070 | 076 | 1 |  |
| 760 |  | 081 | 087 | 093 | 098 | 104 | 110 | 116 | 121 | 127 | 133 | 3 |  |
| 761 |  | 138 | 144 | 150 | 156 | 161 | 167 | 173 | 178 | 184 | 190 | 5 |  |
| 762 |  | 195 | 201 | 207 | 213 | 218 | 224 | 230 | 235 | 241 | 247 | 6 |  |
| 763 |  | 252 | 258 | 264 | 270 | 275 | 281 | 287 | 292 | 298 | 304 | 8 |  |
| 764 |  | 309 | 315 | 321 | 326 | 332 | 338 | 343 | 349 | 355 | 360 | 9 |  |
| 765 |  | 366 | 372 | 377 | 383 | 389 | 395 | 400 | 406. | 412 | 417 |  |  |
| 766 |  | 423 | 429 | 434 | 440 | 446 | 451 | 457 | 463 | 468 | 474 |  |  |
| 767 |  | 480 | 485 | 491 | 497 | 502 | 508 | 513 | 519 | 525 | 530 |  |  |
| 768 |  | 536 | 542 | 547 | 553 | 559 | 564 | 570 | 576 | 581 | 587 |  |  |
| 769 |  | 593 | 598 | 604 | 610 | 615 | 621 | 627 | 632 | 638 | 643 |  |  |
| 770 |  | 649 | 655 | 660 | 666 | 672 | 677 | 683 | 689 | 694 | 700 |  |  |
| 771 |  | 705 | 711 | 717 | 722 | 728 | 734 | 739 | 745 | 750 | 756 |  |  |
| 772 |  | 762 | 767 | 773 | 779 | 784 | 790 | 795 | 801 | 807 | 812 |  |  |
| 773 |  | 818 | 824 | 829 | 835 | 840 | 846 | 852 | 857 | 863 | 868 |  |  |
| 774 |  | 874 | 880 | 885 | 891 | 897 | 902 | 908 | 913 | 919 | 925 |  |  |
| 775 |  | 930 | 936 | 941 | 947 | 953 | 958 | 964 | 969 | 975 | 981 |  |  |
| 776 |  | 986 | 992 | 997 | *003 | *009 | *014 | *020 | *025 | *031 | *037 |  |  |
| 777 | 89 | 042 | 048 | 053 | 059 | 064 | 070 | 076 | 081 | 087 | 092 |  |  |
| 778 |  | 098 | 104 | 109 | 115 | 120 | 126 | 131 | 137 | 143 | 148 |  |  |
| 779 |  | 154 | 159 | 165 | 170 | 176 | 182 | 187 | 193 | 198 | 204 |  |  |
| 780 |  | 209 | 215 | 221 | 226 | 232 | 237 | 243 | 248 | 254 | 260 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | P. |

Num. 780 to 819. Log. 892 to 913.


Num. 820 to 859. Log. 913 to 934.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 91 | 381 | 387 | 392 | 397 | 403 | 408 | 413 | 418 | 424 | 429 |  |
| 821 |  | 434 | 440 | 445 | 450 | 455 | 461 | 466 | 471 | 477 | 482 |  |
| 822 |  | 487 | 492 | 498 | 503 | 508 | 514 | 519 | 524 | 529 | 535 |  |
| 823 |  | 540 | 545 | 551 | 556 | 561 | 566 | 572 | 577 | 582 | 587 |  |
| 824 |  | 593 | 598 | 603 | 609 | 614 | 619 | 624 | 630 | 635 | 640 |  |
| 825 |  | 645 | 651 | 656 | 661 | 666 | 672 | 677 | 682 | 687 | 693 |  |
| 826 |  | 698 | 703 | 709 | 714 | 719 | 724 | 730 | 735 | 740 | 745 |  |
| 827 |  | 751 | 756 | 761 | 766 | 772 | 777 | 782 | 787 | 793 | 798 |  |
| 828 |  | 803 | 808 | 814 | 819 | 824 | 829 | 834 | 840 | 845 | 850 |  |
| 829 |  | 855 | 861 | 866 | 871 | 876 | 882 | 887 | 892 | 897 | 903 |  |
| 830 |  | 908 | 913 | 918 | 924 | 929 | 934 | 939 | 944 | 950 | 955 |  |
| 831 |  | 960 | 965 | 971 | 976 | 981 | 986 | 991 | 997 | *002 | *007 |  |
| 832 | 92 | 012 | 018 | 023 | 028 | 033 | 038 | 044 | 049 | 054 | 059 |  |
| 833 |  | 065 | 070 | 075 | 080 | 085 | 091 | 096 | 101 | 106 | 111 |  |
| 834 |  | 117 | 122 | 127 | 132 | 137 | 143 | 148 | 153 | 158 | 163 |  |
| 835 |  | 169 | 174 | 179 | 184 | 189 | 195 | 200 | 205 | 210 | 215 |  |
| 836 |  | 221 | 226 | 231 | 236 | 241 | 247 | 252 | 257 | 262 | 267 |  |
| 837 |  | 273 | 278 | 283 | 288 | 293 | 298 | 304 | 309 | 314 | 319 | 5 |
| 838 |  | 324 | 330 | 335 | 340 | 345 | 350 | 355 | 361 | 366 | 371 |  |
| 839 |  | 376 | 381 | 387 | 392 | 397 | 402 | 407 | 412 | 418 | 423 | 12 0.5 <br> 2 1.0 |
| 840 |  | 428 | 433 | 438 | 443 | 449 | 454 | 459 | 464 | 469 | 474 | 3 1.5 <br> 4 2.0 |
| 841 |  | 480 | 485 | 490 | 495 | 500 | 505 | 511 | 516 | 521 | 526 | 52.5 |
| 842 |  | 531 | 536 | 542 | 547 | 552 | 557 | 562 | 567 | 572 | 578 | 6 |
| 843 |  | 583 | 588 | 593 | 598 | 603 | 609 | 614 | 619 | 624 | 629 | 8 4.0 |
| 844 |  | 634 | 639 | 645 | 650 | 655 | 660 | 665 | 670 | 675 | 681 | $9{ }^{9} 4.5$ |
| 845 |  | 686 | 691 | 696 | 701 | 706 | 711 | 716 | 722 | 727 | 732 |  |
| 846 |  | 737 | 742 | 747 | 752 | 758 | 763 | 768 | 773 | 778 | 783 |  |
| 847 |  | 788 | 793 | 799 | 804 | 809 | 814 | 819 | 824 | 829 | 834 |  |
| 848 |  | 840 | 845 | 850 | 855 | 860 | 865 | 870 | 875 | 881 | 886 |  |
| 849 |  | 891 | 896 | 901 | 906 | 911 | 916 | 921 | 927 | 932 | 937 |  |
| 850 |  | 942 | 947 | 952 | 957 | 962 | 967 | 973 | 978 | 983 | 988 |  |
| 851 |  | 993 | 998 | *003 | *008 | *013 | *018 | *024 | *029 | *034 | *039 |  |
| 852 | 93 | 044 | 049 | 054 | 059 | 064 | 069 | 075 | 080 | 085 | 090 |  |
| 853 |  | 095 | 100 | 105 | 110 | 115 | 120 | 125 | 131 | 136 | 141 |  |
| 854 |  | 146 | 151 | 156 | 161 | 166 | 171 | 176 | 181 | 186 | 192 |  |
| 855 |  | 197 | 202 | 207 | 212 | 217 | 222 | 227 | 232 | 237 | 242 |  |
| 856 |  | 247 | 252 | 258 | 263 | 268 | 273 | 278 | 283 | 288 | 293 |  |
| 857 |  | 298 | 303 | 308 | 313 | 318 | 323 | 328 | 334 | 339 | 344 |  |
| 858 |  | 349 | 354 | 359 | 364 | 369 | 374 | 379 | 384 | 389 | 394 |  |
| 859 |  | 399 | 404 | 409 | 414 | 420 | 425 | 430 | 435 | 440 | 445 |  |
| 860 |  | 450 | 455 | 460 | 465 | 470 | 475 | 480 | 485 | 490 | 495 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 860 to 899. Log. 934 to 954.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 860 | 93 | 450 | 455 | 460 | 465 | 470 | 475 | 480 | 485 | 490 | 495 |  |
| 861 |  | 500 | 505 | 510 | 515 | 520 | 526 | 531 | 536 | 541 | 546 |  |
| 862 |  | 551 | 556 | 561 | 566 | 571 | 576 | 581 | 586 | 591 | 596 |  |
| 863 |  | 601 | 606 | 611 | 616 | 621 | 626 | 631 | 636 | 641 | 646 |  |
| 864 |  | 651 | 656 | 661 | 666 | 671 | 676 | 682 | 687 | 692 | 697 |  |
| 865 |  | 702 | 707 | 712 | 717 | 722 | 727 | 732 | 737 | 742 | 747 |  |
| 866 |  | 752 | 757 | 762 | 767 | 772 | 777 | 782 | 787 | 792 | 797 |  |
| 867 |  | 802 | 807 | 812 | 817 | 822 | 827 | 832 | 837 | 842 | 847 |  |
| 868 |  | 852 | 857 | 862 | 867 | 872 | 877 | 882 | 887 | 892 | 897 |  |
| 869 |  | 902 | 907 | 912 | 917 | 922 | 927 | 932 | 937 | 942 | 947 |  |
| 870 |  | 952 | 957 | 962 | 967 | 972 | 977 | 982 | 987 | 992 | 997 |  |
| 871 | 94 | 002 | 007 | 012 | 017 | 022 | 027 | 032 | 037 | 042 | 047 |  |
| 872 |  | 052 | 057 | 062 | 067 | 072 | 077 | 082 | 086 | 091 | 096 |  |
| 873 |  | 101 | 106 | 111 | 116 | 121 | 126 | 131 | 136 | 141 | 146 |  |
| 874 |  | 151 | 156 | 161 | 166 | 171 | 176 | 181 | 186 | 191 | 196 |  |
| 875 |  | 201 | 206 | 211 | 216 | 221 | 226 | 231 | 236 | 240 | 245 |  |
| 876 |  | 250 | 255 | 260 | 265 | 270 | 275 | 280 | 285 | 290 | 295 |  |
| 877 |  | 300 | 305 | 310 | 315 | 320 | 325 | 330 | 335 | 340 | 345 | 5 |
| 878 |  | 349 | 354 | 359 | 364 | 369 | 374 | 379 | 384 | 389 | 394 |  |
| 879 |  | 399 | 404 | 409 | 414 | 419 | 424 | 429 | 433 | 438 | 443 | 1 0.5 <br> 2 1.0 |
| 880 |  | 448 | 453 | 458 | 463 | 468 | 473 | 478 | 483 | 488 | 493 | $\begin{array}{lll}3 & 1.5 \\ 4 & 2.0\end{array}$ |
| 881 |  | 498 | 503 | 507 | 512 | 517 | 522 | 527 | 532 | 537 | 542 | 5 2.5 |
| 882 |  | 547 | 552 | 557 | 562 | 567 | 571 | 576 | 581 | 586 | 591 | 6 3.0 <br> 7 3.5 |
| 883 |  | 596 | 601 | 606 | 611 | 616 | 621 | 626 | 630 | 635 | 640 | 8 4.0 |
| 884 |  | 645 | 650 | 655 | 660 | 665 | 670 | 675 | 680 | 685 | 689 | 9 4.5 |
| 885 |  | 694 | 699 | 704 | 709 | 714 | 719 | 724 | 729 | 734 | 738 |  |
| 886 |  | 743 | 748 | 753 | 758 | 763 | 768 | 773 | 778 | 783 | 787 |  |
| 887 |  | 792 | 797 | 802 | 807 | 812 | 817 | 822 | 827 | 832 | 836 |  |
| 888 |  | 841 | 846 | 851 | 856 | 861 | 866 | 871 | 876 | 880 | 885 |  |
| 889 |  | 890 | 895 | 900 | 905 | 910 | 915 | 919 | 924 | 929 | 934 |  |
| 890 |  | 939 | 944 | 949 | 954 | 959 | 963 | 968 | 973 | 978 | 983 |  |
| 891 |  | 988 | 993 | 998 | *002 | *007 | *012 | *017 | *022 | *027 | *032 |  |
| 892 | 95 | 036 | 041 | 046 | 051 | 056 | 061 | 066 | 071 | 075 | 080 |  |
| 893 |  | 085 | 090 | 095 | 100 | 105 | 109 | 114 | 119 | 124 | 129 |  |
| 894 |  | 134 | 139 | 143 | 148 | 153 | 158 | 163 | 168 | 173 | 177 |  |
| 895 |  | 182 | 187 | 192 | 197 | 202 | 207 | 211 | 216 | 221 | 226 |  |
| 896 |  | 231 | 236 | 240 | 245 | 250 | 255 | 260 | 265 | 270 | 274 |  |
| 897 |  | 279 | 284 | 289 | 294 | 299 | 303 | 308 | 313 | 318 | 323 |  |
| 898 |  | 328 | 332 | 337 | 342 | 347 | 352 | 357 | 361 | 366 | 371 |  |
| 899 |  | 376 | 381 | 386 | 390 | 395 | 400 | 405 | 410 | 415 | 419 |  |
| 900 |  | 424 | 429 | 434 | 439 | 444 | 448 | 453 | 458 | 463 | 468 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 900 to 939. Log. 954 to 973.

| N | L. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 900 | 95 | 424 | 429 | 434 | 439 | 444 | 448 | 453 | 458 | 463 | 468 |  |
| 901 |  | 472 | 477 | 482 | 487 | 492 | 497 | 501 | 506 | 511 | 516 |  |
| 902 |  | 521 | 525 | 530 | 535 | 540 | 545 | 550 | 554 | 559 | 564 |  |
| 903 |  | 569 | 574 | 578 | 583 | 588 | 593 | 598 | 602 | 607 | 612 |  |
| 904 |  | 617 | 622 | 626 | 631 | 636 | 641 | 646 | 650 | 655 | 660 |  |
| 905 |  | 665 | 670 | 674 | 679 | 684 | 689 | 694 | 698 | 703 | 708 |  |
| 906 |  | 713 | 718 | 722 | 727 | 732 | 737 | 742 | 746 | 751 | 756 |  |
| 907 |  | 761 | 766 | 770 | 775 | 780 | 785 | 789 | 794 | 799 | 804 |  |
| 908 |  | 809 | 813 | 818 | 823 | 828 | 832 | 837 | 842 | 847 | 852 |  |
| 909 |  | 856 | 861 | 866 | 871 | 875 | 880 | 885 | 890 | 895 | 899 |  |
| 910 |  | 904 | 909 | 914 | 918 | 923 | 928 | 933 | 938 | 942 | 947 |  |
| 911 |  | 952 | 957 | 961 | 966 | 971 | 976 | 980 | 985 | 990 | 995 |  |
| 912 |  | 999 | *004 | *009 | *014 | *019 | *023 | *028 | *033 | *038 | *042 |  |
| 913 | 96 | 047 | 052 | 057 | 061 | 066 | 071 | 076 | 080 | 085 | 090 |  |
| 914 |  | 095 | 099 | 104 | 109 | 114 | 118 | 123 | 128 | 133 | 137 |  |
| 915 |  | 142 | 147 | 152 | 156 | 161 | 166 | 171 | 175 | 180 | 185 |  |
| 916 |  | 190 | 194 | 199 | 204 | 209 | 213 | 218 | 223 | 227 | 232 |  |
| 917 |  | 237 | 242 | 246 | 251 | 256 | 261 | 265 | 270 | 275 | 280 | 5 |
| 918 |  | 284 | 289 | 294 | 298 | 303 | 308 | 313 | 317 | 322 | 327 |  |
| 919 |  | 332 | 336 | 341 | 346 | 350 | 355 | 360 | 365 | 369 | 374 | 1 0.5 <br> 2 1.0 <br> 3 1.5 |
| 920 |  | 379 | 384 | 388 | 393 | 398 | 402 | 407 | 412 | 417 | 421 | $\begin{array}{lll}3 & 1.5 \\ 4 & 2.0\end{array}$ |
| 921 |  | 426 | 431 | 435 | 440 | 445 | 450 | 454 | 459 | 464 | 468 | 52.5 |
| 922 |  | 473 | 478 | 483 | 487 | 492 | 497 | 501 | 506 | 511 | 515 | 6 3.0 <br> 7 3.5 |
| 923 |  | 520 | 525 | 530 | 534 | 539 | 544 | 548 | 553 | 558 | 562 | 7 3.5 <br> 8 4.0 |
| 924 |  | 567 | 572 | 577 | 581 | 586 | 591 | 595 | 600 | 605 | 609 | $9{ }^{8} 4.5$ |
| 925 |  | 614 | 619 | 624 | 628 | 633 | 638 | 642 | 647 | 652 | 656 |  |
| 926 |  | 661 | 666 | 670 | 675 | 680 | 685 | 689 | 694 | 699 | 703 |  |
| 927 |  | 708 | 713 | 717 | 722 | 727 | 731 | 736 | 741 | 745 | 750 |  |
| 928 |  | 755 | 759 | 764 | 769 | 774 | 778 | 783 | 788 | 792 | 797 |  |
| 929 |  | 802 | 806 | 811 | 816 | 820 | 825 | 830 | 834 | 839 | 844 |  |
| 930 |  | 848 | 853 | 858 | 862 | 867 | 872 | 876 | 881 | 886 | 890 |  |
| 931 |  | 895 | 900 | 904 | 909 | 914 | 918 | 923 | 928 | 932 | 937 |  |
| 932 |  | 942 | 946 | 951 | 956 | 960 | 965 | 970 | 974 | 979 | 984 |  |
| 933 |  | 988 | 993 | 997 | *002 | *007 | *011 | *016 | *021 | *025 | *030 |  |
| 934 | 97 | 035 | 039 | 044 | 049 | 053 | 058 | 063 | 067 | 072 | 077 |  |
| 935 |  | 081 | 086 | 090 | 095 | 100 | 104 | 109 | 114 | 118 | 123 |  |
| 936 |  | 128 | 132 | 137 | 142 | 146 | 151 | 155 | 160 | 165 | 169 |  |
| 937 |  | 174 | 179 | 183 | 188 | 192 | 197 | 202 | 206 | 211 | 216 |  |
| 938 |  | 220 | 225 | 230 | 234 | 239 | 243 | 248 | 253 | 257 | 262 |  |
| 939 |  | 267 | 271 | 276 | 280 | 285 | 290 | 294 | 299 | 304 | 308 |  |
| 940 |  | 313 | 317 | 322 | 327 | 331 | 336 | 340 | 345 | 350 | 354 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Num. 940 to 979. Log. 973 to 991.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 940 | 97 | 313 | 317 | 322 | 327 | 331 | 336 | 340 | 345 | 350 | 354 |  |  |
| 941 |  | 359 | 364 | 368 | 373 | 377 | 382 | 387 | 391 | 396 | 400 |  |  |
| 942 |  | 405 | 410 | 414 | 419 | 424 | 428 | 433 | 437 | 442 | 447 |  |  |
| 943 |  | 451 | 456 | 460 | 465 | 470 | 474 | 479 | 483 | 488 | 493 |  |  |
| 944 |  | 497 | 502 | 506 | 511 | 516 | 520 | 525 | 529 | 534 | 539 |  |  |
| 945 |  | 543 | 548 | 552 | 557 | 56.2 | 566 | 571 | 575 | 580 | 585 |  |  |
| 946 |  | 589 | 594 | 598 | 603 | 607 | 612 | 617 | 621 | 626 | 630 |  |  |
| 947 |  | 635 | 640 | 644 | 649 | 653 | 658 | 663 | 667 | 672 | 676 |  |  |
| 948 |  | 681 | 685 | 690 | 695 | 699 | 704 | 708 | 713 | 717 | 722 |  |  |
| 949 |  | 727 | 731 | 736 | 740 | 745 | 749 | 754 | 759 | 763 | 768 |  | 5 |
| 950 |  | 772 | 777 | 782 | 786 | 791 | 795 | 800 | 804 | 809 | 813 |  |  |
| 951 |  | 818 | 823 | 827 | 832 | 836 | 841 | 845 | 850 | 855 | 859 | 2 | 1.0 |
| 952 |  | 864 | 868 | 873 | 877 | 882 | 886 | 891 | 896 | 900 | 905 | 4 |  |
| 953 |  | 909 | 914 | 918 | 923 | 928 | 932 | 937 | 941 | 946 | 950 | 5 | 2.5 |
| 954 |  | 955 | 959 | 964 | 968 | 973 | 978 | 982 | 987 | 991 | 996 |  |  |
| 955 | 98 | 000 | 005 | 009 | 014 | 019 | 023 | 028 | 032 | 037 | 041 | 8 |  |
| 956 |  | 046 | 050 | 055 | 059 | 064 | 068 | 073 | 078 | 082 | 087 |  |  |
| 957 |  | 091 | 096 | 100 | 105 | 109 | 114 | 118 | 123 | 127 | 132 |  |  |
| 958 |  | 137 | 141 | 146 | 150 | 155 | 159 | 164 | 168 | 173 | 177 |  |  |
| 959 |  | 182 | 186 | 191 | 195 | 200 | 204 | 209 | 214 | 218 | 223 |  |  |
| 960 |  | 227 | 232 | 236 | 241 | 245 | 250 | 254 | 259 | 263 | 268 |  |  |
| 961 |  | 272 | 277 | 281 | 286 | 290 | 295 | 299 | 304 | 308 | 313 |  |  |
| 962 |  | 318 | 322 | 327 | 331 | 336 | 340 | 345 | 349 | 354 | 358 |  |  |
| 963 |  | 363 | 367 | 372 | 376 | 381 | 385 | 390 | 394 | 399 | 403 |  |  |
| 964 |  | 408 | 412 | 417 | 421 | 426 | 430 | 435 | 439 | 444 | 448 |  |  |
| 965 |  | 453 | 457 | 462 | 466 | 471 | 475 | 480 | 484 | 489 | 493 |  | 4 |
| 966 |  | 498 | 502 | 507 | 511 | 516 | 520 | 525 | 529 | 534 | 538 | 1 | 0.4 |
| 967 |  | 543 | 547 | 552 | 556 | 561 | 565 | 570 | 574 | 579 | 583 | 2 | 0.8 |
| 968 |  | 588 | 592 | 597 | 601 | 605 | 610 | 614 | 619 | 623 | 628 |  | 1.2 |
| 969 |  | 632 | 637 | 641 | 646 | 650 | 655 | 659 | 664 | 668 | 673 |  | 2.0 |
| 970 |  | 677 | 682 | 686 | 691 | 695 | 700 | 704 | 709 | 713 | 717 |  |  |
| 971 |  | 722 | 726 | 731 | 735 | 740 | 744 | 749 | 753 | 758 | 762 |  |  |
| 972 |  | 767 | 771 | 776 | 780 | 781 | 789 | 793 | 798 | 802 | 807 |  |  |
| 973 |  | 811 | 816 | 820 | 825 | 829 | 834 | 838 | 843 | 847 | 851 |  |  |
| 974 |  | 856 | 860 | 865 | 869 | 874 | 878 | 883 | 887 | 892 | 896 |  |  |
| 975 |  | 900 | 905 | 909 | 914 | 918 | 923 | 927 | 932 | 936 | 941 |  |  |
| 976 |  | 945 | 949 | 954 | 958 | 963 | 967 | 972 | 976 | 981 | 985 |  |  |
| 977 |  | 989 | 994 | 998 | *003 | *007 | *012 | *016 | *021 | *025 | *029 |  |  |
| 978 | 99 | 034 | 038 | 043 | 047 | 052 | 056 | 061 | 065 | 069 | 074 |  |  |
| 979 |  | 078 | 083 | 087 | 092 | 096 | 100 | 105 | 109 | 114 | 118 |  |  |
| 980 |  | 123 | 127 | 131 | 136 | 140 | 145 | 149 | 154 | 158 | 162 |  |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. | P. |

Num. 980 to 1000. Log. 991 to 999.

| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 980 | 99 | 123 | 127 | 131 | 136 | 140 | 145 | 149 | 154 | 158 | 162 |  |
| 981 |  | 167 | 171 | 176 | 180 | 185 | 189 | 193 | 198 | 202 | 207 |  |
| 982 |  | 211 | 216 | 220 | 224 | 229 | 233 | 238 | 242 | 247 | 251 |  |
| 983 |  | 255 | 260 | 264 | 269 | 273 | 277 | 282 | 286 | 291 | 295 |  |
| 984 |  | 300 | 304 | 308 | 313 | 317 | 322 | 326 | 330 | 335 | 339 |  |
| 985 |  | 344 | 348 | 352 | 357 | 361 | 366 | 370 | 374 | 379 | 383 |  |
| 986 |  | 388 | 392 | 396 | 401 | 405 | 410 | 414 | 419 | 423 | 427 |  |
| 987 |  | 432 | 436 | 441 | 445 | 449 | 454 | 458 | 463 | 467 | 471 |  |
| 988 |  | 476 | 480 | 484 | 489 | 493 | 498 | 502 | 506 | 511 | 515 |  |
| 989 |  | 520 | 524 | 528 | 533 | 537 | 542 | 546 | 550 | 555 | 559 | 4 |
| 990 |  | 564 | 568 | 572 | 577 | 581 | 585 | 590 | 594 | 599 | 603 | 1 0.4 <br> 2 0.4 |
| 991 |  | 607 | 612 | 616 | 621 | 625 | 629 | 634 | 638 | 642 | 647 | 1 0.4 <br> 3 1.8 |
| 992 |  | 651 | 656 | 660 | 664 | 669 | 673 | 677 | 682 | 686 | 691 | 41.6 |
| 993 |  | 695 | 699 | 704 | 708 | 712 | 717 | 721 | 726 | 730 | 734 | 52.0 |
| 994 |  | 739 | 743 | 747 | 752 | 756 | 760 | 765 | 769 | 774 | 778 | 6 2.4 <br> 7 2.8 |
| 995 |  | 782 | 787 | 791 | 795 | 800 | 804 | 808 | 813 | 817 | 822 | $\begin{array}{l\|l} 8 & 3.2 \\ 9 & 3.6 \end{array}$ |
| 996 |  | 826 | 830 | 835 | 839 | 843 | 848 | 852 | 856 | 861 | 865 |  |
| 997 |  | 870 | 874 | 878 | 883 | 887 | 891 | 896 | 900 | 904 | 909 |  |
| 998 |  | 913 | 917 | 922 | 926 | 930 | 935 | 939 | 944 | 948 | 952 |  |
| 999 |  | 957 | 961 | 965 | 970 | 974 | 978 | 983 | 987 | 991 | 996 |  |
| 1000 | 000 | 000 | 043 | 087 | 130 | 174 | 217 | 260 | 304 | 347 | 391 |  |
| N | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P. P. |

Logarithms of Important Numbers.

| Number. | Logarithm. |
| :---: | :---: |
| $\pi$ | $=3.141593$ |
| $\frac{4}{3} \pi$ | $=4.188790$ |
| $\frac{1}{8} \pi$ | $=0.523599$ |
| $\frac{1}{\pi}$ | $=0.318310$ |
| $\pi^{2}$ | $=9.869604$ |
| $\frac{1}{\pi^{2}}$ | $=0.101321$ |
| $\sqrt{\pi}$ | $=1.772454$ |
| $\frac{1}{\sqrt{\pi}}$ | $=0.564190$ |
| $\sqrt[2]{\pi}$ | $=1.464592$ |
| $\frac{1}{\sqrt[3]{\pi}}$ | $=0.682784$ |
| $\sqrt[3]{\frac{6}{\pi}}$ | $=1.2407018999$ |
|  | 1.502850 |
|  | 0.994300 |
|  | 1.005700 |
|  | 0.248575 |

## GEOMETRY.

No attempt will be made to give the successive propositions of geometry, as these can be found in the standard text-books. Instead will be given such constructions as will be found useful to the engineer, followed by the mensuration of bodies in one, two, and three dimensions.

A straight line is usually best obtained by the use of a straight edge, such as a T square, or one of the sides of a draughtsman's triangle. In some cases, however, when very long centre lines are required, it is not advisable to place too much reliance upon any long straight edge. A fine thread tightly stretched between points may be used to advantage, a comparatively short straight edge being used to connect points marked off upon the line of the thread.

Right angles are best obtained by use of a draughtsman's triangle or set square, but where this is not available, or where the angle is to be laid out upon a large scale, as upon the ground or on a floor, the following constructions may be found useful :

To divide a given line, $A B$, into two equal parts, and to erect a perpendicular through the middle:

With the ends, $A$ and $B$, as centres, draw the dotted circle arcs with a radius greater than half the line. Through the crossings of the arcs draw the perpendicular, $C D$, which divides the line into two equal parts.



From a given point, $C$, on the line, $A B$, to erect a perpendicular, $C D$ :

With $C$ as a centre, find two points, $A$ and $B$, on the line at equal distances from $C$. With $A$ and $B$ as centres, draw the dotted circle ares at $D$. From the crossing, $D$, draw the required perpendicular, $D C$.

From a given point, $C$, at a distance from the line, $A B$, to draw a perpendicular to the line:

With $C$ as a centre, draw the dotted circle are so that it cuts the line at $A$ and $B$. With $A$ and $B$ as centres, draw the dotted cross arcs at $D$ with equal radii. Draw the required perpendicular through $C$ and $D$.



At the end, $A$, of a given line, $A B$, to erect a perpendicular, $A C$ :

With any point, $D$, as a centre at a distance from the line, and with $A D$ as radius, draw the dotted circle are so that it cuts the line at $\boldsymbol{E}$; through $E$ and $D$ draw the diameter, $E C$; then join $C$ and $A$, which will give the required perpendicular.

The division of a line into any required number of parts may best be done by continual bisection as far as possible. When the limit has been reached in this manner the portions thus obtained may be divided by trial and error, using fine dividers with screw adjustment, or the following construction may be used :

Let it be required to divide $A C$ into three
 equal parts. From $A$ draw any convenient
line, $A B$, and on it step off with the dividers any equal spaces, $1,2,3$. Then join 3 with $C$, and draw from 1 and 2 lines parallel to $3 C$; these will divide $A C$ into three equal parts at I, II, and III.

## Constructions with Angles.



To divide the angle, $A C B$, into two equal parts:

With $C$ as a centre, draw the dotted arc, $D E$; with $D$ and $E$ as centres, draw the cross arcs at $F$ with equal radii. Join $C F$, which divides the angle into the required parts.

Angles: $A C F=F C B=1 / 2(A C B)$.
On a given line, $A B$, and at the point, $B$, to construct an angle equal to the angle, $C D E$ :

With $D$ as a centre, draw the dotted arc, $C E$; and with the same radius and $B$ as a centre, draw the arc, $G F$; then make $G F$ equal to $C E$; then join $B F$, which will form the required angle, $F B G=C D E$.



To trisect a right angle, $A C B$ :
With any convenient radius, $C B$, strike a circular are with $C$ as a centre. With the dividers open to the same radius sweep short $\operatorname{arcs}$ from $A$ and $B$ as centres. These will intersect the first are at $D$ and $E$. Through $E$ and $D$ draw lines passing through $C$. These lines will trisect the right angle, $A C B$.

To divide an angle into two equal parts when the lines do not extend to a meeting point:

Draw the lines $C D$ and $C E$ parallel and at equal distances from the lines $A B$ and $F G$. With $C$ as a centre, draw the dotted arc, $B G$; and with $B$ and $G$ as centres, draw the cross arcs, $H$. Join $C H$, which divides the angle into the required equal parts.


Angles may be laid off by means of a protractor graduated in degrees and subdivisions, but unless the instrument is accurately made and carefully used the results are not very reliable. A more accurate method is to use a table of chords. With the dividers open to any convenient distance sweep an arc. Multiply the radius used by the tabular value in the table on page 109 for the required angle, and sweep the distance as a chord upon the arc. The remaining side of the angle may then be drawn.

A convenient radius is 10 inches. Con-
 sidering this as unity, one inch will be 0.1 , one-tenth of an inch will be 0.01 , and onehundredth of an inch will be 0.001 , and the chord may be taken directly from the table: Thus, for an angle of $17^{\circ}$ we have from the table a value for the chord of 0.2956 , or for a radius of 10 the chord is 2.956 , and the angle, $A O B=17^{\circ}$, laid out far more accurately than would be possible with any but the most elaborate protractor of large size. When the chord can be taken on a vernier scale the length can readily be taken to as high a degree of precision as can be laid out on a drawing-board. Intermediate values may be taken by direct proportion.

The chord for any angle is equal to twice the sine of half of the angle.

Table of Chords.

| Deg. | Chord. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0175 | 19 | 0:3301 | 37 | 0.6346 | 55 | 0.9235 | 73 | 1.1896 |
| 2 | 0.0349 | 20 | 0.3473 | 38 | 0.6511 | 56 | 0.9389 | 74 | 1.2036 |
| 3 | 0.0524 | 21 | 0.3645 | 39 | 0.6676 | 57 | 0.9543 | 75 | 1.2175 |
| 4 | 0.0698 | 22 | 0.3816 | 40 | 0.6840 | 58 | 0.9696 | 76 | 1.2313 |
| 5 | 0.0872 | 23 | 0.3987 | 41 | 0.7004 | 59 | 0.9848 | 77 | 1.2450 |
| 6 | 0.1047 | 24 | 0.4158 | 42 | 0.7167 | 60 | 1.0000 | 78 | 1.2586 |
| 7 | 0.1221 | 25 | 0.4329 | 43 | 0.7330 | 61 | 1.0151 | 79 | 1.2722 |
| 8 | 0.1395 | 26 | 0.4499 | 44 | 0.7492 | 62 | 1.0301 | 80 | 1.2856 |
|  | 0.1569 | 27 | 0.4669 | 45 | 0.7654 | 63 | 1.0450 | 81 | 1.2989 |
| 10 | 0.1743 | 28 | 0.4838 | 46 | 0.7815 | 64 | 1.0598 | 82 | 1.3121 |
| 11 | 0.1917 | 29 | 0.5008 | 47 | 0.7975 | 65 | 1.0746 | 83 | 1.3252 |
| 12 | 0.2091 | 30 | 0.5176 | 48 | 0.8135 | 66 | 1.0893 | 84 | 1.3383 |
| 13 | 0.2264 | 31 | 0.5345 | 49 | 0.8294 | 67 | 1.1039 | 85 | 1.3512 |
| 14 | 0.2437 | 32 | 0.5513 | 50 | 0.8452 | 68 | 1.1184 | 86 | 1.3640 |
| 15 | 0.2611 | 33 | 0.5680 | 51 | 0.8610 | 69 | 1.1328 | 87 | 1.3767 |
| 16 | 0.2783 | 34 | 0.5847 | 52 | 0.8767 | 70 | 1.1472 | 88 | 1.3893 |
| 17 | 0.2956 | 35 | 0.6014 | 53 | 0.8924 | 71 | 1.1614 | 89 | 1.4018 |
| 18 | 0.3129 | 36 | 0.6180 | 54 | 0.9080 | 72 | 1.1756 | 90 | 1.4142 |

## Construction of Polygons.

To inscribe a square in a given circle :
Draw the diameter, $A B$, and through the centre erect the perpendicular, $C D$, and complete the square as shown in the illustration.


To describe a square about a given circle :
Draw the diameters, $A B$ and $C D$, at right angles to one another; with the radius of the circle, and $A, B$, $C$, and $D$ as centres, draw the four dotted half circles which cross one another in the corners of the square, and thus solve the problem.

## To inscribe a pentagon in a given circle :

Draw the diameter, $A B$, and from the centre, $C$, erect the perpendicular, $C D$. Bisect the radius, $A C$, at $E$; $v i$ ith $E$ as centre, and $D E$ as radius, draw the are, $D F$, and the straight line, $D F$, is the length of the side ol the pentagon.


To construct a pentagon on a given side, $A B$ :
From $B$ erect $B C$ perpendicular to and half the length of $A B$; draw a line from $A$ through $C$ and beyond; with $C$ as a centre and $C B$ as radius, draw the arc, $B D$, cutting this last line at $D$; then the chord, $B D$, is the radius of the circle circumscribing the pentagon. With $A$ and $B$ as centres, and $B D$ as radius, draw the cross in the centre.


To construct a pentagon on a given side, $A B$, without resort to its centre :

From $B$ erect $B o$ perpendicular and equal to $A B$; with $C$ as centre and $C o$ as radius, draw the arc, $D o$; then $A D$ is the diagonal of the pentagon. With $A D$ as radius and $A$ as centre, draw the arc, $D E$; and with $B$ as centre and $A B$ as radius, finish the cross, $E$, and thus complete the pentagon.

To construct a hexagon in a given circle :
The radius of the circle is equal to the side of the hexagon.

To construct an octagon on
 the given line, $A B$ :


Prolong $A B$ through $B$. With $B$ as centre and $A B$ as radius, draw semicircle, $A F D E C$; from $B$, draw $B I$ at right angles to $A B$; divide the angles, $A B D$ and $D B C$, each into two equal parts; then $B E$ is one side of the octagon. With $A$ and $E$ as centres, and radius $A E$, draw the arcs, $H K E$ and $A K I$, which determine the points $H$ and $I$, and thus complete the octagon as shown in the illustration.

To cut off the corners of a square so as to make a regular octagon:

With the corners as centres, draw circle arcs through the centre of the square to the sides, which determines the sides of the octagon.


To construct any regular polygon on a given line, $A B$, without resort to its centre:

Extend $A B$ through $B$, and, with $B$ as a centre, draw the half circle, $A D C$. Divide the half circle into as many parts as the number of sides in the polygon, and complete the construction as shown in the illustration.

Table of Polygons.

| Angle of |
| :---: | :---: | :---: | :---: | :---: |
| centre. |

To find the length of side of any polygon, multiply the radius of the circumscribing circle by the tabular number. To find the area, multiply the square of the side by the tabular number. To find the apothem, multiply radius of circumscribing circle by tabular number.

## The Circle.

## Notation.

$d=$ diameter of the circle.
$r=$ radius of the circle.
$p=$ periphery or circumference.
$a=$ area of a circle or part thereof.
$b=$ length of a circle-arc.
$c=$ chord of a segment, length of.
$h=$ height of a segment.
$s=$ side of a regular polygon.
$v=$ centre angle.
$w=$ polygon angle.

All measures must be expressed in terms of the same unit.

Formulas for the Circle.

Periphery or Circumference.
$p=\pi d \quad=3.14 d$.
$p=2 \pi r \quad=6.28 r$.
$p=2^{\sqrt{\pi a}}=3.54 \sqrt{ } \sqrt{a}$
$p=\frac{2 a}{r}=\frac{4 a}{d}$.

Diameter and Radius.

$$
\begin{aligned}
& d=\frac{p}{\pi}=\frac{p}{3.14} . \\
& r=\frac{p}{2 \pi}=\frac{p}{6.28} . \\
& d=2 \sqrt{\frac{a}{\pi}}=1.128^{\prime} \frac{-}{a .} \\
& r=\sqrt{\frac{a}{\pi}}=0.564 \sqrt{a .}
\end{aligned}
$$

Area of the Circle.
$a=\frac{\pi d^{2}}{4}=0.7854 d^{2}$.
$a=\pi r^{2}=3.14 r^{2}$.
$a=\frac{p^{2}}{4 \pi}=\frac{p^{2}}{12.56}$.
$a=\frac{p r}{2}=\frac{p d}{4}$.

$$
\pi=3.141592653589793238462643383279502884197169399
$$

| $2 \pi=6.283185$ | $1 / 4 \pi=0.785398$ | $\frac{1}{\pi}=0.318310$ | $\frac{360}{\pi}=$ | 114.5915 |
| :---: | :---: | :---: | :---: | :---: |
| $3 \pi=9.424778$ | $1 / 3 \pi=1.047197$ | $\frac{2}{\pi}=0.636619$ | $\pi^{2}=$ | 9.869650 |
| $4 \pi=12.566370$ | $1 / 2 \pi=1.570796$ | $\frac{3}{\pi}=0.954929$ | $\sqrt{ } \pi=$ | 1.772453 |
| $5 \pi=15.707963$ | $1 / 8 \pi=0.392699$ | $\pi$ $\underline{4}=1.273239$ | $\sqrt{1}$ |  |
| $6 \pi=18.849556$ | $1 / 6 \pi=0.523599$ |  | $\sqrt{\frac{1}{\pi}}=$ | 0.564189 |
| $7 \pi=21.991148$ | $1{ }^{1} \pi=0.261799$ | $\frac{6}{\pi}=1.909859$ | $\sqrt{\frac{\pi}{2}}=$ | $1.253314$ |
| $8 \pi=25.132741$ | $2 / 2 \pi=2.094394$ | $\bar{\pi}=2.546478$ |  |  |
| $9 \pi=28.274334$ | ${ }_{3}{ }^{1} 0^{1} \pi=0.008726$ | $\frac{12}{\pi}=3.819718$ | $\sqrt{\frac{2}{\pi}}=$ | 0.797884 |

Areas and Circumferences of Circles.
By Sixteenths to 5.

| Diam. | C'ircum. | Area. | Diam. | Cricum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{64}$ | . 049087 | . 00019 |  |  |  |  |  |  |
| $\frac{\frac{1}{32}}{3}$ | . 0981775 | . 00077 | 1. | 3.14159 | 78.540 | 3. | . 42478 | 7.0686 |
| ${ }^{\frac{3}{64}}$ | . 147262 | . 00173 | $\frac{10}{16}$ | 3.33794 | . 88664 | $\frac{1}{10}$ | 9.62113 | 7.3662 |
| ${ }^{16}$ | . 196350 | . 00307 | \% | 3.53129 | . 99102 |  | 9.81748 | 6699 |
|  | . 2992699 | . 01227 | 1 | 3.73064 39269 | 1.12272 | $1 /$ | 10.2102 | 7.9798 8.2958 |
| $\frac{5}{32}$ | . 490874 | . 01917 | 寝 | 4.12334 | 1.3530 |  | 10.4065 | 8.6179 |
| $\frac{3}{16}$ | . 589049 | . 02761 |  | 4.31969 | 1.4849 |  | 10.6029 | 8.9462 |
| ${ }^{\frac{7}{32}}$ | . 688223 | . 03758 |  | 4.51604 | 1.6230 |  | 10.7992 | 9.2806 |
| $1 / 4$ | . 785398 | . 04909 | $1 / 2$ | 4.71239 | 1.7671 |  | 10.9956 | 9.6211 |
| $\frac{9}{32}$ | . 883573 | . 06213 |  | 4.90874 | 1.9175 | $\frac{9}{16}$ | 11.1919 | 9.9678 |
|  | . 981748 | . 07670 | $5 / 8$ | 5.10509 | 2.0739 | 5 | 11.3883 | 10.321 |
| $3{ }^{3}$ | 1.07992 | . 09281 | $\frac{11}{11}$ | 5.30144 | 2.2365 | ${ }^{11}$ | 11.5846 | 10.680 |
| 3/8 | 1.17810 | . 11045 | $3 / 4$ | 5.49779 | 2.4053 | $3 / 4$ | 11.7810 | 11.045 |
| $\frac{13}{3}$ | 1.27627 | . 12962 | $\frac{13}{16}$ | 5.69414 | 2.5802 |  | 11.9773 | 11.416 |
|  | 1.37445 | . 15033 | 7/8 | 5.89049 | 2.7612 | 7/8 | 12.1737 | 11.793 |
|  | 1.47262 | . 17257 | ${ }^{16}$ | 6.08684 | 2.9483 | $\frac{15}{16}$ | 12.3700 | 12.177 |
|  | 1.57080 | . 19635 | 2. | 6.28319 | 3.1416 | 4. | 12.5664 | 12.566 |
| $\frac{17}{32}$ | 1.66897 | . 22166 | $\frac{1}{16}$ | 6.47953 | 3.3410 | $\frac{1}{16}$ | 12.7627 | 12.962 |
|  | 1.76715 | . 24850 | 1/8 | 6.67588 | 3.5466 |  | 12.9591 | 13.364 |
|  | 1.86532 | . 27688 | $\frac{3}{16}$ | 6.87223 | 3.7583 | ${ }^{\frac{3}{16}}$ | 13.1554 | 13.772 |
| 5/8 | 1.96350 | . 30680 | 1/4 | 7.06858 | 3.9761 | 1/4 | 13.3518 | 14.186 |
| $\frac{21}{\frac{21}{2}}$ | 2.06167 | . 33824 | $\frac{5}{16}$ | 7.26493 | 4.2000 |  | 13.5481 | 14.607 |
|  | 2.15984 | . 37122 | \% | 7.46128 | 4.4301 |  | 13.7445 | 15.033 |
|  | 2.25802 | . 40574 | ${ }^{7}$ | 7.65763 | 4.6664 |  | 13.9408 | 15.466 |
| $3 / 4$ | 2.35619 | . 44179 | 1/2 | 7.85398 | 4.9087 | 1/2 | 14.1372 | 15.904 |
| $\frac{25}{35}$ | 2.45437 | . 47937 |  | 8.05033 | 5.1572 |  | 14.3335 | 16.349 |
|  | 2.55254 | . 51849 | $5 / 8$ | 8.24668 | 5.4119 | 5/8 | 14.5299 | 16.800 |
|  | 2.65072 | . 55914 | $\frac{11}{16}$ | 8.44303 | 5.6727 | ${ }^{11} 18$ | 14.7262 | 17.257 |
| 7/8 | 2.74889 | . 60132 | $3 / 4$ | 8.63938 | 5.9396 | $3 / 4$ | 14.9226 | 17.721 |
| ${ }_{2}{ }^{29}$ | 2.84707 | . 64504 |  | 8.83573 | 6.2126 | $\frac{13}{16}$ | 15.1189 | 18.190 |
|  | 2.94524 | . 69029 |  | 9.03208 | 6.4918 | 7/8 | 15.3153 | 18.665 |
| ${ }^{\frac{31}{3}}$ | 3.04342 | . 73708 |  | 9.22843 | 6.7771 | $\frac{15}{16}$ | 15.5116 | 19.147 |
| 1. | 3.14159 | . 78540 | 3. | 9.42478 | 7.0686 | 5. | 15.7080 | 19.635 |

## Areas and Circumferences of Circles.

By Eighths from 5 to 11.

| Diam. | Circum. | Area | Diam. | Circum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5. | 15.7080 | 19.635 |  | 21.9911 | 38.485 | 9. | 28.2743 | 63.617 |
|  | 16.1007 | 20.629 | 18 | 22.3838 | 39.871 |  | 28.6670 | 65.397 |
|  | 16.4934 | 21.648 | $1 / 4$ | 22.7765 | 41.282 | 4 | 29.0597 | 67.201 |
|  | 16.8861 | 22.691 | 8 | 23.1692 | 42.718 | $3 / 8$ | 29.4524 | 69.029 |
|  | 17.2788 | 23.758 | 1/2 | 23.5619 | 44.179 | 1/2 | 29.8451 | 70.882 |
|  | 17.6715 | 24.850 | $5 / 8$ | 23.9546 | 45.664 | $5 / 8$ | 30.2378 | 72.760 |
|  | 18.0642 | 25.967 |  | 24.3473 | 47.173 | $3 / 4$ | 30.6305 | 74.662 |
|  | 18.4569 | 27.109 | 7 | 24.7400 | 48.707 |  | 31.0232 | 76.589 |
|  | 18.8496 | 28.274 | 8 | 25.1327 | 50.265 | 10. | 31.4159 | 78.540 |
|  | 19.2423 | 29.465 | 1/8 | 25.5254 | 51.849 |  | 31.8086 | 80.516 |
|  | 19.6350 | 30.680 | $1 / 4$ | 25.9181 | 53.456 | 1/4 | 32.2013 | 82.516 |
|  | 20.0277 | 31.919 | $3 / 8$ | 26.3108 | 55.088 |  | 32.5940 | 84.541 |
|  | 20.4204 | 33.183 |  | 26.7035 | 56.745 | $1 / 2$ | 32.9867 | 86.590 |
|  | 20.8131 | 34.472 |  | 27.0962 | 58.426 |  | 33.3794 | 88.664 |
|  | 21.2058 | 35.785 |  | 27.4889 | 60.132 | $3 / 4$ | 33.7721 | 90.763 |
|  | 21.5984 | 37.122 |  | 27.8816 | 61.862 | 7/8 | 34.1648 | 92.886 |
| 7. | 21.9911 | 38.485 | 9. | 28.2743 | 63.617 | 11. | 34.5575 | 95.933 |

## Areas and Circumferences of Circles.

By tenths to 18 .

| Diam. | Circum. | Area. | Diam. | Circum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 00000 | . 000000 | 6.0 | 18.8496 | 28.2743 | 12.0 | 37.6991 | 113.0973 |
| . 1 | . 31416 | .007854 | . 1 | 19.1637 | 29.2247 | . 1 | 38.0133 | 114.9901 |
| . 2 | . 62832 | . 031416 | . 2 | 19.4779 | 30.1907 | . 2 | 38.3274 | 116.8987 |
| . 3 | . 94248 | . 070686 | . 3 | 19.7920 | 31.1725 | . 3 | 38.6416 | 118.8229 |
| . 4 | 1.2566 | . 12566 | . 4 | 20.1062 | 32.1699 | . 4 | 38.9557 | 120.7628 |
| . 5 | 1.5708 | . 19635 | . 5 | 20.4204 | 33.1831 | . 5 | 39.2699 | 122.7185 |
| . 6 | 1.8850 | . 28274 | . 6 | 20.7345 | 34.2119 | . 6 | 39.5841 | 124.6898 |
| . 7 | 2.1991 | . 38485 | . 7 | 21.0487 | 35.2565 | . 7 | 39.8982 | 126.6769 |
| . 8 | 2.5133 | . 50266 | . 8 | 21.3628 | 36.3168 | . 8 | 40.2124 | 128.6796 |
| . 9 | 2.8274 | . 63617 | . 9 | 21.6770 | 37.3928 | . 9 | 40.5265 | 130.6981 |
| 1.0 | 3.1416 | . 7854 | 7.0 | 21.9911 | 38.4845 | 13.0 | 40.8407 | 132.7323 |
| . 1 | 3.4558 | . 9503 | . 1 | 22.3053 | 39.5919 | . 1 | 41.1549 | 134.7822 |
| . 2 | 3.7699 | 1.1310 | . 2 | 22.6195 | 40.7150 | . 2 | 41.4690 | 136.8478 |
| . 3 | 4.0841 | 1.3273 | . 3 | 22.9336 | 41.8539 | . 3 | 41.7832 | 138.9291 |
| . 4 | 4.3982 | 1.5394 | . 4 | 23.2478 | 43.0084 | . 4 | 42.0973 | 141.0261 |
| . 5 | 4.7124 | 1.7671 | . 5 | 23.5619 | 44.1786 | . 5 | 42.4115 | 143.1388 |
| . 6 | 5.0265 | 2.0106 | . 6 | 23.8761 | 45.3646 | . 6 | 42.7257 | 145.2672 |
| . 7 | 5.3407 | 2.2698 | . 7 | 24.1903 | 46.5663 | . 7 | 43.0398 | 147.4114 |
| . 8 | 5.6549 | 2.5447 | . 8 | 24.5044 | 47.7836 | . 8 | 43.3540 | 149.5712 |
| . 9 | 5.9690 | 2.8353 | . 9 | 24.8186 | 49.0167 | . 9 | 43.6681 | 151.7468 |
| 2.0 | $6.283 \%$ | 3.1416 | 8.0 | 25.1327 | 50.2655 | 14.0 | 43.9823 | 153.9380 |
| . 1 | 6.5973 | 3.4636 | . 1 | 25.4469 | 51.5300 | . 1 | 44.2965 | 156.1450 |
| . 2 | 6.9115 | 3.8013 | . 2 | 25.7611 | 52.8102 | . 2 | 44.6106 | 158.3677 |
| . 3 | 7.2257 | 4.1548 | . 3 | 26.0752 | 54.1061 | . 3 | 44.9248 | 160.6061 |
| . 4 | 7.5398 | 4.5239 | . 4 | 26.3894 | 55.4177 | . 4 | 45.2389 | 162.8602 |
| . 5 | 7.8540 | 4.9087 | . 5 | 26.7035 | 56.7450 | . 5 | 45.5531 | 165.1300 |
| . 6 | 8.1681 | 5.3093 | . 6 | 27.0177 | 58.0880 | . 6 | 45.8673 | 167.4155 |
| . 7 | 8.4823 | 5.7256 | . 7 | 27.3319 | 59.4468 | . 7 | 46.1814 | 169.7167 |
| . 8 | 8.7965 | 6.1575 | . 8 | 27.6460 | 60.8212 | . 8 | 46.4956 | 172.03:36 |
| . 9 | 9.1106 | 6.6052 | . 9 | 27.9602 | 62.2114 | . 9 | 46.8097 | 174.3662 |
| 3.0 | 9.4248 | 7.0686 | 9.0 | 28.2743 | 63.6173 | 15.0 | 47.1239 | 176.7146 |
| . 1 | 9.7389 | 7.5477 | . 1 | 28.5885 | 65.0388 | . 1 | 47.4380 | 179.0786 |
| . 2 | 10.0531 | 8.0425 | . 2 | 28.9027 | 66.4761 | . 2 | 47.7522 | 181.4584 |
| . 3 | 10.3673 | 8.5530 | . 3 | 29.2168 | 67.9291 | . 3 | 48.0664 | 183.8539 |
| . 4 | 10.6814 | 9.0792 | . 4 | 29.5310 | 69.3978 | . 4 | 48.3805 | 186.2650 |
| . 5 | 10.9956 | 9.6211 | . 5 | 29.8451 | 70.8822 | . 5 | 48.6947 | 188.6919 |
| . 6 | 11.3097 | 10.1788 | . 6 | 30.1593 | 72.3823 | . 6 | 49.0088 | 191.1345 |
| . 7 | 11.6239 | 10.7521 | . 7 | 30.4734 | 73.8981 | . 7 | 49.3230 | 193.5928 |
| . 8 | 11.9381 | 11.3411 | . 8 | 30.7876 | 75.4296 | . 8 | 49.6372 | 196.0668 |
| . 9 | 12.2522 | 11.9459 | . 9 | 31.1018 | 76.9769 | . 9 | 49.9513 | 198.5565 |
| 4.0 | 12.5664 | 12.5664 | 10.0 | 31.4159 | 78.5398 | 16.0 | 50.2655 | 201.0619 |
| . 1 | 12.8805 | 13.2025 | . 1 | 31.7301 | 80.1185 | . 1 | 50.5796 | 203.5831 |
| . 2 | 13.1947 | 13.8544 | . 2 | 32.0442 | 81.7128 | . 2 | 50.8938 | 206.1199 |
| . 3 | 13.5088 | 14.5220 | . 3 | 32.3584 | 83.3229 | . 3 | 51.2080 | 208.6724 |
| . 4 | 13.8230 | 15.2053 | . 4 | 32.6726 | 84.9487 | 4 | 51.5221 | 211.2407 |
| . 5 | 14.1372 | 15.9043 | . 5 | 32.9867 | 86.5901 | . 5 | 51.8363 | 213.8246 |
| . 6 | 14.4513 | 16.6190 | . 6 | 33.3009 | 88.2473 | . 6 | 52.1504 | 216.4243 |
| . 7 | 14.7655 | 17.3494 | . 7 | 33.6150 | 89.9202 | . 7 | 52.4646 | 219.0397 |
| . 8 | 15.0796 | 18.0956 | . 8 | 33.9292 | 91.6088 | . 8 | 52.7788 | 221.6708 |
| . 9 | 15.3938 | 18.8574 | . 9 | 34.2434 | 93.3132 | 9 | 53.0929 | 224.3176 |
| 5.0 | 15.7080 | 19.6350 | 11.0 | 34.5575 | 95.0332 | 17.0 | 53.4071 | 226.9801 |
| . 1 | 16.0221 | 20.4282 | . 1 | 34.8717 | 96.7689 | . 1 | 53.7212 | 229.6583 |
| .2 | 16.3363 | 21.2372 | . 2 | 35.1858 | 98.5203 | . 2 | 54.0354 | 232.3522 |
| . 3 | 16.6504 | 22.0618 | . 3 | 35.5000 | 100.2875 | . 3 | 54.3495 | 235.0618 |
| . 4 | 16.9646 | 22.9022 | . 1 | 35.8142 | 102.0703 | . 4 | 54.6637 | 237.7871 |
| . 5 | 17.2788 | 23.7583 | .5 | 36.1283 | 103.8689 | . 5 | 54.9779 | 240.5282 |
| . 6 | 17.5929 | 24.6301 | . 6 | 36.4425 | 105.6832 | . 6 | 55.2920 | 243.2849 |
| . 7 | 17.9071 | 25.5176 | . 7 | 36.7566 | 107.5132 | . 7 | 55. 6062 | 246.0574 |
| . 8 | 18.2212 | 26.4208 | . 8 | 37.0708 | 109.3588 | . 8 | 55.9203 | 248.8456 |
| . 9 | 18.5354 | 27.3397 | . 9 | 37.3850 | 111.2202 | . 9 | 56.2545 | 251.6491 |
| 6.0 | 18.8496 | 28.2713 | 12.0 | 37.6991 | 113.0973 | 18.0 | 56.5487 | 254.4690 |


| Diameter. | Circum. | Area. | Diameter. | Circum. | Area. | Diam eter. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.1416 | 0.7854 | 51 | 160.22 | 2042.8 | 101 | 317.30 | 8011 |
| 2 | 6.2832 | 3.1416 | 52 | 163.36 | 2123.7 | 102 | 320.44 | 8171 |
| 3 | 9.4248 | 7.0686 | 53 | 166.50 | 2206.2 | 103 | 323.58 | 332. |
| 4 | 12.566 | 12.5664 | 54 | 169.65 | 2290.2 | 104 | 326.73 | 8494 |
| 5 | 15.708 | 19.6350 | 55 | 172.79 | 2375.8 | 105 | 329.87 | 8659. |
| 6 | 18.850 | 28.2743 | 56 | 175.93 | 2463.0 | 106 | 333.01 | 882 |
| 7 | 21.991 | 38.4845 | 57 | 179.07 | 2551.8 | 107 | 336.15 | 8992. |
| 8 | 25.133 | 50.2655 | 58 | 182.21 | 2642.1 | 108 | 339.29 | 9160. |
| 9 | 28.274 | 63.6173 | 59 | 185.35 | 2734.0 | 109 | 342.43 | 9331. |
| 10 | 31.416 | 78.54 | 60 | 188.50 | 2827.4 | 110 | 345.58 | 9503. |
| 11 | 34.558 | 95.03 | 61 | 191.64 | 2922.5 | 111 | 348.72 | 9676. |
| 12 | 37.699 | 113.10 | 62 | 194.78 | 3019.1 | 112 | 351.86 | 9852 |
| 13 | 40.841 | 132.73 | 63 | 197.92 | 3117.2 | 113 | 355.00 | 10028. |
| 14 | 43.982 | 153.94 | 64 | 201.06 | 3217.0 | 114 | 358.14 | 10207. |
| 15 | 47.124 | 176.71 | 65 | 204.20 | 3318.3 | 115 | 361.28 | 10386. |
| 16 | 50.265 | 201.06 | 66 | 207.35 | 3421.2 | 116 | 364.42 | 10568. |
| 17 | 53.407 | 226.98 | 67 | 210.49 | 3525.7 | 117 | 367.57 | 10751. |
| 18 | 56.549 | 254.47 | 68 | 213.63 | 3631.7 | 118 | 370.71 | 10935. |
| 19 | 59.690 | 283.53 | 69 | 216.77 | 3739.3 | 119 | 373.85 | 11122. |
| 20 | 62.832 | 314.16 | 70 | 219.91 | 3848.5 | 120 | 376.99 | 11310 |
| 21 | 65.973 | 346.36 | 71 | 223.05 | 3959.2 | 121 | 380.13 | 11499 |
| 22 | 69.115 | 380.13 | 72 | 226.19 | 4071.5 | 122 | 383.27 | 11690 |
| 23 | 72.257 | 415.48 | 73 | 229.34 | 4185.4 | 123 | 386.42 | 11882 |
| 24 | 75.398 | 452.39 | 74 | 232.48 | 4300.8 | 124 | 389.56 | 12076 |
| 25 | 78.540 | 490.87 | 75 | 235.62 | 4417.9 | 125 | 392.70 | 12272 |
| 26 | 81.681 | 530.93 | 76 | 238.76 | 4536.5 | 126 | 395.84 | 12469 |
| 27 | 84.823 | 572.56 | 77 | 241.90 | 4656.6 | 127 | 398.98 | 12668 |
| 28 | 87.965 | 615.75 | 78 | 245.04 | 4778.4 | 128 | 402.12 | 12868 |
| 29 | 91.106 | 660.52 | 79 | 248.19 | 4901.7 | 129 | 405.27 | 13070 |
| 30 | 94.248 | 706.86 | 80 | 251.33 | 5026.6 | 130 | 408.41 | 13273 |
| 31 | 97.389 | 754.77 | 81 | 254.47 | 5153.0 | 131 | 411.55 | 13478 |
| 32 | 100.53 | 804.25 | 82 | 257.61 | 5281.0 | 132 | 414.69 | 13685 |
| 33 | 103.67 | 855.30 | 83 | 260.75 | 5410.6 | 133 | 417.83 | 13893 |
| 34 | 106.81 | 907.92 | 84 | 263.89 | 5541.8 | 134 | 420.97 | 14103 |
| 35 | 109.96 | 962.11 | 85 | 267.04 | 5674.5 | 135 | 424.12 | 14314 |
| 36 | 113.10 | 1017.88 | 86 | 270.18 | 5808.8 | 136 | 427.26 | 14527 |
| 37 | 116.24 | 1075.21 | 87 | 273.32 | 5944.7 | 137 | 430.40 | 14741 |
| 38 | 119.38 | 1134.11 | 88 | 276.46 | 6082.1 | 138 | 433.54 | 14957 |
| 39 | 122.52 | 1194.59 | 89 | 279.60 | 6221.1 | 139 | 436.68 | 15175 |
| 40 | 125.66 | 1256.63 | 90 | 282.74 | 6361.7 | 140 | 439.82 | 15394 |
| 41 | 128.81 | 1320.25 | 91 | 285.88 | 6503.9 | 141 | 442.96 | 15615 |
| 42 | 131.95 | 1385.44 | 92 | 289.03 | 6647.6 | 142 | 446.11 | 15837 |
| 43 | 135.09 | 1452.20 | 93 | 292.17 | 6792.9 | 143 | 449.25 | 16061 |
| 44 | 138.23 | 1520.52 | 94 | 295.31 | 6939.8 | 144 | 452.39 | 16286 |
| 45 | 141.37 | 1590.43 | 95 | 298.45 | 7088.2 | 145 | 455.53 | 16513 |
| 46 | 144.51 | 1661.90 | 96 | 301.59 | 7238.2 | 146 | 458.67 | 16742 |
| 47 | 147.65 | 1734.94 | 97 | 304.73 | 7389.8 | 147 | 461.81 | 16972 |
| 48 | 150.80 | 1809.55 | 98 | 307.88 | 7543.0 | 148 | 464.96 | 17203 |
| 49 | 153.94 | 1885.74 | 99 | 311.02 | 7697.7 | 149 | 468.10 | 17437 |
| 50 | 157.08 | 1963.50 | 100 | 314.16 | 7854.0 | 150 | 471.24 | 17671 |

Circumference And Area of Circles.

| Diameter. | Circum. | Area. | Diameter. | Circum. | Area. | Diameter. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151 | 474.38 | 17908 | 201 | 631.46 | 31731 | 251 | 788.54 | 49481 |
| 152 | 477.52 | 18146 | 202 | 634.60 | 32047 | 252 | 791.68 | 49876 |
| 153 | 480.66 | 18385 | 203 | 637.74 | 32365 | 253 | 794.82 | 50273 |
| 154 | 483.81 | 18627 | 204 | 640.89 | 32685 | 254 | 797.96 | 50671 |
| 155 | 486.95 | 18869 | 205 | 644.03 | 33006 | 255 | 801.11 | 51071 |
| 156 | 490.09 | 19113 | 206 | 647.17 | 33329 | 256 | 804.25 | 51472 |
| 157 | 493.23 | 19359 | 207 | 650.31 | 33654 | 257 | 807.39 | 51875 |
| 158 | 496.37 | 19607 | 208 | 653.45 | 33979 | 258 | 810.53 | 52279 |
| 159 | 499.51 | 19856 | 209 | 656.59 | 34307 | 259 | 813.67 | 52685 |
| 160 | 502.65 | 20105 | 210 | 659.73 | 34636 | 260 | 816.81 | 53093 |
| 161 | 505.80 | 20358 | 211 | 662.88 | 34967 | 261 | 819.96 | 53502 |
| 162 | 508.94 | 20612 | 212 | 666.02 | 35299 | 262 | 823.10 | 53913 |
| 163 | 512.08 | 20867 | 213 | 669.16 | 35633 | 263 | 826.24 | 54325 |
| 164 | 515.22 | 21124 | 214 | 672.30 | 35968 | 264 | 829.38 | 54739 |
| 165 | 518.36 | 21382 | 215 | 675.44 | 36305 | 265 | 832.52 | 55155 |
| 166 | 521.50 | 21642 | 216 | 678.58 | 36644 | 266 | 835.66 | 55572 |
| 167 | 524.65 | 21904 | 217 | 681.73 | 36984 | 267 | 838.81 | 55990 |
| 168 | 527.79 | 22167 | 218 | 684.87 | 37325 | 268 | 841.95 | 56410 |
| 169 | 530.93 | 22432 | 219 | 688.01 | 37668 | 269 | 845.09 | 56832 |
| 170 | 534.07 | 22698 | 220 | 691.15 | 38013 | 270 | 848.23 | 57256 |
| 171 | 537.21 | 22966 | 221 | 694.29 | 38360 | 271 | 851.37 | 57680 |
| 172 | 540.35 | 23235 | 222 | 697.43 | 38708 | 272 | 854.51 | 58107 |
| 173 | 543.50 | 23506 | 223 | 700.58 | 39057 | 273 | 857.66 | 58535 |
| 174 | Э46.64 | 23779 | 224 | 703.72 | 39408 | 274 | 860.80 | 58965 |
| 175 | 549.78 | 24053 | 225 | 706.86 | 39761 | 275 | 863.94 | 59396 |
| 176 | 552.92 | 24328 | 226 | 710.00 | 40115 | 276 | 867.08 | 59828 |
| 177 | 556.06 | 24606 | 227 | 713.14 | 40471 | 277 | 870.22 | 60263 |
| 178 | 559.20 | 24885 | 228 | 716.28 | 40828 | 278 | 873.36 | 60699 |
| 179 | 562.35 | 25165 | 229 | 719.42 | 41187 | 279 | 876.50 | 61136 |
| 180 | 565.49 | 25447 | 230 | 722.57 | 41548 | 280 | 879.65 | 61575 |
| 181 | 568.63 | 25730 | 231 | 725.71 | 41910 | 281 | 882.79 | 62016 |
| 182 | 571.77 | 26016 | 232 | 728.85 | 42273 | 282 | 885.93 | 624.58 |
| 183 | 574.91 | 26302 | 233 | 731.99 | 42638 | 283 | 889.07 | 62902 |
| 184 | 578.05 | 26590 | 234 | 735.13 | 43005 | 284 | 892.21 | 63347 |
| 185 | 581.19 | 26880 | 235 | 738.27 | 43374 | 285 | 895.35 | 63794 |
| 186 | 584.34 | 27172 | 236 | 741.42 | 43744 | 286 | 898.50 | 64242 |
| 187 | 587.48 | 27465 | 237 | 744.56 | 44115 | 287 | 901.64 | 64692 |
| 188 | 590.62 | 27759 | 238 | 747.70 | 44488 | 288 | 904.78 | 65144 |
| 189 | 593.76 | 28055 | 239 | 750.84 | 44863 | 289 | 907.92 | 65597 |
| 190 | 596.90 | 28353 | 240 | 753.98 | 45239 | 290 | 911.06 | 66052 |
| 191 | 600.04 | 28652 | 211 | 757.12 | 45617 | 291 | 914.20 | 66508 |
| 192 | 603.19 | 28953 | 242 | 760.27 | 45996 | 292 | 917.35 | 66966 |
| 193 | 606.33 | 2925 | 243 | 763.41 | 46377 | 293 | 920.49 | 67426 |
| 194 | 609.47 | 29559 | 244 | 766.55 | 46759 | 294 | 923.63 | 67887 |
| 195 | 612.61 | 29865 | 245 | 769.69 | 47144 | 295 | 926.77 | 68349 |
| 196 | $615 . \%$ | 30172 | 246 | 772.83 | 47529 | 296 | 929.91 | 68813 |
| 197 | 618.89 | 30481 | 247 | 775.97 | 47916 | 297 | 933.05 | 69279 |
| 198 | 622.04 | 30791 | 248 | 779.12 | 48305 | 298 | 936.19 | 69747 |
| 199 | 625.18 | 31103 | 249 | 782.26 | 48695 | 299 | 939.34 | 70215 |
| 200 | 628.32 | 31416 | 2.50 | 785.40 | 49087 | 300 | 942.48 | 70686 |


| Diameter. | Circum. |  | Diam- | Circum. | Area. | Diameter. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | 945.62 | 71158 | 351 | 1102.70 | 96762 | 401 | 1259.78 | 126293 |
| 302 | 948.76 | 71631 | 352 | 1105.84 | 97314 | 402 | 1262.92 | 126923 |
| 303 | 951.90 | 72107 | 353 | 1108.98 | 97868 | 403 | 1266.06 | 127556 |
| 304 | 955.04 | 72583 | 354 | 1112.12 | 98423 | 404 | 1269.20 | 128190 |
| 305 | 958.19 | 73062 | 355 | 1115.27 | 98980 | 405 | 1272.35 | 128825 |
| 306 | 961.33 | 73542 | 356 | 1118.41 | 99538 | 406 | 1275.49 | 129462 |
| 307 | 964.47 | 74023 | 357 | 1121.55 | 100098 | 407 | 1278.63 | 130100 |
| 308 | 967.61 | 74506 | 358 | 1124.69 | 100660 | 408 | 1281.77 | 130741 |
| 309 | 970.75 | 74991 | 359 | 1127.83 | 101223 | 409 | 1284.91 | 131382 |
| 310 | 973.89 | 75477 | 360 | 1130.97 | 101788 | 410 | 1288.05 | 132025 |
| 311 | 977.04 | 75964 | 361 | 1134.11 | 102354 | 411 | 1291.19 | 132670 |
| 312 | 980.18 | 76454 | 362 | 1137.26 | 102922 | 412 | 1294.34 | 133317 |
| 313 | 983.32 | 76945 | 363 | 1140.40 | 103491 | 413 | 1297.48 | 133965 |
| 314 | 986.46 | 77437 | 364 | 1143.54 | 104062 | 414 | 1300.62 | 134614 |
| 315 | 989.60 | 77931 | 365 | 1146.68 | 104635 | 415 | 1303.76 | 135265 |
| 316 | 992.74 | 78427 | 366 | 1149.82 | 105209 | 416 | 1306.90 | 135918 |
| 317 | 995.88 | 78924 | 367 | 1152.96 | 105785 | 417 | 1310.04 | 136572 |
| 318 | 999.03 | 79423 | 368 | 1156.11 | 106362 | 418 | 1313.19 | 137228 |
| 319 | 1002.17 | 79923 | 369 | 1159.25 | 106941 | 419 | 1316.33 | 137885 |
| 320 | 1005.31 | 80425 | 370 | 1162.39 | 107521 | 420 | 1319.47 | 138544 |
| 321 | 1008.45 | 80928 | 371 | 1165.53 | 108103 | 421 | 1322.61 | 139205 |
| 322 | 1011.59 | 81433 | 372 | 1168.67 | 108687 | 422 | 1325.75 | 139867 |
| 323 | 1014.73 | 81940 | 373 | 1171.81 | 109272 | 423 | 1328.89 | 140531 |
| 324 | 1017.88 | 82448 | 374 | 1174.96 | 109858 | 424 | 1332.04 | 141196 |
| 325 | 1021.02 | 82958 | 375 | 1178.10 | 110447 | 425 | 1335.18 | 141863 |
| 326 | 1024.16 | 83469 | 376 | 1181.24 | 111036 | 426 | 1338.32 | 142531 |
| 327 | 1027.30 | 83982 | 377 | 1184.38 | 111628 | 427 | 1341.46 | 143201 |
| 328 | 1030.44 | 84496 | 378 | 1187.52 | 112221 | 428 | 1344.60 | 143872 |
| 329 | 1033.58 | 85012 | 379 | 1190.66 | 112815 | 429 | 1347.74 | 144545 |
| 330 | 1036.73 | 85530 | 380 | 1193.81 | 113411 | 430 | 1350.88 | 145220 |
| 331 | 1039.87 | 86049 | 381 | 1196.95 | 114009 | 431 | 1354.03 | 145896 |
| 332 | 1043.01 | 86570 | 382 | 1200.09 | 114608 | 432 | 1357.17 | 146574 |
| 333 | 1046.15 | 87092 | 383 | 1203.23 | 115209 | 433 | 1360.31 | 147254 |
| 334 | 1049.29 | 87616 | 384 | 1206.37 | 115812 | 434 | 1363.45 | 147934 |
| 335 | 1052.43 | 88141 | 385 | 1209.51 | 116416 | 435 | 1366.59 | 148617 |
| 336 | 1055.58 | 88668 | 386 | 1212.65 | 117021 | 436 | 1369.73 | 149301 |
| 337 | 1058.72 | 89197 | 387 | 1215.80 | 117628 | 437 | 1372.88 | 149987 |
| 338 | 1061.86 | 89727 | 388 | 1218.94 | 118237 | 438 | 1376.02 | 150674 |
| 339 | 1065.00 | 90259 | 389 | 1222.08 | 118847 | 439 | 1379.16 | 151363 |
| 340 | 1068.14 | 90792 | 390 | 1225.22 | 119459 | 440 | 1382.30 | 152053 |
| 341 | 1071.28 | 91327 | 391 | 1228.36 | 120072 | 441 | 1385.44 | 152745 |
| 342 | 1074.42 | 91863 | 392 | 1231.50 | 120687 | 442 | 1388.58 | 153439 |
| 343 | 1077.57 | 92401 | 393 | 1234.65 | 121304 | 443 | 1391.73 | 154134 |
| 344 | 1080.71 | 92941 | 394 | 1237.79 | 121922 | 444 | 1394.87 | 154830 |
| 345 | 1083.85 | 93482 | 395 | 1240.93 | 122542 | 445 | 1398.01 | 155528 |
| 346 | 1086.99 | 94025 | 396 | 1244.07 | 123163 | 446 | 1401.15 | 156228 |
| 347 | 1090.13 | 94569 | 397 | 1247.21 | 123786 | 447 | 1404.29 | 156930 |
| 348 | 1093.27 | 95115 | 398 | 1250.35 | 124410 | 448 | 1407.43 | 157633 |
| 349 | 1096.42 | 95662 | 399 | 1253.50 | 125036 | 449 | 1410.58 | 158337 |
| 350 | 1089.56 | 96211 | 400 | 1256.64 | 125664 | 450 | 1413.72 | 159043 |

Circumference and Area of Circles.

| Diameter. | Circum. |  | Diameter. | Circum. |  | Diameter. |  | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1416.86 | 159751 | 1 | 1573.94 | 197136 | 55 | 1731.02 | 238 |
| 452 | 1420.00 | 160460 | 502 | 1577.08 | 197923 | 552 | 1734.16 | 239314 |
| 453 | 1423.14 | 161171 | 03 | 1580.22 | 198 | 553 | 1737.40 | 24018 |
| 454 | 1426.28 | 161883 | 504 | 1583.36 | 199504 | 554 | 1740.44 | 241 |
| 455 | 1429.42 | 162597 | 505 | 1586.50 | 200296 | 555 | 1743.58 | 241922 |
| 5 | 1432.57 | 163313 | 506 | 1589.65 | 201090 | 556 | 1746.73 | 242795 |
| 457 | 1435.71 | 164030 | 507 | 1592.79 | 201886 | 557 | 1749.87 | 243669 |
| 458 | 1438.85 | 164748 | 508 | 1595.93 | 202683 | 558 | 1753.01 | 244545 |
| 459 | 1441.99 | 165468 | 509 | 1599.07 | 203482 | 559 | 1756.15 | 245422 |
| 460 | 1445.13 | 166190 | 510 | 1602.21 | 204282 | 560 | 1759.29 | 246301 |
| 461 | 1448.27 | 166914 | 511 | 1605.35 | 205084 | 561 | 1762.43 | 247181 |
| 462 | 1451.42 | 167639 | 512 | 1608.50 | 205887 | 562 | 1765.58 | 248063 |
| 463 | 1454.56 | 168365 | 513 | 1611.64 | 206692 | 563 | 1768.72 | 248947 |
| 464 | 1457.70 | 169093 | 514 | 1614.78 | 207499 | 564 | 1771.86 | 249832 |
| 465 | 1460.84 | 169823 | 15 | 1617.92 | 208307 | 565 | 1775.00 | 250719 |
| 466 | 1463.98 | 170554 | 516 | 1621.06 | 209117 | 566 | 1778.14 | 251607 |
| 467 | 1467.12 | 171287 | 17 | 1624.20 | 209928 | 567 | 1781.28 | 252497 |
| 468 | 1470.27 | 172021 | 518 | 1627.35 | 210741 | 568 | 1784.42 | 253388 |
| 469 | 1173.41 | 172757 | 19 | 1630.49 | 211556 | 569 | 1787.57 | 254281 |
| 470 | 1476.55 | 173494 | 520 | 1633.63 | 212372 | 570 | 1790.71 | 255176 |
| 471 | 1479.69 | 174234 | 21 | 1636.77 | 213189 | 571 | 1793.85 | 256072 |
| 472 | 1482.83 | 174974 | 522 | 1639.91 | 214008 | 572 | 1796.99 | 256970 |
| 473 | 1485.97 | 175716 | 52.3 | 1643.05 | 214829 | 573 | 1800.13 | 257869 |
| 474 | 1489.11 | 176460 | 524 | 1646.20 | 215651 | 574 | 1803.27 | 258770 |
| 475 | 1492.26 | 177205 | 525 | 1649.34 | 216475 | 575 | 1806.42 | 259672 |
| 476 | 1495.40 | 177952 | 526 | 1652.48 | 217301 | 576 | 1809.56 | 260576 |
| 477 | 1498.54 | 178701 | 527 | 1655.62 | 218128 | 577 | 1812.70 | 261482 |
| 8 | 1501.68 | 179451 | 528 | 1658.76 | 218956 | 578 | 1815.84 | 262389 |
| 479 | 1504.82 | 180203 | 529 | 1661.90 | 219787 | 579 | 1818.98 | 263298 |
| 480 | 1507.96 | 180956 | 30 | 1665.04 | 220618 | 580 | 1822.12 | 264208 |
| 481 | 1511.11 | 181711 | 531 | 1668.19 | 221452 | 581 | 1825.27 | 265120 |
| 482 | 1514.25 | 182467 | 532 | 1671.33 | 222287 | 582 | 1828.41 | 266033 |
| 483 | 1517.39 | 183225 | 533 | 1674.47 | 223123 | 583 | 1831.55 | 266948 |
| 484 | 1520.53 | 183984 | 534 | 1677.61 | 223961 | 584 | 1834.69 | 267865 |
| 485 | 1523.67 | 184745 | 535 | 1680.75 | 224801 | 585 | 1837.83 | 268783 |
| 486 | 1526.81 | 185508 | 536 | 1683.89 | 225642 | 586 | 1840.97 | 269702 |
| 487 | 1529.96 | 186272 | 537 | 1687.04 | 226484 | 587 | 1844.11 | 270624 |
| 488 | 1533.10 | 187038 | 538 | 1690.18 | 227329 | 588 | 1847.26 | 271547 |
| 489 | 1536.24 | 187805 | 539 | 1693.32 | 228175 | 589 | 1850.40 | 272471 |
| 490 | 1539.38 | 188574 | 540 | 1696.46 | 229022 | 590 | 1853.54 | 273397 |
| 491 | 1542.52 | 189345 | 541 | 1699.60 | 229871 | 591 | 1856.68 | 274325 |
| 492 | 1545.66 | 190117 | 542 | 1702.74 | 230722 | 592 | 1859.82 | 275254 |
| 493 | 1548.81 | 190890 | 543 | 1705.88 | 231574 | 593 | 1862.96 | 276184 |
| 494 | 1551.95 | 191665 | 544 | 1709.03 | 232428 | 594 | 1866.11 | 277117 |
| 495 | 1555.09 | 192442 | 545 | 1712.17 | 233283 | 595 | 1869.25 | 278051 |
| 496 | 1558.23 | 193221 | 546 | 1715.31 | 234140 | 596 | 1872.39 | 278986 |
| 497 | 1561.37 | 194000 | 547 | 1718.45 | 234998 | 597 | 1875.53 | 279923 |
| 498 | 1564.51 | 194782 | 548 | 1721.59 | 235858 | 598 | 1878.67 | 280862 |
| 499 | 1567.65 | 195565 | 549 | 1724.73 | 236720. | 599 | 1881.81 | 281802 |
| 500 | 1570.80 | 196350 | 550 | 1727.88 | 237583 | 600 | 1884.96 | 282743 |


| Diameter. | Circum. |  | Diameter. |  |  | $\begin{aligned} & \text { Diam- } \\ & \text { eter. } \end{aligned}$ |  | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 601 | 1888.10 | 283687 | 651 | 2045.18 | 332853 | 701 | 2202.26 | 385 |
| 602 | 1891.24 | 284631 | 652 | 2048.32 | 333876 | 702 | 2205.40 | 387 |
| 603 | 1894.38 | 285578 | 653 | 2051.46 | 334901 | 703 | 2208.54 | 388 |
| 604 | 1897.52 | 286526 | 654 | 2054.60 | 335927 | 704 | 2211.68 | 389 |
| 605 | 1900.66 | 287475 | 655 | 2057.74 | 336955 | 705 | 2214.82 | 390 |
| 606 | 1903.81 | 288426 | 656 | 2060.88 | 337985 | 706 | 2217.96 | 391 |
| 607 | 1906.95 | 289379 | 657 | 2064.03 | 339016 | 707 | 2221.11 | 392 |
| 608 | 1910.09 | 290333 | 658 | 2067.17 | 340049 | 708 | 2224.25 | 3936 |
| 609 | 1913.23 | 291289 | 659 | 2070.31 | 341083 | 709 | 2227.39 | 394805 |
| 610 | 1916.37 | 292247 | 660 | 2073.45 | 342119 | 710 | 2230.53 | 395 |
| 611 | 1919.51 | 293206 | 661 | 2076.59 | 343157 | 711 | 2233.67 | 397035 |
| 612 | 1922.65 | 294166 | 662 | 2079.73 | 344196 | 712 | 2236.81 | 398 |
| 613 | 1925.80 | 295128 | 663 | 2082.88 | 345237 | 713 | 2239.96 | 399272 |
| 614 | 1928.94 | 296092 | 664 | 2086.02 | 346279 | 714 | 2243.10 | 400 |
| 615 | 1932.08 | 297057 | 665 | 2089.16 | 347323 | 715 | 2246.24 | 401515 |
| 616 | 1935.22 | 298024 | 666 | 2092.30 | 348368 | 716 | 2249.38 | 402 |
| 617 | 1938.36 | 298992 | 667 | 2095.44 | 349415 | 717 | 2252.52 | 40376 |
| 618 | 1941.50 | 299962 | 668 | 2098.58 | 350464 | 718 | 2255.66 | 404 |
| 619 | 1944.65 | 300934 | 669 | 2101.73 | 351514 | 719 | 2258.81 | 406020 |
| 620 | 1947.79 | 301907 | 670 | 2104.87 | 352565 | 720 | 2261.95 | 407 |
| 621 | 1950.93 | 302882 | 671 | 2108.01 | 353618 | 721 | 2265.09 | 40828 |
| 622 | 1954.07 | 303858 | 672 | 2111.15 | 354673 | 722 | 2268.23 | 409 |
| 623 | 1957.21 | 304836 | 673 | 2114.29 | 355730 | 723 | 2271.37 | 410550 |
| 624 | 1960.35 | 305815 | 674 | 2117.43 | 356788 | 724 | 2274.51 | 41 |
| 625 | 1963.50 | 306796 | 675 | 2120.58 | 357847 | 725 | 2277.65 | 412825 |
| 626 | 1966.64 | 307779 | 676 | 2123.72 | 358908 | 726 | 2280.80 | 413965 |
| 627 | 1969.78 | 308763 | 677 | 2126.86 | 359971 | 727 | 2283.94 | 415106 |
| 628 | 1972.92 | 309748 | 78 | 2130.00 | 361035 | 728 | 2287.08 | 416248 |
| 629 | 1976.06 | 310736 | 679 | 2133.14 | 362101 | 729 | 2290.22 | 417393 |
| 630 | 1979.20 | 311725 | 680 | 2136.28 | 363168 | 730 | 2:93.36 | 418539 |
| 631 | 1982.35 | 312715 | 681 | 2139.42 | 364237 | 731 | $2: 96.50$ | 419686 |
| 632 | 1985.49 | 313707 | 682 | 2142.57 | 365308 | 732 | 2299.65 | 420835 |
| 633 | 1988.63 | 314700 | 683 | 2145.71 | 366380 | 733 | 2302.79 | 421986 |
| 634 | 1991.77 | 315696 | 684 | 2148.85 | 367453 | 734 | 2305.93 | 423139 |
| 635 | 1994.91 | 316692 | 685 | 2151.99 | 368528 | 735 | 2309.07 | 424 |
| 636 | 1998.05 | 317690 | 686 | 2155.13 | 369605 | 736 | 2312.21 | 425447 |
| 637 | 2001.19 | 318690 | 687 | 2158.27 | 370684 | 737 | 2315.35 | 426604 |
| 638 | 2004.34 | 319692 | 688 | 2161.42 | 371764 | 738 | 2318.50 | 427762 |
| 639 | 2007.48 | 320695 | 689 | 2164.56 | 372845 | 739 | 2321.64 | 428922 |
| 640 | 2010.62 | 321699 | 690 | 2167.70 | 373928 | 740 | 2324.78 | 430084 |
| 641 | 2013.67 | 322705 | 691 | 2170.84 | 375013 | 741 | 2327.92 | 431247 |
| 642 | 2016.90 | 323713 | 692 | 2173.98 | 376099 | 742 | 2331.06 | 432412 |
| 643 | 2020.04 | 324722 | 693 | 2177.12 | 377187 | 743 | 2334.30 | 433578 |
| 644 | 2023.19 | 325733 | 694 | 2180.27 | 378276 | 744 | 2337.34 | 434746 |
| 645 | 2026.33 | 326745 | 695 | 2183.41 | 379367 | 745 | 2340.49 | 435916 |
| 646 | 2029.47 | 327759 | 696 | 2186.55 | 380459 | 746 | 2343.63 | 437087 |
| 647 | 2032.61 | 328775 | 697 | 2189.69 | 381554 | 747 | 2346.77 | 438259 |
| 648 | 2035.75 | 329792 | 698 | 2192.83 | 382649 | 748 | 2349.91 | 439433 |
| 649 | 2038.89 | 330810 | 699 | 2195.97 | 383746 | 749 | 2353.05 | 440609 |
| 650 | 2042.04 | 331831 | 700 | 2199.11 | 384845 | 50 | 2356.19 | 441 |

Circumference and Area of Circles.

| Diameter. | Circum. | $\mathfrak{y}$ | Diameter. | Circum. | Area. | Diam- | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 751 | 2359.34 | 442965 | 801 | 2516.42 | 503912 | 851 | 2673.50 | 568786 |
| 752 | 2362.48 | 444146 | 802 | 2519.56 | 505171 | 852 | 2676.64 | 570124 |
| 753 | 2365.62 | 445328 | 803 | 2522.70 | 506432 | 853 | 2679.78 | 571463 |
| 754 | 2368.76 | 446511 | 804 | 2525.84 | 507694 | 854 | 2682.92 | 572803 |
| 755 | 2371.90 | 447697 | 805 | 2528.98 | 508958 | 855 | 2686.06 | 574146 |
| 756 | 2375.04 | 448883 | 806 | 2532.12 | 510223 | 856 | 2689.20 | 575490 |
| 757 | 2378.19 | 450072 | 807 | 2535.27 | 511490 | 857 | 2692.34 | 576835 |
| 758 | 2381.33 | 451262 | 808 | 2538.41 | 512758 | 858 | 2695.49 | 578182 |
| 759 | 2384.47 | 452453 | 809 | 2541.55 | 514028 | 859 | 2698.63 | 579530 |
| 760 | 2387.61 | 453646 | 810 | 2544.69 | 515300 | 860 | 2701.77 | 580880 |
| 761 | 2390.75 | 454841 | 811 | 2547.83 | 516573 | 861 | 2704.91 | 582232 |
| 762 | 2393.89 | 456037 | 812 | 2550.97 | 517848 | 862 | 2708.05 | 583585 |
| 763 | 2397.04 | 457234 | 813 | 2554.11 | 519124 | 863 | 2711.19 | 584940 |
| 764 | 2400.18 | 458434 | 814 | 2557.26 | 520402 | 864 | 2714.34 | 586297 |
| 765 | 2403.32 | 459635 | 815 | 2560.40 | 521681 | 865 | 2717.48 | 587655 |
| 766 | 2406.46 | 460837 | 816 | 2563.54 | 522962 | 866 | 2720.62 | 589014 |
| 767 | 2409.60 | 462041 | 817 | 2566.68 | 524245 | 867 | 2723.76 | 590375 |
| 768 | 2412.74 | 463247 | 818 | 2569.82 | 525529 | 868 | 2726.90 | 591738 |
| 769 | 2415.88 | 464454 | 819 | 2572.96 | 526814 | 869 | 2730.04 | 593102 |
| 770 | 2419.03 | 465663 | 820 | 2576.11 | 528102 | 870 | 2733.19 | 594468 |
| 771 | 2422.17 | 466873 | 821 | 2579.25 | 529391 | 871 | 2736.33 | 595835 |
| 772 | 2425.31 | 468085 | 822 | 2582.39 | 530681 | 872 | 2739.47 | 597204 |
| 773 | 2428.45 | 469298 | 823 | 2585.53 | 531973 | 873 | 2742.61 | 598575 |
| 774 | 2431.59 | 470513 | 824 | 2588.67 | 533267 | 874 | 2745.75 | 599947 |
| 775 | 2434.73 | 471730 | 825 | 2591.81 | 534562 | 875 | 2748.89 | 601320 |
| 776 | 2437.88 | 472948 | 826 | 2594.96 | 535858 | 876 | 2752.04 | 602696 |
| 777 | 2441.02 | 474168 | 827 | 2598.10 | 537157 | 877 | 2755.18 | 604073 |
| 778 | 2444.16 | 475389 | 828 | 2601.24 | 538456 | 878 | 2758.32 | 605451 |
| 779 | 2447.30 | 476612 | 829 | 2604.38 | 539758 | 879 | 2761.46 | 606831 |
| 780 | 2450.44 | 477836 | 830 | 2607.52 | 541061 | 880 | 2764.60 | 608212 |
| 781 | 2453.58 | 479062 | 831 | 2610.66 | 542365 | 881 | 2767.74 | 609595 |
| 782 | 2456.73 | 480290 | 832 | 2613.81 | 543671 | 882 | 2770.88 | 610980 |
| 783 | 2459.87 | 481519 | 833 | 2616.95 | 544979 | 883 | 2774.03 | 612366 |
| 784 | 2463.01 | 482750 | 834 | 2620.09 | 546288 | 884 | 2777.17 | 613754 |
| 785 | 2466.15 | 483982 | 835 | 2623.23 | 547599 | 885 | 2780.31 | 615143 |
| 786 | 2469.29 | 485216 | 836 | 2626.37 | 548912 | 886 | 2783.45 | 616534 |
| 787 | 2472.43 | 486451 | 837 | 2629.51 | 550226 | 887 | 2786.59 | 617927 |
| 788 | 2475.58 | 487688 | 838 | 2632.65 | 551541 | 888 | 2789.73 | 619321 |
| 789 | 2478.72 | 488927 | 839 | 2635.80 | 552858 | 889 | 2792.88 | 620717 |
| 790 | 2481.86 | 490167 | 840 | 2638.94 | 554177 | 890 | 2796.02 | 622114 |
| 791 | 2485.00 | 491409 | 841 | 2642.08 | 555497 | 891 | 2799.16 | 623513 |
| 792 | 2488.14 | 492652 | 842 | 2645.22 | 556819 | 892 | 2802.30 | 624913 |
| 793 | 2491.28 | 493897 | 843 | 2648.36 | 558142 | 893 | 2805.44 | 626315 |
| 794 | 2494.42 | 495143 | 844 | 2651.50 | 559467 | 894 | 2808.58 | 627718 |
| 795 | 2497.57 | 496391 | 845 | 2654.65 | 560794 | 895 | 2811.73 | 629124 |
| 796 | 2500.71 | 497641 | 846 | 2657.79 | 562122 | 896 | 2814.87 | 630530 |
| 797 | 2503.85 | 498892 | 847 | 2660.93 | 563452 | 897 | 2818.01 | 631938 |
| 798 | 2506.99 | 500145 | 848 | 2664.07 | 564783 | 898 | 2821.15 | 633348 |
| 799 | 2510.13 | 501399 | 849 | 2667.21 | 566116 | 899 | 2824.29 | 634760 |
| 800 | 2513.27 | 502655 | 850 | 2670.35 | 567450 | 900 | 2827.43 | 636173 |


| Diameter. | Circum. | Area. | Diam eter. | Circum. |  | $\begin{array}{\|} \text { Diam- } \\ \text { eter. } \end{array}$ | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 901 | 2830.58 | 637587 | 934 | 2934.25 | 685147 | 967 | 3037.92 |  |
| 902 | 2833.72 | 639003 | 935 | 2937.39 | 686615 | 968 | 3041.06 |  |
| 903 | 2836.86 | 640421 | 936 | 2940.53 | 688084 | 969 | 3044.20 | 735458 |
| 904 | 2810.00 | 641840 | 937 | 2943.67 | 689555 | 970 | 3047.34 | 738981 |
| 905 | 2843.14 | 643261 | 938 | 2946.81 | 691028 | 971 | 3050.49 | 740506 |
| 906 | 2846.28 | 644683 | 939 | 2949.96 | 692502 | 972 | 3053.63 | 742032 |
| 907 | 2849.42 | 646107 | 940 | 2953.10 | 693978 | 973 | 3056.77 | 743559 |
| 908 | 2852.57 | 647533 | 941 | 2956.24 | 695455 | 974 | 3059.91 | 745088 |
| 909 | 2855.71 | 648960 | 942 | 2959.38 | 696934 | 975 | 3063.05 | 746619 |
| 910 911 | 2858.85 | 650388 | 943 | 2962.52 | 698415 | 976 | 3066.19 | 748151 |
| 911 | 2861.99 | 651818 | 944 | 2965.66 | 699897 | 977 | 3069.34 | 749685 |
| 913 | 2865.13 2868.27 | 653250 | 945 | 2968.81 | 701380 | 978 | 3072.48 | 751221 |
| 914 | 2868.27 2871.42 | 654684 656118 | 946 | 2971.95 | 702865 | 979 | 3075.62 | 752758 |
| 915 | 2874.56 | 656118 657555 | 947 | 2975.09 2978.23 | 704352 | 980 | 3078.76 | 754296 |
| 916 | 2877.70 | 658993 | 949 | 2978.23 <br> 2981.37 | 705840 | 981 | 3081.90 | 755837 |
| 917 | 2880.84 | 660433 | 950 | 2984.51 | 707330 708822 | 982 | 3085.04 | 757378 |
| 918 | 2883.98 | 661874 | 951 | 2987.65 | 710315 | 983 | 3088.19 | 758922 |
| 919 | 2887.12 | 663317 | 952 | 2990.80 | 711809 | 985 | 3091.33 3094.47 | 760466 |
| 920 | 2890.27 | 664761 | 953 | 2993.94 | 713307 | 986 | 3094.47 3097 | 762013 |
| 921 | 2893.41 | 666207 | 954 | 2997.08 | 714803 | 987 | 3097.61 3100.75 | 763561 |
| 922 | 2896.55 | 667654 | 955 | 3000.22 | 716303 | 988 | 3100.75 3103.89 | $765111$ |
| 923 | 2899.69 | 669103 | 956 | 3003.36 | 717804 | 989 | 3107.04 | 768215 |
| 924 | 2902.83 | 670554 | 957 | 3006.50 | 719306 | 990 | 3110.18 | 769769 |
| 925 | 2905.97 | 672006 | 958 | 3009.65 | 720810 | 991 | 3113.32 | 771325 |
| 926 | 2909.11 | 673460 | 959 | 3012.79 | 722316 | 992 | 3116.46 | 772882 |
| 927 | 2912.26 | 674915 | 960 | 3015.93 | 723823 | 993 | 3119.60 | 774441 |
| 928 | 2915.40 | 676372 | 961 | 3019.07 | 725332 | 994 | 3122.74 | 776002 |
| 929 | 2918.54 | 677831 | 962 | 3022.21 | 726842 | 995 | 3125.88 | 777564 |
| 930 | 2921.68 | 679291 | 963 | 3025.35 | 728354 | 996 | 3129.03 | 779128 |
| 931 | 2924.82 | 680752 | 964 | 3028.50 | 729867 | 997 | 3132.17 | 780693 |
| 932 | 2927.96 | 682216 | 965 | 3031.64 | 731382 | 998 | 3135.31 | 782260 |
| 933 | 2931.11 | 683680 | 966 | 3034.78 | 732899 | 999 | 3138.45 | 783828 |

Note.-When it is desired to find the circumference corresponding to any diameter not in the table, point off as many places in the circumference as have been pointed off in the diameter, and point off twice as many places in this area as have been pointed off in the diameter., Thus :
Diameters.
9.16
91.6
916.
9160.
Circumferences.
28.777
287.77
2877.7
28777.

$$
\begin{aligned}
& \text { Areas. } \\
& 65.8993 \\
& 6589.93 \\
& 658993 . \\
& 65899321 .
\end{aligned}
$$

When it is desired to find the circumference or area for any diameter consisting of a whole number and a decimal, it may be done by taking the difference between the tabular figures for the diameters between which the given diameter lies and multiplying this difference by the decimal and adding the result to the tabular value corresponding to the next lower diameter. Thus:

Required the circumference for the diameter 916.27 ?

We hare

$$
\begin{gathered}
\text { Circumference } 917=2880.84 \\
\text { Circumference } 916=2877.70 \\
\text { Difference, } \\
3.14 \times 27=0.8478 \\
\text { Circumference } 916.27=2877.70+0.85=2878.55
\end{gathered}
$$

For the area corresponding to the same diameter we have

$$
\begin{gathered}
\text { Area } 917=660433 \\
\text { Area } 916=658993 \\
\text { Difference, } \\
1440 \\
1440 \times 0.27=388.8 \\
\text { Area } 916.27=658993+388.8=6.59381 .8
\end{gathered}
$$

## Arcs and Segments of Circles．

The table starting below enables the following values to be determined ： angle at centre $=v$ ，radius $=r$ ，length of arc $=b$ ，area of segment $=a$ ， surface of spherical segment $=\mathbf{a}$ ，volume of spherical segment $=\mathbf{c}$ ，and length of chord $=c$ ．

The quantities given are the height or versedsine of the are $=h$ ，and the length of the chord $=c$ ．

To use the table，divide the length of the chord by the height．Look for the nearest value to this quotient in the first，or extreme left－hand column，and opposite this value will be found the corresponding values for the various coefficients，$k$ ，for a chord of unit length．These values， multiplied by the length of the given chord，will give the required lengths；by the square of the chord，will give the required surfaces；and by the cube of the chord，will give the required volume．

Thus，for a chord，$c=25$ ，and height，$h=5$ ，we have

$$
\frac{25}{5}=5 .
$$

The nearest value to this in the table is 5.0134 ．
We then have

| Angle at centre， | $v=87^{\circ} ;$ |
| :--- | :--- |
| Radius， | $r=25 \times 0.72637=18.159 ;$ |
| Length of arc， | $b=25 \times 1.1027=27.567 ;$ |
| Area of segment， | $a=25^{2} \times 0.13704=85.65 ;$ |
| Surface of spherical segment， |  |
| Volume of spherical segment， $\mathbf{c}=255^{2} \times 25^{3} \times 0.91036=568.97 ;$ |  |
|  |  |


| Chord div． by height． | Centre angle $v$ ． | Radius $r=k c$ ． | $\begin{aligned} & \text { Cir. arc } \\ & b=k c . \end{aligned}$ | Area seg． $a=k c^{2}$ ． | Surface $\mathbf{a}=k c^{2}$ | $\begin{aligned} & \text { Solidity } \\ & c=k \cdot c^{3} . \end{aligned}$ | $\begin{gathered} \text { Chord } \\ c=k r . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{t n}{y^{\prime}}$ | ぐージ安 | $r$ ， |  |  |  |  |  |
| 458.08 | 1 | 57.296 | 1.0000 | ． 00109 | ． 78539 | ． 00085 | ． 01744 |
| 229.18 | 2 | 28.649 | 1.0000 | ． 00218 | ． 78549 | ． 00172 | ． 03490 |
| 152.77 | 3 | 19.101 | 1.0000 | ． 00327 | ． 78562 | ． 00255 | ． 05234 |
| 114.57 | 4 | 14.327 | 1.0000 | ． 00436 | ． 78574 | ． 00310 | ． 06978 |
| 84.747 | 5 | 11.462 | 1.0001 | ． 00647 | ． 78586 | ． 00401 | ． 08722 |
| 76.375 | 6 | 9.5530 | 1.0003 | ． 00741 | ． 78599 | ． 00514 | ． 10466 |
| 65.943 | 7 | 8.1902 | 1.0004 | ． 00910 | ． 78621 | ． 00592 | ． 12208 |
| 57.273 | 8 | 7.1678 | 1.0006 | ． 01089 | ． 78630 | ． 00686 | ． 13950 |
| 50.902 | 9 | 6.3728 | 1.0008 | ． 01254 | ． 78665 | ． 00772 | ． 15690 |
| 45.807 | 10 | 5.7368 | 1.0011 | ． 01407 | ． 78695 | ． 00857 | ． 17430 |

Arcs and Segments of Circles.

| Chord div. by height. | Centre angle $v$. | Radius $r=k c$. <br> $\because \sqrt{r}$ | $\begin{aligned} & \text { Cir. arc } \\ & b=k c . \end{aligned}$ | Area seg. $a=k c^{2}$. | Surface $\mathbf{a}=k c^{2}$ | Solidity $\mathbf{c}=k c^{3}$. | $\overbrace{\substack{\text { Chord } \\ c=\text { kr. }}}^{\substack{\text { n }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41.203 | 11 | 5.2167 | 1.0013 | . 01552 | . 78730 | . 00964 | . 19168 |
| 38.133 | 12 | 4.7834 | 1.0016 | . 01695 | . 78762 | . 01031 | . 20904 |
| 35.221 | 13 | 4.4168 | 1.0019 | . 01841 | . 78794 | . 01114 | . 22640 |
| 32.742 | 14 | 4.1027 | 1.0023 | . 02000 | . 78832 | . 01199 | . 24372 |
| 30.514 | 15 | 3.8307 | 1.0027 | . 02157 | . 78889 | . 01288 | . 26104 |
| 28.601 | 16 | 3.5927 | 1.0029 | . 02269 | . 78909 | . 01375 | . 27834 |
| 26.915 | 17 | 3.3827 | 1.0034 | . 02434 | . 78969 | . 01462 | . 29560 |
| 25.412 | 18 | 3.1962 | 1.0039 | . 02592 | . 79028 | . 01542 | . 31286 |
| 24.068 22.860 | 19 | 3.0293 | 1.0044 | . 02744 | . 79084 | . 01635 | . 33008 |
| 22.860 21.760 | 20 | 2.8793 | 1.0048 | . 02878 | . 79140 | . 01722 | . 34728 |
| 21.760 20.777 | 21 | 2.7440 | 1.0054 | . 03040 | . 79234 | . 01802 | . 36446 |
| 20.777 19.862 | 22 | 2.6222 | 1.0059 | . 03178 | . 79300 | . 01897 | . 38160 |
| 19.862 19.028 | 23 | 2.5080 | 1.0066 | . 03343 | . 79340 | . 01984 | . 39872 |
| 19.028 18.261 | 24 | 2.4050 | 1.0072 | . 03493 | . 79416 | . 02072 | . 41582 |
| 18.261 | 25 | 2.3101 | 1.0078 | . 03639 | . 79486 | . 02159 | . 43286 |
| 17.553 16.970 | 26 | 2.2233 | 1.0084 | . 03784 | . 79530 | . 02248 | . 44990 |
| 16.970 16.288 | 27 | 2.1418 | 1.0091 | . 03970 | . 79639 | . 02315 | . 46688 |
| 16.288 15.721 | 28 | 2.0673 | 1.0101 | . 04115 | . 79748 | . 02424 | . 48384 |
| 15.721 15.191 | 29 | 1.9969 | 1.0105 | . 04230 | . 79811 | . 02511 | . 50076 |
| 15.191 14.970 | 30 31 | 1.9319 | 1.0113 | . 04385 | . 79907 | . 02600 | . 51762 |
| 14.230 | 32 | 1.8140 | 1.0129 | . 04476 | . 80002 | . 02692 | . 53446 |
| 13.796 | 33 | 1.7605 | 1.0138 | . 04842 | . 800981 | . 02778 | . 55126 |
| 13.382 | 34 | 1.7102 | 1.0146 | . 04989 | . 80300 | . 02956 | . 56802 |
| 12.994 | 35 | 1.6628 | 1.0155 | . 05137 | . 80405 | . 03046 | . 680140 |
| 12.733 | 36 | 1.6184 | 1.0167 | . 05311 | . 80531 | . 03137 | . 61802 |
| 12.473 | 37 | 1.5758 | 1.0174 | . 05401 | . 80622 | . 03226 | . 63460 |
| 11.931 | 38 | 1.5358 | 1.0184 | . 05628 | . 80713 | . 03328 | . 65112 |
| 11.621 | 39 | 1.4979 | 1.0194 | . 05755 | . 80850 | . 03418 | . 66760 |
| 11.342 | 40 | 1.4619 | 1.0204 | . 05899 | . 80987 | . 03506 | . 68404 |
| 11.060 10.791 | 41 | 1.4266 | 1.0207 | . 06001 | . 81046 | . 03589 | . 70040 |
| 10.791 10.534 | 42 | 1.3952 | 1.0226 | . 06196 | . 81240 | . 03680 | . 71672 |
| 10.534 10.289 | 43 | 1.3643 | 1.0237 | . 06359 | . 81377 | . 03773 | . 73300 |
| 10.289 10.043 | 44 | 1.3347 | 1.0248 | . 06574 | . 81505 | . 03864 | . 74920 |
| 10.043 9.8303 | 45 | 1.3066 | 1.0260 | . 06628 | . 81756 | . 03890 | . 76536 |
| 9.8303 9.6153 | 46 | 1.2797 | 1.0272 | . 06826 | . 81795 | . 04050 | . 78146 |
| 9.6153 9.4092 | 47 | 1.2539 | 1.0290 | . 06998 | . 81939 | . 04143 | . 79748 |
| 9.4092 9.2113 | 48 | 1.2289 | 1.0297 | . 07138 | . 82064 | . 04247 | . 81346 |
| 9.2113 9.0214 | 49 | 1.2057 | 1.0309 | . 07290 | . 82244 | . 04330 | . 82938 |
| 9.0214 <br> 8.8387 <br> 8 | 50 | 1.1831 | 1.0323 | . 07453 | . 82384 | . 04424 | . 84522 |
| 8.8387 8.6629 8.462 | 51 | 1.1614 | 1.0336 | . 07611 | . 82562 | . 04519 | . 86102 |
| 8.6629 8.4462 | 52 | 1.1406 | 1.0349 | . 07758 | . 82729 | . 04614 | . 87674 |
| 8.4462 | 53 | 1.1206 | 1.0364 | . 07959 | . 82896 | . 04685 | . 89238 |
| 8.3306 | 54 | 1.1014 | 1.0378 | . 08083 | . 83072 | . 04805 | . 90798 |
| 8.1733 | 55 | 1.0828 | 1.0393 | . 08246 | . 83249 | . 04901 | . 92348 |


| Chord div. by height. | Centre angle $v$. | $\begin{aligned} & \text { Radius } \\ & r=k c . \\ & \because V_{r} \end{aligned}$ | Cir. arc $b=k c$. | Area seg. $a=k c^{2}$ | Surface $\mathbf{a}=k c^{2}$. | Solidity $\mathbf{c}=k c^{3}$ | $\begin{aligned} & \text { Chord } \\ & c=k r . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0215 | 56 | 1.0650 | 1.0407 | . 08400 | . 83422 | . 05002 | . 93894 |
| 7.8750 | 57 | 1.0478 | 1.0422 | . 08579 | . 83602 | . 05098 | . 95430 |
| 7.7334 | 58 | 1.0313 | 1.0431 | . 08680 | . 83796 | . 05191 | . 96960 |
| 7.5895 | 59 | 1.0154 | 1.0454 | . 08891 | . 84064 | . 05299 | . 98484 |
| 7.4565 | 60 | 1.0000 | 1.0470 | . 09106 | . 84266 | . 05400 | 1.0000 |
| 7.3358 | 61 | . 98515 | 1.0486 | . 09209 | . 84380 | . 05466 | 1.0150 |
| 7.2118 | 62 | . 97080 | 1.0503 | . 09375 | . 84581 | . 05583 | 1.0300 |
| 7.0914 | 63 | . 95694 | 1.0520 | . 09540 | . 84791 | . 05684 | 1.0450 |
| 6.9748 | 64 | . 94352 | 1.0537 | . 09697 | . 84996 | . 05784 | 1.0598 |
| 6.8616 | 65 | . 93058 | 1.0555 | . 09865 | . 85215 | . 05885 | 1.0746 |
| 6.7512 | 66 | . 91804 | 1.0573 | . 10036 | . 85441 | . 05987 | 1.0892 |
| 6.6453 | 67 | . 90590 | 1.0591 | . 10201 | . 85640 | . 06088 | 1.1038 |
| 6.5469 | 68 | . 89415 | 1.0610 | . 10367 | . 85815 | . 06181 | 1.1184 |
| 6.4902 | 69 | . 88276 | 1.0629 | . 10520 | . 86082 | . 06201 | 1.1328 |
| 6.3431 | 70 | . 87172 | 1.0648 | . 10710 | . 86350 | . 06396 | 1.1471 |
| 6.2400 | 71 | . 86102 | 1.0668 | . 10887 | . 86699 | . 06515 | 1.1614 |
| 6.1553 | 72 | . 85065 | 1.0687 | . 11046 | . 86834 | . 06604 | 1.1755 |
| 6.0652 | 73 | . 84058 | 1.0708 | . 11225 | . 87081 | . 06709 | 1.1896 |
| 5.9773 | 74 | . 83082 | 1.0728 | . 11385 | . 87344 | . 06815 | 1.2036 |
| 5.8918 | 75 | . 82134 | 1.0749 | . 11563 | . 87590 | . 06921 | 1.2175 |
| 5.8084 | 76 | . 81213 | 1.0770 | . 11736 | . 87853 | . 07037 | 1.2313 |
| 5.7271 | 77 | . 80319 | 1.0792 | . 11910 | . 88120 | . 07136 | 1.2450 |
| 5.6478 | 78 | . 79449 | 1.0814 | . 12072 | . 88389 | . 07244 | 1.2586 |
| 5.5704 | 79 | . 78606 | 1.0836 | . 12281 | . 88677 | . 07352 | 1.2721 |
| 5.4949 | 80 | . 77786 | 1.0859 | . 12441 | . 88949 | . 07462 | 1.2855 |
| 5.4254 | 81 | . 76988 | 1.0882 | . 12660 | . 89161 | . 07512 | 1.2989 |
| 5.3492 | 82 | . 76212 | 1.0905 | . 12793 | . 89520 | . 07683 | 1.3121 |
| 5.2705 | 83 | . 75458 | 1.0920 | . 12958 | . 89958 | . 07819 | 1.3252 |
| 5.2101 | 84 | . 74724 | 1.0953 | . 13157 | . 90095 | . 07907 | 1.3383 |
| 5.1429 | 85 | . 74009 | 1.0977 | . 13330 | . 90420 | . 07960 | 1.3512 |
| 5.0772 | 86 | . 73314 | 1.1012 | . 13546 | . 90734 | . 08102 | 1.3639 |
| 5.0134 | 87 | . 72637 | 1.1027 | . 13704 | . 91036 | . 08340 | 1.3767 |
| 4.9501 | 88 | . 71978 | 1.1054 | . 13893 | . 91363 | . 08436 | 1.3893 |
| 4.8886 | 89 | . 71336 | 1.1079 | . 14078 | . 91696 | . 08530 | 1.4018 |
| 4.8216 | 90 | . 70710 | 1.1105 | . 14279 | . 92210 | . 08621 | 1.4142 |
| 4.7694 | 91 | . 70101 | 1.1132 | . 14449 | . 92352 | . 08716 | 1.4265 |
| 4.7117 | 92 | . 69508 | 1.1159 | . 14643 | . 92476 | . 08798 | 1.4387 |
| 4.6615 | 93 | . 68930 | 1.1186 | . 14817 | . 92914 | . 08932 | 1.4507 |
| 4.5999 | 94 | . 68366 | 1.1211 | . 15009 | . 93385 | . 09076 | 1.4627 |
| 4.5453 | 95 | . 67817 | 1.1242 | . 15211 | . 93746 | . 09197 | 1.4745 |
| 4.4845 | 96 | . 67282 | 1.1271 | . 15375 | . 94272 | . 09348 | 1.4863 |
| 4.4398 | 97 | . 66760 | 1.1300 | . 15600 | . 94470 | . 09442 | 1.4979 |
| 4.3859 | 98 | . 66250 | 1.1329 | . 15801 | . 94852 | . 09567 | 1.5094 |
| 4.3383 | 99 | . 65754 | 1.1359 | . 15995 | . 95236 | . 09693 | 1.5208 |
| 4.2862 | 100 | . 65270 | 1.1382 | . 16180 | . 95682 | . 09831 | 1.5321 |

Arcs And Segments of Circles.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chord div. by height. | Centre angle $v$. | Radius | $\begin{aligned} & \text { Cir. arc } \\ & b=k c . \end{aligned}$ | Area seg. $a=k c^{2} .$ | Surface $\mathbf{a}=k c^{2}$ | Solidity $\mathbf{c}=k c^{3}$ | Chord $c=k r .$ |
| 4.2406 | 101 | . 64798 | 1.1420 | . 16393 | . 96011 | . 09956 | 1.5432 |
| 4.1930 | 102 | . 64338 | 1.1451 | . 16610 | . 96412 | . 10076 | 1.5543 |
| 4.1570 | 103 | . 63889 | 1.1483 | . 16925 | . 96.568 | . 10215 | 1.5652 |
| 4.1006 | 104 | . 63450 | 1.1515 | .17001 | . 97246 | . 10343 | 1.5760 |
| 4.0555 | 105 | . 63023 | 1.1547 | .17204 | .97643 | . 10471 | 1.5867 |
| 4.0113 | 106 | . 62607 | 1.1580 | . 17414 | . 98067 | . 10601 | 1.5973 |
| 3.9679 | 107 | . 62200 | 1.1614 | . 17619 | . 98495 | .10735 | 1.6077 |
| 3.9252 | 108 | . 61803 | 1.1648 | . 17832 | . 98931 | . 10870 | 1.6180 |
| 3.8832 | 109 | . 61416 | 1.1682 | . 18041 | . 99376 | . 11007 | 1.6282 |
| 3.8419 | 110 | . 61089 | 1.1716 | . 18257 | .99827 | .11149 | 1.6383 |
| 3.8013 | 111 | . 60670 | 1.1752 | . 18472 | 1.0028 | . 11284 | 1.6482 |
| 3.7612 | 112 | . 60325 | 1.1790 | . 18696 | 1.0077 | . 11426 | 1.6581 |
| 3.7221 | 113 | . 59960 | 1.1823 | . 18900 | 1.0122 | . 11566 | 1.667 |
| 3.6837 | 114 | . 59618 | 1.1859 | . 19117 | 1.0169 | . 11709 | 1.6773 |
| 3.6454 | 115 | . 59284 | 1.1897 | . 19339 | 1.0218 | . 11853 | 1.6867 |
| 3.6086 | 116 | . 589.59 | 1.1934 | .19559 | 1.0266 | . 11995 | 1.6961 |
| 3.5712 | 117 | . 58611 | 1.1972 | . 19787 | 1.0317 | . 12145 | 1.7053 |
| 3.5349 | 118 | . 58331 | 1.2011 | . 20009 | 1.0368 | . 12294 | 1.7143 |
| 3.4992 | 119 | . 58030 | 1.2050 | . 20227 | 1.0417 | . 12444 | 1.7232 |
| 3.4641 | 120 | . 57735 | 1.2089 | . 20453 | 1.0472 | . 12596 | 1.7320 |
| 3.4296 | 121 | . 57450 | 1.2130 | . 20678 | 1.0525 | . 12748 | 1.7407 |
| 3.3953 | 122 | . 57168 | 1.2177 | . 20945 | 1.0578 | . 12903 | 1.7492 |
| 3.3616 | 123 | . 56895 | 1.2213 | . 21175 | 1.0634 | . 13060 | 1.7576 |
| 3.3285 | 124 | . 56628 | 1.2253 | . 21399 | 1.0690 | . 13218 | 1.7659 |
| 3.2940 | 125 | . 56370 | 1.2295 | . 21538 | 1.0753 | . 13391 | 1.7740 |
| 3.2637 | 126 | . 56116 | 1.2338 | . 21859 | 1.0803 | . 13558 | 1.7820 |
| 3.2319 | 127 | . 55870 | 1.2381 | . 22121 | 1.0862 | . 13701 | 1.7898 |
| 3.2006 | 128 | . 55630 | 1.2425 | . 22370 | 1.0921 | . 13866 | 1.7976 |
| 3.1716 | 129 | . 55396 | $1.24 \% 0$ | . 22617 | 1.0974 | . 14028 | 1.8051 |
| 3.1393 | 130 | . 55169 | 1.2515 | . 22865 | 1.1040 | . 14202 | 1.8126 |
| 3.1093 | 131 | . 54947 | 1.2561 | . 23113 | 1.1104 | . 14371 | 1.8199 |
| 3.0805 | 132 | . 54732 | 1.2607 | . 23372 | 1.1164 | . 14537 | 1.8271 |
| 3.0555 | 133 | . 54522 | 1.2654 | . 23603 | 1.1212 | . 14676 | 1.8341 |
| 3.0216 | 134 | . 54318 | 1.2701 | . 23892 | 1.1295 | . 14894 | 1.8410 |
| 2.9777 | 135 | . 54120 | 1.2749 | . 24198 | 1.1363 | . 15209 | 1.8477 |
| 2.9651 | 136 | . 53927 | 1.2798 | . 24364 | 1.1428 | . 15252 | 1.8543 |
| 2.9374 | 137 | . 53740 | 1.2847 | . 24676 | 1.1495 | . 15422 | 1.8608 |
| 2.9115 | 138 | . 53557 | 1.2897 | . 24938 | 1.1558 | .15605 | 1.8671 |
| 2.8829 | 139 | . 53380 | 1.2948 | . 25222 | 1.1634 | . 15807 | 1.8733 |
| 2.8562 | 140 | . 53209 | 1.2999 | . 25485 | 1.1705 | . 15996 | 1.8794 |
| 2.8299 | 141 | . 53042 | 1.3051 | . 25759 | 1.1777 | . 16201 | 1.8853 |
| 2.8038 | 142 | . 52881 | 1.3065 | . 25936 | 1.1851 | . 16381 | 1.8910 |
| 2.7781 | 143 | . 52724 | 1.3157 | . 26320 | 1.1925 | . 16577 | 1.8966 |
| 2.7527 | 144 | . 52573 | 1.3211 | . 26604 | 1.2000 | . 16776 | 1.9021 |
| 2.7276 | 145 | . 52426 | 1.3265 | . 26889 | 1.2077 | . 16965 | 1.9074 |

Arcs and Segments of Circles.

| Chord div. by height. | Centre angle $u$. | Radius $r=k c$. | Cir. arc $b=k c$. | Area seg. $a=k c^{2}$ | Surface $\mathbf{a}=k c^{2} .$ | Solidity $\mathbf{c}=k c^{3}$. | Chord |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.7002 | 146 | . 52284 | 1.3320 | . 27196 | 1.2166 | . 17209 | 1.9126 |
| 2.6816 | 147 | .52147 | 1.3377 | . 27449 | 1.2219 | . 17405 | 1.9176 |
| 2.6533 | 148 | . 22015 | 1.3433 | . 27712 | 1.2318 | . 17605 | 1.9225 |
| 2.6301 | 149 | . 51887 | 1.3491 | . 28168 | 1.2396 | . 17809 | 1.9272 |
| 2.6064 | 150 | . 51764 | 1.3549 | . 28369 | 1.2476 | . 18023 | 1.9318 |
| 2.5830 | 151 | . 51645 | 1.3608 | . 28674 | 1.2563 | . 18666 | 1.9363 |
| 2.5598 | 152 | . 51530 | 1.3668 | . 28983 | 1.2648 | . 18751 | 1.9406 |
| 2.5239 | 153 | . 51420 | 1.3729 | . 29397 | 1.2801 | . 18815 | 1.9447 |
| 2.5143 | 154 | . 51315 | 1.3790 | . 29607 | 1.2824 | . 18913 | 1.9487 |
| 2.4919 | 155 | . 51214 | 1.3852 | . 29928 | 1.2914 | . 19147 | 1.9526 |
| 2.4699 | 156 | . 51117 | 1.3919 | . 30259 | 1.3004 | . 19374 | 1.9563 |
| 2.4478 | 157 | . 51014 | 1.3973 | . 30560 | 1.3094 | . 19607 | 1.9598 |
| 2.4262 | 158 | . 50936 | 1.4043 | . 30905 | 1.3191 | . 19851 | 1.9632 |
| 2.4047 | 159 | . 50851 | 1.4109 | . 31239 | 1.3287 | . 20095 | 1.9663 |
| 2.3835 | 160 | . 50771 | 1.4175 | . 31575 | 1.3368 | . 20342 | 1.9696 |
| 2.3613 | 161 | . 50695 | 1.4243 | . 31931 | 1.3490 | . 20609 | 1.9725 |
| 2.3417 | 162 | . 50623 | 1.4311 | . 32263 | 1.3583 | . 20847 | 1.9753 |
| 2.3211 | 163 | . 50555 | 1.4380 | . 32618 | 1.3682 | . 21105 | 1.9780 |
| 2.3004 | 164 | . 50491 | 1.4450 | .32969 | 1.3791 | . 21371 | 1.9805 |
| 2.2805 | 165 | . 50431 | 1.4520 | . 33327 | 1.3895 | . 21634 | 1.9829 |
| 2.2605 | 166 | . 50374 | 1.4592 | . 33684 | 1.4021 | . 21904 | 1.9851 |
| 2.2408 | 167 | . 50323 | 1.4665 | . 34048 | 1.4111 | . 22177 | 1.9871 |
| 2.2212 | 168 | . 50275 | 1.1739 | . 34422 | 1.422 | . 22450 | 1.9890 |
| 2.2013 | 169 | . 50231 | 1.4813 | . 34802 | 1.4344 | . 22766 | 1.9908 |
| 2.1826 | 170 | . 50191 | 1.4889 | . 35230 | 1.4476 | . 23028 | 1.9924 |
| 2.1636 | 171 | . 50154 | 1.4966 | . 35563 | 1.4565 | . 23266 | 1.9938 |
| 2.1447 | 172 | . 50122 | 1.5044 | . 35953 | 1.4684 | . 23650 | 1.9951 |
| 2.1271 | 173 | . 50093 | 1.5123 | . 36337 | 1.4797 | . 23900 | 1.9962 |
| 2.1075 | 174 | . 50068 | 1.5202 | . 36747 | 1.4927 | . 24225 | 1.9972 |
| 2.0892 | 175 | . 50047 | 1.5283 | . 37152 | 1.5052 | . 24537 | 1.9981 |
| 2.0710 | 176 | . 50030 | 1.5365 | . 37502 | 1.5179 | . 24856 | 1.9988 |
| 2.0530 | 177 | . 50017 | 1.5448 | . 37974 | 1.5308 | . 25179 | 1.9993 |
| 2.0352 | 178 | . 50007 | 1.5533 | . 38101 | 1.5139 | . 25553 | 1.9996 |
| 2.0175 | 179 | . 50002 | 1.5618 | . 38828 | 1.5573 | . 25810 | 1.9999 |
| 2.0000 | 180 | . 50000 | 1.5708 | . 39269 | 1.5708 | . 26179 | 2.0000 |

## Circular Arcs and Segments.

For a Radius $=1$.

|  | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { Arc. } \end{gathered}$ | Height of Arc. | $\left.\begin{gathered} \text { Length } \\ \text { of } \\ \text { Chord. } \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{c} \text { Area } \\ \text { of } \\ \text { Segment } \end{array}\right\|$ |  | Length of Arc. | Heigh of Arc. | Length of Chord. | $\begin{gathered} \text { Area } \\ \text { of } \\ \text { Segment } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0 | 0. | 0.0175 | 0.00000 | 47 | 0.82 | 0.0829 | 0.7975 |  |
| 2 | 0.0349 | 0.0002 | 0.0349 | 0.00000 | 48 | 0.8378 | 0.0865 | 0.8135 | 0.04731 |
| 3 | 0.0524 | 0.0003 | 0.0524 | 0.00001 | 49 | 0.8552 | 0.0900 | 0.8294 | 0.05025 |
| 4 | 0.069 | 0.0006 | 0.0698 | 0.00003 | 50 | 0.8727 | 0.0937 | 0.8452 | 0.05331 |
|  | 0.087 | 0.0010 | 0.0872 | 0.00006 | 51 | 0.8901 | $\overline{0.0974}$ | 0.8610 | 0.056 |
| 6 | 0.1047 | 0.0014 | 0.1047 | 0.00010 | 52 | 0.9076 | 0.1012 | 0.8767 | 0.05978 |
| 7 | 0.1222 | 0.0019 | 0.1221 | 0.00015 | 53 | 0.9250 | 0.1051 | 0.8924 | 5.06319 |
| 8 | 0.1396 | 0.0024 | 0.1395 | 0.00023 | 54 | 0.9425 | 0.1090 | 0.9080 | 0.066 |
| 9 | 0.1571 | 0.0031 | 0.1569 | 0.00032 | 55 | 0.9599 | 0.1130 | 0.9235 | 0.07039 |
| 10 | 0.1745 | 0.0038 | 0.1743 | 0.00044 | 56 | 0.9774 | 0.1171 | 0.9389 | 0.07417 |
| 11 | 0.1920 | 0.0046 | 0.1917 | 0.00059 | 57 | 0.9948 | 0.1212 | 0.9543 | 0.07 |
| 12 | 0.2094 | 0.0055 | 0.2091 | 0.00076 | 58 | 1.0123 | 0.1254 | 0.9696 | 0.082 |
| 13 | 0.2269 | 0.0064 | 0.2264 | 0.00097 | 59 | 1.0297 | 0.1296 | 0.9848 | 0.08629 |
| 14 | 0.2443 | 0.0075 | 0.2437 | 0.00121 | 60 | 1.0472 | 0.1340 | 1.0000 | 0.09059 |
| 15 | 0.2618 | 0.0086 | 0.2611 | 0.00149 | 61 | 1.0647 | 0.1384 | 1.0151 | $\overline{0.09502}$ |
| 16 | 0.2793 | 0.0097 | 0.2783 | 0.00181 | 62 | 1.0821 | 0.1428 | 1.0301 | 0.09958 |
| 17 | 0.2967 | 0.0110 | 0.2956 | 0.00217 | 63 | 1.0996 | 0.1474 | 1.0450 | 0.10428 |
| 18 | 0.3142 | 0.0123 | 0.3129 | 0.00257 | 64 | 1.1170 | 0.1520 | 1.0598 | 0.10911 |
| 19 | 0.3316 | 0.0137 | 0.3301 | 0.00302 | 65 | 1.1345 | 0.1566 | 1.0746 | 0.11408 |
| 20 | 0.3491 | 0.0152 | 0.3473 | 0.00352 | 66 | 1.1519 | 0.1613 | 1.0893 | 0.11919 |
| 21 | 0.3665 | 0.0167 | 0.3645 | 0.00408 | 67 | 1.1694 | 0.1661 | 1.1039 | 0.12443 |
| 2 | 0.3840 | 0.0184 | 0.3816 | 0.00468 | 68 | 1.1868 | 0.1710 | 1.1184 | 0.12982 |
| 23 | 0.4014 | 0.0201 | 0.3987 | 0.00535 | 69 | 1.2043 | 0.1759 | 1.1328 | 0.13535 |
| 24 | 0.41 | 0.02 | 0.415 | 0.0060 | 70 | 1.2217 | 0.1808 | 1.1472 | 0.14102 |
| 25 | 0.4363 | 0.0237 | 0.4329 | 0.00686 | 71 | 1.2392 | 0.1859 | 1.1614 | 0.14683 |
| 26 | 0.4538 | 0.0256 | 0.4499 | 0.00771 | 72 | 1.2566 | 0.1910 | 1.1756 | 0.15279 |
| 27 | 0.471 | 0.0276 | 0.4669 | 0.00862 | 73 | 1.2741 | 0.1961 | 1.1896 | 0.15889 |
| 28 | 0.4887 | 0.0297 | 0.4838 | 0.00961 | 74 | 1.2915 | 0.2014 | 1.2036 | 0.16514 |
| 29 | 0.5061 | 0.0319 | 0.5008 | 0.01067 | 75 | 1.3090 | 0.2066 | 1.2175 | 0.17154 |
| 30 | 0.5236 | 0.0341 | 0.5176 | 0.01180 | 76 | 1.3265 | 0.2120 | 1.2313 | 0.17808 |
| 31 | 0.5411 | 0.036 | 0.53 | 0.0130 | 77 | 1.3439 | 0.2174 | 1.2450 | 0.1 |
| 32 | 0.5585 | 0.0387 | 0.5512 | 0.01429 | 78 | 1.3614 | 0.2229 | 1.2586 | 0.19160 |
| 33 | 0.5760 | 0.0412 | 0.5680 | 0.01566 | 79 | 1.3788 | 0.2284 | 1.2722 | 0.19859 |
| 34 | 0.5934 | 0.0437 | 0.5847 | 0.01711 | 80 | 1.3963 | 0.2340 | 1.2856 | 0.20573 |
| 35 | 0.6109 | 0.0463 | 0.6014 | 0.01864 | 81 | 1.4137 | $\overline{0.2396}$ | 1.2989 | 0.21301 |
| 36 | 0.6283 | 0.0489 | 0.6180 | 0.02027 | 82 | 1.4312 | 0.2453 | 1.3121 | 0.22045 |
| 37 | 0.6458 | 0.0517 | 0.6346 | 0.02198 | 83 | 1.4486 | 0.2510 | 1.3252 | 0.22804 |
| 38 | 0.6632 | 0.0545 | 0.6511 | 0.02378 | 84 | 1.4661 | 0.2569 | 1.3383 | 0.23578 |
| 39 | 0.6807 | 0.0574 | 0.6676 | 0.02568 | 84 | 1.4835 | 0.2627 | 1.3512 | 0.24367 |
| 40 | 0.6981 | 0.0603 | 0.6840 | 0.02767 | 86 | 1.5010 | 0.2686 | 1.3640 | 0.25171 |
| 41 | 0.7156 | $\overline{0.0633}$ | 0.7004 | 0.02976 | 87 | 1.5184 | 0.2746 | 1.3767 | 0.25990 |
| 42 | 0.7330 | 0.0664 | 0.7167 | 0.03195 | 88 | 1.5359 | 0.2807 | 1.3893 | 0.26825 |
| 43 | 0.7505 | 0.0696 | 0.7330 | 0.03425 | 89 | 1.5533 | 0.2867 | 1.4018 | 0.27675 |
| 44 | 0.7679 | 0.0728 | 0.7492 | 0.03664 | 90 | 1.5708 | 0.2929 | 1.4142 | 0.2885 |
| 45 | 0.7854 | 0.0761 | 0.7654 | 0.03915 |  |  |  |  |  |
| 46 | 0.8029 | 0.0795 | 0.7815 | 0.04176 |  |  |  |  |  |

Let $r=$ radius and $\phi$ the angle at the centre, in degrees-
Chord $=c=2 r \sin \frac{\phi}{2} ; \quad$ Height $=h=r\left(1-\cos \frac{\phi}{2}\right)$ Arc $=b=\pi r \frac{\phi}{180}=0.017453$ r $\phi=\sqrt{c^{2}+\frac{16}{3} h^{2}}$ approx.

Circular Arcs and Segments.
For a Radius $=1$.

|  | Length of Arc. | Height of Arc. | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { Chord. } \end{gathered}$ |  |  | Length of Arc. | $\begin{array}{\|c\|} \text { Height } \\ \text { of } \\ \text { Arc. } \end{array}$ | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { Chord. } \end{gathered}$ | Area of Segment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 91 | 1.58 | 0.2991 | 1.4265 | 0.29420 | 137 | 2.3911 | 0.6335 | 1.8608 | 0.85455 |
| 92 | 1.6057 | 0.3053 | 1.4387 | 0.30316 | 138 | 2.4086 | 0.6416 | 1.8672 | 0.86971 |
| 93 | 1.6232 | 0.3116 | 1.4507 | 0.31226 | 139 | 2.4260 | 0.6498 | 1.8733 | 0.88497 |
| 94 | 1.6406 | 0.3180 | 1.4627 | 0.32152 | 140 | 2.4435 | 0.6580 | 1.8794 | 0.90034 |
| 95 | 1.6580 | 0.3244 | 1.4746 | 0.33093 | 141 | 2.4609 | 0.6662 | 1.8853 | 0.91580 |
| 96 | 1.6755 | 0.3309 | 1.4863 | 0.34050 | 142 | 2.4784 | 0.6744 | 1.8910 | 0.93135 |
| 97 | 1.6930 | 0.3374 | 1.4979 | 0.35021 | 143 | 2.4958 | 0.6827 | 1.8966 | 0.94700 |
| 98 | 1.7104 | 0.3439 | 1.5094 | 0.36008 | 144 | 2.5133 | 0.6910 | 1.9021 | 0.96274 |
| 99 | 1.7279 | 0.3506 | 1.5208 | 0.37009 | 145 | 2.5307 | 0.6993 | 1.9074 | 0.97858 |
| 100 | 1.7453 | 0.3572 | 1.5321 | 0.38026 | 146 | 2.5482 | 0.7076 | 1.9126 | 0.99449 |
| 101 | 1.7628 | 0.3639 | 1.5432 | 0.39058 | 147 | 2.5656 | 0.7160 | 1.9176 | 1.01050 |
| 102 | 1.7802 | 0.3707 | 1.5543 | 0.40104 | 148 | 2.5831 | 0.7244 | 1.9225 | 1.02658 |
| 103 | 1.7977 | 0.3775 | 1.5652 | 0.41166 | 149 | 2.6005 | 0.7328 | 1.9273 | 1.04275 |
| 104 | 1.8151 | 0.3843 | 1.5760 | 0.42242 | 150 | 2.6180 | 0.7412 | 1.9319 | 1.05900 |
| 105 | 1.8326 | 0.3912 | 1.5867 | 0.43333 | 151 | 2.6354 | 0.7496 | 1.9363 | 1.07532 |
| 106 | 1.8500 | 0.3982 | 1.5973 | C. 44439 | 152 | 2.6529 | 0.7581 | 1.9406 | 1.09171 |
| 107 | 1.8675 | 0.4052 | 1.6077 | 0.45560 | 153 | 2.6704 | 0.7666 | 1.9447 | 1.10818 |
| 108 | 1.8850 | 0.4122 | 1.6180 | 0.46695 | 154 | 2.6878 | 0.7750 | 1.9487 | 1.12472 |
| 109 | 1.9024 | 0.4193 | 1.6282 | 0.47844 | 155 | 2.7053 | 0.7836 | 1.9526 | 1.14132 |
| 110 | 1.9199 | 0.4264 | 1.6383 | 0.49008 | 156 | 2.7227 | 0.7921 | 1.9563 | 1.15799 |
| 111 | 1.93 | 0.4336 | 1.648 | 0.50187 | 157 | 2.7402 | 0.8006 | 1.9598 | 1.17472 |
| 112 | 1.9548 | 0.4408 | 1.6581 | 0.51379 | 158 | 2.7576 | 0.8092 | 1.9633 | 1.19151 |
| 113 | 1.9722 | 0.4481 | 1.6678 | 0.52586 | 159 | 2.7751 | 0.8178 | 1.9665 | 1.20835 |
| 114 | 1.9897 | 0.4554 | 1.6773 | 0.53807 | 160 | 2.7925 | 0.8264 | 1.9696 | 1.22525 |
| 115 | 2.0071 | 0.4627 | 1.6868 | 0.55041 | 161 | 2.8100 | 0.8350 | 1.9726 | 1.24221 |
| 116 | 2.0246 | 0.4701 | 1.6961 | 0.56289 | 162 | 2.8274 | 0.8436 | 1.9754 | 1.25921 |
| 117 | 2.0420 | 0.4775 | 1.7053 | 0.57551 | 163 | 2.8449 | 0.8522 | 1.9780 | 1.27626 |
| 118 | 2.0595 | 0.4850 | 1.7143 | 0.58827 | 164 | 2.8623 | 0.8608 | 1.9805 | 1.29335 |
| 119 | 2.0769 | 0.4925 | 1.7233 | 0.60116 | 165 | 2.8798 | 0.8695 | 1.9829 | 1.31049 |
| 120 | 2.0944 | 0.5000 | 1.7321 | 0.61418 | 166 | 2.8972 | 0.8781 | 1.9851 | 1.32766 |
| 121 | 2.1118 | 0.5076 | 1.7407 | 0.62734 | 167 | 2.9147 | 0.8868 | 1.9871 | 1.34487 |
| 122 | 2.1293 | 0.5152 | 1.7492 | 0.64063 | 168 | 2.9322 | 0.8955 | 1.9890 | 1.36212 |
| 123 | 2.1468 | 0.5228 | 1.7576 | 0.65404 | 169 | 2.9496 | 0.9042 | 1.9908 | 1.37940 |
| 124 | 2.1642 | 0.5305 | 1.7659 | 0.66759 | 170 | 2.9671 | 0.9128 | 1.9924 | 1.39671 |
| 125 | 2.1817 | 0.5383 | 1.7740 | 0.68125 | 171 | 2.9845 | 0.9215 | 1.9938 | 1.41404 |
| 126 | 2.1991 | 0.5460 | 1.7820 | 0.69505 | 172 | 3.0020 | 0.9302 | 1.9951 | 1.43140 |
| 127 | 2.2166 | 0.5538 | 1.7899 | 0.70897 | 173 | 3.0194 | 0.9390 | 1.9963 | 1.44878 |
| 128 | 2.2340 | 0.5616 | 1.7976 | 0.72301 | 174 | 3.0369 | 0.9477 | 1.9973 | 1.46617 |
| 129 | 2.2515 | 0.5695 | 1.8052 | 0.73716 | 175 | 3.0543 | 0.9564 | 1.9981 | 1.48359 |
| 130 | 2.2689 | 0.5774 | 1.8126 | 0.75144 | 176 | 3.0718 | 0.9651 | 1.9988 | 1.50101 |
| 131 | 2.2864 | 0.5853 | 1.8199 | 0.76584 | 177 | 3.0892 | 0.9738 | 1.9993 | 1.51845 |
| 132 | 2.3038 | 0.5933 | 1.8271 | 0.78034 | 178 | 3.1067 | 0.9825 | 1.9997 | 1.53589 |
| 133 | 2.3213 | 0.6013 | 1.8341 | 0.79497 | 179 | 3.1241 | 0.9913 | 1.9999 | 1.55334 |
| 134 | 2.3387 | 0.6093 | 1.8410 | 0.80970 | 180 | 3.1416 | 1.0000 | 2.0000 | 1.57080 |
| 135 | 2.3552 | 0.6173 | 1.8478 | 0.82454 |  |  |  |  |  |
| 136 | 2.3736 | 0.6254 | 1.854 | 0.83940 |  |  |  |  |  |

$$
\text { Area of Segment }=\frac{r^{2}}{2}\left(\frac{\pi}{180} \phi-\sin \phi\right)
$$

The above values are computed for a radius of unity. For any other radius the lengths of arc, and of chord, and height of arc are to be multiplied by the given radius; the areas of segments by the square of the given radius.

The Ellipse.


Notation.
$a=$ semi-major axis.
$b=$ semi-minor axis.
f, $f^{\prime}=$ foci.
$x=$ abscissa $=$ horizontal distance from centre to base of vertical under any point, $p$, on perimeter.
$y=$ ordinate $=$ vertical distance from horizontal axis to point, $p$, on perimeter.
Equation of ellipses, referred to axes through centre:

$$
a^{2} y^{2}+b^{2} x^{2}=a^{2} b^{2}
$$

Construction: given the semi-axes, $a$ and $b$.
Find the foci, $f, f^{\prime}$, by taking the semi-major axis, $a$, in the dividers and sweeping arcs from $B$, intersecting the major axis at $f$ and $f^{\prime}$. By attaching a string to pins at $f$ and $f^{\prime}$, and making the length of the string equal to $2 a$, the curve can be drawn by moving a pencil around in the bight of the string.

Points on the perimeter of an ellipse may be found as follows:

Mark off on a straightedged piece of paper the distances $r \cdot t=a, r s=b$; then, when $t$ is on the minor axis and $s$ on the major axis, $r$ will be on a point in the curve, and so any number of points may be found.

To draw a normal or a tangent at any point, $p$. on
 the perimeter of an ellipse. draw lines, $f p, f^{\prime} p$, from the point, $p$, to the two foci. A line, $r s$, bisecting
 the angle, $f p f^{\prime}$, will be the normal, and a line, $m n$, at right angles to the normal will be the tangent. The construction of the normal indicates the proper angles for joints in elliptical arches.

The perimeter of an ellipse can be accurately computed anly by the summation of a series.

A good, approximate formula is that of Boussinesq, which is very close, when $a$ is not more than three times greater than $b$.

$$
\text { Perimeter }=S=2 \pi\left(\frac{3}{2} \cdot \frac{a+b}{2}-\frac{1}{2} \sqrt{a b}\right) .
$$

The quantity in the parenthesis is the radius of a circle of equivalent perimeter to an ellipse whose major and minor semi-axes are $a$ and $b$.

Example. Let $a=5, b=2$.

$$
S=2 \pi\left(\frac{3}{2} \cdot \frac{7}{2}-\frac{1}{2} V^{\prime} \overline{10}\right)=2 \pi \times 3.6689=23.052
$$

The true perimeter of any ellipse may be computed from the following series:
Perimeter $=S=\pi(a+b)\left[1+\frac{1}{4}\left(\frac{a-b}{a+b}\right)^{2}+\frac{1}{64}\left(\frac{a-b}{a+b}\right)^{4}+\frac{1}{256}\left(\frac{a-b}{a+b}\right)^{6} \cdot.\right]$.
Calling the quantity within the brackets $k$, we hare

$$
S=\pi(a+b) k
$$

In the table on the following page are given values of $k$ for successive values of $n=\frac{a-b}{a+b}$, and under the column $c$ are given values of $\pi k$, so that the perimeter of an ellipse may be readily found from the given semidiameters.

Example. Let $a=7, b=3$.
We have

$$
\frac{a-b}{a+b}=\frac{4}{10}=0.40
$$

In the table we find opposite $n=0.40$ the values $k=1.04042$ or $c=3.2685 \%$.
Hence

$$
S=\pi \times 10 \times 1.04042=32.6857
$$

$$
\text { or directly, } S=10 \times 3.26857=32.6857
$$

By the Boussinesq formula we get for the same data:

$$
S=2 \pi\left(\frac{3}{2} \times 5-\frac{1}{2} \sqrt{21}\right)=2 \pi \times 5.20871=32.7274
$$

The area of the ellipse is found by the formula:

$$
\mathrm{Area}=A=\pi a b
$$

In using this formula the table of circles. pp.112-120 may be conveniently used. Take the product $a b$ and opposite its value under Diameter will be found $\pi a b$ under Circum. Thus if $a=7, b=3, a b=21$, and on p. 114 opposite 21 we find 65.973 as the value of $\pi a b$.

## The Ellipse.

Let $\frac{a-b}{a+b}=n$ then Perimeter $=\pi(a+b) k=c(a+b)$ $a=$ semi major axis. $b=$ semi minor axis.

| $n$ | $k$ | c | $n$ | $k$ | c |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 00 | 1.00000 | 3.14159 | . 50 | 1.06354 | 3.34122 |
| . 01 | 1.00003 | 3.14167 | . 51 | 1.06616 | 3.34944 |
| . 02 | 1.00010 | 3.14191 | . 52 | 1.06883 | 3.35782 |
| . 03 | 1.00023 | 3.14230 | . 53 | 1.07156 | 3.36639 |
| . 04 | 1.00040 | 3.14285 | . 54 | 1.07434 | 3.37514 |
| . 05 | 1.00063 | 3.14356 | . 55 | 1.07718 | 3.38405 |
| . 06 | 1.00090 | 3.14442 | . 56 | 1.08007 | 3.39316 |
| . 07 | 1.00123 | 3.14544 | . 57 | 1.08303 | 3.40244 |
| . 08 | 1.00160 | 3.14662 | . 58 | 1.08604 | 3.41190 |
| . 09 | 1.00203 | 3.14796 | . 59 | 1.08911 | 3.42154 |
| . 10 | 1.00250 | 3.14945 | . 60 | 1.09224 | 3.43137 |
| . 11 | 1.00303 | 3.15110 | . 61 | 1.09543 | 3.44138 |
| . 12 | 1.00360 | 3.15291 | . 62 | 1.09867 | 3.45158 |
| . 13 | 1.00423 | 3.15488 | . 63 | 1.10198 | 3.46197 |
| . 14 | 1.00491 | 3.15700 | . 64 | 1.10534 | 3.47254 |
| . 15 | 1.00563 | 3.15929 | . 65 | 1.10877 | 3.48330 |
| . 16 | 1.00641 | 3.16173 | . 66 | 1.11226 | 3.49426 |
| . 17 | 1.00724 | 3.1643 .3 | . 67 | 1.11581 | 3.50541 |
| . 18 | 1.00812 | 3.16709 | . 68 | 1.11942 | 3.51676 |
| . 19 | 1.00905 | 3.17001 | . 69 | 1.12309 | 3.52830 |
| . 20 | 1.01003 | 3.17309 | . 70 | 1.12683 | 3.54004 |
| . 21 | 1.01106 | 3.17632 | . 71 | 1.13063 | 3.55198 |
| . 22 | 1.01214 | 3.17972 | . 72 | 1.13449 | 3.56412 |
| . 23 | 1.01327 | 3.18328 | . 73 | 1.13842 | 3.57646 |
| . 24 | 1.01445 | 3.18700 | . 74 | 1.14242 | 3.58901 |
| . 25 | 1.01569 | 3.19088 | . 75 | 1.14648 | 3.60177 |
| . 26 | 1.01697 | 3.19491 | . 76 | 1.15061 | 3.61474 |
| . 27 | 1.01831 | 3.19911 | . 77 | 1.15480 | 3.62793 |
| . 28 | 1.01970 | 3.20348 | . 78 | 1.15907 | 3.64133 |
| . 29 | 1.02114 | 3.20800 | . 79 | 1.16340 | 3.65494 |
| . 30 | 1.02263 | 3.21269 | . 80 | 1.16781 | 3.66878 |
| . 31 | 1.02417 | 3.21753 | . 81 | 1.17229 | 3.68285 |
| . 32 | 1.02577 | 3.22255 | . 82 | 1.17684 | 3.69714 |
| . 33 | 1.02742 | 3.22772 | . 83 | 1.18146 | 3.71166 |
| . 34 | 1.02911 | 3.23306 | . 84 | 1.18616 | 3.72642 |
| . 35 | 1.03087 | 3.23856 | . 85 | 1.19093 | 3.74142 |
| . 36 | 1.03267 | 3.24423 | . 86 | 1.19578 | 3.75666 |
| . 37 | 1.03453 | 3.25007 | . 87 | 1.20071 | 3.77215 |
| . 38 | 1.03644 | 3.25607 | . 88 | 1.20573 | 3.78790 |
| . 39 | 1.03840 1.04042 | 3.26148 3.26857 | . 89 | 1.21082 , | $\begin{aligned} & 3.80391 \\ & 3.82018 \end{aligned}$ |
|  |  | .26857 |  | 1.2160 |  |
| . 41 | 1.04249 | ${ }_{3}^{3.27507}$ | . 91 | 1.22127 | 3.83673 |
| . 42 | 1.04461 | 3.28173 | . 92 | 1.22662 | 3.85356 |
| . 43 | 1.04679 | 3.28857 | . 93 | 1.23207 | 3.87067 |
| . 44 | 1.04901 | 3.29558 | . 94 | 1.23762 | 3.88810 |
| . 45 | 1.05130 | 3.30276 | . 95 | 1.24327 | 3.90583 |
| . 46 | 1.05364 | 3.31010 | . 96 | 1.24902 | 3.92390 |
| . 47 | 1.05603 | 3.31762 | . 97 | 1.25488 | 3.94232 |
| . 48 | 1.05848 | 3.32531 | . 98 | 1.26086 | 3.96111 |
| . 49 | 1.06098 | 3.33318 | . 99 | 1.26697 | 3.980:31 |
| . 50 | 1.06354 | 3.34122 | 1.00 | 1.27324 | 4.00000 |

## The Ellipse.



To draw a tangent to an ellipse fron any given point $P$, sweep an arc from the focus $F$ with a radius equal to the major diameter $2 a$, and another arc with $P$ as a centre and the distance $P F^{\prime \prime}$ from the point $P$ to the other focus $F$. Draw a line from the focus $F$ through the intersection of these two arcs. The point $C$. where this last line cuts the perimeter of the ellipse will be the point of contact of the tangent, which is then drawn through PC.

In some cases we find an ellipse, of which two diameters, not the major and minor axes, are given, and it is required to find the position and

lengths of the two axes, as well as the position of the foci, etc. In this case the following construction may be used.

Let the two given semi-diameters be $a, a_{1}$, and $b, b_{f}$, as in the diagram. From the extremity $E$ of one of the diameters, draw $E H$ perpendicular to the other diameter $D, D$, prolonging this line to $G$, making $E G=E G,=a$,. A line bisecting the angle $G O G$, will then give the direction of the major axis.

Having found $G$ as abore, draw a circle on $O G$ as a diameter, and draw a line from $E$ through the centre of this circle, this line will then intersect the circle at points which are on the major and minor axes of the ellipse. Also, a circle whose centre is on the minor axis and whose perimeter passes through $G$ and $(i$, , will intersect the major axis at the foci $F$ and $F$,.

The Parabola.

$x=$ abscissa for any point on the curve.
$y=$ ordinate.
$f=$ focus.
$0=$ vertex.
$p=$ semi-parameter $=$ double ordinate through focus.
$C D=$ directrix.
$m=1 / 2 p=$ distance of focus from vertex $=$ distance of directrix from vertex.
Equation:

$$
\begin{aligned}
& y^{2}=2 p x \\
& y=\sqrt{2 p x}
\end{aligned}
$$

## Construction of Parabola.

Given position of vertex, $O$, and focus, $f$ :


Take the distance, $m=f O$, and lay it off from $O$ to $A$; $A$ will then be the point where the directrix cuts the horizontal axis. At any point, $a^{\prime}$, erect a vertical, and with the distance, $A a^{\prime}$, in the dividers, sweep an are with $f$ as a centre; the intersection of this arc with the rertical will be a point in the curve. In like manner the points $b, c$, or any others may be found.

Given the rise and span of the curve :
Lay off the span, $A-B$, and height, $O-C$; divide $A-E$ and $B-F$ into any number of equal parts, $1-2-3$, and $E O$ and $O F$ into the same number of equal parts. Join 1-2-3 with 0 , and the intersection of these lines with

verticals through $a, b, c$, etc., will be points in the curve. The accuracy of the curve will depend upon the number of divisions.

## Length of Parabolic Curve.



Let $h=$ height, $s=\operatorname{span}, l=$ length of curve.

$$
l=s\left[1+\frac{8}{3}\left(\frac{h}{s}\right)^{2}-\frac{32}{5}\left(\frac{h}{s}\right)^{4}\right] .
$$

This is a close approximation when the rise is small in proportion to the span.

The exact formula for the length of an are of a parabola from the vertex to a point whose co-ordinates are $x$ and $y$ is

$$
l=\frac{p}{2}\left[\sqrt{\frac{2 x}{p}\left(1+\frac{2 x}{p}\right)}+\text { hyp. log. }\left(\sqrt{\frac{2 x}{p}}+\sqrt{1+\frac{2 x}{p}}\right)\right] .
$$

## Area of Parabola.



Let $s=\operatorname{span}, h=$ height.

$$
\text { Area }=2 / 3 s h .
$$

## The Hyperbola.



Notation.

$$
\begin{aligned}
x & =\text { abscissa for any point on the curve. } \\
y & =\text { ordinate. } \\
f, f^{\prime} & =\text { foci. } \\
A, B & =\text { vertices, } A-B=\text { transverse axis. }
\end{aligned}
$$

Equation of the hyperbola :

$$
a^{2} y^{2}-b^{2} x^{2}=-a^{2} b^{2} .
$$

## Construction of the Curve.

Given the transverse axis, $A-B$, and the foci, $f, f^{\prime}$ :
Take any points, $1,2,3,4$, etc., on the axis, $O X$, and make $f a=B 1$, $f^{\prime} a=A 1, f^{\prime} b=B 2, f^{\prime} b=A 2$, etc., thus obtaining as many points on the curves as may be required.

## Cycloidal Curves.

Cycloidal curves are those generated by the path of a point on a circle which rolls upon a given line. They are principally used for tooth profiles in wheel gearing.

We may consider the usual forms of cycloidal curves as generated by one circle rolling upon another, the rolling circle being called the generating circle, and the stationary one the base circle.
When the base circle is of infinitely great diameter it may be considered as a straight line, and the curve is the orthocycloid, usually called the common cycloid. When the generating circle rolls on the outside of the base circle, the curve is called the epicycloid; when it rolls inside of the base circle it is called the hypocycloid.

When the rolling circle is of infinitely great diameter it may be considered as a straight line, and the curve is called an involute, or more correctly an evolute.

We shall here give only the geometrical methods of construction of the four curves, taking up their applications in connection with the practical constructions.

## Common Cycloid.

Let $D$ be the generating circle :
Lay off $C$, equal to one-half the circumference of the circle, $D$. Divide $C$ and the half circumference of $D$ into the same number of equal parts,
$1,2,3,4,5,6$, and $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, $5^{\prime}, 6^{\prime}$. Erect ordinates from 1 , 2,3 , etc., and draw horizontals from $1^{\prime}, 2^{\prime}, 3^{\prime}$, etc. Then make $a a^{\prime}=1^{\prime} l, b b^{\prime}=2^{\prime} m, c c^{\prime}=3^{\prime} n$, $d^{\prime} d=4^{\prime} 0, e e^{\prime}=5^{\prime} p$. Then $a^{\prime}$, $b^{\prime}, c^{\prime}$, etc., will be points on the curve.

## Epicycloid and Hypo= cycloid.

The construction of both epicycloid and hypocycloid is
 similar to that of the common cycloid, modified only by the fact that the base is circular instead of straight. The following construction applies to both curves, the only change being that due to the rolling being external and internal.

In each case the arc, $1-4$, on the base circle is made equal in length to the semi-circumference of the generating circle. Radial lines are drawn

from the centre of the base circle through $1,2,3,4$, and arcs struck from 0 through $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$. Then $a a^{\prime}=1^{\prime} n, b b^{\prime}=2^{\prime} m, c c^{\prime}=3^{\prime} l$, and the curve is drawn through $u^{\prime}, b^{\prime}, c^{\prime}, d$.

## Areas of Plane Figures.

 $\mathbf{a}=$ area; other dimensions as in the figures.
## Square.



$$
\begin{aligned}
& \mathbf{a}=\mathbf{s}^{2}=4 b^{2} \\
& \mathbf{a}=0.5 d^{2}
\end{aligned}
$$

## Rectangle.



$$
\begin{aligned}
& \mathbf{a}=a b \\
& \mathbf{a}=b \sqrt{d^{2}-b^{2}}
\end{aligned}
$$

Triangle.

$\mathbf{a}=\frac{b h}{2}=1 / 2 b h$,
$a=\frac{b}{2} \sqrt{a^{2}-\left(\frac{a^{2}+b^{2}-c^{2}}{2 b}\right)^{2}}$.

## Trapezoid.


$a=1 / 2 h(\alpha+b)$.

## Circle.


$\mathrm{a}=\pi r^{2}=0.7854 d^{2}$,
$\mathbf{a}=\frac{p r}{2}=0.0796 P^{2}$.

Sector.

$a=1 / 2 b r$,
$\mathbf{a}=\frac{\pi r^{2} v}{360}=\frac{r^{2} v}{114.5}$.

Triangle.

$\mathbf{a}=1 / 2 b h$,
$\mathbf{a}=\frac{b}{2} \sqrt{a^{2}-\left(\frac{c^{2}-a^{2}-b^{2}}{2 b}\right)^{2}}$.

## Trapezium.


$\mathbf{a}=1 / 2\left(a\left[h+h^{\prime}\right]+b h^{\prime}+c h\right)$.

## Circle Ring.


$\mathbf{a}=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$,
$\mathbf{a}=0.7854\left(D^{2}-d^{2}\right)$.
Or take the difference between the areas of the inner and outer circles, as found in the tables of areas of circles.

Segment.

$\mathbf{a}=1 / 2[b r-c(r-h)]$,
$\mathbf{a}=\frac{\pi r^{2} v}{360} \mp \frac{c}{2}(r-h)$.


The area of any irregular figure is best found by Simpson's Rule, as follows:


Divide the base, $A B$, into any even number of parts, $d$ (in the illustration, 8 parts), and erect the ordinates, $h_{0}, h_{1}, h_{2}$, etc. Then the area, $\mathbf{a}$, of the figure, $A B C D$, will be

$$
\mathbf{a}=\frac{d}{3}\left(h_{0}+4 h_{1}+2 h_{2}+4 h_{3}+2 h_{4}+4 h_{5}+2 h_{6}+4 h_{7}+h_{8}\right) .
$$

It will be observed that the coefficients of the ordinates are alternately 4 and 2, with the exception of the first and last.

When the figure is drawn to scale, the area is best measured by a planimeter, but if this is not available, Simpson's Rule is practically as correct as any. The degree of accuracy will naturally depend upon the number of divisions taken.

## Surfaces of Solids.

Sphere.


$$
\mathbf{a}=4 \pi r^{2}=12.5664 r^{2}=\pi d^{2}
$$

The surface of any sphere may readily be found by multiplying the area of a circle of the same diameter by 4, using the Table of Areas of Circles.

Torus, or Ring of Circular Cross Section.

## Sector of a Sphere.


$\mathbf{a}=\frac{\pi r}{2}(4 h-\dot{\rho}$.

Circle Zone.


$$
\mathbf{a}=2 \pi r h=\frac{\pi}{4}\left(c^{2}+4 h^{2}\right) .
$$

## Frustum of a Cone.



$$
x=\frac{d h}{D-d}, \quad R=s+\frac{d s}{D-d^{\prime}}
$$

$$
\mathbf{a}=\frac{\pi s}{2}(D+d)
$$

$$
v=\frac{180 D}{R}=\frac{180(D-d)}{s}
$$

## Volumes of Solids.

$\mathbf{c}=$ content of the various bodies in terms of the dimensions given in the figures.

## Sphere.



$$
\begin{aligned}
& c=\frac{4 \pi r^{3}}{3}=4.18879 r^{3} \\
& c=\frac{\pi d^{3}}{6}=0.5236 d d^{3}
\end{aligned}
$$

Torus.


$$
\begin{aligned}
& \mathbf{c}=2 \pi^{2} R r^{2}=19.74 R r^{2}, \\
& c=2.463 D d^{2} .
\end{aligned}
$$

For Table of Volumes of Spheres, see page 140 .

Sphere Sector.

$c=2 / 3 \pi r^{2} h=2.0944 r^{2} h$,
$c=2 / 3 \pi r^{2}\left(r \mp \sqrt{\left.r^{2}-1 / 4 c^{2}\right)}\right.$.

## Cone.


$\dot{c}=\frac{\pi r^{2} h}{3}=1.047 r^{2} h$,
$c=0.2618 d^{2} h$.

Segment of a Sphere.

$\mathbf{c}=\pi h^{2}(r-1 / 3 h)$,
$\mathrm{c}=\pi h^{2}\left(\frac{c^{2}+4 h^{2}}{8 h}-1 / 3 h\right)$.

## Conic Frustum.


$\mathrm{c}=1 / 3 \pi h\left(R^{2}+R r+r^{2}\right)$,
$\mathrm{c}=\frac{1}{12} \pi h\left(D^{2}+D d+d^{2}\right)$.

## Ellipsoid.

Cylinder.

$c=\pi r^{2} h=0.785 d^{2} h$,
$\mathrm{c}=\frac{p^{2} h}{4 \pi}=0.0796 p^{2} h$.

Paraboloid.

$\mathrm{c}=1 / 2 \pi r^{2} h=1.5707 r^{2} h$.

Pyramid.


$$
\mathbf{c}=1 / 3 \mathbf{a} h,
$$

$$
c=\frac{n s h}{6} \sqrt{r^{2}-\frac{8^{2}}{4}}
$$

## Pyramidic Frustum.


$\mathbf{c}=\frac{h}{3}(A+\mathbf{a}+\sqrt{A \mathbf{a})}$.

Wedge Frustum.

$\mathbf{c}=\frac{h s}{\underline{2}}(a+b)$.

## Volumes of Spheres.

$D=$ diameter .

| D | Volume. | D | Volume. | D | Volume. | D | Volume. | D | Volum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.523599 | 21 | 4849.048 | 41 | 36086.95 | 61 | 118846.9 | 81 | 278261.8 |
| 2 | 4.188790 | 22 | 5575.280 | 42 | 38792.38 | 62 | 124788.2 | 82 | 288695. |
| 3 | 14.13717 | 23 | 6370.626 | 43 | 41629.77 | 63 | 130924.3 | 83 | 299387.0 |
| 4 | 33.51032 | 24 | 7238.228 | 44 | 44602.24 | 64 | 137258.3 | 84 | 310339.1 |
| 5 | 65.44984 | 25 | 8181.230 | 45 | 47712.93 | 65 | 143793.3 | 85 | 321555.1 |
| 6 | 113.0974 | 26 | 9202.770 | 46 | 50965.00 | 66 | 150532.5 | 86 | 333038.2 |
| 7 | 179.5943 | 27 | 10306.00 | 47 | 54361.60 | 67 | 157479.1 | 87 | 344791.4 |
| 8 | 268.0826 | 28 | 11494.04 | 48 | 57905.83 | 68 | 164636.2 | 88 | 356818.0 |
| 9 | 381.7035 | 29 | 12770.05 | 49 | 61600.86 | 69 | 172006.9 | 89 | 369120.9 |
| 10 | 523.5988 | 30 | 14137.17 | 50 | 65449.84 | 70 | 179594.3 | 90 | 381703.5 |
| 11 | 696.9100 | 31 | 15598.53 | 51 | 69455.90 | 71 | 187401.7 | 91 | 394568.8 |
| 12 | 904.7785 | 32 | 17157.25 | 52 | 73622.17 | 72 | 195432.2 | 92 | 407720.0 |
| 13 | 1150.347 | 33 | 18816.56 | 53 | 77951.80 | 73 | 203688.8 | 93 | 421160.4 |
| 14 | 1436.755 | 34 | 20579.52 | 54 | 82447.94 | 74 | 212174.8 | 94 | 434892.8 |
| 15 | 1767.146 | 35 | 22449.29 | 55 | 87113.74 | 75 | 220893.3 | 95 | 448920.4 |
| 16 | 2144.660 | 36 | 24429.02 | 56 | 91952.32 | 76 | 229847.3 | 96 | 463246.7 |
| 17 | 2572.441 | 37 | 26521.84 | 57 | 96966.82 | 77 | 239040.1 | 97 | 477874.4 |
| 18 | 3053.628 | 38 | 28730.91 | 58 | 102160.4 | 78 | 248474.8 | 98 | 492807.0 |
| 19 | 3591.364 | 39 | 31059.35 | 59 | 107536.2 | 79 | 258154.6 | 99 | 508047.3 |
| 20 | 4188.790 | 40 | 33510.32 | 60 | 113097. 4 | 80 | 268082.6 | 100 | 523598.8 |

## TRIGONOMETRY.

## Angular Functions.

In order to obtain a clear idea of the various functions by which angular values may be expressed in terms of straight lines, let it be supposed that we have a straight line, $X^{\prime} X$, and that from a point, 0 , on this line we have an arm, $O R$, which may be moved like a crank about $O$ as a centre. The arm, $O R$, will then make various angles with the line, $X^{\prime} X$, according to the position which is given to it.

If we take a radius, $O c=$ unity on any convenient scale, and describe a circle about $O$, we find that there are a number of ways in which we can measure the angle, $a$, which the arm, $O R$, makes with the line, $X^{\prime} X$.

Thus, we may erect a perpendicular from $c$ until it reaches $O R$ at $d$, and the distance, $c d$, will be the tangent of the angle, a (written tan a). Or, we may drop a perpendicular from $b$ to $O X$ at $a$, and we have $a b$, the sine of the angle, a. Again, we may measure the distance, Oa, the cosine of $a$; or $a c$, the versed-sine of $a$; or $f e$, the cotangent of $a$. If we had given any one of the distances, measured on the same scale as the radius, $O c$, we can construct the angle, $a$.

By supposing the arm, $O R$, to be gradually moved about $O$, so that the angle, $a$, steadily increases, we may observe the manner in which these functions vary. At first, when the angle is equal to zero, the sine, tangent, and versed-sine are also equal to zero, while the cosine and secant are both equal to the radius, or equal to unity. As the angle increases the sine, tangent, and versed-sine increase, while the cosine diminishes. At $45^{\circ}$ the

sine and cosine are equal to each other and equal to $1 / 2 / \overline{2}=0.7071$, while the tangent and cotangent are also equal to each other and also equal to the radius or unity. At $90^{\circ}$ the cosine and cotangent become equal to zero and the sine equals the radius. For angles between $90^{\circ}$ and $180^{\circ}$ the cosine and cotangent become negative; between $180^{\circ}$ and $270^{\circ}$ the sine and cosine, tangent and cotangent, are all negative; and between $270^{\circ}$ and $360^{\circ}$ the sine and tangent are negative, the cosine and cotangent positive. Distances measured above $X^{\prime} X$ and to the right of $Y Y^{\prime}$ are positive; those measured to the left of $Y Y^{\prime}$ and below $X^{\prime} X$ are negative.

Referring again to the diagram, the functions are:

$$
\begin{aligned}
& a b=\text { sine }, \quad a c=\text { versed sine }, \quad c d=\text { tangent }, \quad O d=\text { secant }, \\
& a O=\text { cosine }, \quad f g=\text { coversed sine }, \quad f e=\text { cotangent }, \quad O e=\text { cosecant. }
\end{aligned}
$$

## Trigonometric Tables.

In the following tables the values of the various angular functions are given for every degree and minute of the quadrant for a radius of unity. If any other radius is used, the tabular values are to be multiplied by the actual length of the radius. These tables of so-called Natural Functions are followed by tables of the Logarithmic Angular Functions, these being the logarithms of the natural functions. If the computations are made by the ordinary processes of multiplication and division, the natural functions are used, and if logarithms of numbers are used, the logarithms of the angular functions are to be used with them.

In the logarithmic functions the characteristics have been increased by 10 , in order to aroid negative characteristics; hence, the corresponding number of tens are to be subtracted from the final result.

Natural Functions.

| $0{ }^{\circ}$ |  | Natural Trigonometrical Functions. |  |  |  |  |  | $179^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt |  |  | t. |  | Cosine, | II |
| 0 | . 00000 | 1.0 | Inf | . 00000 | Infinite. | 1.0000 | . 00000 | 1.0000 | 60 |
| 1 | . 0029 | . 99971 | 3437.7 | . 0029 | 3437.7 | . 0000 | 0000 | . 0000 | 59 |
| 2 | . 0058 | 9942 | 1718.9 | . 0058 | 1718.9 | . 0000 | 0000 | . 0000 | 58 |
| 3 | . 0087 | 9913 | 1145.9 | . 0087 | 1145.9 | . 0000 | 0000 | . 0000 | 57 |
| 4 | . 0116 | 9884 | 859.44 | 0116 | 859.44 | . 0000 | 0000 | . 0000 | 56 |
| 5 | . 00145 | . 99854 | 687.55 | . 00145 | 687.55 | 1.0000 | . 00000 | 1.0000 | 55 |
| 6 | 0174 | 9825 | 572.96 | . 0174 | 572.96 | . 0000 | 0000 | . 0000 | 54 |
| 7 | . 0204 | - 9796 | 491.11 | . 0204 | 491.11 | . 0000 | 0000 | . 0000 |  |
| 8 | . 0233 | - 9767 | 429.72 | . 0233 | 429.72 | . 0000 | 0000 | . 0000 |  |
| 9 | 0262 | 9738 | 381.97 | 0262 | 381.97 | . 0000 | 0000 | . 0000 | 51 |
| 10 | . 00291 | . 99709 | 343.77 | . 00291 | 343.77 | 1.0000 | . 00000 | . 99999 | 50 |
| 11 | . 0320 | 9680 | 312.52 | . 0320 | 312.52 | . 0000 | 0000 | 9999 | 49 |
| 12 | . 0349 | . 9651 | 286.48 | . 0349 | 286.48 | . 0000 | 0001 | - 9999 | 48 |
| 13 | . 0378 | 9622 | 64.44 | 0378 | 64.44 | . 0000 | 0001 | - 9999 | 47 |
| 14 | . 0407 | 9593 | 45.55 | 0407 | 45.55 | . 0000 | 0001 | 9999 | 46 |
| 15 | . 00436 | . 99564 | 229.18 | . 00436 | 229.18 | 1.0000 | . 00001 | . 99999 | 45 |
| 16 | . 0465 | 9534 | 14.86 | 0465 | 14.86 | . 0000 | 0001 | - 9999 | 44 |
| 17 | . 0494 | 9505 | 02.22 | . 0494 | 02.22 | . 0000 | . 0001 | . 9999 | 43 |
| 18 | . 0524 | 9476 | 190.99 | . 0524 | 190.98 | . 0000 | 0001 | . 9999 | 42 |
| 19 | . 0553 | 9447 | 80.93 | 0553 | 80.93 | . 0000 | 0001 | 9998 |  |
| 20 | . 00582 | . 99418 | 171.89 | . 00582 | 171.88 | 1.0000 | . 00002 | . 99998 | 40 |
| 21 | . 0611 | - 9389 | 63.70 | . 0611 | 63.70 | . 0000 | . 0002 | 9998 | 39 |
| 22 | . 0640 | - 9360 | 56.26 | 0640 | 56.26 | . 0000 | 0002 | 9998 |  |
| 23 | . 0669 | 9331 | 49.47 | 0669 | 49.46 | . 0000 | 0002 | 9998 | 37 |
| 24 | . 0698 | 9302 | 43.24 | 0698 | 43.24 | . 0000 | 0002 | 9997 |  |
| 25 | . 00727 | . 99273 | 137.51 | . 00727 | 137.51 | 1.0000 | . 00003 | 99997 |  |
|  | . 0756 | 9244 | 32.22 | 0756 | 32.22 | . 0000 | 0003 | 9997 |  |
| 27 | . 0785 | . 9215 | 27.32 | . 0785 | 27.32 | . 0000 | . 0003 | 9997 |  |
|  | . 0814 | . 9185 | 22.78 | . 0814 | 22.77 | . 0000 | . 0003 | 9997 |  |
| 29 | 0843 | 9156 | 18.54 | 0844 | 18.54 | . 0000 | 0003 | 9996 |  |
| 30 | . 00873 | . 99127 | 114.59 | . 00873 | 114.59 | 1.0000 | . 00004 | . 99996 | 30 |
| 31 | - 0902 | 9098 | 10.90 | 0902 | 10.89 | . 0000 | . 0004 | 9996 |  |
| 32 | - 0931 | . 9069 | 07.43 | 0931 | 07.43 | . 0000 | 0004 | 9996 |  |
| 33 | - 0960 | 9040 | 04.17 | 0960 | 04.17 | . 0000 | 0005 | 9995 |  |
| 34 | . 0989 | 9011 | 01.11 | 0989 | 01.11 | . 0000 | 0005 | 9995 |  |
|  | . 01018 | . 98982 | 98.223 | . 01018 | 98.218 | 1.0000 | . 00005 | . 99995 |  |
|  | . 1047 | 8953 | 5.495 | 1047 | 5.489 | . 0000 | . 0005 | 9994 |  |
|  | . 1076 | - 8924 | 2.914 | . 1076 | 2.908 | . 0000 | - 0006 | 9994 |  |
|  | - 1105 | . 8895 | 0.469 | 1105 | 0.463 | . 0001 | 0006 | 9994 |  |
|  | 1134 | 8865 | 88.149 | 1134 | 88.143 | 0001 | 0006 | 9993 |  |
| 40 | . 01163 | . 98836 | 85.946 | . 01164 | 85.940 | 1.0001 | . 00007 | . 99993 | 20 |
| 41 | . 1193 | . 8807 | 3.849 | . 1193 | 3.843 | . 0001 | . 0007 | 9993 |  |
| 42 | . 1222 | . 8778 | 1.853 | . 1222 | 1.847 | . 0001 | 0007 | 9992 |  |
| 43 | . 1251 | . 8749 | 79.950 | 1251 | 79.943 | . 0001 | 0008 | 9992 |  |
| 44 | . 1280 | 8720 | 8.133 | 1280 | 8.126 | . 0001 | 0008 | 9992 | 16 |
| 45 | . 01309 | . 98691 | 76.396 | . 01309 | 76.390 | 1.0001 | . 00008 | . 99991 | 15 |
| - | . 1338 | 8662 | 4.736 | . 1338 | 4.729 | . 0001 | 0009 | 9991 |  |
| 47 | . 1367 | . 8633 | 3.146 | . 1367 | 3.139 | . 0001 | . 0009 | - 9991 | 13 |
|  | 1396 | 8604 | 1.622 | . 1396 | 1.615 | . 0001 | . 0010 | 9990 |  |
| 49 | 1425 | 8575 | 0.160 | 1425 | 0.153 | . 0001 | 0010 | 9990 |  |
| 50 | . 01454 | . 98546 | 68.757 | . 01454 | 68.750 | 1.0001 | . 00010 | . 99989 | 10 |
| 51 | . 1483 | . 8516 | 7.409 | . 1484 | 7.402 | . 0001 | . 0011 | 9989 |  |
| 52 | . 1512 | . 8487 | 6.113 | 1513 | 6.105 | . 0001 | 0011 | 9988 |  |
| 5 | . 1542 | 8458 | 4.866 | 1542 | 4.858 | . 0001 | 0012 | 9988 |  |
| 54 | . 1571 | 8429 | 3.664 | 1571 | 3.657 | . 0001 | 0012 | 9988 |  |
| 55 | . 01600 | . 98400 | 62.507 | . 01600 | 62.499 | 1.0001 | . 00013 | . 99988 |  |
| 5 | 629 | 8371 | 1.391 | 1629 | 1.383 | . 0001 | 0013 | 987 |  |
| 57 | 658 | 342 | 0.314 | 1658 | 0.306 | . 0001 | 0014 | 987 |  |
| 58 | 687 | 313 | 59.274 | - 1687 | 59.266 | . 0001 | -0014 | 986 |  |
| 9 | 1716 | 284 | 8.270 | 716 | 8.261 | . 0001 | 0015 | 980 |  |
| 60 | 1745 | 5.5 | 7.299 | $4 \overline{5}$ | 7.290 | . 0001 | 0015 | . 9985 |  |
|  | Cosine | Vrs. sin | ant | Co | Tang. | sec'ı | Vrs. cos. | Sine |  |


| $1{ }^{\circ}$ |  | Natural Trigonometrical Functions. |  |  |  |  |  | $178^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sin | Vrs. cos. | Cosec'nt | Tang. | ng. | Secant. | Yrs. sin | Cosine. |  |
| 0 | . 01 | . 98 | 57.299 | . 01 | 57 | 1.0001 | . 00015 | . 99985 |  |
| 1 | . 1774 | 8226 | 6.359 | 177. | 6.350 | . 0001 | 0016 | 9984 |  |
| 2 | . 1803 | . 8196 | 5.450 | 1804 | 5.441 | . 0001 | . 0016 | 9984 |  |
| 3 | - 1832 | . 8167 | 4.570 | 1833 | 4.561 | . 0002 | 0017 | 9983 |  |
| 4 | . 1861 | 8138 | 3.718 | 1862 | 3.708 | . 0002 | . 0017 | -9983 |  |
| 5 | . 01891 | . 98109 | 52.891 | . 01891 | 52.882 | 1.0002 | . 00018 | . 99982 |  |
| 6 | - 1920 | - 8080 | 2.090 | - 1920 | 2.081 | . 0002 | - 0018 | - 9981 |  |
| 7 | . 1949 | - 8051 | 1.313 | - 1949 | 1.303 0.548 | . 0002 | - 0019 | - 9981 |  |
| 9 | 12007 | 7993 | 49.826 | . 2007 | 49.816 | . 0002 | - 0020 | 9980 |  |
| 10 | . 02036 | . 97964 | 49.114 | . 02036 | 49.104 | 1.0002 | . 00021 | . 99979 |  |
| 11 | 2065 | 7935 | 8.422 | 2066 | 8.412 | . 0002 | . 0021 | - 9979 |  |
| 12 | . 2094 | 7906 | 7.750 | . 2095 | 7.739 | . 0002 | . 0022 | - 9978 |  |
| 13 | . 2123 | . 7877 | 7.096 | . 2124 | 7.085 | . 0002 | . 0022 | - 9977 |  |
| 14 | 2152 | 7847 | 6.460 | 2153 | 6.449 | . 0002 | 0023 | 9977 |  |
| 15 | . 02181 | . 97818 | 45.840 | . 02182 | 45.829 | 1.0002 | . 00024 | . 99976 |  |
| 16 | . 2210 | . 7789 | 5.237 | . 2211 | 5.226 | . 0002 | . 0024 | - 9975 |  |
| 17 | . 2240 | - 7760 | 4.650 | 2240 | 4.638 | . 0002 | - 0025 | - 9975 |  |
| 18 | - 2269 | - 7731 | 4.077 | 269 | 4.066 | . 0002 | 0026 | 9974 |  |
| 19 | . 2298 | 7702 | 3.520 | 2298 | 3.508 | . 0003 | . 0026 | 9974 |  |
|  | . 02327 | . 97673 | 42.976 | . 02327 | 42.964 | 1.0003 | . 00027 | . 99973 |  |
|  |  | 644 | 2.445 | 357 | 2.433 | . 0003 | 0028 | 9972 |  |
|  | . 2385 | 7615 | 1.928 | 2386 | 1.916 | . 0003 | 0028 | 9971. |  |
|  | . 2414 | 7586 | 1.423 | 2415 | 1.410 | . 0003 | 0029 | 9971 |  |
|  | 43 | 7557 | 0.930 | 2444 | 0.917 | . 0003 | 0030 | 9970 |  |
|  | . 02472 | . 97528 | 40.448 | . 02473 | 40.436 | 1.0003 | . 00030 | . 99969 |  |
|  | 2501 | 7499 | 39.978 | . 2502 | 39.965 | . 0003 | 0031 | 9969 |  |
|  |  | - 7469 | 9.518 | 531 | 9.506 | . 0003 | 032 | 968 |  |
|  | 59 | 7440 | 9.069 | 56 | 9.057 | . 0003 | 033 | 967 |  |
|  | . 02618 | . 9738 | 88.631 |  | 8.6 | 000 | . 003 |  |  |
|  | 47 | 7353 | 7.782 | . 2648 | 8.618 7.769 | 1.0003 | . 0035 | .99966 .9965 |  |
|  | 76 | 324 | 7.371 | 577 | 7.358 | . 0003 | 036 | 9964 |  |
|  | 75 | 7295 | 6.969 | 2706 | 6.956 | . 0004 | 0036 | 9963 |  |
|  |  | 726 | 6.576 | 273 | 6.563 | . 0004 | 0037 | 996 |  |
|  | . 0276 | . 97237 | 36.191 | . 02764 | 36.177 | 1.0004 | . 00038 | 99962 |  |
|  | 92 | - 7208 | 5.814 | 793 | 5.800 | . 0004 | 0039 | 961 |  |
|  |  | - 7179 | 5.445 | . 2822 | 5.431 | . 0004 | 0040 | 960 |  |
|  |  | 7150 | 5.084 |  | 5.069 | . 0004 | 0041 |  |  |
|  | 2879 | 7121 | 4.729 | 2880 | 4.715 | . 0004 | 0041 | 9958 |  |
| 40 | . 02908 | . 97091 | 34.382 | . 02910 | 34.368 | 1.0004 | . 00042 | . 99958 |  |
| 41 | 937 | - 7062 | 4.042 | . 2939 | 4.027 | . 0004 | . 0043 | . 9957 |  |
| 42 | 967 | . 7033 | 3.708 | 968 | 3.693 | . 0004 | 0044 | . 9956 |  |
|  | 2996 | . 7004 | 3.381 | 2997 | 3.366 | . 0004 | 0045 | 995 |  |
|  | 3025 | . 6975 | 3.060 | 3026 | 3.045 | . 0004 | 0046 | 9954 |  |
| 45 | . 03054 | . 96946 | 32.745 | . 03055 | 32.730 | 1.0005 | . 00046 | . 99953 |  |
| 46 | 3083 | - 6917 | 2.437 | . 3084 | 2.421 | . 0005 | 0047 | 952 |  |
|  | . 3112 | . 6888 | 2.134 | , 3113 | 2.118 | . 0005 | 0048 | 9951 |  |
| 48 | . 3141 | . 6859 | 1.836 | . 3143 | 1.820 | . 0005 | 0049 | 9951 |  |
| 49 | 3170 | 6830 | 1.544 | 3172 | 1.528 | . 0005 | 0050 | 9950 |  |
|  | . 03199 | . 96801 | 31.257 | . 03201 | 31.241 | 1.0005 | . 00051 | . 99949 |  |
|  | 28 |  | 0.976 | 230 | 0.960 | . 0005 | 052 | 98 |  |
|  |  | - 6743 | 0.699 | - 3259 | 0.683 | . 0005 | 053 | 947 |  |
|  | $\begin{array}{r} 3286 \\ .3315 \end{array}$ |  | 0.428 0.161 | 288 | 0.411 0.145 | . 00005 | 054 | 445 |  |
|  | . 03344 |  | 29.899 | . 03346 | 29.882 | 1.0005 | 056 | 994 |  |
|  |  |  | 9.6 |  | 9.624 | . 000 | 57 | 43 |  |
|  |  |  | 9.888 |  | 181 | . 0000 |  | 42 |  |
|  |  |  | 39 |  | 22 | . 0006 | 59 |  |  |
|  |  |  | 8.894 | 3463 | 8.877 | . 0006 | 0060 | 9910 $99: 9$ |  |
| 60 | . 3490 | - 6510 | $8.65 t$ | 3492 | 8.636 | . 0006 | 0061 | 9939 |  |
| M. | Cosine. | Vrs. sin | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | ine. |  |
|  |  |  |  |  |  |  |  |  |  |

Sine. Vrs. cos. $\mid$
$\mid$ Cosec'nt $\mid$
$\mid$ Tang. $|\mid$
$\frac{\text { Tang. }}{.03492}$
$\| \frac{\mathrm{Co}}{28}$


Natural Trigonometrical Functions.
M
M.



| $5{ }^{\circ}$ |  | Natural Trigonometrical Function |  |  |  |  |  | $174^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sin | V | 'Cosec'nt | Ta | g. | Secant. | Vrs | sine. | M |
| 0 | . 087 | . 91284 | 11.47 | . 08749 | 11.430 | 1.0038 | . 00380 | . 99619 |  |
| 1 | 8744 | . 1255 | 1.436 | . 8778 | 1.392 | . 0038 | 0383 | 9617 |  |
| 2 | . 8773 | 1226 | 1.398 | . 8807 | 1.354 | . 0039 | 0386 | 9614 |  |
| 3 | -8802 | 1197 | 1.360 | . 8837 | 1.316 | . 0039 | 0388 | - 9612 |  |
| 4 | . 8831 | 1168 | 1.323 | . 8866 | 1.279 | . 0039 | 0391 | 9609 |  |
| 5 | . 08860 | . 91139 | 11.286 | . 08895 | 11.242 | 1.0039 | . 00393 | . 99607 |  |
| 6 | 8889 | . 1110 | 1.249 | . 8925 | 1.205 | . 0040 | . 0396 | 9604 |  |
| 7 | . 8918 | . 1082 | 1.213 | . 8954 | 1.168 | . 0040 | . 0398 | 9601 |  |
| 8 | . 8917 | . 1053 | 1.176 | . 8983 | 1.132 | . 0040 | . 0401 | - 9599 |  |
| 9 | 8976 | 1024 | 1.140 | 013 | 1.095 | . 0040 | 0404 | 9596 |  |
| 10 | . 09005 | . 90995 | 11.104 | . 09042 | 11.059 | 1.0041 | . 00106 | . 99594 | , |
| 11 | . 9034 | . 0966 | 1.069 | . 9071 | 1.024 | . 0041 | . 0409 | 9591 |  |
| 12 | . 9063 | . 0937 | 1.033 | - 9101 | 0.988 | . 0041 | . 0411 | - 9588 |  |
| 13 | - 9092 | - 0908 | 0.998 | . 9130 | 0.953 | . 0041 | . 0114 | 9586 |  |
| 14 | - 9121 | . 0879 | 0.963 | . 9159 | 0.918 | . 0042 | . 0417 | 9583 |  |
| 15 | . 09150 | . 90850 | 10.929 | . 09189 | 10.883 | 1.0042 | . 00419 | . 99580 |  |
| 16 | . 9179 | . 0821 | 0.894 | 9218 | 0.848 | . 0042 | 0422 | - 9578 |  |
| 17 | . 9208 | . 0792 | 0.860 | . 9247 | 0.814 | . 0043 | . 0125 | 9575 |  |
| 18 | - 9237 | . 0763 | 0.826 | - 9277 | 0.780 | . 0043 | . 0427 | 9572 |  |
| 19 | . 9266 | . 0734 | 0.792 | . 9306 | 0.746 | . 0043 | 0430 | 9570 |  |
| 20 | . 09295 | . 90705 | 10.758 | . 09335 | 10.712 | 1.0013 | . 00433 | . 99567 |  |
| 21 | . 9324 | 0676 | 0.725 | . 9365 | 0.678 | . 0044 | . 0436 | 9564 |  |
| 22 | . 9353 | . 0617 | 0.692 | . 9394 | 0.645 | . 0044 | 0438 | 9562 |  |
| 23 | - 9382 | . 0618 | 0.659 |  | 0.612 | . 0044 | 0441 | 9559 |  |
|  | 9411 | 0589 | 0.626 | 153 | 0.579 | . 0044 | 0444 | 9556 |  |
| 25 | . 09140 | . 90560 | 10.593 | . 09182 | 10.546 | 1.0045 | . 00446 | . 99553 |  |
| 26 | . 9469 | . 0531 | 0.561 | . 95511 | 0.514 | . 0045 | . 0449 | 9551 |  |
| 27 | . 9498 | . 0502 | 0.529 | . 9541 | 0.481 | . 0045 | . 0452 | 9548 |  |
| 28 | - 9527 | . 0473 | 0.497 | . 9570 | 0.449 | . 0046 | . 0455 | 9545 |  |
| 29 | 9556 | 0444 | 0.465 | 9599 | 0.417 | . 0046 | 0458 | 9542 |  |
| 30 | . 09584 | . 90415 | 10.433 | . 09629 | 10.385 | 1.0046 | . 00460 | . 99540 |  |
| 31 | 9613 | . 0386 | 0.402 | 9658 | 0.354 | . 0046 | . 0463 | 9537 |  |
| 32 | . 9642 | . 0357 | 0.371 | . 9688 | 0.322 | . 0047 | . 0466 | 9534 |  |
| 33 | - 9671 | . 0328 | 0.340 | - 9717 | 0.291 | . 0047 | . 0469 | 9531 |  |
| 34 | 9700 | 0300 | 0.309 | 9746 | 0.260 | . 0047 | 0472 | 9528 |  |
| 35 | . 09729 | . 90271 | 10.278 | . 09776 | 10.229 | 1.0048 | . 00474 | 99525 |  |
| 36 | . 9758 | - 0242 | 0.248 | . 9805 | 0.199 | . 0048 | . 0477 | 9523 |  |
| 37 | . 9787 | . 0213 | 0.217 | - 9834 | 0.168 | . 0048 | . 0480 | 5520 |  |
|  | . 9816 | . 0184 | 0.187 | . 9864 | 0.138 | . 0048 | 0483 | 9517 |  |
| 39 | 9845 | 0155 | 0.157 | 9893 | 0.108 | . 0049 | 0486 | 9514 |  |
| 40 | . 09874 | . 90126 | 10.127 | . 09922 | 10.078 | 1.0049 | . 00489 | . 99511 |  |
| 41 | . 9903 | 0097 | 0.098 | - 9952 | 0.048 | . 0049 | 0191 | 9508 |  |
| 2 | . 9932 | 0068 | 0.068 | 9981 | 0.019 | . 0050 | 0494 | 9505 |  |
| 43 | - 9961 | . 0039 | 0.039 | . 10011 | 9.9893 | . 0050 | . 0497 | 9503 |  |
|  | 9990 | 0010 | 0.010 | . 0040 | . 9601 | . 0050 | 0500 | 9500 |  |
| 45 | . 10019 | . 89981 | 9.9812 | . 10069 | 9.9310 | 1.0050 | . 00503 | . 99497 |  |
| 46 | . 0048 | 9952 | . 9525 | - 0099 | . 9021 | . 0051 | 0506 | 9494 |  |
| 47 | . 0077 | - 9923 | . 9239 | . 0128 | . 8734 | . 0051 | . 0509 | 9491 |  |
| 48 | . 0106 | . 9894 | . 8955 | . 0158 | . 8148 | . 0051 | 0512 | 9488 |  |
|  | 0134 | 9865 | . 8672 | 0187 | . 8164 | . 0052 | 0515 | 9485 |  |
| 50 | . 10163 | . 89836 | 9.8391 | . 10216 | 9.7882 | 1.0052 | . 00518 | . 99482 |  |
|  | . 0192 | 9807 | . 8112 | . 0246 | 7601 | . 0052 | . 0521 | 9479 |  |
| 52 | . 0221 | 9779 | . 7834 | 275 | . 7322 | . 0053 | 524 | 9476 |  |
| 53 | . 0250 | 9750 | . 75.58 | . 0305 | . 704 | . 0053 | 0527 | 9473 |  |
| 51 | 0279 | 9721 | 7283 | 0334 | 6768 | . 0053 | 0530 | 9470 |  |
| 55 | . 10308 | . 89692 | 9.7010 | . 10363 | 9.6493 | 1.0053 | . 00533 | . 99467 |  |
|  | - 0333 | 63 | . 6739 | 393 | . 6220 | . 005 | 5036 | 464 |  |
|  | 0366 | 9634 | 6469 | . 0422 | . 5919 | . 0054 | 539 | 9461 |  |
|  | . 0395 | 9605 | . 6200 | - 0452 | . 5679 | . 0054 | 542 | 458 |  |
| 59 | . 0124 | 9576 | . 5933 | 481 | . 5411 | . 0055 | 0545 | 9455 |  |
| 60 | 0153 | 9547 | 668 | 10 | . $514 \pm$ | 055 | 05 | . 9452 |  |
|  |  |  |  |  |  |  |  |  |  |

Natural Functions.
$6^{\circ}$
Natural Trigonometrical Functions.
$173^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Ta |  | Secant. | Vrs. sin. | Cosine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 1045 | . 89547 | 9.5668 | . 10510 | 9.51 | 1.0055 | . 00548 | . 9945 |  |
| 1 | . 0482 | 18 | . 5404 | 540 | . 4878 | 055 | 551 | 449 |  |
| 2 | . 0511 | . 9489 | . 5141 | . 0569 | . 4614 | . 0056 | 0554 | 446 |  |
| 3 | . 0540 | . 9460 | . 4880 | . 0599 | . 4351 | . 0056 | - 0557 | 9443 |  |
| 4 | . 0568 | 431 | . 4620 | 0628 | . 4090 | . 0056 | . 0560 | 9440 |  |
| 5 | . 10597 | . 89402 | 9.4362 | . 10657 | 9.3831 | 1.0057 | . 00563 | . 99437 |  |
| 6 | 0626 | 373 | . 4105 | . 0687 | . 3572 | . 0057 | . 0566 | 9434 | 5 |
| 7 | . 0655 | . 9345 | . 3850 | . 0716 | . 3315 | . 0057 | . 0569 | 9431 | 5 |
| 8 | - 0684 |  | . 3596 | - 0746 | . 3060 | . 0057 | . 0572 | - 9428 |  |
| 9 | . 0713 |  | . 3343 | . 0775 | 28 | . 0058 | . 0575 | 9424 |  |
| 10 | . 10742 | . 89258 | 9.3092 | . 10805 | 9.2553 | 1.0058 | . 00579 | . 99421 | 50 |
| 11 | . 0771 | 9229 | . 2842 | . 0834 | . 2302 | . 0058 | . 0582 | 9418 | 49 |
| 12 | . 0800 | . 9200 | . 2593 | . 0863 | . 2051 | . 0059 | . 0585 | . 9415 | 48 |
| 13 | . 0829 | . 9171 | . 2346 | . 0893 | . 1803 | . 0059 | . 0588 | 9412 | 4 |
| 14 | . 0858 | 9142 | . 2100 | 0922 | .1555 | . 0059 | 0591 | 9409 |  |
| 15 | . 10887 | . 89113 | 9.1855 | . 10952 | 9.1309 | 1.0060 | . 00594 | . 99406 |  |
| 16 | . 0916 | . 9084 | . 1612 | . 0981 | . 1064 | . 0060 | . 0597 | . 9402 |  |
| 17 | . 0944 | . 9055 | . 1370 | . 1011 | . 0821 | . 0060 | . 0601 | 9399 |  |
| 18 | . 0973 | . 9026 | . 1129 | . 1040 | . 0579 | . 0061 | . 0604 | . 9396 | 4 |
| 19 | . 1002 | . 8998 | . 0890 | 1069 | . 0338 | . 0061 | 0607 | 9393 |  |
| 20 | . 11031 | . 88969 | 9.0651 | . 11099 | 9.0098 | 1.0061 | . 00610 | . 99390 |  |
| 2 | 1060 | 8940 | . 0414 | 1128 | 8.9860 | . 0062 | . 0613 | 9386 |  |
| 22 | - 1089 | . 8911 | . 0179 | . 1158 | . 9623 | . 0062 | - 0617 | 383 |  |
| 23 | . 1118 |  | 8.9944 | 1187 | . 9387 | . 0062 | - 06:0 | 3380 |  |
| 24 | 1147 | 853 | 9711 | 1217 | . 9152 | . 0063 | 0623 | 9377 |  |
| 25 | . 11176 | . 88824 | 8.9479 | . 11246 | 8.8918 | 1.0063 | .00626 | . 99373 |  |
| 26 | - 1205 | . 8795 | . 9248 | 1276 | . 868 | . 0063 | 0630 | 9370 |  |
| 27 | . 1234 | . 8766 | . 9018 | - 1305 | . 845 | . 0064 | . 0633 | 336 |  |
| 28 | - 1262 |  | . 8790 | - 1335 | . 8225 | . 0064 | - 0636 | 364 |  |
| 29 | 1291 |  | . 8563 | 1364 | 7996 | . 006 | 0639 | 360 |  |
| 30 | . 11320 | . 88680 | 8.8337 | . 11393 | 8.7769 | 1.006 | . 00643 | . 99357 |  |
| 31 | . 1349 |  | . 8112 | . 1423 | . 7542 | . 006 | - 0646 | 9354 |  |
| 32 |  | - 8622 | . 7888 | . 1452 | . 7317 | . 006 | 0649 | 350 |  |
| 3 | . 1407 |  | . 7665 | . 1482 | . 7093 | . 0066 | . 0653 | 9347 |  |
| 34 | 1436 |  | . 7444 | 1511 | . 6870 | . 0066 | . 0656 | 9344 |  |
| 35 | . 11465 | . 88535 | 8.7223 | . 11541 | 8.6648 | 1.0066 | . 00659 | 9341 |  |
| 36 | . 1494 | . 8506 | . 700 | . 1570 | . 6427 | . 0067 | 0663 | 337 |  |
| 37 | . 1523 | . 8477 | . 6780 | - 1600 | . 6208 | . 0067 | . 0666 | 9334 |  |
| 38 | - 1551 | . 8448 | . 6569 | -1629 | . 5989 | . 0067 | - 0669 | 333 |  |
| 39 | 580 | 420 | . 6353 | 1659 | . 577 | . 0068 | 067 | 9327 |  |
| 40 | . 11609 | . 88391 | 8.6138 | . 11688 | 8.555 | 1.0068 | . 00676 | . 99324 |  |
| 41 | - 1638 |  | . 5924 | . 1718 | . 5340 | . 0068 | - 0679 | 3320 |  |
| 42 | . 1667 | . 8333 | . 5711 | . 1747 | . 5126 | . 0069 | . 0683 | 9317 |  |
| 43 | . 169 |  | . 5499 | 1777 | . 4913 | . 0069 | - 0686 | 9314 |  |
| 44 | . 1725 | . 8272 | . 5289 | 1806 | . 4701 | . 0069 | 0690 | 9310 |  |
| 45 | . 11754 | . 88246 | 8.5079 | . 11836 | 8.4489 | 1.0070 | . 00693 | . 99307 |  |
| 46 | . 1783 | 8217 | . 4871 | -1865 | . 4279 | . 0070 | 0696 | 9303 |  |
| 47 | . 1811 | . 8188 | . 4663 | . 1895 | . 4070 | . 0070 | . 0700 | 9300 |  |
| 48 | . 1840 | . 8160 | . 4457 | . 1924 | . 3862 | . 0071 | . 0703 | . 9296 |  |
| 49 | 1869 | 8131 | . 4251 | 1954 | . 3655 | . 0071 | . 0707 | 9293 |  |
| 50 | . 11898 | . 88102 | 8.4046 | . 11983 | 8.3449 | 1.0071 | . 00710 | . 99290 |  |
| 51 | . 1927 | . 8073 | . 3843 | . 2013 | . 3244 | .0UT2 | . 0714 | 288 |  |
| $\begin{aligned} & 52 \\ & 53 \end{aligned}$ | - | - 8044 | . 3640 | - 2042 | . 3040 | . 0072 | 0717 | 283 |  |
|  | - 1985 | - 8015 | .3439 .3238 | - 20701 | . 2833 | .007 | 0721 | 79 |  |
|  | 14 |  | 8.3039 | 13 | 8.24 | 00 | , | 27 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | . 0074 |  |  |  |
|  |  |  |  |  | . 1837 | . 007 | . 0738 |  |  |
|  |  |  | . 2250 |  | 1040 | . 0075 | 0742 | 258 |  |
| 60 | . 2187 |  | . 2055 |  | 1443 | . 0075 | 0745 | 925 |  |
| M. | Cosin | Vrs. | Secant. |  | Tang. | er, | Vrs. | ine. |  |


| 7 | Natural Trigonometrical Functions. |  |  |  |  |  |  | $172^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M. |
| 0 | . 12187 | . 87813 | 8.2055 | . 12278 | 8.1443 | 1.0075 | . 00745 | . 99255 | 60 |
| 1 | . 2216 | . 7787 | . 1861 | . 2308 | . 1248 | . 0075 | . 0749 | . 9251 | 59 |
| 2 | . 2245 | . 7755 | . 1668 | . 2337 | . 1053 | . 0076 | . 0752 | . 9247 | 58 |
| 3 | . 2273 | . 7726 | . 1476 | - 2367 | . 0860 | . 0076 | . 0756 | - 9244 | 57 |
| 4 | . 2302 | . 7697 | . 1285 | . 2396 | . 0667 | . 0076 | . 0760 | 9240 | 56 |
| 5 | . 12331 | . 87669 | 8.1094 | . 12426 | 8.0476 | 1.0077 | . 00763 | . 99237 | 55 |
| 6 | . 2360 | . 7640 | . 0905 | . 2456 | . 0285 | . 0077 | . 0767 | . 9233 | 54 |
| 7 | . 2389 | . 7611 | . 0717 | . 2485 | . 0095 | . 0078 | . 0770 | . 9229 | 53 |
| 8 | . 2418 | . 7582 | . 0529 | . 2515 | 7.9906 | . 0078 | . 0774 | - 9226 | 52 |
| 9 | . 2447 | - 7553 | . 0342 | . 2544 | . 9717 | . 0078 | 0778 | 9222 | 51 |
| 10 | . 12476 | . 87524 | 8.0156 | . 12574 | 7.9530 | 1.0079 | . 00781 | . 99219 | 50 |
| 11 | . 2504 | . 7495 | 7.9971 | . 2603 | . 9344 | . 0079 | . 0785 | . 9215 | 49 |
| 12 | . 2533 | . 7467 | . 9787 | . 2633 | . 9158 | . 0079 | . 0788 | . 9211 | 48 |
| 13 | - 2562 | . 7438 | . 9604 | - 2662 | . 8973 | . 0080 | . 0792 | - 9208 | 47 |
| 14 | . 2591 | . 7409 | . 9421 | . 2692 | . 8789 | . 0080 | 0796 | 9204 | 46 |
| 15 | . 12620 | . 87380 | 7.9240 | . 12722 | 7.8606 | 1.0080 | . 00799 | . 99200 | 45 |
| 16 | - 2649 | . 7351 | . 9059 | . 2751 | . 8424 | . 0081 | . 0803 | . 9197 | 44 |
| 17 | . 2678 | . 7322 | . 8879 | . 2781 | . 8243 | . 0081 | . 0807 | . 9193 | 43 |
| 18 | - 2706 | . 7293 | . 8700 | . 2810 | . 8062 | . 0082 | . 0810 | . 9189 | 42 |
| 19 | . 2735 | . 7265 | . 8522 | . 2840 | . 7882 | . 0082 | . 0814 | 9186 | 41 |
| 20 | . 12764 | . 87236 | 7.8344 | . 12869 | 7.7703 | 1.0082 | . 00818 | . 99182 | 40 |
| 21 | . 2793 | . 7207 | . 8168 | - 2899 | . 7525 | . 0083 | . 0822 | . 9178 | 39 |
| 22 | . 2822 | . 7178 | . 7992 | . 2928 | . 7348 | . 0083 | . 0825 | . 9174 | 38 |
| 23 | . 2851 | . 7149 | . 7817 | . 2958 | . 7171 | . 0084 | . 0829 | . 9171 | 37 |
| 24 | . 2879 | . 7120 | . 7642 | . 2988 | . 6996 | . 0084 | . 0833 | 9167 | 36 |
| 25 | . 12908 | . 87091 | 7.7469 | . 13017 | 7.6821 | 1.0084 | . 00837 | . 99163 | 35 |
| 27 | . 2937 | . 7063 | . 7296 | . 3047 | . 6646 | . 0085 | . 0840 | . 9160 | 34 |
| 27 | . 2966 | . 7034 | . 7124 | . 3076 | . 6473 | . 0085 | . 0844 | 9156 | 33 |
| 28 | - 2995 | - 7005 | . 6953 | - 3106 | . 6300 | . 0085 | . 0848 | - 9152 | 32 |
| 29 | . 3024 | . 6976 | . 6783 | . 3136 | . 6129 | . 0086 | . 0852 | 9148 | 31 |
| 30 | . 13053 | . 86947 | 7.6613 | . 13165 | 7.5957 | 1.0086 | . 00855 | . 99144 | 30 |
| 31 | . 3081 | . 6918 | . 6444 | . 3195 | . 5787 | . 0087 | . 0859 | . 9141 | 29 |
| 32 | - 3110 | . 6890 | . 6276 | . 3224 | . 5617 | . 0087 | . 0863 | . 9137 | 28 |
| 33 | . 3139 | . 6861 | . 6108 | - 3254 | . 5449 | . 0087 | . 0867 | . 9133 | 27 |
| 34 | . 3168 | . 6832 | . 5942 | . 3284 | . 5280 | . 0088 | . 0871 | . 9129 | 26 |
| 3 | . 13197 | . 86803 | 7.5776 | . 13313 | 7.5113 | 1.0088 | . 00875 | . 99125 | 25 |
| 36 | - 3226 | . 6774 | . 5611 | . 3343 | . 4946 | . 0089 | . 0878 | . 9121 | 24 |
| 38 | . 3254 | . 6745 | . 5446 | - 3372 | . 4780 | . 0089 | . 0882 | . 9118 | 23 |
| 38 | - 3283 | . 6717 | . 5282 | . 3402 | . 4615 | . 0089 | . 0886 | . 9114 | 22 |
| 39 | - 3312 | . 6688 | . 5119 | . 3432 | . 4451 | . 0090 | . 0890 | . 9110 | 21 |
| 40 | . 13341 | . 86659 | 7.4957 | . 13461 | 7.4287 | 1.0090 | . 00894 | . 99106 | 20 |
| 41 | - 3370 | . 6630 | . 4795 | . 3491 | . 4124 | . 0090 | . 0898 | . 9102 | 19 |
| 42 | - 3399 | . 6601 | . 4634 | - 3520 | . 3961 | . 0091 | . 0902 | . 9098 | 18 |
| 43 | . 3427 | . 6572 | . 4474 | . 3550 | . 3800 | . 0091 | . 0905 | . 9094 | 17 |
| 44 | - 3456 | . 6544 | . 4315 | . 3580 | . 3639 | . 0092 | . 0909 | - 9090 | 16 |
| 40 | . 13485 | . 86515 | 7.4156 | . 13609 | 7.3479 | 1.0092 | . 00913 | . 99086 | 15 |
| 46 | . 3514 | - 6486 | . 3998 | . 3639 | . 3319 | . 0092 | . 0917 | - 9083 | 14 |
| 47 | - 3543 | - 6457 | . 3840 | . 3669 | . 3160 | . 0093 | . 0921 | . 9079 | 13 |
| 48 | . 3571 | . 6428 | . 3683 | - 3698 | . 3002 | . 0093 | . 0925 | - 9075 | 12 |
| 49 | - 3600 | . 6400 | . 3527 | - 3728 | . 2844 | . 0094 | - 0929 | . 9070 | 11 |
| 50 | . 13629 | . 86371 | 7.3372 | . 13757 | 7.2687 | 1.0094 | . 00933 | . 99067 | 10 |
| 51 | - 3658 | . 6342 | . 3217 | . 3787 | . 2531 | . 0094 | . 0937 | - 9063 |  |
| 52 | - 3687 | . 6313 | . 3063 | . 3817 | . 2375 | . 0095 | . 0941 | - 9059 |  |
| 53 | - 3716 | - 6284 | . 2909 | . 3816 | . 2220 | . 0095 | . 0945 | . 9055 |  |
| 54 | - 3744 | . 6255 | . 2757 | - 3876 | . 2066 | . 0096 | - 0949 | . 9051 |  |
| 55 | . 13773 | . 86227 | 7.2604 | . 13906 | 7.1912 | 1.0096 | . 00953 | . 99047. |  |
| 56 | - 3802 | - 6198 | . 2453 | - 3935 | . 1759 | . 0097 | . 0957 | - 9043 |  |
| 57 | . 3831 | . 6169 | . 2302 | - 3965 | . 1607 | . 00997 | - 0961 | 9039 |  |
| 59 | 38688 | . 6140 | . 2152 | . 3995 | . 14504 | . 0097 | 0965 | 9035 |  |
| 60 | . 3917 | . 6083 | . 1853 | 4054 | . 1154 | . 0098 | . 0973 | - 9027 | 0 |
| M. | Cosine. | Vrs. sin. | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. 1 | Sine. | M. |

Natural Trigonometrical Functions.
$171^{\circ}$


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  | $170^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | ang. | Secant. | Vrs. sin. | Cosine. |  |
|  | . 15 |  | 6.3924 |  | 6.3137 |  | . 01231 | . 98769 |  |
|  |  |  |  |  | . 3019 | . 0125 | 236 |  |  |
|  | . 5701 | . 4299 | . 3690 | 5898 | . 2901 | . 0125 | 1240 | 8760 |  |
|  | . 5730 | . 4270 | . 3574 | . 5928 | 2783 | . 0126 | . 1245 | . 8755 |  |
|  | . 5758 | . 4242 | . $34 \overline{5} 8$ | . 5958 | 2665 | . 0126 | 1249 | 8750 |  |
|  | . 15787 | . 84213 | 6.3343 | . 15987 | 6.2548 | 1.0127 | . 01254 | . 98746 | 55 |
|  | . 5816 | . 4184 | . 3228 | . 6017 | . 2432 | . 0127 | 1259 | . 8741 | 54 |
|  | . 5844 | - 4155 | . 3113 | - 6047 | . 2316 | . 0128 | 1263 | . 8737 |  |
|  | . 5 | 27 | . 2999 | 77 | . 2200 | . 0128 | 1268 | - 8732 |  |
| 9 | . 5902 | 4098 | . 2885 | 6107 | . 2085 | . 0129 | 1272 | 8727 | 51 |
| 10 | . 15931 | . 84069 | 6.2772 | . 16137 | 6.1970 | 1.0129 | . 01277 | . 98723 | 50 |
| 11 | . 5959 | . 4041 | . 2659 | -6167 | . 1856 | . 0130 | - 1282 | . 8718 | 49 |
|  | . 5988 | . 4012 | . 2546 | . 6196 | . 1742 | . 0130 | 1286 | . 8714 | 48 |
| 13 | . 6017 | . 3983 | . 2434 | . 6226 | . 1628 | . 0131 | - 1291 | . 8709 | 47 |
|  | . 6045 | . 3954 | . 2322 | . 6256 | . 1515 | . 0131 | 1296 | 8704 | 46 |
|  | . 16074 | . 83926 | 6.2211 | . 16286 | 6.1402 | 1.0132 | . 01300 | . 98700 | 45 |
|  | . 6103 | . 3897 | . 2100 | . 6316 | . 1290 | . 0132 | . 1305 | . 8695 | 44 |
| 17 | . 6132 | - 3868 | . 1990 | . 6346 | . 1178 | . 0133 | - 1310 | . 8690 | 43 |
|  | . 6160 | . 3840 | . 1880 | . 6376 | . 1066 | . 0133 | - 1314 | . 8685 | 42 |
|  | . 6189 | 3811 | . 1770 | 6405 | . 0955 | . 0134 | 1319 | . 8681 |  |
|  | . 16218 | . 83782 | 6.1661 | . 16435 | 6.0844 | 1.0134 | . 01324 | . 98676 | 40 |
|  | . 6246 | . 3753 | . 1552 | . 6465 | . 0734 | . 0135 | . 1328 | . 8671 |  |
|  | . 6275 | - 3725 | . 1443 | . 6495 | :0624 | . 0135 | . 1333 | . 8667 |  |
|  | . 6304 | . 3696 | . 1335 | . 6525 | . 0514 | . 0136 | - 1338 | 662 |  |
|  | . 6333 | - 3667 | . 1227 | 6555 | . 0405 | . 0136 | . 1343 | 657 |  |
|  | . 16361 | . 83639 | 6.1120 | . 16585 | 6.0296 | 1.0136 | . 01347 | . 98652 |  |
|  | . 6390 | . 3610 | . 1013 | . 6615 | . 0188 | . 0137 | 1352 | 648 |  |
|  | . 6419 | - 3581 | . 0906 | . 6644 | . 0080 | . 0137 | . 1357 | . 8643 |  |
|  | . 6447 | - 3553 | . 0800 | . 6674 | 5.9972 | . 0138 | - 1362 | 8638 |  |
|  | . 6476 | 3524 | . 0694 | 6704 | . 9865 | . 0138 | 1367 | 8633 |  |
|  | . 16505 | . 83495 | 6.0588 | . 16734 | 5.9758 | 1.0139 | . 01371 | . 98628 |  |
|  | . 6533 | - 3466 | . 0483 | . 6764 | . 9651 | . 0139 | . 1376 | - 8624 |  |
|  | . 6562 | . 3438 | . 0379 | . 6794 | . 9545 | . 0140 | . 1381 | . 8619 |  |
|  | . 6591 | - 3409 | . 0274 | . 6824 | . 9439 | . 0140 | 1386 | 8614 |  |
|  | . 6619 | - 3380 | . 0170 | 6854 | . 9333 | . 0141 | 1391 | 8609 |  |
|  | . 16648 | . 83352 | 6.0066 | . 16884 | 5.9228 | 1.0141 | . 01395 | . 98604 |  |
|  | . 6677 | - 3323 | 5.9963 | . 6914 | . 9123 | . 0142 | - 1400 | . 8600 |  |
|  | . 6705 | - 3294 | . 9860 | . 6944 | . 9019 | . 0142 | . 1405 | 8595 |  |
|  | . 6734 | - 3266 | . 9758 | . 6973 | . 8915 | . 0143 | - 1410 | 8590 |  |
|  | . 6763 | 237 | . 9655 | 7003 | . 8811 | 0143 | 1415 | 85 |  |
|  | . 16791 | . 83208 | 5.9554 | . 17033 | 5.8708 | 1.0144 | . 01420 | . 98580 |  |
|  | . 6820 | . 3180 | . 9452 | . 7063 | . 8605 | . 0144 | . 1425 | . 8575 | 1 |
| 42 | . 6849 | . 3151 | . 9351 | . 7093 | . 8502 | . 0145 | . 1430 | . 8570 |  |
|  | . 6878 | - 3122 | . 9250 | . 7123 | . 8400 | . 0145 | - 1434 | 8565 |  |
|  | . 6906 | 3094 | . 9150 | 7153 | . 8298 | . 0146 | 1439 | 8560 |  |
| 45 | . 16935 | . 83065 | 5.9049 | . 17183 | 5.8196 | 1.0146 | . 01444 | . 98556 |  |
|  | . 6964 | - 3036 | . 8950 | - 7213 | . 8095 | . 0147 | . 1449 | . 8551 |  |
|  | . 6992 | . 3008 | . 8850 | . 7243 | . 7994 | . 0147 | . 1454 | 8546 |  |
|  | . 7021 | 2979 | . 8751 | 7273 | . 7894 | . 0148 | 1459 | . 8541 |  |
| 49 | . 7050 | - 2950 | . $86 \overline{5} 2$ | 7303 | . 7793 | . 0148 | 1464 | 8536 | 11 |
| 50 | . 17078 | . 82922 | 5.8554 | . 17333 | 5.7694 | 1.0149 | . 01469 | . 98531 | 10 |
|  | . 7107 | - 2893 | . 8456 | 7363 | . 7594 | . 0150 | . 1474 | 852 |  |
|  | . 7136 | - 2864 | . 8358 | . 7393 | . 7495 | . 0150 | . 1479 | 852 |  |
|  | . 7164 | - 2836 | . 8261 | 7423 | 7396 | . 0151 | 1484 | 8516 |  |
|  | 7193 | 2807 | . 8163 | 7453 | . 7297 | . 0151 | 1489 | 8511 |  |
|  | . 17221 | . 82778 | 5.8067 | . 17483 | 5.7199 | 1.0152 | . 01494 | . 98506 |  |
|  | - 7250 | - 2750 | . 7970 | . 7513 | . 7101 | . 0152 | . 1499 | 8501 |  |
|  | . 7279 | - 2721 | . 7874 | 7543 | . 7004 | . 0153 | . 1504 | 8496 |  |
|  | . 7307 | 92 | . 7778 | 573 | . 6906 | . 0153 | 1509 | 8491 |  |
| 59 | 7336 | 2664 | . 768 | 7603 | 6809 | . 0154 | . 1514 | 8486 |  |
| 60 | . 7365 | 2635 | . 7588 | . 7633 | . 6713 | . 0154 | . 1519 | 8181 | 0 |
|  |  |  |  |  | ang | es'nt |  |  |  |

Natural Trigonometrical Functions.
$169^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 17365 | . 82635 | 5.7588 | . 17633 | 5.6713 | 1.0154 | . 01519 | . 98481 | 60 |
| 1 | . 7393 | 2606 | . 7493 | . 7663 | . 6616 | . 0155 | . 1524 | 8476 |  |
| 2 | . 7422 | 2578 | . 7398 | . 7693 | . 6520 | . 0155 | . 1529 | . 8471 |  |
| 3 | . 7451 | . 2549 | . 7304 | . 7723 | . 6425 | . 0156 | 1534 | . 8465 |  |
| 4 | . 7479 | 2521 | . 7210 | . 7753 | 6329 | . 0156 | 1539 | 8460 |  |
| 5 | . 17508 | . 82492 | 5.7117 | . 17783 | 5.6234 | 1.0157 | . 01544 | . 98455 |  |
| 6 | . 7537 | . 2463 | . 7023 | . 7813 | . 6140 | . 0157 | . 1550 | . 8450 |  |
| 7 | . 7565 | 2435 | . 630 | . 7843 | 60 | . 0158 | 1555 | . 8445 |  |
| 8 | - 7594 | 2406 | . 6838 | - 7873 | . 5951 | . 0158 | 1560 | 840 |  |
| 9 | . 7622 | 2377 | . 6745 | - 7903 | . 5857 | . 0159 | , 15 | . 8435 |  |
| 10 | . 17651 | . 82349 | 5.6653 | . 17933 | 5.5764 | 1.0159 | . 01570 | . 98430 |  |
| 11 | . 7680 | 2320 | . 6561 | . 7963 | . 5670 | . 0160 | . 1575 | . 8425 |  |
| 12 | . 7708 | - 2291 | . 6470 | . 7993 | . 5578 | . 0160 | . 1580 | . 8419 |  |
| 13 | . 7737 | - 2263 | . 6379 | . 8023 | . 5485 | . 0161 | - 1585 | . 8414 | 47 |
| 14 | . 7766 | 2234 | . 6288 | 8053 | . 5393 | . 0162 | 1591 | 8409 |  |
| 15 | . 17794 | . 82206 | 5.6197 | . 18083 | 5.5301 | 1.0162 | . 01596 | . 98404 |  |
| 16 | . 7823 | 2177 | . 6107 | . 8113 | . 5209 | . 0163 | . 1601 | . 8399 | 4 |
| 17 | . 7852 | . 2148 | . 6017 | . 8143 | . 5117 | . 0163 | . 1606 | . 8394 |  |
| 18 | . 7880 | - 2120 | . 5928 | . 8173 | . 5026 | . 0164 | - 1611 | 8388 | 42 |
| 19 | . 7909 | 2091 | . 5838 | 8203 | . 4936 | . 0164 | 1617 | 8383 | 41 |
| 20 | . 17937 | . 82062 | 5.5749 | . 18233 | 5.4845 | 1.0165 | . 01622 | . 98378 | 40 |
|  | . 7966 | . 2034 | . 5660 | . 8263 | . 4755 | . 0165 | . 1627 | . 8373 |  |
| 22 | - 7995 | 2005 | . 5572 | . 8293 | . 4665 | . 0166 | - 1632 | 8368 | 38 |
| 23 | . 8023 | . 1977 | . 5484 | . 8323 | . 4575 | . 0166 | . 1638 | 362 | 37 |
|  | . 8052 | 1948 | . 5396 | 8353 | . 448 | . 0167 | 1643 | 8357 |  |
|  | . 18080 | . 81919 | 5.5308 | . 18383 | 5.4396 | 1.0167 | . 01648 | . 98352 | 35 |
| 26 | . 8109 | . 1891 | . 5221 | 8413 | 4308 | . 0168 | 1653 | . 8347 |  |
| 27 | . 8138 | . 1862 | . 5134 | . 8444 | . 4219 | . 0169 | - 1659 | . 8341 |  |
| 8 | . 8166 | - 1834 | . 5047 | . 8474 | . 4131 | . 0169 | 1664 | - 8336 |  |
| 29 | 8195 | 1805 | . 4960 | 8504 | 4043 | . 0170 | 1669 | 8331 | 31 |
| 30 | . 18223 | . 81776 | 5.4874 | . 18534 | 5.3955 | 1.0170 | . 01674 | . 98325 | 30 |
| 31 | . 8252 | - 1748 | . 4788 | . 8564 | . 3868 | . 0171 | . 1680 | 8320 | 29 |
| 32 | . 8281 | . 1719 | . 4702 | . 8594 | . 3780 | . 0171 | . 1685 | 8315 | 28 |
|  | . 8309 | . 1691 | . 4617 | . 8624 | . 3694 | . 0172 | 1690 | 8309 |  |
| 34 | . | . 1662 | . 4532 | 8654 | . 3607 | . 0172 | 1696 | 8304 |  |
|  | . 18366 | . 81633 | 5.4447 | . 18684 | 5.3521 | 1.0173 | . 01701 | . 98299 |  |
| 36 | . 8395 | . 1605 | . 4362 | . 8714 | . 3434 | . 0174 | - 1706 | 8293 | 2 |
| 37 | . 8424 | . 1576 | . 4278 | . 8745 | . 3349 | . 0174 | . 1712 | 8288 |  |
| 38 | - 8452 | . 1548 | . 4194 | . 8775 | . 3263 | . 0175 | - 1717 | 8283 | 2 |
| 9 | 8481 | 1519 | . 4110 | 8805 | . 3178 | . 0175 | 1722 | 8277 | 2 |
| 40 | . 18509 | . 81490 | 5.4026 | . 18835 | 5.3093 | 1.0176 | . 01728 | 8272 | 20 |
| 41 | . 8538 | . 1462 | . 3943 | . 8865 | . 3008 | . 0176 | - 1733 | 8267 | 19 |
| 42 | - 8567 | - 1433 | . 3860 | . 8895 | . 2923 | . 0177 | . 1739 | 8261 |  |
| 43 | . 8595 | . 1405 | . 3777 | 925 | . 2839 | . 0177 | 1744 | 8256 |  |
|  | 8624 | 1376 | . 3695 | 8955 | . 2755 | . 0178 | 1749 | 8250 |  |
| 45 | . 18652 | . 81348 | 5.3612 | . 18985 | 5.2671 | 1.0179 | . 01755 | . 98245 |  |
| 4 | . 8681 | . 1319 | . 3530 | 016 | . 2588 | . 0179 | . 1760 | 8240 |  |
| 4 | - 8709 | . 1290 | . 3449 | 046 | . 2505 | . 0180 | 1766 | 8234 |  |
| 48 | . 8738 | - 1262 | . 3367 | 076 | . 2422 | . 0180 | 1771 | 8229 |  |
| 49 | 8767 | . 1233 | . 3286 | 9106 | . 2339 | . 0181 | 1777 | 8223 |  |
|  | . 18795 | . 81205 | 5.3205 | . 19136 | 5.2257 | 1.0181 | . 01782 | . 98218 |  |
|  |  | . 1176 | . 3124 | . 9166 | . 2174 | . 0182 | 1788 | 212 |  |
|  | - 88882 | - 1147 | . 304 | 97 | . 2092 | . 0182 | 1793 |  |  |
|  | - 8881 | - 1119 | . 2963 | 227 | . 2011 | . 0183 | 1799 | 8201 8196 |  |
|  | . 18938 | . 81062 | 5.2803 | . 19287 | 5.1848 | 1.0184 | . 01810 | 8190 |  |
|  | . | - | . 272 | 317 | . 1767 | . 0185 | 815 | 185 |  |
|  | - 8995 | 通 | . 2645 |  | . 1686 | . 0185 | 821 | 179 |  |
|  | . 9024 | . 0976 | . 2566 | 78 | . 1606 | . 0186 | 826 | 174 |  |
| 59 | -9052 | - 0948 | . 2487 | 08 | . 1525 | . 0186 | 1832 | 8168 |  |
| 60 | . 9081 | . 0919 | . 2408 | . 9438 | . 1 | . 0187 | 1837 | 163 |  |
| M | Co | Vrs. si | Secant |  | Tang | Cosec |  | ine |  |

Natural Trigonometrical Functions.
$168^{\circ}$
M. Sine.

Natural Trigonometrical Functions.

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | g. | Secant. | Vrs. sin. | Cosine. | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 20 | . 79 | 4.8097 | . 21256 | 4.7 | 1.0223 | . 02185 | . 97815 | 60 |
| 1 | 0820 | . 9180 | . 8032 | . 1286 | . 6979 | . 0224 | 2191 | 7809 |  |
| 2 | . 0848 | - 9152 | . 7966 | . 1316 | . 6912 | 225 | 2197 | 7803 |  |
| 3 | . 0876 | . 9123 | . 7901 | . 1347 | . 6845 | . 0225 | 2203 | 7806 |  |
| 4 | 0905 | . 9105 | . 7835 | 1377 | . 6778 | . 0226 | 2209 | 7790 | 56 |
| 5 | . 20933 | . 79066 | 4.7770 | . 21408 | 4.6712 | 1.0226 | . 02215 | . 97784 |  |
| 6 | 0962 | 9038 | . 7706 | . 1438 | . 6646 | . 0227 | 2222 | . 7778 |  |
| 7 | . 0990 | . 9010 | . 7641 | . 1468 | . 6580 | . 0228 | 2228 | - 7772 |  |
| 8 | - 1019 | - 8981 | . 7576 | - 1499 | . 6514 | . 02228 | 2234 | - 7766 |  |
| 9 | 1047 | 8953 | . 7512 | 1529 | . 6448 | . 0229 | 2240 | . 7760 |  |
| 10 | . 21076 | . 78924 | 4.7448 | . 21560 | 4.6382 | 1.0230 | . 02246 | . 97754 | 50 |
| 11 | . 1104 | - 8896 | . 7384 | . 1590 | . 6317 | . 0230 | - 2252 | - 7748 |  |
| 12 | . 1132 | . 8867 | . 7320 | . 1621 | . 6252 | . 0231 | - 2258 | . 7741 | 48 |
| 13 | . 1161 | . 8839 | . 7257 | . 1651 | . 6187 | . 0232 | - 2264 | 7735 | 47 |
| 1 | . 1189 | . 8811 | . 7193 | 1682 | 6122 | . 0232 | 2271 | . 7729 | 46 |
| 15 | . 21218 | . 78782 | 4.7130 | . 21712 | 4.6057 | 1.0233 | . 02277 | . 97723 | 45 |
| 16 | . 1246 | . 8754 | . 7067 | . 1742 | . 5993 | . 0234 | 2283 | . 7717 | 44 |
| 17 | . 1275 | . 8725 | . 7004 | . 1773 | . 5928 | . 0234 | 289 | . 7711 | 43 |
| 18 | . 1303 | . 8697 | . 6942 | . 1803 | . 5864 | . 0235 | 2295 | 7704 | 42 |
| 19 | . 1331 | . 8668 | . 6879 | 1834 | . 5800 | . 0235 | 2302 | 769 | 41 |
| 20 | . 21360 | . 78640 | 4.6817 | . 21864 | 4.5736 | 1.0236 | . 02308 | . 97692 | 40 |
| 21 | . 1388 | 8612 | . 6754 | 1895 | . 5673 | . 0237 | 2314 | 7686 | 39 |
| 22 | . 1417 | . 8583 | . 6692 | . 1925 | . 5609 | . 0237 | 2320 | . 7680 | 38 |
| 23 | . 1445 | . 8555 | . 6631 | 1956 | . 5546 | . 0238 | 2326 | . 7673 | 37 |
| 24 | . 1473 | . 8526 | . 6569 | 1986 | . 5483 | . 0239 | 2333 | 7667 |  |
| 25 | . 21502 | . 78508 | 4.6507 | . 22017 | 4.5420 | 1.0239 | . 02339 | . 97661 |  |
| 26 | . 1530 | . 8470 | . 6446 | 2047 | . 5357 | . 0240 | - 2345 | . 7655 | 34 |
| 27 | . 1559 | . 8441 | . 6385 | . 2078 | . 5294 | . 0241 | . 2351 | . 7648 |  |
| 28 | - 1587 | . 8413 | . 6324 | 2108 | . 5232 | . 0241 | 2358 | 7642 |  |
| 29 | 1615 | 8384 | . 6263 | 2139 | . 5169 | . 0242 | 2364 | 7636 | 31 |
| 30 | . 21644 | . 78356 | 4.6202 | . 22169 | 4.5107 | 1.0243 | . 02370 | . 97630 | 30 |
| 31 | . 1672 | . 8328 | . 6142 | 2200 | . 5045 | . 0243 | 2377 | . 7623 |  |
| 32 | . 1701 | . 8299 | . 6081 | 2230 | . 4983 | . 0244 | . 2383 | 617 |  |
| 33 | . 1729 | . 8271 | . 6021 | 2261 | . 4921 | . 0245 | - 2389 | 7611 |  |
| 34 | 1757 | . 8242 | . 5961 | 2291 | . 4860 | . 0245 | 2396 | 7604 | 26 |
| 35 | . 21786 | . 78214 | 4.5901 | . 22322 | 4.4799 | 1.0246 | . 02402 | . 97598 |  |
| 36 | . 1814 | . 8186 | . 5841 | 2353 | . 4737 | . 0247 | - 2408 | . 7592 |  |
| 37 | - 1843 | . 8154 | . 5782 | 2383 | . 4676 | . 0247 | - 2415 | . 7585 |  |
|  | - 1871 | . 8129 | . 5722 | 2414 | 4615 | . 0248 | - 2421 | 7579 |  |
| 39 | - 1899 | 8100 | . 5663 | 2444 | 4555 | . 0249 | 2427 | 7573 |  |
| 40 | . 21928 | . 78072 | 4.5604 | . 22475 | 4.4494 | 1.0249 | . 02434 | . 97566 | 20 |
| 41 | . 1956 | . 5043 | . 5545 | 2505 | . 4434 | . 0250 | 2440 | 7560 | 19 |
| 42 | . 1985 | - 8015 | . 5486 | 2536 | . 4373 | . 0251 | 2446 | 7553 |  |
| 43 | - 2013 | - 7987 | . 5428 | 2566 | . 4313 | . 0251 | - 2453 | - 7547 | 17 |
| 44 | 2041 | 7959 | . 5369 | 2597 | . 4253 | . 0252 | 2459 | 7541 | 16 |
|  | . 22070 | . 77930 | 4.5311 | . 22628 | 4.4194 | 1.0253 | . 02466 | . 97534 | 15 |
| 46 | - 2098 | - 7902 | . 5253 | 2658 | . 4134 | . 0253 | 2472 | 5528 |  |
| 47 | 2126 | . 7873 | . 5195 | 2689 | . 4074 | . 0254 | - 2479 | . 7521 | 13 |
| 48 | - 2155 | . 7845 | . 5137 | 2719 | . 4015 | . 0255 | 2485 | 7515 | 12 |
| 49 | 2183 | . 7817 | . 5079 | 2750 | . 3956 | . 0255 | 2491 | 7508 |  |
| 50 | . 22211 | . 77788 | 4.5021 | . 22781 | 4.3897 | 1.0256 | . 02498 | . 97502 | 10 |
| 51 | - 2240 | - 7760 | . 4964 | 811 | . 3838 | . 0257 | 2504 | 7495 |  |
| 52 | 2268 | . 7732 | . 4907 | 2842 | . 3779 | . 0257 | 2511 | 489 |  |
| 53 | - 2297 | . 7703 | . 4850 | 2872 | . 3721 | . 0258 | 2517 | - 7483 |  |
|  | - 2325 | . 7675 | . 4793 | 2903 | . 3662 | . 0259 | 2524 | . 7476 |  |
| 55 | . 22353 | . 77647 | 4.4736 | . 22934 | 4.3604 | 1.0260 | , 5330 | . 97470 |  |
| 57 | - 2382 | 7618 | . 4679 | 2964 | . 3546 | . 0260 | 2537 | 463 |  |
| 57 <br> 58 <br> 8 | - ${ }_{2}^{2410}$ | 590 | . 4623 | 995 | . 3488 | . 0261 | 2543 | 457 |  |
| $\begin{aligned} & 58 \\ & 59 \end{aligned}$ | - 2438 | 61 | . 45666 | 025 | .3430 .3372 | .0262 .0262 | 2550 | - 4450 |  |
| 60 | 2495 | 505 | . 4454 | 3087 | . 3315 | . 0263 | - 2563 | -7437 | 0 |
|  | Cosine | Vrs, sin | S | Cotang | Tang | sec' | Vrs. co | ne |  |

Natural Trigonometrical Functions.

| I. | Sine. | Vrs. | Cos | Ta | g. | Secan | Vrs. sin. | e. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 22 |  |  |  |  |  |  |  | 60 |
|  | . 2523 | 7476 | . 4398 | . 3117 | 3257 | . 0264 | 569 | 7430 | 9 |
|  | . 2552 | . 7448 | . 4342 | 3148 | . 3200 | . 0264 | 2576 | 7424 |  |
|  |  | . 7420 | . 4287 | . 3179 | . 3143 | . 0265 | 2583 | 7417 |  |
|  |  | 7391 | . 4231 | 209 | . 3086 | . 0266 | 2589 | 7411 |  |
|  | . 22637 | . 77363 | 4.4176 | . 23240 | 4.3029 | 1.0266 | . 02596 | . 97404 | 55 |
|  | . 2665 | . 7335 | . 4121 | . 3270 | . 2972 | . 0267 | 2602 | . 7398 | 54 |
|  | . 2693 | . 7306 | 65 | . 3301 | . 29 | . 0268 | 2609 | 7391 |  |
|  | - 2722 | . 7278 | . 4011 | . 3332 | . 2859 | . 0268 | 2616 | 7384 |  |
| 9 | . 2750 | . 7250 | . 3956 | 363 | . 2803 | . 0269 | 2622 | 7378 |  |
|  | . 22778 | . 77221 | 4.3901 | . 23393 | 4.2747 | 1.0270 | . 02629 | 97371 | 50 |
|  | 2807 | 7193 | . 3847 | 3424 | . 2691 | . 0271 | 235 | 364 | 49 |
|  | 2835 | . 7165 | . 3792 | . 3455 | . 2635 | . 0271 | 2642 | 7358 |  |
|  |  | . 7136 | . 3738 | . 3485 | . 2579 | . 0272 | - 2649 | . 7351 | 47 |
|  |  | . 7108 | . 3684 | . 3516 | 2524 | . 0273 | 2655 | 7344 |  |
|  | . 22920 | . 77080 | 4.3630 | . 23547 | 4.2468 | 1.0273 | . 02662 | . 97338 | 45 |
|  | . 2948 | . 7052 | . 3576 | . 3577 | . 2413 | . 0274 | . 2669 | . 7331 | 44 |
|  |  | . 7023 | . 3522 | - 3608 | . 2358 | . 0275 | - 2675 | - 7324 |  |
|  |  | . 6995 | . 3469 | . 3639 | 2303 | . 0276 | 2682 | . 7318 |  |
|  | 3033 | . 6967 | . 3415 | 3670 | .2248 | . 0276 | 2689 | 7311 | 41 |
|  | . 23061 | . 76938 | 4.3362 | . 23700 | 4.2193 | 1.0277 | . 02695 | . 97304 | 40 |
|  |  |  | . 3309 | . 3731 | . 2139 | . 0278 | 2702 | 7298 |  |
|  |  |  | . 3256 |  | 2084 | . 0278 | 2709 | 7291 |  |
|  |  | . 6853 | . 3203 | 93 | . 2030 | . 0279 | 2716 | . 7284 | 析 |
|  |  | . 6825 | . 3150 | 23 | . 1976 | . 0280 | 2722 | 7277 |  |
|  | . 23203 | . 76797 | 4.3098 | . 23854 | 4.1921 | 1.0280 | . 02729 | . 97271 |  |
|  | . 3231 |  | . 3045 | 885 | . 1867 | . 0281 | 2736 | 264 |  |
|  |  |  | . 2993 | . 3916 | . 1814 | . 028 | . 2743 | - 7257 |  |
|  |  |  | . 2941 | 46 | . 1760 | . 028 | - 2749 | - 7250 |  |
|  | 16 |  | . 2888 | 3977 | 1706 | . 028 | 2756 | 7244 |  |
|  | . 23344 | . 76655 | 4.2836 | . 24008 | 4.1653 | 1.0284 | . 02763 | . 97237 |  |
|  | . 3373 |  | . 2785 | - 4039 | . 1600 |  | . 2770 | 7230 |  |
|  |  |  | . 2733 | . 4069 | . 1516 | . 028 | 277 | 223 |  |
|  |  |  | . 2681 | . 4100 | . 1493 | . 0286 | 2783 | 7216 |  |
|  | 858 | . 6542 | . 2630 | . 4131 | . 1440 | . 028 | 2790 | 7210 |  |
|  | . 23486 | . 76514 | 4.2579 | . 24162 | 4.1388 | 1.0288 | . 02797 | . 97203 |  |
|  |  |  | 2527 |  | . 13 |  | 2804 | 196 |  |
|  |  |  | . 2476 | . 4223 | . 1282 | . 0289 | 2811 | . 7189 |  |
|  |  | -6429 | . 2425 | - | . 1230 | . 02290 | 2818 | . 7182 |  |
|  |  | . 6401 | . 2375 | - 4220 | 1178 | . 0291 | 28-4 | 71 |  |
|  | . 23627 | . 76373 | 4.2324 | . 24316 | 4.1126 | 1.0291 | . 02831 | . 97169 |  |
|  |  | . 6344 | . 2273 | . 4346 | . 1073 | . 0292 | 38 | 7162 |  |
|  |  |  | . 2223 | . 4377 | . 1022 | . 0293 | 285 | . 7155 |  |
|  |  |  | . 2173 |  | . 0970 | . 0293 | 285 | . 7148 |  |
|  | 40 | 260 | . 2122 | 4439 | . 0918 | . 0294 | 2859 | 7141 |  |
|  | . 23768 | . 76231 | 4.2072 | . 24470 | 4.0867 | 1.0295 | . 02866 | . 97134 |  |
|  |  |  | . 2022 | - 4501 | . 0815 | . 0296 | 2873 | 7127 |  |
|  |  |  | . 1972 | . 4531 | . 0764 | . 0296 | 880 | . 7120 |  |
|  |  |  | . 1923 | . 4562 | . 0713 | . 0297 | 2886 | . 7113 |  |
|  | 881 | . 6118 | . 1873 | . 4593 | . 0662 | 029 | 2893 | 7106 |  |
|  | . 23910 | . 76090 | 4.1824 | . 24624 | 4.0611 | 1.0299 | . 02900 | . 97099 |  |
|  |  |  | . 1774 |  | . 0560 | . 0299 | 907 | 092 |  |
|  | . 3966 |  | . 1725 | - 4686 | . 0509 | . 0300 | 914 | 086 |  |
|  |  |  | . 1676 | . 4717 | . 0458 | . 0301 | 921 | 079 |  |
|  |  |  |  | 4747 |  |  |  |  |  |
|  |  | . 7 | 4.1578 | . 24778 | 4.0358 | 1.03 | 2935 | . 97065 |  |
|  | 107 |  | . 1481 |  | . 0257 | . 0304 | 2949 | 051 |  |
|  | 36 |  | . 1432 |  | . 0207 | . 0305 | 2956 | 044 |  |
|  | 4164 |  | . 1384 | . 4902 | . 0157 | . 0305 | 2963 | 7037 |  |
|  | . 4192 |  | . 1336 | 4933 | . 0108 | 030 | 2970 | 7029 |  |
|  | Cosine | Vrs, si | Secant | tan | Tang. | Csec' | Vrs. c | Sine | I. |

Natural Trigonometrical Functions.
$165^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 24192 | . 75808 | 4.1336 | . 24933 | 4.0108 | 1.0306 | . 02970 | . 97029 |  |
| 1 | . 4220 | . 5779 | . 1287 | . 4964 | . 0058 | . 0307 | 2977 | 7022 |  |
| 2 | . 4249 | . 5751 | . 1239 | . 4995 | . 0009 | . 0308 | 2984 | . 7015 |  |
| 3 | . 4277 | . 5723 | . 1191 | . 5025 | 3.9959 | . 0308 | 2991 | 7008 |  |
| 4 | . 4305 | . 5695 | . 1144 | . 5056 | . 9910 | . 0309 | 2999 | 7001 |  |
| 5 | . 24333 | . 75667 | 4.1096 | . 25087 | 3.9861 | 1.0310 | . 03006 | . 96994 |  |
| 6 | . 4361 | . 5638 | . 1048 | . 5118 | . 9812 | . 0311 | . 3013 | . 6987 |  |
| 7 | . 4390 | . 5610 | . 1001 | . 5149 | . 9763 | . 0311 | . 3020 | - 6980 |  |
| 8 | . 4418 | . 5582 | . 0953 | . 5180 | . 9714 | . 0312 | 3027 | - 6973 |  |
| 9 | - 4446 | 5554 | . 0906 | . 5211 | . 9665 | . 0313 | 3034 | 6966 |  |
| 10 | . 24474 | . 75526 | 4.0859 | . 25242 | 3.9616 | 1.0314 | . 03041 | . 96959 |  |
| 11 | . 4502 | . 5497 | . 0812 | . 5273 | . 9.56 | . 0314 | . 3048 | . 6952 | 4 |
| 12 | . 4531 | . 5469 | . 0765 | . 5304 | . 9520 | . 0315 | . 3055 | 6944 | 4 |
| 13 | . 4559 | . 5441 | . 0718 | . 5335 | . 9471 | . 0316 | - 3063 | - 6937 | 4 |
| 14 | . 4587 | 5413 | . 0672 | . 5366 | . 9423 | . 0317 | . 3070 | 6930 |  |
| 15 | . 24615 | . 75385 | 4.0625 | . 25397 | 3.9375 | 1.0317 | . 03077 | . 96923 |  |
| 16 | - 4643 | . 5356 | . 0579 | . 5428 | . 9327 | . 0318 | . 3084 | . 6916 | 4 |
| 17 | - 4672 | . 5328 | . 0532 | . 5459 | . 9279 | . 0319 | 3091 | - 6909 |  |
| 18 | . 4700 | . 5300 | . 0486 | . 5490 | . 9231 | . 0320 | . 3098 | . 6901 |  |
| 19 | . 4728 | . 5272 | . 0440 | . 5521 | . 9184 | . 0320 | . 3106 | 6894 |  |
| 20 | . 24756 | . 75244 | 4.0394 | . 25552 | 3.9136 | 1.0321 | . 03113 | . 96887 | 4 |
| 21 | . 4784 | . 5215 | . 0348 | . 5583 | . 9089 | . 0322 | . 3120 | . 6880 | 3 |
| 22 | . 4813 | . 5187 | . 0302 | . 5614 | . 9042 | . 0323 | . 3127 | . 6873 | 3 |
| 23 | . 4841 | . 5159 | . 0256 | . 5645 | . 8994 | . 0323 | . 3134 | . 6865 |  |
| , | . 4869 | . 5131 | . 0211 | . 5676 | . 8947 | . 0324 | . 3142 | . 6858 | 3 |
| 25 | . 24897 | . 75103 | 4.0165 | . 25707 | 3.8900 | 1.0325 | . 03149 | . 96851 | 3 |
| 26 | . 4925 | . 5075 | . 0120 | . 5738 | . 8853 | . 0326 | . 3156 | . 6844 | 3 |
| 27 | . 4953 | . 5046 | . 0074 | . 5769 | . 8807 | . 0327 | . 3163 | 836 | 3 |
| 28 | - 4982 | . 5018 | . 0029 | . 5800 | . 8760 | . 0327 | . 3171 | . 6829 |  |
| 29 | 5010 | . 4990 | 3.9984 | . 5831 | . 8713 | . 0328 | . 3178 | 6822 |  |
| 30 | . 25038 | . 74962 | 3.9939 | . 25862 | 3.8667 | 1.0329 | . 03185 | . 96815 | 30 |
| 31 | . 5066 | . 4934 | . 9894 | . 5893 | . 8621 | . 0330 | . 3192 | . 6807 | 2 |
| 32 | . 5094 | . 4906 | . 9850 | . 5924 | . 8574 | . 0330 | . 3200 | . 6800 | 2 |
| 33 | . 5122 | . 4877 | . 9805 | - 5955 | . 8528 | . 0331 | - 3207 | . 6793 | 2 |
| 34 | . 5151 | . 4849 | . 9760 | . 5986 | . 8482 | . 0332 | 3214 | . 6785 |  |
| 35 | . 25179 | . 74821 | 3.9716 | . 26017 | 3.8436 | 1.0333 | . 03222 | . 96778 | 2 |
| 36 | . 5207 | . 4793 | . 9672 | . 6048 | . 8390 | . 0334 | - 3229 | . 6771 |  |
| 37 | . 5235 | . 4765 | . 9627 | . 6079 | . 8345 | . 0334 | 236 | 763 |  |
| 38 | . 5263 | . 4737 | . 9583 | . 6110 | . 8299 | . 0335 | - 3244 | . 6756 |  |
| 39 | . 5291 | . 4709 | . 9539 | . 6141 | . 8254 | . 0336 | 3251 | . 6749 |  |
| 40 | . 25319 | . 74680 | 3.9495 | . 26172 | 3.8208 | 1.0337 | . 03258 | . 96741 |  |
| 41 | . 5348 | . 4652 | . 9451 | . 6203 | . 8163 | . 0338 | . 3266 | . 6734 | 1 |
| 42 | . 5376 | . 4624 | . 9408 | . 6234 | . 8118 | . 0338 | - 3273 | 6727 |  |
| 43 | . 5404 | . 4596 | . 9364 | . 6266 | . 8073 | . 0339 | . 3281 | 6719 |  |
| 44 | . 5432 | . 4568 | . 9320 | . 6297 | . 8027 | . 0340 | . 3288 | . 6712 |  |
| 45 | . 25460 | . 74540 | 3.9277 | . 26328 | 3.7983 | 1.0341 | . 03295 | . 96704 |  |
| 46 | . 5488 | . 4512 | . 9234 | . 6359 | . 7938 | . 0341 | . 3303 | . 6697 |  |
| 47 | . 5516 | . 4483 | . 9190 | - 6390 | . 7893 | . 0342 | - 3310 | - 6690 |  |
| 48 | - 5544 | . 4455 | . 9147 | . 6421 | . 7848 | . 0343 | . 3318 | 6682 |  |
| 49 | . 5573 | . 4427 | . 9104 | . 6452 | . 7804 | . 0344 | . 3325 | . 6675 |  |
| 50 | . 25601 | . 74399 | 3.9061 | . 26483 | 3.7759 | 1.0345 | . 03332 | . 96667 |  |
| 51 | . 5629 | . 4371 | . 9018 | . 6514 | . 7715 | . 0345 | . 3340 | 6660 |  |
| 52 | . 5657 | . 4344 | . 8976 | . 6546 | . 7671 | . 0346 | . 3347 | 652 |  |
| 53 | . 5685 | . 4315 | . 8933 | . 6577 | . 7627 | . 0347 | . 3355 | 6645 |  |
| 54 | . 5713 | 4287 | . 8890 | 6608 | . 7583 | . 0348 | 3362 | - 6638 |  |
| 55 | . 25741 | . 74259 | 3.8848 | . 26639 | 3.7539 | 1.0349 | . 03370 | . 96630 |  |
| 56 | . 5769 | . 4230 | . 8805 | . 6670 | . 7495 | . 0349 | . 3377 | 623 |  |
| 57 | . 5798 | . 4202 | . 8763 | . 6701 | . 7451 | . 0350 | - 3385 | 615 |  |
| 58 | - 5826 | . 4174 | . 8721 | - 6732 | .7407 | . 0351 | - 3392 | 608 |  |
| 59 | . 5854 | . 4146 | . 8679 | . 6764 | . 7364 | . 0352 | . 3400 | 6600 |  |
| 60 | . 5882 | . 4118 | . 8637 | . 6795 | . 7320 | . 0353 | . 3407 | - 6592 |  |
| M. | Cosine. | Vrs. sin. | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | Sine. |  |

Natural Trigonometrical Functions.
$164^{\circ}$

| M. | Sin | Vrs. | Cosec'nt | Tang. | g. | Sec | Vrs. sin. | Cosine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 25 |  |  |  | 3. | 1.0353 |  | . 96592 |  |
|  | . 5910 | . 4090 | . 8595 |  | . 7277 |  | 3415 |  |  |
| 2 | - 5938 | . 4062 | . 85.53 | . 685 | . 7234 | . 0354 | 3422 | 577 |  |
| 3 | - 5966 | 4034 | . 8512 | 688 | . 7191 | . 0355 | 3430 | . 6570 |  |
|  | . 5994 | 006 | . 8470 | . 6920 | 7147 | . 0356 | 3438 | 6562 |  |
|  | . 26022 | . 73978 | 3.8428 | . 26951 | 3.7104 | 1.0357 | . 03445 | . 96555 |  |
|  | . 6050 | 3949 | 8387 | . 6982 | . 7062 | . 0358 | 3453 | . 6547 |  |
|  | . 6078 | . 3921 | . 8346 | . 7013 | . 7019 | . 0358 | - 3460 | - 6540 |  |
|  | . 6107 | - 3893 | 304 | 044 | . 6976 | . 0359 | 3468 | . 6532 |  |
| 9 | 6135 | - 3865 | . 8263 | 076 | 6933 | 0360 | 3475 | 6524 |  |
| 10 | . 26163 | . 73837 | 3.8222 | . 27107 | 3.6891 | 1.0361 | . 03483 | . 96517 |  |
|  | . 6191 | - 3809 | . 8181 | . 7138 | . 6848 | . 0362 | 3491 | . 6509 |  |
| 12 | . 6219 | . 3781 | . 8140 | . 7169 | 6806 | . 0362 | 3498 | 5502 |  |
| 13 | . 6247 | . 3753 | . 8100 | . 7201 | . 6764 | . 0363 | 3506 | . 6494 |  |
| 14 | 6275 | . 3725 | . 8059 | . 7232 | . 6722 | . 0364 | 3514 | 6486 |  |
| 15 | . 26303 | . 73697 | 3.8018 | . 27263 | 3.6679 | 1.0365 | . 03521 | . 96479 |  |
| 16 | 6331 | 69 | . 7978 | 7294 | . 6637 | . 0366 | 3529 | . 6471 | 44 |
| 17 | . 6359 | . 3641 | . 7937 | - 7326 | 6596 | 0367 | . 3536 | . 6463 |  |
| 18 | . 6387 | - 3613 | 7897 | 7357 | . 6554 | . 0367 | . 3544 | . 6456 |  |
|  | 6415 |  | 7857 | 388 | . 6512 | . 0368 | 3552 | 6448 |  |
| 20 | . 26443 | . 73556 | 3.7816 | . 27419 | 3.6470 | 1.0369 | . 03560 | . 96440 | 40 |
| 21 | . 6471 | . 3528 | . 7776 | . 7451 | . 6429 | . 0370 | . 3567 | . 6433 | 39 |
| 22 | . 6499 | - 3500 | . 7736 | . 7482 | . 6387 | . 0371 | . 3575 | . 6425 |  |
| 23 | . 6527 | 472 | . 7697 | . 7513 | . 6346 | . 0371 | 3583 | 6417 |  |
| 24 | 56 | 444 | 7657 | 54 | 6305 | . 0372 | 3590 | 409 |  |
| 5 | . 26584 | . 73416 | 3.7617 | . 27576 | 3.6263 | 1.0373 | . 03598 | . 96402 |  |
|  | . 6612 | 388 | . 7577 | 607 | 6222 | . 0374 | 3606 | 394 |  |
| 27 | . 6640 | . 3360 | . 7538 | . 7638 | . 6181 | . 0375 | . 3614 | . 6386 |  |
| 28 | . 6 | . 3332 | . 7498 | . 7670 | . 6140 | . 0376 | . 3621 | . 6378 |  |
|  | , | 304 | . 7459 | 7701 | . 6100 | . 0376 | 3629 | 6371 |  |
|  | . 26724 | . 73276 | 3.7420 | . 27732 | 3.6059 | 1.0377 | . 03637 | . 96363 |  |
|  | . 6752 | - 3248 | . 7380 | - 7764 | . 6018 | . 0378 | . 3645 | . 6355 |  |
|  | . 6780 | - 3220 | . 7341 | 7795 | . 5977 | . 0379 | - 3652 | 6347 |  |
| 33 | . 6 | 192 | . 7302 | 226 | . 5937 | . 0380 | 3660 | 340 |  |
|  |  | 3164 | 7263 | 7858 | . 5896 | . 0381 | 3668 | 6332 |  |
|  | . 268 | . 73136 | 3.7224 | . 27889 | 3.5856 | 1.0382 | . 03676 | . 96324 |  |
|  |  |  | . 7186 | 20 | . 5816 |  | 3684 | 6316 |  |
|  | . 6920 |  | . 7147 | 52 | . 5776 | . 38 | 3691 | 308 |  |
| 38 | . 6948 | - 3052 | . 7108 | 983 | . 5736 | . 038 | . 3699 | 6301 |  |
| 39 | . 6976 | - 3024 | . 7070 | 8014 | . 5696 | . 0385 | 3707 | 6293 |  |
| 4 | . 27004 | . 72996 | 3.7031 | . 28046 | 3.5656 | 1.0386 | . 03715 | . 96285 |  |
| 41 | . 7032 | 2968 | . 6993 | . 8077 | . 5616 | 0387 | . 3723 | . 6277 |  |
|  | . 7060 | - 2940 | . 6955 | 109 | . 5576 | . 038 | - 3731 | 6269 |  |
|  | . 7088 | 2912 | . 6917 | 140 | . 5536 | . 0388 | 3739 | 6261 |  |
|  | 7116 | 884 | . 6878 | 171 | . 5497 | 0389 | 3746 | 6253 |  |
| 45 | . 27144 | . 72856 | 3.6840 | . 28203 | 3.5457 | 1.0390 | . 03754 | . 96245 |  |
|  | 72 | 28 | . 6802 |  | . 5418 | . 0391 | 3762 | 238 |  |
|  | . 7200 | 800 | . 6765 |  | . 5378 | . 0392 | 3770 | 6230 |  |
|  | . 7228 | - 2772 | . 6727 |  | . 5339 | . 0393 | 3778 | 6222 |  |
|  | 7256 | 2744 | . 6689 | 328 | . 5300 | . 0393 | 3786 | 6214 |  |
|  | . 27284 | . 72716 | 3.6651 | . 28360 | 3.5261 | 1.0394 | . 03794 | . 96206 |  |
|  | . 7312 | 88 | . 6614 | 01 | . 5222 | . 0395 | 802 | 198 |  |
| 52 | - 7340 | - 2660 | . 6576 |  | . 5183 | . 0396 | 310 | 190 |  |
|  | - 7368 | 332 | . 6539 |  | . 5144 | . 0397 | 3818 | 6182 |  |
| 5 | 7396 | 2604 | 6502 | 8486 | 5105 | 0398 | 3826 | 6174 |  |
|  | . 27424 | . 72576 | 3.6464 | . 28517 | 3.5066 | 1.0399 | . 03834 | . 96166 |  |
| 56 | 452 |  | . 6427 |  | . 5028 | . 0399 | 8842 | 6158 |  |
| 57 | - 7480 | 20 | . 6390 |  | . 4989 | . 0400 | 5 | 150 |  |
| 58 |  |  | . 6353 |  | . 4951 | . 0401 | 58 | 142 |  |
|  |  | . 2436 | .6316 .6279 | $\begin{array}{r}643 \\ 674 \\ \hline\end{array}$ | . 4912 | .0402 <br> .0403 | $\begin{array}{r}3866 \\ 3874 \\ \hline\end{array}$ | 6134 6126 |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Cosin | V | Secant. |  | Tang. | Cosec'nt | Vrs, co | ne. |  |


| $16^{\circ}$ |  | Natural Trigonometrical Functions. |  |  |  |  |  | $163^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | g. | t. | Vrs. sin. | inc. | II |
| 0 | . 27564 | . 72436 | 3.6279 | . 28674 | 3.4874 | 1.0403 | . 03874 | . 96126 |  |
| 1 | . 7592 | 2408 | . 6243 | . 8706 | . 4836 | . 0404 | 82 | 18 |  |
| 2 | . 7620 | 80 | .6:06 | . 8737 | . 4798 | . 0405 | 3890 | 6110 |  |
| 3 | . 7648 | 2352 | . 6169 | . 8769 | . 4760 | . 0406 | - 3898 | . 6102 | 57 |
| 4 | - 7675 | 2324 | . 6133 | . 8800 | . 1722 | . 0406 | . 3906 | 6094 | 56 |
| 5 | . 27703 | . 72296 | 3.6096 | . 28832 | 3.1684 | 1.0407 | . 03914 | . 96086 | 55 |
| 6 | . 7731 | 2268 | . 6060 | . 8863 | . 4646 | . 0408 | - 3922 | - 6078 | 51 |
| 7 | . 7759 | - 2240 | . 6024 | . 8895 | . 4608 | . 0409 | . 3930 | - 6070 |  |
| 8 | . 7787 | - 2213 | . 5987 | . 8926 | . 4570 | . 0410 | - 3938 | . 6062 | 52 |
|  | . 7815 | 2185 | . 5951 | . 8958 | . 4533 | . 0411 | 3946 | 6054 | 51 |
| 10 | . 27843 | . 72157 | 3.5915 | . 28990 | 3.4495 | 1.0412 | . 03954 | . 96045 | 50 |
| 11 | . 7871 | 2129 | . 5879 | . 9021 | . 4458 | . 0413 | - 3962 | . 6037 | 49 |
| 12 | . 7899 | 2101 | . 5843 | . 9053 | . 4420 | . 0413 | . 3971 | . 6029 | 48 |
| 13 | . 7927 | 2073 | . 5807 | . 9084 | . 4383 | . 0414 | . 3979 | . 6021 | 47 |
| 14 | 7955 | 2045 | . 5772 | . 9116 | . 4346 | . 0415 | . 3987 | . 6013 | 46 |
| 15 | . 27983 | . 72017 | 3.5736 | . 29147 | 3.4308 | 1.0416 | . 03995 | . 96005 | 45 |
| 16 | . 8011 | 1989 | . 5700 | . 9179 | . 4271 | . 0117 | . 4003 | . 5997 | 44 |
| 17 | . 8039 | 1961 | . 5665 | . 9210 | . 4234 | . 0418 | . 4011 | . 5989 | 43 |
| 18 | . 8067 | 1933 | . 5629 | - 9242 | . 4197 | . 0419 | . 4019 | . 5980 | 42 |
| 19 | . 8094 | 1905 | . 5594 | 9274 | 4160 | . $0 \pm 20$ | 4028 | 5972 | 41 |
| 20 | . 28122 | . 71877 | 3.5559 | . 29305 | 3.4124 | 1.0420 | . 04036 | . 95964 | 40 |
| 21 | . 8150 | - 1849 | . 5523 | . 9337 | . 4087 | . 0421 | . 4044 | . 5956 |  |
| 22 | . 8178 | . 1822 | . 5488 | . 9368 | . 4050 | . 0422 | . 4052 | . 5948 |  |
| 2 | . 8206 | 1794 | . 5453 | . 9100 | . 4014 | . 0423 | 4060 | . 5940 |  |
| 24 | . 8234 | 1766 | . 5418 | . 9132 | . 3977 | . 0424 | - 4069 | 5931 |  |
| 25 | . 28262 | . 71738 | 3.5383 | . 29463 | 3.3941 | 1.0425 | . 04077 | . 95923 |  |
| 26 | . 8290 | . 1710 | . 5348 | . 9195 | . 3904 | . 0426 | 4085 | 5915 |  |
| 27 | . 8318 | . 1682 | . 5313 | . 9526 | . 3868 | . 0427 | . 4093 | . 5907 |  |
| 28 | . 8346 | . 1654 | . 5279 | . 9558 | . 3832 | . 0428 | . 4101 | . 5898 |  |
| 29 | . 8374 | 1626 | . 5244 | 9590 | 3795 | . 0428 | 4110 | 5890 |  |
| 30 | . 28101 | . 71608 | 3.5209 | . 29621 | 3.3759 | 1.0429 | . 04118 | . 95888 |  |
| 31 | . 8429 | . 1570 | . 5175 | . 9653 | . 3723 | . 0430 | . 4126 | 5874 |  |
| 32 | . 8457 | . 1543 | . 5140 | . 9685 | . 3687 | . 0431 | 4134 | 5865 |  |
| 33 | . 8185 | . 1515 | . 5106 | . 9716 | . 3651 | . 0432 | 4143 | 585 |  |
| 34 | . 8513 | . 1487 | . 5072 | 9748 | . 3616 | . 0433 | 4151 | 5849 |  |
| 35 | . 28541 | . 71459 | 3.5037 | . 29780 | 3.3580 | 1.0434 | . 04159 | . 95840 |  |
|  | . 8559 | . 1431 | . 5003 | . 9811 | . 3544 | . 0435 | 4168 | 5832 |  |
|  | . 8597 | . 1403 | . 4969 | . 9843 | . 3509 | . 0436 | . 4176 | . 5824 |  |
| 38 | . 8624 | . 1375 | . 4935 | . 9875 | . 3473 | . 0437 | . 4184 | . 5816 |  |
| 39 | . 8652 | 1347 | . 4901 | 9906 | . 3438 | . 0438 | 4193 | 5807 |  |
| 40 | . 28680 | . 71320 | 3.4867 | . 29938 | 3.3402 | 1.0438 | . 04201 | . 95799 |  |
| 41 | . 8708 | - 1293 | . 4833 | - 9970 | . 3367 | . 0439 | . 4209 | . 5791 | 19 |
| 42 | . 8736 | . 1264 | . 4799 | . 30001 | . 3332 | . 0440 | . 4218 | . 5782 |  |
| 4 | . 8764 | 1236 | . 4766 | . 0033 | . 3296 | . 0441 | 4226 | . 5774 |  |
| 44 | . 8792 | 1208 | . 4732 | . 0065 | . 3261 | . 0442 | 4234 | 5765 | 16 |
| 45 | . 28820 | . 71180 | 3.4698 | . 30096 | 3.3226 | 1.0443 | . 04243 | . 95757 |  |
| 46 | . 8847 | 1152 | . 4605 | . 0128 | . 3191 | . 0444 | . 4251 | . 5749 |  |
| 47 | . 8875 | . 1125 | . 4632 | . 0160 | . 3156 | . 0445 | 4260 | - 5740 |  |
| 48 | . 8903 | - 1097 | . 4598 | . 0192 | . 3121 | . 0446 | . 4268 | . 5732 |  |
| 49 | 8931 | 1069 | . 4565 | . 0223 | . 3087 | . 0447 | 4276 | 5723 |  |
| 50 | . 28959 | . 71041 | 3.4532 | . 30255 | 3.3052 | 1.0448 | . 04285 | . 95715 |  |
| 51 | . 8987 | . 1013 | . 4198 | - 0287 | . 3017 | . 0448 | 4293 | 5707 |  |
| 52 | 14 | SJ | . 4465 |  | . 2983 | . 0449 | 4302 | 698 |  |
| 53 | . 9042 | . 0995 | 4132 | . 0350 | . 2948 | . 0450 | 4310 | 5690 |  |
| 5 | 9070 | 0930 | 4399 | . 038\% | 2914 | . 0451 | 4:319 | 5681 |  |
| 55 | . 29098 | .7090\% | 3. 13366 | . 30414 | 3.2879 | 1.0452 | . 013327 | . 95673 |  |
| 56 | 9126 | 0814 | 43:31 | 46 | 2845 | 0453 | 335 | 664 |  |
| 57 | 9154 | 0846 | 4301 | 0178 | . 2811 | . 0154 | 4344 | 656 |  |
| 58 | . 9181 | 0818 | 4268 | 509 | . 2777 | . 0455 | 4352 | 617 |  |
| 59 | 9:209 | 0791 | 4236 | 0511 | . 2712 | . 0456 | 4361 | 5639 |  |
| 60 | 237 | 0763 | .4:03 | 0573 | . 2708 | . 0457 | 4369 | 563 |  |
|  | Consinc | Vrs sin | Secant |  | Tang. | sec |  |  |  |

Natural Trigonometrical Functions.
$162^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secan | Vrs. sin. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 29237 | . 70 | 3.4 | . 30 | 3.2 | 1.0 | 69 | . 95630 |  |
| 1 | . 9265 | . 0735 | . 4170 | . 060 | . 267 | 04 | 9 |  |  |
| 2 | 9293 | 07 | . 4138 | . 0637 | 2640 | . 0459 | St | 5613 |  |
| 3 | - 9321 | . 0679 | . 4106 | . 0668 | 2607 | . 0460 | 39.7 | 5605 |  |
| 4 | 9348 | 0651 | 1073 | . 0700 | 2573 | . 0461 | 4404 | 5596 |  |
| 5 | . 29376 | . 70624 | 3.4041 | . 30732 | 3.2539 | 1.0161 | . 04412 | . 95588 | 55 |
| 6 | . 9404 | - 0.596 | . 4009 | . 0764 | . 2505 | .046: | . 4421 | . 5.579 | 5 |
| 7 | - 9432 | . 0568 | . 3977 | . 0796 | . 2472 | . 0463 | 4126 |  |  |
| 8 | - 9460 | - 0540 | . 3945 | - 0828 | . 2438 | . 0464 | 4438 | -5562 |  |
| 9 | 9487 | 0512 | . 3913 | . 0859 | . 2405 | . 0465 | 4446 | 5954 |  |
| 10 | . 29515 | . 70485 | 3.3881 | . 30891 | 3.2371 | 1.0466 | . 04455 | . 9 อัอ 5 5 | 50 |
| 11 | 9543 | 0457 | . 3819 | . 0923 | . 2338 | . 0467 | . 4463 | . 5536 | 49 |
| 12 | . 9571 | . 0429 | . 3817 | . 0955 | 2305 | . 0468 | . 4472 | . 5528 | 48 |
| 13 | . 9598 | . 0401 | . 3785 | . 0987 | . 2271 | . 0469 | . 4481 | . 5519 |  |
| 14 | 9626 | 0374 | . 3754 | . 1019 | 2238 | . 0470 | , 4489 | 5511 |  |
| 15 | . 29654 | . 70346 | 3.3722 | . 31051 | 3.2205 | 1.0171 | . 04498 | . 95552 | 45 |
| 16 | - 9682 | 0318 | . 3690 | . 1083 | . 2172 | . 0472 | . 4507 | . 5193 | 44 |
| 17 | . 9710 | . 0290 | . 3659 | . 1115 | . 2139 | . 0473 | . 4515 | . 5485 |  |
| 18 | . 9737 | . 0262 | . 3627 | . 1146 | . 2106 | . 0474 | - 4524 | . 5476 |  |
| 19 | 9765 | . 0235 | . 3596 | . 1178 | . 2073 | . 0475 | . 4532 | 5467 | 41 |
| 20 | . 29793 | . 70207 | 3.3565 | . 31210 | 3.2011 | 1.0176 | . 04541 | . 9.5459 | 40 |
| 21 | 9821 | . 0179 | . 3531 | . 1242 | . 2008 | . 0477 | . 4550 | 5450 | 39 |
| 22 | . 9818 | . 0151 | . 3502 | . 1274 | . 1975 | . 0478 | . 4558 | . 5441 | 38 |
| 23 | . 9876 | . 0124 | . 3471 | . 1306 | . 1942 | . 0478 | . 4567 | - 5433 |  |
| 24 | 9904 | 0096 | . 3440 | 1338 | . 1910 | 0479 | 4576 | 5424 |  |
| 25 | . 29932 | . 70068 | 3.3409 | . 31370 | 3.1877 | 1.0180 | . 04585 | . 95415 | 35 |
| 26 | . 9959 | . 0040 | . 3378 | . 1402 | . 1845 | . 0481 | . 4593 | . 5407 | 31 |
| 27 | . 9987 | . 0013 | . 3347 | 1434 | . 1813 | .048: | . 4602 | . 5398 |  |
|  | . 30015 | . 69982 | . 3316 | . 1466 | . 1780 | . 0483 | . 4611 | 5389 |  |
| 29 | . 0043 | 9957 | . 3286 | 1498 | 1748 | . 0484 | 4619 | 5380 | 31 |
| 30 | . 30070 | . 69929 | 3.325 .5 | . 315.50 | 3.1716 | 1.0485 | . 04628 | . 953372 | 30 |
| 31 | . 0098 | - 9902 | . 3224 | . 1562 | . 1681 | 0486 | . 4637 | 5363 | 29 |
| 32 | . 0126 | - 9874 | . 3194 | . 159 | .1652 | . 0487 | . 4646 | . 53.54 | 28 |
| 33 | . 0154 | - 9846 | . 3163 | . 1626 | . 1620 | . 0188 | - 46.5 | . 5345 |  |
|  | . 0181 | 9818 | . 3133 | 1658 | . 1588 | 0489 | . 4663 | 5337 |  |
| 35 | .30209 | . 69791 | 3.3102 | . 31690 | 3.1556 | 1.0490 | . 01672 | . 953328 | 25 |
| 36 | . 0237 | . 9763 | .3072 | . 1722 | . 1524 | . 0491 | . 4681 | . 5319 | 2 |
| 37 | . 0265 | - 9735 | . 3042 | . 1754 | . 1492 | . 0492 | - 4690 | - 5310 |  |
|  | . 0292 | . 9707 | . 3011 | . 1786 | . 1460 | . 0493 | . 4698 | 5301 |  |
| 39 | 0320 | 680 | . 2981 | 1818 | 1429 | . 0494 | 4707 | 5293 | 21 |
| 40 | . 30348 | . 69652 | 3.2951 | . 31850 | 3.1397 | 1.0495 | . 01716 | . 95.284 | 20 |
| 41 | . $037 \overline{5}$ | . 9624 | . 2921 | . 1882 | . 1366 | . 0496 | . 4725 | . 5275 | 19 |
| 42 | . 0403 | - 9597 | . 2891 | . 1914 | . 1334 | . 0497 | . 4734 | 5266 |  |
| 43 | . 0431 | - 9.569 | . 2861 | . 1946 | . 1303 | . 0498 | . 4743 | . 5257 | 17 |
| 44 | . 0459 | . 9541 | . 2831 | . 1978 | . 1271 | . 0499 | . 4751 | 5248 | 15 |
| 45 | . 30486 | . 69513 | 3.2801 | . 32010 | 3.1240 | 1.0500 | . 04760 | . 95.239 | 15 |
| 46 | - 0514 | 9486 | . 2772 | - 2042 | . 1209 | . 0.501 | . 4769 | 5231 |  |
| 47 | . 0542 | - 9458 | . 2742 | - 2074 | . 1177 | . 0502 | - 4778 | - 5222 | 13 |
| 48 | . 0569 | 9430 | . 2712 | - 2106 | . 1146 | . 0503 | . 4787 | . 5213 | 12 |
| 4 | 0597 | 9403 | 680 | 2138 | 1115 | . 0504 | 4796 | 5204 | 11 |
| 50 | . 50625 | . 69375 | 3.2653 | . 32171 | 3.1084 | 1.0505 | . 04805 | . 95195 | 10 |
| 51 | - 0653 | 9347 | . 2624 | - 2203 | . 1053 | . 0506 | . 4514 | 5186 |  |
| 52 | . 0680 | 9320 | . 2594 |  | .1022 | . 0507 | 823 | 177 |  |
|  | - 0708 | 292 | . 25.5 | 267 | . 0991 | . 0508 | 4832 | 5168 |  |
| 54 | - 0736 | -9264 | . 2535 | - 2299 | . 0960 | . 0509 | 4810 | 5159 |  |
| 55 | . 30763 | . 693237 | 3.2506 | . 32331 | 3.0930 | 1.0510 | . 04849 | . 95150 |  |
| 56 | . 0791 | 209 | . 2477 | 363 | . 0899 | . 0511 | 18.58 | 141 |  |
| 37 | . 0819 | 181 | . 2448 | 395 | . 0868 | . 0512 | 4867 | 132 |  |
|  | . 0846 | 54 | . 2419 | 28 | . 0838 | . 0513 | S76 | 124 |  |
| 9 | . 0874 | 9126 | . 2390 | 160 | . 0807 | . 0514 | 4885 | 5115 |  |
| 30 | 0902 | 9098 | . 2361 | 2492 | . 0777 | . 0515 | 4891 | 5106 | 0 |
|  |  |  |  |  | ang | sec'nt |  |  |  |


| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 30902 | . 69098 | 3.2361 | . 32492 | 3.0777 | 1.0515 | . 04894 | . 95106 | 60 |
| 1 | . 0929 | 9071 | . 2332 | . 2524 | . 0746 | 0516 | - 4903 | . 5097 | 59 |
| 2 | . 0957 | . 9043 | . 2303 | . 2556 | . 0716 | . 0517 | - 4912 | . 5088 | 58 |
| 3 | . 0985 | . 9015 | . 2274 | - 258 | . 0686 | . 0518 | - 4921 | - 5079 | 57 |
| 5 | . 101040 | . 89888 | . 3.2245 | . 32653 | -06.35 | .0519 1.0520 | . 04939 | - 95061 | 56 |
| 6 | . 1068 | 8932 | . 2188 | - 2685 | . 0595 | . 0521 | . 4948 | . 5051 | 54 |
| 7 | . 1095 | . 8905 | . 2159 | . 2717 | . 0565 | . 0522 | 4957 | - 5042 | 3 |
| 8 | . 1123 | . 8877 | . 2131 | - 2749 | . 0535 | . 0523 | 4966 | . 5033 | 52 |
| 9 | . 1150 | . 8849 | . 2102 | . 2782 | . 0505 | . 0524 | 4975 | . 5024 | 51 |
| 10 | . 31178 | . 68822 | 3.2074 | . 32214 | 3.0475 | 1.0525 | . 04985 | . 95015 | 50 |
| 11 | . 1206 | 8794 | . 2045 | - 2846 | . 0445 | . 0526 | 4994 | . 5006 | 49 |
| 12 | . 1233 | . 8766 | . 2017 | . 2878 | . 0415 | . 0527 | . 5003 | . 4997 | 48 |
| 13 | - 1261 | . 8739 | . 1989 | . 2910 | . 0385 | . 0528 | 5012 | - 4988 | 47 |
| 14 | 1289 | 8711 | 1960 | 2943 | . 0356 | . 0529 | 5021 | 4979 | 46 |
| 15 | . 31316 | . 68684 | 3.1932 | . 32975 | 3.0326 | 1.0530 | . 05030 | . 94970 | 45 |
| 16 | . 1344 | . 8656 | . 1904 | . 3007 | . 0296 | . 0531 | 5039 | . 4961 | 44 |
| 17 | . 1372 | . 8628 | . 1876 | . 3039 | . 0267 | . 0532 | . 5048 | . 4952 | 43 |
| 18 | . 1399 | . 8601 | . 1848 | . 3072 | . 0237 | . 0533 | . 5057 | . 4942 | 42 |
| 19 | . 1427 | . 8573 | . 1820 | 3104 | . 0208 | . 0534 | 5066 | . 4933 | 41 |
| 20 | . 31454 | . 68545 | 3.1792 | . 33136 | 3.0178 | 1.0535 | . 05076 | . 94924 | 40 |
| 21 | . 1482 | . 8.518 | . 1764 | . 3169 | . 0149 | . 0536 | . 5085 | . 4915 | 39 |
| 22 | . 1510 | . 8490 | . 1736 | . 3201 | . 0120 | . 0537 | . 5094 | . 4906 |  |
| 23 | . 1537 | . 8463 | . 1708 | . 3233 | . 0090 | . 0538 | - 5103 | - 4897 |  |
| 24 | . 1565 | 8435 | . 1681 | 3265 | . 0061 | . 0539 | 5112 | 888 | 36 |
| 25 | . 31592 | . 68407 | 3.1653 | . 33298 | 3.0032 | 1.0540 | . 05121 | . 94878 | 35 |
| 26 | . 1620 | . 8380 | . 1625 | . 3330 | . 0003 | . 0541 | . 5131 | . 4869 |  |
| 27 | . 1648 | . 8352 | . 1598 | - 3362 | 2.9974 | . 0542 | . 5140 | . 4860 |  |
| 28 | - 1675 | . 8325 | . 1570 | . 3395 | . 9945 | . 0543 | . 5149 | . 4851 |  |
| 29 | . 1703 | . 8297 | . 1543 | 3427 | . 9916 | . 0544 | 5158 | 4841 | 31 |
| 30 | . 31730 | . 68269 | 3.1515 | . 33459 | 2.9887 | 1.0545 | . 05168 | . 94832 |  |
| 31 | - 1758 | - 8242 | . 1488 | - 3492 | . 9858 | . 0546 | . 5177 | . 4823 | 29 |
| 32 | . 1786 | . 8214 | . 1461 | . 3524 | . 9829 | . 0547 | . 5186 | . 4814 |  |
|  | . 1813 | . 8187 | . 1433 | - 3557 | . 9800 | . 0548 | . 5195 | . 4805 |  |
| 34 | . 1841 | 8159 | . 1406 | 3589 | . 9772 | . 0549 | 5205 | 4795 |  |
| 35 | . 31868 | . 68132 | 3.1379 | . 33621 | 2.9743 | 1.0550 | . 05214 | . 94786 |  |
| 36 | - 1896 | . 8104 | . 1352 | . 3654 | . 9714 | . 0551 | . 5223 | . 4777 |  |
| 37 | - 1923 | . 8076 | . 1325 | 3686 | . 9686 | . 0552 | . 5232 | . 4767 |  |
| 38 | - 1951 | - 8049 | . 1298 | ${ }^{3718}$ | . 9657 | . 0553 | - 5242 | - 4778 |  |
|  | - 1978 | . 8021 | . 1271 | 3751 | 9629 | . 0554 | 5251 | 4749 |  |
| 40 | . 32006 | . 67994 | 3.1244 | . 33783 | 2.9600 | 1.0555 | . 05260 | . 94740 |  |
| 41 | - 2034 | . 7966 | . 1217 | . 3816 | . 9572 | . 0556 | . 5270 | . 4730 | 19 |
| 42 | . 2061 | - 7939 | . 1190 | . 3848 | . 9514 | . 0557 | . 5279 | . 4721 |  |
| 43 | . 2089 | . 7911 | . 1163 | 3880 | . 9515 | . 0558 | . 5288 | 4712 |  |
| 44 | - 2116 | . 7884 | . 1137 | 3913 | . 9487 | . 0559 | 5297 | 4702 |  |
| 45 | . 32144 | . 67856 | 3.1110 | . 33945 | 2.9459 | 1.0560 | . 05307 | . 94693 | 15 |
| 46 | - 2171 | - 7828 | . 1083 | . 3978 | . 9431 | . 0561 | . 5316 | . 4684 |  |
| 47 | . 2199 | . 7801 | . 1057 | 4010 | . 9403 | . 0562 | . 5326 | . 4674 |  |
| 48 | - 2226 | . 7773 | . 1030 | 4043 | . 9375 | . 0563 | 5335 | 4665 | 12 |
| 49 | - 2254 | . 7746 | . 1004 | 4075 | . 9347 | . 0565 | 5344 | 4655 | 11 |
|  | . 32282 | . 67718 | 3.0977 | . 34108 | 2.9319 | 1.0566 | . 05354 | . 94646 | 10 |
| 51 | - 2309 | . 7691 | . 0951 | . 4140 | . 9291 | . 0567 | 5363 | - 4637 |  |
| 52 | . 2337 | . 7663 | .0925 | . 4173 | . 9263 | . 0568 | . 5373 | . 4627 |  |
| 53 | - 2364 | . 7636 | . 0898 | 4205 | . 9235 | . 0569 | 5382 | 4618 |  |
| 54 | 2392 | 7608 | . 0872 | 4238 | 9208 | 0570 | 5391 | 4608 |  |
| 56 | . 32419 | . 67581 | 3.0846 | . 34270 | 2.9180 | 1.0571 | . 05401 | . 94599 |  |
|  | 2447 -2474 | 7553 7526 | .0820 .0793 | . 4303 | . 9152 | .0572 .0573 | 5410 | 4590 |  |
|  | 02 | 498 | . 0767 | - 4368 | . 9097 | . 0574 | 5429 | 4571 |  |
|  | 2529 | 471 | . 0741 | 400 | . 9069 | . 0575 | 5439 | 4561 |  |
| 60 | 2557 | 443 | . 0715 | . 4433 | . 9042 | . 0576 | 88 | 4552 |  |
|  | Cosine. | Vrs. sin | Secant. | Cotang. | Tang. | Cosec'n | rs. c | ine |  |


| 19 |  | Natural Trigonometrical Functions. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vre. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M. |
| 0 | . 22557 | . 67443 | 3.0715 | . 34433 | 2.9042 | 1.0576 | .0.548 | . 94.52 | 60 |
| 1 | . 2584 | 7416 | . 0690 | . 4467 | . 9015 | . 0.577 | . 54.58 | . 4542 | 59 |
| 2 | 2612 | . 7388 | . 0664 | . 4498 | . 8987 | .0578 | . 5467 | . 4533 | 58 |
| 3 | . 2639 | . 7361 | . 0638 | . 4530 | . 8960 | .0ā79 | . 5476 | . 4523 | 57 |
| 4 | 2667 | 7333 | . 0612 | . 4563 | . 8933 | .0580 | . 5486 | 4514 | 56 |
| 5 | . 32694 | . 67306 | 3.0586 | .34595 | 2.8905 | 1.0581 | . 05495 | . 94504 | 5.5 |
| 6 | . 2722 | - 7278 | . 0561 | . 4628 | . 8878 | .0582 | . 5505 | - 4495 | 54 |
| 7 | . 2749 | - 7251 | . 0535 | . 4661 | . 8851 | . 0584 | . 5515 | . 4485 | 53 |
| 8 | . 2777 | - 7223 | . 0509 | - 4693 | . 8824 | . 0585 | - 5524 | . 4476 | 52 |
| 9 | . 2804 | . 7196 | . 0484 | . 4726 | . 8797 | . 0.786 | . 5534 | . 4466 | 51 |
| 10 | . 32832 | . 67168 | 3.0458 | . 34758 | 2.8770 | 1.0587 | . 05543 | . 94457 | 50 |
| 11 | . 2859 | 7141 | . 0433 | . 4791 | . 8743 | . 0588 | . 5553 | . 4447 | 49 |
| 12 | . 2887 | . 7113 | . 0407 | . 4824 | . 8716 | . 0589 | . 5562 | . 4438 | 48 |
| 13 | . 2914 | . 7086 | . 0382 | . 4855 | . 8689 | . 0590 | . 5572 | . 4428 | 47 |
| 14 | . 2942 | 7058 | . 0357 | . 4889 | . 8662 | . 0591 | . 5581 | . 4418 | 46 |
| 15 | . 32969 | . 67031 | 3.0331 | . 34921 | 2.8636 | 1.0592 | . 05591 | . 94409 | 45 |
| 16 | - 2996 | . 7003 | . 0306 | . 4954 | . 8609 | . 0593 | . 5601 | - 4399 | 44 |
| 17 | . 3024 | - 6976 | . 0281 | . 4987 | . 8582 | . 0594 | . 5610 | . 4390 | 43 |
| 18 | . 3051 | . 6948 | . 0256 | . 5019 | . 8555 | . 0595 | . 5620 | - 4380 | 42 |
| 19 | . 3079 | . 6921 | . 0231 | . 5052 | . 8529 | . 0596 | - 5629 | . 4370 | 41 |
| 20 | . 33106 | . 66894 | 3.0206 | . 35085 | 2.8502 | 1.0598 | . 05639 | . 94361 | 40 |
| 21 | . 3134 | . 6866 | . 0181 | . 5117 | . 8476 | . 0599 | . 5649 | . 4351 | 39 |
| 22 | . 3161 | . 6839 | . 0156 | . 5150 | . 8449 | . 0600 | . 5658 | . 4341 | 38 |
| 23 | . 3189 | . 6811 | . 0131 | . 5183 | . 8423 | . 0601 | . 5668 | - 4332 | 37 |
| 24 | . 3216 | . 6781 | . 0106 | . 5215 | . 8396 | . 0602 | . 5678 | . 4322 | 36 |
| 25 | . 3243 | . 66756 | 3.0081 | . 35248 | 2.8370 | 1.0603 | . 0.5687 | . 94313 | 35 |
| 26 | . 3271 | . 6729 | . 0056 | . 5281 | . 8344 | . 0604 | . 5697 | . 4303 | 34 |
| 27 | . 3298 | . 6701 | . 0031 | . 5314 | . 8318 | . 0605 | . 5707 | . 4293 | 33 |
| 28 | - 3326 | - 6674 | . 0007 | - 5346 | . 8291 | . 0606 | . 5716 | - 4283 | 32 |
| 29 | . 3353 | 6647 | 2.9982 | . 5379 | . 8265 | . 0607 | . 5726 | . 4274 | 31 |
| 30 | . 33381 | . 66619 | 2.9957 | . 35412 | 2.8239 | 1.0608 | . 05736 | . 94264 | 30 |
| 31 | . 3408 | . 6592 | . 9933 | . 5445 | . 8213 | . 0609 | - 5745 | - 4254 | 29 |
| 32 | . 3435 | - 6564 | . 9908 | . 5477 | . 8187 | . 0611 | . 5755 | . 4245 | 28 |
| 33 | . 3463 | . 6537 | . 9884 | . 5510 | . 8161 | . 0612 | . 5765 | . 4235 | 27 |
| 34 | . 3490 | . 6510 | . 9859 | . 5543 | . 8135 | . 0613 | - 5775 | . 4225 | 26 |
| 35 | . 33518 | . 66482 | 2.9835 | . 35576 | 2.8109 | 1.0614 | . 05784 | . 94215 | 25 |
| 36 | . 3545 | . 6455 | . 9810 | - 5608 | . 8083 | . 0615 | . 5794 | . 4206 | 24 |
| 37 | . 3572 | . 6427 | . 9786 | . 5641 | . 8057 | . 0616 | . 5804 | . 4196 | 23 |
| 38 | . 3600 | . 6400 | . 9762 | . 5674 | . 8032 | . 0617 | . 5814 | . 4186 | 22 |
| 39 | . 3627 | . 6373 | . 9738 | . 5707 | . 8006 | . 0618 | . 5823 | . 4176 | 21 |
| 40 | . 33655 | . 66345 | 2.9713 | . 35739 | 2.7980 | 1.0619 | . 05833 | . 94167 | 20 |
| 41 | . 3682 | . 6318 | . 9689 | . 5772 | . .7954 | . 0620 | . 5843 | . 4157 | 19 |
| 42 | . 3709 | . 6290 | . 9665 | . 5805 | .7929 | . 0622 | - 5853 | . 4147 | 18 |
| 43 | . 3737 | . 6263 | . 9641 | . 5838 | . 7903 | . 0623 | . 5863 | . 4137 | 17 |
| 44 | . 3764 | . 6236 | . 9617 | . 5871 | . 7878 | . 0624 | . 5872 | . 4127 | 16 |
| 4.5 | . 33792 | . 66208 | 2.9593 | . 35904 | 2.7852 | 1.0625 | . 05882 | . 94118 | 15 |
| 46 | . 3819 | . 6181 | . 9569 | . 5936 | . 7827 | . 0626 | . 5892 | . 4108 | 14 |
| 47 | . 3846 | . 6153 | . 9545 | . 5969 | .7801 | . 0627 | - 5902 | . 4098 | 13 |
| 48 | . 3874 | . 6126 | . 9521 | . 6002 | . 7776 | . 0628 | . 5912 | - 4088 | 12 |
| 49 | . 3901 | . 6099 | . 9497 | . 6035 | . 7751 | . 0629 | . 5922 | . 4078 | 11 |
| 50 | . 33928 | . 66071 | 2.9474 | . 36068 | 2.7725 | 1.0630 | . 05932 | . 94068 | 10 |
| 51 | . 3956 | . 6044 | . 9450 | . 6101 | . 7700 | . 0632 | . 5941 | . 4058 | 9 |
| 52 | . 3983 | . 6017 | . 9426 | . 6134 | . 7675 | . 0633 | . 5951 | - 4049 | 8 |
| J | . 4011 | . 5989 | . 9402 | . 6167 | . 7650 | . 0634 | . 5961 | - 4039 | 7 |
| 54 | . 4038 | - 5962 | . 9379 | . 6199 | . 7625 | . 0635 | . 5971 | . 4029 | 5 |
| 55 | . 34065 | . 65935 | 2.9355 | . 36232 | 2.7600 | 1.0636 | . 05981 | . 94019 | 5 |
| 56 | . 4093 | . 5907 | . 9332 | . 6265 | . 7574 | . 0637 | - 5991 | 4009 | 4 |
| 57 | . 4120 | . 5880 | . 9308 | . 6298 | . 7549 | . 0638 | . 6001 | 3999 | 3 |
| 58 | . 4147 | . 5853 | . 9285 | - 6331 | . 7524 | . 0639 | - 6011 | 3989 | 2 |
| 60 | - 4175 | . 5885 | . 9261 | - 6364 | . 7500 | . 0641 | . 6021 | - 3979 | 1 |
| 60 | . 4202 | 5798 | . 9238 | . 6397 | . 7475 | . 0642 | . 6031 | . 3969 | 0 |
| M | Cosine. | Vrs. sin. | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | Sine. | M. |


|  |  | Natu |  |  |  |  |  | $159{ }^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sin | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | n. | ine. |  |
|  | . 342 |  | 2.9238 |  |  | 1.0642 | 31 | . 93969 |  |
| 1 | - 4229 |  | . 9215 | . 6130 | . 450 | . 0643 | 6041 | 959 |  |
| 2 | . 4257 | . 5743 | . 9191 | . 6463 | 7425 | . 0644 | 6051 | 949 |  |
| 3 | . 4284 | . 5716 | . 9168 | . 6496 | . 7400 | . 0645 | 6061 | . 3939 |  |
| 4 | - 4311 | - 5689 | . 9145 | . 6529 | . 7376 | . 0646 | 6071 | - 3929 |  |
| 5 | . 34339 | . 65661 | 2.9122 | . 36562 | 2.7351 | 1.0647 | . 06080 | . 93919 |  |
| 6 | . 4366 | . 5634 | . 9098 | . 6595 | . 7326 | . 0648 | . 6090 | . 3909 |  |
| 7 | . 4393 | . 5607 | . 9075 | . 6628 | . 7302 | . 0650 | 6100 | . 3899 |  |
| 8 | . 4421 | . 5579 | . 9052 | - 6661 | . 7277 | . 0651 | ${ }_{6}^{6110}$ | 3889 |  |
| 9 | 4448 | . 5552 | . 9029 | . 6694 | 7252 | . 0652 | 6121 | 3879 |  |
| 10 | . 34475 | . 65525 | 2.9006 | . 36727 | 2.7228 | 1.0653 | . 06131 | . 93869 |  |
| 11 | 4502 | 5497 | . 8983 | - 6760 | . 7204 | . 0654 | . 6141 | 3859 |  |
| 12 | . 4530 | . 5470 | . 8960 | . 6793 | . 7179 | . 0655 | . 6151 | - 3849 |  |
| 13 | . 4557 | . 5443 | . 8937 | . 6826 | . 7155 | . 0655 | . 6161 | . 3839 |  |
| 14 | 4584 | 5415 | . 8915 | . 6859 | 7130 | . 0658 | 6171 | 3829 |  |
| 15 | . 34612 | . 65388 | 2.8892 | . 36892 | 2.7106 | 1.0659 | . 06181 | . 93819 |  |
| 16 | . 4639 | 5361 | . 8869 | . 6925 | . 7082 | .0660 | . 6191 | . 3809 |  |
| 17 | . 4666 | 334 | . 8846 | . 6958 | . 7058 | . 0661 | . 6201 | . 3799 |  |
| 18 | . 4693 | 06 | . 8824 | . 6991 | . 7033 | . 0662 | 6211 | 3789 |  |
| 19 | . 4721 | . 5279 | . 8801 | 7024 | 7009 | . 0663 | 6221 | 3779 |  |
| 20 | . 34748 | . 65252 | 2.8778 | . 37057 | 2.6985 | 1.0664 | . 06231 | . 93769 | 40 |
|  | . 4775 | 225 | . 8756 | . 7090 | . 6961 | . 0666 | . 6241 | . 3758 |  |
| 22 | - 4803 | . 5197 | . 8733 | - 7123 | . 6937 | . 0667 | - 6251 | - 3748 |  |
|  | . 4830 | . 5170 | . 8711 | - 7156 | . 6913 | . 0668 | 6262 | - 3738 |  |
|  | 4857 | 5143 | . 8688 | 7190 | . 6889 | . 0669 | 6272 | 3728 |  |
|  | . 34884 | . 65115 | 2.8666 | . 37223 | 2.6865 | 1.0670 | . 06282 | . 93718 |  |
|  | . 4912 | . 5088 | . 8644 | . 7256 | . 6841 | . 0671 | 6292 | 3708 |  |
|  | . 4939 | . 5061 | . 8621 | - 728 | . 6817 | . 0673 | 302 | 3698 |  |
|  | . 4966 |  | 599 |  | . 6794 | . 0674 | . 6312 | 687 |  |
|  | 4993 | 5006 | . 8577 |  | . 6 | . 0675 |  | 3677 |  |
|  | . 35021 | . 64979 | 2.8554 | . 37388 | 2.6746 | 1.0676 | . 06333 | . 93667 |  |
|  |  |  | 532 |  | . 6722 | . 0677 | 6313 | 3657 |  |
|  | . 5075 |  | . 8510 |  | . 6699 | . 0678 |  | 647 |  |
|  | . 5102 |  | . 8488 | - 7488 | . 667 | . 0679 | -6363 | 637 |  |
|  | 5130 | . 4870 | . 8466 | . 7521 | .665 | . 068 | 6373 |  |  |
|  | . 35157 | . 64843 | 2.8444 | . 37554 | 2.6628 | 1.068 | 06384 | 3616 |  |
|  | . 5184 | . 4816 | . 8422 | 587 | . 6604 | 068 | 6394 | 606 |  |
|  | . 5211 | 4789 | . 8400 | - 7621 | . 6581 | . 0684 | 6404 | 3596 |  |
|  |  | . 4761 | . 8378 |  | . 655 | . 0685 | 6414 | . 3585 |  |
|  | 5293 | 4734 | . 8356 |  | . 6534 | . 068 | 6425 | 3575 |  |
| 40 | . 35293 | . 64707 | 2.8334 | . 37720 | 2.6511 | 1.0688 | . 06435 | . 93565 |  |
| 41 |  | -4630 | . 8312 | - 7754 | . 6487 | . 0689 | 6445 | 3555 |  |
|  | 347 | 4652 | . 8290 |  | . 6464 | . 0690 | 6456 | 3544 |  |
| 43 | . 5375 | . 4625 | . 8269 | - 7820 | . 6441 | . 0691 | 6466 | 3534 |  |
|  | 5402 | - 4598 | . 8247 | . 7853 | . 6418 | . 0692 | 6476 | 3524 |  |
|  | . 35429 | . 64571 | 2.8225 | . 37887 | 2.6394 | 1.0694 | . 06486 | 退 |  |
| 47 | 5456 | . 4544 | . 8204 | 20 | . 6371 | . 0695 | 449 | 3503 |  |
|  | . 5483 | . 4516 | . 8182 | . 7953 | . 6348 | . 0696 | . 6507 | . 3493 |  |
| 48 | . | - 4489 | . 8160 | . 7986 | . 6325 | . 0697 | 517 | 482 |  |
| 4 | 5538 | 4462 | . 8139 | - | . 630 | . | $65 \geq 8$ | 3472 |  |
|  | . 35565 | . 64435 | 2.8117 | . 38053 | 2.6279 | 1.0699 | . 06538 | . 93462 |  |
|  |  | . 4408 | . 8096 |  | . 6256 | . 0701 | - 6548 | 451 |  |
| 52 |  |  | . 8074 |  | . 6233 | . 0702 | 59 | 441 |  |
|  | . | 53 | . 8053 |  | . 6210 | . 0703 | 559 | 3431 |  |
|  |  | - 43226 | . 8032 |  | . 6187 | . 070 | 6579 | 3420 |  |
|  |  | . 64299 | 2.8010 |  | 2.6164 | 1.0705 | 6590 | 410 |  |
|  |  |  | . 7989 |  | . 6119 | . 0707 | 600 | 400 |  |
|  |  | - 4217 | . 7968 |  | . 6119 | . 0708 | 611 | 389 |  |
|  |  |  |  |  |  | .0709 .0710 |  |  |  |
| 60 | 37 | 4163 | 904 |  | . 6051 | . 071 | 604 | 3358 |  |
| M | Cosin | Vrs. si | an | Cotang | Tang. | ec' | Vrs. cos. |  |  |


|  |  | Natural Trigonometrical F |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt |  | g. | Secant. | Vrs. sin. | ne. |  |
|  | . 3 |  |  |  | 2.6051 |  |  |  |  |
| 1 |  |  |  |  |  | . 0713 |  |  |  |
|  | . 5 | 9 | . 7862 |  | . 600 | . 0714 | -6663 | 37 |  |
| 3 | . 5 | . 4082 | . 7841 |  | . 59 | . 0715 | - 6673 | 27 |  |
|  | 5945 | 1055 | 7820 |  | 5960 | . 0716 | 668 | 3316 |  |
|  | . 35972 | . 61027 | 2.7799 | . 38553 | 2.5938 | 1.0717 | . 06694 | . 93306 |  |
|  | . 6000 | - 4000 | . 7778 | . 8587 | . 5916 | . 0719 | . 670.5 | - 3295 |  |
|  | . 6027 | - 3973 | 57 | . 8620 | . 5893 | . 0720 | 615 | 285 |  |
| 8 | . 6054 | . 3946 | . 7736 | - 8654 | . 5871 | . 0721 | 6726 | 224 |  |
| 9 | . 6081 | - 3919 | . 7715 |  | . 5818 | . 0722 | -6736 | - 3264 |  |
| 10 | . 36108 | . 63892 | 2.7694 | . 38720 | 2.5826 | 1.0723 | . 06747 | .93253 |  |
| 11 | . 6135 | 3865 | . 7674 | . 8754 | . 5804 | . 0725 | . 6757 | 3243 | 49 |
| 12 | . 6162 | - 3837 | . 7653 | . 8787 | . 5781 | . 0726 | . 6768 | - 3232 |  |
| 13 | . 6189 | . 3810 | . 7632 | . 8821 | . 5759 | . 0727 | . 6778 | 3222 |  |
| 14 | . 6217 | 3783 | . 7611 | 854 | . 5737 | . 0728 | 6789 | 3211 |  |
| 15 | . 36244 | . 63756 | 2.7591 | . 38888 | 2.5715 | 1.0729 | . 06799 | . 93201 | 45 |
| 16 | . 6271 | . 3729 | . 7570 | . 8921 | . 5693 | . 0731 | . 6810 | . 3190 | 44 |
| 17 | . 6298 | . 3702 | 7550 | . 8955 | . 5671 | . 0732 | 8820 | 3180 | 43 |
|  | . 6325 |  | . 7529 | 88 | . 5640 | . 0733 | 831 | 3169 | 42 |
| 19 | . 6352 | - 3648 | . 7509 | 022 | . 5627 | . 0734 | 6841 | 3158 | 41 |
| 20 | . 36379 | . 63621 | 2.7488 | . 39055 | 2.5605 | 1.0736 | . 06852 | . 93148 | 40 |
|  | 6406 | 593 | . 7468 | 089 | . 5 ¢ 8 | . 0737 | 8863 | 3137 | 9 |
| 22 | . 6433 | . 3566 | . 7447 | 122 | . 5 วิ61 | . 0738 | 873 | 3127 |  |
| 23 | . 6460 |  | . 7427 | 156 | . 553 | . 0739 | 884 | 3116 |  |
|  | 488 | 3512 | . 7406 | 189 | . 5517 | . 0740 | 6894 | 3105 |  |
|  | 36515 | . 63485 | 2.7386 | . 39223 | 2.5495 | 1.0742 | . 06905 | 93095 |  |
|  | . 6542 | . 3158 | . 7366 | - 9257 | . 5473 | . 0743 | 6916 | 3084 |  |
|  |  | . 3431 | . 7346 |  | . 5451 | . 0744 | 926 | 3074 |  |
|  |  | - 3404 | . 7325 |  | . 543 | . 0745 | 937 | . 3063 |  |
|  |  | 3377 | . 7305 | 357 | . 510 | . 0747 | 6947 | 205 |  |
| 30 | . 36650 | . 63350 | 2.7285 | . 39391 | 2.538 | 1.0748 | . 06958 | . 93042 |  |
|  | . 6677 |  | . 7265 | 425 | . 5365 | . 0749 | 6969 | 3031 |  |
|  |  |  | . 7245 |  | . 53 | . 0750 | 979 | 30 |  |
|  | -6758 | 42 | . 7205 |  | . 530 | . 07 | 700 |  |  |
|  | . 36785 | . 63214 | 2.7185 | . 39559 | 2.527 | 1.0754 | . 07012 | . 929 |  |
|  | . 6812 | 3187 | . 7165 | 593 | . 525 | . 0755 | 022 | . 2978 |  |
| 37 |  | . 3160 | . 7145 | 626 | . 5236 | . 0756 | . 7033 | 2967 |  |
|  |  |  | . 7125 | 66 | . 5214 | . 0758 | 7044 | , |  |
|  | 393 | 3106 | 7105 | 9694 | . 5193 | . 0759 | 705 | 913 |  |
|  | . 36921 | . 63079 | 2.7085 | . 39727 | 2.5171 | 1.0760 | . 07065 | . 92935 |  |
|  | . 6948 | 3052 | . 7065 | . 9761 | . 5150 | . 0761 | . 7076 | 913 |  |
|  |  | 025 | . 7045 |  | . 5129 | . 0763 | 7087 | 91. |  |
|  |  | 2998 | . 7026 |  | . 5108 | . 0764 | 7097 | 902 |  |
|  | 29 | 2971 | . 7006 | 9862 | . 5086 | . 0765 | 7108 | 2892 |  |
|  | . 37056 | . 62944 | 2.6986 | . 39896 | 2.506. | 1.0766 | . 07119 | . 92881 |  |
|  | . 7083 | 917 | . 6967 | - | . 504 | . 0768 | 7130 | 10 |  |
|  |  | - 2890 | . 6947 | . 9963 | . 5023 | . 0769 | . 7141 | 2859 |  |
|  |  |  | . 6927 | . 9997 | . 500 | . 0770 | . 7151 | 48 |  |
|  | 7164 | 836 | . 6908 | . 40031 | . 4981 | . 0771 | 7162 | 2838 |  |
|  | . 37191 | . 62809 | 2.6888 | . 40065 | 2.4960 | 1.0773 | . 07173 | 2827 |  |
|  | . 7218 | 82 | . 6869 | . 0098 | . 4939 | . 0774 | 7184 | 05 |  |
|  |  |  | . 6849 |  | . 49 | . 0775 | 195 | 05 |  |
|  |  | - 2728 | . 6830 |  | . 48 | . 0776 | 205 | 94 |  |
|  |  |  | 2.6 |  |  | . 0778 | - | -9277 |  |
|  |  |  | -. 6772 |  | . 4834 | 1.0780 | 238 |  |  |
|  |  | - 2620 | . 6752 |  | . 4813 | . 0781 | 249 | 51 |  |
|  |  |  | . 6733 |  | . 47 | . 0783 | 260 | 40 |  |
|  |  |  |  |  | . 4772 | . 0784 | 271 | 729 |  |
| 60 | . 7461 | 39 | . 6695 |  | . 4751 | . 0785 |  | . 2718 |  |
| W. | Cosin | Vrs. $\sin$ | Secant. | an | Tang | sec' | Vrs. cos. | ine. |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  | $157^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | Sine. | Vrs. | Cosec ${ }^{\text {nt }}$ \| | T | g. | Secant. | Vrs. sin. | Cosine. |  |
| 0 | . 37461 | . 62.539 | 2.6695 | . 40403 | 2.475 | 1.0 | . 07282 | . 92718 | 60 |
| 1 | 7488 | 12 | . 6675 | $0 \pm 36$ | . 4730 | . 0787 | 92 | 07 |  |
| 2 | . 7514 | 2485 | . 6656 | 0470 | . 4709 | . 0788 | 7303 | 2696 | 8 |
| 3 | . 7541 | - 24.58 | . 6637 | . 0504 | . 4689 | . 0789 | 7314 | 2686 | 57 |
| 4 | 7568 | . 2431 | . 6618 | . 0538 | . 4668 | . 0790 | 7325 | . 2675 | 56 |
| 5 | . 37595 | . 62404 | 2.6599 | . 40572 | 2.4647 | 1.0792 | . 07336 | . 92664 | 55 |
| 6 | 7622 | 2377 | . 6580 | 0606 | . 4627 | . 0793 | 7347 | 2653 | 54 |
| 7 | . 7649 | - 2351 | . 6561 | . 0640 | . 4606 | . 0794 | . 7358 | 2642 | 53 |
| 8 | . 7676 | - 2324 | . 6542 | . 0673 | . 4586 | . 0795 | - 7369 | . 2631 |  |
| 9 | . 7703 | 2297 | 6523 | 0707 | . 4565 | . 0797 | 7380 | 2620 | 51 |
| 10 | . 37730 | . 62270 | 2.6504 | . 40741 | 2.4545 | 1.0798 | . 07391 | . 92609 | 50 |
| 11 | . 7757 | 2243 | . 6485 | . 0775 | . 4525 | . 0799 | . 7402 | - 2598 | 49 |
| 12 | . 7784 | 2216 | . 6466 | . 0809 | . 4504 | . 0801 | . 7113 | - 2587 |  |
| 13 | . 7811 | 2189 | . 6447 | . 0843 | . 4484 | . 0802 | - 7424 | 2576 | 47 |
| 14 | 7838 | 2162 | . 6428 | . 0877 | 4463 | . 0803 | . 7435 | 2565 | 46 |
| 15 | . 37865 | . 62135 | 2.6410 | . 40911 | 2.4443 | 1.0804 | . 07446 | . 92554 | 45 |
| 16 | . 7892 | 2108 | . 6391 | . 0945 | . 4423 | . 0806 | . 7457 | 2543 | 44 |
| 17 | . 7919 | . 2081 | . 6372 | . 0979 | . 4403 | . 0807 | . 7468 | - 2532 | 43 |
| 18 | . 7946 | . 2054 | . 6353 | . 1013 | . 4382 | . 0808 | . 7479 | . 2521 | 42 |
| 19 | 7972 | 2027 | . 6335 | 1047 | . 4362 | . 0810 | 7490 | 2510 | 41 |
| 20 | . 37999 | . 62000 | 2.6316 | . 41081 | 2.4342 | 1.0811 | . 07501 | . 92499 | 40 |
| 21 | . 8026 | 1974 | . 6297 | . 1115 | . 4322 | . 0812 | - 7512 | 2488 | 39 |
| 22 | . 8053 | . 1947 | . 6279 | . 1149 | . 4302 | . 0813 | . 7523 | . 2477 | 38 |
| 23 | . 8080 | . 1920 | . 6260 | . 1183 | . 4282 | . 0815 | 7534 | 2466 | 37 |
| 24 | . 8107 | . 1893 | . 6242 | . 1217 | 4262 | . 0816 | . 7545 | 2455 | 36 |
| 25 | . 38134 | . 61866 | 2.6223 | . 41251 | 2.4242 | 1.0817 | . 07556 | . 92443 | 35 |
| 26 | . 8161 | 1839 | . 6205 | . 1285 | . 4222 | . 0819 | . 7567 | 2432 | 34 |
| 27 | . 8188 | . 1812 | . 6186 | . 1319 | . 4202 | . 0820 | . 7579 | 2421 | 33 |
| 28 | . 8214 | . 1785 | . 6168 | . 1353 | . 4182 | . 0821 | . 7590 | 2410 | 32 |
| 29 | 8241 | 1758 | . 6150 | 1387 | 4162 | . 0823 | 7601 | 2399 | 31 |
| 30 | . 38268 | . 61732 | 2.6131 | . 41421 | 2.4142 | 1.0824 | . 07612 | . 2388 | 30 |
| 31 | . 8295 | . 1705 | . 6113 | . 1455 | . 4122 | . 0825 | . 7623 | 2377 | 29 |
| 32 | . 8322 | . 1678 | . 6095 | . 1489 | . 4102 | . 0826 | . 7634 | 2366 | 8 |
| 33 | . 8349 | . 1651 | . 6076 | . 1524 | . 4083 | . 0828 | 7645 | 2354 |  |
| 34 | . 8376 | 1624 | . 6058 | 1558 | . 4063 | . 0829 | 7657 | 2343 | 26 |
| 35 | . 38403 | . 61597 | 2.6040 | . 41592 | 2.4043 | 1.0830 | . 07668 | . 92332 | 25 |
| 36 | . 8429 | . 1570 | . 6022 | . 1626 | . 4023 | . 0832 | . 7679 | 2321 | 24 |
| 37 | . 8456 | . 1544 | . 6003 | . 1660 | . 4004 | . 0833 | . 7690 | 2310 | 23 |
| 38 | . 8483 | . 1517 | . 5985 | . 1694 | . 3984 | . 0834 | . 7701 | 2299 |  |
| 39 | . 8510 | . 1490 | . 5967 | . 1728 | . 3964 | . 0836 | . 7712 | 2287 | 21 |
| 40 | . 38537 | . 61463 | 2.5949 | . 41762 | 2.3945 | 1.0837 | . 07724 | . 92276 | 20 |
| 41 | . 8564 | . 1436 | . 5931 | . 1797 | . 3925 | . 0838 | . 7735 | 2265 | 19 |
| 42 | . 8591 | . 1409 | . 5913 | . 1831 | . 3906 | . 0840 | . 7746 | 2254 | 18 |
| 43 | . 8617 | 1382 | . 5895 | . 1865 | . 3886 | . 0841 | . 7757 | 2242 | 17 |
| 44 | . 8644 | 1356 | . 5877 | 1899 | . 3867 | . 0842 | 7769 | 2231 | 16 |
| 45 | . 38671 | . 61329 | 2.5859 | . 41933 | 2.3847 | 1.0814 | . 07780 | . 92220 | 1.5 |
| 46 |  | 1302 | . 5841 | . 1968 | . 3828 | . 0845 | 7791 | 2209 | 14 |
| 4 | . 8725 | 1275 | . 5823 | . 2002 | . 3808 | . 0846 | 7802 | 2197 | 12 |
| 48 | . 8751 | 1248 | . 5805 | . 2036 | . 3789 | . 0817 | . 7814 | 2186 | 12 |
| 49 | . 8778 | 1222 | . 5787 | 2070 | . 3770 | . 0849 | 7825 | 2175 | 11 |
| 50 | . 38805 | . 61195 | 2.5770 | . 42105 | 2.3750 | 1.0850 | . 07836 | . 92164 | 10 |
| 51 | . 8832 | 1168 | . 5752 | . 2139 | . 3731 | . 0851 | 847 | 2152 |  |
| 52 | . 8859 | . 1141 | . 5734 | . 2173 | . 3712 | . 0853 | . 7859 | 2141 |  |
| 53 | . 8886 | 1114 | . 5716 | 2207 | . 3692 | . 0854 | 870 | 2130 |  |
| 5 | 8912 | 1088 | . 5699 | 2242 | . 667 | . 0855 | 781 | 2118 |  |
| 55 | . 38939 | . 61061 | 2.5681 | . 42276 | 2.3654 | 1.0857 | . 07893 | . 92107 |  |
| 56 | . 8966 | 1034 | . 5663 | 210 | . 3635 | . 0858 | 904 | 2096 |  |
| 57 | . 8993 | . 1007 | . 5646 | 344 | . 3616 | . 0859 | 915 | 084 |  |
| 58 | . 9019 | - 0980 | . 5628 | 379 | . 3597 | . 0861 | 927 | 73 |  |
| 59 | - 9046 | 0954 | . 5610 | 113 | .3577 .3558 | . 0862 | $\begin{array}{r}7938 \\ \hline 919\end{array}$ | 2062 <br> 2050 |  |
| 60 | - 9073 | 0927 | . 5593 | 447 | . 3558 | . 086 | 79 | 205 | 0 |
|  |  |  |  |  | Tang |  |  |  |  |

Natural Trigonometrical Functions.

| M. | Sine. | Vrs. cos. | Cosec'nt | Ta | Cotang. | Secant. | Vrs. sin. | e. | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 39073 | . 609 | 2.55 | . 42 | 2.3558 | 1.0 |  | . 92050 | 60 |
|  | . 9100 | . 0900 | 5575 | 82 | . 3539 | 865 | - 7961 | 2039 |  |
| 2 | - 9126 | . 0873 | . 5558 | 516 | . 3520 | . 0866 | - 7972 | . 2028 | 8 |
| 3 | - 9153 | . 0846 | . 5540 | 2550 | . 3501 | . 0868 | - 7984 | - 2016 | 57 |
|  | . 39207 | . 60793 | 2.5506 | - 42619 | . 34848 | .0869 1.0870 | . 08900 | . 91 | 50 |
|  | 9234 | . 0766 | . 5488 | . 2654 | . 3445 | . 1.0872 | . 8018 | 1982 |  |
|  | . 9260 | . 0739 | . 5471 | 2688 | . 3426 | . 0873 | 8029 | 1971 |  |
|  | . 9287 | . 0713 | . 5453 | 272 | . 3407 | . 0874 | . 8041 | . 1959 |  |
| 9 | . 9314 | . 0686 | . 5436 | , 2757 | . 3388 | . 0876 | . 8052 | 1948 |  |
| 10 | . 39341 | . 60659 | 2.5419 | . 42791 | 2.3369 | 1.0877 | . 08063 | . 91936 | 50 |
| 11 | 9367 | 0632 | . 5402 | 2826 | . 3350 | . 0878 | . 8075 | . 1925 | 49 |
| 12 | . 9394 | . 0606 | . 5384 | . 2860 | . 3332 | . 0880 | . 8086 | . 1913 | 48 |
| 13 | . 9421 | . 0579 | . 5367 | 2894 | . 3313 | . 0881 | . 8098 | . 1902 | 47 |
| 14 | 9448 | 552 | . 5350 | 2929 | . 3294 | . 0882 | 8109 | 1891 | 46 |
| 15 | . 39174 | . 60526 | 2.5333 | . 42963 | 2.3276 | 1.0884 | . 08121 | . 91879 | 45 |
| 16 | . 9501 | . 0499 | . 5316 | 2998 | . 3257 | . 0885 | . 8132 | . 1868 | 44 |
|  | - 9528 | 0472 | . 5299 | . 3032 | . 3238 | . 0886 | . 8144 | . 1856 |  |
| 18 | . 9554 | . 0445 | . 5281 | 067 | . 3220 | . 0888 | . 8155 | 1845 | 42 |
| 19 | 9581 | 0419 | . 5264 | 3101 | . 3201 | . 0889 | . 8167 | 1833 | 41 |
| 20 | . 39608 | . 60392 | 2.5247 | . 43136 | 2.3183 | 1.0891 | . 08178 | . 91822 | 0 |
|  | - 9635 | . 0365 | . 5230 | 3170 | . 3164 | . 0892 | . 8190 | 1810 |  |
| 22 | . 9661 | . 0339 | . 5213 | . 3205 | . 3145 | . 0893 | . 8201 | . 1798 | 38 |
| 23 | . 9688 | . 0312 | . 5196 | . 3239 | . 3127 | . 0895 | . 8213 | . 1787 |  |
|  | 9715 | 285 | . 5179 | 3274 | . 3109 | . 0896 | 8224 | 1775 |  |
| 25 | . 39741 | . 60258 | 2.5163 | . 433308 | 2.3090 | 1.0897 | . 08236 | . 91764 | 55 |
| 26 | . 9768 | . 0232 | . 5146 | . 3343 | . 3072 | . 0899 | . 8248 | . 1752 |  |
| 27 | . 9795 | . 0205 | . 5129 | . 3377 | . 3053 | . 0900 | . 8259 | . 1741 |  |
|  | . 9821 | . 0178 | . 5112 | 3412 | . 3035 | . 0902 | . 8271 | 1729 |  |
| 29 | 9848 | . 0152 | . 5095 | 3447 | . 3017 | . 0903 | . 8282 | . 1718 | 31 |
| 30 | . 39875 | . 60125 | 2.5078 | . 43481 | 2.2998 | 1.0904 | . 08294 | . 91706 | 30 |
|  | . 9901 | . 0098 | . 5062 | 3516 | . 2980 | . 0906 | . 8306 | . 1694 |  |
|  | . 9928 | - 0072 | . 5045 | . 3550 | . 2962 | . 0907 | . 8317 | 1683 |  |
|  | . 9955 | - 0045 | . 5028 | . 3585 | . 2944 | . 0908 | . 8329 | . 1671 |  |
|  | . 9981 | . 0018 | . 5011 | 3620 | . 2925 | . 0910 | 8340 | 1659 |  |
|  | . 40008 | . 59992 | 2.4995 | . 43654 | 2.2907 | 1.0911 | . 08352 | . 91648 | 25 |
|  | . 0035 | 9965 | . 4978 | . 3689 | . 2889 | . 0913 | . 8364 | . 1636 |  |
|  | . 0061 | - 9938 | . 4961 | . 3723 | . 287 | . 0914 | . 8375 | . 1625 |  |
|  | . 0088 | - 9912 | . 4945 | . 3758 | 285 | . 0915 | 8387 | 1613 |  |
| 39 | . 0115 | 885 | . 4928 | 3793 | . 2835 | . 0917 | 8399 | 1601 | 21 |
| 40 | . 40141 | . 59858 | 2.4912 | . 43827 | 2.2817 | 1.0918 | . 08410 | . 91590 | 20 |
|  | . 0168 | - 9832 | . 4895 | 8802 | . 2799 | . 0920 | . 8122 | . 1578 | 9 |
|  | . 0195 | . 9805 | . 4879 | 3897 | . 2781 | . 0921 | . 8434 | . 1566 |  |
|  | . 0221 | 778 | . 4862 | . 3932 | . 2763 | . 0922 | . 8445 | . 1554 |  |
|  | 0248 | - 9752 | . 4846 | 3966 | . 2745 | . 0924 | 8457 | 1043 |  |
|  | . 40275 | . 59725 | 2.4829 | . 44001 | 2.2727 | 1.0925 | . 08469 | . 91531 |  |
|  | . 0301 | . 9699 | . 4813 | . 4036 | 2709 | . 0927 | . 8480 | . 1519 |  |
| 17 | . 0328 | . 9672 | . 4797 | . 4070 | . 2691 | . 0928 | . 8492 | . 1508 |  |
|  | . 0354 | . 9645 | . 4780 | . 4105 | . 2673 | . 0929 | . 8504 | 1496 |  |
|  | 0381 | 9619 | . 4764 | 4140 | 2655 | . 0931 | 8516 | 1484 |  |
|  | . 40408 | . 59592 | 2.4748 | . 44175 | 2.2637 | 1.0932 | . 08527 | . 91472 | 10 |
|  | . 0434 | 9566 | . 4731 | . 4209 | . 2619 | 0934 | . 8539 | 1461 |  |
|  | . 0461 | 539 | . 4715 | 4244 | . 2602 | . 0935 | . 8551 | 1449 |  |
|  | . 0487 | 9512 | . 4699 | 4279 | 2584 | . 0936 | 8563 | . 1437 |  |
|  | . 0514 | 486 | 4683 | 4314 | . 2566 | . 0938 | 8575 | 1425 |  |
|  | . 40541 | . 59459 | 2.4666 | . 44349 | 2.2548 | 1.0939 | . 08586 | . 91414 |  |
|  | 0567 | 133 | . 4650 | 4383 | . 2531 | . 0941 | 8598 | 402 |  |
| 57 | . 0594 | 106 | . 4634 | 4418 | . 2513 | . 0942 | . 8610 | 1390 |  |
|  | . 0620 |  | . 4618 | 4453 | . 2495 | . 0943 | . 8622 | 378 |  |
|  | . 0647 |  | . 4602 |  | 2478 | . 0945 | 8634 | 1366 |  |
| 60 | . 0674 | 326 | . 4586 | 523 | 2460 | 0946 | . 8645 | . 1354 | 0 |
|  | Cosine. |  | Secant. | Co | Tang. | Ssec'n | Vrs. | Sine. |  |

Natural Trigonometrical Functions.
$155^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 40 | . 59 | 2.4 | . 4 | 2.2 | 1.0946 |  |  |  |
| 1 | . 0700 | 9300 | . 4570 | - 4558 | . 2443 | . 0948 | 8657 | 1343 |  |
| 2 | . 0727 | - 9273 | . 4554 | . 4593 | 2425 | . 0949 | 8669 | - 1331 |  |
| 3 | . 0753 | - 9247 | . 4538 | . 4627 | . 2408 | . 0951 | . 8681 | . 1319 |  |
| 4 | . 0780 | 9220 | . 4522 | . 4662 | 2390 | . 0952 | . 8693 | 1307 |  |
| 5 | . 40806 | . 59193 | 2.4506 | . 44697 | 2.2373 | 1.0953 | . 08705 | . 91295 | 55 |
| 6 | . 0833 | . 9167 | . 4490 | . 4732 | . 2355 | . 0955 | . 8716 | . 1283 | 5 |
| 7 | . 0860 | - 9140 | . 4474 | . 4767 | . 2338 | . 0956 | 8728 | - 1271 |  |
| 8 | - 0886 | 9114 | . 4458 | . 4802 | . 2320 | . 0958 | 8740 | 260 |  |
| 9 | . 0913 | 9087 | 444 | . 4837 | 2303 | . 0959 | 8752 | 1248 |  |
| 10 | . 40939 | . 59061 | 2.4426 | . 44872 | 2.2286 | 1.0961 | . 08764 | . 91236 | 仡 |
| 11 | . 0966 | 9034 | . 4411 | . 4907 | . 2268 | . 0962 | . 8776 | - 1224 |  |
| 12 | . 0992 | 9008 | . 4395 | . 4942 | 2251 | . 0963 | . 8788 | . 1212 |  |
| 13 | . 1019 | . 8981 | . 4379 | . 4977 | 2234 | . 0965 | . 8800 | . 1200 |  |
| 14 | . 1045 | . 8955 | . 4363 | . 5012 | 2216 | . 0966 | 8812 | 1188 |  |
| 15 | . 41072 | . 58928 | 2.4347 | . 45047 | 2.2199 | 1.0968 | . 08824 | . 91176 | 5 |
| 16 | . 1098 | 8901 | . 4332 | . 5082 | 2182 | . 0969 | . 8836 | . 1164 | 4 |
| 17 | . 1125 | 8875 | . 4316 | . 5117 | . 2165 | . 0971 | . 8848 | . 1152 |  |
| 18 | . 1151 | . 8848 | . 4300 | . 5152 | 2147 | . 0972 | . 8860 | 1140 |  |
| 19 | . 1178 | 8822 | . 4285 | . 5187 | 2130 | . 0973 | 8872 | 1128 |  |
| 20 | . 41201 | . 58795 | 2.4269 | . 45222 | 2.2113 | 1.0975 | . 08884 | . 91116 | - |
|  | . 1231 | 8769 | . $42 \overline{5} 4$ | . 5257 | . 2096 | . 0976 | 8896 | . 1104 |  |
|  | . 1257 | - 8742 | . 4238 | 292 | 2079 | . 0978 | 8908 | 1092 |  |
| 23 | . 1284 | . 8716 | . 4222 | . 5327 | 2062 | . 0979 | . 8920 | . 1080 |  |
| 24 | . 1810 | . 8689 | . 4207 | . 5362 | 2045 | . 0981 | 8932 | . 1068 |  |
|  | . 41337 | . 58663 | 2.4191 | . 45397 | 2.2028 | 1.0982 | . 08944 | . 91056 |  |
|  | . 1363 | 8636 | . 4176 | . 5432 | 2011 | . 0984 | 8956 | . 1044 |  |
|  | . 1390 | . 8610 | . 4160 | . 5467 | 1994 | . 0985 | . 8968 | . 1032 |  |
|  | . 1416 | . 8584 | . 4145 | . 5502 | . 1977 | . 0986 | - 8980 | . 1020 |  |
|  | 1443 | 8557 | 4130 | 537 | 1960 | 0988 | 8992 | 1008 |  |
| 30 | . 41469 | . 58531 | 2.4114 | . 45573 | 2.1943 | 1.0989 | . 09004 | . 90996 |  |
| 31 | . 1496 | . 8504 | . 4099 | . 5608 | . 1926 | . 0991 | . 9016 | . 0984 |  |
|  | . 1522 | . 8478 | . 4083 | . 5643 | . 1909 | . 0992 | . 9028 | . 0972 |  |
| 33 | . 1549 | . 8451 | . 4068 | . 5678 | . 1892 | . 0994 | 9040 | 0960 |  |
|  | . 1575 | 8425 | . 4053 | . 5713 | 1875 | . 0995 | 9052 | 0948 |  |
|  | 41602 | . 58398 | 2.4037 | . 45748 | 2.1859 | 1.0997 | . 09064 | . 90936 |  |
|  | . 1628 | . 8372 | . 4022 | 783 | 1842 | 0998 | - 9076 | 0924 |  |
| 8 | . 1654 | - 8345 | . 4007 | . 5819 | . 1825 | . 1000 | - 9088 | 0911 |  |
| 8 | - 1681 | . 8319 | . 3992 | - 5854 | . 1808 | . 1001 | - 9101 | . 0899 |  |
|  | . 1707 | 8292 | . 3976 | 5889 | 1792 | . 1003 | 9113 | . 0887 |  |
| 40 | . 41734 | . 58266 | 2.3961 | . 45924 | 2.1775 | 1.1004 | . 09125 | . 90875 |  |
| 41 | . 1760 | - 8240 | . 3946 | - 5960 | . 1758 | . 1005 | - 9137 | . 0863 |  |
| 42 | - 1787 | - 8213 | . 3931 | - 5995 | . 1741 | . 1007 | - 9149 | 0851 |  |
|  | - 1813 .1839 | 8187 8160 | .3916 .3901 | . 6030 | 1725 .1708 | . 1008 | 9161 9173 | -0839 |  |
| 45 | . 41866 | . 58134 | 2.3886 | . 46101 | 2.1692 | 1.1011 | . 09186 | . 90814 |  |
| 46 | . 1892 | . 8108 | . 3871 | . 6136 | . 1675 | . 1013 | 9198 | 0802 |  |
| 4 | . 1919 | . 8081 | . 3856 | . 6171 | . 1658 | . 1014 | - 9210 | 0790 |  |
| 48 | . 1945 | . 8055 | . 3841 | . 6206 | . 1642 | . 1016 | - 9222 | 0778 |  |
|  | . 1972 | . 8028 | . 3826 | . 6242 | . 1625 | . 1017 | 9234 | 0765 |  |
| 50 | . 41998 | . 58002 | 2.3811 | . 46277 | 2.1609 | 1.1019 | . 09247 | . 90753 |  |
| 51 | . 2024 | 7975 | . 3796 | . 6312 | 1592 | 1020 | 9259 | 0741 |  |
|  | - 2051 | . 7949 | . 3781 | . 6348 | . 1576 | . 1022 | 927 | 0729 |  |
| 53 | - 2077 |  | . 3766 | - 6383 | 1559 | . 1023 | 283 | 817 |  |
| 54 | . 2103 | 7896 | . 3751 | 6418 | 1543 | 1025 | 9296 | 0704 |  |
|  | . 42130 | . 57870 | 2.3736 | . 46454 | 2.1527 | 1.1026 | . 09308 | 0692 |  |
|  | - 2156 | 7814 | . 3721 | . 6489 | . 1510 | . 1028 | 320 | 680 |  |
| 57 | - 2183 |  | . 3706 | - 6.58 | . 1494 | . 1029 | 332 | 668 |  |
| 58 |  |  | . 3691 | . 6560 | . 1478 | . 1031 | 345 | 0655 |  |
| 59 60 |  |  | . 3677 | . 6595 | . 1461 | . 1032 | - 9357 | . 0643 |  |
| 60 | 262 | . 7738 | . 3662 | 631 | . 1445 | . 1034 | - 9369 | . 0631 |  |
|  | Cosine |  |  |  | Tang | csec'nt |  |  |  |


| 25 |  | Natural Trigonometrical Functions. |  |  |  |  |  |  | $54^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | tang. | Secant. | Vrs. sin. | Cosine. |  |
| 0 | . 42 |  |  |  | 2.14 | 1. |  |  | 60 |
| 1 |  |  |  |  | . 1429 | . 1035 | 9381 | . 0618 | 59 |
| 2 | . 2314 | 85 | . 3632 | . 6702 | . 1412 | . 1037 | 9394 | 0606 | 8 |
| 3 | - 2341 | . 7659 | . 3618 | . 6737 | . 1396 | . 1038 | 9406 | 0594 |  |
|  | . 2367 | - 7633 | . 3603 | - 6772 | . 1380 | . 1040 | -9418 | - 0581 | 6 |
| 5 | . 42394 | . 57606 | 2.3588 | . 46808 | 2.1364 | 1.1041 | . 09431 | . 90569 | 5 |
| 6 | - 2420 | $\begin{array}{r}\text {. } 7580 \\ .7554 \\ \hline\end{array}$ | 574 | .6843 .6879 | . 1348 | . 1043 | . 9443 | 0557 | 4 |
| 8 | - 2473 | - 7527 | . 3544 | - 69814 | . 1315 | . 1046 | - 9468 | 0532 | 2 |
| 8 | . 2499 | . 7501 | . 3530 | . 6950 | . 1299 | . 1047 | 9480 | 0520 | 51 |
| 10 | . 42525 | . 57475 | 2.3515 | . 46985 | 2.1283 | 1.1049 | . 09492 | . 90507 | 50 |
| 11 | - 2552 | - 7448 | . 3501 | . 7021 | . 1267 | . 1050 | - 9505 | . 0495 | 49 |
| 12 | . 2578 | - 7422 | . 3486 | . 7056 | . 1251 | . 1052 | - 9517 | . 0483 | 48 |
| 13 | - 2604 | 7396 | . 3472 | - 7092 | . 1235 | . 1053 | . 9530 | 0470 | 47 |
| 14 | - 2630 | 7369 | . 3457 | . 7127 | . 1219 | . 1055 | 9542 | . 0458 | 46 |
| 15 | . 42657 | . 57343 | 2.3443 | . 47163 | 2.1203 | 1.1056 | . 09554 | . 90445 | 45 |
| 16 | . 2683 | 7317 | . 3428 | . 7199 | . 1187 | . 1058 | 9567 | . 0433 | 44 |
| 17 | . 2709 | - 7290 | . 3414 | - 7234 | . 1171 | . 1059 | - 9579 | . 0421 | 43 |
| 18 | - 2736 | - 7264 | . 3399 | - 7270 | . 1155 | . 1061 | - 9592 | - 0408 | 42 |
|  |  | 238 | . 3385 | . 7305 | . 1139 | 1062 | 9604 | 0396 | 41 |
| 20 | . 42788 | . 57212 | 2.3371 | . 47341 | 2.1123 | 1.1064 | . 09617 | . 90383 | - |
|  | . 2815 | . 7185 | . 3356 | - 7376 | . 1107 | . 1065 | - 9629 | . 0371 | 39 |
|  |  | . 7159 | . 3342 | - 7412 | . 1092 | . 1067 | 9641 | 0358 |  |
|  | - 2 | . 7133 | . 3328 | -7 | . 107 | . 1068 | 654 | 346 |  |
| 24 | . 2893 | . 7106 | . 3313 | . 7483 | . 1060 | . 1070 | 9666 | 0333 | 36 |
|  | . 42920 | . 57080 | 2.3299 | . 47519 | 2.1044 | 1.1072 | . 09679 | . 90321 |  |
|  |  | - 7054 | . 3285 | - 7555 | . 1028 | . 1073 | - 9691 | . 0308 | 4 |
|  |  | - 7028 | . 3271 | . 7590 | . 1013 | . 1075 | 9704 |  |  |
|  |  | . 7001 | . 3256 | . 7626 | . 0997 | . 1076 | 9716 9729 | 0283 0271 |  |
|  | . 43051 | . 56949 | 2.3228 | . 47697 | 2.096 | 1.1079 | . 09741 | . 90258 | 0 |
|  | . 3077 | . 6923 | . 3214 | - 7733 | . 0950 | . 1081 | - 9754 | 0246 |  |
|  | . 3104 | - 6896 | . 3200 | - 7769 | . 0934 | . 1082 | - 9766 | 233 |  |
|  | 30 | - 6870 | . 3186 | . 7805 | . 0918 | . 1084 | 9779 | 0221 |  |
|  | 3156 | 844 | . 3172 | 7840 | . 090 | . 1085 | 9792 | 0208 |  |
| - | . 43182 | . 56818 | 2.3158 | . 47876 | 2.0887 | 1.1087 | . 09804 | . 90196 |  |
|  |  | - 6791 | . 3143 | - 7912 | . 0872 | . 1088 | . 9817 | 0183 |  |
| 37 | - |  | . 3129 |  | . 0856 | . 1090 | 9829 | 0171 |  |
| $38$ |  |  | . 3115 | . 7983 | . 0840 | . 1092 | 9842 | 0158 |  |
| 40 | . 43313 | . 56686 | 2.3087 | . 88005 | . 2.0809 | 1.1095 | . 09867 | . 914133 | 20 |
| 41 | . 3340 | . 6660 | . 3073 | . 8091 | . 0794 | . 1096 | 9880 | 0120 | 19 |
| 42 | - 3366 | . 6634 | . 3059 | . 8127 | . 0778 | . 1098 | - 9892 | - 0108 |  |
| 43 | . 3392 | - 6608 | . 3046 | . 8162 | . 0763 | . 1099 | - 9905 | 0095 |  |
| 4 | 3418 | 退 | . 3032 | 8198 | . 0747 | 1101 | 9917 | 0082 |  |
| 45 | . 43444 | . 56555 | 2.3018 | . 48234 | 2.0732 | 1.1102 | . 09930 | . 90070 | 15 |
| 46 | . 3471 | . 6529 | . 3004 | . 8270 | . 0717 | . 1104 | - 9943 | - 0057 |  |
| 47 | - 3497 | . 6503 | . 2990 | - 8306 | . 0701 | . 1106 | - 9955 | 0044 | 13 |
| 48 | . 3523 | . 6477 | . 2976 | . 8342 | . 0686 | . 1107 | 9968 | 0032 |  |
| 49 | . 3549 | - 6451 | . 2962 | . 8378 | . 0671 | . 1109 | - 9981 | - 0019 | 10 |
|  | . 43575 | . 56424 | 2.2949 | . 48114 | 2.0655 | 1.1110 | . 09993 | . 90006 | 10 |
| 51 |  |  | . 2935 | - | . 0640 | . 11112 | . 10006 | 994 |  |
|  | - |  | . 292 |  | . 062 | . 11113 | 0019 | 981 |  |
|  | . 3654 <br> .3680 |  | . 29897 | . 8521 | . 0609 | . 11115 | 0031 0044 | 9968 |  |
|  | . 43706 | . 56294 | 2.2880 | . 48593 | 2.0579 | 1.1118 | . 10057 | . 89943 |  |
|  |  |  | . 28 | . | . 05 | . 1120 | 070 | 930 |  |
|  |  |  | . 2853 |  |  | . 1121 | 082 | 18 |  |
|  |  |  | . 2839 |  | . 0533 | . 1123 | 095 |  |  |
| 60 | - 3811 | . 6189 | . 2825 | . 8737 | . 0518 | . 1124 | - 0108 .0121 | 9892 9879 |  |
|  |  |  |  |  |  |  |  |  |  |
| M | Cosin | Vrs, sin | Secant |  | Tang | Cosec'nt | Vrs. cos. | Sine. | M |

Natural Trigonometrical Functions.
$\left\langle\begin{array}{|c|c}\text { Cosec 'nt } & \text { Tang. } \\ \hline 2.2812 & .48773\end{array}\right|$

$|$| $\frac{\text { Cotang. }}{2.0503}$ | $\frac{\text { Secant. }}{1.1126}$ |
| :---: | :---: |

$|\mid$ Vrs. sin. $|$ C

| Sine. |
| :---: |
| .43837 |
| .3863 |$|$


| Vrs. cos. | C |
| :---: | :---: |
| . 56163 |  |
| . 6137 |  |
| . 6111 |  |
| . 6084 |  |
| . 6058 |  |
| . 56032 |  |


|  |  | Vrs. cos. | Cosec'nt | Ta | g. | Secan | Vrs. sin. | Cosine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 453 |  |  |  |  |  |  |  |  |
|  | . 5425 | 75 | 1 | 889 |  |  | 12 |  |  |
|  | . 5451 | 4549 | 02 | 26 | . 9598 | 6 | 926 | 9074 |  |
|  | - 5 | - 4523 | 189 | - 1062 | . 9581 | 1228 | 939 | 9061 |  |
|  | . 5503 | 4497 | 1977 | 1099 | 9570 | 1230 | 0952 | 9048 |  |
|  | . 45528 | . 54471 | 2.1964 | . 51136 | 1.9556 | 1.1231 | . 10965 | . 89034 |  |
|  | . 5554 | 4445 | . 1952 | . 117-2 | . 9542 | 1233 | 0979 | . 9021 |  |
|  | . 5 | . 4420 | 39 | . 1205 | . 9528 | 1235 | 099: | 9008 |  |
|  | - 5 | 94 | 927 | 246 | . 9.5 | 237 | 005 | 995 |  |
| 9 | - |  | . 1914 | 128 | 9500 | 1238 | 1018 | 8981 |  |
| 0 | . 45658 | . 54342 | 2.1902 | . 51319 | 1.9486 | 1.1240 | . 11032 | . 88968 |  |
|  | - 5684 | 316 | . 1889 | . 1356 | . 9172 | 1242 | . 1045 | . 8955 |  |
| 12 | . 5710 | . 4290 | 1877 | . 1393 | . 915 | . 1243 | 1058 | 942 |  |
| 3 | . 5736 | . 4264 | . 1865 | - 1430 | . 9444 | . 1245 | 1072 | 8928 |  |
| 14 | - 5761 | - 4238 | . 1852 | 1466 | . 9430 | 1247 | 1085 | 8915 |  |
|  | . 45787 | . 54213 | 2.1840 | . 51503 | 1.9416 | 1.1248 | . 11098 | . 88902 |  |
| 16 | - 5813 | 4187 | . 1828 | . 1540 | . 9402 | 1250 | 1112 | 8888 |  |
| 17 | - 5839 | . 4161 | . 1815 | . 1577 | . 9388 | .1252 | 125 | 875 |  |
| 18 |  | . 4135 | . 1803 | . 1614 | . 9375 | . 1253 | 138 | 862 |  |
|  |  | 09 | . 1791 | 1651 | . 9361 | . 1255 | 1152 | 848 |  |
|  | . 45917 | . 51083 | 2.1778 | . 51687 | 1.9347 | 1.1257 | 11165 | 8835 |  |
|  | . 5942 | . 4057 | . 1766 | . 1724 | 933 | 1258 | 1178 | . 8822 |  |
|  | . 5968 |  | . 1754 | . 1761 | . 93 | 1260 | 192 | 808 |  |
|  |  |  | . 1742 | . 1798 | . 930 | 126 | 205 | 9 |  |
|  | . 6020 |  | .1730 | 835 | 929 | 126 | 218 | 881 |  |
|  | . 46046 | . 53954 | 2.1717 | . 51872 | 1.927 | 1.1265 | . 11232 | . 88768 |  |
|  | - 6072 |  | . 1705 | . 1909 | . 9224 | 1267 |  | 8755 |  |
|  | - 6097 |  | . 1693 |  | . 925 | . 1269 | 259 | 741 |  |
|  |  |  | . 1681 |  | . 923 | . 1270 | 272 | 728 |  |
|  | . 6149 |  | . 1669 | 020 | . 9223 | . 1272 | 285 | 714 |  |
|  | . 46175 | . 53825 | 2.1657 | . 52057 | 1.9210 | 1.1274 | . 11299 | . 88701 |  |
|  | - 6201 | 3799 | . 1645 | . 2094 | . 9196 | 1275 | 1312 | 688 |  |
|  | . 6226 | 73 | . 1633 | . 2131 | . 9182 | . 1277 | 326 | . 8674 |  |
|  | . 6252 |  | . 1620 | - 2168 | . 9169 | . 1279 | 339 |  |  |
|  | 6278 | 22 | . 1608 | 2205 | .915 | 1281 | 1353 | 647 |  |
|  | . 46304 | . 53696 | 2.1596 | . 52242 | 1.9142 | 1.1282 | . 11366 | 3634 |  |
|  | . 6330 | . 3670 | . 1584 | . 2279 | . 9128 | 128 | 380 | 620 |  |
|  |  | 45 | . 1572 |  | . 911 | 18 | 393 | . 8607 |  |
|  |  |  | . 1560 |  | . 9101 | 128 | 107 |  |  |
|  |  | 3593 | . 1548 | 2390 | 9088 | 1289 | - 1120 | . 8580 |  |
|  | . 46433 | . 53557 | 2.15 .6 | .52427 | 1.9074 | 1.1291 | . 11434 | 556 |  |
|  | - 6458 | 3511 | . 1525 | 2464 | 9061 | 1293 | 1447 | 539 |  |
|  | . 6484 | 516 | . 1513 | 501 | . 9047 | 1294 | 1461 | 8539 |  |
|  | . 6510 | 190 | . 1501 | 2538 | 903 | 1296 | 1474 | 5 |  |
|  | 536 | 3464 | . 1489 | 2575 | . 9020 | . 1298 | 1488 | 8512 |  |
|  | . 46561 | . 53438 | 2.1477 | . 52612 | 1.9007 | 1.1299 | . 11501 | 8499 |  |
|  | . 6587 | . 3413 | . 1465 | 650 | . 8993 | 1301 | 1515 | 485 |  |
|  | - 6613 | . 3387 | . 1453 | 687 | . 8980 | . 1303 | 1528 | 8472 |  |
|  |  |  | . 1441 | . 2724 | . 8967 | . 1305 | 154 | 845 |  |
|  | 604 | 3336 | . 1430 | 2761 | . 8953 | . 1306 | 1555 | 8444 |  |
|  | . 46690 | . 53310 | 2.1418 | . 52798 | 1.8940 | 1.1308 | . 11569 | 431 |  |
|  | - 6716 |  | . 1406 | - | . 892 | 1310 | 583 | 117 |  |
|  | - 6741 |  | . 1394 | - 2873 | . 8913 | . 1312 | 1596 | 8104 |  |
|  | . 6767 | 3233 <br> 3207 | . 1382 | - 2910 | . 89880 | . 1313 | 1610 1623 | 3390 |  |
|  | . 46 |  | 2.1359 | . 52984 | 1.8873 | 1.1317 | . 11637 | 8363 |  |
|  |  |  | . 1347 |  |  | . 1319 | 51 | 49 |  |
|  | . 6870 |  | . 1335 |  |  | . 1320 | -8 | - |  |
|  | - 6896 |  | . 1324 |  |  | . 1322 | 78 |  |  |
|  | 6921 |  | . 1312 |  | . 8807 | . 1324 | 691 |  |  |
|  | 6947 | 53 | . 1300 |  | . 8807 | . 13 | 1705 |  |  |
|  | Cosine | s. | Secant. | an | Tang | sec | Vrs. cos. | ine. |  |

Natural Trigonometrical Functions.

| M. | Sine. | Vr | Cos | Tang. | ng. | Secant. | in. | e. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1.8 |  |  |  |  |
| 1 | . 6973 | 3027 | . 1289 | . 3208 | . 8794 | 1327 | 1719 |  |  |
| 2 | - 6998 | . 3001 | . 1277 | . 3245 | . 8781 | . 1329 | 1732 | 267 |  |
|  | . 7024 | . 2976 | . 1266 | . 3283 | . 8768 | . 1331 | 746 | - 8254 |  |
|  | . 7050 | 2950 | . 1254 | . 3320 | 8754 | 1333 | 1760 | 8240 |  |
|  | . 47075 | . 52924 | 2.1242 | . 53358 | 1.8741 | 1.1334 | 11774 | . 88226 |  |
|  | . 7101 | 2899 | . 1231 | . 3395 | . 8728 | . 1336 | . 1787 | . 8213 |  |
|  | . 7127 | . 2873 | . 1219 | . 3432 | . 8715 | . 1338 | 1801 | . 8199 |  |
|  | . 7152 | . 2847 | 08 | 70 | . 8702 | 1340 | 815 | 185 |  |
| 9 | . 7178 | 2822 | . 1196 | 507 | 8689 | 1341 | 1828 | 8171 |  |
| 10 | . 47204 | . 52796 | 2.1185 | . 53545 | 1.8676 | 1.1343 | . 11842 | . 88158 |  |
| 11 | . 7229 | . 2770 | . 1173 | . 3582 | . 866 | . 1345 | . 1856 | . 8144 |  |
| 12 | . 7255 | . 2745 | . 1162 | - 3619 | . 8650 | . 1347 | 1870 | 8130 |  |
| 13 | . 7281 | 2719 | . 1150 | . 3657 | . 8637 | . 1349 | - 1883 | 8117 |  |
| 14 | . 7306 | 2694 | . 1139 | 3694 | . 8624 | . 1350 | 1897 | 8103 |  |
|  | . 47332 | . 52668 | 2.1127 | . 53732 | 1.8611 | 1.1352 | . 11911 | -88089 |  |
|  | . 7357 | 2642 | . 1116 | 3769 | . 8598 | . 1354 | - 1925 | 8075 |  |
| 17 | . 7383 | . 2617 | . 1104 | . 3807 | . 8585 | . 1356 | - 1938 | . 8061 |  |
| 18 | . 7409 |  | . 1093 | - 3844 | . 8572 | . 1357 | - 1952 | . 8048 |  |
|  | . 7434 | 65 | . 1082 | 3882 | . 8559 | . 1359 | 1966 | 8034 |  |
|  | . 47460 | . 52540 | 2.1070 | . 53919 | 1.8546 | 1.1361 | . 11980 | . 88020 | 40 |
|  | 7486 | . 2514 | . 1059 | 3957 | . 8533 | . 1363 | - 1994 | - 8006 | 39 |
|  | . 7511 |  | . 1048 | . 3995 | . 8520 | . 1365 | - 2007 | - 7992 |  |
|  | . 75.37 |  | . 1036 | - 4032 | . 8507 | . 1366 | - 2021 | . 7979 |  |
|  | 52 |  | 1025 | 4070 | 849 | 1368 | 2035 | 965 |  |
|  | . 47588 | . 52412 | 2.1014 | . 54107 | 1.8482 | 1.1370 | . 12049 | . 87951 |  |
|  | - 7613 |  | . 1002 | . 4145 | . 8469 | 1372 | - 2063 | - 7937 |  |
|  | . 7639 |  | . 0991 | - 4183 | . 845 | . 1373 | . 2077 | - |  |
|  | . 7665 |  | . 0980 | 220 | . 844 | . 1375 | . 2090 | 909 |  |
|  | . 7690 | 10 | . 0969 | 258 | . 8430 | 1377 | 2104 | 78 |  |
|  | . 47716 |  | 2.0957 | . 54295 | 1.8418 | 1.1379 | . 12118 | . 87882 |  |
|  | . 7741 |  | . 0946 | . 4333 | . 8405 | . 1381 | - 2132 | 868 |  |
|  | . 7767 |  | . 0935 | . 4371 | . 8392 | . 1382 | . 2146 | . 7854 |  |
|  | . 7792 |  | . 0924 | 4409 | . 8379 | . 1384 | - 2160 | - 7840 |  |
|  | 7818 | 182 | . 0912 | , | . 8367 | 1386 | 2174 | 7826 |  |
|  | . 47844 | . 52156 | 2.0901 | . 54484 | 1.8354 | 1.1388 | . 12188 | 87812 |  |
|  | . 7869 |  | . 0890 | - 4522 | . 8341 | . 1390 | - 2202 | - 7798 |  |
|  | - 7895 |  | . 0879 | - 4559 | . 8329 | . 1391 | - 2216 | - 7784 |  |
|  | - 7920 |  | . 0868 | . 4597 | . 8316 | . 1393 | 229 | 770 |  |
|  | . 7946 | 54 | . 0857 | 635 | . 8303 | 1395 | 2243 | 7756 |  |
| 40 | . 47971 | . 52029 | 2.0846 | . 54673 | 1.8291 | 1.1397 | . 12257 | . 87742 |  |
|  | - 7997 | - 2003 | . 0835 | . 4711 | . 827 | . 1399 | 285 | 728 |  |
|  | . 8022 | - 1978 | . 0824 | - 4748 | . 826 | . 1401 | - 2285 | 715 |  |
| 43 | - 8048 | - 1952 | . 0812 | 786 | . 8253 | . 1402 | - 2299 | 7701 |  |
|  | . 8073 | 1927 | . 0801 | . 4824 | . 8240 | 1404 | 2313 | . 7687 |  |
|  | . 48099 | . 51901 | 2.0790 | . 54862 | 1.8227 | 1.1406 | . 12327 | 寿 |  |
|  | . 8124 | - 1876 | . 0779 | . 4900 | . 8215 | 1408 | 2341 | 7659 |  |
|  | . 8150 | - 1850 | . 0768 | - 4937 | . 8202 | . 1410 | - 2355 | 7645 |  |
|  | . 8175 | . 1825 | . 0757 | - 4975 | . 8190 | . 1411 | 2369 | 7631 |  |
|  | 8201 | 1799 | . | 5013 | 817 | 1413 | 2383 | 761 |  |
|  | . 48226 | . 51774 | 2.0735 | . 55051 | 1.8165 | 1.1415 | . 12397 | . 87603 |  |
|  | . 8252 |  | . 0725 | - 5089 | . 8152 | . 1417 | . 2411 | 588 |  |
|  | . | - 1723 | . 0714 | - | . 8140 | .1419 | 425 | 574 |  |
|  |  | . 1697 | . 0703 | - 510 | . 8127 | 1421 | - 45 | 560 |  |
|  |  |  | . 0692 | . 5203 | . 81 | 1422 | 2453 | 7546 |  |
|  | . 48 | . 51646 | 2.0681 | . 55241 | 1.810 | 1.1424 | 2468 | 532 |  |
|  |  | - 1621 | .0670 |  | . 80 | 1426 | 888 | 518 |  |
|  |  |  | . 0659 |  | . 8078 | . 1428 | 496 | 504 |  |
|  |  |  | . 0648 |  |  | 1430 |  |  |  |
| 60 | 81 | 19 | . 0627 |  | . 8040 | . 1433 | 2538 |  |  |
|  | Cosin | Vrs. | Secant. | Cotang | Tang | ec' | Vrs. | ine. |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  | $150^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Si | Vrs. cos. | Co |  |  | Secant. | Vrs. sin. | ne. | M |
| 0 | . 48481 | . 51519 | 2.0627 | . 55431 | 1.8040 | 1.1433 | . 12 | . 87462 | 60 |
| 1 | . 8506 | . 1493 | . 0616 | . 5469 | . 8028 | . 1435 | 2552 | . 7448 | 59 |
| 2 |  | . 1468 | . 0605 | . 5507 | . 8016 | . 1437 | 2566 | . 7434 | 58 |
| 3 | . 8557 | - 1443 | . 0594 | . 5545 | . 8003 | . 1439 | 2580 | . 7420 |  |
| 4 | . 8583 | - 1417 | . 0583 | 5583 | 7991 | 1441 | 2594 | 7405 |  |
| 5 | . 48608 | . 51392 | 2.0573 | . 55621 | 1.7979 | 1.1443 | . 12609 | . 87391 |  |
| 6 | . 8 | . 1366 | . 0562 | 5659 | . 7966 | 1445 | 2623 | - 7377 | 5 |
| 7 | . 8659 | . 1341 | 551 | 697 | . 7954 | . 1446 | 2637 | . 7363 |  |
| 8 | . 8684 | . 1316 | . 0540 | . 5735 | . 7942 | . 1448 | . 2651 | . 7349 |  |
| 9 | . 8710 | . 1290 | . 0530 | . 5774 | . 7930 | 1450 | 2665 | . 7335 | 51 |
| 10 | . 48735 | . 51265 | 2.0519 | . 55812 | 1.7917 | 1.1452 | . 12679 | . 87320 | 50 |
| 11 | . 8760 | - 1239 | . 0508 | . 5850 | . 7905 | . 1454 | 2694 | . 7306 | 49 |
| 12 | . 8786 | . 1214 | . 0498 | . 5888 | . 7893 | . 1456 | - 2708 | . 7292 | 48 |
| 13 | . 8811 | . 1189 | . 0487 | . 5926 | . 7881 | . 1458 | 2722 | . 7278 | 47 |
|  | . 8837 | . 1163 | . 0476 | . 5964 | . 7868 | . 1459 | 2736 | 7264 |  |
| 15 | . 48862 | . 51138 | 2.0466 | . 56003 | 1.7856 | 1.1461 | . 12750 | . 87250 | 5 |
| 16 | . 8887 | . 1112 | . 0455 | . 6041 | . 7844 | . 1463 | - 2765 | . 7235 | 44 |
| 17 | . 8913 | . 1087 | . 0444 | . 6079 | . 7832 | . 1465 | - 2779 | . 7221 | 43 |
|  | . 8938 | . 1062 | . 0434 | . 6117 | . 7820 | . 1467 | . 2793 | . 7207 | 42 |
| 19 | . 8964 | 1036 | . 0423 | . 6156 | . 7808 | . 1469 | 2807 | 7193 | 41 |
| 20 | . 48989 | . 51011 | 2.0413 | . 56194 | 1.7795 | 1.1471 | . 12821 | . 87178 | 40 |
|  | . 9014 | - 0986 | . 0402 | . 6232 | . 7783 | . 1473 | 2836 | . 7164 | 39 |
|  | . 9040 |  | . 0392 | . 6270 | . 7771 | . 1474 | 2850 | . 7150 |  |
|  | . 9065 | . 0935 | . 0381 | . 6309 | . 7759 | . 1476 | - 2864 | . 7136 |  |
|  | . 9090 | . 0910 | . 0370 | - 6347 | 7747 | 1478 | 2879 | 7121 |  |
|  | . 49116 | . 50884 | 2.0360 | . 56385 | 1.7735 | 1.1480 | . 12893 | . 87107 |  |
|  | . 9141 | . 0859 | . 0349 | . 6424 | . 7723 | . 1482 | 2907 | . 7093 |  |
|  | . 9166 | . 0834 | . 0339 | . 6462 | . 7711 | . 1484 | . 2921 | . 7078 |  |
|  |  |  | . 0329 | . 6500 | . 7699 | . 1486 | 2936 | . 7064 |  |
|  |  | . 0783 | . 0318 | . 6539 | . 7687 | . 1488 | 2950 | 7050 |  |
|  | . 49242 | . 50758 | 2.0308 | . 56577 | 1.7675 | 1.1489 | . 12964 | . 87035 |  |
|  |  | - 0732 | . 0297 | - 6616 | . 7663 | . 1491 | 2979 | . 7021 |  |
|  |  |  | . 028 |  | . 7651 | . 1493 | 2993 | . 7007 |  |
|  |  |  | . 027 | . 669 | . 763 | . 1495 | 3007 | . 6992 |  |
|  |  | . 0656 | . 0266 | 6731 | 762 | 1497 | 3022 | 6978 |  |
|  | . 49369 | . 50631 | 2.0256 | . 56769 | 1.7615 | 1.1499 | . 13036 | . 86964 |  |
|  |  |  | . 0245 | - | . 7603 | . 1501 | . 3050 | - 6949 |  |
|  | . 9419 |  | . 0235 |  | . 7591 | . 1503 | 3065 | 6935 |  |
|  | . 9445 | . 0555 | . 0224 | . 688 | . 7579 | . 1505 | . 3079 | . 6921 |  |
|  |  | . 0530 | . 0214 | - 6923 | . 7567 | . 1507 | 3094 | 6906 |  |
|  | . 49495 | . 50505 | 2.0204 | . 56962 | 1.7555 | 1.1508 | . 13108 | . 86892 |  |
|  | . 9521 | . 0479 | . 0194 | . 7000 | . 7544 | . 1510 | 3122 | 6877 |  |
|  | . 9546 | - 0454 | . 0183 | . 7039 | . 7532 | . 1512 | . 3137 | . 6863 | 18 |
|  |  | . 0429 | . 0173 | - 7077 | . 7520 | . 1514 | 3151 | . 6849 |  |
|  |  | . 0404 | . 0163 | 7116 | . 7508 | . 1516 | 3166 | 6834 |  |
| 45 | . 49622 | . 50378 | 2.0152 | . 57155 | 1.7496 | 1.1518 | . 13180 | . 86820 | 15 |
|  | . 9647 | . 0353 | . 0142 | . 7193 | . 7484 | . 1520 | . 3194 | . 6805 | 14 |
|  | - 9672 | - 0328 | . 0132 | - 7232 | . 7473 | . 1522 | . 3209 | . 6791 | 13 |
| 48 | - 9697 | . 0303 | . 0122 | - 7270 | . 746 | . 1524 | 3223 | 6776 | 12 |
|  | . 9723 | 0277 | . 0111 | 7309 | . 7449 | . 1526 | 3238 | 6762 | 11 |
|  | . 49748 | . 50252 | 2.0101 | . 57348 | 1.7437 | 1.1528 | . 13252 | . 86748 | 10 |
|  |  | 227 | . 0091 | 886 | . 7426 | . 1530 | 3267 | 733 |  |
|  | . 9798 | 0202 | . 0081 | 7425 | . 7414 | . 1531 | 3281 | 6719 |  |
|  | - 9823 | - 0176 | . 0071 | - 7464 | . 7402 | . 1533 | 3296 | 6704 |  |
|  | -9849 | - 0151 | . 0061 | - 7502 | $\begin{array}{r}.7390 \\ \hline 7379\end{array}$ | . 1535 | 3310 | 6690 |  |
|  | . 49874 | . 50126 | 2.0050 | . 57541 | 1.7379 | 1.1537 | 星325 | 675 |  |
|  | . 9899 | 01 | . 0040 | 580 | . 385 | . 1539 | 339 | 661 |  |
|  |  |  | . 0030 | - 7619 | . 7355 | . 1541 | 354 | 646 |  |
|  |  |  | . 002 |  | . 73 | . 1543 | 析 | 632 |  |
| 60 | . 50000 | . 000 | . 0000 | . 7735 | . 7320 | . 1547 | $\begin{array}{r}3388 \\ 3397 \\ \hline\end{array}$ | 6602 |  |
|  |  |  | Secant |  | an | osec'nt | Vrs. cos. | ine |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  | $149^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sin | Vrs. cos. | Cosec'nt | Tang. |  | t. | n. | ine. |  |
| 0 | . 50000 | . 50000 | 2.0000 | . 57735 | 1.7320 | 1.1547 | . 13397 | 2 | 60 |
| 1 | . 0025 | . 49975 | 1.9990 | - 7774 | . 7309 | 1549 | 3412 | 88 | 59 |
| 2 | . 0050 | 9950 | . 9980 | . 7813 | . 7297 | . 1551 | 3426 | 6573 |  |
| 3 | . 0075 | . 9924 | . 9970 | - 7851 | . 7286 | . 1553 | 3441 | 559 |  |
| 4 | . 0101 | 9899 | . 9960 | . 7890 | . 7274 | 1555 | 3456 | 6544 |  |
| 5 | . 50126 | . 49874 | 1.9950 | . 57929 | 1.7262 | 1.1557 | . 13470 | . 86530 |  |
| 6 | . 0151 | 9849 | . 9940 | - 7968 | 7251 | . 1559 | 3485 | 6515 |  |
| 7 | . 0176 | 98\% 4 | . 9930 | . 8007 | 7239 | .1561 | 3499 | 6500 |  |
| 8 | . 0201 | - 9799 | . 9920 | . 8046 | . 72228 | . 1562 | ${ }_{3} 3514$ | 6486 |  |
| 9 | . 0226 | . 9773 | . 9910 | . 8085 | . 7216 | . 1564 | 3529 | 6471 |  |
| 10 | . 50252 | . 49748 | 1.9900 | . 58123 | 1.7205 | 1.1566 | . 13543 | . 86457 |  |
| 11 | 0277 | 9723 | . 9890 | . 8162 | . 7193 | . 1568 | 3558 | . 6442 |  |
| 12 | . 0302 | 9698 | . 9880 | . 8201 | . 7182 | . 1570 | 3572 | . 6427 |  |
| 13 | . 0327 | . 9673 | . 9870 | . 8240 | . 7170 | . 1572 | 3587 | 6413 |  |
| 14 | . 0352 | 9648 | . 9860 | 8279 | 7159 | . 1574 | 3602 | 6398 |  |
| 15 | . 50377 | . 49623 | 1.9850 | . 58318 | 1.7147 | 1.1576 | . 13616 | . 86383 |  |
| 16 | . 0402 | 9597 | . 9840 | . 8357 | . 7136 | . 1578 | 3631 | . 6369 |  |
| 17 | . 0428 | 9572 | . 9830 | . 8396 | . 7124 | . 1580 | . 3646 | . 6354 |  |
|  | . 0453 | 9547 | .9820 | 435 | . 7113 | . 1582 | 3660 | 6339 |  |
| 19 | . 0478 | 9522 | 9811 | 8474 | 7101 | . 1584 | 3675 | 6325 | 4 |
| 20 | . 50503 | . 49497 | 1.9801 | . 58513 | 1.7090 | 1.1586 | . 13690 | . 86310 | 40 |
|  | - 0:528 | . 9172 | . 9791 | . 8.552 | . 7079 | . 1588 | 3704 | . 6295 |  |
|  | . 0553 | 9417 | . 9781 | . 8.591 | 7067 | . 1590 | 3719 | 6281 |  |
| 23 | . 0578 | . 9422 | . 9771 | . 8630 | .70.56 | .1592 | . 3734 | 6266 | 37 |
| 24 | . 0603 | 9397 | . 9761 | 8670 | . 7044 | . 1594 | 3749 | 6251 |  |
|  | . 50628 | . 49371 | 1.9752 | . 58709 | 1.7033 | 1.1596 | 13763 | 86237 |  |
|  | . 0653 | 9346 | . 9742 | . 8748 | 7022 | . 1598 | 3778 | 6222 |  |
| 27 | . 0679 | . 9321 | . 9732 | . 8787 | . 7010 | . 1600 | . 3793 | 6207 |  |
| 28 | . 0704 | - 9296 | . 9722 | . 8826 | . 6999 | . 1602 | 3807 | 6192 |  |
|  | . 0729 | 9271 | . 9713 | 865 | . 6988 | . 1604 | 3822 | 6178 |  |
|  | . 50754 | . 49246 | 1.9703 | . 58904 | 1.6977 | 1.1606 | . 13837 | . 86163 | 30 |
|  | . 0779 | . 9221 | . 9693 | . 8944 | . 6965 | . 1608 | . 3852 | . 6148 |  |
|  | . 0804 | . 9196 | . 9683 | . 8983 | . 6954 | . 1610 | 3867 | 6133 |  |
|  | . 0829 | . 9171 | . 9674 | 9022 | . 6943 | . 1612 | 3881 | 6118 |  |
|  | 0854 | 9146 | . 9664 | 9061 | . 6931 | . 1614 | 3896 | 6104 |  |
|  | . 50879 | . 49121 | 1.9654 | . 59100 | 1.6920 | 1.1616 | . 13911 | . 86089 |  |
|  | 0904 | . 9096 | . 9645 | . 9140 | . 6909 | . 1618 | 3926 | 6074 |  |
|  | - 0929 | . 9071 | . 9635 | . 9179 | . 6898 | . 1620 | 3941 | 6059 |  |
|  | - 0954 | - 9046 | . 9625 | . 9218 | . 6887 | . 1622 | 3955 | 6044 |  |
|  | 0979 | . 9021 | . 9616 | 9258 | . 6875 | . 1624 | 3970 | 6030 |  |
|  | . 51004 | . 48996 | 1.9606 | . 59297 | 1.6864 | 1.1626 | . 13985 | . 86015 |  |
|  | . 1029 | . 8971 | . 9596 | . 9336 | . 6853 | . 1628 | 4000 | . 6000 |  |
| 42 | . 1054 | . 8946 | . 9587 | . 9376 | .6842 | . 1630 | . 4015 | . 5985 |  |
|  | 1079 | . 8921 | . 9577 | . 9415 | . 6831 | . 1632 | . 4030 | 5970 |  |
|  | 1104 | 8896 | . 9568 | 9454 | . 6820 | . 1634 | 4044 | 5955 |  |
|  | . 51129 | . 48871 | 1.9558 | . 59494 | 1.6808 | 1.1636 | . 14059 | . 85941 |  |
|  | . 1154 | . 8846 | . 9549 | . 9533 | . 6797 | . 1638 | . 4074 | . 5926 |  |
|  | 1179 | . 8821 | . 9539 | - 9572 | . 6786 | . 1640 | . 4089 | 5911 |  |
|  | . 1204 | . 8796 | . 9530 | . 9612 | . 6775 | . 1642 | 4104 | 5896 |  |
|  | 1229 | . 8771 | . 9520 | - 9651 | . 6764 | . 1644 | 4119 | 5881 |  |
|  | . 51254 | . 48746 | 1.9510 | . 59691 | 1.6753 | 1.1646 | . 14134 | . 85866 | 10 |
|  | . 1279 | . 8721 | . 9501 | . 9730 | . 6742 | . 1648 | 4149 | 585 |  |
| 52 | - 1304 | . 8696 | . 9491 | . 9770 | . 6731 | . 1650 | 4164 | . 5836 |  |
|  | - 1329 | . 8671 | . 9482 | . 9809 | . 6720 | . 1652 | . 4178 | . 5821 |  |
|  | 1354 | 8646 | . 9473 | 9849 | . 6709 | 1654 | 4193 | 5806 |  |
|  | . 51379 | . 48621 | 1.9463 | . 59888 | 1.6698 | 1.1656 | . 14208 | 5791 |  |
|  | . 1404 | . 8596 | . 9454 | . 9928 | . 6687 | . 1658 | . 4223 | 5777 |  |
|  | - 1429 | . 8571 | . 9444 | 9967 | . 6676 | . 1660 | 4238 | 762 |  |
|  | 1454 | 546 | . 9435 | . 60007 | . 6665 | . 1662 | 4253 | 747 |  |
| 59 | - 1479 | 8521 | . 9425 | 0046 | . 6654 | . 1664 | 4268 | 732 |  |
| 60 | 1504 | 8496 | . 9416 | 0086 | . 6643 | . 1666 | 4283 | 5717 | 0 |
|  |  |  |  |  |  |  |  |  |  |


| 3 |  | Natural Trigonometrical Functions. |  |  |  |  |  | $148^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | Sine. | Vrs. cos. | 'Cosec'nt ${ }^{\text {d }}$ | Tang. | Cotang. | Secant. | Trs. sin. | Cosinc. | II |
| 0 | . 51504 | . 48496 | 1.9416 | . 60086 | 1.66 | 1.1666 | 14283 | . 8 ล̄717 |  |
| 1 | . 1529 | . 8171 | . 9407 | . 0126 | . 6632 | . 1658 | 4298 | 5702 |  |
| 2 | -1594 | . 8446 | . 9397 | . 0165 | . 6621 | . 1670 | 4313 | . 5687 |  |
| 3 | . 1578 | . 8421 | . 9388 | . 0205 | . 6610 | .167 | 4328 | - 5672 |  |
| 4 | . 1603 | . 8396 | . 93778 | -0:24 | . 6599 | . 1674 | 4343 | - 5657 |  |
| 5 | . 51628 | . 48371 | 1.9369 | . 60284 | 1.6588 | 1.1676 | . 14358 | . 85.642 |  |
| 6 | - 1653 | . 8347 | . 9360 | . 0324 | . 6577 | . 1678 | . 4373 | . 5627 |  |
| 7 | . 1678 | . 8322 | .9350 | . 0363 | . 6566 | . 1681 | . 4388 | - 5612 |  |
| 8 | - 1703 | . 8297 | . 9341 | . 0403 | . 6555 | . 1683 | 4403 | 5997 |  |
| - | . 1728 | - 8272 | . 9332 | . 0443 | . 6544 | . 1685 | . 4418 | - 5582 |  |
| 10 | . 51753 | . 48247 | 1.9322 | . 60483 | 1.6534 | 1.1687 | . 14433 | . 85556 |  |
| 11 | . 1778 | . 8222 | . 9313 | . 0522 | . 6523 | . 1689 | - 4448 | . 5551 |  |
| 12 | - 1803 | . 8197 | . 9304 | . 0562 | . 6512 | . 1691 | . 4463 | 5536 |  |
| 13 | - 1827 | . 8172 | .9295 | - 0602 | . 6501 | .1693 | 4479 | 5521 |  |
| 14 | - 1852 | . 8147 | . 9285 | - 0642 | . 6490 | . 1695 | - 4494 | - 5506 |  |
| 15 | . 51877 | . 48123 | 1.9276 | . 60681 | 1.6479 | 1.1697 | 14509 | . 85491 |  |
| 16 | . 1902 | . 8098 | . 9267 | . 0721 | . 6469 | . 1699 | 4524 | - 5476 |  |
| 17 | . 1927 | . 8073 | . 9258 | . 0761 | . 6458 | . 1701 | - 4.3 .39 | - 5461 |  |
| 18 | - 1952 | . 8048 | . 9248 | . 0801 | . 6447 | . 1703 | - 4554 | 5446 |  |
| 19 | 1977 | 8023 | . 9239 | 0841 | . 6436 | . 1705 | 4569 | 5431 |  |
| 20 | . 52002 | . 47998 | 1.9230 | . 60881 | 1.6425 | 1.1707 | . 14584 | . 8.5416 |  |
| 21 | 2026 | - 7973 | . 9221 | . 0920 | . 6415 | . 1709 | - 4599 | . 5400 |  |
| 22 | . 2051 | - 7949 | . 9212 | . 0960 | . 6404 | . 1712 | - 4615 | . 538.5 |  |
| 23 | 2076 | . 7924 | . 9203 | 1000 | . 6393 | . 1714 | 4630 | 5370 |  |
| 24 | 2101 | 899 | . 9193 | 1040 | . 6383 | . 1716 | 4645 | 535.5 |  |
| 25 | .52126 | . 47874 | 1.9184 | . 61080 | 1.6372 | 1.1718 | . 14660 | . 83340 |  |
| 26 | 2151 | - 7849 | . 9175 | - 1120 | . 6361 | . 1720 | - 4675 | - 5825 |  |
|  | 2175 | . 7824 | . 9166 | . 1160 | . 6350 | . 1722 | . 4690 | . $5: 309$ |  |
|  | 2200 | . 7800 | . 9157 | - 1200 | . 6340 | . 1724 | - 4706 | 5294 |  |
| 29 | 2225 | . 7775 | . 9148 | - 1240 | . 6329 | . 1726 | - 4721 | - 5279 |  |
| 3 | . 522250 | . 47750 | 1.9139 | . 61280 | 1.6318 | 1.1728 | . 14736 | . 85264 |  |
|  | 2275 |  | . 9130 | 1320 | . 6308 | . 1730 | . 4751 | - 5249 |  |
|  | - 22299 | 00 | . 9121 | - 1360 | . 6297 | . 1732 | . 4766 | 5234 |  |
|  | - 2349 | . 7651 | . 9102 | 1440 | . 6276 | . 1737 | 4797 | 5203 |  |
|  | . 52374 | . 47626 | 1.9093 | . 61480 | 1.6265 | 1.1739 | . 14812 | . 85188 |  |
|  | 2398 | 601 | . 9084 | - 1520 | . 6255 | . 1741 | . 4827 | 5173 |  |
|  | . 2423 | 7577 | . 9075 | . 1560 | . 6244 | . 1743 | . 4842 | 5157 |  |
|  | 2448 |  | . 9066 | 1601 | . 6233 | . 1745 | 48.5 | 5142 |  |
| 39 | 2473 | 7527 | . 9057 | 1641 | . 6223 | . 1747 | 4873 | 5127 |  |
| 40 | . 52498 | . 47502 | 1.9048 | . 61681 | 1.6212 | 1.1749 | . 14888 | .8.5112 |  |
| 41 | 2522 | - 7177 | . 9039 | . 1721 | . 6202 | . 1751 | . 4904 | . 5096 |  |
| 4 | 2547 | - 7453 | . 9030 | . 1761 | . 6191 | . 1753 | 4919 | 5081 |  |
| 43 | 2572 | . 7428 | . 9021 | . 1801 | . 6181 | . 1756 | 4934 | 5066 |  |
| 44 | 2597 | . 7403 | . 9013 | . 1842 | . 6170 | . 1758 | 4949 | 5050 |  |
| 4. | . 52621 | . 47379 | 1.9004 | . 6188.2 | 1.6160 | 1.1760 | . 14965 | . 8.503 .5 |  |
| 4 | . 2646 | - 7354 | . 8995 | - 1922 | . 6149 | . 1162 | - 4980 | 5020 |  |
| 47 | - 2671 | - 7329 | . 8986 | . 1962 | . 6139 | . 1764 | - 4995 | 5004 |  |
|  | . 2695 | - 7304 | . 8977 | - 2004 | . 6128 | . 1766 | - 5011 | - 4989 |  |
| 49 | - 2720 | - 7280 | . 8968 | - 2043 | . 6118 | . 1768 | 5026 | - 4974 |  |
|  | . 52745 | . 47255 | 1.8959 | . 62083 | 1.6107 | 1.1770 | . 15041 | . 81959 |  |
|  | - 2770 | 7230 | . 8950 | - 2123 | . 6097 | . 1772 | 5057 | 4943 |  |
|  | - 2794 | - 7205 | . 8941 | - 2164 | . 6086 | . 1775 | - 5072 | 4928 |  |
|  | . 2819 | . 7181 | . 89932 | . 2204 | . 6076 | .1777 .1779 | . 5087 | 4912 |  |
|  | . 5 | . 47131 | 1.8915 |  | 1.6055 | 1.1781 | . 15118 | 4882 |  |
|  | - |  | . 8906 |  | . 6045 | . 1783 | 133 | 866 |  |
|  | 918 | 87 | . 8897 | 迷 | . 6034 | . 1785 | 149 | 4851 |  |
|  | 942 | 057 | . 8888 | 406 | . 6024 | . 1787 | 164 | 4836 |  |
|  | 2967 | 7033 | . 8879 | 416 | . 6014 | . 1790 | 5180 | 4820 |  |
| 60 | 2992 | 7008 | . 8871 | 487 | . 6003 | . 1792 | 5195 | 4805 |  |
| M. | Cosine. | Vrs. sin. | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | Sine |  |


| 3 |  | Natural Trigonometrical Functions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine | Vrs. cos. | Cosec'nt | Tang. | ang. | Secant. | Vrs. | sine. |  |
|  | . 52 | . 47 | 1.8 |  | 1.6 | 1. |  |  |  |
| 1 | 3016 | 983 | 862 | 527 | . 5993 | 794 | 11 | 4789 |  |
| 2 | . 3041 | 959 | . 8853 | 568 | . 5983 | . 1796 | 5226 | . 4774 |  |
| 3 | . 3066 | . 6934 | . 8844 | ${ }^{2608}$ | . 5972 | . 1798 | . 5241 | . 4758 |  |
| 4 | . 3090 | . 6909 | . 8836 | 2649 | 5962 | 1800 | 5257 | 4743 |  |
| 5 | . 53115 | . 46885 | 1.8827 | . 62689 | 1.5952 | 1.1802 | . 15272 | . 84728 |  |
| 6 | . 3140 | - 6860 | . 8818 | . 2730 | . 5941 | . 1805 | . 5288 | . 4712 |  |
| 7 | . 3164 | - 6835 | . 8809 | - 2770 | . 5931 | . 1807 | 03 | . 4697 |  |
| 8 | . 3189 |  | . 88801 | . 2811 | . 5921 | .1809 | 5319 | . 4681 |  |
| 10 | . 53238 | . 467862 | 1.8783 | . 62892 | 1.5900 | 1.1813 | . 15350 | . 84650 |  |
| 11 | . 3263 | . 6737 | . 8775 | 933 | . 5890 | . 1815 | . 5365 | . 4635 |  |
| 12 | . 3288 | . 6712 | . 8766 | 2973 | . 5880 | . 1818 | 5381 | . 4619 |  |
| 13 | . 3312 | . 6688 | . 8757 | . 3014 | . 5869 | . 1820 | 5396 | . 4604 |  |
| 14 | . 3337 | . 6663 | . 8749 | 3055 | . 5859 | . 1822 | 5412 | 4588 |  |
| 15 | . 53361 | . 46638 | 1.8740 | . 63095 | 1.5849 | 1.1824 | . 15427 | . 84573 |  |
| 16 | 3386 | - 6614 | . 8731 | 3136 | . 5839 | . 1826 | 5443 | . 4557 |  |
| 17 | . 3411 | . 6589 | . 8723 | . 3177 | . 5829 | . 1828 | . 5458 | . 4542 |  |
| 18 | . 3435 | . 6565 | . 8714 | . 3217 | . 5818 | . 1831 | 5474 | . 4526 |  |
| 19 | 3460 | 40 | . 8706 | 3258 | . 5808 | . 1833 | 5489 | 4511 |  |
| 20 | . 53484 | . 46516 | 1.8697 | . 63299 | 1.5798 | 1.1835 | . 15505 | . 84495 |  |
| 21 | . 3509 | - 6491 | . 8688 | . 3339 | . 5788 | . 1837 | . 5520 | . 4479 |  |
| 22 | . 3533 | . 6466 | . 8680 | . 3380 | . 5778 | . 1839 | 536 | . 4464 |  |
| 23 | - 3558 | . 6442 | . 8671 | 3421 | . 9768 | . 1841 | 552 | 4448 |  |
|  | . 3583 | . 6417 | . 8663 | 3462 | . 5757 | . 1844 | 556 | 4433 |  |
| 25 | . 53607 | . 46393 | 1.8654 | 63503 | 1.5747 | 1.1846 | . 15583 | . 84417 |  |
| 27 | 632 | . 6368 | . 8646 | 3543 | . 5737 | . 1848 | 5598 | 4402 |  |
|  | . 3656 | . 6344 | . 8637 | 358 | . 5727 | . 1850 | . 5614 | . 4386 |  |
| 28 | . 3681 | - 6319 | . 8629 | . 3625 | . 5717 | . 1852 | 5630 | . 4370 |  |
| 29 | 3705 | 6294 | . 8620 | 3666 | . 5707 | . 1855 | 5645 | 5 |  |
| 30 | . 53730 | . 46270 | 1.8611 | . 63707 | 1.5697 | 1.1857 | . 15661 | . 84339 |  |
| 31 | . 3754 | - 6245 | . 8603 | 3748 | . 5687 | . 1859 | . 5676 | . 4323 |  |
| 32 | . 3779 | . 6221 | . 8595 | 3789 | . 5677 | . 1861 | 5692 | - 4308 |  |
|  | . 3803 | . 6196 | . 8586 | 3830 | . 5667 | . 1863 | 5708 | 4292 |  |
| 34 | 3828 | . 6172 | . 8578 | 3871 | . 5657 | . 1866 | 5723 | 4276 |  |
| 35 | . 53852 | . 46147 | 1.8569 | . 63912 | 1.5646 | 1.1868 | . 15739 | . 84261 |  |
|  | - 3877 |  | . 8561 | 953 | . 5636 | . 1870 | 755 | 4245 |  |
| 37 | - 3901 | . 6098 | . 8552 | 994 | . 5626 | . 1872 | 5770 | 4229 |  |
| 39 | 3950 |  | . 8535 | 4076 | . 5 | . 187 | . 580 |  |  |
| 40 | . 53975 | . 46025 | 1.8527 | . 64117 | 1.5596 | 1.1879 | . 15817 | . 84182 |  |
| 41 | . 3999 | - 6000 | . 8519 | . 4158 | . 5586 | . 1881 | . 5833 | . 8167 |  |
| 42 | . 4024 | . 5976 | . 8510 | . 4199 | . 5577 | . 1883 | . 5849 | . 4151 |  |
| 3 | . 4048 | . 5951 | . 8502 | . 4240 | . 556 | . 1886 | 805 | 4135 |  |
| 5 | 4073 | 5927 | . 8493 | 4281 | . 5557 | 1888 | 5880 | 4120 |  |
| 45 | . 54097 | . 45902 | 1.8485 | . 64322 | 1.5547 | 1.1890 | . 15896 | . 84104 |  |
| 46 | . 4122 | . 5878 | . 8477 | - 4363 | . 5537 | . 1892 | . 5912 | 4088 |  |
| 4 | . 4146 | . 5854 | : 8468 | . 4404 | . 5527 | . 1894 | 5927 | 4072 |  |
| 48 | . 4171 | . 5829 | . 8460 | 4446 | . 5517 | . 1897 | 5943 | 4057 |  |
| 49 | 4195 | . 5805 | . 8452 | 4487 | . 5507 | 1899 | 5959 | 4041 |  |
| 50 | . 54220 | . 45780 | 1.8443 | . 64528 | 1.5497 | 1.1901 | . 15975 | . 84025 |  |
|  | 4244 | 5 | . 8435 | . 4569 | . 5487 | . 1903 | 5991 | 009 |  |
|  | . 4268 | - 5731 | . 8427 | - 4610 | . 5477 | . 1906 | 5006 | 3993 |  |
|  | - 4293 | - 5707 | . 8418 | - 4652 | . 5467 | . 1908 | 022 | 3978 |  |
|  | . 543172 |  | .8410 1.8402 | 4693 | . 1.5448 | .1910 1.1912 | . 6038 | 3962 |  |
|  | . 4366 |  | . 839 | . 4775 | . 543 | . 1915 | 70 | 930 |  |
|  | . 4391 |  | . 8385 | . 4817 | . 5428 | . 1917 | 85 | 14 |  |
|  |  |  | . |  | . 518 | . 1919 | 101 | 999 |  |
|  | . 4439 |  | . 8369 |  | . 5108 | . 1921 | 6117 | 3883 |  |
| 60 | . 4464 | 536 | . 8361 | 941 | . 5399 | . 1922 | 6133 | 3867 |  |
|  | Sin | Vrs. | ecant | Co | Tang | sec' | Vrs, |  |  |


| $33^{\circ}$ |  | Nat |  |  |  |  |  | $146^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | nt |  | g. | Secant. | Vrs. sin. | ine. |  |
| 0 | . 54 | . 4 | 1. | . 6 | 1.5 | 1.1924 | 16133 |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 13 | 87 | 44 |  | 9 | 28 | 65 |  |  |
|  | - 4537 | 63 | . 8336 | 60 | 5369 | . 1930 | 180 | 819 |  |
|  | . 4561 | 5438 | 8328 | 5106 | 359 | 1933 | 6196 | 3804 |  |
|  | . 54586 | . 45414 | 1.8320 | . 65148 | 1.5350 | 1.1935 | . 16212 | . 83788 |  |
| 6 | - 4610 | . 5390 | 8311 | 5189 | 5340 | . 1937 | 6228 | - 3772 |  |
| 7 | - 4634 | . 5365 | . 8303 |  |  | . 1939 | 244 | - 3756 |  |
| 9 | . 4683 | 5317 | . 8287 | . 5314 | 5311 | 1944 | 276 |  |  |
| 10 | . 54708 | . 45292 | 1.8279 | . 65355 | 1.5301 | 1.1946 | . 16292 | . 83708 |  |
| 11 | . 4732 | 5268 | . 8271 | . 5397 | . 5291 | . 1948 | 6308 | 3692 |  |
| 12 | . 4756 | 5244 | . 8263 | . 5438 | . 5282 | . 1951 | 323 | 676 |  |
| 13 | . 4781 | 5219 | . 8255 | 80 | . 5272 | 1953 | 339 | 660 |  |
| 14 | . 4805 | 5195 | . 8246 | 5521 | . 5262 | 1955 | 6355 | 644 |  |
| 15 | . 54829 | . 45171 | 1.8238 | .65563 | 1.5252 | 1.1958 | . 16371 | . 83629 |  |
| 16 | . 4854 | 5146 | . 8230 | 5604 | . 5243 | . 1960 | 6387 | . 3613 |  |
| 17 | . 4878 | 22 | 222 | 646 | .5233 | . 1962 | 6403 | 3597 |  |
| 18 | . 4902 | . 5098 | . 8214 | . 5688 | . 5223 | . 1964 | . 6419 | - 3581 |  |
| 19 | . 4926 | 5073 | . 8206 | . 5729 | . 5214 | . 1967 | 6435 | . 3565 |  |
|  | . 54951 | . 45049 | 1.8198 | . 65771 | 1.5204 | 1.1969 | . 16451 | . 83549 |  |
|  | 4975 | 5025 | . 8190 | 813 | . 5195 | 1971 | 6467 | 3533 |  |
|  | . 4999 | . 5000 | . 8182 | . 5854 | . 5185 | . 1974 | 6483 | 3517 |  |
|  |  | . 4976 | . 8174 | 5896 | . 5175 | . 1976 | 499 | 3501 |  |
|  | . 5048 |  | . 8166 | 38 | . 5166 | . 1978 | 6515 | 3485 |  |
|  | . 55072 | . 44928 | 1.8158 | . 65980 | 1.5156 | 1.1980 | . 16531 | . 83469 |  |
|  | . 5097 | . 4903 | . 8150 | . 6021 | . 5147 | . 1983 | - 6547 | . 3453 |  |
|  |  |  | . 8142 |  | . 5137 | . 1985 |  | 437 |  |
|  | . 5145 |  | . 8134 |  | . 5127 | . 1987 |  | 121 |  |
|  | . 5169 | 830 | . 8126 | 147 | 5118 | 1990 | 6995 | 3405 |  |
|  | . 55194 | . 44806 | 1.8118 | . 66188 | 1.5108 | 1.1992 | . 16611 | . 83388 |  |
|  |  |  | . 8110 |  | . 5099 | . 1994 |  |  |  |
|  |  |  | . 8102 |  | . 508 | . 199 |  |  |  |
|  |  |  | . 8094 |  | . 5080 | . 1999 | 660 | 340 |  |
|  |  | O | . 8086 | 535 | . 5070 | . 2001 | 析 | 3324 |  |
|  | . 55315 | . 44685 | 1.8078 | . 66398 | 1.5061 | 1.2004 | 8 | 3308 |  |
|  |  |  | . 8070 |  | . 5051 | . 2006 |  |  |  |
|  |  |  | . 80.8 |  | . 50 | . 2008 | 24 |  |  |
|  |  |  | . 8054 |  | . 503 | . 2010 |  | 260 |  |
|  | 5412 |  | 8047 |  | 5023 | 2013 | 756 | 3244 |  |
|  | . 55436 | . 44564 | 1.8039 | . 66608 | 1.5013 | 1.2015 | . 16772 | . 83228 |  |
|  |  | . 4540 | . 8031 | . 6650 | . 5004 | . 2017 | 88 | 3211 |  |
|  |  |  | . 802 |  | . 499 | . 202 |  | 195 |  |
|  |  | 191 | . 8015 |  | . 498 | . 202 | 21 | 3179 |  |
|  |  | . 4467 | . 8007 | . 6776 | . 497 | . 2024 | 6837 | 3163 |  |
|  | . 55557 | . 44443 | 1.7999 | . 66818 | 1.4966 | 1.2027 | . 16853 | . 83147 |  |
|  | . |  | . 7992 |  | . 4957 | . 2 | 69 | 131 |  |
|  | . 5605 |  | . 7981 | - | . 494 | . 2031 | 85 | 115 |  |
|  |  |  | . 7976 | . 69 | . 493 | . 20 | 901 |  |  |
|  | - |  | 7968 | 㖪 | . 4928 | . 2036 | 6918 | 082 |  |
|  | . 55678 | . 44322 | 1:7960 | . 67028 | 1.4919 | 1.2039 | 9934 | . 83066 |  |
|  | . 5702 |  | . 7953 | . | . 4910 | . 2041 | 950 | 3050 |  |
|  |  |  | . 7945 |  | . 49 | . 20 | 66 | 034 |  |
|  | 5750 | 250 | 7937 | 107 | . 4891 | 2046 | 982 | 17 |  |
|  | 74 | 25 | 7929 | 197 | 4881 | 2048 | 699 | 3001 |  |
|  |  | . 44201 | 1.7921 | . 67239 | 1.4872 | 1.2050 | . 17015 | 2985 |  |
|  |  |  | . 7914 |  |  |  | - 7031 | 69 |  |
|  |  |  | . 7906 |  | . 48 | . 2 | - 7047 | 952 |  |
|  |  |  |  |  | . 48 |  |  |  |  |
| 60 | 59 | . 4081 | . 7883 |  | . 482 | . 20 | . 7096 |  |  |
| M. | Cosine | Vrs. sis | Secant. | Cotang | n | ec' | s. |  |  |


| M. | ne | Vrs. cos. | Co |  |  | Secant. | in. | Cosine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 5.5 | . 4 |  | . 67 | 1.4 | 1. | 96 | 04 |  |
|  |  |  | . 7875 | . 7493 | . 4816 | . 2064 | 12 | 87 |  |
|  |  |  |  |  | 4807 | 2067 | 7129 | 2871 |  |
| 3 |  |  | . 7860 | 578 | 4798 | 2069 | 714.5 | 2855 |  |
|  |  |  | 5 | 7620 | 478 | . 2072 | 1161 | 839 |  |
|  |  |  | 14 | 7663 | 1.4779 | 1.2074 | . 11178 | 2822 |  |
|  | 64 | 36 | . 7837 | 7705 | . 4770 | 2076 | 7194 | 306 |  |
| 7 | . 6088 | 12 | 29 | 747 | 4761 | 2079 | 7210 | 2790 |  |
|  |  |  |  |  |  |  | 21 | 2773 |  |
|  |  | 864 | . 7814 | 这 | 4742 | 2083 | . 7243 | 2757 |  |
| 0 | . 56160 | . 43810 | 1.7806 | . 6787 | 1.4733 | 1.2086 | . 17259 | . 82741 |  |
| 11 | . 6184 | 816 | . 7798 | 7917 | 4724 | 2088 | . 7276 | 2724 |  |
| 12 | . 6208 | - 3792 | . 7791 | . 7960 | . 4714 | . 2091 | 7292 | 2708 |  |
| 3 | . 6232 |  | . 7783 | . 8002 | . 4705 | . 2093 | 7308 | 2692 |  |
| 14 | 256 | 43 | . 7776 | 8045 | . 4696 | . 2095 | 7325 | 2675 |  |
| 15 | . 56280 | . 43719 | 1.7768 | . 68087 | 1.4687 | 1.2098 | . 17341 | . 82659 |  |
| 16 | . 6304 | . 3695 | . 7760 | 8130 | . 4678 | . 2100 | . 7357 | . 2643 |  |
| 17 |  |  | . 7753 | . 8173 | . 4669 | . 2103 | 7374 | 2626 |  |
| 18 | . 6353 |  | . 7745 | 8215 | . 4659 | 2105 | . 7390 | 210 |  |
| 19 | 377 | 623 | . 7738 | 258 | . 4650 | 2107 | 7406 | 593 |  |
| 20 | . 56401 | . 43599 | 1.7730 | . 68301 | 1.4641 | 1.2110 | . 17423 | . 82577 |  |
|  | . 6425 | 75 | . 7723 | 8343 | . 4632 | 2112 | 7439 | 2561 |  |
|  | . 6449 |  | . 7715 | 38 | .4623 | . 2115 | . 7456 | 254 |  |
| 23 | . 6473 |  | . 7708 | 129 | . 461 | . 2117 | . 7472 | . 2528 |  |
|  | . 6497 | . 3503 | . 7700 | 8471 | . 4605 | . 2119 | 7489 | 2511 |  |
|  | . 56521 | . 43479 | 1.7693 | . 68514 | 1.4595 | 1.2122 | . 17505 | . 82495 |  |
|  | . 6545 |  | . 7685 | $5 \overline{7}$ | . 4586 | . 2124 | . 7521 | 2478 |  |
| 27 |  |  | . 7678 | . 8600 | . 457 | 2127 | 7538 | 462 |  |
| 29 |  |  | . 76 |  |  |  |  |  |  |
|  | . 56641 | . 43359 | 1.7655 | . 68728 | 1.4550 | 1.2134 | . 17587 | . 82413 |  |
|  |  |  | . 7648 |  | . 4541 | . 2136 | 7604 |  |  |
| 21 |  |  | . 7640 | - 8814 | . 4532 | . 2139 | 620 |  |  |
|  | . 6712 |  | . 763 | 57 | . 4523 | . 2141 | 637 | 363 |  |
|  |  |  |  | 889 | . 45 |  | 1083 |  |  |
|  |  | 239 | 1.7618 |  | 1.45 | 1.2146 |  |  |  |
|  | . 6784 | 216 | . 7610 | 985 | . 4496 | . 2149 | 686 | 2314 |  |
|  |  |  | . 7603 | 028 | . 448 | . 2151 | 7703 | 297 |  |
|  |  |  | . 7596 | 9071 | . 4478 | . 2153 | . 7719 | 280 |  |
| 9 | . 6856 | . 3144 | . 7588 | 9114 | . 4469 | .2156 | 7186 | 2264 |  |
| 40 | . 56880 | . 43120 | 1.7581 | . 69157 | 1.4460 | 1.2158 | 17752 | . 82247 |  |
| 41 | - 6904 | - 3096 | . 7573 | - 9200 | . 4451 | . 2161 | . 7769 | 2231 |  |
| 42 | . 6928 | - 3072 | . 7566 | . 9243 | . 4442 | . 2163 | 7786 | 2214 |  |
| 43 | . 6952 | . 3048 | . 7559 | - 9286 | . 4433 | . 2166 | 7802 | 2198 |  |
|  | . 6976 | . 3024 | 7551 | 9329 | 4424 | 2168 | 7819 | 2181 |  |
| 45 | . 57000 | . 43000 | 1.7544 | .69372 | 1.4415 | 1.2171 | . 17835 | . 82165 |  |
| , | . 7023 | . 2976 | . 7537 | - 9415 | . 4406 | . 2173 | 7852 | 2148 |  |
| 47 | - 7047 | - 2952 | . 7529 | 459 | . 4397 | . 2175 | 868 | 2131 |  |
| 48 | . 7071 | . 2929 | . 7522 | . 9502 | . 4388 | . 2178 | 7885 | 2115 |  |
| 49 | . 7095 | 2905 | 7514 | 9545 | . 4379 | . 2180 | 7902 | 209 |  |
| 51 | . 57119 | . 42881 | 1.7507 | . 69588 | 1.4370 | 1.2183 | . 17918 | . 8208 |  |
| 51 | - 7143 | - 2857 | . 7500 | - 9631 | . 4361 | . 2185 | 7935 | 2065 |  |
| 52 | . 7167 | . 2833 | . 7493 | - 9674 | . 4352 | . 2188 | 7951 | 204 |  |
| 53 | . 7191 | . 2809 | . 7485 | . 9718 | . 4343 | . 2190 | 968 | 2032 |  |
|  | 7214 | 2785 | . 7478 | 9761 | . 4335 | 2193 | 7985 | 2015 |  |
| 55 | . 57238 | . 42761 | 1.7471 | . 69804 | 1.4326 | 1.2195 | . 18001 | . 81998 |  |
|  | - 7262 | 2738 | .7463 | -9847 | 4317 | 2198 | 3018 | 1982 |  |
|  | 6 | 14 | . 7156 | 891 | . 4308 | 2200 | 035 | 965 |  |
|  |  | 90 | . 7449 | 934 | .4299 | .2203 | 051 | 948 |  |
| 59 |  |  | . 7442 | 977 | . 4290 | 2205 | 8068 | 1932 |  |
| 60 | 3. 8 | 42 | . 7434 | 21 | . 428 | 2208 | 8085 | 1915 |  |
|  | Cosin | Vres sin | Secant. | an | Tang | sec' | Vrs. cos |  |  |


|  |  | Natural Trigonometrical F |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sin | Vrs. cos. | Cosec'nt | Tang. |  | Secant. | Vrs. sin. | ine. |  |
|  | . 57358 | . 42 | 1.7434 | . 70021 | 1.4281 | 1.2 | . 18 | . 81915 |  |
|  | 7381 | 2618 | . 7427 | 0064 | . 4273 | . 2210 | . 8101 | 898 |  |
|  | 7405 | 2595 | . 7420 | 0107 | . 426 | . 2213 | 118 | 882 |  |
|  | . 7429 | 2571 | . 7413 | 0151 | 4255 | . 2215 | 135 | 1865 |  |
| 4 | . 7453 | 2547 | 7405 | 0194 | 4246 | 2218 | 8151 | 1848 |  |
| 5 | . 57477 | . 42523 | 1.7398 | . 70238 | 1.4237 | 1.2220 | . 18168 | . 81832 |  |
| 6 | 7500 | 2499 | . 7391 | 0281 | . 4228 | . 2223 | 8185 | . 1815 |  |
|  | - 7524 | 76 | . 7384 | 325 | 4220 | 2225 | 202 | 1798 |  |
| 8 | - 7548 | 22 | . 7377 | 0368 | . 4211 | . 2228 | 218 | 1781 |  |
| 9 | . 7572 | 2428 | . 7369 | 0412 | . 4202 | . 2230 | 8235 | 1765 |  |
| 10 | . 57596 | . 42404 | 1.7362 | . 70455 | 1.4193 | 1.2233 | . 18252 | . 81748 |  |
| 11 | 7619 | 2380 | . 7355 | 0499 | . 4185 | 2235 | . 8269 | 1731 | 49 |
| 12 | . 7643 | 357 | . 7348 | 0542 | . 4176 | . 2238 | . 8285 | . 1714 |  |
| 13 | . 7667 | . 2333 | . 7341 | . 0586 | . 4167 | . 2240 | . 8302 | 1698 |  |
| 14 | 7691 | 39 | 7334 | 0629 | 4158 | . 2243 | 8319 | 1681 |  |
| 15 | . 57714 | . 42285 | 1.7327 | . 70673 | 1.4150 | 1.2245 | . 18336 | . 81664 | 45 |
| 16 | . 7738 | . 2262 | . 7319 | 0717 | . 4141 | . 2248 | 8353 | . 1647 | 44 |
| 17 | . 7762 |  | . 7312 | . 0760 | . 4132 | . 2250 | 8369 | . 1630 |  |
|  | 7786 | 14 | . 7305 | 0804 | . 4123 | . 2253 | 8386 | 1614 |  |
| 19 | . 7809 | 2190 | 7298 | 0848 | . 4115 | 2255 | 8403 | 1597 | 41 |
| 20 | . 57833 | . 42167 | 1.7291 | . 70891 | 1.4106 | 1.2258 | . 18420 | . 81580 | 40 |
| 21 | . 7857 | 2143 | . 7284 | . 0935 | . 1097 | . 2260 | . 8137 | , 1563 |  |
| 22 | . 7881 | 2119 | . 7277 | 0979 | . 4089 | . 2263 | 453 | 1546 |  |
| 23 | . 7904 | . 2096 | . 7270 | 1022 | 4080 | . 2265 | 470 | 1530 |  |
| 24 | . 7928 | 2072 | . 7263 | 1066 | . 4071 | . 2268 | 8487 | 1513 |  |
|  | . 57952 | . 42048 | 1.7256 | . 71110 | 1.4063 | 1.2270 | . 18504 | . 81496 |  |
|  | 7975 | 2024 | . 7249 | 1154 | . 4054 | . 2273 | . 8521 | . 1479 |  |
|  | . 7999 | 2001 | . 7242 | 1198 | . 4045 | . 2276 | 8538 | . 1462 |  |
|  | . 802:3 | . 1977 | . 7234 | 1241 | . 4037 | . 2278 | 8555 | 1445 |  |
|  | . 8047 | 933 | . 7227 | 1285 | . 4028 | . 2281 | 8571 | 1428 |  |
| 30 | . 58070 | . 41930 | 1.7220 | . 71329 | 1.4019 | 1.2283 | . 18588 | . 81411 |  |
|  | . 8094 | . 1906 | . 7213 | 1373 | . 4011 | . 2286 | 8605 | 1395 |  |
|  | . 8118 | . 1882 | . 7206 | 1417 | . 4002 | . 2288 | 622 | 1378 |  |
|  | . 8141 | 859 | . 7199 | 1461 | . 3994 | . 2291 | 839 | 1361 |  |
| 34 | . 8165 | 1835 | 7192 | 1505 | . 3985 | . 2293 | 8656 | 1344 |  |
| 35 | . 58189 | . 41811 | 1.7185 | . 71549 | 1.3976 | 1.2296 | . 18673 | . 81327 |  |
| 36 | 12 | 1788 | . 7178 | 1593 | . 3968 | 2298 | 8690 | 1310 |  |
|  | . 8236 | - 1764 | . 7171 | . 1637 | . 3959 | . 2301 | 8707 | 1293 |  |
|  | . 8259 | . 1740 | . 7164 | . 1681 | . 39.51 | . 2304 | . 8724 | 1276 |  |
|  | 8283 | 1717 | 7157 | 1725 | . 3942 | 2306 | 8741 | 1259 |  |
| 40 | . 58307 | . 41693 | 1.7151 | . 71769 | 1.3933 | 1.2309 | . 18758 | . 81242 |  |
|  | . 8330 | - 1669 | . 7144 | 1813 | . 3925 | . 2311 | 8775 | 1225 |  |
|  | . 8354 | . 1646 | . 7137 | . 1857 | . 3916 | . 2314 | 8792 | 1208 |  |
|  | . 8378 | . 1622 | . 7130 | 1901 | . 3908 | 2316 | 8809 | 1191 |  |
|  | 8401 | 599 | . 7123 | 1945 | . 3899 | . 2319 | 8826 | 1174 |  |
| 45 | . 58425 | . 41575 | 1.7116 | . 71990 | 1.3891 | 1.2322 | . 18843 | . 81157 |  |
|  | . 8448 | . 1551 | . 7109 | 2034 | . 3882 | 2324 | 8860 | . 1140 |  |
|  | . 8472 | . 15.28 | . 7102 | 2018 | . 388 | . 2327 | 877 | 1123 |  |
| 48 | . 8496 | . 1504 | . 7095 | 2122 | . 3865 | . 2329 | 8894 | 1106 |  |
| 49 | 8519 | . 1481 | . 7088 | 2166 | . 3857 | 2332 | 8911 | 1089 |  |
| 50 | . 58543 | . 41457 | 1.7081 | . 72211 | 1.3848 | 1.2335 | . 18928 | . 81072 |  |
|  | . 8556 | 1433 | . 7075 | 2255 | . 3840 | . 2337 | 945 | 1055 |  |
|  | . 8590 | . 1410 | . 7068 | 299 | . 3831 | . 2340 | 962 | 1038 |  |
|  | . 8614 | 386 | . 7061 |  | . 3823 | 2342 | 8979 | 1021 |  |
|  | 8637 | 1363 | 7054 | 508 | . 3814 | 2345 | 8996 | 1004 |  |
| 55 | . 58661 | . 41339 | 1.7047 | 43:2 | 1.3806 | 1.2348 | 9013 | 0987 |  |
|  | . 8684 | . 1316 | . 7040 | 177 | . 3797 | 2350 | 9030 | 0970 |  |
|  | . 8i08 | 92 | . 7033 | 521 | . 3789 | 53 | 047 | 953 |  |
|  | . 8731 | 268 | . 7027 | 10 | . 3781 | 2355 | 064 | 0936 |  |
| 6 | . 8755 | 1245 | . 7020 | 2610 | . 3772 | . 2358 | 9081 | 0919 |  |
| 60 | . 8778 | 1221 | . 7013 | 2654 | . 3764 | . 2361 | 9098 | 0902 |  |
|  |  | rs. sin | Secant |  | an | ec | Vrs. cos. |  |  |

Natural Functions.

| $36^{\circ}$ |  | Nat |  |  |  |  |  | $143^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | nt |  | g. | t. | . | ine. |  |
|  | . 58778 | . 41221 | 1.7013 | . 72 | 1.3 | 1. | . 19 | 02 |  |
|  | . 8802 | 1198 | 7006 | . 2699 |  |  | 15 |  |  |
|  |  | 174 | . 6999 | 43 | . 3747 | . 2366 | 132 | 67 |  |
|  | . 8849 | 1151 | . 6993 | 88 | . 3738 | . 2368 | 9150 | S50 |  |
|  | . 8873 | 1127 | . 6986 | 2832 | 3730 | 2371 | 9167 | $08: 33$ |  |
|  | . 58896 | . 41104 | 1.6979 | . 72877 | 1.3722 | 1.2374 | . 19184 | . 80816 |  |
|  | . 8920 | - 1080 | . 6972 | 2921 | . 3713 | . 2376 | 9201 | . 0799 |  |
|  | . 8943 | - 1057 | 965 | 966 | . 3705 | . 2379 | 9218 | 782 |  |
|  | . 8967 | - 1033 | . 6959 | . 3010 | . 3697 | .2382 | 9235 | 0765 |  |
| 9 | 8990 | . 1010 | . 6952 | 3055 | . 3688 | 2384 | 9252 | . 0747 |  |
| 10 | . 59014 | . 40986 | 1.6945 | . 73100 | 1.3680 | 1.2387 | . 19270 | . 80730 | 50 |
| 11 | 9037 | 0963 | . 6938 | 3144 | . 3672 | . 2389 | 9287 | . 0713 | 49 |
| 12 | . 9060 | . 0939 | . 6932 | . 3189 | . 3663 | . 2392 | 304 | 0696 | 48 |
|  | . 9084 | . 0916 | . 6925 | . 3234 | . 3655 | . 2395 | 321 | 0679 | 47 |
|  | 9107 | 392 | . 6918 | . 3278 | 3647 | 2397 | 9338 | 0662 |  |
| 15 | . 59131 | . 40869 | 1.6912 | . 73323 | 1.3638 | 1.2400 | . 19355 | . 80644 | 45 |
| 16 | . 9154 | . 0845 | . 6905 | 3368 | . 3630 | . 2403 | - 9373 | 0627 | 44 |
|  | . 9178 | . 0822 | . 6898 | . 3412 | . 3622 | . 2405 | . 9390 | 0610 |  |
|  | . 9201 | . 0799 | . 6891 | 457 | . 3613 | . 2408 | 9407 | 0593 |  |
|  | 9225 | 0775 | . 6885 | 3502 | . 3605 | . 2411 | 9424 | 0576 | 41 |
| 20 | . 59248 | . 40752 | 1.6878 | . 73547 | 1.3597 | 1.2413 | . 19442 | . 80558 | 40 |
|  | 9272 | . 0728 | . 6871 | 92 | . 3588 | . 2416 | . 9459 | 0541 |  |
|  | 95 | . 0705 | . 6865 | 637 | 558 | . 2419 | 476 | 524 |  |
| 23 | . 9318 | . 0681 | . 6858 | 681 | . 3572 | . 2421 | 493 | . 0507 |  |
|  | 9342 | . 0658 | . 6851 | 3726 | . 3564 | . 2424 | 9511 | . 0489 | 36 |
|  | . 59365 | . 40635 | 1.6845 | . 73771 | 1.355 | 1.2427 | 19528 | . 80472 |  |
|  | 9389 | . 0611 | . 6838 | 3816 | . 3547 | . 2429 | 9545 | . 0455 |  |
| 27 | - 9412 | . 0588 | . 6831 | . 3861 | . 3539 | . 2432 | - 9562 | . 0437 |  |
|  | . 9435 | . 0564 | . 6825 | 3906 | . 3531 | . 2435 | 9580 | 0420 |  |
|  | 9459 | 0541 | 6818 | 3951 | . 3522 | . 2437 | 9597 | 0403 |  |
|  | . 59482 | . 40518 | 1.6812 | . 73996 | 1.3514 | 1.2440 | . 19614 | . 80386 |  |
|  | . 9506 | . 0494 | . 6805 | . 4041 | . 3506 | . 2443 | - 9632 | . 0368 |  |
|  | . 9529 | . 0471 | . 6798 | 4086 | . 3498 | . 2445 | 9649 | 0351 |  |
|  | . 9552 | . 0447 | . 6792 | 4131 | . 3489 | . 2448 | 666 | 334 |  |
|  | 9576 | . 0424 | . 6785 | 4176 | . 3481 | . 2451 | 9683 | 0316 |  |
|  | . 59599 | . 40101 | 1.6779 | . 74221 | 1.3473 | 1.2453 | . 19701 | . 80299 |  |
|  | 622 | 377 | . 6772 | 4266 | . 346 | . 2456 | 9718 | 0282 |  |
|  | 9646 | . 0354 | . 6766 | . 4312 | . 3457 | . 2459 | . 9736 | 0264 |  |
|  | . 9669 | 0331 | . 6759 | 4857 | . 3449 | . 2461 | 9753 | 247 |  |
|  | 9692 | 0307 | . 6752 | 4402 | . 3440 | . 2464 | 9770 | 0230 |  |
|  | . 59716 | . 40284 | 1.6746 | . 74447 | 1.3432 | 1.2467 | . 19788 | . 80212 |  |
|  | - 9739 | - 0261 | . 6739 | . 4492 | . 3424 | . 2470 | . 9805 | . 0195 |  |
| 42 | . 9762 | . 0237 | . 6733 | 538 | . 3416 | . 2472 | - 9822 | 0177 |  |
|  | . 9786 | . 0214 | . 6726 | 583 | . 3408 | . 2475 | 9840 | 0160 |  |
|  | 9809 | 0191 | . 6720 | 4628 | . 3400 | . 2478 | 9857 | 0143 |  |
| 45 | . 59832 | . 40167 | 1.6713 | . 74673 | 1.3392 | 1.2480 | . 19875 | . 80125 |  |
|  | 856 | . 0144 | . 6707 | 4719 | . 3383 | . 2483 | 9892 | 0108 |  |
|  | - 9879 | . 0121 | . 6700 | 764 | . 3375 | . 2486 | 9909 | 090 |  |
| 48 | - 9902 | . 0098 | . 6694 | 809 | . 3367 | . 2488 | 9927 | 0073 |  |
|  | 9926 | 074 | . 6687 | 4855 | . 3359 | . 2491 | 9944 | 0056 |  |
|  | . 59949 | . 40051 | 1.6681 | . 74900 | 1.3351 | 1.2494 | . 19962 | . 80038 |  |
|  | - 9972 | . 0028 | . 6674 | . 4946 | . 334 | . 2497 | 9979 | 0021 |  |
|  | . 9995 | . 0004 | . 6668 | - 4991 | . 3335 | . 2499 | 9997 | 0003 |  |
|  | . 60019 | . 39981 | . 6661 | 5037 | . 3327 | .2502 | . 20014 | . 79986 |  |
|  | 0042 | 9958 | 6655 | 5082 | 3319 | 2505 | 0031 | 9968 |  |
|  | . 60065 | . 39935 | 1.6648 | . 75128 | 1.3311 | 1.2508 | . 20049 | 9951 |  |
|  | . 0088 | - 9911 | . 6642 | 5173 | . 3303 | . 2510 | 0066 | 933 |  |
|  | . 0112 |  | . 6636 | 19 | . 3294 | . 2513 | 0084 | 116 |  |
|  | . 0135 |  | . 6629 |  | . 3286 | . 2516 | 0101 | 998 |  |
|  | . 0158 | 9842 | . 6623 | 310 | . 3278 | . 2519 | 0119 | 9881 |  |
| 60 | . 0181 | 9818 | . 6616 | 355 | . 3270 | . 2521 | 0136 | 986 |  |
|  | Cosin | Vrs. | can |  | Tang | Cosec'nt | cos |  |  |


|  |  | Natural Trigonometrical Functions |  |  |  |  |  |  | $42^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | os. | Cosec'nt | Tang. |  | Secant. | Vrs. sin. | ine. |  |
| 0 | . 60 | . 39 | 1.6616 |  | 1.3270 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 3 | 0251 |  | . 6597 |  | 3246 | 2530 | 0189 |  |  |
|  | . 0274 | 726 | . 6591 |  | 3238 | 250.) | 0206 | 9793 |  |
| 5 | . 60298 | . 39702 | 1.6584 | . 75584 | 1.3230 | 1.2535 | . 20224 | . 79776 |  |
|  | 30 | 679 | 6578 | -5699 | 3222 | 2538 | 0242 | 9758 |  |
|  |  |  | - |  |  | 仡 | 59 | 11 |  |
|  |  |  | . 6565 |  | . 3206 | . 2543 | - 0277 | 9723 |  |
| 9 | - 03911 | - 9610 | . 6559 | . 5767 | . 3198 | . 2516 | . 0293 | - 9706 |  |
| 11 | . 60413 | . 39586 | 1.6552 | . 75812 | 1.3190 | 1.2549 | . 20312 | . 79688 |  |
| 11 | 0437 | 9563 | . 6546 | . 5858 | . 3182 | . 2552 | . 0329 | 9670 |  |
| 12 | . 0160 | 9540 | . 6540 | - 5904 | . 3174 | . 2554 | - 0347 | 9653 |  |
| 13 | . 0183 | 9517 | . 6533 | . 5950 | . 3166 | . 2557 | . 0365 | 9635 |  |
| 14 | 0506 | 9194 | . 6527 | 5996 | . 3159 | 2560 | 038:2 | 9618 |  |
| 15 | . 60529 | . 39471 | 1.6591 | . 76042 | 1.3151 | 1.2563 | . 20100 | . 79600 |  |
| 16 | . 0552 | 9447 | . 6514 | 6088 | . 3143 | . 25.55 | . 0417 | - 9582 |  |
| 17 | . 0576 | 9124 | . 6508 | . 6134 | . 3135 | . 25 | . 0435 | - 9565 |  |
|  |  | 101 | . 6502 | 179 | . 3127 | . 2571 | 0453 | 9547 |  |
| 19 | . 0622 | 9378 | . 6496 | 6225 | . 3119 | . 2574 | 0470 | 9530 |  |
| 20 | . 60645 | . 39355 | 1.6489 | . 66271 | 1.3111 | 1.2577 | . 20488 | . 79512 |  |
|  |  |  | . 6483 |  |  |  | 0505 | 9494 |  |
|  |  |  | 477 |  |  | . 2582 |  | 159 |  |
|  | . 0714 |  | . 6470 | 10 | . 3087 | . 2585 | 41 | 459 |  |
|  | . 0737 | 62 | . 6164 | 6456 | . 3079 | 2588 | 0558 | 9441 |  |
|  | . 60761 | . 39239 | 1.6458 | . 76502 | 1.3071 | 1.2591 | 20576 | 79124 |  |
|  | . 0784 | 9216 | 45'2 | 548 | . 3064 | . 2593 | 0594 | 9406 |  |
|  | . 0807 | 193 | . 6445 |  | . 3055 | . 2596 | 0611 |  |  |
|  |  | 70 | . 6439 |  | . 3018 | . 2599 | 0629 | 31 |  |
|  | . 0853 | 17 | . 6433 | 686 | . 3040 | . 2602 | 0647 |  |  |
| 30 | . 60876 | . 39124 | 1.6427 | . 76733 | 1.3032 | 1.2605 | . 20665 | . 79335 |  |
|  | . 0899 | 9101 | . 6420 |  | . 3024 | . 2607 | 0682 |  |  |
|  |  |  | . 6414 |  | . 30 | 2610 | 0700 |  |  |
|  |  |  | . 6408 |  | . 3009 | 2613 | 718 |  |  |
| 34 | . 0963 | 9031 | . 6102 | 0918 | . 3001 | . 2616 | 0735 | 9264 |  |
|  | . 60991 | . 39008 | 1.6396 | .i6964 | 1.2993 | 1.2619 | . 20753 | . 79247 |  |
|  | . 1014 |  | . 6389 | 010 | . 2985 | 622 | 0771 | 9229 |  |
|  | . 1037 | 62 | . 6383 | . 7057 | . 2977 | . 2624 | . 0789 | 9211 |  |
|  | . 1061 | 8939 | . 6377 | . 7103 | . 2970 | . 2627 | 0806 | 9193 |  |
|  | 1084 | 16 | . 6371 | 7149 | . 2962 | 2630 | 0824 | 15 |  |
| 40 | . 61107 | . 38893 | 1.6365 | . 77196 | 1.2954 | 1.2633 | . 20812 | . 79158 |  |
|  | - 1130 | 8870 | . 6359 | - 7242 | . 2946 | 2636 | . 0860 | 9140 |  |
|  | . 1153 | - 8847 | . 6352 | . 7289 | . 2938 | . 2639 | 0878 | 122 |  |
|  | 1176 | . 8824 | . 6346 | - 735 | . 293 | . 2641 | 0895 | 10 |  |
|  | 1199 | 01 | . 6340 | 382 | 2923 | 2644 | 0913 | 9087 |  |
| 5 | . 61222 | . 38778 | 1.6334 | . 77428 | 1.2915 | 1.2647 | . 20931 | . 79069 |  |
|  | . 1245 | . 8755 | . 6328 | . 7475 | 2907 | . 2650 | 0949 | 051 |  |
| 4 | - 1268 | . 8732 | . 6322 | . 7521 | . 2900 | . 2653 | - 0967 | 90.3 |  |
| 48 | . 1290 | . 8709 | . 6316 | . 7568 | . 2892 | . 2656 | . 0984 | 9015 |  |
|  | . 1314 | 86 | . 6309 | 7614 | . 2884 | . 2659 | 1002 | 8998 |  |
|  | . 61337 | . 38663 | 1.6303 | . 77661 | 1.2876 | 1.2661 | . 21020 | 8980 |  |
|  | . 1360 | 8640 | . 6297 | - 76 | . 286 | 2664 | 1038 | . 8962 |  |
|  | . 1383 | - 8617 | . 6291 | - 7754 | 2861 | . 2667 | 1056 | 841 |  |
|  | 1405 | - 8594 | . 6285 | . 7801 | 285 | . 2670 | . 1074 | 9:26 |  |
|  | 1428 | 8571 | . 6279 | S15 | 284: | 2673 | 1091 | 8908 |  |
| 55 | . 61451 | 4S | 1.6273 | .TT895 | 1.2838 | 1.2676 | . 21109 | 8990 |  |
|  | - 1474 | 25 | . 6267 | 941 | 830 | 2679 | 1127 | 87. |  |
|  | 497 |  | . 6261 |  | . 2822 | 268 | 14 |  |  |
|  | 520 |  | 5 |  | 15 | 2684 | 163 | 837 |  |
|  | . 1543 | 8457 | . 6249 |  | 2807 | . 2687 | 1181 | 3819 |  |
| 60 | . 1566 | 8434 | . 6243 | 128 | . 2799 | . 2690 | 1199 | 881 |  |
|  |  |  |  |  |  |  |  |  |  |

Natural Trigonometrical Functions.
$141^{\circ}$

| M. | Sine. | Vrs. | Cosec'nt | Ta | g. | Secant. | Vrs. sin. | Cosinc. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 61566 |  | 1.6 |  | 1.2799 | 1.2690 | . 21199 | 01 |  |
| 1 | . 1589 | . 8411 | . 6237 | . 8175 | . 2792 | 2693 | 17 | 878 |  |
| 2 | . 1612 | . 8388 | . 6231 | . 8222 | . 2784 | 2696 | 1235 | 8765 |  |
| 3 | . 1635 | . 8365 | . 6224 | . 8269 | . 2776 | . 2699 | 1253 | - 8747 |  |
| 4 | . 1658 | . 8342 | . 6218 | . 8316 | . 2769 | . 2702 | 1271 | . 8729 |  |
| 5 | . 61681 | . 38319 | 1.6212 | . 78363 | 1.2761 | 1.2705 | . 21288 | . 78711 |  |
| 6 | . 1703 | . 8296 | . 6206 | . 8410 | . 2753 | . 2707 | 1306 | . 8693 |  |
| 7 | . 1726 | . 8273 | . 6200 | . 8457 | . 2746 | . 2710 | - 1324 | . 8675 |  |
| 8 | . 1749 | . 8251 | . 6194 | . 8504 | . 2738 | . 2713 | . 1342 | . 8657 |  |
| 9 | . 1772 | 8228 | . 6188 | 551 | 2730 | 2716 | 1360 | 8640 |  |
| 10 | . 61795 | . 38205 | 1.6182 | . 78598 | 1.2723 | 1.2719 | . 21378 | . 78622 | 50 |
| 11 | . 1818 | . 8182 | . 6176 | . 8645 | . 2715 | . 2722 | 1396 | . 8604 | 49 |
| 12 | . 1841 | . 8159 | . 6170 | . 8692 | . 2708 | . 2725 | 1414 | . 8586 |  |
| 13 | . 1864 | . 8136 | . 6164 | . 8739 | . 2700 | . 2728 | 1432 | 8568 |  |
| 14 | . 1886 | 8113 | . 6159 | 8786 | . 2692 | 2731 | 1450 | - 8550 | 46 |
| 15 | . 61909 | . 38091 | 1.6153 | . 78834 | 1.2685 | 1.2734 | . 21468 | . 78532 |  |
| 16 | . 1932 | 8068 | . 6147 | 881 | . 2677 | . 2737 | . 1486 | . 8514 |  |
| 17 | . 1955 | . 8045 | . 6141 | . 8928 | . 2670 | . 2739 | . 1504 | . 8496 |  |
| 18 | . 1978 | . 8022 | . 6135 | 975 | . 2662 | . 2742 | - 1522 | . 8478 | 42 |
| 19 | . 2001 | . 7999 | . 6129 | 9022 | 2655 | . 2745 | 1540 | 8460 | 41 |
| 20 | . 62023 | . 37976 | 1.6123 | . 79070 | 1.2647 | 1.2748 | . 21558 | . 78441 | 40 |
| 21 | 2046 | . 7954 | . 6117 | . 9117 | . 2639 | . 2751 | 1576 | . 8423 | 39 |
| 22 | . 2069 | - 7931 | . 6111 | . 9164 | . 2632 | . 2754 | - 1594 | . 8405 |  |
| 23 | . 2092 | . 7908 | . 6105 | . 9212 | . 2624 | . 2757 | 1612 | 387 |  |
|  | 2115 |  | . 6099 | 259 | 2617 | 2760 | 1631 | 8369 |  |
| 25 | . 62137 | . 37862 | 1.6093 | . 79306 | 1.2609 | 1.2763 | . 21649 | . 78351 |  |
| 26 | . 2160 | - 7840 | . 6087 | - 9354 | . 2602 | . 2766 | - 1667 | . 8333 |  |
| 27 | . 2183 | . 7817 | . 6081 | 9401 | . 2594 | . 2769 | . 1685 | 8315 |  |
| 28 | . 2206 | - 7794 | . 6077 | 9449 | . 2587 | . 2772 | - 1703 | 8297 |  |
| 29 | - 2229 | . 7771 | . 6070 | 196 | . 2579 | . 2775 | . 1721 | 8279 |  |
| 30 | . 62251 | . 37748 | 1.6064 | .79543 | 1.2572 | 1.2778 | . 21739 | 78261 |  |
|  | 2274 | . 7726 | . 6058 | . 9591 | . 2564 | . 2781 | . 1757 | 8243 |  |
| 32 | . 2297 | . 7703 | . 6052 | - 9639 | . 2557 | . 2784 | - 1775 | 8224 |  |
| 33 | - 2320 | - 7680 | . 6016 | - 9686 | . 2549 | . 2787 | . 1793 | 8206 |  |
|  | 2342 | 7657 | . 6040 | 9734 | 2542 | 2790 | 1812 | 188 |  |
| 35 | . 62365 | . 37635 | 1.6034 | . 79781 | 1.2534 | 1.2793 | . 21830 | . 78170 |  |
| 36 | . 2388 | - 7612 | . 6029 | - 9829 | . 2527 | 2795 | - 1848 | . 8152 |  |
| 37 | . 2411 | . 7589 | . 6023 | . 9876 | . 2519 | . 2798 | . 1866 | 3134 |  |
|  | 退3 | . 7566 | . 6017 | 924 | 2512 | 2801 | 1884 | 116 |  |
| 39 | 2456 | 7544 | . 6011 | 9972 | 2504 | . 2804 | 1902 | 8097 |  |
| 40 | . 62479 | . 37521 | 1.6005 | . 80020 | 1.2497 | 1.2807 | . 21921 | . 78079 |  |
|  | . 2501 | . 7498 | . 6000 | . 0067 | . 2489 | . 2810 | - 1939 | 8061 |  |
|  | 2524 | . 7476 | . 5994 | . 0115 | 2482 | . 2813 | - 1957 | 8043 |  |
| 43 | . 2547 | . 7453 | . 5988 | . 0163 | 2475 | . 2816 | . 1975 | 8025 |  |
|  | 2570 | . 7430 | . 5982 | . 0211 | 246 | 2819 | . 1993 | 8007 |  |
| 45 | . 62592 | . 37408 | 1.5976 | . 80258 | 1.2460 | 1.2822 | . 22011 | . 77988 |  |
|  | . 2615 | . 7385 | . 5971 | . 0306 | . 2452 | 2825 | - 2030 | 7970 |  |
| 47 | . 2638 | - 7362 | . 5965 | . 0354 | 2445 | . 2828 | - 2048 | 7952 |  |
| 8 | 2660 | . 7340 | . 5959 | 402 | . 2437 | . 2831 | 2066 | 7934 |  |
| 50 | 2683 | 7317 | . 5953 | 450 | 2430 | 2834 | 2084 | . 7915 |  |
| 50 | . 62706 | . 37294 | 1.5947 | . 80498 | 1.2423 | 1.2837 | . 22103 | . 77897 |  |
|  | . 2728 | . 7272 | . 5942 | . 0546 | 24 | 2840 | - 2121 | 7879 |  |
| , | 2751 | - 7249 | . 5936 | . 0594 | 2408 | . 2843 | 2139 | 861 |  |
| 53 | . 2774 | - 7226 | . 5930 | 642 | . 2400 | 2846 | . 2157 | 7842 |  |
|  | 96 | 7204 | . 5924 | . 0690 | 2393 | 2849 | 2176 | 7824 |  |
|  | . 62819 | . 37181 | 1.5919 | . 80738 | 1.2386 | 1.285 | . 22194 | 77806 |  |
|  | . 2841 | 7158 | . 5913 | 8 | 2371 | 2855 | 212 | 788 |  |
|  | - 2864 | . 7136 | . 5907 |  | 2371 | . 2858 | 230 | 769 |  |
|  |  | 7113 | . 5901 |  | 2364 | 2861 | 49 | 751 |  |
| 59 60 | - 2909 .2932 | 90 | 996 | 30 | 2356 <br> .2349 | . 2864 | 2287 | 33 |  |
|  | Cosin | rs. si | ant | Cotan | Tang. | sec' | Vrs. cos. | Sine. |  |


|  |  | Natural Trigonometrical F |  |  |  |  |  |  | $0^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine | Vrs. cos. | Cosec'nt | Tang. | g. | nt. | Vrs. sin. | Cosine. |  |
| 0 | . 62 |  | 1.5 |  | 1.2349 | 1.2867 | . 22285 | 15 |  |
| 1 | 2955 | 7045 | 884 | 026 | 2342 | . 2871 | 304 | 696 |  |
| 2 | - 2977 | 7023 | . 5879 | 075 | . 2334 | 2874 | 2322 | 678 |  |
| 3 | . 3000 | . 7000 | . 5873 | 123 | . 23 | . 2877 | 340 | 660 |  |
| 4 | . 3022 | 6977 | . 5867 | 171 | . 2320 | 2880 | 2359 | 7641 |  |
| 5 | . 63045 | . 36955 | 1.5862 | . 81219 | 1.2312 | 1.2883 | 22377 | . 77623 |  |
| 6 | . 3067 | (932 | . 5856 | 1268 | . 2305 | . 288 | 2395 | - 7605 |  |
| 7 | - 3090 | . 6910 | . 5850 | 16 | . 22 | . 2889 | 2414 | - 7586 |  |
| 8 |  |  | . 5845 | 64 | . 2290 | 2892 | 2432 | - 7568 |  |
| 9 | . 3135 | 6865 | . 5839 | 1413 | 2283 | 2895 | 2450 | 7549 | 51 |
| 10 | . 63158 | . 36812 | 1.5833 | . 81461 | 1.2276 | 1.2898 | .2.469 | . 77531 | 50 |
| 11 | 3180 | 6820 | . 5828 | 1509 | 2268 | . 2901 | 2487 | . 7513 |  |
| 12 | 3203 | 6797 | . 5822 | 1558 | . 2261 | . 2904 | 2505 | . 7494 | 48 |
| 13 | . 3225 | . 6774 | . 5816 | 1606 | . 2254 | . 2907 | . 2524 | . 7476 | 47 |
| 14 | . 3248 | 6752 | . 5811 | 1655 | . 2247 | 2910 | 2542 | 7458 |  |
| 15 | . 63270 | . 36729 | 1.5805 | . 81703 | 1.2239 | 1.2913 | . 22561 | . 77439 |  |
| 16 | . 3293 | . 6707 | . 5799 | 1752 | . 2232 | . 2916 | . 2559 | . 7421 | 44 |
| 17 | . 3315 | 84 | . 5794 | 1800 | . 2225 | . 2919 | . 2597 | . 7402 |  |
| 18 |  | 62 | . 5788 | . 1849 | 2218 | . 2922 | 2616 | 7384 | 42 |
| 19 | 3360 | 339 | . 5783 | 898 | 2210 | 2926 | 2634 | 7365 | 11 |
| 20 | . 63383 | . 36617 | 1.5777 | . 81946 | 1.2203 | 1.2929 | . 22653 | . 77347 | 40 |
| 21 | . 3405 | - 6594 | . 5771 | . 1995 | . 2196 | . 2933 | 2671 | . 7329 | 39 |
| 22 |  | -6572 | . 5766 | 13 | 2189 | 293.5 | 2690 | . 7310 |  |
| 23 | . 3450 | . 6549 | . 5760 | 92 | 2181 | 2938 | 2708 | 7292 |  |
| 24 | 3473 | 527 | . 5755 | 141 | 217 | 2941 | 2727 | 273 |  |
| 25 | . 63495 | . 36504 | 1.5749 | . S-2190 | 1.2167 | 1.2944 | . 22745 | . 77255 |  |
| 26 | 3518 | 6482 | . 5743 | 238 | . 2160 | . 2947 | 2763 | . 7236 |  |
| 27 | . 3540 | 6459 | . 5738 | 87 | . 2152 | .29.50 | 2782 | . 7218 |  |
| 28 |  | . 6437 | . 5732 |  | .2145 | . 2953 | 2800 | . 7199 |  |
| 9 |  | 6415 | . 5727 | 85 | 2138 | 2956 | 2819 | 7181 |  |
| 30 | . 63608 | . 36392 | 1.5721 | . 82434 | 1.2131 | 1.2960 | . 22837 | . 77162 |  |
| 31 | . 3630 | 6370 | . 5716 | 2482 | . 2124 | . 2963 | . 2856 | . 7144 |  |
| 32 | . 3653 | 6347 | . 5710 | 531 | . 2117 | . 2966 | 2874 | . 7125 |  |
| 33 | . 3675 |  | . 5705 | 580 | . 2109 | 2969 | 2893 | 7107 |  |
| 34 | . 3697 | 6302 | . 5699 | 2629 | . 2102 | 2972 | 2912 | 7088 |  |
| 35 | . 63720 | :362s0 | 1.5694 | . 82678 | 1.209. | 1.2975 | . 22930 | . 77070 |  |
| 36 | . 3742 | . 6258 | . 56 | 2727 | . 2088 | . 2978 | 2949 | 7051 |  |
| 37 | . 3765 | 235 | . 5683 |  | 2081 | . 2981 | 2967 | . 7033 |  |
| 88 | - 3787 | 6:213 | . 5677 | 825 | . 2074 | . 2985 | 2986 | . 7014 |  |
| 39 | . 3810 | 6190 | . 5672 | - | 2066 | 2988 | 3004 | . 6996 |  |
| 40 | . 63832 | . 36168 | 1.5666 | . 82923 | 1.2059 | 1.2991 | . 23023 | . 76977 |  |
| 41 | . 3854 | 6146 | . 5661 | 2972 | . 205 \% | . 2994 | . 3041 | . 6958 |  |
| 42 | . 3877 | . 6123 | . 5655 | 22 | . 204 | . 2997 | . 3060 | . 6940 |  |
|  | . 3899 | . 6101 | . 5650 |  | . 2038 | . 3000 | 3079 | 6921 |  |
| 44 | 3921 | 6078 | . 5644 | 3120 | '031 | . 3003 | . 3097 | 6903 |  |
| 45 | . 63944 | . 36056 | 1.5639 | . 83169 | 1.2024 | 1.3006 | . 23116 | . 76884 |  |
| 46 | . 3966 | . 6034 | . 5633 | 218 | . 2016 | . 3010 | 3134 | . 6865 |  |
| 47 | . 3989 | . 6011 | . 6628 |  | 2009 | . 3013 | 3153 | 847 |  |
| 48 | . 4011 | . 5989 | . 5622 |  | 2002 | . 3016 | 3172 | 6828 |  |
| 49 | - 4033 | 5967 | . 5617 | 3366 | . 1995 | . 3019 | 3190 | 6810 |  |
| 50 | . 61056 | . 35944 | 1.5611 | . 83415 | 1.1988 | 1.3022 | 23209 | . 76791 |  |
|  | . 4078 | 922 | . 5600 | - 346 | . 1981 | . 3025 | 3227 | 772 |  |
| 52 | - 4100 | . 5900 | . 5600 | - | . 1974 | . 3029 | 3246 | 754 |  |
|  | - 4123 | . 5887 | . 5595 | 563 | . 1967 | .3032 | 3265 | 5735 |  |
|  | 4145 |  | .5590 | 613 | 1960 | 3035 | 3283 | 6716 |  |
|  | . 64167 | . 35833 | 1.5584 | . 83662 | 1.1953 | 1.3038 | 3302 | 698 |  |
|  | . 4189 | . 5810 | . 5579 | 712 | . 1946 | . 3041 | 321 | 679 |  |
|  | . 4212 | . 5788 | . 5573 | 61 | . 1939 | . 3044 | 3339 | 60 |  |
|  | - 4234 |  |  |  | . 1932 | . 3048 | 3358 |  |  |
| 60 | . 4256 | . 5743 | . 5563 | 3860 | . 1924 | . 3051 | 3377 | 6623 |  |
| 60 | . 4279 | 5721 | 37 | 3910 | . 1917 | . 3054 | 3395 | 04 |  |
|  | Cos | Vrs. | Secant. | Cotan | Tang | sec' | rs. c | ne |  |

Natural Functions.

| $40^{\circ}$ |  | Natural Trigonometrical Functions. |  |  |  |  |  | $139^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | g. | cant. | Vrs. sin. | Cosine. |  |
| 0 | . 64279 | . 35 | 1.5 | . 83910 | 1.1917 | 1.3 | . 23395 | 4 |  |
| 1 | 4301 |  | 552 | 59 | 1910 | . 3057 | $341 \times$ |  |  |
| 2 | 23 | 77 | . 5546 | 4009 | . 1903 | . 3060 | 33 | 6567 |  |
| 3 | . 4345 | 5654 | . 5541 | 4059 | . 1896 | . 3064 | 3452 | 6548 |  |
| 4 | . 4368 | . 5632 | . 5533 | 4108 | 1889 | . 3067 | 3470 | 6530 |  |
| 5 | . 64390 | . 35610 | 1.5530 | . 84158 | 1.1882 | 1.3070 | . 23489 | . 76511 |  |
| 6 | 4412 |  | . 5525 | 208 | 1875 | . 3073 | 3508 | 6492 |  |
| 7 | - 4435 | - 5555 | . 5520 | - 4257 | . 1868 | . 3076 | - 3527 | 6473 |  |
| 8 | . 4457 | . 55.43 | . 5514 | . 4307 | . 1861 | . 3080 | 3515 | 6455 |  |
| 9 | . 4479 | - 5521 | . 5509 | 4357 | 1851 | . 3083 | 3564 | 136 |  |
| 10 | . 64501 | . 35499 | 1.5503 | . 84407 | 1.1847 | 1.3086 | . 23583 | . 76417 | 50 |
| 11 | . 4523 | 5476 | . 5498 | . 4457 | . 1840 | . 3089 | - 3602 | . 6398 | 49 |
| 12 | . 4546 | - 5454 | . 5493 | . 4506 | . 1833 | . 3092 | - 3620 | . 6380 |  |
| 13 | . 4568 | - 5432 | . 5487 | . 4556 | . 1826 | . 3096 | 3639 | 6361 |  |
| 14 | . 4590 | 5410 | . 5482 | 4606 | 1819 | . 3099 | 3658 | 6342 | 46 |
| 15 | . 64612 | . 35388 | 1.5477 | . 81656 | 1.1812 | 1.3102 | . 23677 | . 76323 | 45 |
| 16 | . 4635 | - 5365 | . 5471 | . 4706 | . 1805 | . 3105 | 3695 | . 6304 |  |
| 17 | . 4657 | 5343 | . 5466 | . 4756 | . 1798 | . 3109 | 3714 | 6286 |  |
| 18 | . 4679 | - 5321 | . 5461 | . 4806 | . 1791 | . 3112 | , 3733 | -6267 | 42 |
| 19 | 4701 | 5299 | . 5456 | 4856 | . 1785 | . 3115 | 3752 | 6248 | 41 |
| 20 | . 64723 | . 352277 | 1.5450 | . 81906 | 1.1778 | 1.3118 | . 23771 | .76229 | 40 |
| 21 | 4745 | 5254 | . 5445 | 4956 | . 1771 | . 3121 | 3790 | 6210 | 39 |
| 22 | . 4768 | - 5232 | . 5410 | . 5006 | 1764 | . 3125 | 3808 | . 6191 | 38 |
| 23 | . 4790 | . 5210 | . 5434 | . 5056 | . 1757 | . 3128 | 3827 | 6173 |  |
| 24 | 4812 | 5188 | . 5429 | 5107 | .1750 | 3131 | 3846 | 6154 |  |
| 25 | . 64834 | . 35166 | 1.5124 | . 85157 | 1.1743 | 1.3134 | 23565 | 76135 |  |
| 26 | . 4856 | . 5144 | . 5419 | 5207 | . 1736 | . 3138 | . 3884 | . 6116 |  |
| 27 | . 4878 | - 5121 | . 5413 | . 5257 | . 1729 | . 3141 | 3903 | 6097 |  |
| 28 | - 4900 | 99 | . 5408 | 307 | . 1722 | . 3144 | 3922 | 078 |  |
| 29 | 4923 | 077 | . 5403 | 5358 | 1715 | 3148 | 3940 | 6059 |  |
| 30 | . 64945 | . 35055 | 1.5398 | . 85408 | 1.1708 | 1.3151 | . 23959 | . 76041 |  |
| 31 | 987 | 5033 | . 5392 | 5458 | . 1702 | . 3154 | 3978 | 6022 |  |
| 32 | . 4989 | 5011 | . 5387 | 5509 | . 1695 | . 3157 | 3997 | 003 |  |
| 33 | . 5011 | - 4989 | . 5382 | . 5559 | . 1688 | . 3161 | - 4016 | . 5984 |  |
| 3 | . 5033 | . 4967 | . 5377 | . 5609 | . 1681 | . 3164 | 4035 | 5965 |  |
|  | . 65055 | . 34945 | 1.5371 | . 8.5660 | 1.1674 | 1.3167 | . 21054 | . 75946 |  |
|  | 5077 | - 4922 | . 5366 | 5710 | . 1667 | . 3170 | 4073 | 927 |  |
| 37 | . 5099 | - 4900 | . 5361 | . 5761 | . 1660 | . 3174 | . 4092 | 5908 |  |
| 38 | 5121 | 4878 | . 5355 | 5811 | . 1653 | . 3177 | 4111 | 889 |  |
| 39 | 5144 | 4856 | . 5351 | 5862 | 1647 | 3180 | 4130 | 5870 |  |
| 40 | . 65166 | . 34834 | 1.5345 | . 85912 | 1.1640 | 1.3184 | . 21149 | . 75851 | 20 |
| 41 | . 5188 | - 4812 | . 5340 | . 5963 | . 1633 | . 3187 | . 4168 | . 5832 | 19 |
| 42 | . 5210 | . 4790 | . 0335 | 6013 | . 1626 | . 3190 | 4186 | 5813 |  |
| 43 | . 5232 | 4768 | . 5330 | . 6064 | . 1619 | . 3193 | 4205 | 5794 |  |
| 44 | . 5254 | . 4746 | . 5325 | 6115 | . 1612 | . 3197 | 4224 | 5775 |  |
| 45 | . 65276 | . 34724 | 1.5319 | . 86165 | 1.1605 | 1.3200 | . 24243 | . 75756 |  |
| 46 | 988 | - 4702 | . 5314 | . 6216 | 1599 | . 3203 | 4262 | 737 |  |
| 47 | . 5320 | - 4680 | . 5309 | 6267 | . 1592 | . 3207 | 4281 | 718 |  |
| 48 | . 5342 | . 4658 | . 5304 | . 6318 | . 1585 | . 3210 | . 4300 | 5699 |  |
| 49 | 5364 | 4636 | . 5299 | 6368 | . 1578 | . 3213 | 4319 | 5680 |  |
| 50 | . 65386 | . 34614 | 1.5294 | . 86419 | 1.1571 | 1.3217 | . 24338 | . 75661 |  |
| 51 | . 5408 | - 4592 | . 5289 | . 6470 | . 1565 | . 3220 | - 4357 | 5642 |  |
| 52 | - 5430 | - 4570 | . 5283 | 21 | . 1558 | . 3223 | 4376 | 623 |  |
| 53 | - 5452 | - 4548 | . 5278 | 57 | . 1551 | . 3227 | 4396 | . 5604 |  |
| 55 | - 5447 | - 4526 | . 5273 | 62 | 1544 | . 3230 | 4415 | 550 |  |
| 55 | . 65496 | . 34504 | 1.5268 | . 86674 | 1.1537 | 1.3233 | . 24434 | . 75566 |  |
| 56 | 18 | 482 | . 5263 | . 6725 | . 1531 | . 3237 | 453 | 47 |  |
| 5 | - 5540 | 460 | 558 | , | . 1524 | . 3240 | 472 | 28 |  |
| 58 |  | 438 | 53 | 26 | . 1517 | . 3243 | 491 | 509 |  |
| 59 |  | 16 | 248 |  | . 1510 | . 3247 | 510 | 490 |  |
| 60 | . 5606 |  | 242 | 29 | . 1504 | . 3250 | 529 | 171 |  |
| M. | Cosine. | Vrs. sin | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | Sine. |  |
|  |  |  |  |  |  |  |  |  |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec'nt |  |  |  | Vr | ine. |  |
| 0 |  |  |  |  | 1.1 |  |  | 75471 |  |
|  |  |  |  |  | 197 |  | . 4548 |  |  |
| 2 |  | 50 | 232 | . 7031 | 1490 | 3257 | 4567 | 5433 |  |
| 3 | . 5672 |  | . 522 | - | . 1483 | . 3260 | 4586 | 5414 |  |
|  |  | 4306 | . 5222 | . 7133 | . 1477 | . 3263 | 4605 | 5394 |  |
|  | . 65716 | . 34284 | 1.5217 | . 87184 | 1.1470 | 1.3267 | . 24624 | 75375 |  |
|  | 5737 | 4262 | . 5212 | 7235 | 1463 | . 3270 | 4644 | 5356 |  |
| 7 |  | . 4240 | . 5207 | - 7287 | 1456 | . 3274 | . 466 | 5337 |  |
| 8 |  |  | 5 |  | . 1450 | . 3277 | - 4682 | 5318 |  |
|  |  |  | . 5197 | 838 | 1443 | 3280 | 4701 | 5299 |  |
| 10 | . 65825 | . 34175 | 1.5192 | . 87441 | 1.1436 | 1.3284 | . 24720 | . 75280 | 50 |
| 11 | . 5847 | . 4153 | . 5187 | . 7492 | 1430 | . 3287 | . 4739 | . 5261 | 49 |
| 12 |  | . 4131 | . 5182 | . 7543 | . 1423 | . 3290 | 4758 | . 5241 |  |
|  |  | . 4109 | . 5177 | . 7595 | . 1416 | . 3294 | 4778 | 5222 | 崖 |
| 14 | - 5913 | - 4087 | . 5171 | 7646 | 1409 | . 3297 | 4797 | 5203 |  |
| 15 | . 65934 | . 34065 | 1.5166 | . 87698 | 1.1403 | 1.3301 | . 24816 | . 75184 | 45 |
| 16 | . 5 | . 4043 | . 5161 | . 7749 | 1396 | . 3304 | . 4835 | 5165 |  |
|  | . 5978 | . 4022 | . 5156 | . 7801 | . 1389 | . 3307 | . 4854 | 5146 | 43 |
| 18 | . 6000 | . 4000 | . 5151 | . 7852 | . 1383 | . 3311 | . 4873 | . 5126 | 42 |
|  | . 6022 | . 3978 | . 5146 | 90 | 1376 | . 3314 | 4893 | 5107 | 41 |
|  | . 66044 | . 33956 | 1.5141 | . 8795 | 1.1369 | 1.3318 | . 24912 | . 75088 | - |
|  | 6066 |  | . 5136 | 8007 | 1363 | . 3321 | 4931 | 5069 |  |
|  | . 6087 | . 3912 | . 5131 |  | . 135 | . 3324 | - 4950 | . 5049 |  |
|  | . 6109 |  | . 5126 | . 8110 | . 1349 | . 3328 | - 4970 | 5030 |  |
|  | 31 |  | . 5121 | 162 | 1343 | 3331 | 4989 | 5011 |  |
|  | . 66153 | . 33847 | 1.5116 | . 88213 | 1.1336 | 1.3335 | . 25008 | . 74992 | 35 |
|  | . 6175 | . 3825 | . 5111 | . 8265 | 1329 | . 3338 | . 5027 | . 4973 |  |
|  |  |  | . 5106 |  | . 1323 | . 3342 | 5047 | 953 |  |
|  |  |  | . 5101 |  | 1316 | 3345 | 5066 | 4934 |  |
|  |  | 60 | . 5096 | 421 | 1309 |  | 5085 | 4915 |  |
|  | . 66262 | . 33738 | 1.5092 | . 88472 | 1.1303 | 1.3352 | . 25104 | . 74895 |  |
|  |  |  | . 508 |  | . 1296 |  | 5124 | 876 |  |
|  |  |  | . 5082 |  | . 1290 | 3359 | 143 | 857 |  |
|  | . 6327 | 3673 | . 5077 |  | . 1283 | . 3362 | . 5162 | 4838 |  |
|  | . 6349 | 5 | . 5072 |  | 1276 | . 3366 | 5181 | 4818 |  |
|  | . 66371 | . 33629 | 1.5067 | . 88732 | 1.1270 | 1.3369 | . 25201 | . 74799 |  |
|  |  |  | . 5062 |  | . 1263 | 3372 | 5220 | 4780 |  |
|  | . 6414 | . 3586 | . 5057 |  | . 1257 | . 3376 | . 5239 | . 4760 |  |
|  |  |  | . 5052 |  | . 1250 | . 3379 | 5259 | 4741 |  |
|  |  |  | . 5047 | 940 | 1243 | 3383 | 5278 | 4722 |  |
|  | . 66479 | . 33520 | 1.5042 | . 88992 | 1.1237 | 1.3386 | . 25297 | . 74702 | 20 |
|  | . 6501 | . 3499 | . 5037 | . 9044 | . 1230 | . 3390 | - 5317 | . 4683 |  |
|  |  | 3477 | . 5032 |  | . 1224 | . 3393 | 336 | 466 |  |
|  |  | 3455 | . 5027 | 49 | 1217 | 3397 | 5355 | 4644 |  |
|  | 566 | 3433 | . 5022 | 201 | . 1211 | . 3400 | 5375 | 4625 |  |
|  | . 66588 | . 33412 | 1.5018 | . 89253 | 1.1204 | 1.3404 | . 25394 | . 74606 |  |
|  |  | - 339 | . 5013 |  | . 1197 | . 3407 | 5414 | 4586 |  |
|  |  |  | . 5008 |  | 1191 | 3411 | 5433 | 4567 |  |
|  |  |  | . 5003 | . 9410 | . 118 | . 3414 | . 5452 | . 4548 |  |
|  | 6675 |  | . 4998 | 103 | . 1178 | . 3418 | 5472 | 4528 |  |
|  | . 66697 | . 33303 | 1.4993 | . 89515 | 1.1171 | 1.3421 | . 25491 | 74509 |  |
|  | . 6718 | 3282 | . 4988 | - 9.6 | . 1165 | . 3425 | 5510 | 4489 |  |
|  |  | 60 | . 4983 |  | . 115 | . 3428 | . 5530 | . 4470 |  |
|  | - | 38 | . 4979 |  | . 115 | . 3432 | 554 | 450 |  |
|  |  | 17 | . 4974 | , | 1145 | 3435 | 5569 | 4431 |  |
|  | . 66805 | . 33195 | 1.4969 | . 89 | 1.1139 | 1.3439 | . 25588 | . 74412 |  |
|  |  |  | . 49 |  | 1132 | . 3442 |  | 392 |  |
|  |  |  | . 4959 |  | 26 | . 3446 | 627 | 373 |  |
|  |  |  | . 4954 | - | 19 | . 3449 | 5647 | 4353 |  |
|  |  |  | . 4949 | 0040 | 1113 | . 3453 | 5666 <br> .5685 | - 43314 |  |
| 60 | 13 | 3087 | . 4945 | . 90040 | . 110 | . 3456 | 5685 | . 4314 |  |
|  | Cosin | Vrs. si | cant | Cotan | Tang. | sec' | Vrs. c | Sine |  |

Natural Trigonometrical Functions.
$137^{\circ}$

| M. | Sine. | Vrs. cos. | Cosec'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 669 | . 33 | 1.49 | . 90040 | 1.1106 | 1.3456 | . 25 | 14 | 60 |
| 1 | 6935 | . 3065 | . 4940 | . 0093 | . 1100 | . 3460 | 5705 | 4295 | 59 |
| 2 | . 6956 | - 3044 | . 4935 | . 0146 | 1093 | . 3463 | . 5724 | - 4275 | 58 |
|  | . 6978 | . 3022 | . 4930 | . 0198 | . 1086 | . 3467 | . 5744 | 4256 | 57 |
|  | . 6999 | 3000 | . 4925 | . 0251 | 1080 | . 3470 | 5763 | 4236 | 56 |
|  | . 67021 | . 32979 | 1.4921 | . 90304 | 1.1074 | 1.3474 | . 25783 | . 74217 | 55 |
|  | 7043 | . 2957 | . 4916 | . 0357 | . 1067 | . 3477 | . 5802 | . 4197 | 54 |
|  | . 7064 | . 2936 | . 4911 | . 0410 | 1061 | . 3481 | . 5822 | . 4178 | 53 |
|  | . 7086 | 914 | . 4906 | . 0463 | . 1054 | . 3485 | 5841 | 4158 | 52 |
| 9 | . 7107 | 2893 | . 4901 | 0515 | 1048 | . 3488 | 5861 | 4139 | 51 |
| 10 | . 67129 | . 32871 | 1.4897 | . 90568 | 1.1041 | 1.3492 | . 25880 | . 74119 | 50 |
| 11 | . 7150 | 2849 | . 4892 | 0621 | . 1035 | . 3495 | 5900 | 4100 | 49 |
| 12 | . 7172 | . 2828 | . 4887 | . 0674 | 1028 | . 3499 | 5919 | 4080 | 48 |
| 13 | . 7194 | 2806 | . 4882 | . 0727 | . 1022 | . 3502 | - 5939 | 4061 | 47 |
| 14 | . 7215 | 2785 | . 4877 | . 0780 | . 1015 | . 3506 | 5959 | 4041 | 46 |
| 15 | . 67237 | . 32763 | 1.4873 | . 90834 | 1.1009 | 1.3509 | . 25978 | . 74022 | 45 |
| 16 | - 7258 | - 2742 | . 4868 | . 0887 | . 1003 | . 3513 | . 5998 | . 4002 | 44 |
| 17 | . 7280 | - 2720 | . 4863 | . 0940 | . 0996 | . 3517 | . 6017 | - 3983 | 43 |
| 18 | . 7301 | - 2699 | . 4858 | . 0993 | . 0990 | . 3520 | . 6037 | - 3963 | 42 |
| 19 | . 7323 | 2677 | . 4854 | 1046 | . 0983 | . 3524 | 6056 | 3943 | 41 |
| 20 | . 67344 | . 32656 | 1.4849 | . 91099 | 1.0977 | 1.3527 | . 26076 | . 73924 | 40 |
| 21 | . 7366 | . 2634 | . 4844 | 1153 | . 0971 | . 3531 | . 6096 | . 3904 | 39 |
|  | . 7387 | . 2613 | . 4839 | . 1206 | . 0964 | . 3534 | . 6115 | 3885 |  |
| 23 | . 7409 | - 2591 | . 4835 | . 1259 | . 0958 | . 3538 | . 6135 | 3865 | 37 |
| 24 | . 7430 | 2570 | . 4830 | 1312 | . 0951 | . 3542 | 6154 | 3845 | 36 |
|  | . 67452 | . 32548 | 1.4825 | . 91366 | 1.0945 | 1.3545 | . 26174 | . 73826 | 35 |
|  | . 7473 | . 2527 | . 4821 | 1419 | . 0939 | . 3549 | . 6194 | 3806 | 34 |
| 27 | - 7495 | - 2505 | . 4816 | . 1473 | . 0932 | . 3552 | . 6213 | - 3787 | 33 |
|  | - 7516 | - 2484 | . 4811 | . 1526 | . 0926 | . 3556 | - 6233 | . 3767 | 32 |
|  | 7537 | 2462 | . 4806 | 1580 | . 0919 | . 3560 | 6253 | 3747 | 31 |
|  | . 67559 | . 32441 | 1.4802 | . 91633 | 1.0913 | 1.3563 | . 26272 | . 73728 | 30 |
|  | - 7580 | - 2419 | . 4797 | - 1687 | . 0907 | . 3567 | . 6292 | . 3708 |  |
|  | . 7602 | . 2398 | . 4792 | . 1740 | . 0900 | . 3571 | . 6311 | . 3688 |  |
|  | . 7623 | . 2377 | . 4788 | 1794 | . 0894 | . 3574 | . 6331 | . 3669 | 27 |
|  | . 7645 | 2355 | . 4783 | 1847 | . 0888 | . 3578 | . 6351 | 3649 |  |
|  | . 67666 | . 32334 | 1.4778 | . 91901 | 1.0881 | 1.3581 | . 26371 | . 73629 | 25 |
|  | . 7688 | . 2312 | . 4774 | 1955 | . 0875 | . 3585 | . 6390 | 3610 | 4 |
|  | . 7709 | - 2291 | . 4769 | - 2008 | . 0868 | . 3589 | . 6410 | 3590 | 23 |
|  | - 7730 | - 2269 | . 4764 | - 2062 | . 0862 | . 3592 | . 6430 | . 3570 | 22 |
|  | . 7752 | 248 | 4760 | 2116 | . 0856 | . 3596 | . 6449 | 3551 | 21 |
|  | . 67773 | . 32227 | 1.4755 | . 92170 | 1.0849 | 1.3600 | . 26469 | . 73531 | 20 |
| 41 | - 7794 | . 2205 | . 4750 | . 2223 | . 0843 | . 3603 | . 6489 | . 3511 | 19 |
| 42 | . 7816 | . 2184 | . 4746 | . 2277 | . 0837 | . 3607 | . 6508 | . 3491 | 18 |
|  | . 7837 | . 2163 | . 4741 | . 2331 | . 0830 | . 3611 | - 6528 | 3472 | 17 |
|  | . 7859 | 2141 | . 4736 | 2385 | . 0824 | . 3614 | 6548 | 3452 | 16 |
| 45 | . 67880 | . 32120 | 1.4732 | . 92439 | 1.0818 | 1.3618 | . 26568 | . 73432 | 15 |
| 46 | . 7901 | - 2098 | . 4727 | - 2493 | . 0812 | . 3622 | . 6587 | . 3412 | 14 |
|  | - 7923 | . 2077 | . 4723 | - 2547 | . 0805 | . 3625 | - 6607 | 3393 | 13 |
| 48 | . 7944 | - 2056 | . 4718 | - 2601 | . 0799 | . 3629 | - 6627 | 3373 | 12 |
| 49 | . 7965 | 2034 | . 4713 | 2655 | . 0793 | . 3633 | . 6647 | 3353 | 11 |
| 50 | . 67987 | . 32013 | 1.4709 | . 92709 | 1.0786 | 1.3636 | . 26666 | . 73333 | 10 |
| 51 | . 8008 | . 1992 | . 4704 | . 2763 | . 0780 | . 3640 | 6686 | 3314 |  |
| 52 | - 8029 | . 1970 | . 4699 | - 2817 | . 0774 | . 3644 | - 6706 | . 3294 |  |
|  | . 8051 | . 1949 | . 4695 | 2871 | . 0767 | . 3647 | - 6726 | 3274 |  |
|  | 8072 | 1928 | 4690 | 2926 | . 0761 | 3651 | 6746 | 3254 |  |
| 55 | . 68093 | . 31907 | 1.4686 | . 92980 | 1.0755 | 1.3655 | . 26765 | . 73234 |  |
| 56 | . 8115 | - 1885 | . 4681 | - 3034 | . 0749 | . 3658 | 785 | 3215 |  |
| 57 | . 8136 | . 1864 | . 4676 | 088 | . 0742 | . 3662 | 305 | 3195 |  |
| 58 59 59 | 8157 | . 1843 | . 4672 | 3143 | . 0736 | . 366 | . 6825 | 3175 |  |
| 60 | . 8200 |  | . 46 | - 32 | . 07 | . 36 | . 6860 | - 3135 |  |
|  |  |  | Secant |  | Tang | Cosec |  |  |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  | $136^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | Sine. | Vrs. cos. | Cosec 'nt | Tang. | Cotang. | Secant. | Vrs. sin. | Cosine. | M. |
| 0 | . 68200 | . 31800 | 1.4663 | . 93251 | 1.0724 | 1.3673 | . 26865 | . 73135 | 60 |
| 1 | . 82221 | . 1779 | . 4658 | . 3306 | . 0717 | . 3677 | . 6884 | . 3115 | 59 |
| 2 | . 8242 | . 1758 | . 4654 | . 3360 | . 0711 | . 3681 | . 6904 | . 3096 | 58 |
| 3 | . 8264 | . 1736 | . 4649 | . 3415 | . 0705 | . 3684 | . 6924 | . 3076 | 57 |
| 4 | . 8285 | . 1715 | . 4644 | . 3469 | . 0699 | . 3688 | . 6944 | 3056 | 56 |
| 5 | . 68306 | . 31694 | 1.4640 | . 93524 | 1.0692 | 1.3692 | . 26964 | . 73036 | 55 |
| 6 | . 8327 | . 1673 | . 4635 | . 3578 | . 0686 | . 3695 | . 6984 | . 3016 | 54 |
| 7 | . 8349 | . 1651 | . 4631 | . 3633 | . 0680 | . 3699 | . 7004 | . 2996 | 53 |
| 8 | . 8370 | . 1630 | . 4626 | . 3687 | . 0674 | . 3703 | - 7023 | . 2976 | 52 |
| 9 | . 8391 | - 1609 | . $46 \% 2$ | - 3742 | . 0667 | . 3707 | . 7043 | 2956 | 51 |
| 10 | . 68412 | .31588 | 1.4617 | . 93797 | 1.0661 | 1.3710 | . 27063 | . 72937 | 50 |
| 11 | . 8433 | . 1566 | . 4613 | . 3851 | . 0655 | . 3714 | . 7083 | . 2917 | 49 |
| 12 | . 8155 | - 1545 | . 4608 | - 3906 | . 0649 | . 3718 | - 7103 | - 2897 | 48 |
| 13 | . 8176 | - 1524 | . 4604 | . 3961 | . 0643 | . 3722 | . 7123 | - 2877 | 47 |
| 14 | . 8197 | . 1503 | . 4599 | . 4016 | . 0636 | . 3725 | . 7143 | - 2857 | 46 |
| 15 | . 68518 | . 31482 | 1.4595 | . 94071 | 1.0630 | 1.3729 | . 27163 | . 72837 | 45 |
| 16 | . 8539 | - 1460 | . 4590 | . 4125 | . 0624 | . 3733 | . 7183 | . 2817 | 44 |
| 17 | . 8561 | . 1439 | . 4586 | . 4180 | . 0618 | . 3737 | . 7203 | - 2797 | 43 |
| 18 | . 8582 | . 1418 | . 4581 | . 4235 | . 0612 | . 3740 | - 7223 | . 2777 | 42 |
| 19 | . 8603 | 1397 | . 4577 | . 4290 | . 0605 | . 3744 | - 7243 | . 2757 | 41 |
| 20 | . 68624 | . 31376 | 1.4572 | . 94345 | 1.0599 | 1.3748 | . 27263 | . 72737 | 40 |
| 21 | . 8645 | - 1355 | . 4568 | . 4400 | . 0593 | . 3752 | . 7283 | - 2717 | 39 |
| 22 | . 8666 | . 1333 | . 4563 | . 4455 | . 0587 | . 3756 | . 7302 | - 2697 | 38 |
| 23 | . 8688 | . 1312 | . 4559 | . 4510 | . 0581 | . 3759 | . 7322 | . 2677 | 37 |
| 24 | . 8709 | 1291 | . 4554 | . 4565 | . 0575 | . 3763 | - 7342 | . 2657 | 36 |
| 25 | . 68730 | . 11270 | 1.4550 | . 94620 | 1.0568 | 1.3767 | . 27362 | . 72637 | 35 |
| 26 | . 8751 | - 1249 | .4545 | . 4675 | . 0562 | . 3771 | . 7382 | . 2617 | 34 |
| 27 | . 8772 | . 1228 | . 4541 | . 4731 | . 0556 | . 3774 | - 7402 | - 2597 | 33 |
| 28 | . 8793 | - 1207 | . 45.36 | . 4786 | . 0550 | . 3778 | - 7422 | . 2577 | 32 |
| 29 | . 8814 | . 1186 | . 4532 | . 4841 | . 0544 | . 3782 | . 7442 | . 2557 | 31 |
| 30 | . 68835 | . 31164 | 1.4527 | . 94896 | 1.0538 | 1.3786 | . 27462 | . 72537 | 30 |
| 31 | . 8856 | . 1143 | . 4523 | . 4952 | . 0532 | . 3790 | - 7482 | . 2517 | 29 |
| 32 | . 8878 | - 1122 | . 4518 | . 5007 | . 0525 | . 3794 | - 7503 | - 2497 | 28 |
| 33 | . 8899 | . 1101 | . 4514 | . 5062 | . 0519 | . 3797 | . 7523 | . 2477 | 27 |
| 34 | . 8920 | . 1080 | . 4510 | . 5118 | . 0513 | . 3801 | . 7543 | . 2457 | 26 |
| 35 | . 68941 | . 31059 | 1.4505 | . 95173 | 1.0507 | 1.3805 | . 27563 | . 72437 | 25 |
| 36 | . 8962 | . 10:88 | . 4501 | . 5229 | . 0501 | . 3809 | . 7583 | . 2417 | 24 |
| 37 | . 8983 | - 1017 | . 4496 | - 5284 | . 0495 | . 3813 | - 7603 | - 2397 | 23 |
| 38 | . 9004 | . 0996 | . 4492 | - 5340 | . 0489 | . 3816 | . 7623 | . 2377 | 22 |
| 39 | . 9025 | . 0975 | . 4487 | . 5395 | . 0483 | . 3820 | . 7643 | . 2357 | 21 |
| 40 | . 69046 | . 30954 | 1.4483 | . 95451 | 1.0476 | 1.3824 | . 27663 | .72337 | 20 |
| 41 | . 9067 | . 0933 | . 4479 | . 5506 | . 0470 | . 3828 | . 7683 | . 2317 | 19 |
| 42 | . 9088 | . 0912 | . 4474 | . 5562 | . 0464 | . 3832 | . 7703 | . 2297 | 18 |
| 43 | . 9109 | . 0891 | . 4470 | . 5618 | . 0458 | . 3836 | - 7723 | - 2277 | 17 |
| 44 | . 9130 | . 0870 | . 4465 | . 5673 | . 0452 | . 3839 | . 7743 | . 2256 | 16 |
| 45 | . 69151 | . 30849 | 1.4461 | .9:729 | 1.0446 | 1.3843 | . 27764 | . 72236 | 15 |
| 46 | . 9172 | . 0828 | . 4457 | . 5785 | . 0440 | . 3847 | . 7784 | - 2216 | 14 |
| 47 | . 9193 | . 0807 | . 4452 | . 5841 | . 0434 | . 3851 | - 7804 | . 2196 | 13 |
| 48 | - 9214 | . 0786 | . 4448 | . 5896 | . 0428 | . 3855 | - 78.24 | . 2176 | 12 |
| 49 | 9235 | . 0765 | . 4443 | 5952 | . 0422 | . 3859 | 7844 | 2156 | 11 |
| 50 | . 69256 | . 30744 | 1.4439 | . 96008 | 1.0416 | 1.3863 | . 27864 | . 72136 | 10 |
| 51 | . 9277 | . 0723 | . 4435 | . 6064 | . 0410 | . 3867 | . 7884 | . 2115 |  |
| 52 | - 9298 | . 0702 | . 4430 | . 6120 | . 0404 | . 3870 | - 7904 | . 2095 | 8 |
| 53 | - 9319 | - 0681 | . 4426 | - 6176 | . 0397 | . 3874 | - 7925 | - 2075 | 7 |
| 54 | . 9340 | 0660 | . 4422 | 6232 | . 0391 | . 3878 | 7945 | - 2055 | 6 |
| 55 | . 69361 | . 30639 | 1.4417 | . 96288 | 1.0385 | 1.3882 | . 27965 | . 72035 | 5 |
| 56 | . 9382 | . 0618 | . 4413 | . 6344 | . 0379 | . 3886 | . 7985 | - 2015 | 4 |
| 57 | . 9403 | - 0597 | . 4408 | . 6400 | . 0373 | . 3890 | . 8005 | . 1994 | 3 |
| 58 | - 9424 | . 0576 | .4404 | . 6456 | . 0367 | . 3894 | . 8026 | - 1974 | 2 |
| 59 60 | - 9445 | - 0555 | . 4400 | -6513 | . 0361 | . 3898 | - 8046 | - 1954 | 0 |
| 60 | . 9466 | . 0534 | . 4395 | . 6569 | . 0355 | . 3902 | . 8066 | . 1934 | 0 |
| M | Cosine | Vrs. | ecant. | Cotang | ang | sec' | rs. | ne |  |


|  |  | Natural Trigonometrical Functions. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Vrs. cos. | Cosec 'nt | Tang. | Cotang. | Sccant. | Yrs. sin. | Cosine. | M. |
| 0 | . 69466 | . 30534 | 1.4395 | . 96569 | 1.0355 | 1.3902 | . 28066 | . 71934 | 60 |
| 1 | . 9487 | . 0.513 | . 4391 | . 6625 | . 0349 | . 3905 | . 8086 | . 1914 | 59 |
| 2 | - 9508 | . 0492 | . 4387 | . 6681 | . 0343 | . 3909 | . 8106 | . 1893 | 58 |
| 3 | - 9528 | - $0: 171$ | . 4382 | . 6738 | . 0337 | . 3913 | . 8127 | . 1873 | 57 |
| 4 | - 9549 | . 0450 | . 4378 | . 6794 | . 0331 | . 3917 | . 8147 | 1853 | 56 |
| 5 | . 69570 | . 30430 | 1.4374 | . 96850 | 1.0325 | 1.3921 | . 28167 | . 71833 | 55 |
| 6 | . 9591 | . 0409 | . 4370 | . 6907 | . 0319 | . 3925 | . 8187 | . 1813 | 54 |
| 7 | - 9612 | . 0388 | . 4365 | - 6963 | . 0313 | . 3929 | . 8208 | . 1792 | 53 |
| 8 | - 9633 | . 0367 | . 4361 | - 7020 | . 0307 | . 3933 | . 8228 | . 1772 | 52 |
| 9 | - 9654 | . 0346 | . 4357 | . 7076 | . 0301 | . 3937 | - 8248 | . 1752 | 51 |
| 10 | . 69675 | . 30325 | 1.4352 | . 97133 | 1.0295 | 1.3941 | . 28268 | . 71732 | 50 |
| 11 | . 9696 | . 0304 | . 4348 | . 7189 | . 0289 | . 3945 | . 8289 | . 1711 | 49 |
| 12 | - 9716 | . 0283 | . 4344 | . 7246 | . 0283 | . 3949 | . 8309 | . 1691 | 48 |
| 13 | - 9737 | . 0263 | . 4339 | - 7302 | . 0277 | . 3953 | . 8329 | . 1671 | 47 |
| 14 | . 9758 | . 0242 | . 4335 | . 7359 | . 0271 | . 3957 | . 8349 | . 1650 | 46 |
| 15 | . 69779 | . 30221 | 1.4331 | . 97416 | 1.0265 | 1.3960 | . 28370 | . 71630 | 45 |
| 16 | . 9800 | . 0200 | . 4327 | . 7472 | . 0259 | . 3964 | . 8390 | . 1610 | 44 |
| 17 | . 9821 | - 0179 | . 4322 | - 7529 | . 0253 | . 3968 | - 8410 | - 1589 | 43 |
| 18 | . 9841 | . 0158 | . 4318 | - 7586 | . 0247 | . 3972 | . 8431 | . 1569 | 42 |
| 19 | . 9862 | . 0138 | . 4314 | . 7643 | . 0241 | . 3976 | . 8451 | . 1549 | 41 |
| 20 | . 69883 | . 30117 | 1.4310 | . 97699 | 1.0235 | 1.3980 | . 28471 | . 71529 | 40 |
| 21 | . 9904 | . 0096 | . 4305 | . 7756 | . 0229 | . 3984 | . 8492 | . 1508 | 39 |
| 22 | . 9925 | . 0075 | . 4301 | . 7813 | . 0223 | . 3988 | . 8512 | . 1488 | 38 |
| 23 | . 9945 | - 0054 | . 4297 | . 7870 | . 0218 | . 3992 | . 8532 | . 1468 | 37 |
| 24 | . 9966 | . 0034 | . 4292 | 7927 | . 0212 | . 3996 | . 8553 | 1447 | 36 |
| 25 | . 69987 | . 30013 | 1.4288 | . 97984 | 1.0206 | 1.4000 | . 28573 | . 71427 | 35 |
| 26 | . 70008 | . 29992 | . 4284 | . 8041 | . 0200 | . 4004 | . 8593 | . 1406 | 34 |
| 27 | . 0029 | . 9971 | . 4280 | . 8098 | . 0194 | . 4008 | . 8614 | . 1386 | 33 |
| 28 | . 0049 | - 9950 | . 4276 | . 8155 | . 0188 | . 4012 | . 8634 | . 1366 | 32 |
| 29 | . 0070 | - 9930 | . 4271 | . 8212 | . 0182 | . 4016 | . 8654 | - 1345 | 31 |
| 30 | . 70091 | . 29909 | 1.4267 | . 98270 | 1.0176 | 1.4020 | . 28675 | . 71325 | 30 |
| 31 | . 0112 | . 9888 | . 4263 | . 8327 | . 0170 | . 4024 | . 8695 | . 1305 | 29 |
| 32 | . 0132 | - 9867 | . 4259 | . 8384 | . 0164 | . 4028 | . 8716 | . 1284 | 28 |
| 33 | . 0153 | - 9847 | . 4254 | . 8141 | . 0158 | . 4032 | . 8736 | - 1264 | 27 |
| 34 | . 0174 | . 9826 | . 4250 | . 8499 | . 0152 | . 4036 | . 8756 | . 1243 | 26 |
| 35 | . 70194 | . 29805 | 1.4246 | . 98556 | 1.0146 | 1.4040 | . 28777 | . 71223 | 25 |
| 36 | . 0215 | . 9785 | . 4242 | . 8613 | . 0141 | . 4044 | . 8797 | . 1203 | 24 |
| 37 | . 0236 | - 9764 | . 4238 | . 8671 | . 0135 | . 4048 | . 8818 | . 1182 | 23 |
| 38 | . 0257 | . 9743 | . 4233 | . 8728 | . 0129 | . 4052 | . 8838 | . 1162 | 22 |
| 39 | . 0277 | - 9722 | . 4229 | - 8786 | . 0123 | . 4056 | . 8859 | . 1141 | 21 |
| 40 | . 70298 | . 29702 | 1.4225 | . 98843 | 1.0117 | 1.4060 | . 28879 | . 71121 | 20 |
| 41 | . 0319 | . 9681 | . 4221 | - 8901 | . 0111 | . 4065 | . 8899 | . 1100 | 19 |
| 42 | . 0339 | - 9660 | .4217 | - 8958 | . 0105 | . 4069 | . 8920 | . 1080 | 18 |
| 43 | . 0360 | - 9640 | . 4212 | - 9016 | . 0099 | . 4073 | . 8940 | . 1059 | 17 |
| 44 | . 0381 | - 9619 | . 4208 | . 9073 | . 0093 | . 4077 | . 8961 | . 1039 | 16 |
| 45 | .70401 | . 29598 | 1.4204 | . 99131 | 1.0088 | 1.4081 | . 28981 | . 71018 | 15 |
| 46 | . 0422 | . 9578 | . 4200 | . 9189 | . 0082 | . 4085 | . 9002 | . 0998 | 14 |
| 47 | . 0443 | - 9557 | . 4196 | - 9246 | . 0076 | . 4089 | . 9022 | . 0977 | 13 |
| 48 | . 0463 | - 9536 | . 4192 | . 9304 | . 0070 | . 4093 | . 9043 | - 0957 | 12 |
| 49 | . 0184 | 9516 | . 4188 | - 9362 | . 0064 | . 4097 | 9063 | . 0936 | 11 |
| 50 | . 70505 | . 29495 | 1.4183 | . 99420 | 1.0058 | 1.4101 | . 29084 | . 70916 | 10 |
| 51 | - 0525 | . 9475 | . 4179 | . 9478 | . 0052 | . 4105 | . 9104 | . 0895 | 9 |
| -2 | . 0546 | - 9454 | . 4175 | - 9536 | . 0047 | . 4109 | . 9125 | . 0875 | 8 |
| 53 | . 0566 | - 9433 | . 4171 | - 9593 | . 0041 | . 4113 | . 9145 | . 0854 | 7 |
| 55 | - 0587 | - 9413 | . 4167 | - 9651 | . 0035 | . 4117 | . 9166 | . 0834 | 6 |
| 55 | . 70608 | . 29392 | 1.4163 | .99709 | 1.0029 | 1.4122 | . 29186 | . 70813 | 5 |
| 5 | . 0628 | . 9872 | . 4159 | . 9767 | . 0023 | . 4126 | . 9207 | . 0793 | 4 |
| 57 | . 0649 | - 9351 | . 4154 | - 9826 | . 0017 | . 4130 | - 9228 | - 0772 | 3 |
| 58 | . 0669 | - 9330 | . 4150 | . 9884 | . 0012 | . 4134 | . 9248 | . 0752 | 2 |
| 59 | . 0690 | - 9310 | .4146 | - 9942 | . 0006 | . 4138 | - 9269 | - 0731 | 1 |
| 60 | 0711 | 9289 | . 4142 | 1.0000 | . 0000 | . 4142 | . 9289 | 0711 | 0 |
| M. | Cosine. | Vrs. sin. | Secant. | Cotang. | Tang. | Cosec'nt | Vrs. cos. | Sine. | M. |


| $0^{\circ}$ |  | Logarithms. |  |  |  |  | $179^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | Inf. Neg. | Infinite. | Inf. Neg. | Infinite. | 10.00000 | 10.00000 | 60 |
| 1 | 6.46373 | 13.53627 | 6.46373 | 13.53627 | 00000 | 00000 | 59 |
| 2 | 76476 | 23524 | 76476 | 23524 | 00000 | 00000 | 58 |
| 3 | 94085 | 05915 | 94085 | 05915 | 00000 | 00000 | 57 |
| 4 | 7.06579 | 12.93421 | 7.06579 | 12.93421 | 00000 | 00000 | 56 |
| 5 | 7.16270 | 12.83730 | 7.16270 | 12.83730 | 10.00000 | 10.00000 | 55 |
| 6 | 24188 | 75812 | 24188 | 75812 | 00000 | 00000 | 54 |
| 7 | 30882 | 69118 | 30882 | 69118 | 00000 | 00000 | 53 |
| 8 | 36682 | 63318 | 36682 | 63318 | 00000 | 06000 | 52 |
| 9 | 41797 | 58203 | 41797 | 58203 | 00000 | 00000 | 51 |
| 10 | 7.46373 | 12.53627 | 7.46373 | 12.53627 | 10.00000 | 10.00000 | 50 |
| 11 | 50512 | 49488 | 50512 | 49488 | 00000 | 00000 | 49 |
| 12 | 54291 | 45709 | 54291 | 45709 | 00000 | 00000 | 48 |
| 13 | 57767 | 42233 | 57767 | 42233 | 00000 | 00000 | 47 |
| 14 | 60985 | 39015 | 60986 | 39014 | 00000 | 00000 | 46 |
| 15 | 7.63982 | 12.36018 | 7.63982 | 12.36018 | 10.00000 | 10.00000 | 45 |
| 16 | 66781 | 33216 | 66785 | 33215 | 00000 | 00000 | 44 |
| 17 | 69417 | 30583 | 69418 | 30582 | 00001 | 9.99999 | 43 |
| 18 | 71900 | 28100 | 71900 | 28100 | 00001 | 99999 | 42 |
| 19 | 74248 | 25752 | 74248 | 25752 | 00001 | 99999 | 41 |
| 20 | 7.76475 | 12.23525 | 7.76476 | 12.23524 | 10.00001 | 9.99999 | 40 |
| 21 | 78594 | 21406 | 78595 | 21405 | 00001 | 99999 | 39 |
| 22 | 80615 | 19385 | 80615 | 19385 | 00001 | 99999 | 38 |
| 23 | 82545 | 17455 | 82546 | 17454 | 00001 | 99999 | 37 |
| 24 | 84393 | 15607 | 81394 | 15606 | 00001 | 99999 | 36 |
| 25 | 7.86165 | 12.13834 | 7.86167 | 12.13833 | 10.00001 | 9.99999 | 35 |
| 26 | 87870 | 12130 | 87871 | 12129 | 00001 | 99999 | 34 |
| 27 | 89509 | 10491 | 89510 | 10490 | 00001 | 99999 | 33 |
| 28 | 91088 | 08912 | 91089 | 08911 | 00001 | 99999 | 32 |
| 29 | 92612 | 07388 | 92613 | 07387 | 00002 | 99998 | 31 |
| 30 | 7.94084 | 12.05916 | 7.94086 | 12.05914 | 10.00002 | 9.99998 | 30 |
| 31 | 95508 | 04492 | 95510 | 04490 | 00002 | 99998 | 29 |
| 32 | 96887 | 03113 | 96889 | 03111 | 00002 | 99998 | 28 |
| 33 | 98223 | 01777 | 98225 | 01775 | 00002 | 99998 | 27 |
| 34 | 99520 | 00480 | 99522 | 00478 | 00002 | 99998 | 26 |
| 35 | 8.00779 | 11.99221 | 8.00781 | 11.99219 | 10.00002 | 9.99998 | 25 |
| 36 | 02002 | 97998 | 02004 | 97996 | 00002 | 99998 | 24 |
| 37 | 03192 | 96808 | 03194 | 96806 | 00003 | 99997 | 23 |
| 3.8 | 04350 | 95650 | 04353 | 95647 | 00003 | 99997 | 22 |
| 39 | 05478 | 94522 | 05481 | 94519 | 00003 | 99997 | 21 |
| 40 | 8.06578 | 11.93422 | 8.06581 | 11.93419 | 10.00003 | 9.99997 | 20 |
| 41 | 07650 | 92350 | 07653 | 92347 | 00003 | 99997 | 19 |
| 42 | 08696 | - 91304 | 08700 | 91300 | 00003 | 99997 | 18 |
| 43 | 09718 | 90282 | 09722 | 90278 | 00003 | 99997 | 17 |
| 44 | 10717 | 889283 | 10720 | 89280 | 000004 | 99996 | 16 |
| 45 | 8.11693 | 11.88307 | 8.11696 | 11.88304 | 10.00004 | 9.99996 | 15 |
| 46 | 12647 | 87353 | 12651 | 87349 | 00004 | 99996 | 14 |
| 47 | 13581 | 86419 | 13585 | 86415 | 00004 | 99996 | 13 |
| 48 | 14493 | 85505 | 14500 | 85500 | 00004 | 99996 | 12 |
| 49 | 15391 | 84609 | 15395 | 84605 | 00004 | 99996 | 11 |
| 50 | 8.16268 | 11.83732 | 8.16273 | 11.83727 | 10.00005 | 9.99995 | 10 |
| 51 | 17128 | 82872 | 17133 | 82867 | 00005 | 99995 | 9 |
| 52 | 17971 | 82029 | 17976 | 82024 | 00005 | 99995 | 8 |
| 53 | 18798 | 81202 | 18804 | 81196 | 00005 | 99995 | 7 |
| 54 | 19610 | 80390 | 19616 | 80384 | 00005 | 99995 | 6 |
| 55 | 8.20407 | 11.79593 | 8.20413 | 11.79587 | 10.00006 | 9.99994 | 5 |
| 56 | 21189 | 78811 | 21195 | 78805 | 00006 | 99994 | 4 |
| 57 | 21958 | 78042 | 21964 | 78036 | 00006 | 99994 | 3 |
| 58 | 22713 | 77287 | 22720 | 77280 | 00006 | 99994 | 2 |
| 59 60 | 23456 24186 | 76544 75814 | 23462 | 76538 | 00006 | 99994 | 1 |
| 60 | 24186 | 75814 | 24192 | 75808 | 00007 | 99993 | 0 |
| MI. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |
| $90^{\circ}$ |  |  |  |  |  |  | $89^{\circ}$ |

10
Logarithms.
$178^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8.24186 | 11.75814 | 8.24192 | 11.75808 | 10.00007 | 9.99993 | 60 |
| 1 | 24903 | 75097 | 24910 | 75090 | 00007 | 99993 | 59 |
| 2 | 25609 | 74391 | 25616 | 74384 | 00007 | 99993 | 58 |
| 3 | 26304 | 73696 | 26312 | 73688 | 00007 | 99993 | 57 |
| 4 | 26988 | 73012 | 26996 | 73004 | 00008 | 99992 | 56 |
| 5 | 8.27661 | 11.72339 | 8.27669 | 11.72331 | 10.00008 | 9.99992 | 55 |
| 6 | 28324 | 71676 | 28332 | 71668 | 00008 | 99992 | 54 |
| 7 | 28977 | 71023 | 28986 | 71014 | 00008 | 99992 | 53 |
| 8 | 29621 | 70379 | 29629 | 70371 | 00008 | 99992 | 52 |
| 9 | 30255 | 69745 | 30263 | 69737 | 00009 | 99991 | 51 |
| 10 | 8.30879 | 11.69121 | 8.30888 | 11.69112 | 10.00009 | 9.99991 | 50 |
| 11 | 31495 | 68505 | 31505 | 68495 | 00009 | 99991 | 49 |
| 12 | 32103 | 67897 | 32112 | 67888 | 00010 | 99990 | 48 |
| 13 | 32702 | 67298 | 32711 | 67289 | 00010 | 99990 | 47 |
| 14 | 33292 | 66708 | 33302 | 66698 | 00010 | 99990 | 46 |
| 15 | 8.33875 | 11.66125 | 8.33886 | 11.66114 | 10.00010 | 9.99990 | 45 |
| 16 | 34450 | 65550 | 34461 | 65539 | 00011 | 99989 | 44 |
| 17 | 35018 | 64982 | 35029 | 64971 | 00011 | 99989 | 43 |
| 18 | 35578 | 64422 | 35590 | 64410 | 00011 | 99989 | 42 |
| 19 | 36131 | 63869 | 36143 | 63857 | 00011 | 99989 | 41 |
| 20 | 8.36678 | 11.63322 | 8.36689 | 11.63311 | 10.00012 | 9.99988 | 40 |
| 21 | 37217 | 62783 | 37229 | 62771 | 00012 | 99988 | 39 |
| 22 | 37750 | 62250 | 37762 | 62238 | 00012 | 99988 | 38 |
| 23 | 38276 | 61724 | 38289 | 61711 | 00013 | 99987 | 37 |
| 24 | 38796 | 61204 | 38809 | 61191 | 00013 | 99987 | 36 |
| 25 | 8.39310 | 11.60690 | 8.39323 | 11.60677 | 10.00013 | 9.99987 | 35 |
| 26 | 39818 | 60182 | 39832 | 60168 | 00014 | 99986 | 34 |
| 27 | 40320 | 59680 | 40334 | 59666 | 00014 | 99986 | 33 |
| 28 | 40816 | 59184 | 40830 | 59170 | 00014 | 99986 | 32 |
| 29 | 41307 | 58693 | 41321 | 58679 | 00015 | 99985 | 31 |
| 30 | 8.41792 | 11.58208 | 8.41807 | 11.58193 | 10.00015 | 9.99985 | 30 |
| 31 | 42272 | 57728 | 42287 | 57713 | 00015 | 99985 | 29 |
| 32 | 42746 | 57254 | 42762 | 57238 | 00016 | 99984 | 28 |
| 33 | 43216 | 56784 | 43232 | 56768 | 00016 | 99984 | 27 |
| 34 | 43680 | 56320 | 43696 | 56304 | 00016 | 99984 | 26 |
| 35 | 8.44139 | 11.55861 | 8.44156 | 11.55844 | 10.00017 | 9.99983 | 25 |
| 36 | 44594 | 55406 | 44611 | 55389 | 00017 | 99983 | 24 |
| 37 | 45044 | 54956 | 45061 | 54939 | 00017 | 99983 | 23 |
| 38 | 45489 | 54511 | 45507 | 54493 | 00018 | 99982 | 22 |
| 39 | 45930 | 54070 | 45948 | 54052 | 00018 | 99982 | 21 |
| 40 | 8.46366 | 11.53634 | 8.46385 | 11.53615 | 10.00018 | 9.99982 | 20 |
| 41 | 46799 | 53201 | 46817 | 53183 | 00019 | 99981 | 19 |
| 42 | 47226 | 52774 | 47245 | 52755 | 00019 | 99981 | 18 |
| 43 | 47650 | 52350 | 47669 | 52331 | 00019 | 99981 | 17 |
| $44^{\prime}$ | 48069 | 51931 | 48089 | 51911 | 00020 | 99980 | 16 |
| 45 | 8.48485 | 11.51515 | 8.48505 | 11.51495 | 10.00020 | 9.99980 | 15 |
| 46 | 48896 | 51104 | 48917 | 51083 | 00021 | 99979 | 14 |
| 47. | 49304 | 50696 | 49325 | 50675 | 00021 | 99979 | 13 |
| 48 | 49708 | 50292 | 49729 | 50271 | 00021 | 99979 | 12 |
| 49 | 50108 | 49892 | 50130 | 49870 | 00022 | 99978 | 11 |
| 50 | 8.50504 | 11.49496 | 8.50527 | 11.49473 | 10.00022 | 9.99978 | 10 |
| 51 | 50897 | 49103 | 50920 | 49080 | 00023 | 99977 | 9 |
| 52 | 51287 | 48713 | 51310 | 48690 | 00023 | 99977 | 8 |
| 53 | 51673 | 48327 | 51696 | 48304 | 00023 | 99977 | 7 |
| 54 | 52055 | 47945 | 52079 | 47921 | 00024 | 99976 | 6 |
| 55 | 8.52434 | 11.47566 | 8.52459 | 11.47541 | 10.00024 | 9.99976 | 5 |
| 56 | 52810 | 47190 | 52835 | 47165 | 00025 | 99975 |  |
| 57 | 53183 | 46817 | 53208 | 46792 | 00025 | 99975 |  |
| 58 | 53552 | 46448 | 53578 | 46422 | 00026 | 99974 | 2 |
| 59 | 53919 | 46081 | 53945 | 46055 | 00026 | 99974 | 1 |
| 60 | 54282 | 45718 | 54308 | 45692 | 00026 | 99974 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

Logarithmic Angular Functions.

| $2^{\circ}$ | Logarithms. |  |  |  |  | $177^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 8.54282 | 11.45718 | 8.54308 | 11.45692 | 10.00026 | 9.99974 | 60 |
| 1 | 54642 | 45358 | 54669 | 45331 | 00027 | 99973 | 59 |
| 2 | 54999 | 45001 | 55027 | 44973 | 00027 | 99973 | 58 |
| 3 | 55354 | 44646 | 55382 | 44618 | 00028 | 99972 | 57 |
| 4 | 55705 | 44295 | 55734 | 44266 | 00028 | 99972 | 56 |
| 5 | 8.56054 | 11.43946 | 8.56083 | 11.43917 | 10.00029 | 9.99971 | 55 |
| 6 | 56400 | 43600 | 56429 | 43571 | 00029 | 99971 | 54 |
| 7 | 56743 | 43257 | 56773 | 43227 | 00030 | 99970 | 53 |
| 8 | 57084 | 42916 | 57114 | 42886 | 00030 | 99970 | 52 |
| 9 | 57421 | 42579 | 57452 | 42548 | 00031 | 99969 | 51 |
| 10 | 8.57757 | 11.42243 | 8.57788 | 11.42212 | 10.00031 | 9.99969 | 50 |
| 11 | 58089 | 41911 | 58121 | 41879 | 00032 | 99968 | 49 |
| 12 | 58419 | 41581 | 58451 | 41549 | 00032 | 99968 | 48 |
| 13 | 58747 | 41253 | 58779 | 41221 | 00033 | 99967 | 47 |
| 14 | 59072 | 40928 | 59105 | 40895 | 00033 | 99967 | 46 |
| 15 | 8.59395 | 11.40605 | 8.59428 | 11.40572 | 10.00033 | 9.99967 | 45 |
| 16 | 59715 | 40285 | 59749 | 40251 | 00034 | 99966 | 44 |
| 17 | 60033 | 39967 | 60068 | 39932 | 00034 | 99966 | 43 |
| 18 | 60349 | 39651 | 60384 | 39616 | 00035 | 99965 | 42 |
| 19 | 60662 | 39338 | 60698 | 39302 | 00036 | 99964 | 41 |
| 20 | 8.60973 | 11.39027 | 8.61009 | 11.38991 | 10.00036 | 9.99964 | 40 |
| 21 | 61282 | 38718 | 61319 | 38681 | 00037 | 99963 | 39 |
| 22 | 61589 | 38411 | 61626 | 38374 | 00037 | 99963 | 38 |
| 23 | 61894 | 38106 | 61931 | 38069 | 00038 | 99962 | 37 |
| 24 | 62196 | 37804 | 62:34 | 37766 | 00038 | 99962 | 36 |
| 25 | 8.62497 | 11.37503 | 8.62535 | 11.37465 | 10.00039 | 9.99961 | 35 |
| 26 | 62795 | 37205 | 62834 | 37166 | 00039 | 99961 | 34 |
| 27 | 63091 | 36909 | 63131 | 36869 | 00040 | 99960 | 33 |
| 28 | 63385 | 36615 | 63426 | 36574 | 00040 | 99960 | 32 |
| 29 | 63678 | 36322 | 63718 | 36282 | 00041 | 99959 | 31 |
| 30 | 8.63968 | 11.36032 | 8.64009 | 11.35991 | 10.00041 | 9.99959 | 30 |
| 31 | 64256 | 35744 | 64298 | 35702 | 00042 | 99958 | 29 |
| 32 | 64543 | 35457 | 64585 | 35115 | 00042 | 99958 | 28 |
| 33 | 64827 | 35173 | 64870 | 35130 | 00043 | 99957 | 27 |
| 34 | 65110 | 34890 | 65154 | 34846 | 00044 | 99956 | 26 |
| 35 | 8.65391 | 11.34609 | 8.65435 | 11.34565 | 10.00044 | 9.99956 | 25 |
| 36 | 65670 | 34330 | 65715 | 34285 | 00045 | 99955 | 24 |
| 37 | 65947 | 34053 | 65993 | 34007 | 00045 | 99955 | 23 |
| 38 | 66223 | 33777 | 66269 | 33731 | 00046 | 99954 | 22 |
| 39 | 66497 | 33503 | 66543 | 33457 | 00046 | 99954 | 21 |
| 40 | 8.66769 | 11.33231 | 8.66816 | 11.33184 | 10.00047 | 9.99953 | 20 |
| 41 | 67039 | 32961 | 67087 | . 32913 | 00048 | 99952 | 19 |
| 42 | 67308 | 32692 | 67356 | 32644 | 00048 | 99952 | 18 |
| 43 | 67575 | 32425 | 67624 | 32376 | 00049 | 99951 | 17 |
| 44 | 67841 | 32159 | 67890 | 32110 | 00049 | 99951 | 16 |
| 45 | 8.68104 | 11.31896 | 8.68154 | 11.31846 | 10.00050 | 9.99950 | 15 |
| 46 | 68367 | 31633 | 68417 | 31583 | 00051 | 99949 | 14 |
| 47 | 68627 | 31373 | 68678 | 31322 | 00051 | 99949 | 13 |
| 48 | 68886 | 31114 | 68938 | 31062 | 00052 | 99948 | 12 |
| 49 | 69144 | 30856 | 69196 | 30804 | 00052 | 99948 | 11 |
| 50 | 8.69400 | 11.30600 | 8.69453 | 11.30547 | 10.00053 | 9.99947 | 10 |
| 51 | 69654 | 30346 | 69708 | 30292 | 00054 | 99946 | 9 |
| 52 | 69907 | 30093 | 69962 | 30038 | 00054 | 99946 | 8 |
| 53 | 70159 | 29841 | 70214 | 29786 | 00055 | 99945 | 7 |
| 54 | 70409 | 29591 | 70465 | 29535 | 00056 | 99944 | 6 |
| 55 | 8.70658 | 11.29342 | 8.70714 | 11.29286 | 10.00056 | 9.99944 | 5 |
| 56 | 70905 | 29095 | 70962 | 29038 | 00057 | 99943 | 4 |
| 57 | 71151 | 28849 | 71208 | 28792 | 00058 | 99942 | 3 |
| 58 | 71395 | 28605 | 71453 | 28547 | 00058 | 99942 | 2 |
| 59 | 71638 | 28362 | 71697 | 28303 | 00059 | 99941 | 1 |
| 60 | 71880 | 28120 | 71940 | 28060 | 00060 | 99940 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |
| $92^{\circ}$ |  |  |  |  |  |  | 87 |


| $3^{\circ}$ |  | Logarithms. |  |  |  | $176{ }^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | MI. |
| 0 | 8.71880 | 11.28120 | 8.71940 | 11.28060 | 10.00060 | 9.99940 | 60 |
| 1 | 72120 | 27880 | 72181 | 27819 | 00060 | 99940 | 59 |
| 2 | 72359 | 27641 | 72420 | 27580 | 00061 | 99939 | 58 |
| 3 | 72597 | 27403 | 72659 | 27341 | 00062 | 99938 | 57 |
| 4 | 72834 | 27166 | 72896 | 27104 | 00062 | 99938 | 56 |
| 5 | 8.73069 | 11.26931 | 8.73132 | 11.26868 | 10.00063 | 9.99937 | 55 |
| 6 | 73303 | 26697 | 73366 | 26634 | 00064 | 99936 | 54 |
| 7 | 73535 | 26465 | 73600 | 26400 | 00064 | 99936 | 53 |
| 8 | 73767 | 26233 | 73832 | 26168 | 00065 | 99935 | 52 |
| 9 | 73997 | 26003 | 74063 | 25937 | 00066 | 99934 | 51 |
| 10 | 8.74226 | 11.25774 | 8.74292 | 11.25708 | 10.00066 | 9.99934 | 50 |
| 11 | 74454 | 25546 | 74521 | 25479 | 00067 | 99933 | 49 |
| 12 | 74680 | 25320 | 74748 | 25252 | 00068 | 99932 | 48 |
| 13 | 74906 | 25094 | 74974 | 25026 | 00068 | 99932 | 47 |
| 14 | 75130 | 24870 | 75199 | 24801 | 00069 | 99931 | 46 |
| 15. | 8.75353 | 11.24647 | 8.75423 | 11.24577 | 10.00070 | 9.99930 | 45 |
| 16 | 75575 | 24425 | 75645 | 24355 | 00071 | 99929 | 44 |
| 17 | 75795 | 24205 | 75867 | 24133 | 00071 | 99929 | 43 |
| 18 | 76015 | 23985 | 76087 | 23913 | 00072 | 99928 | 42 |
| 19 | 76234 | 23766 | 76306 | 23694 | 00073 | 99927 | 41 |
| 20 | 8.76451 | 11.23549 | 8.76525 | 11.23475 | 10.00074 | 9.99926 | 40 |
| 21 | 76667 | 23333 | 76742 | 23258 | 00074 | 99926 | 39 |
| 22 | 76883 | 23117 | 76958 | 23042 | 00075 | 99925 | 38 |
| 23 | 77097 | 22903 | 77173 | 22827 | 00076 | 99924 | 37 |
| 24 | 77310 | 22690 | 77387 | 22613 | 00077 | 99923 | 36 |
| 25 | 8.77522 | 11.22478 | 8.77600 | 11.22400 | 10.00077 | 9.99923 | 35 |
| 26 | 77733 | 22267 | 77811 | 22189 | 00078 | 99922 | 34 |
| 27 | 77943 | 22057 | 78022 | 21978 | 00079 | 99921 | 33 |
| 28 | 78152 | 21848 | 78232 | 21768 | 00080 | 99920 | 32 |
| 29 | 78360 | 21640 | 78441 | 21559 | 00080 | 99920 | 31 |
| 30 | 8.78568 | 11.21432 | 8.78649 | 11.21351 | 10.00081 | 9.99919 | 30 |
| 31 | 78774 | 21226 | 78855 | 21145 | 00082 | 99918 | 29 |
| 32 | 78979 | 21021 | 79061 | 20939 | 00083 | 99917 | 28 |
| 33 | 79183 | 20817 | 79266 | 20734 | 00083 | 99917 | 27 |
| 34 | 79386 | 20614 | 79470 | 20530 | 00084 | 99916 | 26 |
| 35 | 8.79588 | 11.20412 | 8.79673 | 11.20327 | 10.00085 | 9.99915 | 25 |
| 36 | 79789 | 20211 | 79875 | 20125 | 00086 | 99914 | 24 |
| 37 | 79990 | 20010 | 80076 | 19924 | 00087 | 99913 | 23 |
| 38 | 80189 | 19811 | 80277 | 19723 | 00087 | 99913 | 22 |
| 39 | 80388 | 19612 | 80476 | 19524 | 00088 | 99912 | 21 |
| 40 | 8.80585 | 11.19415 | 8.80674 | 11.19326 | 10.00089 | 9.99911 | 20 |
| 41 | 80782 | 19218 | 80872 | 19128 | 00090 | 99910 | 19 |
| 42 | 80978 | 19022 | 81068 | 18932 | 00091 | 99909 | 18 |
| 43 | 81173 | 18827 | 81264 | 18736 | 00091 | 99909 | 17 |
| 44 | 81367 | 18633 | 81459 | 18541 | 00092 | 99908 | 16 |
| 45 | 8.81560 | 11.18440 | 8.81653 | 11.18347 | 10.00093 | 9.99907 | 15 |
| 46 | 81752 | $18: 48$ | 81846 | 18154 | 00094 | 99906 | 14 |
| 47 | 81944 | 18056 | 82038 | 17962 | 00095 | 99905 | 13 |
| 48 | 82134 | 17866 | 82230 | 17770 | 00096 | 99904 | 12 |
| 49 | 82324 | 17676 | 82420 | 17580 | 00096 | 99904 | 11 |
| 50 | 8.82513 | 11.17487 | 8.82610 | 11.17390 | 10.00097 | 9.99903 | 10 |
| 51 | 82701 | 17299 | 82799 | 17201 | 00098 | 99902 | 9 |
| 52 | 82888 | 17112 | 82987 | 17013 | 00099 | 99901 | 8 |
| 53 | 83075 | 16925 | 83175 | 16825 | 00100 | 99900 | 7 |
| 54 | 83261 | 16739 | 83361 | 16639 | 00101 | 99899 | 6 |
| 55 | 8.83446 | 11.16554 | 8.83547 | 11.16453 | 10.00102 | 9.99898 | 5 |
| 56 | 83630 | 16370 | 83732 | 16268 | 00102 | 99898 | 4 |
| 57 | 83813 | 16187 | 83916 | 16084 | 00103 | 99897 | 3 |
| 58 | 83996 | 16004 | 84100 | 15900 | 00104 | 99896 | 2 |
| 59 | 84177 | 15823 | 84282 | 15718 | 00105 | 99895 | 1 |
| 60 | 84358 | 15642 | 84464 | 15536 | 00106 | 99894 | 0 |
| MI. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | II. |
| $93^{\circ}$ |  |  |  |  |  |  | $86^{\circ}$ |


| $4^{\circ}$ |  | Logaritlims. |  |  |  | $175^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| II. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 8.84358 | 11.15642 | 8.84464 | 11.15536 | 10.00106 | 9.99894 | 60 |
| 1 | 84539 | 15461 | 84646 | 15354 | 00107 | 99893 | 59 |
| 2 | 84718 | 15282 | 84826 | 15174 | 00108 | 99892 | 58 |
| 3 | 84897 | 15103 | 85006 | 14994 | 00109 | 99891 | 57 |
| 4 | 85075 | 14925 | 85185 | 14815 | 00109 | 99891 | 56 |
| 5 | 8.85252 | 11.14748 | 8.8536:3 | 11.14637 | 10.00110 | 9.99890 | 55 |
| 6 | 85429 | 14571 | 85510 | 14460 | 00111 | 99889 | 54 |
| 7 | 85605 | 14395 | S5717 | 14283 | 00112 | 99888 | 53 |
| 8 | 85780 | 14220 | ¢58933 | 14107 | 00113 | 99887 | 52 |
| 9 | 85955 | 14045 | 86069 | 13931 | 00114 | 99886 | 51 |
| 10 | 8.86128 | 11.13872 | 8.86243 | 11.13757 | 10.00115 | 9.99885 | 50 |
| 11 | 86301 | 13699 | 86417 | 13583 | 00116 | 99884 | 49 |
| 12 | 86474 | 13526 | 86591 | 13409 | 00117 | 99883 | 48 |
| 13 | 86645 | 13355 | 86763 | 13237 | 00118 | 99882 | 47 |
| 14 | 86816 | 13184 | 86935 | 13065 | 00119 | 99881 | 46 |
| 15 | 8.86987 | 11.13013 | 8.87106 | 11.12894 | 10.00120 | 9.99880 | 45 |
| 16 | 87156 | 12844 | 87277 | . 12723 | 00121 | 99879 | 44 |
| 17 | 87325 | 12675 | 87447 | 12553 | 00121 | 99879 | 43 |
| 18 | 87494 | 12506 | 87616 | 12384 | 00122 | 99878 | 42 |
| 19 | 87661 | 12339 | 87785 | 12215 | 00123 | 99877 | 41 |
| 20 | 8.87829 | 11.12171 | 8.87953 | 11.12047 | 10.00124 | 9.99876 | 40 |
| 21 | 87995 | 12005 | 88120 | 11880 | 00125 | 99875 | 39 |
| 22 | 88161 | 11839 | 88287 | 11713 | 00126 | 99874 | 38 |
| 23 | 88326 | 11674 | 88453 | 11547 | 00127 | 99873 | 37 |
| 24 | 88490 | 11510 | 88618 | 11382 | 00128 | 99872 | 36 |
| 25 | $8.8865{ }^{4}$ | 11.11346 | 8.88783 | 11.11217 | 10.00129 | 9.99871 | 35 |
| 26 | 88817 | 11183 | 88948 | 11052 | 00130 | 99870 | 34 |
| 27 | 88980 | 11020 | 89111 | 10889 | 00131 | 99869 | 33 |
| 28 | 89142 | 10858 | 89274 | 10726 | 00132 | 99868 | 32 |
| 29 | 89304 | 10696 | 89437 | 10563 | 00133 | 99867 | 31 |
| 30 | 8.89464 | 11.10536 | 8.89598 | 11.10402 | 10.00134 | 9.99866 | 30 |
| 31 | 89625 | 10375 | 89760 | 10240 | 00135 | 99865 | 29 |
| 32 | 89784 | 10216 | 89920 | 10080 | 00136 | 99864 | 28 |
| 33 | 89943 | 10057 | 90080 | 09920 | 00137 | 99863 | 27 |
| 34 | 90102 | 09898 | 90240 | 09760 | 00138 | 99862 | 26 |
| 35 | 8.90260 | 11.09740 | 8.90399 | 11.09601 | 10.00139 | 9.99861 | 25 |
| 36 | 90417 | 09583 | 90557 | 09443 | 00140 | 99860 | 24 |
| 37 | 90574 | 09426 | 90715 | 09285 | 00141 | 99859 | 23 |
| 38 | 90730 | 09270 | 90872 | 09128 | 00142 | 99858 | 22 |
| 39 | 90885 | 09115 | 91029 | 08971 | 00143 | 99857 | 21 |
| 40 | 8.91040 | 11.08960 | 8.91185 | 11.08815 | 10.00144 | 9.99856 | 20 |
| 41 | 91195 | 08805 | 91340 | 08660 | 00145 | 99855 | 19 |
| 42 | 91349 | 08651 | 91495 | 08505 | - 00146 | 99854 | 18 |
| 43 | 91502 | 08498 | 91650 | 08350 | 00147 | 99853 | 17 |
| 44 | 91655 | 08345 | 91803 | 08197 | 00148 | 99852 | 16 |
| 45 | 8.91807 | 11.08193 | 8.91957 | 11.08043 | 10.00149 | 9.99851 | 15 |
| 46 | 91959 | 08041 | 92110 | 07890 | 00150 | 99850 | 14 |
| 47 | 92110 | 07890 | 92262 | 07738 | 00152 | 99848 | 13 |
| 48 | 92261 | 07739 | 92414 | 07586 | 00153 | 99847 | 12 |
| 49 | 92411 | 07589 | 92565 | 07435 | 00154 | 99846 | 11 |
| 50 | 8.92561 | 11.07439 | 8.92716 | 11.07284 | 10.00155 | 9.99845 | 10 |
| 51 | 92710 | 07290 | 92866 | 07134 | 00156 | 99844 | 9 |
| 52 | 92859 | 07141 | 93016 | 06984 | 00157 | 99843 | 8 |
| 53 | 93007 | 06993 | 93165 | 06835 | 00158 | 99842 | 7 |
| 54 | 93154 | 06846 | 93313 | 06687 | 00159 | 99841 | 6 |
| 55 | 8.93301 | 11.06699 | 8.93462 | 11.06538 | 10.00160 | 9.99840 | 5 |
| 56 | 93448 | 06552 | 93609 | 06391 | 00161 | 99839 | 4 |
| 57 | 93594 | 06406 | 93756 | 06244 | 00162 | 99838 | 3 |
| 58 | 93740 | 06260 | 93903 | 06097 | 00163 | 99837 | 2 |
| 59 | 93885 | 06115 | 94049 | 05951 | 00164 | 99836 | 1 |
| 60 | 94030 | 05970 | 94195 | 05805 | 00166 | 99834 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |
| $94^{\circ}$ |  |  |  |  |  |  | $85^{\circ}$ |


| $5^{\circ}$ | Logarithms. |  |  |  |  | $174^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | II. |
| 0 | 8.94030 | 11.05970 | 8.94195 | 11.05805 | 10.00166 | 9.99834 | 60 |
| 1 | 94174 | 05826 | 94340 | 05660 | 00167 | 99833 | 59 |
| 2 | 94317 | 05683 | 94485 | 05515 | 00168 | 99832 | 58 |
| 3 | 94461 | 05539 | 94630 | 05370 | 00169 | 99831 | 57 |
| 4 | 94603 | 05397 | 94773 | 05227 | 00170 | 99830 | 56 |
| 5 | 8.94746 | 11.05254 | 8.94917 | 11.05083 | 10.00171 | 9.99829 | 55 |
| 6 | 94887 | 05113 | 95060 | 04940 | 00172 | 99828 | 54 |
| 7 | 95029 | 04971 | 95202 | 04798 | 00173 | 99827 | 53 |
| 8 | 95170 | 04830 | 95344 | 04656 | 00175 | 99825 | 52 |
| 9 | 95310 | 04690 | 95486 | 04514 | 00176 | 99824 | 51 |
| 10 | 8.95450 | 11.04550 | 8.95627 | 11.04373 | 10.00177 | 9.99823 | 50 |
| 11 | 95589 | 04411 | 95767 | 04:33 | 00178 | 99822 | 49 |
| 12 | 95728 | 04272 | 95908 | 04092 | 00179 | 99821 | 48 |
| 13 | 95867 | 04133 | 96047 | 03953 | 00180 | 99820 | 47 |
| 14 | 96005 | 03995 | 96187 | 03813 | 00181 | 99819 | 46 |
| 15 | 8.96143 | 11.03857 | 8.96325 | 11.03675 | 10.00183 | 9.99817 | 45 |
| 16 | 96280 | 03720 | 96464 | 03536 | 00184 | 99816 | 44 |
| 17 | 96417 | 03583 | 96602 | 03398 | 00185 | 99815 | 43 |
| 18 | 96553 | 03447 | 96739 | 03261 | 00186 | 99814 | 42 |
| 19 | 96689 | 03311 | 96877 | 03123 | 00187 | 99813 | 41 |
| 20 | 8.96825 | 11.03175 | 8.97013 | 11.02987 | 10.00188 | 9.99812 | 40 |
| 21 | 96960 | 03040 | 97150 | 02850 | 00190 | 99810 | 39 |
| 22 | 97095 | 02905 | 97285 | 02715 | 00191 | 99809 | 38 |
| 23 | 97229 | 02771 | 97421 | 02579 | 00192 | 99808 | 37 |
| 24 | 97363 | 02637 | 97556 | 02444 | 00193 | 99807 | 36 |
| 25 | 8.97496 | 11.02504 | 8.97691 | 11.02309 | 10.00194 | 9.99806 | 35 |
| 26 | 97629 | 02371 | 97825 | 02175 | 00196 | 99804 | 34 |
| 27 | 97762 | 02238 | 97959 | 02041 | 00197 | 99803 | 33 |
| 28 | 97894 | 02106 | 98092 | 01908 | 00198 | 99802 | 32 |
| 29 | 98026 | 01974 | 98225 | 01775 | 00199 | 99801 | 31 |
| 30 | 8.98157 | 11.01843 | 8.98358 | 11.01642 | 10.00200 | 9.99800 | 30 |
| 31 | 98288 | 01712 | 98490 | 01510 | 00202 | 99798 | 29 |
| 32 | 98419 | 01581 | 98622 | 01378 | 00203 | 99797 | 28 |
| 33 | 98549 | 01451 | 98753 | 01247 | 00204 | 99796 | 27 |
| 34 | 98679 | 01321 | 98884 | 01116 | 00205 | 99795 | 26 |
| 35 | 8.98808 | 11.0119* | 8.99015 | 11.00985 | 10.00207 | 9.99793 | 25 |
| 36 | 98937 | 01063 | 99145 | 00855 | 00208 | 99792 | 24 |
| 37 | 99066 | 00934 | 99275 | 00725 | 00209 | 99791 | 23 |
| 38 | 99194 | 00806 | 99405 | 00595 | 00210 | 99790 | 22 |
| 39 | 99322 | 00678 | 99534 | 00466 | 00212 | 99788 | 21 |
| 40 | 8.99450 | 11.00550 | 8.99662 | 11.00338 | 10.00213 | 9.99787 | 20 |
| 41 | 99577 | 00423 | 99791 | 00209 | 00214 | 99786 | 19 |
| 42 | 99704 | 00296 | 99919 | 00081 | 00215 | 99785 | 18 |
| 43 | 99830 | 00170 | 9.00046 | 10.99954 | 00217 | 99783 | 17 |
| 44 | 99956 | 00044 | 00174 | 99826 | 00218 | 99782 | 16 |
| 45 | 9.00082 | 10.99918 | 9.00301 | 10.99699 | 10.00219 | 9.99781 | 15 |
| 46 | 00207 | 99793 | 00427 | 99573 | 00220 | 99780 | 14 |
| 47 | 00332 | 99668 | 00553 | 99447 | 00222 | 99778 | 13 |
| 48 | 00456 | 99544 | 00679 | 99321 | 00223 | 99777 | 12 |
| 49 | 00581 | 99419 | 00805 | 99195 | 00224 | 99776 | 11 |
| 50 | 9.00704 | 10.99296 | 9.00930 | 10.99070 | 10.00225 | 9.99775 | 10 |
| 51 | 00828 | 99172 | 01055 | 98945 | 00227 | 99773 | 9 |
| 52 | 00951 | 99049 | 01179 | 98821 | 00228 | 99772 | 8 |
| 53 | 01074 | 98926 | 01303 | 98697 | 00229 | 99771 | 7 |
| 54 | 01196 | 98804 | 01427 | 98573 | 00231 | 99769 | 6 |
| 55 | 9.01318 | 10.98682 | 9.01550 | 10.98450 | 10.00232 | 9.99768 | 5 |
| 56 | 01440 | 98560 | 01673 | 98327 | 00233 | 99767 | 4 |
| 57 | 01561 | 98439 | 01796 | 98204 | 00235 | 99765 | 3 |
| 58 | 01682 | 98318 | 01918 | 98082 | 00236 | 99764 | 2 |
| 59 | 01803 | 98197 | 02040 | 97960 | 00237 | 99763 | 1 |
| 60 | 01923 | 98077 | 02162 | 97838 | 00239 | 99761 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| $6^{\circ}$ | Logarithms. |  |  |  |  |  | $173^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.01923 | 10.98077 | 9.02162 | 10.97838 | 10.00239 | 9.99761 | 60 |
| 1 | 02043 | 97957 | 02283 | 97717 | 00240 | 99760 | 59 |
| 2 | 02163 | 97837 | 02404 | 97596 | 00241 | 99759 | 58 |
| 3 | 02283 | 97717 | 02525 | 97475 | 00243 | 99757 | 57 |
| 4 | 02402 | 97598 | 02645 | 97355 | 00244 | 99756 | 56 |
| 5 | 9.02520 | 10.97480 | 9.02766 | 10.97234 | 10.00245 | 9.99755 | 55 |
| 6 | 02639 | 97361 | 02885 | 97115 | 00247 | 99753 | 54 |
| 7 | 02757 | 97243 | 03005 | 96995 | 00248 | 99752 | 53 |
| 8 | 02874 | 97126 | 03124 | 96876 | 00249 | 99751 | 52 |
| 9 | 02992 | 97008 | 03242 | 96758 | 00251 | 99749 | 51 |
| 10 | 9.03109 | 10.96891 | 9.03361 | 10.96639 | 10.00252 | 9.99748 | 50 |
| 11 | 03226 | 96774 | 03479 | 96521 | 00253 | 99747 | 49 |
| 12 | 03342 | 96658 | 03597 | 96403 | 00255 | 99745 | 48 |
| 13 | 03458 | 96542 | 03714 | 96286 | 00256 | 99744 | 47 |
| 14 | 03574 | 96426 | 03832 | 96168 | 00258 | 99742 | 46 |
| 15 | 9.03690 | 10.96310 | 9.03948 | 10.96052 | 10.00259 | 9.99741 | 45 |
| 16 | 03805 | 96195 | 04065 | 95935 | 00260 | 99740 | 44 |
| 17 | 03920 | 96080 | 04181 | 95819 | 09262 | 99738 | 43 |
| 18 | 04034 | 95966 | 04297 | 95703 | 00263 | 99737 | 42 |
| 19 | 04149 | 95851 | 04413 | 95587 | 00264 | 99736 | 41 |
| 20 | 9.04262 | 10.95738 | 9.04528 | 10.95472 | 10.00266 | 9.99734 | 40 |
| 21 | 04376 | 95624 | 04643 | 95357 | 00267 | 99733 | 39 |
| 22 | 04490 | 95510 | 04758 | 95242 | 00269 | 99731 | 38 |
| 23 | 04603 | 95397 | 04873 | 95127 | 00270 | 99730 | 37 |
| 24 | 04715 | 95285 | 04987 | 95013 | 00272 | 99728 | 36 |
| 25 | 9.04828 | 10.95172 | 9.05101 | 10.94899 | 10.00273 | 9.99727 | 35 |
| 26 | 04340 | 95060 | 05214 | 94786 | 00274 | 99726 | 34 |
| 27 | 05052 | 94948 | 05328 | 94672 | 00276 | 99724 | 33 |
| 28 | 05164 | 94836 | 05441 | 94559 | 00277 | 99723 | 32 |
| 29 | 05275 | 94725 | 05553 | 94447 | 00279 | 99721 | 31 |
| 30 | 9.05386 | 10.94614 | 9.05666 | 10.94334 | 10.00280 | 9.99720 | 30 |
| 31 | 05497 | 94503 | 05778 | 94222 | 00282 | 99718 | 29 |
| 32 | 05607 | 94393 | 05890 | 94110 | 00283 | 99717 | 28 |
| 33 | 05717 | 94283 | 06002 | 93998 | 00284 | 99716 | 27 |
| 34 | 05827 | 94173 | 06113 | 93887 | 00286 | 99714 | 26 |
| 35 | 9.05937 | 10.94063 | 9.06224 | 10.93776 | 10.00287 | 9.99713 | 25 |
| 36 | 06046 | 93954 | 06335 | 93665 | 00289 | 99711 | 24 |
| 37 | 06155 | 93845 | 06445 | 93555 | 00290 | 99710 | 23 |
| 38 | 06264 | 93736 | 06556 | 93444 | 00292 | 99708 | 22 |
| 39 | 06372 | 93628 | 06666 | 93334 | 00293 | 99707 | 21 |
| 40 | 9.06481 | 10.93519 | 9.06775 | 10.93225 | 10.00295 | 9.99705 | 20 |
| 41 | 06589 | 93411 | 06885 | 93115 | 00296 | 99704 | 19 |
| 42 | 06696 | 93304 | 06994 | 93006 | 00298 | 99702 | 18 |
| 43 | 06804 | 93196 | 07103 | 92897 | 00299 | 99701 | 17 |
| 44 | 06911 | 93089 | 07211 | 92789 | 00301 | 99699 | 16 |
| 45 | 9.07018 | 10.92982 | 9.07320 | 10.92680 | 10.00302 | 9.99698 | 15 |
| 46 | 07124 | 92876 | 07428 | 92572 | 00304 | 99696 | 14 |
| 47 | 07231 | 92769 | 07536 | 92464 | 00305 | 99695 | 13 |
| 48 | 07337 | 92663 | 07643 | 92357 | 00307 | 99693 | 12 |
| 49 | 07442 | 92558 | 07751 | 92249 | 00308 | 99692 | 11 |
| 50 | 9.07548 | 10.92452 | 9.07858 | 10.92142 | 10.00310 | 9.99690 | 10 |
| 51 | 07653 | 92347 | 07964 | 92036 | 00311 | 99689 | 9 |
| 52 | 07758 | 92242 | 08071 | 91929 | 00313 | 99687 | 8 |
| 53 | 07863 | 92137 | 08177 | 91823 | 00314 | 99686 | 7 |
| 54 | 07.968 | 92032 | 08283 | 91717 | 00316 | 99684 | 6 |
| 55 | 9.08072 | 10.91928 | 9.08389 | 10.91611 | 10.00317 | 9.99683 | 5 |
| 56 | 08176 | 91824 | 08495 | 91505 | 00319 | 99681 | 4 |
| 57 | 08280 | 91720 | 08600 | 91400 | 00320 | 99680 | 3 |
| 58 | 08383 | 91617 | 08705 | 91295 | 00322 | 99678 | 2 |
| 59 | 08486 | 91514 | 08810 | 91190 | 00323 | 99677 | 1 |
| 60 | 08589 | 91411 | 08914 | 91086 | 00325 | 99675 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | II. |
| $96^{\circ}$ |  |  |  |  |  |  | $83^{\circ}$ |


| M. | Sine. | Cosecant. | 'Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.08589 | 10.91411 | 9.08914 | 10.91086 | 10.00325 | 9.99675 | 60 |
| 1 | 08692 | 91308 | 09019 | 90981 | 00326 | 99674 | 59 |
| 2 | 08795 | 91205 | 09123 | 90877 | 00328 | 99672 | 58 |
| 3 | 08897 | 91103 | 09227 | 90773 | 00330 | 99670 | 57 |
| 4 | 08999 | 91001 | 09330 | 90670 | 00331 | 99669 | 56 |
| 5 | 9.09101 | 10.90899 | 9.09434 | 10.90566 | 10.00333 | 9.99667 | 55 |
| 6 | 09202 | 90798 | 09537 | 90463 | 00334 | 99666 | 54 |
| 7 | 09304 | 90696 | 09640 | 90360 | 00336 | 99664 | 53 |
| 8 | 09405 | 90595 | 09742 | 90258 | 00337 | 99663 | 52 |
| 9 | 09506 | 90494 | 09845 | 90155 | 00339 | 99661 | 51 |
| 10 | 9.09606 | 10.90394 | 9.09947 | 10.90053 | 10.00341 | 9.99659 | 50 |
| 11 | 09707 | 90293 | 10049 | 89951 | 00342 | 99658 | 49 |
| 12 | 09807 | 90193 | 10150 | 89850 | 00344 | 99656 | 48 |
| 13 | 09907 | 90093 | 10252 | 89748 | 00345 | 99655 | 47 |
| 14 | 10006 | 89994 | 10353 | 89647 | 00347 | 99653 | 46 |
| 15 | 9.10106 | 10.89894 | 9.10454 | 10.89546 | 10.00349 | 9.99651 | 45 |
| 16 | 10205 | 89795 | 10555 | 89445 | 00350 | 99650 | 44 |
| 17 | 10304 | 89696 | 10656 | 89344 | 00352 | 99648 | 43 |
| 18 | 10402 | 89598 | 10756 | 89244 | 00353 | 99647 | 42 |
| 19 | 10501 | 89499 | 10856 | 89144 | 00355 | 99645 | 41 |
| 20 | 9.10599 | 10.89401 | 9.10956 | 10.89044 | 10.00357 | 9.99643 | 40 |
| 21 | 10697 | 89303 | 11056 | 88944 | 00358 | 99642 | 39 |
| 22 | 10795 | 89205 | 11155 | 88845 | 00360 | 99640 | 38 |
| 23 | 10893 | 89107 | 11254 | 88746 | 00362 | 99638 | 37 |
| 24 | 10990 | 89010 | 11353 | 88647 | 00363 | 99637 | 36 |
| 25 | 9.11087 | 10.88913 | 9.11452 | 10.88548 | 10.00365 | 9.99635 | 35 |
| 26 | 11184 | 88816 | 11551 | 88449 | 00367 | 99633 | 34 |
| 27 | 11281 | 88719 | 11649 | 88351 | 00368 | 99632 | 33 |
| 28 | 11377 | 88623 | 11747 | 88253 | 00370 | 99630 | 32 |
| 29 | 11474 | 88526 | 11845 | 88155 | 00371 | 99629 | 31 |
| 30 | 9.11570 | 10.88430 | 9.11943 | 10.88057 | 10.00373 | 9.99627 | 30 |
| 31 | 11666 | 88334 | 12040 | 87960 | 00375 | 99625 | 29 |
| 32 | 11761 | 88239 | 12138 | 87862 | 00376 | 99624 | 28 |
| 33 | 11857 | 88143 | 12235 | 87765 | 00378 | 99622 | 27 |
| 34 | 11952 | 88048 | 12332 | 87668 | 00380 | 99620 | 26 |
| 35 | 9.12047 | 10.87953 | 9.12428 | 10.87572 | 10.00382 | 9.99618 | 25 |
| 36 | 12142 | 87858 | 12525 | 87475 | 00383 | 99617 | 24 |
| 37 | 12236 | 87764 | 12621 | 87379 | 00385 | 99615 | 23 |
| 38 | 12331 | 87669 | 12717 | 87283 | 00387 | 99613 | 22 |
| 39 | 12425 | 87575 | 12813 | 87187 | 00388 | 99612 | 21 |
| 40 | 9.12519 | 10.87481 | 9.12909 | 10.87091 | 10.00390 | 9.99610 | 20 |
| 41 | 12612 | 87388 | 13004 | 86996 | 00392 | 99608 | 19 |
| 42 | 12706 | 87294 | 13099 | 86901 | 00393 | 99607 | 18 |
| 43 | 12799 | 87201 | 13194 | 86806 | 00395 | 99605 | 17 |
| 44 | 12892 | 87108 | 13289 | 86711 | 00397 | 99603 | 16 |
| 45 | 9.12985 | 10.87015 | 9.13384 | 10.86616 | 10.00399 | 9.99601 | 15 |
| 46 | 13078 | 86922 | 13478 | 86522 | 00400 | 99600 | 14 |
| 47 | 13171 | 86829 | 13573 | 86427 | 00402 | 99598 | 13 |
| 48 | 13263 | 86737 | 13667 | 86333 | 00404 | 99596 | 12 |
| 49 | 13355 | 86645 | 13761 | 86239 | 00405 | 99595 | 11 |
| 50 | 9.13447 | 10.86553 | 9.13854 | 10.86146 | 10.00407 | 9.99593 | 10 |
| 51 | 13539 | 86461 | 13948 | 86052 | 00409 | 99591 | , |
| 52 | 13630 | 86370 | 14041 | 85959 | 00411 | 99589 | 8 |
| 5 | 13722 | 86278 | 14134 | 85866 | 00412 | 99588 | 7 |
| 54 | 13813 | 86187 10.86096 | 14227 | . 85773 | 000414 | -99586 | ${ }_{5}^{6}$ |
| 55 | 9.13904 | 10.86096 | 9.14320 | 10.85680 | 10.00416 | 9.99584 | 5 |
| 56 | 13994 | 86006 | 14412 | 85588 | 00418 | 99582 | 4 |
| 57 58 58 | 14085 | 85915 | 14504 | 85496 | 00419 | 99581 | 3 |
| 58 | 14175 | 85825 | 14597 | 85403 | 00421 | 99579 | ${ }_{1}^{2}$ |
| 60 | 14356 | 88734 | 14488 1480 | 858220 | 00423 00425 | 99977 99575 | ${ }_{0}^{1}$ |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| $8^{\circ}$ | Logarithms. |  |  |  |  |  | $171^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sinc. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.14356 | 10.85644 | 9.14780 | 10.85220 | 10.00425 | 9.99575 | 60 |
| 1 | 14445 | 85555 | 14872 | 85128 | 00426 | 99574 | 59 |
| 2 | 14535 | 8.5455 | 14963 | 85037 | 00428 | 99572 | 58 |
| 3 | 14624 | 85376 | 15054 | 84946 | 00430 | 99570 | 57 |
| 4 | 14714 | 85286 | 15145 | 84855. | 00432 | 99568 | 56 |
| 5 | 9.14803 | 10.85197 | 9.15236 | $10.84764^{\circ}$ | 10.00434 | 9.99566 | 55 |
| 6 | 14891 | 85109 | 15327 | 84673 | 00435 | 99565 | 54 |
| 7 | 14980 | 85020 | 15417 | 84583 | 00437 | 99563 | 53 |
| 8 | 15069 | 84931 | 15508 | 84492 | 00439 | 99561 | 52 |
| 9 | 15157 | 84813 | 15598 | 84402 | 00441 | 99559 | 51 |
| 10 | 9.15245 | 10.84755 | 9.15688 | 10.84312 | 10.00443 | 9.99557 | 50 |
| 11 | 15333 | 81667 | 15777 | 84223 | 00444 | 99556 | 49 |
| 12 | 15421 | 81579 | 15867 | 84133 | 00446 | 99554 | 48 |
| 13 | 15508 | 84492 | 15956 | 81044 | 00448 | 99552 | 47 |
| 14 | 15596 | 81404 | 16046 | 83954 | 00450 | 99550 | 46 |
| 15 | 9.15683 | 10.84317 | 9.16135 | 10.83865 | 10.00452 | 9.99548 | 45 |
| 16 | 15770 | 84230 | 16224. | 83776 | 00454 | 99546 | 44 |
| 17 | 15857 | 84143 | 16312 | 83688 | 00455 | 99545 | 43 |
| 18 | 15944 | 84056 | 16401 | 83599 | 00457 | 99543 | 42 |
| 19 | 16030 | 83970 | 16489 | 83511 | 00459 | 99541 | 41 |
| 20 | 9.16116 | 10.83884 | 9.16577 | 10.83423 | 10.00461 | 9.99539 | 40 |
| 21 | 16203 | 83797 | 16665 | 83335 | 00463 | 99537 | 39 |
| 22 | 16289 | 83711 | 16753 | 83247 | 00465 | 99535 | 38 |
| 23 | 16374 | 83626 | 16841 | 83159 | 00467 | 99533 | 37 |
| 24 | 16460 | 83540 | 16928 | 83072 | 00468 | 99532 | 36 |
| 25 | 9.16545 | 10.83455 | 9.17016 | 10.82984 | 10.00470 | 9.99530 | 35 |
| 26 | 16631 | 83369 | 17103 | 82897 | 00472 | 99528 | 34 |
| 27 | 16716 | 83284 | 17190 | 82810 | 00474 | 99526 | 33 |
| 28 | 16801 | 83199 | 17277 | 82723 | 00476 | 99524 | 32 |
| 29 | 16886 | 83114 | 17363 | 82637 | 00478 | 99522 | 31 |
| 30 | 9.16970 | 10.83030 | 9.17450 | 10.82550 | 10.00480 | 9.99520 | 30 |
| 31 | 17055 | 82945 | 17536 | 82464 | 00482 | 99518 | 29 |
| 32 | 17139 | 82861 | 17622 | 82378 | 00483 | 99517 | 28 |
| 33 | 17223 | 82777 | 17708 | 82292 | 00485 | 99515 | 27 |
| 34 | 17307 | 82693 | 17794 | 82206 | 00487 | 99513 | 26 |
| 35 | 9.17391 | 10.82609 | 9.17880 | 10.82120 | 10.00489 | 9.99511 | 25 |
| 36 | 17474 | 82526 | 17965 | 82035 | 00491 | 99509 | 24 |
| 37 | 17558 | 82442 | 18051 | 81949 | 00493 | 99507 | 23 |
| 38 | 17641 | 82359 | 18136 | 81864 | 00495 | 99505 | 22 |
| 39 | 17724 | 82276 | 18221 | 81779 | 00497 | 99503 | 21 |
| 40 | 9.17807 | 10.82193 | 9.18306 | 10.81694 | 10.00499 | 9.99501 | 20 |
| 41 | 17890 | 82110 | 18391 | 81609 | 00501 | 99499 | 19 |
| 42 | 17973 | 82027 | 18475 | 81525 | 00503 | 99497 | 18 |
| 43 | 18055 | 81945 | 18560 | 81440 | 00505 | 99495 | 17 |
| 44 | 18137 | 81863 | 18644 | 81356 | 00506 | 99494 | 16 |
| 45 | 9.18220 | 10.81780 | 9.18728 | 10.81272 | 10.00508 | 9.99492 | 15 |
| 46 | 18302 | 81698 | 18812 | 81188 | 00510 | 99490 | 14 |
| 47 | 18383 | 81617 | 18896 | 81104 | 00512 | 99488 | 13 |
| 48 | 18465 | 81535 | 18979 | 81021 | 00514 | 99486 | 12 |
| 49 | 18547 | 81453 | 19063 | 80937 | 00516 | 99484 | 11 |
| 50 | 9.18628 | 10.81372 | 9.19146 | 10.80854 | 10.00518 | 9.99482 | 10 |
| 51 | 18709 | 81291 | 19229 | 80771 | 00520 | 99480 | 9 |
| 52 | 18790 | 81210 | 19312 | 80688 | 00522 | 99478 | 8 |
| 53 | 18871 | 81129 | 19395 | 80605 | 00524 | 99476 | 7 |
| 54 | 18952 | 81048 | 19478 | 80522 | 00526 | 99474 | 6 |
| 55 | 9.19033 | 10.80967 | 9.19561 | 10.80439 | 10.00528 | 9.99472 | 5 |
| 56 | 19113 | 80887 | 19643 | 80357 | 00530 | 99470 | 4 |
| 57 | 19193 | 80807 | 19725 | 80275 | 00532 | 99468 | 3 |
| 58 | 19273 | 80727 | 19807 | 80193 | 00534 | 99466 | 2 |
| 59 | 19353 | 80647 | 19889 | 80111 | 00536 | 99464 | 1 |
| 60 | 19433 | 80567 | 19971 | 800:29 | 00538 | 99462 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

Logarithmic Angular Functions.

| Logarithms. |  |  |  |  |  |  | $170^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.19433 | 10.80567 | 9.19971 | 10.80029 | 10.00538 | 9.99462 | 60 |
| 1 | 19513 | 80487 | 20053 | 79947 | 00540 | 99460 | 59 |
| 2 | 19592 | 80408 | 20131 | 79866 | 00542 | 99458 | 58 |
| 3 | 19672 | 80328 | 20216 | 79784 | 00544 | 99456 | 57 |
| 4 | . 19751 | 80249 | 20297 | 79703 | 00546 | 99454 | 56 |
| 5 | 9.19830 | 10.80170 | 9.20378 | 10.79622 | 10.00548 | 9.99452 | 55 |
| 6 | 19909 | 80091 | 20459 | 79541 | 00550 | 99450 | 54 |
| 7 | 19988 | 80012 | 20540 | 79460 | 00552 | 99448 | 53 |
| 8 | 20067 | 79933 | 20621 | 79379 | 00554 | 99446 | 52 |
| 9 | 20145 | 79855 | 20701 | 79299 | 00556 | 99444 | 51 |
| 10 | 9.20223 | 10.79777 | 9.20782 | 10.79218 | 10.00558 | 9.99442 | 50 |
| 11 | 20302 | 79698 | 20862 | 79138 | 00560 | 99440 | 49 |
| 12 | 20380 | 79620 | 20942 | 79058 | 00562 | 99438 | 48 |
| 13 | 20458 | 79542 | 21022 | 78978 | 00564 | 99436 | 47 |
| 14 | 20535 | 79465 | 21102 | 78898 | 00566 | 99434 | 46 |
| 15 | 9.20613 | 10.79387 | 9.21182 | 10.78818 | 10.00568 | 9.99432 | 45 |
| 16 | 20691 | 79309 | 21261 | 78739 | 00571 | 99429 | 44 |
| 17 | 20768 | 79232 | 21341 | 78659 | 00573 | 99427 | 43 |
| 18 | 20845 | 79155 | 21420 | 78580 | 00575 | 99425 | 42 |
| 19 | 20922 | 79078 | 21499 | 78501 | 00577 | 99423 | 41 |
| 20 | 9.20999 | 10.79001 | 9.21578 | 10.78422 | 10.00579 | 9.99421 | 40 |
| 21 | 21076 | 78924 | 21657 | 78343 | 00581 | 99419 | 39 |
| 22 | 21153 | 78847 | 21736 | 78264 | 00583 | 99417 | 38 |
| 23 | 21229 | 78771 | 21814 | 78186 | 00585 | 99415 | 37 |
| 24 | 21306 | 78694 | 21893 | 78107 | 00587 | 99413 | 36 |
| 25 | 9.21382 | 10.78618 | 9.21971 | 10.78029 | 10.00589 | 9.99411 | 35 |
| 26 | 21458 | 78542 | 22049 | 77951 | 00591 | 99409 | 34 |
| 27 | 21534 | 78466 | 22127 | 77873 | 00593 | 99407 | 33 |
| 28 | 21610 | 78390 | 22205 | 77795 | 00596 | 99404 | 32 |
| 29 | 21685 | 78315 | 22283 | 77717 | 00598 | 99402 | 31 |
| 30 | 9.21761 | 10.78239 | 9.22361 | 10.77639 | 10.00600 | 9.99400 | 30 |
| 31 | 21836 | 78164 | 22438 | 77562 | 00602 | 99398 | 29 |
| 32 | 21912 | 78088 | 22516 | 77484 | 00604 | 99396 | 28 |
| 33 | 21987 | 78013 | 22593 | 77407 | 00606 | 99394 | 27 |
| 34 | 22062 | 77938 | 22670 | 77330 | 00608 | 99392 | 26 |
| 35 | 9.22137 | 10.77863 | 9.22747 | 10.77253 | 10.00610 | 9.99390 | 25 |
| 36 | 22211 | 77789 | 22824 | 77176 | 00612 | 99388 | 24 |
| 37 | 22286 | 77714 | 22901 | 77099 | 00615 | 99385 | 23 |
| 38 | 22361 | 77639 | 22977 | 77023 | 00617 | 99383 | 22 |
| 39 | 22435 | 77565 | 23054 | 76946 | 00619 | 99381 | 21 |
| 40 | 9.22509 | 10.77491 | 9.23130 | 10.76870 | 10.00621 | 9.99379 | 20 |
| 41 | 22583 | 77417 | 23206 | 76794 | 00623 | 99377 | 19 |
| 42 | 22657 | 77343 | 23283 | 76717 | 00625 | 99375 | 18 |
| 43 | 22731 | 77269 | 23359 | 76641 | 00628 | 99372 | 17 |
| 44 | 22805 | 77195 | 23435 | 76565 | 00630 | 99370 | 16 |
| 45 | 9.22878 | 10.77122 | 9.23510 | 10.76490 | 10.00632 | 9.99368 | 15 |
| 46 | 22952 | 77048 | 23586 | 76414 | 00634 | 99366 | 14 |
| 47 | 23025 | 76975 | 23661 | 76339 | 00636. | 99364 | 13 |
| 48 | 23098 | 76902 | 23737 | 76263 | 00638 | 99362 | 12 |
| 49 | 23171 | 76829 | 23812 | 76188 | 00641 | 99359 | 11 |
| 50 | 9.23244 | 10.76756 | 9.23887 | 10.76113 | 10.00643 | 9.99357 | 10 |
| 51 | 23317 | 76683 | 23962 | 76038 | 00645 | 99355 | 9 |
| 52 | 23390 | 76610 | 24037 | 75963 | 00647 | 99353 | 8 |
| 53 | 23462 | 76538 | 24112 | 75888 | 00649 | 99351 | 7 |
| 54 | 23535 | 76465 | 24186 | 75814 | 00652 | 99348 | 6 |
| 55 | 9.23607 | 10.76393 | 9.24261 | 10.75739 | 10.00654 | 9.99346 | 5 |
| 56 | 23679 | 76321 | 24335 | 75665 | 00656 | 99344 | 4 |
| 57 | 23752 | 76248 | 24410 | 75590 | 00658 | 99342 | 3 |
| 58 | 23823 | 76177 | 24484 | 75516 | 00660 | 99340 | 2 |
| 59 | 23895 | 76105 | 24558 | 75442 | 00663 | 99337 | 1 |
| 60 | 23967 | 76033 | - 24632 | 75368 | 00665 | 99335 | 0 |
| M. | Cosine. | Secaut. | Cutaugent. | 'Taugent. | Cosecant. | Sine. | M. |


| $10^{\circ}$ |  | Logarithms. |  |  |  |  | $169^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. $\mid$ | Secant. | Cosine. | M. |
| 0 | 9.23967 | 10.76 | 9.24632 | 10.75368 | 10.00665 | 9.99335 | 60 |
| 1 | 24039 | 75961 | 24706 | 75294 | 00667 | 99333 | 59 |
| 2 | 24110 | 75890 | 24779 | 75221 | 00669 | 99331 | 58 |
| 3 | 24181 | 75819 | 24853 | 75147 | 00672 | 99328 | 57 |
| 4 | 24253 | 75747 | 24926 | 75074 | 00674 | 99326 | 56 |
| 5 | 9.24324 | 10.75676 | 9.25000 | 10.75000 | 10.00676 | 9.99324 | 55 |
| 6 | 24395 | 75605 | 25073 | 74927 | 00678 | 99322 | 54 |
| 7 | 24466 | 75534 | 25146 | 74851 | 00681 | 99319 | 53 |
| 8 | 24536 | 75464 | 25219 | 74781 | 00683 | 99317 | 52 |
|  | 24607 | 75393 | 25292 | 74708 | 00685 | 99315 | 51 |
| 10 | 9.24677 | 10.75323 | 9.25365 | 10.74635 | 10.00687 | 9.99313 | 50 |
| 11 | 24748 | 75252 | 25437 | 74563 | 00690 | 99310 | 49 |
| 12 | 24818 | 75182 | 25510 | 74490 | 00692 | 99308 | 48 |
| 13 | 24888 | 75112 | 25582 | 74418 | 00694 | 99306 | 47 |
| 14 | 24958 | 75042 | 25655 | 74345 | 00696 | 99304 | 46 |
| 15 | 9.25028 | 10.74972 | 9.25727 | 10.74273 | 10.00699 | 9.99301 | 45 |
| 16 | 25098 | 74902 | 25799 | 74201 | 00701 | 99299 | 44 |
| 17 | 25168 | 74832 | 25871 | 74129 | 00703 | 99297 | 43 |
| 18 | 25237 | 74763 | 25943 | 74057 | 00706 | 99294 | 42 |
| 19 | 25307 | 74693 | 26015 | 73985 | 00708 | 99292 | 41 |
| 20 | 9.25376 | 10.74624 | 9.26086 | 10.73914 | 10.00710 | 9.99290 | 40 |
|  | 25445 | 74555 | 26158 | 73842 | 00712 | 99288 | 39 |
|  | 25514 | 74486 | 26229 | 73771 | 00715 | 99285 | 38 |
|  | 25583 | 74417 | 26301 | 73699 | 00717 | 99283 | 37 |
|  | 25652 | 74348 | 26372 | 73628 | 00719 | 99281 | 36 |
|  | 9.25721 | 10.74279 | 9.26443 | 10.73557 | 10.00722 | 9.99278 | 35 |
|  | 25790 | 7210 | 26514 | 73486 | 00724 | 99276 | 34 |
|  | 858 | 74142 | 26585 | 73415 | 00726 | 99274 | 33 |
|  | 25927 | 74073 | 26655 | 73345 | 00729 | 99271 | 32 |
|  | 25995 | 74005 | 26726 | 73274 | 00731 | 99269 | 31 |
|  | 9.26063 | 10.73937 | 9.26797 | 10.73203 | 10.00733 | 9.99267 | 30 |
|  | 26131 | 73869 | 26867 | 73133 | 00736 | 99264 | 29 |
|  | 26199 | 73801 | 26937 | 73063 | 00738 | 99262 | 8 |
|  | 26267 | 73733 | 27008 | 72992 | 00740 | 99260 | 27 |
|  | 26335 | 73665 | 27078 | 72922 | 00743 | 99257 | 6 |
| 35 | 9.26403 | 10.73597 | 9.27148 | 10.72852 | 10.00745 | 9.99255 | 25 |
|  | 26470 | 73530 | 27218 | 72782 | 00748 | 99252 | 24 |
|  |  | 73462 | 27288 | 72712 | 00750 | 99250 | 3 |
|  | 26605 | 73395 | 27357 | 72643 | 00752 | 99248 | 2 |
|  |  | 730 | 9.7 | 10.72 | 10.007 | 9.99245 | 21 |
|  |  | 7319 | 9.27 | 72434 | 007 | 99241 | 19 |
| 42 | 26873 | 73127 | 27635 | 72365 | 00762 | 99238 | 18 |
| 43 | 26940 | 73060 | 27704 | 72296 | 00764 | 99236 | 17 |
| 41 | 27007 | 72993 | $27 / 73$ | 72227 | 00767 | 99233 | 16 |
| 45 | 9.27073 | 10.72927 | 9.27842 | 10.72158 | 10.00769 | 9.99231 | 15 |
| 46 | 27140 | 72860 | 27911 | 72089 | 00771 | 99229 | 14 |
| 47 | 27206 | 72794 | 27980 | 72020 | 00774 | 99226 | 13 |
| 48 | 27273 | 72727 | 28049 | 71951 | 00776 | 99224 | 12 |
|  | 27339 | 72661 | 28117 | 71883 | 00779 | 99221 | 11 |
| 50 | 9.27405 | 10.72595 | 9.28186 | 10.71814 | 10.00781 | 9.99219 | 10 |
| 51 | 27471 | 72529 | 28254 | 71746 | 00783 | 99217 | 9 |
| 52 | 27537 | 72463 | 28323 | 71677 | 00786 | 99214 |  |
|  | 27602 | 72398 | 28391 | 71609 | 00788 | 99212 |  |
| 54 | 27668 | 72332 | 28459 | 71541 | 00791 | 99209 |  |
| 55 | 9.27734 | 10.72266 | 9.28527 | 10.71473 | 10.00793 | 9.99207 | 5 |
| 56 | 27799 | 72201 | 28595 | 71405 | 00796 | 99204 |  |
|  | 27864 | 72136 | 28662 | 71338 | 00798 | 99202 |  |
| 58 <br> 59 <br> 8 | 27930 | 72070 | 28730 | 71270 | 00800 | 99200 | 2 |
| 60 | 28060 | 71940 | 28865 | 71135 | 00805 | 99195 | 0 |
| M. | Cosine. | Secant. | Cotangen | Tangent. | Coserant | ine |  |

Logarithms.
$168^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.28060 | 10.71940 | 9.28865 | 10.71135 | 10.00805 | 9.99195 | 60 |
| 1 | 28125 | 71875 | 28933 | 71067 | 00808 | 99192 | 59 |
| 2 | 28190 | 71810 | 29000 | 71000 | 00810 | 99190 | 58 |
| 3 | 28254 | 71746 | 29067 | 70933 | 00813 | 99187 | 57 |
| 4 | 28319 | 71681 | 29134 | 70866 | 00815 | 99185 | 56 |
| 5 | 9.28384 | 10.71616 | 9.29201 | 10.70799 | 10.00818 | 9.99182 | 55 |
| 6 | 28448 | 71552 | 29268 | 70732 | 00820 | 99180 | 54 |
| 7 | 28512 | 71488 | 29335 | 70665 | 00823 | 99177 | 53 |
| 8 | 28577 | 71423 | 29402 | 70598 | 00825 | 99175 | 52 |
| 9 | 28641 | 71359 | 29468 | 70532 | 00828 | 99172 | 51 |
| 10 | 9.28705 | 10.71295 | 9.29535 | 10.70465 | 10.00830 | 9.99170 | 50 |
| 11 | 28769 | 71231 | 29601 | 70399 | 00833 | 99167 | 49 |
| 12 | 28833 | 71167 | 29668 | 70332 | 00835 | 99165 | 48 |
| 13 | 28896 | 71104 | 29734 | 70266 | 00838 | 99162 | 47 |
| 14 | 28960 | 71040 | 29800 | 70200 | 00840 | 99160 | 46 |
| 15 | 9.29024 | 10.70976 | 9.29866 | 10.70134 | 10.00843 | 9.99157 | 45 |
| 16 | 29087 | 70913 | 29932 | 70068 | 00845 | 99155 | 44 |
| 17 | 29150 | 70850 | 29998 | 70002 | 00848 | 99152 | 43 |
| 18 | 29214 | 70786 | 30064 | 69936 | 00850 | 99150 | 42 |
| 19 | 29277 | 70723 | 30130 | 69870 | 00853 | 99147 | 41 |
| 20 | 9.29340 | 10.70660 | 9.30195 | 10.69805 | 10.00855 | 9.99145 | 40 |
| 21 | 29403 | 70597 | 30261 | 69739 | 00858 | 99142 | 39 |
| 22 | 29466 | 70534 | 30326 | 69674 | 00860 | 99140 | 38 |
| 23 | 29529 | 70471 | 30391 | 69609 | 00863 | 99137 | 37 |
| 24 | 29591 | 70409 | 30457 | 69543 | 00865 | 99135 | 36 |
| 25 | 9.29654 | 10.70346 | 9.30522 | 10.69478 | 10.00868 | 9.99132 | 35 |
| 26 | 29716 | 70284 | 30587 | 69413 | 00870 | 99130 | 34 |
| 27 | 29779 | 70221 | 30652 | 69348 | 00873 | 99127 | 33 |
| 28 | 29841 | 70159 | 30717 | 69283 | 00876 | 99124 | 32 |
| 29 | 29903 | 70097 | 30782 | 69218 | 00878 | 99122 | 31 |
| 30 | 9.29966 | 10.70034 | 9.30846 | 10.69154 | 10.00881 | 9.99119 | 30 |
| 31 | 30028 | 69972 | 30911 | 69089 | 00883 | 99117 | 29 |
| 32 | 30090 | 69910 | 30975 | 69025 | 00886 | 99114 | 28 |
| 33 | 30151 | 69849 | 31040 | 68960 | 00888 | 99112 | 27 |
| 34 | 30213 | 69787 | 31104 | 68896 | 00891 | 99109 | 26 |
| 35 | 9.30275 | 10.69725 | 9.31168 | 10.68832 | 10.00894 | 9.99106 | 25 |
| 36 | 30336 | 69664 | 31233 | 68767 | 00896 | 99104 | 24 |
| 37 | 30398 | 69602 | 31297 | 68703 | 00899 | 99101 | 23 |
| 38 | 30459 | 69541 | 31361 | 68639 | 00901 | 99099 | 22 |
| 39 | 30521 | 69479 | 31425 | 68575 | 00904 | 99096 | 21 |
| 40 | 9.30582 | 10.69418 | 9.31489 | 10.68511 | 10.00907 | 9.99093 | 20 |
| 41 | 30643 | 69357 | 31552 | 68448 | 00909 | 99091 | 19 |
| 42 | 30704 | 69296 | 31616 | 68384 | 00912 | 99088 | 18 |
| 43 | 30765 | 69235 | 31679 | 68321 | 00914 | 99086 | 17 |
| 44 | 30826 | 69174 | 31743 | 68257 | 00917 | 99083 | 16 |
| 45 | 9.30887 | 10.69113 | 9.31806 | 10.68194 | 10.00920 | 9.99080 | 15 |
| 46 | 30947 | 69053 | 31870 | 68130 | 00922 | 99078 | 14 |
| 47 | 31008 | 68992 | 31933 | 68067 | 00925 | 99075 | 13 |
| 48 | 31068 | 68932 | 31996 | 68004 | 00928 | 99072 | 12 |
| 49 | 31129 | 68871 | 32059 | 67941 | 00930 | 99070 | 11 |
| 50 | 9.31189 | 10.68811 | 9.32122 | 10.67878 | 10.00933 | 9.99067 | 10 |
| 51 | 31250 | 68750 | 32185 | 67815 | 00936 | 99064 | 9 |
| 52 | 31310 | 68690 | 32248 | 67752 | 00938 | 99062 | 8 |
| 53 | 31370 | 68630 | 32311 | 67689 | 00941 | 99059 | 7 |
| 54 | 31430 | 68570 | 32373 | 67627 | 00944 | 99056 | 6 |
| 55 | 9.31490 | 10.68510 | 9.32436 | 10.67564 | 10.00946 | 9.99054 | 5 |
| 56 | 31549 | 68451 | 32498 | 67502 | 00949 | 99051 | 4 |
| 57 | 31609 | 68391 | 32561 | 67439 | 00952 | 99048 | 3 |
| 58 | 31669 | 68331 | 32623 | 67377 | 00954 | 99046 | 2 |
| 59 | 31728 | 68272 | 32685 | 67315 | 00957 | 99043 | 1 |
| 60 | 31788 | 68212 | 32747 | 67253 | 00960 | 99040 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

Logarithms.
$167^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.317 | 10.68 | 9.32747 | 10.67253 | 10.00960 | 9.99040 | 60 |
| 1 | 1847 | 8153 | 2810 | 190 | 00962 | 99038 | 59 |
| 2 | 31907 | 68093 | 32872 | 67128 | 00965 | 99035 | 58 |
| 3 | 31966 | 68034 | 32933 | 67067 | 00968 | 99032 | 57 |
| 4 | 32025 | 67975 | 32995 | 67005 | 00970 | 99030 | 56 |
| 5 | 9.32084 | 10.67916 | 9.33057 | 10.66943 | 10.00973 | 9.99027 | 55 |
| 6 | 32143 | 67857 | 33119 | 66881 | 00976 | 99024 | 54 |
| 7 | 32202 | 67798 | 33180 | 66820 | 00978 | 99022 | 53 |
| 8 | 32261 | 67739 | 33242 | 6758 | 00981 | 99019 | 52 |
| 9 | 32319 | 7681 | 33303 | 66697 | 00984 | 99016 | 51 |
| 10 | 9.32378 | 10.67622 | 9.33365 | 10.66635 | 10.00987 | 9.99013 | 50 |
| 11 | 32437 | 67563 | 33426 | 66574 | 00989 | 99011 | 49 |
| 12 | 32495 | 7505 | 33487 | 66513 | 00992 | 99008 | 48 |
| 13 | 32553 | 67447 | 33548 | 66452 | 00995 | 99005 | 47 |
| 14 | 32612 | 67388 | 33609 | 66391 | 00998 | 99002 | 46 |
| 15 | 9.32670 | 10.67330 | 9.33670 | 10.66330 | 10.01000 | 9.99000 | 45 |
| 16 | 32728 | 67272 | 33731 | 66269 | 01003 | 98997 | 44 |
| 17 | 32786 | 67214 | 33792 | 66208 | 01006 | 98994 | 43 |
| 18 | 32844 | 67156 | 33853 | 66147 | 01009 | 98991 | 42 |
| 19 | 32902 | 67098 | 33913 | 66087 | 01011 | 98989 | 41 |
| 20 | 9.32960 | 10.67040 | 9.33974 | 10.66026 | 10.01014 | 9.98986 | 40 |
|  | 33018 | 66982 | 34034 | 65966 | 01017 | 98983 | 39 |
|  | 33075 | 925 | 34095 | 65905 | 01020 | 98980 | 38 |
|  | 33133 | 867 | 34155 | 5845 | 01022 | 8978 | 37 |
|  | 33190 | 66810 | 34215 | 65785 | 01025 | 98975 | 36 |
|  | 9.33248 | 10.66752 | 9.34276 | 10.65724 | 10.01028 | 9.98972 | 35 |
|  | 305 | 66695 | 34336 | 65664 | 01031 | 98969 |  |
|  | 362 | 638 | 4396 | 65604 | 01033 | 98967 | 33 |
|  | 33420 | 66580 | 34456 | 65544 | 01036 | 98964 | 32 |
| 29 | 33477 | 66523 | 34516 | 65484 | 01039 | 98961 | 31 |
|  | 9.33534 | 10.66466 | 9.34576 | 10.65424 | 10.01042 | 9.98958 | 30 |
|  | 33591 | 66409 | 34635 | 65365 | 01045 | 98955 | 29 |
|  | 33647 | 66353 | 34695 | 65305 | 01047 | 98953 | 8 |
|  | 33704 | 66296 | 34755 | 65245 | 01050 | 98950 | 27 |
|  | 33761 | 66239 | 34814 | 65186 | 01053 | 98947 | 26 |
|  | 9.33818 | 10.66182 | 9.34874 | 10.65126 | 10.01056 | 9.98944 | 25 |
|  | 33874 | 66126 | 34933 | 65067 | 01059 | 98941 | 24 |
|  | 33931 | 069 | 34992 | 65008 | 01062 | 8938 | 23 |
|  | 987 | 013 | 0511 | 64949 | 01064 | 8936 |  |
| 40 | 9.34100 | 10.65900 | 9.35170 | 10.64830 | 10.01070 | 9.98930 | 20 |
| 41 | 34156 | 65844 | 35229 | 64771 | 01073 | 98927 | 19 |
| 42 | 34212 | 65788 | 35288 | 64712 | 01076 | 98924 | 18 |
| 43 | 34268 | 65732 | 35347 | 64653 | 01079 | 98921 | 17 |
| 4 | 34324 | 65676 | 35405 | 64595 | 01081 | 98919 | 16 |
| 45 | 9.34380 | 10.65620 | 9.35464 | 10.64536 | 10.01084 | 9.98916 | 15 |
| 46 | 34436 | 65564 | 35523 | 64477 | 01087 | 98913 | 14 |
| 47 | 34491 | 65509 | 35581 | 64419 | 01090 | 98910 | 13 |
|  | 34547 | 65453 | 35640 | 64360 | 01093 | 98907 | 12 |
|  | 34602 | 65398 | 35698 | 64302 | 01096 | 98904 | 11 |
|  | 9.34658 | 10.65342 | 9.35757 | 10.64243 | 10.01099 | 9.98901 | 10 |
|  | 34713 | 65287 | 35815 | 64185 | 01102 | 98898 | 9 |
|  | 34769 | 65231 | 35873 | 64127 | 01104 | 98896 | 8 |
|  | 34824 | 65176 | 35931 | 64069 | 01107 | 98893 | 7 |
|  | 34879 | 65121 | 35989 | 64011 | 01110 | 98890 | 6 |
|  | 9.34934 | 10.65066 | 9.36047 | 10.63953 | 10.01113 | 9.98887 | 5 |
|  | 34989 | 65011 | 36105 | 63895 | 01116 | 98884 | 4 |
|  | 35044 | 64956 | 36163 | 63837 | 01119 | 98881 | 3 |
| 58 59 | 35099 | 64901 | 36221 36279 | 79 | 01122 | 98878 | 2 |
| 60 | 35209 | 64791 | 36336 | 63664 | 01128 | 98872 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant | ne |  |

Logarithms.
$166^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.35209 | 10.64791 | 9.36336 | 10.63664 | 10.01128 | 9.98872 | 60 |
| 1 | 35263 | 64737 | 36394 | 63606 | 01131 | 98869 | 59 |
| 2 | 35318 | 64682 | 36452 | 63548 | 01133 | 98867 | 58 |
| 3 | 35373 | 61627 | 36509 | 63491 | 01136 | 98864 | 57 |
| 4 | 35427 | 64573 | 36566 | 63434 | 01139 | 98861 | 56 |
| 5 | 9.35481 | 10.64519 | 9.36624 | 10.63376 | 10.01142 | 9.98858 | 55 |
| 6 | 35536 | 64464 | 36681 | 63319 | 01145 | 98855 | 54 |
| 7 | 35590 | 64410 | 36738 | 63262 | 01148 | 98852 | 53 |
| 8 | 35644 | 64356 | 36795 | 63205 | 01151 | 98819 | 52 |
| 9 | 35698 | 64302 | 36852 | 63148 | 01154 | 98846 | 51 |
| 10 | 9.35752 | 10.64248 | 9.36909 | 10.63091 | 10.01157 | 9.98843 | 50 |
| 11 | 35806 | 64194 | 36966 | 63034 | 01160 | 98840 | 49 |
| 12 | 35860 | 64140 | 37023 | 62977 | 01163 | 98837 | 48 |
| 13 | 35914 | 64086 | 37080 | 62920 | 01166 | 98834 | 47 |
| 14 | 35968 | 64032 | 37137 | 62863 | 01169 | 98831 | 46 |
| 15 | 9.36022 | 10.63978 | 9.37193 | 10.62807 | 10.01172 | 9.98828 | 45 |
| 16 | 36075 | 63925 | 37250 | 62750 | 01175 | 98825 | 44 |
| 17 | 36129 | 63871 | 37306 | 62694 | 01178 | 98822 | 43 |
| 18 | 36182 | 63818 | 37363 | 62637 | 01181 | 98819 | 42 |
| 19 | 36236 | 63704 | 37419 | 62581 | 01184 | 98816 | 41 |
| 20 | 9.36289 | 10.63711 | 9.37476 | 10.62524 | 10.01187 | 9.98813 | 40 |
| 21 | 36342 | 63658 | 37532 | 62468 | 01190 | 98810 | 39 |
| 22 | 36395 | 63605 | 37588 | 62412 | 01193 | 98807 | 38 |
| 23 | 36449 | 63551 | 37644 | 62356 | 01196 | 98804 | 37 |
| 24 | 36502 | 63498 | 37700 | 62300 | 01199 | 98801 | 36 |
| 25 | 9.36555 | 10.63445 | 9.37756 | 10.62244 | 10.01202 | 9.98798 | 35 |
| 26 | 36608 | 63392 | 37812 | 62188 | 01205 | 98795 | 34 |
| 27 | 36660 | 63340 | 37868 | 62132 | 01208 | 98792 | 33 |
| 28 | 36713 | 63287 | 37924 | 62076 | 01211 | 98789 | 32 |
| 29 | 36766 | 63234 | 37980 | 62020 | 01214 | 98786 | 31 |
| 30 | 9.36819 | 10.63181 | 9.38035 | 10.61965 | 10.01217 | 9.98783 | 30 |
| 31 | 36871 | 63129 | 38091 | 61909 | 01220 | 98780 | 29 |
| 32 | 36924 | 63076 | 38147 | 61853 | 01223 | 98777 | 28 |
| 33 | 36976 | 63024 | 38202 | 61798 | 01226 | 98774 | 27 |
| 34 | 37028 | 62972 | 38257 | 61743 | 01229 | 98771 | 26 |
| 35 | 9.37081 | 10.62919 | 9.38313 | 10.61687 | 10.01232 | 9.98768 | 25 |
| 36 | 37133 | 62867 | 38368 | 61632 | 01235 | 98765 | 24 |
| 37 | 37185 | 62815 | 38423 | 61577 | 01238 | 98762 | 23 |
| 38 | 37237 | 62763 | 38479 | 61521 | 01241 | 98759 | 22 |
| 39 | 37289 | 62711 | 38534 | 61466 | 01244 | 98756 | 21 |
| 40 | 9.37341 | 10.62659 | 9.38589 | 10.61411 | 10.01247 | 9.98753 | 20 |
| 41 | 37393 | 62607 | 38644 | 61356 | 01250 | 98750 | 19 |
| 42 | 37445 | 62555 | 38699 | 61301 | 01254 | 98746 | 18 |
| 43 | 37497 | 62503 | 38754 | 61246 | 01257 | 98743 | 17 |
| 44 | 37549 | 62451 | 38808 | 61192 | 01260 | 98740 | 16 |
| 45 | 9.37600 | 10.62400 | 9.38863 | 10.61137 | 10.01263 | 9.98737 | 15 |
| 46 | 37652 | 62348 | 38918 | 61082 | 01266 | 98734 | 14 |
| 47 | 37703 | 62297 | 38972 | 61028 | 01269 | 98731 | 13 |
| 48 | 37755 | 62245 | 39027 | 60973 | 01272 | 98728 | 12 |
| 49 | 37806 | 62194 | 39082 | 60918 | 01275 | 98725 | 11 |
| 50 | 9.37858 | 10.62142 | 9.39136 | 10.60864 | 10.01278 | 9.98722 | 10 |
| 51 | 37909 | 62091 | 39190 | 60810 | 01281 | 98719 | 9 |
| 52 | 37960 | 62040 | 39245 | 60755 | 01285 | 98715 | 8 |
| 53 | 38011 | 61989 | 39299 | 60701 | 01288 | 98712 | 7 |
| 54 | 38062 | 61938 | 39353 | 60647 | 01291 | 98709 | 6 |
| 55 | 9.38113 | 10.61887 | 9.39407 | 10.60593 | 10.01294 | 9.98706 | 5 |
| 56 | 38164 | 61836 | 39461 | 60539 | 01297 | 98703 | 4 |
| 57 | 38215 | 61785 | 39515 | 60485 | 01300 | 98700 | 3 |
| 58 | 38266 | 61734 | 39569 | 60431 | 01303 | 98697 | 2 |
| 59 | 38317 | 61683 | 39623 | 60377 | 01306 | 98694 | 1 |
| 60 | 38368 | 61632 | 39677 | 60323 | 01310 | 98690 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

$103^{\circ}$


| $15^{\circ}$ |  | Logarithms. |  |  |  | $164^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.41300 | 10.58700 | 9.42805 | 10.57195 | 10.01506 | 9.98494 | 60 |
| 1 | 41347 | 58653 | 42856 | 57144 | 01509 | 98491 | 59 |
| 2 | 41394 | 55606 | 42906 | 57094 | 01512 | 98488 | 58 |
| 3 | 41441 | 58559 | 42957 | 57043 | 01516 | 98484 | 57 |
| 4 | 41488 | 58512 | 43007 | 56993 | 01519 | 98481 | 56 |
| 5 | 9.41535 | 10.58465 | 9.43057 | 10.56943 | 10.01523 | 9.98477 | 55 |
| 6 | 41582 | 58418 | 43108 | 56892 | 01526 | 98474 | 54 |
| 7 | 41628 | 58372 | 43158 | 56842 | 01529 | 98471 | 53 |
| 8 | 41675 | 58325 | 43208 | 56792 | 01533 | 98467 | 52 |
| 9 | 4172: | 58278 | 43258 | 56742 | 01536 | 98464 | 51 |
| 10 | 9.41768 | 10.58232 | 9.43308 | 10.56692 | 10.01540 | 9.98460 | 50 |
| 11 | 41815 | 58185 | 43358 | 56642 | 01543 | 98457 | 49 |
| 12 | 41861 | 58139 | 43408 | 56592 | 01547 | 98453 | 48 |
| 13 | 41908 | 58092 | 43458 | 56542 | 01550 | 98450 | 47 |
| 14 | 41954 | 58046 | 43508 | 56492 | 01553 | 98447 | 46 |
| 15 | 9.42001 | 10.57999 | 9.43558 | 10.56442 | 10.01557 | 9.98443 | 45 |
| 16 | 42047 | 57953 | 43607 | 56393 | 01560 | 98440 | 44 |
| 17 | 42093 | 57907 | 43657 | 56343 | 01564 | 98436 | 43 |
| 18 | 42140 | 57860 | 43707 | 56293 | 01567 | 98433 | 42 |
| 19 | 42186 | 57814 | 43756 | 56244 | 01571 | 98429 | 41 |
| 20 | 9.42232 | 10.57768 | 9.43806 | 10.56194 | 10.01574 | 9.98426 | 40 |
| 21 | 42278 | 57722 | 43855 | 56145 | 01578 | 98422 | 39 |
| 22 | 42324 | 57676 | 4390.5 | 56095 | 01581 | 98419 | 38 |
| 23 | 42370 | 57630 | 43954 | 56046 | 01585 | 98415 | 37 |
| 24 | 42416 | 57584 | 44004 | 55996 | 01588 | 98412 | 36 |
| 2.5 | 9.42461 | 10.57539 | 9.44053 | 10.55947 | 10.01591 | 9.98409 | 35 |
| 26 | 42507 | 57493 | 44102 | 55898 | 01595 | 98405 | 34 |
| 27 | $4: 553$ | 57447 | 44151 | 55849 | 01598 | 98402 | 33 |
| 28 | 42599 | 57401 | 44201 | 55799 | 01602 | 98398 | 32 |
| 29 | 42614 | 57356 | 44250 | 55750 | 01605 | 98395 | 31 |
| 30 | 9.42690 | 10.57310 | 9.44299 | 10.55701 | 10.01609 | 9.98391 | 30 |
| 31 | 42735 | 57265 | 41348 | 55652 | 01612 | 98388 | 29 |
| 32 | 42781 | 57219 | 44397 | 55603 | 01616 | 98384 | 28 |
| 33 | 42826 | 57174 | 44446 | 55554 | 01619 | 98381 | 27 |
| 34 | 42872 | 57128 | 44495 | 55505 | 01623 | 98377 | 26 |
| 35 | 9.42917 | 10.57083 | 9.44544 | 10.55456 | 10.01627 | 9.98373 | 25 |
| 36 | 42962 | 57038 | 44592 | 5 5 408 | 01630 | 98370 | 24 |
| 37 | 43008 | 56992 | 44641 | 55359 | 01634 | 98366 | 23 |
| 38 | 43053 | 56947 | 44690 | 55310 | 01637 | 98363 | 22 |
| 39 | 43098 | 56902 | 44788 | 55262 | 01641 | 98359 | 21 |
| 40 | 9.43143 | 10.56857 | 9.44787 | 10.55213 | 10.01644 | 9.98356 | 20 |
| 41 | 43188 | 56812 | 44836 | 55164 | 01648 | 98352 | 19 |
| 42 | 43233 | 56767 | 44884 | 55116 | 01651 | 98349 | 18 |
| 43 | 43278 | 56722 | 44933 | 55067 | 01655 | 98345 | 17 |
| 44 | 43323 | 56677 | 44981 | 55019 | 01658 | 98342 | 16 |
| 45 | 9.43367 | 10.56633 | 9.45029 | 10.54971 | 10.01662 | 9.98338 | 15 |
| 46 | 43412 | 56588 | 45078 | 54922 | 01666 | 98334 | 14 |
| 47 | 43457 | 56543 | 45126 | 54874 | 01669 | 98331 | 13 |
| 48 | 43502 | 56498 | 45174 | 54826 | 01673 | - 98327 | 12 |
| 49 | 43546 | 56454 | 45222 | 54778 | 01676 | 98324 | 11 |
| 50 | 9.43591 | 10.56409 | 9.45271 | 10.54729 | 10.01680 | 9.98320 | 10 |
| 51 | 43635 | 56365 | 45319 | 54681 | 01683 | 98317 | 9 |
| 52 | 43680 | 56320 | 45367 | 54633 | 01687 | 98313 | 8 |
| 53 | 43724 | 56276 | 45415 | 54585 | 01691 | 98309 | 7 |
| 54 | 43769 | 56231 | 45463 | 54537 | 01694 | 98306 | 6 |
| 55 | 9.43813 | 10.56187 | 9.45511 | 10.54489 | 10.01698 | 9.98302 | 5 |
| 56 | 43857 | 56143 | 45559 | 54441 | 01701 | 98299 | 4 |
| 57 | 43901 | 56099 | 45606 | 54394 | 01705 | 98295 | 3 |
| 58 | 43946 | 56054 | 45654 | 54346 | 01709 | 98291 | 2 |
| 59 | 43990 | 56010 | 45702 | 54298 | 01712 | 98288 | 1 |
| 60 | 44034 | 55966 | 45750 | 54250 | 01716 | 98.284 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |
| $105^{\circ}$ |  |  |  |  |  |  | $74^{\circ}$ |


| $16^{\circ}$ | Logarithms. |  |  |  |  | $163^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.44034 | 10.55966 | 9.45750 | 10.54250 | 10.01716 | 9.98284 | 60 |
| 1 | 44078 | 55922 | 45797 | 54203 | 01719 | 98281 | 59 |
| 2 | 44122 | 55878 | 45845 | 54155 | 01723 | 98277 | 58 |
| 3 | 44166 | 55834 | 45892 | 54108 | 01727 | 98273 | 57 |
| 4 | 44210 | 55790 | 45940 | 54060 | 01730 | 98270 | 56 |
| 5 | 9.44253 | 10.55747 | 9.45987 | 10.54013 | 10.01734 | 9.98266 | 55 |
| 6 | 44297 | 55703 | 46035 | 53965 | 01738. | 98262 | 54 |
| 7 | 44341 | 55659 | 46082 | 53918 | 01741 | 98259 | 53 |
| 8 | 44385 | 55615 | 46130 | 53870 | 01745 | 98255 | 52 |
| 9 | 44428 | 55572 | 46177 | 53823 | 01749 | 98251 | 51 |
| 10 | 9.44472 | 10.555 .28 | 9.46224 | 10.53776 | 10.01752 | 9.98248 | 50 |
| 11 | 44516 | 55484 | 46271 | 53729 | 01756 | 98244 | 49 |
| 12 | 44559 | 55441 | 46319 | 53681 | 01760 | 98240 | 48 |
| 13 | 44602 | 55398 | 46366 | 53634 | 01763 | 98237 | 47 |
| 14 | 44646 | 55354 | 46413 | 53587 | 01767 | 98233 | 46 |
| 15 | 9.44689 | 10.55311 | 9.46460 | 10.53540 | 10.01771 | 9.98229 | 45 |
| 16 | 44733 | 55267 | 46507 | 53493 | 01754 | 98226 | 44 |
| 17 | 44776 | 55224 | 46554 | 53446 | 01778 | 98222 | 43 |
| 18 | 44819 | 55181 | 46601 | 53399 | 01782 | 98218 | 42 |
| 19 | 44862 | 55138 | 46648 | 53352 | 01785 | 9821.5 | 41 |
| 20 | 9.44905 | 10.55095 | 9.46694 | 10.53306 | 10.01789 | 9.98211 | 40 |
| 21 | 44948 | 55052 | 46741 | 53259 | 01793 | 98207 | 39 |
| 22 | 44992 | 55008 | 46788 | 53212 | 01796 | 98204 | 38 |
| 23 | 45035 | 54965 | 46835 | 53165 | 01800 | 98200 | 37 |
| 24 | 45077 | 54923 | 46881 | 53119 | 01804 | 98196 | 36 |
| 25 | 9.45120 | 10.54880 | 9.46928 | 10.53072 | 10.01808 | 9.98192 | 35 |
| 26 | 45163 | 54837 | 46975 | 53025 | 01811 | 98189 | 34 |
| 27 | 45206 | 54794 | 47021 | 52979 | 01815 | 98185 | 33 |
| 28 | 45249 | 54751 | 47068 | 52932 | 01819 | 98181 | 32 |
| 29 | 45292 | 54708 | 47114 | 52886 | 01823 | 98177 | 31 |
| 30 | 9.45334 | 10.54666 | 9.47160 | 10.52840 | 10.01826 | 9.98174 | 30 |
| 31 | 45377 | 54623 | 47207 | 52793 | 01830 | 98170 | 29 |
| 32 | 45419 | 54581 | 47253 | 52747 | 01834 | 98166 | 28 |
| 33 | 45462 | 54538 | 47299 | 52701 | 01838 | 98162 | 27 |
| 34 | 45504 | 54496 | 47346 | 52654 | 01841 | 98159 | 26 |
| 35 | 9.45547 | 10.54453 | 9.47392 | 10.52608 | 10.01845 | 9.98155 | 25 |
| 36 | 45589 | 54411 | 47438 | 52562 | 01849 | 98151 | 24 |
| 37 | 45632 | 54368 | 47481 | 52516 | 01853 | 98147 | 23 |
| 38 | 45674 | 54326 | 47530 | 52470 | 01856 | 98144 | 22 |
| 39 | 45716 | 54284 | 47576 | 52424 | 01860 | 98140 | 21 |
| 40 | 9.45758 | 10.54242 | 9.47622 | 10.52378 | 10.01864 | 9.98136 | 20 |
| 41 | 45801 | 54199 | 47668 | - 52332 | 01868 | 98132 | 19 |
| 42 | 45843 | 54157 | 47714 | 52286 | 01871 | 98129 | 18 |
| 43 | 45885 | 54115 | 47760 | 52240 | 01875 | 98125 | 17 |
| 44 | 45927 | 54073 | 47806 | 52194 | 01879 | 98121 | 16 |
| 45 | 9.45969 | 10.54031 | 9.47852 | 10.52148 | 10.01883 | 9.98117 | 15 |
| 46 | 46011 | 53989 | 47897 | 52103 | 01887 | 98113 | 14 |
| 47 | 46053 | 53947 | 47943 | 52057 | 01890 | 98110 | 13 |
| 48 | 46095 | 53905 | 47989 | 52011 | 01894 | 98106 | 12 |
| 49 | 46136 | 53864 | 48035 | 51965 | 01898 | 98102 | 11 |
| 50 | 9.46178 | 10.5382 2 | 9.48080 | 10.51920 | 10.01902 | 9.98098 | 10 |
| 51 | 46220 | 53780 | 48126 | 51874 | 01906 | 98094 | 9 |
| 52 | 46262 | 53738 | 48171 | 51829 | 01910 | 98090 | 8 |
| 53 | 46303 | 53697 | 48217 | 51783 | 01913 | 98087 | 7 |
| 54 | 46345 | 53655 | 48262 | 51738 | 01917 | 98083 | 6 |
| 55 | 9.46386 | 10.53614 | 9.48307 | 10.51693 | 10.01921 | 9.98079 | 5 |
| 56 | 46428 | 53572 | 48353 | 51647 | 01925 | 98075 | 4 |
| 57 | 46469 | 53531 | 48398 | 51602 | 01929 | 98071 | 3 |
| 58 | 46511 | 53489 | 48443 | 51557 | 01933 | 98067 | 2 |
| 59 | 46552 | 53448 | 48489 | 51511 | 01937 | 98063 | 1 |
| 60 | 46594 | 53406 | 48534 | 51466 | 01940 | 98060 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

Logarithmic Angular Functions.

| $17^{\circ}$ |  | Logarithms. |  |  |  | $162^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | In. |
| 0 | 9.46594 | 10.53406 | 9.48534 | 10.51466 | 10.01940 | 9.98060 |  |
| 1 | 46635 | 53365 | 48579 | 51421 | 01944 | 98056 | 59 |
| 2 | 46676 | 53324 | 48624 | 51376 | 01948 | 98052 | 58 |
| 3 | 46717 | 53283 | 48669 | 51331 | 01952 | 98048 | 57 |
| 4 | 46758 | 53.42 | 48714 | 51286 | 01956 | 98044 | 56 |
| 5 | 9.46800 | 10.53200 | 9.48759 | 10.51241 | 10.01960 | 9.98040 | 55 |
| 6 | 46841 | 53159 | 48804 | 51196 | 01964 | 98036 | 54 |
| 7 | 4688: | 53118 | 48849 | 51151 | 01968 | 98032 | 53 |
| 8 | 46923 | 53077 | 48894 | 51106 | 01971 | 98029 | 52 |
| 9 | 46964 | 53036 | 48939 | 51061 | 01975 | 98025 | 51 |
| 10 | 9.47005 | 10.52995 | 9.48984 | 10.51016 | 10.01979 | 9.98021 | 50 |
| 11 | 47045 | 52955 | 49029 | 50971 | 01983 | 98017 | 49 |
| 12 | 47086 | 52914 | 49073 | 50927 | 01987 | 98013 | 48 |
| 13 | 47127 | 52873 | 49118 | 50882 | 01991 | 98009 | 47 |
| 14 | 47168 | 52832 | 49163 | 50837 | 01995 | 9800.5 | 46 |
| 15 | 9.47209 | 10.52791 | 9.49207 | 10.50793 | 10.01999 | 9.98001 | 45 |
| 16 | 47249 | 52751 | 49252 | 50748 | 02003 | 97997 | 44 |
| 17 | 47290 | 52710 | 49296 | 50704 | 02007 | 97993 | 43 |
| 18 | 47330 | 52670 | 49341 | 50659 | 02011 | 97989 | 42 |
| 19 | 47371 | 52629 | 49385 | 50615 | 02014 | 97986 | 41 |
| 20 | 9.47411 | 10.52589 | 9.49430 | 10.50570 | 10.0:018 | 9.97982 | 40 |
| 21 | 47452 | 52548 | 49474 | 50526 | 02022 | 97978 | 39 |
| 23 | 47492 | 52508 | 49519 | 50181 | 02026 | 97974 | 38 |
| 23 | 47533 | 52467 | 49.563 | 50437 | 02030 | 97970 | 37 |
|  | 47573 | 52427 | 49607 | 50393 | 02034 | 97966 | 36 |
| 25 | 9.47613 | 10.52387 | 9.49652 | 10.50348 | 10.02038 | 9.97962 | 35 |
| 26 | 47654 | 52346 | 49696 | 50304 | 0:2012 | 97958 | 34 |
| 27 | 47694 | 52306 | 49740 | 50260 | 02046 | 97954 | 33 |
| 8 | 47734 | 52266 | 49784 | 50216 | 02050 | 97950 | 32 |
| 29 | 47774 | 52226 | 49828 | 50172 | 02054 | 97946 | 31 |
| 30 | 9.47814 | 10.52186 | 9.49872 | 10.50128 | 10.02058 | 9.97942 | 30 |
| 31 | 47854 | 52146 | 49916 | 50084 | 02062 | 97938 | 29 |
| 32 | 47894 | 52106 | 49960 | 50040 | 02066 | 97934 | 28 |
|  | 47934 | 52066 | 50004 | 49996 | 02070 | 97930 | 27 |
| 3 | 47974 | 52026 | 50048 | 49952 | 02074 | 97926 |  |
| 35 | 9.48011 | 10.51986 | 9.50092 | 10.49908 | 10.02078 | 9.97922 | 25 |
| 3 | 48054 | 51946 | 50136 | 49864 | 02082 | 97918 | 24 |
| 37 | 48094 | 51906 | 50180 | 49820 | 02086 | 97914 |  |
| 38 | 48133 | 51867 | 50223 | 49777 | 02090 | 97910 | 22 |
| 49 | 98173 | 10.51827 | 90267 | 49733 | 02094 10.02098 | -97906 | 21 |
| 41 | 9.48252 | 10.51748 | 50355 | 10.49645 | 02102 | 97898 | 19 |
| 42 | 48292 | 51708 | 50398 | 49602 | 02106 | 97894 | 18 |
| 43 | 48332 | 51668 | 50442 | 49558 | 02110 | 97890 | 17 |
| 44 | 48371 | 51629 | 50485 | 49515 | 02114 | 97886 | 16 |
| 45 | 9.48111 | 10.51589 | 9.50529 | 10.49171 | 10.02118 | 9.97882 | 15 |
| 46 | 48450 | 51500 | 50572 | 49428 | 02122 | 97878 | 14 |
| 47 | 48490 | 51510 | 50616 | 49384 | 02126 | 97874 | 13 |
| 48 | 48529 | 51471 | 50659 | 49341 | 02130 | 97870 | 12 |
| 49 | 48568 | 51432 | 50703 | 49297 | 02134 | 97866 | 11 |
| 51 | 9.48607 | 10.51393 | 9.50746 | 10.49254 | 10.02139 | 9.97861 | 10 |
| 51 | 48647 | 51353 | 50789 | 49211 | 02143 | 97857 |  |
| 52 | 48686 | 51314 | 50833 | 49167 | 02147 | 97853 | 8 |
| $\begin{aligned} & 53 \\ & 51 \end{aligned}$ | 48725 | 51275 | 50876 | 49124 | 02151 | 97849 |  |
| 55 | 9. 48803 | + 10.51197 | 9.50962 | 10.49088 | 10.02159 | 91845 9.97811 | 5 |
| 56 | 48842 | 51158 | 51005 | 48995 | 02163 | 97837 |  |
| 5 | 48881 | 51119 | 51048 | 48952 | 02167 | 97833 | 3 |
| 58 | 48920 | 51080 | 51092 | 48908 | 02171 | 97829 | 2 |
| 59 | 48959 | 51041 | 51135 | 48865 | 02175 | 97825 | 1 |
| 60 | 48998 | 51002 | 51178 | 48822 | 02179 | 97821 |  |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |
| $107{ }^{\circ}$ |  |  |  |  |  |  | $72^{\circ}$ |

Logarithmic Angular Functions.

Logarithms.
$161^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent.! | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.48998 | 10.51002 | 9.51178 | 10.48822 | 10.02179 | 9.97821 | 60 |
| , | 037 | 93 | 1221 | 48779 | 02183 | 97817 | 59 |
| 2 | 49076 | 50924 | 51264 | 48736 | 02188 | 97812 | 58 |
| 3 | 49115 | 50885 | 51306 | 48694 | 02192 | 97808 | 57 |
| 4 | 49153 | 50847 | 51349 | 48651 | 02196 | 97804 | 56 |
| 5 | 9.49192 | 10.50808 | 9.51392 | 10.48608 | 10.02200 | 9.97800 | 55 |
| 6 | 49231 | 50769 | 51435 | 48565 | 02204 | 97796 | 54 |
| 7 | 49269 | 50731 | 51478 | 48522 | 02208 | 97792 | 53 |
| $\bigcirc$ | 49308 | 50692 | 51520 | 48480 | 02212 | 97788 | 52 |
| 9 | 49347 | 50653 | 51563 | 48437 | 02216 | 97784 | 51 |
| 10 | 9.49385 | 10.50615 | 9.51606 | 10.48394 | 10.02221 | 9.97779 | 50 |
| 11 | 49424 | 50576 | 51648 | 48352 | 02225 | 9775 | 49 |
| 12 | 49462 | 50538 | 51691 | 48309 | 02229 | 97771 | 48 |
| 13 | 49500 | 50500 | 51734 | 48266 | 02233 | 97767 | 47 |
| 14 | 49539 | 50161 | 51776 | 48224 | 02237 | 97763 | 46 |
| 15 | 9.49577 | 10.50423 | 9.51819 | 10.48181 | 10.02241 | 9.97759 | 45 |
| 16 | 49615 | 50385 | 51861 | 48139 | 02246 | 97754 | 44 |
| 17 | 49654 | 50346 | 51903 | 48097 | 02250 | 97750 | 43 |
| 18 | 49692 | 50308 | 51946 | 48054 | 02254 | 97746 | 42 |
| 19 | 49730 | 50270 | 51988 | 48012 | 02258 | 97742 | 41 |
| 20 | 9.19768 | 10.50232 | 9.52031 | 10.47969 | 10.02262 | 9.97738 | 40 |
| 21 | 49806 | 50194 | 52073 | 47927 | 02266 | 97734 | 39 |
| 22 | 49844 | 50156 | 52115 | 47885 | 02271 | 97729 | 38 |
| 23 | 49882 | 50118 | 52157 | 47843 | 02275 | 97725 | 37 |
| 24 | 49920 | 50080 | 52200 | 47800 | 02279 | 97721 | 36 |
| 25 | 9.49958 | 10.50042 | 9.52242 | 10.47758 | 10.02283 | 9.97717 | 35 |
| 26 | 49996 | 50004 | 52284 | 47716 | 02287 | 97713 | 34 |
| 27 | 50034 | 49966 | 52326 | 47674 | 02292 | 97708 | 33 |
| 28 | 50072 | 49928 | 52368 | 47632 | 02296 | 97704 | 32 |
| 29 | 50110 | 49890 | 52410 | 47590 | 02300 | 97700 | 31 |
| 30 | 9. 50148 | 10.49852 | 9.52452 | 10.47548 | 10.02304 | 9.97696 | 30 |
| 31 | 50185 | 49815 | 52494 | 47506 | 02309 | 97691 | 29 |
| 32 | 50223 | 49777 | 52536 | 47464 | 02313 | 97687 | 28 |
| 33 | 50261 | 49739 | 52578 | 47422 | 02317 | 97683 | 27 |
|  | 50298 | 49702 | 52620 | 47380 | 02321 | 97679 | 26 |
| 35 | 9.50336 | 10.49664 | 9.52661 | 10.47339 | 10.02326 | 9.97674 | 25 |
| 36 | 50374 | 49626 | 52703 | 47297 | 02330 | 97670 | 24 |
| 37 | 50411 | 49589 | 52745 | 47255 | 02334 | 97666 | 23 |
| 38 | 50449 | 49551 | 787 | 47213 | 02338 | 7662 |  |
| 40 | -50486 | 4951 | 52829 | 10.47130 | 0.02343 | 9 97651 | 20 |
| 41 | 50561 | 19439 | 52912 | 10.47088 | 02351 | 97649 | 19 |
| 42 | 50598 | 49402 | 52953 | 47047 | 02355 | 97645 | 18 |
| 43 | 50635 | 49365 | 52995 | 47005 | 02360 | 97640 | 17 |
| 44 | 50673 | 49327 | 53037 | 46963 | 02364 | 97636 | 16 |
| 45 | 9.50710 | 10.49290 | 9.53078 | 10.46922 | 10.02368 | 9.97632 | 15 |
| 46 | 50747 | 49253 | 53120 | 46880 | 02372 | 97628 | 14 |
| 47 | 50784 | 49216 | 53161 | 46839 | 02377 | 97623 | 13 |
| 48 | 50821 | 49179 | 53202 | 46798 | 02381 | 97619 | 12 |
| 49 | 50858 | 49142 | 53244 | 46756 | 02385 | 97615 | 11 |
| 50 | 9.50896 | 10.49104 | 9.53285 | 10.46715 | 10.02390 | 9.97610 | 10 |
| 51 | 50933 | 49067 | 53327 | 46673 | 02394 | 97606 | 9 |
|  | 50970 | 49030 | 53368 | 46632 | 02398 | 97602 | 8 |
|  | 51007 | 48993 |  | 46591 | 02403 | 9759 |  |
| 54 | 51043 | 48957 | 53450 | 46550 | 02407 | 97593 | 6 |
| 55 | 9.51080 | 10.48920 | 9.53492 | 10.46508 | 10.02411 | 9.97589 | 5 |
| 56 | 51117 | 48883 | 53533 | 46467 | 02416 | 97584 | 4 |
| 57 | 51154 | 48846 | 53574 | 46426 | 02420 | 97580 | 3 |
| 58 | 51191 | 48809 | 53615 | 46385 | 02424 | 97576 | 2 |
| 59 | 51227 | 48773 | 5365 ¢ | 46344 | 02429 | 97571 | 1 |
| 60 | 51264 | 48736 | 53697 | 46303 | 02433 | 97567 | 0 |
| M. | Cosine. | Secaut. | Cotangent. | Tangent. | Cosccant. | Sine. | M. |


| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.51264 | 10.48736 | 9.53697 | 10.46303 | 10.02433 | 9.97567 | 60 |
| 1 | 51301 | 699 | 53738 | 46262 | 02437 | 97563 | 59 |
| 2 | 51338 | 48662 | 53779 | 46221 | 02442 | 97558 | 58 |
| 3 | 51374 | 48626 | 53820 | 46180 | 02446 | 97554 | 57 |
| 4 | 51411 | 48589 | 53861 | 46139 | 02450 | 97550 | 56 |
| 5 | 9.51447 | 10.48553 | 9.53902 | 10.46098 | 10.02455 | 9.97545 | 55 |
| 6 | 51484 | 48516 | 53943 | 46057 | 02459 | 97541 | 54 |
| 7 | 51520 | 48480 | 53984 | 46016 | 02464 | 97536 | 53 |
| 8 | 51557 | 48443 | 54025 | 45975 | 02468 | 97532 | 52 |
| 9 | 51593 | 48407 | 54065 | 45935 | 02472 | 97528 | 51 |
| 10 | 9.51629 | 10.48371 | 9.54106 | 10.45894 | 10.02477 | 9.97523 | 50 |
| 11 | 51666 | 48334 | 54147 | 45853 | 02481 | 97519 | 49 |
| 12 | 51702 | 48298 | 54187 | 45813 | 02485 | 97515 | 48 |
| 13 | 51738 | 48262 | 54228 | 45772 | 02490 | 97510 | 47 |
| 14. | 51774 | 48226 | 54269 | 45731 | 02494 | 97506 | 46 |
| 15 | 9.51811 | 10.48189 | 9.54309 | 10.45691 | 10.02499 | 9.97501 | 45 |
| 16 | 51847 | 48153 | 54350 | 45650 | 02503 | 97497 | 44 |
| 17 | 51883 | 48117 | 54390 | 45610 | 02508 | 97492 | 43 |
| 18 | 51919 | 48081 | 54431 | 45569 | 02512 | 97488 | 42 |
| 19 | 51955 | 48045 | 54471 | 45529 | 02516 | 97484 | 41 |
| 20 | 9.51991 | 10.48009 | 9.54512 | 10.45488 | 10.02521 | 9.97479 | 40 |
| 21 | 52027 | 47973 | 54552 | 45448 | 02525 | 97475 | 39 |
| 22 | 52063 | 47937 | 54593 | 45407 | 02530 | 97470 | 38 |
| 23 | 52099 | 47901 | 54633 | 45367 | 02534 | 97466 | 37 |
| 24 | 52135 | 47865 | 54673 | 45327 | 02539 | 97461 | 36 |
| 25 | 9.52171 | 10.47829 | 9.54714 | 10.45286 | 10.02543 | 9.97457 | 35 |
| 26 | 52207 | 47793 | 54754 | 45246 | 02547 | 97453 | 34 |
| 27 | 52242 | 47758 | 54794 | 45206 | 02552 | 97448 | 33 |
| 28 | 52278 | 47722 | 51835 | 45165 | 02556 | 97444 | 32 |
| 29 | 52314 | 47686 | 54875 | 45125 | 02561 | 97439 | 31 |
| 30 | 9.52350 | 10.47650 | 9.54915 | 10.45085 | 10.02565 | 9.97435 | 30 |
| 31 | 52385 | 47615 | 54955 | 45045 | 02570 | 97430 | 29 |
| 32 | 52421 | 47579 | 54995 | 45005 | 02574 | 97426 | 28 |
| 33 | 52456 | 47544 | 55035 | 44965 | 02579 | 97421 | 27 |
| 34 | 52492 | 47508 | 55075 | 44925 | 02583 | 97417 | 26 |
| 35 | 9.225 .27 | 10.47473 | 9.55115 | 10.44885 | 10.02588 | 9.97412 | 25 |
| 36 | 52563 | 47437 | 55155 | 44845 | 02592 | 97408 | 24 |
| 37 | 52598 | 47402 | 55195 | 44805 | 02597 | 97403 | 23 |
| 38 | 52634 | 47366 | 55235 | 44765 | 02601 | 97399 | 22 |
| 39 | 52669 | 47331 | 55275 | 44725 | 02606 | 97394 | 21 |
| 40 | 9.52705 | 10.47295 | 9.55315 | 10.44685 | 10.02610 | 9.97390 | 20 |
| 41 | 52740 | 47260 | 55355 | 44645 | 02615 | 97385 | 19 |
| 42 | 52775 | 47225 | 55395 | 44605 | 02619 | 97381 | 18 |
| 43 | 52811 | 47189 | 55434 | 44566 | 02624 | 97376 | 17 |
| 44 | 52816 | 47154 | 55474 | 44526 | 02628 | 97372 | 16 |
| 45 | 9.52881 | 10.47119 | 9.55514 | 10.44486 | 10.02633 | 9.97367 | 15 |
| 46 | 52916 | 47084 | 55554 | 44446 | 02637 | 97363 | 14 |
| 47 | 52951 | 47049 | 55593 | 44407 | 02642 | 97358 | 13 |
| 48 | 52986 | 47014 | 55633 | 44367 | 02647 | 97353 | 12 |
| 49 | 53021 | 46979 | 55673 | 44327 | 02651 | 97349 | 11 |
| 50 | 9.53056 | 10.46944 | 9.55712 | 10.44288 | 10.02656 | 9.97344 | 10 |
| 51 | 53092 | 46908 | 55752 | 44248 | 02660 | 97340 | 9 |
| 52 | 53126 | 46874 | 55791 | 44209 | 02665 | 97335 | 8 |
| 53 | 53161 | 46839 | 55831 | 44169 | 02669 | 97331 | 7 |
| 54 | 53196 | 46804 | 55870 | 44130 | 02674 | 97326 | 6 |
| 55 | 9.53231 | 10.46769 | 9.55910 | 10.44090 | 10.02678 | 9.97322 | 5 |
| 56 | 53266 | 46734 | 55949 | 44051 | 02683 | 97317 | 4 |
| 57 | 53301 | 46699 | 55989 | 44011 | 02688 | 97312 | 3 |
| 58 | 53336 | 46664 | 56028 | 43972 | 02692 | 97308 | $\stackrel{2}{1}$ |
| 59 | 53370 | 46630 | 56067 | 43933 | 02697 | 97303 | 1 |
| 60 | 53405 | 46595 | 56107 | 43893 | 02701 | 97299 | 0 |
| M. | Cosine. | Secant. | Cotaugent. | Taugent. | Cusecant. | Sine. | M. |


| $20^{\circ}$ |  | Logarithms. |  |  |  |  | $159^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.53405 | 10.46595 | 9.56107 | 10.43893 | 10.02701 | 9.97299 | 60 |
| 1 | 53440 | 46560 | 56146 | 43854 | 02706 | 97294 | 59 |
| 2 | 53475 | 46525 | 56185 | 43815 | 02711 | 97289 | 58 |
| 3 | 53509 | 46491 | 6224 | 43776 | 02715 | 97285 | 57 |
| 4 | 53544 | 46456 | 56264 | 43736 | 02720 | 97280 | 56 |
| 5 | 9.53578 | 10.46422 | 9.56303 | 10.43697 | 10.0272t | 9.97276 | 55 |
| 6 | 53613 | 46387 | 56342 | 43658 | $0 \div 729$ | 97271 | 54 |
| 7 | 53647 | 46353 | 56381 | 43619 | 02734 | 97266 | 53 |
| 8 | 53682 | 46318 | 6420 | 43580 | 0.2738 | 97262 | 5.2 |
| 9 | 53716 | 46284 | 56159 | 43541 | . 02743 | 97257 | 51 |
| 10 | 9.53751 | 10.46249 | 9.56498 | 10.43502 | 10.02748 | 9.97252 | 50 |
| 11 | 53785 | 46215 | 56537 | 43463 | 02752 | 97248 | 49 |
| 12 | 53819 | 46181 | 56576 | 43424 | 02757 | 97243 | 48 |
| 13 | 53854 | 46146 | 56615 | 43385 | 02762 | 97238 | 47 |
| 14 | 53888 | 46112 | 56654 | 43346 | 02766 | 97234 | 46 |
| 15 | 9.53922 | 10.46078 | 9.56693 | 10.43307 | 10.02771 | 9.97229 | 45 |
| 16 | 53957 | 46043 | 56732 | 43268 | 02776 | 97224 | 44 |
| 17 | 53991 | 46009 | 56771 | 43229 | 02780 | 97220 | 43 |
| 18 | 51025 | 45975 | 6810 | 43190 | 02785 | 97215 | 12 |
| 19 | 54059 | 45941 | 6849 | 43151 | 02790 | 97210 | 11 |
| 20 | 9.54093 | 10.45907 | 9.56887 | 10.43113 | 10.02794 | 9.97206 | 40 |
|  | 54127 | 45873 | 56926 | 43074 | 02799 | 97201 | 39 |
|  | 54161 | 45839 | 56965 | 43035 | 02804 | 97196 | 38 |
|  | 54195 | 45805 | 57004 | 42996 | 02808 | 97192 | 37 |
|  | 54229 | 45771 | 57042 | 42958 | 02813 | 97187 | 36 |
|  | 9.54263 | 10.45737 | 9.57081 | 10.42919 | 10.022818 | 9.97182 | 35 |
|  | 54297 | 45703 | 57120 | 42880 | 02822 | 97178 | 34 |
|  | 54331 | 45669 | 57158 | 42812 | 02827 | 97173 | 33 |
|  | 51365 | 45635 | 57197 | 42803 | 02832 | 97168 | 32 |
|  | 54399 | 45601 | 57235 | 42765 | 02837 | 97163 | 31 |
|  | 9.54433 | 10.45567 | 9.57274 | 10.42726 | 10.02:841 | 9.97159 | 30 |
|  | 54466 | 45534 | 57312 | 42688 | 02846 | 97154 | 29 |
|  | 54500 | 45500 | 57351 | 42649 | 02851 | 97149 | 8 |
|  | 54534 | 45166 | 57389 | 42611 | 02855 | 97145 | 27 |
|  | 54567 | 45433 | 57428 | 42572 | 02860 | 97140 | 26 |
| 35 | 9.54601 | 10.45399 | 9.57466 | 10.4253 .1 | 10.02865 | 9.97135 | 25 |
|  | 54635 | 45365 | 7504 | 42496 | 02870 | 97130 | 24 |
|  | 54668 | 45332 | 543 | 42457 | 02874 | 97126 | 3 |
|  | 54702 | 45298 | 57581 | 42419 | 02879 | 97121 | 22 |
|  | 54735 | 45265 | 57619 | 42381 | 02884 | 97116 | 21 |
| 40 | 9.54769 | 10.45231 | 9.57658 | 10.42342 | 10.02889 | 9.97111 | 20 |
| 41 | 54802 | 45198 | 57696 | 42304 | 02893 | 97107 | 19 |
| 42 | 54836 | 45164 | 57734 | 42266 | 02898 | 97102 | 18 |
| 43 | 54869 | 45131 | 5772 | 42228 | 02903 | 97097 | 17 |
| 44 | 54903 | 45097 | 57810 | 42190 | 02908 | 97092 | 16 |
| 45 | 9.54936 | 10.45064 | 9.57819 | 10.42151 | 10.02913 | 9.97087 | 15 |
| 46 | 54969 | 45031 | 57887 | 42113 | 02917 | 97083 | 14 |
| 47 | 55003 | 44997 | 57925 | 42075 | 02922 | 97078 | 13 |
|  | 55036 | 44964 | 57963 | 42037 | 02927 | 97073 | 12 |
| 49 | 55069 | 44931 | 58001 | 41999 | 02932 | 97068 | 11 |
| 50 | 9.55102 | 10.44898 | 9.58039 | 10.41961 | 10.02937 | 9.97063 | 10 |
|  | 55136 | 44864 | 8077 | 41923 | 02941 | 97059 | 9 |
|  | 55169 | 44831 | 58115 | 41885 | 02946 | 97054 |  |
|  | $5520 \pm$ | 44798 | 58153 | 41847 | 02951 | 97049 |  |
|  | 55235 | 44765 | 58191 | 41809 | 02956 | 97044 |  |
|  | 9.55268 | 10.44732 | 9.58229 | 10.41771 | 10.02961 | 9.97039 | 5 |
|  | 31 | 44699 | 58.27 | 41733 | 02965 | 97035 |  |
|  | 55.334 | 44 | 58304 | 41696 | 02970 | 97030 | 3 |
| 59 | 55367 <br> 5.)400 | 4463 4600 | 58342 | 41658 | 02980 | 97025 97020 | $\cdots$ |
| 60 | 55133 | 44567 | 58418 | 41582 | 02985 | 97015 | 0 |
| I. | Cosine. | Secant. | Cotangent. | Taugent. | Cosecan | Sine. | M. |


| $21^{\circ}$ |  | Logarithms. |  |  |  | $158^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.55433 | 10.44567 | 9.58418 | 10.41582 | 10.02985 | 9.97015 | 60 |
| 1 | 55466 | 44534 | 58455 | 41545 | 02990 | 97010 | 59 |
| 2 | 55499 | 44501 | 58493 | 41507 | 02995 | 97005 | 58 |
| 3 | 55532 | 44468 | 58531 | 41469 | 02999 | 97001 | 57 |
| 4 | 55564 | 44436 | 58569 | 41431 | 03004 | 96996 | 56 |
| 5 | 9.55597 | 10.44403 | 9.58606 | 10.41394 | 10.03009 | 9.96991 | 55 |
| 6 | 55630 | 44370 | 58644 | 41356 | 05014 | 96986 | 54 |
| 7 | 55663 | 44337 | 58681 | 41319 | 03019 | 96981 | 53 |
| 8 | 55695 | 44305 | 58719 | 41281 | 03024 | 96976 | 52 |
| 9 | 55728 | 44272 | 58757 | 41243 | 03029 | 96971 | 51 |
| 10 | 9.55761 | 10.44239 | 9.58794 | 10.41206 | 10.03034 | 9.96966 | 50 |
| 11 | 55793 | 44207 | 58832 | 41168 | 03038 | 96962 | 49 |
| 12 | 55826 | 44174 | 58869 | 41131 | 03043 | 96957 | 48 |
| 13 | 55858 | 44142 | 58907 | 41093 | 03048 | 96952 | 47 |
| 14 | 55891 | 44109 | 58944 | 41056 | 03053 | 96947 | 46 |
| 15. | 9.55923 | 10.44077 | 9.58981 | 10.41019 | 10.03058 | 9.96942 | 45 |
| 16 | 55956 | 44044 | 59019 | 40981 | 03063 | 96937 | 44 |
| 17 | 55988 | 44012 | 59056 | 40944 | 03068 | 96932 | 43 |
| 18 | 56021 | 43979 | 59094 | 40906 | 03073 | 96927 | 42 |
| 19 | 56053 | 43947 | 59131 | 40869 | 03078 | 96922 | 41 |
| 20 | 9.56085 | 10.43915 | 9.59168 | 10.40832 | 10.03083 | 9.96917 | 40 |
| 21 | 56118 | 43882 | 59205 | 40795 | 03088 | 96912 | 39 |
| 22 | 56150 | 43850 | 59243 | 40757 | 03093 | 96907 | 38 |
| 23 | 56182 | 43818 | 59280 | 40720 | 03097 | 96903 | 37 |
| 24 | 56215 | 43785 | 59317 | 40683 | 03102 | 96898 | 36 |
| 25 | 9.56247 | 10.43753 | 9.59354 | 10.40646 | 10.03107 | 9.96893 | 35 |
| 26 | 56279 | 43721 | 59391 | 40609 | 03112 | 96888 | 34 |
| 27 | 56311 | 43689 | 59429 | 40571 | 03117 | 96883 | 33 |
| 28 | 56343 | 43657 | 59466 | 40534 | 03122 | 96878 | 32 |
| 29 | 56375 | 43625 | 59503 | 40497 | 03127 | 96873 | 31 |
| 30 | 9.56408 | 10.43592 | 9.59540 | 10.40460 | 10.03132 | 9.96868 | 30 |
| 31 | 56440 | 43560 | 59577 | 40423 | 03137 | 96863 | 29 |
| 32 | 56472 | 43528 | 59614 | 40386 | 03142 | 96858 | 28 |
| 33 | 56504 | 43496 | 59651 | 40349 | 03147 | 96853 | 27 |
| 34 | 56536 | 43464 | 59688 | 40312 | 03152 | 96848 | 26 |
| 35 | 9.56568 | 10.43432 | 9.59725 | 10.40275 | 10.03157 | 9.96843 | 25 |
| 36 | 56599 | 43401 | 59762 | 40238 | 03162 | 96838 | 24 |
| 37 | 56631 | 43369 | 59799 | 40201 | 03167 | 96833 | 23 |
| 38 | 56663 | 43337 | 59835 | 40165 | 03172 | 96828 | 22 |
| 39 | 55695 | 43305 | 59872 | 40128 | 03177 | 96823 | 21 |
| 40 | 9.56727 | 10.43273 | 9.59909 | 10.40091 | 10.03182 | 9.96818 | 20 |
| 41 | 56759 | 43241 | 59946 | 40054 | 03187 | 96813 | 19 |
| 42 | 56790 | 43210 | 59983 | 40017 | 03192 | 96808 | 18 |
| 43 | 56822 | 43178 | 60019 | 39981 | 03197 | 96803 | 17 |
| 44 | 56854 | 43146 | 60056 | 39944 | 03202 | 96798 | 16 |
| 45 | 9.56886 | 10.43114 | 9.60093 | 10.39907 | 10.03207 | 9.96793 | 15 |
| 46 | 56917 | 43083 | 60130 | 39870 | 03212 | 96788 | 14 |
| 47 | 56949 | 43051 | 60166 | 39834 | 03217 | 96783 | 13 |
| 48 | 56980 | 43020 | 60203 | 39797 | 03222 | 96778 | 12 |
| 49 | 57012 | 42988 | 60240 | 39760 | 03228 | 96772 | 11 |
| 50 | 9.57044 | 10.42956 | 9.60276 | 10.39724 | 10.03233 | 9.96767 | 10 |
| 51 | 57075 | 42925 | 60313 | 39687 | 03238 | 96762 | 9 |
| 52 | 57107 | 42893 | 60349 | 39651 | 03243 | 96757 | 8 |
| 53 | 57138 | 42862 | 60386 | 39614 | 03248 | 96752 | , |
| 54 | 57169 | 42831 | 60422 | 39578 | 03253 | 96747 | 6 |
| 55 | 9.57201 | 10.42799 | 9.60459 | 10.39541 | 10.03258 | 9.96742 | 5 |
| 56 | 57232 | 42768 | 60495 | 39505 | 03263 | 96737 | 4 |
| 57 | 57264 | 42736 | 60532 | 39468 | 03268 | 96732 | 3 |
| 58 | 57295 | 42705 | 60568 | 39432 | 03273 | 96727 | 2 |
| 59 | 57326 | 42674 | 60605 | 39395 | 03278 | 96722 | 1 |
| 60 | 57358 | 42642 | 60641 | 39359 | 03283 | 96717 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

Logarithmic Angular Functions.

| $22^{\circ}$ | Logarithms. |  |  |  |  | $157^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.57358 | 10.42642 | 9.60641 | 10.39359 | 10.03283 | 9.96717 | 60 |
| 1 | 57389 | 42611 | 60677 | 39323 | 03289 | 96711 | 59 |
| 2 | 57420 | 42580 | 60714 | - 39286 | 03294 | 96706 | 58 |
| 3 | 57451 | 42549 | 60750 | 39250 | 03299 | 96701 | 57 |
| 4 | 57482 | 42518 | 60786 | 39214 | 03304 | 96696 | 56 |
| 5 | 9.57514 | 10.42486 | 9.60823 | 10.39177 | 10.03309 | 9.96691 | 55 |
| 6 | 57545 | 42455 | 60859 | 39141 | 03314 | 96686 | 54 |
| 7 | 57576 | 42424 | 60895 | 39105 | 03319 | 96681 | 53 |
| 8 | 57607 | 42393 | 60931 | 39069 | 03324 | 96676 | 52 |
| 9 | 57638 | 42362 | 60967 | 39033 | 03330 | 96670 | 51 |
| 10 | 9.57669 | 10.42331 | 9.61004 | 10.38996 | 10.03335 | 9.96665 | 50 |
| 11 | 57700 | 42300 | 61040 | 38560 | 03340 | 96660 | 49 |
| 12 | 57731 | 42269 | 61076 | 38924 | 03345 | 96655 | 48 |
| 13 | 57762 | 42238 | 61112 | 38888 | 03350 | 96650 | 47 |
| 14 | 57793 | 42207 | 61148 | 38852 | 03355 | 96645 | 46 |
| 15 | 9.57824 | 10.42176 | 9.61184 | 10.38816 | 10.03360 | 9.96640 | 45 |
| 16 | 57855 | 42145 | 61220 | 38780 | 03366 | 96634 | 44 |
| 17 | 57885 | 42115 | 61256 | 38744 | 03371 | 96629 | 43 |
| 18 | 57916 | 42084 | 61292 | 38708 | 03376 | 96624 | 42 |
| 19 | 57947 | 42053 | 61328 | 38672 | 03381 | 96619 | 41 |
| 20 | 9.57978 | 10.42022 | 9.61364 | 10.38636 | 10.03386 | 9.96614 | 40 |
| 21 | 58008 | 41992 | 61400 | 38600 | 03392 | 96608 | 39 |
| 22 | 58039 | 41961 | 61436 | 38564 | 03397 | 96603 | 38 |
| 23 | 58070 | 41930 | 61472 | 38528 | 03402 | 96598 | 37 |
| 24 | 58101 | 41899 | 61508 | 38492 | 03407 | 96593 | 36 |
| 25 | 9.58131 | 10.41869 | 9.61544 | 10.38456 | 10.03412 | 9.96588 | 35 |
| 26 | 58162 | 41838 | 61579 | 38421 | 03418 | 96582 | 34 |
| 27 | 58192 | 41808 | 61615 | 38385 | 03423 | 96577 | 33 |
| 28 | 58223 | 41777 | 61651 | 38349 | 03428 | 96572 | 32 |
| 29 | 58253 | 41747 | 61687 | 38313 | 03433 | 96567 | 31 |
| 30 | 9.58284 | 10.41716 | 9.61722 | 10.38278 | 10.03438 | 9.96562 | 30 |
| 31 | 58314 | 41686 | 61758 | 38242 | 03444 | 96556 | 29 |
| 32 | 58345 | 41655 | 61794 | 38206 | 03449 | 96551 | 28 |
| 33 | 58375 | 41625 | 61830 | 38170 | 03454 | 96546 | 27 |
| 34 | 58106 | 41594 | 61865 | 38135 | 03459 | 96541 | 26 |
| 35 | 9.58136 | 10.41564 | 9.61901 | 10.38099 | 10.03465 | 9.96535 | 25 |
| 36 | 58467 | 41533 | 61936 | 38064 | 03470 | 96530 | 24 |
| 37 | 58497 | 41503 | 61972 | 38028 | 03475 | 96525 | 23 |
| 38 | 58527 | 41473 | $6: 008$ | 37992 | 03480 | 96520 | 22 |
| 39 | 58557 | 41443 | 62043 | 37957 | 03486 | 96514 | 21 |
| 40 | 9.58588 | 10.41412 | 9.62079 | 10.37921 | 10.03491 | 9.96509 | 20 |
| 41 | 58618 | 41382 | 62114 | 37886 | 03496 | 96504 | 19 |
| 42 | 58648 | 41352 | 62150 | 37850 | 03502 | 96498 | 18 |
| 43 | 58678 | 41322 | 62185 | 37815 | 03507 | 96493 | 17 |
| 44 | 58709 | 41291 | 62221 | 37779 | 03512 | 96488 | 16 |
| 45 | 9.58739 | 10.41261 | 9.62256 | 10.37744 | 10.03517 | 9.96483 | 15 |
| 46 | 58769 | 41231 | 62292 | 37708 | 03523 | 96477 | 14 |
| 47 | 58799 | 41201 | 62327 | 37673 | 03528 | 96472 | 13 |
| 48 | 58829 | 41171 | 62362 | 37638 | 03533 | 96467 | 12 |
| 49 | 58859 | 41141 | 62398 | 37602 | 03539 | 96461 | 11 |
| 50 | 9.58889 | 10.41111 | 9.62433 | 10.37567 | 10.03544 | 9.96456 | 10 |
| 51 | 58919 | 41081 | 62468 | 37532 | 03549 | 96451 | 9 |
| 52 | 58949 | 41051 | 62504 | 37496 | 03555 | 96445 | 8 |
| 53 | 58979 | 41021 | 62539 | 37461 | 03560 | 96440 | 7 |
| 54 | 59009 | 40991 | 62574 | $\begin{array}{r}37426 \\ \hline\end{array}$ | 03565 | 96435 | 6 |
| 55 | 9.59039 | 10.40961 | 9.62609 | 10.37391 | 10.03571 | 9.96429 | 5 |
| 56 | 59069 | 40931 | - 62645 | 37355 | 03576 | 96424 | 4 |
| 57 | 59098 | 40902 | 62680 | 37320 | 03581 | 96419 | 3 |
| 58 | 59128 | 40872 | 62715 | 37285 | 03587 | 96413 | 2 |
| 59 | 59158 | 40842 | 62750 | 37250 | 03592 | 96408 | 1 |
| 60 | 59188 | 40812 | 62785 | 37215 | 03597 | 96103 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | 31. |
| 1120 |  |  |  |  |  |  | $67^{\circ}$ |

## Logarithms.

$156^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.59188 | 10.40812 | 9.62785 | 10.37215 | 10.03597 | 9.96403 | 60 |
| 1 | 59218 | 40782 | 62820 | 37180 | 03603 | 96397 | 59 |
| 2 | 59247 | 40753 | 62855 | 37145 | 03608 | 96392 | 58 |
| 3 | 59277 | 40723 | 62890 | 37110 | 03613 | 96387 | 57 |
| 4 | 59307 | 40693 | 62926 | 37074 | 03619 | 96381 | 56 |
| 5 | 9.59336 | 10.40664 | 9.62961 | 10.37039 | 10.03624 | 9.96376 | 55 |
| 6 | 59366 | 40634 | 62996 | 37004 | 03630 | 96370 | 51 |
| 7 | 59396 | 40604 | 63031 | 36969 | 03635 | 96365 | 53 |
| 8 | 59425 | 40575 | 63066 | 36934 | 03640 | 96360 | 52 |
| 9 | 59455 | 40545 | 63101 | 36899 | 03646 | 96354 | 51 |
| 10 | 9.59484 | 10.40516 | 9.63135 | 10.36865 | 10.03651 | 9.96349 | 50 |
| 11 | 59514 | 40486 | 63170 | 36830 | 03657 | 96343 | 49 |
| 12 | 59543 | 40457 | 63205 | 36795 | 03662 | 96338 | 48 |
| 13 | 59573 | 40427 | 63240 | 36760 | 03667 | 96333 | 47 |
| 14 | 59602 | 40398 | 63275 | 36725 | 03673 | 96327 | 46 |
| 15 | 9.59632 | 10.40368 | 9.63310 | 10.36690 | 10.03678 | 9.96322 | 45 |
| 16 | 59661 | 40339 | 63345 | 36655 | 03684 | 96316 | 44 |
| 17 | 59690 | 40310 | 63379 | 36621 | 03689 | 96311 | 43 |
| 18 | 59720 | 40280 | 63414 | 36586 | 03695 | 96305 | 42 |
| 19 | 59749 | 40251 | 63449 | 36551 | 03700 | 96300 | 41 |
| 20 | 9.59778 | 10.40222 | 9.63484 | 10.36516 | 10.03706 | 9.96294 | 40 |
| 21 | 59808 | 40192 | 63519 | 36481 | 03711 | 96289 | 39 |
| 22 | 59837 | 40163 | . 63553 | 36447 | 03716 | 96284 | 38 |
| 23 | 59866 | 40134 | 63588 | 36412 | 03722 | 96278 | 37 |
| 24 | 59895 | 40105 | 63623 | 36377 | 03727 | 96273 | 36 |
| 25 | 9.59924 | 10.40076 | 9.63657 | 10.36343 | 10.03733 | 9.96267 | 35 |
| 26 | 59954 | 40046 | 63692 | 36308 | 03738 | 96262 | 34 |
| 27 | 59983 | 40017 | 63726 | 36274 | 03744 | 96256 | 33 |
| 28 | 60012 | 39988 | 63761 | 36239 | 03749 | 96251 | 32 |
| 29 | 60041 | 39959 | 63796 | 36204 | 03755 | 96245 | 31 |
| 30 | 9.60070 | 10.39930 | 9.63830 | 10.36170 | 10.03760 | 9.96240 | 30 |
| 31 | 60099 | 39901 | 63865 | 36135 | 03766 | 96234 | 29 |
| 32 | 60128 | 39872 | 63899 | 36101 | 03771 | 96229 | 28 |
| 33 | 60157 | 39843 | 63934 | 36066 | 03777 | 96223 | 27 |
| 34 | 60186 | 39814 | 63968 | 36032 | 03782 | 96218 | 26 |
| 35 | 9.60215 | 10.39785 | 9.64003 | 10.35997 | 10.03788 | 9.96212 | 25 |
| 36 | 60244 | 39756 | 64037 | 35963 | 03793 | 96207 | 24 |
| 37 | 60273 | 39727 | 64072 | 35928 | 03799 | 96201 | 23 |
| 38 | 60302 | 39698 | 64106 | 35894 | 03804 | 96196 | 22 |
| 39 | 60331 | 39669 | 64140 | 35860 | 03810 | 96190 | 21 |
| 40 | 9.60359 | 10.39641 | 9.64175 | 10.35825 | 10.03815 | 9.96185 | 20 |
| 41 | 60388 | 39612 | 64209 | 35791 | 03821 | 96179 | 19 |
| 42 | 60417 | 39583 | 64243 | 35757 | 03826 | 96174 | 18 |
| 43 | 60446 | 39554 | 64278 | 35722 | 03832 | 96168 | 17 |
| 44 | 60474 | 39526 | 64312 | 35688 | 03838 | 96162 | 16 |
| 45 | 9.60503 | 10.39497 | 9.64346 | 10.35654 | 10.03843 | 9.96157 | 15 |
| 46 | 60532 | 39468 | 64381 | 35619 | 03849 | 96151 | 14 |
| 47 | 60561 | 39439 | 64415 | 35585 | 03854 | 96146 | 13 |
| 48 | 60589 | 39411 | 64449 | 35551 | 03860 | 96140 | 12 |
| 49 | 60618 | 39382 | 64483 | 35517 | 03865 | 96135 | 11 |
| 50 | 9.60646 | 10.39354 | 9.64517 | 10.35483 | 10.03871 | 9.96129 | 10 |
| 51 | 60675 | 39325 | 64552 | 35448 | 03877 | 96123 | 9 |
| 52 | 60704 | 39296 | 64586 | 35414 | 03882 | 96118 | 8 |
| 53 | 60732 | 39268 | 64620 | 35380 | 03888 | 96112 | 7 |
| 54 | 60761 | 39239 | 64654 | 35346 | 03893 | 96107 | 6 |
| 55 | 9.60789 | 10.39211 | 9.64688 | 10.35312 | 10.03899 | 9.96101 | j |
| 56 | 60818 | 39182 | 64722 | 35278 | 03905 | 96095 | 4 |
| 57 | 60846 | 39154 | 64756 | 35244 | 03910 | 96090 | 3 |
| 58 | 60875 | 39125 | 64790 | 35210 | 03916 | 96084 | $\stackrel{2}{1}$ |
| 59 | 60903 | 39097 | 64824 | 35176 | 03921 | 96079 |  |
| 60 | 60931 | 39069 | 64858 | 35142 | 03927 | 96073 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangeut. | Cosecant. | Sine. | M |


| $24^{\circ}$ |  | Logarithms. |  |  |  | $155^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.60931 | 10.39069 | 9.64858 | 10.35142 | 10.03927 | 9.96073 | 60 |
| 1 | 60960 | 39040 | 64892 | 35108 | 03933 | 96067 | 59 |
| 2 | 60988 | 39012 | 64926 | 35074 | 03938 | 95062 | 58 |
| 3 | 61016 | 38984 | 64960 | 35040 | 03944 | 96056 | 57 |
| 4 | 61045 | 38955 | 64994 | 35006 | 03950 | 96050 | 56 |
| 5 | 9.61073 | 10.38927 | 9.65028 | 10.34972 | 10.03955 | 9.96045 | 55 |
| 6 | 61101 | 38899 | 65062 | 34938 | 03961 | 96039 | 54 |
| 7 | 61129 | 38871 | 65096 | 34904 | 03966 | 96034 | 53 |
| 8 | 61158 | 38842 | 65130 | 34870 | 03972 | 96028 | 52 |
| 9 | 61186 | 38814 | 65164 | 34836 | 03978 | 96022 | 51 |
| 10 | 9.61214 | 10.38786 | 9.65197 | 10.34803 | 10.03983 | 9.96017 | 50 |
| 11 | 61242 | 38758 | 65231 | 34769 | 03989 | 96011 | 49 |
| 12 | 61270 | 38730 | 65265 | 34735 | 03995 | 96005 | 48 |
| 13 | 61298 | 38702 | 65299 | 34701 | 04000 | 96000 | 47 |
| 14 | 61326 | 38674 | 65333 | 34667 | 04006 | 95994 | 46 |
| 15 | 9.61354 | 10.38646 | 9.65366 | 10.34634 | 10.04012 | 9.95988 | 45 |
| 16 | 61382 | 38618 | 65400 | 34600 | 04018 | 95982 | 44 |
| 17 | 61411 | 38589 | 65434 | 34566 | 04023 | 95977 | 43 |
| 18 | 61438 | 38562 | 65467 | 34533 | 04029 | 95971 | 42 |
| 19 | 61466 | 38534 | 65501 | 34499 | 04035 | 95965 | 41 |
| 20 | 9.61494 | 10.38506 | 9.65535 | 10.34465 | 10.04040 | 9.95960 | 40 |
| 21 | 61522 | 38478 | 65568 | 34432 | 04046 | 95954 | 39 |
| 22 | 61550 | 38450 | 65602 | 34398 | 04052 | 95948 | 38 |
| 23 | 61578 | 38422 | 65636 | 34364 | 04058 | 95942 | 37 |
| 24 | 61606 | 38394 | 65669 | 34331 | 04063 | 95937 | 36 |
| 25 | 9.61634 | 10.38366 | 9.65703 | 10.34297 | 10.04069 | 9.95931 | 35 |
| 26 | $6166{ }^{2}$ | 38338 | 65736 | 34264 | 04075 | 95925 | 34 |
| 27 | 61689 | 38311 | 65770 | 34230 | 04080 | 95920 | 33 |
| 28 | 61717 | 38283 | 65803 | 34197 | 04086 | 95914 | 32 |
| 29 | 61745 | 38255 | 65837 | 34163 | 04092 | 95908 | 31 |
| 30 | 9.61773 | 10.38227 | 9.65870 | 10.34130 | 10.04098 | 9.95902 | 30 |
| 31 | 61800 | 38200 | 65904 | 34096 | 04103 | 95897 | 29 |
| 32 | 61828 | 38172 | 65937 | 34063 | 04109 | 95891 | 28 |
| 33 | 61856 | 38144 | 65971 | 34029 | 04115 | 95885 | 27 |
| 34 | 6188.3 | 38117 | 66004 | 33996 | 04121 | 95879 | 26 |
| 35 | 9.61911 | 10.38089 | 9.66038 | 10.33962 | 10.04127 | 9.95873 | 25 |
| 36 | 61939 | 38061 | 66071 | 33929 | 04132 | 95868 | 24 |
| 37 | 61966 | 38034 | 66104 | 33896 | 04138 | 95862 | 23 |
| 38 | 61994 | 38006 | 66138 | 33862 | 04144 | 95856 | 22 |
| 39 | 62021 | 37979 | 66171 | 33829 | 04150 | 95850 | 21 |
| 40 | 9. 62049 | 10.37951 | 9.66204 | 10.33796 | 10.04156 | 9.95844 | 20 |
| 41 | 62076 | 37924 | 66238 | 33762 | 04161 | 95839 | 19 |
| 42 | 62104 | 37896 | 66271 | 33729 | 04167 | 95833 | 18 |
| 43 | 62131 | 37869 | 66304 | 33696 | 04173 | 95827 | 17 |
| 44 | 62159 | 37841 | 66337 | 33663 | 04179 | 95821 | 16 |
| 45 | 9.62186 | 10.37814 | 9.66371 | 10.33629 | 10.04185 | 9.95815 | 15 |
| 46 | 62214 | 37786 | 66404 | 33596 | 04190 | 95810 | 14 |
| 47 | 62241 | 37759 | 66437 | 33563 | 04196 | 95804 | 13 |
| 48 | 62268 | 37732 | 66470 | 33530 | 04202 | 95798 | 12 |
| 49 | 62296 | 37704 | 66503 | 33497 | 04208 | 95792 | 11 |
| 50 | 9.62323 | 10.37677 | 9.66537 | 10.33463 | 10.04214 | 9.95786 | 10 |
| 51 | 62350 | 37650 | 66570 | 33430 | 04220 | 95780 | 9 |
| 52 | 62377 | 37623 | 66603 | 33397 | 04225 | 95775 | 8 |
| 53 | 62405 | 37595 | 66636 | 33364 | $0 \pm 231$ | 95769 | 7 |
| 54 | 62432 | 37568 | 66669 | 33331 | 04237 | 95763 | 6 |
| 55 | 9.62459 | 10.37541 | 9.66702 | 10.33298 | 10.04243 | 9.95757 | 5 |
| 56 | 62486 | 37514 | 66735 | 33265 | 04249 | 95751 | 4 |
| 57 | 62513 | 37487 | 66768 | 33232 | 04255 | 95745 | 3 |
| 58 | 62541 | 37459 | 66801 | 33199 | 04261 | 95739 | 2 |
| 59 | 62568 | 37432 | 66834 | 33166 | 04267 | 95733 | 1 |
| 60 | 62595 | 37405 | 66867 | 33133 | 0427.2 | 95728 | 0 |
| M. | Cosine. | Secant. | Cotangeut. | Tangent. | Cosecant. | Sine. | M. |


| $25^{\circ}$ | Logarithms. |  |  |  |  | $154^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.62595 | 10.37405 | 9.66867 | 10.33133 | 10.04272 | 9.95728 | 60 |
| 1 | 62622 | 37378 | 66900 | 33100 | 04278 | 95722 | 59 |
| 2 | 62649 | 37351 | 66933 | 33067 | 04284 | 95716 | 58 |
| 3 | 62676 | 37324 | 66966 | 33034 | 04290 | 95710 | 57 |
| 4 | 62703 | 37297 | 66999 | 33001 | 04296 | 95704 | 56 |
| 5 | 9.62730 | 10.37270 | 9.67032 | 10.32968 | 10.04302 | 9.95698 | 55 |
| 6 | 62757 | 37243 | 67065 | 32935 | 04308 | 95692 | 54 |
| 7 | 62784 | 37216 | 67098 | 32902 | 04314 | 95686 | 53 |
| 8 | 62811 | 37189 | 67131 | 32869 | 04320 | 95680 | 52 |
| 9 | 62838 | 37162 | 67163 | 32837 | 04326 | 95674 | 51 |
| 10 | 9.62865 | 10.37135 | 9.67196 | 10.32804 | 10.04332 | 9.95668 | 50 |
| 11 | 62892 | 37108 | 67229 | 32771 | 04337 | 95663 | 49 |
| 12 | 62918 | 37082 | 67262 | 32738 | 04343 | 95657 | 48 |
| 13 | 62945 | 37055 | 67295 | 32705 | 04349 | 95651 | 47 |
| 14 | 62972 | 37028 | 67327 | 32673 | 04355 | 95645 | 46 |
| 15 | 9.62999 | 10.37001 | 9.67360 | 10.32640 | 10.04361 | 9.95639 | 45 |
| 16 | 63026 | 36974 | 67393 | 32607 | 04367 | 95633 | 44 |
| 17 | 63052 | 36948 | 67426 | 32574 | 04373 | 95627 | 43 |
| 18 | 63079 | 36921 | 67458 | 32542 | 04379 | 95621 | 42 |
| 19 | 63106 | 36894 | 67491 | 32509 | 04385 | 95615 | 41 |
| 20 | 9.63133 | 10.36867 | 9.67524 | 10.32476 | 10.04391 | 9.95609 | 40 |
| 21 | 63159 | 36841 | 67556 | 32444 | 04397 | 95603 | 39 |
| 22 | 63186 | 36814 | 67589 | 32411 | 04403 | 95597 | 38 |
| 23 | 63213 | 36787 | 67622 | 32378 | 04409 | 95591 | 37 |
| 24 | 63239 | 36761 | 67654 | 32316 | 04415 | 95585 | 36 |
| 25 | 9.63266 | 10.36734 | 9.67687 | 10.32313 | 10.04421 | 9.95579 | 35 |
| 26 | 63292 | 36708 | 67719 | 32281 | 04427 | 95573 | 34 |
| 27 | 63319 | 36681 | 67752 | 32248 | 04433 | 95567 | 33 |
| 28 | 63345 | 36655 | 67785 | 32215 | 04439 | 95561 | 32 |
| 29 | 63372 | 36628 | 67817 | 32183 | 04445 | 95555 | 31 |
| 30 | 9.63398 | 10.36602 | 9.67850 | 10.32150 | 10.04451 | 9.95549 | 30 |
| 31 | 63425 | 36575 | 67882 | 32118 | 04457 | 95543 | 29 |
| 32 | 63451 | 36549 | 67915 | 32085 | 04463 | 95537 | 28 |
| 33 | 63478 | 36522 | 67947 | 32053 | 04469 | 95531 | 27 |
| 34 | 63504 | 36496 | 67980 | 32020 | 04475 | 95525 | 26 |
| 35 | 9.63531 | 10.36469 | 9.68012 | 10.31988 | 10.04481 | 9.95519 | 25 |
| 36 | 63557 | 36413 | 68044 | 31956 | 04487 | 95513 | 24 |
| 37 | 63583 | 36417 | 68077 | 31923 | 04493 | 95507 | 23 |
| 38 | 63610 | 36390 | 68109 | 31891 | 04500 | 95500 | 22 |
| 39 | 63636 | 36364 | 68142 | 31858 | 04506 | 95494 | 21 |
| 40 | 9.63662 | 10.36338 | 9.68174 | 10.31826 | 10.04512 | 9.95488 | 20 |
| 41 | 63689 | . 36311 | 68206 | 31794 | 04518 | 95482 | 19 |
| 42 | 63715 | 36285 | 68:239 | 31761 | 04524 | 95476 | 18 |
| 43 | 63741 | 36259 | 68.271 | 31729 | 04530 | 95470 | 17 |
| 44 | 63767 | 36233 | 68303 | 31697 | 04536 | 95464 | 16 |
| 45 | 9.63794 | 10.36206 | 9.68336 | 10.31664 | 10.04542 | 9.95458 | 15 |
| 46 | 63820 | 36180 | 68368 | 31632 | 04548 | 95452 | 14 |
| 47 | 63846 | 36154 | 68400 | 31600 | 04554 | 95446 | 13 |
| 48 | 63872 | 36128 | 68432 | 31568 | 04560 | 95440 | 12 |
| 49 | 63898 | 36102 | 68465 | 31535 | 04566 | 95434 | 11 |
| 50 | 9.63924 | 10.36076 | 9.68497 | 10.31503 | 10.04573 | 9.95427 | 10 |
| 51 | 63950 | 36050 | 68529 | 31471 | 04579 | 95421 | 9 |
| 52 | 63976 | 36024 | 68561 | 31439 | 04585 | 95415 |  |
| 53 | 64002 | 35998 | 68593 | 31407 | 04591 | 95109 | 7 |
| 54 | 64028 | 35972 | 68626 | 3137-t | 04597 | 95403 | 6 |
| 55 | 9.64054 | 10.35946 | 9.68658 | 10.31342 | 10.04603 | 9.95397 | 5 |
| 56 | 64080 | 35920 | 68690 | 31310 | 04609 | 95391 | 4 |
| 57 | 64106 | 35894 | 68722 | 31278 | 04616 | 95384 | 3 |
| 58 | 64132 | 35868 | 68754 | 31246 | 04622 | 95378 | 2 |
| 59 | 64158 | 35842 | 68786 | 31214 | 04628 | 95372 | 1 |
| 60 | 64184 | 35816 | 68818 | 31182 | 04634 | 95366 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M |


| $26^{\circ}$ |  | Logarithms. |  |  |  |  | $153^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.64184 | 10.35816 | 9.68818 | 10.31182 | 10.04634 | 9.95366 | 60 |
| 1 | 64210 | 35790 | 68850 | 31150 | 04640 | 95360 | 59 |
| 2 | 64236 | 35764 | 68882 | 31118 | 04646 | 95354 | 58 |
| 3 | 64262 | 35738 | 68914 | 31086 | 04652 | 95348 | 57 |
| 4 | 64288 | 35712 | 68946 | 31054 | 04659 | 95341 | 56 |
| 5 | 9.64313 | 10.35687 | 9.68978 | 10.31022 | 10.04665 | 9.95335 | 55 |
| 6 | 64339 | 35661 | 69010 | 30990 | 04671 | 95329 | 54 |
| 7 | 64365 | 35635 | 69042 | 30958 | 04677 | 95323 | 53 |
| 8 | 64391 | 35609 | 69074 | 30926 | 04683 | 95317 | 52 |
| 9 | 64417 | 35583 | 69106 | 30894 | 04690 | 95310 | 51 |
| 10 | 9.64442 | 10.35558 | 9.69138 | 10.30862 | 10.04696 | 9.95304 | 50 |
| 11 | 64468 | 35532 | 69170 | 30830 | 04702 | 95298 | 49 |
| 12 | 64494 | 35506 | 69202 | 30798 | 04708 | 95292 | 48 |
| 13 | 64519 | 35481 | 69234 | 30766 | 04714 | 95286 | 47 |
| 14 | 64545 | 35455 | 69266 | 30734 | 04721 | 95279 | 46 |
| 15 | 9.64571 | 10.35429 | 9.69298 | 10.30702 | 10.04727 | 9.95273 | 45 |
| 16 | 61596 | 35404 | 69329 | 30671 | 04733 | 95267 | 44 |
| 17 | 64622 | 35378 | 69361 | 30639 | 04739 | 95261 | 43 |
| 18 | 64647 | 35353 | 69393 | 30607 | 04746 | 95254 | 42 |
| 19 | 64673 | 35327 | 69425 | 30575 | 04752 | 95248 | 41 |
| 20 | 9.64698 | 10.35302 | 9.69457 | 10.30543 | 10.04758 | 9.95242 | 40 |
|  | 64724 | 35276 | 69488 | 30512 | 04764 | 95236 | 39 |
|  | 64749 | 35251 | 69520 | 30480 | 04771 | 95229 | 38 |
|  | 61775 | 35225 | 69592 | 30448 | 04777 | 95223 | 37 |
|  | 64800 | 35200 | 69584 | 30416 | 04783 | 95217 | 36 |
|  | 9.64826 | 10.35174 | 9.69615 | 10.30385 | 10.04789 | 9.95211 | 3.5 |
| 26 | 64851 | 35149 | 69647 | 30353 | 04796 | 95204 | 34 |
|  | 64877 | 35123 | 69679 | 30321 | 04802 | 95198 | 33 |
|  | 64902 | 35098 | 69710 | 30290 | 04808 | 95192 |  |
|  | 64927 | 35073 | 69742 | 30258 | 04815 | 95185 | 31 |
| 30 | 9.64953 | 10.35047 | 9.69774 | 10.30226 | 10.04821 | 9.95179 | 30 |
|  | 64978 | 35022 | 69805 | 30195 | 04827 | 95173 | 29 |
|  | 65003 | 34997 | 69837 | 30163 | 04833 | 95167 | 28 |
|  | 65029 | 34971 | 69868 | 30132 | 04840 | 95160 | 27 |
|  | 6 | 10.319 .21 |  |  |  | 9.95148 | 25 |
|  | -65104 | 10.34921 34896 | 9.699332 69963 | $\begin{array}{r}10.30068 \\ 30037 \\ \hline\end{array}$ | 10.04852 04859 | ${ }_{95141}$ | 24 |
|  | 65130 | 34870 | 69995 | 30005 | 04865 | 95135 | 23 |
|  | 65155 | 34845 | 70026 | 29974 | 04871 | 95129 | 22 |
| 39 | 65180 | 34820 | 70058 | 29942 | 04878 | 95122 | 21 |
| 40 | 9.65205 | 10.34795 | 9.70089 | 10.29911 | 10.04884 | 9.95116 | 20 |
| 41 | 65230 | 34770 | 70121 | 29879 | 01890 | 95110 | 19 |
| 42 | 65255 | 34745 | 70152 | 29848 | 04897 | 95103 | 18 |
| 43 | 65281 | 34719 | 70184 | 29816 | 04903 | 95097 | 17 |
| 44 | 65306 | 34694 | 70215 | 29785 | 04910 | 95090 | 16 |
| 45 | 9.65331 | 10.34669 | 9.70247 | 10.29753 | 10.04916 | 9.95084 | 15 |
| 46 | 65356 | 34644 | 70278 | 29722 | 04922 | 95078 | 14 |
| 47 | 65381 | 34619 | 70309 | 29691 | 04929 | 95071 | 13 |
| 48 | 65406 | 34594 | 70341 | 29659 | 04935 | 95065 | 12 |
|  | 65431 | 34569 | 70372 | 29628 | 04941 | 95059 | 11 |
|  | 9.65456 | 10.34544 | 9.70404 | 10.29596 | 10.04948 | 9.95052 | 10 |
|  | 65481 | 34519 | 70435 | 29565 | 04954 | 95046 | 9 |
|  | 65506 | 34494 | 70466 | 29534 | 04961 | 95039 | 8 |
|  | 65531 | 34469 | 70498 | 29502 | 04967 | 95033 | 7 |
|  | 65556 | 34444 | 70529 | 29471 | 04973 | 95027 | ${ }_{5}^{6}$ |
|  | 9.65580 | 10.34420 | 9.70560 | 10.29440 | 10.04980 | 9.95020 | 5 |
|  | 65605 | 34395 | 70592 | 29408 | 04986 | 95014 | ${ }_{3}$ |
|  | 6.530 | 34370 | 70623 | 29377 | 04993 | 95007 | ${ }_{2}$ |
| 59 | 65680 | ${ }_{34320}$ | 70685 | 29315 | 05005 | 94995 | 1 |
| 60 | 65705 | 34295 | 70717 | 29283 | 05012 | 94988 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

$27^{\circ}$
Logarithms.

M. | 0 | 9.65 |
| :--- | ---: |
| $\mathbf{1}$ | 65 |
| 3 | 65 |
| 4 | 65 |
| 5 | 65 |
|  |  |

| 6 | 60 |
| :--- | :--- |
| 7 | 65 |
| 8 | 65 |
| 9 | 65 |


| 9 | 65 |
| ---: | ---: |
| 10 | 9.65 |
| 11 | 65 |
| 12 | 66 |
| 13 | 66 |
| 14 | 66 |
| 15 |  |



| 16 | 66 |
| :--- | :--- |
| 17 | 66 |
| 18 | 66 |

6607510

66099
66124

66148
66173
9.66197

66221
66246
66270
66295
9.66319

66343
66368
66416
9.66441 66465 66489 66513
66537 66537
.66562 66586 66610 66634 66658
9.66682 66706 66731 66755 66779
9.66803

66827
66851 66875 66899
9.66922

66946 66970 66994 67018
9.67042

67066 67090 67113 67137 67161
Cosine.
I. Cosine. Secant.

| $28^{\circ}$ |  | Logarithms. |  |  |  | $151^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.671 | 10.32 | 9.72 | 10.27433 | 10.05407 | 9.94593 | 60 |
| 1 | 85 | 32815 | 598 | 27402 | 05413 | 94587 | 59 |
| , | 67208 | 32792 | 72628 | 27372 | 05420 | 94580 | 58 |
| 3 | 67232 | 32768 | 72659 | 27341 | 05427 | 94573 | 57 |
| 4 | 67256 | 32744 | 72689 | 27311 | 05433 | 94567 | 56 |
| 5 | 9.67280 | 10.32720 | 9.72720 | 10.27280 | 10.05440 | 9.94560 | 55 |
| 6 | 67303 | 32697 | 72750 | 27250 | 05447 | 94553 | 54 |
| 7 | 67327 | 32673 | 72780 | 27220 | 05454 | 94546 | 53 |
| 8 | 67350 | 32650 | 72811 | 27189 | 05460 | 94540 | 52 |
| 9 | 67374 | 32626 | 72841 | 27159 | 05467 | 94533 | 51 |
| 10 | 9.67398 | 10.32602 | 9.72872 | 10.27128 | 10.05474 | 9.94526 | 50 |
| 11 | 67421 | 32579 | 72902 | 27098 | 05481 | 94519 | 49 |
| 12 | 67445 | 32555 | 72932 | 27068 | 05487 | 94513 | 48 |
| 13 | 67468 | 32532 | 72963 | 27037 | 05494 | 94506 | 47 |
| 14 | 67492 | 32508 | 72993 | 27007 | 05501 | 94499 | 46 |
| 15 | 9.67515 | 10.32485 | 9.73023 | 10.26977 | 10.05508 | 9.94492 | 45 |
| 16 | 67539 | 32461 | 73054 | 26946 | 05515 | 94485 | 44 |
| 17 | 67562 | 32438 | 73084 | 26916 | 05521 | 94479 | 43 |
| 18 | 67586 | 32414 | 73114 | 26886 | 05528 | 94472 | 42 |
|  | 67609 | 32391 | 73144 | 26856 | 05535 | 94465 | 41 |
|  | 9.67633 | 10.32367 | 9.73175 | 10.26825 | 10.05542 | 9.94458 | 40 |
|  | 67656 | 32344 | 73205 | 26795 | 05549 | 94451 | 39 |
|  | 67680 | 32320 | 73235 | 26765 | 05555 | 94445 | 38 |
|  | 67703 | 2297 | 73265 | 26735 | 5562 | 94438 | 37 |
|  | 67726 | 32274 | 73295 | 26705 | 05569 | 94431 | 36 |
|  | 9.67750 | 10.32250 | 9.73326 | 10.26674 | 10.05576 | 9.94424 | 35 |
|  | 67773 | 32227 | 73356 | 26644 | 05583 | 94417 | 34 |
|  | 67796 | 32204 | 73386 | 26614 | 05590 | 94410 | 33 |
|  | 67820 | 32180 | 73416 | 26584 | 05596 | 94404 | 32 |
|  | 67843 | 32157 | 73446 | 26554 | 05603 | 94397 | 31 |
|  | 9.67866 | 10.32134 | 9.73476 | 10.26524 | 10.05610 | 9.94390 | 30 |
|  | 67890 | 32110 | 73507 | 26493 | 05617 | 94383 | 29 |
|  | 67913 | 32087 | 73537 | 26463 | 05624 | 94376 | 28 |
|  | 67936 | 32064 | 73567 | 26433 | 05631 | 94369 | 27 |
|  | 67959 | 32041 | 73597 | 26403 | 05638 | 94362 | 26 |
|  | 9.67982 | 10.32018 | 9.73627 | 10.26373 | 10.05645 | 9.94355 | 25 |
|  |  | 31994 | 736 | 26343 | 05651 | 94349 | 24 |
|  |  | 31971 | 73687 | 6313 | 5658 | 94342 | 23 |
|  |  | 31948 | 73717 | 26283 | 05665 | 433 | 22 |
|  | 9.68098 | 10.31902 | 9.73777 | 10.26223 | 10.05679 | 9.94321 | 20 |
|  | 68121 | 31879 | 73807 | 26193 | 05686 | 94314 | 19 |
| 42 | 68144 | 31856 | 7308 | 26163 | 05693 | 94307 | 18 |
| 43 | 68167 | 31833 | 73867 | 26133 | 05700 | 94300 | 17 |
|  | 68190 | 31810 | 73897 | 26103 | 05707 | 94293 | 16 |
| 45 | 9.68213 | 10.31787 | 9.73927 | 10.26073 | 10.05714 | 9.94286 | 15 |
| 46 | 68237 | 31763 | 73957 | 26043 | 05721 | 94279 | 14 |
| 47 | 68260 | 31740 | 73987 | 26013 | 05727 | 94273 | 13 |
| 48 | 68283 | 31717 | 74017 | 25983 | 05734 | 94266 | 12 |
| 49 | 6830 | 31695 | 74047 | 25953 | 05741 | 94259 | 11 |
| 50 | 9.68328 | 10.31672 | 9.74077 | 10.25923 | 10.05748 | 9.94252 | 10 |
|  | 68351 | 31649 | 74107 | 25893 | 05755 | 94245 | 9 |
|  | 68374 | 31626 | 74137 | 25863 | 05762 | 94238 | 8 |
|  | 68 | 3160 | 74166 | 25834 | 05769 | 94231 |  |
|  | 68420 | 31580 | 74196 | 25804 | 05776 | 94224 |  |
|  | 9.68443 | 10.31557 | 9.74226 | 10.25774 | 10.05783 | 9.94217 | 5 |
|  | 68466 | 31534 | 74256 | 25744 | 05790 | 94210 | 4 |
|  | 68489 | 31 | 7 | 25714 | 797 | 94203 | 3 |
| 59 | 6853 | 31468 | 7434 | 25600 | 05811 | 94189 | 1 |
| 60 | 68557 | 31443 | 74375 | 25625 | 05818 | 94182 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecan | Sine. | M. |


| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.68557 | 10.31443 | 9.74375 | 10.25625 | 10.05818 | 9.94182 | 60 |
| 1 | 80 | 31420 | 74405 | 25595 | 05825 | 94175 | 59 |
| 2 | 68603 | 31397 | 74435 | 25565 | 05832 | 94168 | 58 |
| 3 | 68625 | 31375 | 74465 | 25535 | 05839 | 94161 | 57 |
| 4 | 68648 | 31352 | 74494 | 25506 | 05846 | 94154 | 55 |
| 5 | 9.68671 | 10.31329 | 9.74524 | 10.25476 | 10.05853 | 9.94147 | 55 |
| 6 | 68694 | 31306 | 74554 | 25446 | 05860 | 94140 | 54 |
| 7 | 68716 | 31284 | 74583 | 25417 | 05867 | 94133 | 53 |
| 8 | 68739 | 31261 | 74613 | 25387 | 05874 | 94126 | 52 |
| 9 | 68762 | 31238 | 74643 | 25357 | 05881 | 94119 | 51 |
| 10 | 9.68784 | 10.31216 | 9.74673 | 10.25327 | 10.05888 | 9.94112 | 50 |
| 11 | 68807 | 31193 | 74702 | 25298 | 05895 | 94105 | 49 |
| 12 | 68829 | 31171 | 74732 | 25268 | 05902 | 94098 | 48 |
| 13 | 68852 | 31148 | 74762 | 25238 | 05910 | 94090 | 47 |
| 14 | 68875 | 31125 | 74791 | 25209 | 05917 | 94083 | 46 |
| 15 | 9.68897 | 10.31103 | 9.74821 | 10.25179 | 10.05924 | 9.94076 | 45 |
| 16 | 68920 | 31080 | 74851 | 25149 | 05931 | 94069 | 44 |
| 17 | 68942 | 31058 | 74880 | 25120 | 05938 | 94062 | 43 |
| 18 | 68965 | 31035 | 74910 | 25090 | 05945 | 94055 | 42 |
| 19 | 68987 | 31013 | 74939 | 25061 | 05952 | 94048 | 41 |
| 20 | 9.69010 | 10.30990 | 9.74969 | 10.25031 | 10.05959 | 9.94041 | 40 |
| 21 | 69032 | 30968 | 74998 | 25002 | 05966 | 94034 | 39 |
| 22 | 69055 | 30945 | 75028 | 24972 | 05973 | 94027 | 38 |
| 23 | 69077 | 30923 | 75058 | 24942 | 05980 | 94020 | 37 |
| 24 | 69100 | 30900 | 75087 | 24913 | 05988 | 94012 | 36 |
| 25 | 9.69122 | 10.30878 | 9.75117 | 10.24883 | 10.05995 | 9.94005 | 35 |
| 26 | 69144 | 30856 | 75146 | 24854 | 06002 | 93998 | 34 |
| 27 | 69167 | 30833 | 75176 | 24824 | 06009 | 93991 | 33 |
| 28 | 69189 | 30811 | 75205 | 24795 | 06016 | 93984 | 32 |
| 29 | 69212 | 30788 | 75235 | 24765 | 06023 | 93977 | 31 |
| 30 | 9.69234 | 10.30766 | 9.75264 | 10.24736 | 10.06030 | 9.93970 | 30 |
| 31 | 69256 | 30744 | 75294 | 24706 | 06037 | 93963 | 29 |
| 32 | 69279 | 30721 | 75323 | 24677 | 06045 | 93955 | 28 |
| 33 | 69301 | 30699 | 75353 | 24647 | 06052 | 93948 | 27 |
| 34 | 69323 | 30677 | 75382 | 24618 | 06059 | 93941 | 26 |
| 35 | 9.69345 | 10.30655 | 9.75411 | 10.24589 | 10.06066 | 9.93934 | 25 |
| 36 | 69368 | 30632 | 75441 | 24559 | 06073 | 93927 | 24 |
| 37 | 69390 | 30610 | 75470 | 24530 | 06080 | 93920 | 23 |
| 38 | 69412 | 30588 | 75500 | 24500 | 06088 | 93912 | 22 |
| 39 | 69434 | 30566 | 75529 | 24471 | 06095 | 93905 | 21 |
| 40 | 9.69456 | 10.30544 | 9.75558 | 10.24442 | 10.06102 | 9.93898 | 20 |
| 41 | 69479 | 30521 | 75588 | 24412 | 06109 | 93891 | 19 |
| 42 | 69501 | 30499 | 75617 | 24383 | 06116 | 93884 | 18 |
| 43 | 69523 | 30477 | 75647 | 24353 | 06124 | 93876 | 17 |
| 44 | 69545 | 30455 | 75676 | 24324 | 06131 | 93869 | 16 |
| 45 | 9.69567 | 10.30433 | 9.75705 | 10.24295 | 10.06138 | 9.93862 | 15 |
| 46 | 69589 | 30411 | 75735 | 24265 | 06145 | 93855 | 14 |
| 47 | 69611 | 30389 | 75764 | 24236 | 06153 | 93847 | 13 |
| 48 | 69633 | 30367 | 75793 | 24207 | 06160 | 93840 | 12 |
| 49 | 69655 | 30345 | 75822 | 24178 | 06167 | 93833 | 11 |
| 50 | 9.69677 | 10.30323 | 9.75852 | 10.24148 | 10.06174 | 9.93826 | 10 |
| 51 | 69699 | 30301 | 75881 | 24119 | 06181 | 93819 | 9 |
| 52 | 69721 | 30279 | 75910 | 24090 | 06189 | 93811 |  |
| 53 | 69743 | 30257 | 75939 | 24061 | 06196 | 93804 | 7 |
| 54 | 69765 | 30235 | 75969 | 24031 | 06203 | 93797 | 6 |
| 55 | 9.69787 | 10.30213 | 9.75998 | 10.24002 | 10.06211 | 9.93789 | 5 |
| 56 | 69809 | 30191 | 76027 | 23973 | 06218 | 93782 | 4 |
| 57 | 69831 | 30169 | 76056 | 23944 | 06225 | 93775 | 3 |
| 58 59 | 69853 | 30147 | 76086 | 23914 | 06232 | 93768 | 1 |
| 59 <br> 60 | 69875 69897 | 30125 30103 | 76115 76144 | 23885 23856 | 06240 06247 | 93760 93753 | 0 |
| M. | Cosine. | Secant. | $\overline{\text { Cotangent. }}$ | Tangent. | Cosecant. | Sine. | M. |


| $30^{\circ}$ | Logarithms. |  |  |  |  | $149^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.69897 | 10.30103 | 9.76144 | 10.23856 | 10.06247 | 9.93753 | 60 |
| 1 | 69919 | 30081 | 76173 | 23827 | 06254 | 93746 | 59 |
| 2 | 69941 | 30059 | 76202 | 23798 | 06262 | 93738 | 58 |
| 3 | 69963 | 30037 | 76231 | 23769 | 06269 | 93731 | 57 |
| 4 | 69984 | 30016 | 76261 | 23739 | 06276 | 93724 | 56 |
| 5 | 9.70006 | 10.29994 | 9.76290 | 10.23710 | 10.06283 | 9.93717 | 55 |
| 6 | 70028 | 29972 | 76319 | 23681 | 06291 | 93709 | 54 |
| 7 | 70050 | 29950 | 76348 | 23652 | 06298 | 93702 | 53 |
| 8 | 70072 | 29928 | 76377 | 23623 | 06305 | 93695 | 52 |
| 9 | 70093 | 29907 | 76406 | 23594 | 06313 | 93687 | 51 |
| 10 | 9.70115 | 10.29885 | 9.76435 | 10.23565 | 10.06320 | 9.93680 | 50 |
| 11 | 70137 | 29863 | 76464 | 23536 | 06327 | 93673 | 49 |
| 12 | 70159 | 29841 | 76493 | 23507 | 06335 | 93665 | 48 |
| 13 | 70180 | 29820 | 76522 | 23478 | 06342 | 93658 | 47 |
| 14 | 70202 | 29798 | 76551 | 23449 | 06350 | 93650 | 46 |
| 15 | 9.70224 | 10.29776 | 9.76580 | 10.23420 | 10.06357 | 9.93643 | 45 |
| 16 | 70245 | 29755 | 76609 | 23391 | 06364 | 93636 | 44 |
| 17 | 70267 | 29733 | 76639 | 23361 | 06372 | 93628 | 43 |
| 18 | 70288 | 29712 | 76668 | 23332 | 06379 | 93621 | 42 |
| 19 | 70310 | 29690 | 76697 | 23303 | 06386 | 93614 | 41 |
| 20 | 9.70332 | 10.29668 | 9.76725 | 10.23275 | 10.06394 | 9.93606 | 40 |
| 21 | 70353 | 29647 | 76754 | 23246 | 06401 | 93599 | 39 |
| 22 | 70375 | 29625 | 76783 | 23217 | 06409 | 93591 | 38 |
| 23 | 70396 | 29604 | 76812 | 23188 | 06416 | 93584 | 37 |
| 24 | 70418 | 29582 | 76841 | 23159 | 06423 | 93577 | 36 |
| 25 | 9.70439 | 10.29561 | 9.76870 | 10.23130 | 10.06431 | 9.93569 | 35 |
| 26 | 70461 | 29539 | 76899 | 23101 | 06438 | 93562 | 34 |
| 27 | 70482 | 29518 | 76928 | 23072 | 06446 | 93554 | 33 |
| 28 | 70504 | 29496 | 76957 | 23043 | 06453 | 93547 | 32 |
| 29 | 70525 | 29475 | 76986 | 23014 | 06461 | 93539 | 31 |
| 30 | 9.70547 | 10.29453 | 9.77015 | 10.22985 | 10.06468 | 9.93532 | 30 |
| 31 | 70568 | 29432 | 77044 | 22956 | 06475 | 93525 | 29 |
| 32 | 70590 | 29410 | 77073 | 22927 | 06483 | 93517 | 28 |
| 33 | 70611 | 29389 | 77101 | 22899 | 06490 | 93510 | 27 |
| 34 | 70633 | 29367 | 77130 | 22870 | 06498 | 93502 | 26 |
| 35 | 9.70654 | 10.29346 | 9.77159 | 10.22841 | 10.06505 | 9.93495 | 25 |
| 36 | 70675 | 29325 | 77188 | 22812 | 06513 | 93487 | 24 |
| 37 | 70697 | 29303 | 77217 | 22783 | 06520 | 93480 | 23 |
| 38 | 70718 | 29282 | 77246 | 22754 | 06528 | 93472 | 22 |
| 39 | 70739 | 29261 | 77274 | 22726 | 06535 | 93465 | 21 |
| 40 | 9.70761 | 10.29239 | 9.77303 | 10.22697 | 10.06543 | 9.93457 | 20 |
| 41 | 70782 | 29218 | 77332 | 22668 | 06550 | 93450 | 19 |
| 42 | 70803 | 29197 | 77361 | 22639 | 06558 | 93442 | 18 |
| 43 | 70824 | 29176 | 77390 | 22610 | 06565 | 93435 | 17 |
| 44 | 70846 | 29154 | 77418 | 22582 | 06573 | 93427 | 16 |
| 45 | 9.70867 | 10.29133 | 9.77447 | 10.22553 | 10.06580 | 9.93420 | 15 |
| 46 | 70888 | 29112 | 77476 | 22524 | 06588 | 93412 | 14 |
| 47 | 70909 | 29091 | 77505 | 22495 | 06595 | 93405 | 13 |
| 48 | 70931 | 29069 | 77533 | 22467 | 06603 | 93397 | 12 |
| 49 | 70952 | 29048 | 77562 | 22438 | 06610 | 93390 | 11 |
| 50 | 9.70973 | 10.29027 | 9.77591 | 10.22409 | 10.06618 | 9.93382 | 10 |
| 51 | 70994 | 29006 | 77619 | 22381 | 06625 | 93375 | 9 |
| 52 | 71015 | 28985 | 77648 | 22352 | 06633 | 93367 | 8 |
| 53 | 71036 | 28964 | 77677 | 22323 | 06640 | 93360 | 7 |
| 54 | 71058 | 28942 | 77706 | 22294 | 06648 | 93352 | 6 |
| 55 | 9.71079 | 10.28921 | 9.77734 | 10.22266 | 10.06656 | 9.93344 | 5 |
| 56 | 71100 | 28900 | 77763 | 22237 | 06663 | 93337 | 4 |
| 57 | 71121 | 28879 | 77791 | 22209 | 06671 | 93329 | 3 |
| 58 | 71142 | 28858 | 77820 | 22180 | 06678 | 93322 | 2 |
| 59 | 71163 | 28837 | 77849 | 22151 | 06686 | 93314 | 1 |
| 60 | 71184 | 28816 | 77877 | 22123 | 06693 | 93307 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| M. | Sive. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.71184 | 10.28816 | 9.77877 | 10.22123 | 10.06693 | 9.93307 | 60 |
| 1 | 71205 | 28795 | 77906 | 22094 | 06701 | 93299 | 59 |
| 2 | 71226 | 28774 | 77935 | 22065 | 06709 | 93291 | 58 |
| 3 | 71247 | 28753 | 77963 | 22037 | 06716 | 93284 | 57 |
| 4 | 71268 | 28732 | 77992 | 22008 | 06724 | 93276 | 56 |
| 5 | 9.71289 | 10.28711 | 9.78020 | 10.21980 | 10.06731 | 9.93269 | 55 |
| 6 | 71310 | 28690 | 78049 | 21951 | 06739 | 93261 | 54 |
| 7 | 71331 | 28669 | 78077 | 21923 | 06747 | 93253 | 53 |
| 8 | 71352 | 28648 | 78106 | 21894 | 06754 | 93246 | 52 |
| 9 | 71373 | 28627 | 78135 | 21865 | 06762 | 93238 | 51 |
| 10 | 9.71393 | 10.28607 | 9.78163 | 10.21837 | 10.06770 | 9.93230 | 50 |
| 11 | 71414 | 28586 | 78192 | 21808 | 06777 | 93223 | 49 |
| 12 | 71435 | 28565 | 78220 | 21780 | 06785 | 93215 | 48 |
| 13 | 71456 | 28544 | 78249 | 21751 | 06793 | 93207 | 47 |
| 14 | 71477 | 28523 | 78277 | 21723 | 06800 | 93200 | 46 |
| 15 | 9.71498 | 10.28502 | 9.78306 | 10.21694 | 10.06808 | 9.93192 | 45 |
| 16 | 71519 | 28481 | 78334 | 21666 | 06816 | 93184 | 44 |
| 17 | 71539 | 28461 | 78363 | 21637 | 06823 | 93177 | 43 |
| 18 | 71560 | 28440 | 78391 | 21609 | 06831 | 93169 | 42 |
| 19 | 71581 | 28419 | 78419 | 21581 | 06839 | 93161 | 41 |
| 20 | 9.71602 | 10.28398 | 9.78448 | 10.21552 | 10.06846 | 9.93154 | 40 |
| 21 | 71622 | 28378 | 78476 | 21524 | . 06854 | 93146 | 39 |
| 22 | 71643 | 28357 | 78505 | 21495 | 06862 | 93138 | 38 |
| 23 | 71664 | 28336 | 78533 | 21467 | 06869 | 93131 | 37 |
| 24 | 71685 | 28315 | 78562 | 21438 | 06877 | 93123 | 36 |
| 25 | 9.71705 | 10.28295 | 9.78590 | 10.21410 | 10.06885 | 9.93115 | 35 |
| 26 | 71726 | 28274 | 78618 | 21382 | 06892 | 93108 | 34 |
| 27 | 71747 | 28253 | 78647 | 21353 | 06900 | 93100 | 33 |
| 28 | 71767 | 28233 | 78675 | 21325 | 06908 | 93092 | 32 |
| 29 | 71788 | 28212 | 78704 | 21296 | 06916 | 93084 | 31 |
| 30 | 9.71809 | 10.28191 | 9.78732 | 10.21268 | 10.06923 | 9.93077 | 30 |
| 31 | 71829 | 28171 | 78760 | 21240 | 06931 | 93069 | 29 |
| 32 | 71850 | 28150 | 78789 | 21211 | 06939 | 93061 | 28 |
| 33 | 71870 | 28130 | 78817 | 21183 | 06947 | 93053 | 27 |
| 34 | 71891 | 28109 | 78845 | 21155 | 06954 | 93046 | 26 |
| 35 | 9.71911 | 10.28089 | 9.78874 | 10.21126 | 10.06962 | 9.93038 | 25 |
| 36 | 71932 | 28068 | 78902 | 21098 | 06970 | 93030 | 24 |
| 37 | 71952 | 28048 | 78930 | 21070 | 06978 | 93022 | 23 |
| 38 | 71973 | 28027 | 78959 | 21041 | 06986 | 93014 | 22 |
| 39 | 71994 | 28006 | 78987 | 21013 | 06993 | 93007 | 21 |
| 40 | 9.72014 | 10.27986 | 9.79015 | 10.20985 | 10.07001 | 9.92999 | 20 |
| 41 | 72034 | 27966 | 79043 | 20957 | 07009 | 92991 | 19 |
| 42 | 72055 | 27945 | 79072 | 20928 | 07017 | 92983 | 18 |
| 43 | 72075 | 27925 | 79100 | 20900 | 07024 | 92976 | 17 |
| 44 | 72096 | 27904 | 79128 | 20872 | 07032 | 92968 | 16 |
| 45 | 9.72116 | 10.27884 | 9.79156 | 10.20844 | 10.07040 | 9.92960 | 15 |
| 46 | 72137 | 27863 | 79185 | 20815 | 07048 | 92952 | 14 |
| 47 | 72157 | 27843 | 79.213 | 20787 | 07056 | 92944 | 13 |
| 48 | 72177 | 27823 | 79241 | 20759 | 07064 | 92936 | 12 |
| 49 | 72198 | 27802 | 79269 | 20731 | 07071 | 92929 | 11 |
| 50 | 9.72218 | 10.27782 | 9.79297 | 10.20703 | 10.07079 | 9.92921 | 10 |
| 51 | 72238 | 27762 | 79326 | 20674 | 07087 | 92913 | 9 |
| 52 | 72259 | 27741 | 79354 | 20646 | 07095 | 92905 | 8 |
| 53 | 72279 | 27721 | 79382 | 20618 | 07103 | 92897 | 7 |
| 54 | 72299 | 27701 | 79410 | 20590 | 07111 | 92889 | 6 |
| 55 | 9.72320 | 10.27680 | 9.79438 | 10.20562 | 10.07119 | 9.92881 | 5 |
| 56 | 72340 | 27660 | 79466 | 20534 | 07126 | 92874 | 4 |
| 57 | 72360 | 27640 | 79495 | 20505 | 07134 | 92866 | 3 |
| 58 | 72381 | 27619 | 79523 | 20477 | 07142 | 92858 | 2 |
| 59 | 72401 | 27599 | 79551 | 20449 | 07150 | 92850 | 1 |
| 60 | 72421 | 27579 | 79579 | 20421 | 07158 | 92842 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |

$121^{\circ}$



| $34^{\circ}$ |  | Logarithms. |  |  |  | $145^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.74756 | 10.25244 | 9.82899 | 10.17101 | 10.08143 | 9.91857 | 60 |
| 1 | 74775 | 25225 | 82926 | 17074 | 08151 | 91849 | 59 |
| 2 | 74794 | 25206 | 82953 | 17047 | 08160 | 91840 | 58 |
| 3 | 74812 | 25188 | 82980 | 17020 | 08168 | 91832 | 57 |
| 4 | 74831 | 25169 | 83008 | 16992 | 08177 | 91823 | 56 |
| 5 | 9.74850 | 10.25150 | 9.83035 | 10.16965 | 10.08185 | 9.91815 | 55 |
| 6 | 74868 | 25132 | 83062 | 16938 | 08194 | 91806 | 54 |
| 7 | 74887 | 25113 | 83089 | 16911 | 08202 | 91798 | 53 |
| 8 | 74906 | 25094 | 83117 | 16883 | 08211 | 91789 | 52 |
| 9 | 74924 | 25076 | 83144 | 16856 | 08219 | 91781 | 51 |
| 10 | 9.74943 | 10.25057 | 9.83171 | 10.16829 | 10.08228 | 9.91772 | 50 |
| 11 | 74961 | 25939 | 83198 | 16802 | 08237 | 91763 | 49 |
| 12 | 74980 | 25020 | 83225 | 16775 | 08245 | 91755 | 48 |
| 13 | 74999 | 25001 | 83252 | 16748 | 08254 | 91746 | 47 |
| 14 | 75017 | 24983 | 83280 | 16720 | 08262 | 91738 | 46 |
| 15 | 9.75036 | 10.24964 | 9.83307 | 10.16693 | 10.08271 | 9.91729 | 45 |
| 16 | 75054 | 24946 | 83334 | 16666 | 08280 | 91720 | 44 |
| 17 | 75073 | 24927 | 83361 | 16639 | 08288 | 91712 | 43 |
| 18 | 75091 | 24909 | 83388 | 16612 | 08297 | 91703 | 42 |
| 19 | 75110 | 24890 | 83415 | 16585 | 08305 | 91695 | 41 |
| 20 | 9.75128 | 10.24872 | 9.83442 | 10.16558 | 10.08314 | 9.91686 | 40 |
| 21 | 75147 | 24853 | 83470 | 16530 | 08323 | 91677 | 39 |
| 22 | 75165 | 24835 | 83497 | 16503 | 08331 | 91669 | 38 |
| 23 | 75184 | 24816 | 83524 | 16476 | 08340 | 91660 | 37 |
| 24 | 75202 | 24798 | 83551 | 16449 | 08349 | 91651 | 36 |
| 25 | 9.75221 | 10.24779 | 9.83578 | 10.16422 | 10.08357 | 9.91643 | 35 |
| 26 | 75239 | 24761 | 83605 | 16395 | 08366 | 91634 | 34 |
|  | 75258 | 24742 | 83632 | 16368 | 08375 | 91625 | 33 |
| 28 | 75276 | 24724 | 83659 | 16341 | 08383 | 91617 | 32 |
| 29 | 75294 | 24706 | 83686 | 16314 | 08392 | 91608 | 31 |
| 30 | 9.75313 | 10.24687 | 9.83713 | 10.16287 | 10.08401 | 9.91599 | 30 |
| 31 | 75331 | 24669 | 83740 | 16260 | 08409 | 91591 | 29 |
| 3 | 75350 | 24650 | 83768 | 16232 | 08418 | 91582 | 28 |
| 33 | 75368 | 24632 | 83795 | 16205 | 08427 | 91573 | 27 |
| 5 | 75386 | 24614 | 83822 | 16178 | 08435 | 91565 | 26 |
| 35 | 9.75405 | 10.24595 | 9.83849 | 10.16151 | 10.08444 | 9.91556 | 25 |
| 37 | 75423 | 24577 | 83876 | 16124 | 08453 | 91547 | 24 |
| 3 | 75441 | 24559 | 83903 | 16097 | 08462 | 91538 | 23 |
| 38 | 75459 | 24541 | 83930 | 16070 | 08470 | 91530 | 22 |
| 39 | 75478 | 24522 | 83957 | 16043 | 08479 | 91521 | 21 |
| 40 | 9.75496 | 10.24504 | 9.83984 | 10.16016 | 10.08488 | 9.91512 | 20 |
| 41 | 75514 | 24486 | 84011 | 15989 | 08496 | 91504 | 19 |
| 42 | 75533 | 24467 | 84038 | 15962 | 08505 | 91495 | 18 |
| 43 | 75551 | 24449 | 84065 | 15935 | 08514 | 91486 | 17 |
| 44 | 75569 | 24431 | 84092 | 15908 | 08523 | 91477 | 16 |
| 45 | 9.75587 | 10.24413 | 9.84119 | 10.15881 | 10.08531 | 9.91469 | 15 |
| 46 | 75605 | 24395 | 84146 | 15854 | 08540 | 91460 | 14 |
| 47 | 75624 | 24376 | 84173 | 15827 | 08549 | 91451 | 13 |
| 48 | 75642 | 24358 | 84200 | 15800 | 08558 | 91442 | 12 |
| 49 | 75660 | 24340 | 84227 | 15773 | 08567 | 91433 | 11 |
| 50 | 9.75678 | 10.24322 | 9.84254 | 10.15746 | 10.08575 | 9.91425 | 10 |
| 51 | 75696 | 24304 | 84280 | 15720 | 08584 | 91416 | 9 |
| 52 | 75714 | 24286 | 84307 | 15693 | 08593 | 91407 | 8 |
| 53 | 75733 | 24267 | 84334 | 15666 | 08602 | 91398 | 7 |
| 54 | 75751 | 24249 | 84361 | 15639 | 08611 | 91389 | 6 |
| 55 | 9.75769 | 10.24231 | 9.84388 | 10.15612 | 10.08619 | 9.91381 | 5 |
| 56 | 75787 | 24213 | 84415 | 15585 | 08628 | 91372 | 4 |
| 57 | 75805 | 24195 | 84442 | 15558 | 08637 | 91363 | 3 |
| 58 | 75823 | 24177 | 84469 | 15531 | 08646 | 91354 | 2 |
| 60 | 75859 | 24141 | 84496 84523 | 15504 | 08655 | 91345 91336 | 1 |
| M. | Cosine. | Secant. | $\overline{\text { Cotangent. }}$ | Tangent. | Cosecant. | Sine. | M |

Logarithms.
$144^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.75859 | 10.24141 | 9.84523 | 10.154'77 | 10.08664 | 9.91336 | 60 |
| 1 | 75877 | 24123 | 84550 | 15450 | 08672 | 91328 | 59 |
| 2 | 75895 | 24105 | 84576 | 15424 | 08681 | 91319 | 58 |
| 3 | 75913 | 24087 | 84603 | 15397 | 08690 | 91310 | 57 |
| 4 | 75931 | 24069 | 84630 | 15370 | 08699 | 91301 | 56 |
| 5 | 9.75949 | 10.24051 | 9.84657 | 10.15343 | 10.08708 | 9.91292 | 55 |
| 6 | 75967 | 24033 | 84684 | 15316 | 08717 | 91283 | 54 |
| 7 | 75985 | 24015 | 84711 | 15289 | 08726 | 91274 | 53 |
| 8 | 76003 | 23997 | 84738 | 15262 | 08734 | 91266 | 52 |
| 9 | 76021 | 23979 | 84764 | 15236 | 08743 | 91257 | 51 |
| 10 | 9.76039 | 10.23961 | 9.84791 | 10.15209 | 10.08752 | 9.91248 | 50 |
| 11 | 76057 | 23943 | 84818 | 15182 | 08761 | 91239 | 49 |
| 12 | 76075 | 23925 | 84845 | 15155 | 08770 | 91230 | 48 |
| 13 | 76093 | 23907 | 84872 | 15128 | 08779 | 91221 | 47 |
| 14 | 76111 | 23889 | 84899 | 15101 | 08788 | 91212 | 46 |
| 15 | 9.76129 | 10.23871 | 9.84925 | 10.15075 | 10.08797 | 9.91203 | 45 |
| 16 | 76146 | 23854 | 84952 | 15048 | 08806 | 91194 | 44 |
| 17 | 76164 | 23836 | 84979 | 15021 | 08815 | 91185 | 43 |
| 18 | 76182 | 23818 | 85006 | 14994 | 08824 | 91176 | 42 |
| 19 | 76200 | 23800 | 85033 | 14967 | 08833 | 91167 | 41 |
| 20 | 9.76218 | 10.23782 | 9.85059 | 10.14941 | 10.08842 | 9.91158 | 40 |
| 21 | 76236 | 23764 | 85086 | 14914 | 08851 | 91149 | 39 |
| 22 | 76253 | 23747 | 85113 | 14887 | 08859 | 91141 | 38 |
| 23 | 76271 | 23729 | 85140 | 14860 | 08868 | 91132 | 37 |
| 24 | 76289 | 23711 | 85166 | 14834 | 08877 | 91123 | 36 |
| 25 | 9.76307 | 10.23693 | 9.85193 | 10.14807 | 10.08886 | 9.91114 | 35 |
| 26 | 76324 | 23676 | 85220 | 14780 | 08895 | 91105 | 34 |
| 27 | 76342 | 23658 | 85247 | 14753 | 08904 | 91096 | 33 |
| 28 | 76360 | 23640 | 85273 | 14727 | 08913 | 91087 | 32 |
| 29 | 76378 | 23622 | 85300 | 14700 | 08922 | 91078 | 31 |
| 30 | 9.76395 | 10.23605 | 9.85327 | 10.14673 | 10.08931 | 9.91069 | 30 |
| 31 | 76413 | 23587 | 85354 | 14646 | 08940 | 91060 | 29 |
| 32 | 76431 | 23569 | 85380 | 14620 | 08949 | 91051 | 28 |
| 33 | 76448 | 23552 | 85407 | 14593 | 08958 | 91042 | 27 |
| 34 | 76466 | 23534 | 85434 | 14566 | 08967 | 91033 | 26 |
| 35 | 9.76484 | 10.23516 | 9.85460 | 10.14540 | 10.08977 | 9.91023 | 25 |
| 36 | 76501 | 23499 | 85487 | 14513 | 08986 | 91014 | 24 |
| 37 | 76519 | 23481 | 85514 | 14486 | 08995 | 91005 | 23 |
| 38 | 76537 | 23463 | 85540 | 14460 | 09004 | 909996 | 22 |
| 39 | 76554 | 23446 | 85567 | 14433 | 09013 | 90987 | 21 |
| 40 | 9.76572 | 10.23428 | 9.85594 | 10.14406 | 10.09022 | 9.90978 | 20 |
| 41 | 76590 | 23410 | 85620 | 14380 | 09031 | 90969 | 19 |
| 42 | 76607 | 23393 | 85647 | 14353 | 09040 | 90960 | 18 |
| 43 | 76625 | 23375 | 85674 | 14326 | 09049 | 90951 | 17 |
| 44 | 76642 | 23358 | 85700 | 14300 | 09058 | 90942 | 16 |
| 45 | 9.76660 | 10.23340 | 9.85727 | 10.14273 | 10.09067 | 9.90933 | 15 |
| 46 | 76677 | 23323 | 85754 | 14246 | 09076 | 90924 | 14 |
| 47 | 76695 | 23305 | 85780 | 14220 | 09085 | 90915 | 13 |
| 48 | 76712 | 23288 | 85807 | 14193 | 09094 | 90906 | 12 |
| 49 | 76730 | 23270 | 85834 | 14166 | 09104 | 90896 | 11 |
| 50 | 9.76747 | 10.23253 | 9.85860 | 10.14140 | 10.09113. | 9.90887 | 10 |
| 51 | 76765 | 23235 | 85887 | 14113 | 09122 | 90878 |  |
| 52 | 76782 | 23218 | 85913 | 14087 | 09131 | 90869 | 8 |
| 53 | 76800 | 23200 | 85940 | 14060 | 09140 | 90860 | 7 |
| 54 55 | 76817 9.76835 | 23183 10.23165 | 85967 9.85993 | 14033 10.14007 | 09149 10.09158 | -90851 | 5 |
| 56 | 76852 | . 23148 | -86020 | 13980 | 10.09168 | 9.90832 | 4 |
| 57 | 76870 | 23130 | 86046 | 13954 | 09177 | 90823 | 3 |
| 58 | 76887 | 23113 | 86073 | 13927 | 09186 | 90814 | 2 |
| 59 | 76904 | 23096 | 86100 | 13900 | 09195 | 90805 | 1 |
| 60 | 76922 | 23078 | 86126 | 13874 | 09204 | 90796 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| 3 |  | Logarithms. |  |  |  |  | $143{ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | can | Tangent. | Cotangent. | cant. | Cosine. | M. |
| 0 | 9.76922 | 10.23 | 9.8612 | 10.13874 | 10.09204 | 9.90796 | 60 |
| 1 | 76939 | 061 | 86153 | 13847 | 09213 | 90787 | 59 |
| 2 | 76957 | 23043 | 86179 | 13821 | 09223 | 90777 | 58 |
| 3 | 76974 | 23026 | 86206 | 13794 | 09232 | 90768 | 57 |
| 4 | 76991 | 23009 | 86232 | 13768 | 09241 | 90759 | 56 |
| 5 | 9.77009 | 10.22991 | 9.86259 | 10.13741 | 10.09250 | 9.90750 | 55 |
| 6 | 77026 | 22974 | 86285 | 13715 | 09259 | 90741 | 54 |
| 8 | 77043 | 22957 | 86312 | 13688 | 09269 | 90731 | 53 |
| 8 | 77061 | 22939 | 86338 | 13662 | 09278 | 90722 | 52 |
| 9 | 77078 | 2922 | 86365 | 13635 | 09287 | 90713 | 51 |
| 10 | 9.77095 | 10.22905 | 9.86392 | 10.13608 | 10.09296 | 9.90704 | 50 |
| 11 | 77112 | 22888 | 86418 | 13582 | 09306 | 90694 | 49 |
| 12 | 77130 | 22870 | 86445 | 13555 | 09315 | 90685 | 48 |
| 13 | 77147 | 22853 | 86471 | 13529 | 09324 | 90676 | 47 |
| 14 | 77164 | 22836 | 86498 | 13502 | 09333 | 90667 | 46 |
| 15 | 9.77181 | 10.22819 | 9.86524 | 10.13476 | 10.09343 | 9.90657 | 45 |
| 16 | 77199 | 22801 | 86551 | 13449 | 09352 | 90648 | 44 |
| 17 | 77216 | 22784 | 86577 | 13423 | 09361 | 90639 | 43 |
| 18 | 77233 | 22767 | 86603 | 13397 | 09370 | 90630 | 42 |
| 19 | 77250 | 22750 | 86630 | 13370 | 09380 | 90620 | 41 |
| 20 | 9.77268 | 10.22732 | 9.86656 | 10.13344 | 10.09389 | 9.90611 | 40 |
|  | 77285 | 22715 | 86683 | 13317 | 09398 | 90602 | 39 |
|  | 77302 | 22698 | 86709 | 13291 | 09408 | 90592 | 38 |
|  | 77319 | 2681 | 86736 | 13264 | 09417 | 90583 | 37 |
|  | 77336 | 22664 | 86762 | 13238 | 09426 | 90574 | 36 |
|  | 9.77353 | 10.22647 | 9.86789 | 10.13211 | 10.09435 | 9.90565 | 35 |
|  | 77370 | 22630 | 86815 | 13185 | 09445 | 90555 | 34 |
|  | 77387 | 22613 | 86842 | 13158 | 09454 | 0546 | 33 |
|  | 77405 | 22595 | 86868 | 13132 | 09463 | 90537 | 32 |
|  | 77422 | 22578 | 86894 | 13106 | 09473 | 90527 | 31 |
| 30 | 9.77439 | 10.22561 | 9.86921 | 10.13079 | 10.09482 | 9.90518 | 30 |
|  | 77456 | 22544 | 86947 | 13053 | 09491 | 90509 | 29 |
|  | 77473 | 22527 | 86974 | 13026 | 09501 | 90499 | 28 |
|  | 77490 | 22510 | 87000 | 13000 | 09510 | 90490 | 27 |
| 34 | 77507 | 22493 | 87027 | 12973 | 09520 | 90480 | 26 |
|  | 9.77524 | 10.22476 | 9.87053 | 10.12947 | 10.09529 | 9.90471 | 25 |
|  | 77541 | 22459 | 87079 | 12921 | 09538 | 90462 | 24 |
|  | 77558 | 22442 | 87106 | 12894 | 9548 | 90452 | 23 |
|  | 77575 | 22425 | 87132 | 12868 | 09557 | 90443 | 22 |
| 9 | 77592 | 22408 | 87158 | 12842 | 09566 | 90434 | 21 |
| 40 | 9.77609 | 10.22391 | 9.87185 | 10.12815 | 10.09576 | 9.9042t | 20 |
| 41 | 77626 | 22374 | 87211 | 12789 | 09585 | 90415 | 19 |
|  | 77643 | 22357 | 87238 | 12762 | 09595 | 90405 | 18 |
| 43 | 77660 | 22340 | 87264 | 12736 | 09604 | 90396 | 17 |
| 4 | 77677 | 22323 | 87290 | 12710 | 09614 | 90386 | 16 |
| 45 | 9.77694 | 10.22306 | 9.87317 | 10.12683 | 10.09623 | 9.90377 | 15 |
|  | 7771 | 22289 | 87343 | 12657 | 09632 | 90368 | 14 |
|  | 77728 | 22272 | 87369 | 12631 | 09642 | 90358 | 13 |
| 48 | 77744 | 22256 | 87396 | 12604 | 09651 | 90349 | 12 |
| 5 | 77761 | 22239 | 87422 | 12578 | 09661 | 90339 | 11 |
|  | 9.77778 | 10.22222 | 9.87448 | 10.12552 | 10.09670 | 9.90330 | 10 |
|  | 77795 | 22205 | 87475 | 12525 | 09680 | 90320 | 9 |
|  | 77812 | 22188 | 87501 | 12499 | 09689 | 90311 |  |
|  | 77829 | 22171 | 87527 | 12473 | 09699 | 90301 |  |
|  | 778 | 221 | 8755 | 12446 | 0970 | 9029. |  |
| 55 | 9.77862 | 10.22138 | 9.87580 | 10.12420 | 10.09718 | 9.90282 | 5 |
| 56 | 77879 | 22121 | S7606 | 12394 | 09727 | 90273 |  |
|  | 77896 | 22104 | 87633 | 12367 | 09737 | 90263 | 3 |
| 58 | 77913 | 22087 | 87659 | 12341 | 09746 | 90254 | 2 |
| 59 | 77930 | 22070 | 87685 | 12315 | 09756 | 90244 |  |
| 60 | 77946 | 22054 | 87711 | 12289 | 0976 | 90235 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| $37^{\circ}$ |  | Logarithms. |  |  |  | $142^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.77946 | 10.22054 | 9.87711 | 10.12289 | 10.09765 | 9.90235 | 60 |
| 1 | 77963 | 22037 | 87738 | 12262 | 09775 | 90225 | 59 |
| 2 | 77980 | 22020 | 87764 | 12236 | 09784 | 90216 | 58 |
| 3 | 77997 | 22003 | 87790 | 12210 | 09794 | 90206 | 57 |
| 4 | 78013 | 21987 | 87817 | 12183 | 09803 | 90197 | 56 |
| 5 | 9.78030 | 10.21970 | 9.87843 | 10.12157 | 10.09813 | 9.90187 | 55 |
| 6 | 78047 | 21953 | 87869 | 12131 | 09822 | 90178 | 54 |
| 8 | 78063 | 21937 | 87895 | 12105 | 09832 | 90168 | 53 |
| 8 | 78080 | 21920 | 87922 | 12078 | 09841 | 90159 | 52 |
| 9 | 78097 | 21903 | 87948 | 12052 | 09851 | 90149 | 51 |
| 10 | 9.78113 | 10.21887 | 9.87974 | 10.12026 | 10.09861 | 9.90139 | 50 |
| 11 | 78130 | 21870 | 88000 | 12000 | 09870 | 90130 | 49 |
| 12 | 78147 | 21853 | 88027 | 11973 | 09880 | 90120 | 48 |
| 13 | 78163 | 21837 | 88053 | 11947 | 09889 | 90111 | 47 |
| 14 | 78180 | 21820 | 88079 | 11921 | 09899 | 90101 | 46 |
| 15 | 9.78197 | 10.21803 | 9.88105 | 10.11895 | 10.09909 | 9.90091 | 45 |
| 16 | 78213 | 21787 | 88131 | 11869 | 09918 | 90082 | 44 |
| 17 | 78230 | 21770 | 88158 | 11842 | 09928 | 90072 | 43 |
| 18 | 78246 | 21754 | 88184 | 11816 | 09937 | 90063 | 42 |
| 19 | 78263 | 21737 | 88210 | 11790 | 09947 | 90053 | 41 |
| 20 | 9.78280 | 10.21720 | 9.88236 | 10.11764 | 10.09957 | 9.90043 | 40 |
| 21 | 78296 | 21704 | 88262 | 11738 | 09966 | 90034 | 39 |
|  | 78313 | 21687 | 88289 | 11711 | 09976 | 90024 |  |
|  | 78329 | 21671 | 88315 | 11685 | 09986 | 90014 | 37 |
|  | 78346 | 21654 | 88341 | 11659 | 09995 | 90005 | 36 |
|  | 9.78362 | 10.21638 | 9.88367 | 10.11633 | 10.10005 | 9.89995 | 35 |
|  | 78379 | 21621 | 88393 | 11607 | 10015 | 89985 | 34 |
|  | 78395 | 21605 | 88420 | 11580 | 10024 | 89976 | 33 |
|  | 78412 | 21588 | 88446 | 11554 | 10034 | 89966 | 32 |
|  | 78428 | 21572 | 88472 | 11528 | 10044 | 89956 | 31 |
| 31 | 9.78445 | 10.21555 | 9.88498 | 10.11502 | 10.10053 | 9.89947 | 30 |
| 31 | 78461 | 21539 | 88524 | 11476 | 10063 | 89937 | 29 |
| 32 | 78478 | 21522 | 88550 | 11450 | 10073 | 89927 | 28 |
| 33 | 78494 | ${ }^{2} 1506$ | 88577 | 11423 | 10082 | 89918 | 27 |
| 35 | -78510 | 21490 10.21473 | 88603 988629 | - 11397 | 10092 | 89908 9.89898 |  |
| 35 | 9.78527 | 10.21473 | 9.88629 | 10.11371 | 10.10102 | 9.89898 | 25 |
|  | 78543 | 21457 | 88655 | 11345 | 10121 | 89888 89879 | $\stackrel{24}{23}$ |
|  | 78576 | 21424 | 88707 | 11293 | 10131 | 89869 | 22 |
| 39 | 78592 | 21408 | 88733 | 11267 | 10141 | 89859 | 21 |
| 40 | 9.78609 | 10.21391 | 9.88759 | 10.11241 | 10.10151 | 9.89849 | 20 |
|  | 78625 | 21375 | 88780 | 11214 | 10160 | 89840 | 19 |
| 42 | 78642 | 21358 | 88812 | 11188 | 10170 | 89830 | 18 |
| 43 | 78658 | 21342 | 88838 | 11162 | 10180 | 89820 | 17 |
| 4 | 78674 | 21326 | 88864 | 11136 | 10190 | 89810 | 16 |
| 16 | 9.78691 | 10.21309 | 9.88890 | 10.11110 | 10.10199 | 9.89801 | 15 |
| 46 | 78707 | 21293 | 88916 | 11084 | 10209 | 89791 | 14 |
| 47 | 78723 | 21277 | 88942 | 11058 | 10219 | 89781 | 13 |
| 48 | 78739 | 21261 | 88968 | 11032 | 10229 | 89771 | 12 |
| 49 | 78756 | 21244 | 88994 | 11006 | 10239 | 89761 | 11 |
|  | 9.78772 | 10.21228 | 9.89020 | 10.10980 | 10.10248 | 9.89752 | 10 |
|  | 78788 | 21212 | 89046 | 10954 | 10258 | 89742 | 9 |
|  | 78805 | 21195 | 89073 | 10927 | 10268 | 89732 |  |
|  | 78821 | 21179 | 89099 | 10901 | 10278 | 89722 |  |
| 54 | 78837 | 21163 | 89125 | 10875 | 10288 | 89712 | ${ }_{5}$ |
|  | 9.78853 | 10.21147 | 9.89151 | 10.10849 | 10.10298 | 9.89702 | 5 |
|  | 78889 | 21131 | 89177 | 10823 | 10307 | 89693 | 4 |
|  | 78886 | 21114 | 89203 | 10797 | 10317 | 89683 | 3 |
| 58 59 | 78902 | 21098 | 89229 | 10771 | 10327 | 89673 | 2 |
| 60 | 78934 | 21066 | 89281 | 10719 | 10347 | ${ }_{89653}$ | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |



| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.79887 | 10.20113 | 9.90837 | 10.09163 | 10.10950 | 9.89050 | 60 |
| 1 | 79903 | 20097 | 90863 | 09137 | 10960 | 89040 | 59 |
| 2 | 79918 | 20082 | 90889 | 09111 | 10970 | 89030 | 58 |
| 3 | 79934 | 20066 | 90914 | 09086 | 10980 | 89020 | 57 |
| 4 | 79950 | 20050 | 90940 | 09060 | 10991 | 89009 | 56 |
| 5 | 9.79965 | 10.20035 | 9.90966 | 10.09034 | 10.11001 | 9.88999 | 55 |
| 6 | 79981 | 20019 | 90992 | 09008 | 11011 | 88989 | 54 |
| 7 | 79996 | 20004 | 91018 | 08982 | 11022 | 88978 | 53 |
| 8 | 80012 | 19988 | 91043 | 08957 | 11032 | 88968 | 52 |
| 9 | 80027 | 19973 | 91069 | 08931 | 11042 | 88958 | 51 |
| 10 | 9.80043 | 10.19957 | 9.91095 | 10.08905 | 10.11052 | 9.88948 | 50 |
| 11 | 80058 | 19942 | 91121 | 08879 | 11063 | 88937 | 49 |
| 12 | 80074 | 19926 | 91147 | 08853 | 11073 | 88927 | 48 |
| 13 | 80089 | 19911 | 91172 | 08828 | 11083 | 88917 | 47 |
| 14 | 80105 | 19895 | 91198 | 08802 | 11094 | 88906 | 46 |
| 15 | 9.80120 | 10.19880 | 9.91224 | 10.08776 | 10.11104 | 9.88896 | 45 |
| 16 | 80136 | 19864 | 91250 | 08750 | 11114 | 88886 | 44 |
| 17 | 80151 | 19849 | 91276 | 08724 | 11125 | 88875 | 43 |
| 18 | 80166 | 19834 | 91301 | 08699 | 11135 | 88865 | 42 |
| 19 | 80182 | 19818 | 91327 | 08673 | 11145 | 88855 | 41 |
| 20 | 9.80197 | 10.19803 | 9.91353 | 10.08647 | 10.11156 | 9.88844 | 40 |
| 21 | 80213 | 19787 | 91379 | 08621 | 11166 | 88834 | 39 |
| 22 | 80228 | 19772 | 91404 | 08596 | 11176 | 88824 | 38 |
| 23 | 80244 | 19756 | 91430 | 08570 | 11187 | 88813 | 37 |
| 24 | 80259 | 19741 | 91456 | 08544 | 11197 | 88803 | 36 |
| 25 | 9.80274 | 10.19726 | 9.91482 | 10.08518 | 10.11207 | 9.88793 | 35 |
| 26 | 80290 | 19710 | 91507 | 08493 | 11218 | 88782 | 34 |
| 27 | 80305 | 19695 | 91533 | 08467 | 11228 | 88772 | 33 |
| 28 | 80320 | 19680 | 91559 | 08441 | 11239 | 88761 | 32 |
| 29 | 80336 | 19664 | 91585 | 08415 | 11249 | 88751 | 31 |
| 30 | 9.80351 | 10.19649 | 9.91610 | 10.08390 | 10.11259 | 9.88741 | 30 |
| 31 | 80366 | 19634 | 91636 | 08364 | 11270 | 88730 | 29 |
| 32 | 80382 | 19618 | 91662 | 08338 | 11280 | 88720 | 28 |
| 33 | 80397 | 19603 | 91688 | 08312 | 11291 | 88709 | 27 |
| 34 | 80412 | 19588 | 91713 | 08287 | 11301 | 88699 | 26 |
| 35 | 9.80428 | 10.19572 | 9.91739 | 10.08261 | 10.11312 | 9.88688 | 25 |
| 36 | 80443 | 19557 | 91765 | 08235 | 11322 | 88678 | 24 |
| 37 | 80458 | 19542 | 91791 | 08209 | 11332 | 88668 | 23 |
| 38 | 80473 | 19527 | 91816 | 08184 | 11343 | 88657 | 22 |
| 39 | 80489 | 19511 | 91842 | 08158 | 11353 | 88647 | 21 |
| 40 | 9.80504 | 10.19496 | 9.91868 | 10.08132 | 10.11364 | 9.88636 | 20 |
| 41 | 80519 | 19481 | 91893 | 08107 | 11374 | 88626 | 19 |
| 42 | 80534 | 19466 | 91919 | 08081 | 11385 | 88615 | 18 |
| 43 | 80550 | 19450 | 91945 | 08055 | 11395 | 88605 | 17 |
| 44 | 80565 | 19435 | 91971 | 08029 | 11406 | 88594 | 16 |
| 45 | 9.80580 | 10.19420 | 9.91996 | 10.08004 | 10.11416 | 9.88584 | 15 |
| 46 | 80595 | 19405 | 92022 | 07978 | 11427 | 88573 | 14 |
| 47 | 80610 | 19390 | 92048 | 07952 | 11437 | 88563 | 13 |
| 48 | 80625 | 19375 | 92073 | 07927 | 11448 | 88552 | 12 |
| 49 | 80641 | 19359 | 92099 | 07901 | 11458 | 88542 | 11 |
| 50 | 9.80656 | 10.19344 | 9.92125 | 10.07875 | 10.11469 | 9.88531 | 10 |
| 51 | 80671 | 19329 | 92150 | 07850 | 11479 | 88521 | 9 |
| 52 | 80686 | 19314 | 92176 | 07824 | 11490 | 88510 | 8 |
| 53 | 80701 | 19299 | 92202 | 07798 | 11501 | 88499 | 7 |
| 54 | 80716 | 19284 | 92227 | 07773 | 11511 | 88489 | 6 |
| 55 | 9.80731 | 10.19269 | 9.92253 | 10.07747 | 10.11522 | 9.88478 | 5 |
| 56 | 80746 | 19254 | 92279 | 07721 | 11532 | 88468 | 4 |
| 57 | 80762 | 19238 | 92304 | 07696 | 11543 | 88457 |  |
| 58 | 80777 | 19223 | 92330 | 07670 | 11553 | 88447 |  |
| 59 | 80792 | 19208 | 92356 | 07644 | 11564 | 88436 | 1 |
| 60 | 80807 | 19193 | 92381 | 07619 | 11575 | 88425 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M |



Logarithms.
$138^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. ${ }^{\text {! }}$ | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.81694 | 10.18306 | 9.93916 | 10.06084 | 10.12222 | 9.87778 | 60 |
| 1 | 81709 | 18291 | 93942 | 06058 | 12233 | 87767 | 59 |
| 2 | 81723 | 18277 | 93967 | 06033 | 12244 | 87756 | 58 |
| 3 | 81738 | 18262 | 93993 | 06007 | 12255 | 87745 | 57 |
| 4 | 81752 | 18248 | 94018 | 05982 | 12266 | 87734 | 56 |
| 5 | 9.81767 | 10.18233 | 9.94044 | 10.05956 | 10.12277 | 9.87723 | 55 |
| 6 | 81781 | 18219 | 94069 | 05931 | 12288 | 87712 | 54 |
| 7 | 81796 | 18204 | 94095 | 05905 | 12299 | 87701 | 53 |
| 8 | 81810 | 18190 | 94120 | 05880 | 12310 | 87690 | 52 |
| 9 | 81825 | 18175 | 94146 | 05854 | 12321 | 87679 | 51 |
| 10 | 9.81839 | 10.18161 | 9.94171 | 10.05829 | 10.12332 | 9.87668 | 50 |
| 11 | 81854 | 18146 | 94197 | 05803 | 12343 | 87657 | 49 |
| 12 | 81868 | 18132 | 94222 | 05778 | 12354 | 87646 | 48 |
| 13 | 81882 | 18118 | 94248 | 05752 | 12365 | 87635 | 47 |
| 14 | 81897 | 18103 | 94273 | 05727 | 12376 | 87624 | 46 |
| 15 | 9.81911 | 10.18089 | 9.94299 | 10.05701 | 10.12387 | 9.87613 | 45 |
| 16 | 81926 | 18074 | 94324 | 05676 | 12399 | 87601 | 44 |
| 17 | 81940 | 18060 | 94350 | 05650 | 12410 | 87590 | 43 |
| 18 | 81955 | 18045 | 94375 | 05625 | 12421 | 87579 | 42 |
| 19 | 81969 | 18031 | 94401 | 05599 | 12432 | 87568 | 41 |
| 20 | 9.81983 | 10.18017 | 9.94426 | 10.05574 | 10.12443 | 9.87557 | 40 |
| 21 | 81998 | 18002 | 94452 | 05548 | 12454 | 87546 | 39 |
| 22 | 82012 | 17988 | 94477 | 05523 | 12465 | 87535 | 38 |
| 2 | 82026 | 17974 | 94503 | 05497 | 12476 | 87524 | 37 |
| 24 | 82041 | 17959 | 94528 | 05472 | 12487 | 87513 | 36 |
| 25 | 9.82055 | 10.17945 | 9.94554 | 10.05446 | 10.12499 | 9.87501 | 35 |
| 26 | 82069 | 17931 | 94579 | 05421 | 12510 | 87490 | 34 |
| 27 | 82084 | 17916 | 94604 | 05396 | 12521 | 87479 | 33 |
| 28 | 82098 | 17902 | 94630 | 05370 | 12532 | 87468 | 32 |
| 29 | 82112 | 17888 | 94655 | 05345 | 12543 | 87457 | 31 |
| 30 | 9.82126 | 10.17874 | 9.94681 | 10.05319 | 10.12554 | 9.87446 | 30 |
| 31 | 82141 | 17859 | 94706 | 05294 | 12566 | 87434 | 29 |
| 32 | 82155 | 17845 | 94732 | 05268 | 12577 | 87423 | 28 |
| 33 | 82169 | 17831 | 94757 | 05243 | 12588 | 87412 | 27 |
| 34 | 82184 | 17816 | 94783 | 05217 | 12599 | 87401 | 26 |
| 35 | 9.82198 | 10.17802 | 9.94808 | 10.05192 | 10.12610 | 9.87390 | 25 |
| 36 | 82212 | 17788 | 94834 | 05166 | 12622 | 87378 | 24 |
| 37 | 82226 | 17774 | 94859 | 05141 | 12633 | 87367 | 23 |
| 38 | 82240 | 17760 | 94884 | 05116 | 12644 | 87356 | 22 |
| 39 | 82255 | 17745 | 94910 | 05090 | 12655 | 87345 | 21 |
| 40 | 9.82269 | 10.17731 | 9.94935 | 10.05065 | 10.12666 | 9.87334 | 20 |
| 41 | 82283 | 17717 | 94961 | 05039 | 12678 | 87322 | 19 |
| 42 | 82297 | 17703 | 94986 | 05014 | 12689 | 87311 | 18 |
| 43 | 82311 | 17689 | 95012 | 04988 | 12700 | 87300 | 17 |
| 44 | 82326 | 17674 | 95037 | 04963 | 12712 | 87288 | 16 |
| 45 | 9.82340 | 10.17660 | 9.95062 | 10.04938 | 10.12723 | 9.87277 | 15 |
| 46 | 82354 | 17646 | 95088 | 04912 | 12734 | 87266 | 14 |
| 47 | 82368 | 17632 | 95113 | 04887 | 12745 | 87255 | 13 |
| 48 | 82382 | 17618 | 95139 | 04861 | 12757 | 87243 | 12 |
| 49 | 82396 | 17604 | 95164 | 04836 | 12768 | 87232 | 11 |
| 51 | 9.82410 | 10.17590 | 9.95190 | 10.04810 | 10.12779 | 9.87221 | 10 |
| 51 | 82424 | 17576 | 95215 | 04785 | 12791 | 87209 | 9 |
| 52 | 82439 | 17561 | 95240 | 04760 | 12802 | 87198 | 8 |
| 53 | 82453 | 17547 | 95266 | 04734 | 12813 | 87187 | 7 |
| 55 | 982467 | 10.17519 | 95291 9.95317 | 10.04683 | 10.12836 | 87175 9.87164 | 5 |
| 56 | 82495 | 17505 | 95342 | 04658 | 12847 | ${ }^{87153}$ | 4 |
| 57 | 82509 | 17491 | 95368 | 01632 | 12859 | 87141 | 3 |
| 58 | 82523 | 17477 | 95393 | 04607 | 12870 | 87130 | 2 |
| 59 | 82537 | 17463 | 95418 | 04582 | 12881 | 87119 | 0 |
| 60 | 82551 | 17449 | 95444 | 04556 | 12893 | 87107 | 0 |
| M. | Cosine. | Secant. | Cutangent. | Tangent. | Conecant. | Sine. | M. |


| $42^{\circ}$ |  | Logarithms. |  |  |  | $137^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.82 | . 17449 | 9.95444 | 10.04556 | 10.12893 | 9.87107 | 60 |
| 1 | 82565 | 17435 | 5469 | 04531 | 12904 | 87096 | 59 |
| 2 | 82579 | 17421 | 95495 | 04505 | 12915 | 87085 | 58 |
| 3 | 82593 | 17407 | 95520 | 04480 | 12927 | 87073 | 57 |
| 4 | 82607 | 17393 | 95545 | 04455 | 12938 | 87062 | 56 |
| 5 | 9.82621 | 10.17379 | 9.95571 | 10.04429 | 10.12950 | 987050 | 55 |
| 6 | 82635 | 17365 | 95596 | 04404 | 12961 | 87039 | 54 |
| 7 | 82649 | 17351 | 95622 | 04378 | 12972 | 87028 | 53 |
| 8 | 82663 | 17337 | 95647 | 04353 | 12984 | 87016 | 52 |
| 9 | 82677 | 17323 | 95672 | 04328 | 12995 | 87005 | 51 |
| 10 | 9.82691 | 10.17309 | 9.95698 | 10.04302 | 10.13007 | 9.86993 | 50 |
| 11 | 82705 | 17295 | 95723 | 04277 | 13018 | 86982 | 49 |
| 12 | 82719 | 17281 | 95748 | 04252 | 13030 | 86970 | 48 |
| 13 | 82733 | 17267 | 95774 | 04226 | 13041 | 86959 | 47 |
| 14 | 82747 | 17253 | 95799 | 04201 | 13053 | 86947 | 46 |
| 15 | 9.82761 | 10.17239 | 9.95825 | 10.04175 | 10.13064 | 9.86936 | 45 |
| 16 | 82775 | 17225 | 95850 | 04150 | 13076 | 86924 | 44 |
| 17 | 82788 | 17212 | 95875 | 04125 | 13087 | 86913 | 43 |
| 18 | 82802 | 17198 | 95901 | 04099 | 13098 | 86902 | 42 |
| 19 | 82816 | 17184 | 95926 | 04074 | 13110 | 86890 | 41 |
| 20 | 9.82830 | 10.17170 | 9.95952 | 10.04048 | 10.13121 | 9.86879 | 40 |
|  | 82844 | 17156 | 95977 | 04023 | 13133 | 86867 | 39 |
|  | 82858 | 17142 | 96002 | 03998 | 13145 | 86855 | 38 |
|  | 872 | 17128 | 6028 | 03972 | 13156 | 8844 | 37 |
|  | 82885 | 17115 | 96053 | 03947 | 13168 | 86832 | 36 |
|  | 9.82899 | 10.17101 | 9.96078 | 10.03922 | 10.13179 | 9.86821 | 35 |
|  | 82913 | 17087 | 96104 | 03896 | 13191 | 86809 | 34 |
|  | 82927 | 17073 | 96129 | 03871 | 13202 | 86798 | 33 |
|  | 82941 | 17059 | 96155 | 03845 | 13214 | 86786 | 32 |
|  | 82955 | 17045 | 96180 | 03820 | 13225 | 86775 | 31 |
|  | 9.82968 | 10.17032 | 9.96205 | 10.03795 | 10.13237 | 9.86763 | 30 |
|  | 82982 | 17018 | 96231 | 03769 | 13248 | 86752 | 29 |
|  | 82996 | 17004 | 96256 | 03744 | 13260 | 86740 | 28 |
|  | 83010 | 16990 | 96281 | 03719 | 13272 | 86728 | 27 |
|  | 83023 | 16977 | 96307 | 03693 | 13283 | 86717 | 26 |
|  | 9.83037 | 10.16963 | 9.96332 | 10.03668 | 10.13295 | 9.86705 | 25 |
|  | 83051 | 16949 | 96357 | 03643 | 13306 | 86694 | 24 |
|  | 83065 | 16935 | 383 | 03617 | 13318 |  | 23 |
|  | 078 | 16922 | 96408 | 03592 | 13330 | 6670 | 22 |
| 3 | 83092 | 16908 | 96433 | 03567 | 13341 | 86659 | 21 |
| 40 | 9.83106 | 10.16894 | 9.96459 | 10.03541 | 10.13353 | 9.86647 | 20 |
| 41 | 83120 | 16880 | 96484 | 03516 | 13365 | 6635 | 19 |
| 42 | 83133 | 16867 | 96510 | 03490 | 13376 | 86624 | 18 |
| 43 | 83147 | 16853 | 96535 | 03465 | 13388 | 86612 | 17 |
| 44 | 83161 | 16839 | 96560 | 03440 | 13400 | 86600 | 16 |
| 45 | 9.83174 | 10.16826 | 9.96586 | 10.03414 | 10.13411 | 9.86589 | 15 |
| 46 | 83188 | 16812 | 96611 | 03389 | 13423 | 86577 | 14 |
| 47 | 83202 | 16798 | 96636 | 03364 | 13435 | 86565 | 13 |
| 48 | 83215 | 16785 | 96662 | 03338 | 13446 | 86554 | 12 |
| 49 | 83229 | 16771 | 96687 | 03313 | 13458 | 86542 | 11 |
| 50 | 9.83242 | 10.16758 | 9.96712 | 10.03288 | 10.13470 | 9.86530 | 10 |
|  | 83256 | 16744 | 6738 | 03262 | 13482 | 86518 |  |
|  | 83270 | 16730 | 96763 | 03237 | 13493 | 86507 |  |
|  | 83283 | 16717 | 96788 | 03212 | 13505 | 86495 |  |
|  | 83297 | 16703 | 96814 | 03186 | 13517 | 86483 |  |
| 55 | 9.83310 | 10.16690 | 9.96839 | 10.03161 | 10.13528 | 9.86472 | 5 |
|  | 324 | 16676 | 96864 | 03136 | 13540 | 86460 |  |
|  | 83338 | 16662 | 96890 | 03110 | 13552 | 86448 |  |
|  | 83351 | 16649 | 96915 | 03085 | 13554 | 86436 | 2 |
| 59 60 | 83365 83378 | 16635 16622 | ${ }_{969696}$ | $\begin{aligned} & 03060 \\ & 03034 \end{aligned}$ | 13575 | 86425 86413 | 1 |
|  |  |  |  |  |  |  |  |
| M. | Cosine | Secant. | Cotangen | ngent. | secan | Sine |  |

$43^{\circ}$
Logarithms.
$136^{\circ}$

| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.83378 | 10.16622 | 9.96966 | 10.03034 | 10.13587 | 9.86413 | 60 |
| 1 | 83392 | 16608 | 96991 | 03009 | 13599 | 86401 | 59 |
| 2 | 83405 | 16595 | 97016 | 02984 | 13611 | 86389 | 58 |
| 3 | 83419 | 16581 | 97042 | 02958 | 13623 | 86377 | 57 |
| 4 | 83432 | 16568 | 97067 | 02933 | 13634 | 86366 | 56 |
| 5 | 9.83446 | 10.16554 | 9.97092 | 10.02908 | 10.13646 | 9.86354 | 55 |
| 6 | 83459 | 16541 | 97118 | 02882 | 13658 | 86342 | 54 |
| 7 | 83473 | 16527 | 97143 | 02857 | 13670 | 86330 | 53 |
| 8 | 83486 | 16514 | 97168 | 02832 | 13682 | 86318 | 52 |
| 9 | 83500 | 16500 | 97193 | 02807 | 13694 | 86306 | 51 |
| 10 | 9.83513 | 10.16487 | 9.97219 | 10.02781 | 10.13705 | 9.86295 | 50 |
| 11 | 83527 | 16473 | 97244 | 02756 | 13717 | 86283 | 49 |
| 12 | 83540 | 16460 | 97269 | 02731 | 13729 | 86271 | 48 |
| 13 | 83554 | 16446 | 97295 | 02705 | 13741 | 86259 | 47 |
| 14 | 83567 | 16433 | 97320 | 02680 | 13753 | 86247 | 46 |
| 15 | 9.83581 | 10.16419 | 9.97345 | 10.02655 | 10.13765 | 9.86235 | 45 |
| 16 | 83594 | 16406 | 97371 | 02629 | 13777 | 86223 | 44 |
| 17 | 83608 | 16392 | 97396 | 02604 | 13789 | 86211 | 43 |
| 18 | 83621 | 16379 | 97421 | 02579 | 13800 | 86200 | 42 |
| 19 | 83634 | 16366 | 97447 | 02553 | 13812 | 86188 | 41 |
| 20 | 9.83648 | 10.16352 | 9.97472 | 10.02528 | 10.13824 | 9.86176 | 40 |
| 21 | 83661 | 16339 | 97497 | 02503 | 13836 | 86164 | 39 |
| 22 | 83674 | 16326 | 97523 | 02477 | 13848 | 86152 | 38 |
| 23 | 83688 | 16312 | 97548 | 02452 | 13860 | 86140 | 37 |
| 24 | 83701 | 16299 | 97573 | 02427 | 13872 | 86128 | 36 |
| 25 | 9.83715 | 10.16285 | 9.97598 | 10.02402 | 10.13884 | 9.86116 | 35 |
| 26 | 83728 | 16272 | 97624 | 02376 | 13896 | 86104 | 34 |
| 27 | 83741 | 16259 | 97649 | 02351 | 13908 | 86092 | 33 |
| 28 | 83755 | 16245 | 97674 | 02326 | 13920 | 86080 | 32 |
| 29 | 83768 | 16232 | 97700 | 02300 | 13932 | 86068 | 31 |
| 30 | 9.83781 | 10.16219 | 9.97725 | 10.02275 | 10.13944 | 9.86056 | 30 |
| 31 | 83795 | 16205 | 97750 | 02250 | 13956 | 86044 | 29 |
| 32 | 83808 | 16192 | 97776 | 02224 | 13968 | 86032 | 28 |
| 33 | 83821 | 16179 | 97801 | 02199 | 13980 | 86020 | 27 |
| 34 | 83834 | 16166 | 97826 | 02174 | 13992 | 86008 | 26 |
| 35 | 9.83848 | 10.16152 | 9.97851 | 10.02149 | 10.14004 | 9.85996 | 25 |
| 36 | 83861 | 16139 | 97877 | 02123 | 14016 | 85984 | 24 |
| 37 | 83874 | 16126 | 97902 | 02098 | 14028 | 85972 | 23 |
| 38 | 83887 | 16113 | 97927 | 02073 | 14040 | 85960 | 22 |
| 39 | 83901 | 16099 | 97953 | 02047 | 14052 | 85948 | 21 |
| 40 | 9.83914 | 10.16086 | 9.97978 | 10.02022 | 10.14064 | 9.85936 | 20 |
| 41 | 83927 | 16073 | 98003 | 01997 | 14076 | 85924 | 19 |
| 42 | 83940 | 16060 | 98029 | 01971 | 14088 | 85912 | 18 |
| 43 | 83954 | 16046 | 98054 | 01946 | 14100 | 85900 | 17 |
| 44 | 83967 | 16033 | 98079 | 01921 | 14112 | 85888 | 16 |
| 45 | 9.83980 | 10.16020 | 9.98104 | 10.01896 | 10.14124 | 9.85876 | 15 |
| 46 | 83993 | 16007 | 98130 | 01870 | 14136 | 85864 | 14 |
| 47 | 84006 | 15994 | 98155 | 01845 | 14149 | 85851 | 13 |
| 48 | 84020 | 15980 | 98180 | 01820 | 14161 | 85839 | 12 |
| 49 | 84033 | 15967 | 98206 | 01794 | 14173 | 85827 | 11 |
| 50 | 9.84046 | 10.15954 | 9.98231 | 10.01769 | 10.14185 | 9.85815 | 10 |
| 51 | 84059 | 15941 | 98256 | 01744 | 14197 | 85803 | 9 |
| 52 | 84072 | 15928 | 98281 | 01719 | 14209 | 85791 | 8 |
| 53 | 84085 | 15915 | 98307 | 01693 | 14221 | 85779 | 7 |
| 54 | 84098 | 15902 | 98332 | 01668 | 14234 | 85766 | 6 |
| 55 | 9.84112 | 10.15888 | 9.98357 | 10.01643 | 10.14246 | 9.85754 | 5 |
| 56 | 84125 | 15875 | 98383 | 01617 | 14258 | 85742 | 4 |
| 57 | 84138 | 15862 | 98408 | 01592 | 14270 | 85730 | 3 |
| 58 | 84151 | 15849 | 98433 | 01567 | 14282 | 85718 | 2 |
| 59 | 84164 | 15836 | 98458 | 01542 | 14294 | 85706 | 1 |
| 60 | 84177 | 15823 | 98484 | 01516 | 14307 | 85693 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant. | Sine. | M. |


| $44^{\circ}$ |  | Logarithms. |  |  |  | $135^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | Sine. | Cosecant. | Tangent. | Cotangent. | Secant. | Cosine. | M. |
| 0 | 9.84177 | 10.15823 | 9.98484 | 10.01516 | 10.14307 | 9.85693 | 0 |
| 1 | 84190 | 15810 | 98509 | 01491 | 14319 | 85681 | 59 |
| 2 | 84203 | 15797 | 8534 | 01466 | 14331 | 85669 | 58 |
| 3 | 84216 | 15784 | 98560 | 01440 | 14343 | 85657 | 57 |
| 4 | 84229 | 15771 | 98585 | 01415 | 14355 | 85645 | 56 |
| 5 | 9.84242 | 10.15758 | 9.98610 | 10.01390 | 10.14368 | 9.85632 | 55 |
| 6 | 84255 | 15745 | 98635 | 01365 | 14380 | 85620 | 54 |
| 7 | 84269 | 15731 | 98661 | 01339 | 14392 | 85608 | 53 |
| 8 | 84282 | 15718 | 98686 | 01314 | 14404 | 85596 | 52 |
| 9 | 84295 | 15705 | 98711 | 01289 | 14417 | 85583 | 51 |
| 10 | 9.84308 | 10.15692 | 9.98737 | 10.01263 | 10.14429 | 9.85571 | 50 |
| 11 | 84321 | 15679 | 98762 | 01238 | 14441 | 85559 | 49 |
| 12 | 84334 | 15666 | 98787 | 01213 | 14453 | 85547 | 48 |
| 13 | 84347 | 15653 | 98812 | 01188 | 14466 | 85534 | 47 |
| 14 | 84360 | 15640 | 98838 | 01162 | 14478 | 85522 | 46 |
| 15 | 9.84373 | 10.15627 | 9.98863 | 10.01137 | 10.14490 | 9.85510 | 45 |
| 16 | 84385 | 15615 | 98888 | 01112 | 14503 | 85497 | 44 |
| 17 | 84398 | 15602 | 98913 | 01087 | 14515 | 85485 | 43 |
|  | 84411 | 15589 | 98939 | 01061 | 14527 | 85473 | 42 |
| 19 | 84424 | 15576 | 98964 | 01036 | 14540 | 85460 | 41 |
| 20 | 9.84437 | 10.15563 | 9.98989 | 10.01011 | 10.14552 | 9.85448 | 40 |
| 21 | 84450 | 15550 | 99015 | 00985 | 14564 | 85436 | 39 |
|  | 84463 | 15537 | 99040 | 00960 | 14577 | 85423 | 38 |
| 23 | 84476 | 15524 | 99065 | 00935 | 14589 | 85411 | 37 |
|  | 84489 | 15511 | 99090 | 00910 | 14601 | 85399 | 36 |
|  | 9.84502 | 10.15498 | 9.99116 | 10.00884 | 10.14614 | 9.85386 | 35 |
| 26 | 84515 | 15485 | 99141 | 00859 | 14626 | 85374 | 34 |
| 27 | 84528 | 15472 | 99166 | 00834 | 14639 | 85361 | 33 |
| 28 | 84540 | 15460 | 99191 | 00809 | 14651 | 85349 | 32 |
|  | 84553 | 15447 | 99217 | 00783 | 14663 | 85337 | 31 |
| 30 | 9.84566 | 10.15434 | 9.99242 | 10.00758 | 10.14676 | 9.85324 | 30 |
|  | 84579 | 15421 | 99267 | 00733 | 14688 | 85312 | 29 |
|  | 84592 | 15408 | 99293 | 00707 | 14701 | 85299 | 28 |
|  | 84605 | 15395 | 99318 | 00682 | 14713 | 85287 | 27 |
|  | 84618 | 15382 | 99343 | 00657 | 14726 | 85274 | 26 |
|  | 9.84630 | 10.15370 | 9.99368 | 10.00632 | 10.14738 | 9.85262 | 25 |
|  | 84643 | 15357 | 99394 | 00606 | 14750 | 85250 | 24 |
| 37 | 84656 | 15344 | 99419 | 00581 | 14763 | 85237 | 23 |
| 38 | 84669 | 15331 | 99444 | 00556 | 14775 | 85225 | 22 |
| 9 | 84682 | 15318 | 99469 | 00531 | 14788 | 85212 | 21 |
| 40 | 9.84694 | 10.15306 | 9.99495 | 10.00505 | 10.14800 | 9.85200 | 20 |
| 41 | 84707 | 15293 | 99520 | 00480 | 14813 | 85187 | 19 |
| 4 | 84720 | 15280 | 99545 | 00455 | 14825 | 85175 | 18 |
| 43 | 84733 | 15267 | 99570 | 00430 | 14838 | 85162 | 17 |
| 44 | 84745 | 15255 | 99596 | 00404 | 14850 | 85150 | 16 |
| 45 | 9.84758 | 10.15242 | 9.99621 | 10.00379 | 10.14863 | 9.85137 | 15 |
| 46 | 84771 | 15229 | 99646 | 00354 | 14875 | 85125 | 14 |
| 47 | 84784 | 15216 | 99672 | 00328 | 14888 | 85112 | 13 |
|  | 84796 | 15204 | 99697 | 00303 | 14900 | 85100 | 12 |
|  | 84809 | 15191 | 99722 | 00278 | 14913 | 85087 | 11 |
|  | 9.84822 | 10.15178 | 9.99747 | 10.00253 | 10.14926 | 9.85074 | 10 |
|  | 84835 | 15165 | 99773 | 00227 | 14938 | 85062 | 9 |
|  | 84847 | 15153 | 99798 | 00202 | 14951 | 85049 | 8 |
|  | 84860 | 15140 | 99823 | 00177 | 14963 | 85037 |  |
|  | 84873 | 15127 | 99848 | 00152 | 14976 | 85024 |  |
| 55 | 9.84885 | 10.15115 | 9.99874 | 10.00126 | 10.14988 | 9.85012 | 5 |
|  | 84898 | 15102 | 99899 | 00101 | 15001 | 84999 |  |
|  | 84911 | 15089 | 99924 | 00076 | 15014 | 84986 |  |
| 58 | 84923 | 15077 | 99949 | 00051 | 15026 | 84974 |  |
| 59 | 84936 | 15064 | 99975 | 00025 | 15039 | 84961 | 1 |
| 60 | 84949 | 15051 | 10.00000 | 00000 | 15051 | 84949 | 0 |
| M. | Cosine. | Secant. | Cotangent. | Tangent. | Cosecant | Sine. | M. |

## Formulas for Right=Angled Triangles.



1. $\quad a=\sqrt{b^{2}+c^{2}}$.
2. $\quad a=\frac{c}{\sin C}$.
3. $\quad a=\frac{b}{\cos C}$.
4. $\quad a=2 \sqrt{\frac{Q}{\sin 2 C}}$.
5. $\quad b=a \cos C$.
6. $\quad b=c \cot C$.
7. $b=a \sin B$.
8. $\quad b=c \tan B$.
9. $b=\sqrt{\frac{2 Q}{\tan C}}$.
10. $\quad Q=\frac{a^{2} \sin 2 C}{4}$.
11. $Q=1 / 2^{2} \tan C$.
12. $Q=1 / 2^{2} \cot C$.
13. $Q=1 / 2 c \sqrt{(a+c)(a-c)}$.
14. $\sin C=\frac{c}{a}$.
15. $\cos C=\frac{b}{a}$.
16. $\tan C=\frac{c}{b}$.
17. $\sin 2 C=\frac{4 Q}{a^{2}}$.
18. $\tan C=\frac{2 Q}{b^{2}}$.

Say the angle to be $C=60^{\circ}$. In the first column of the table of sines, $60^{\circ}$ corresponds with 0.86602 in the next column, which is the length of $\sin 60^{\circ}$, when the radius of the circle is one, or the unit, and the expression $\sin 60^{\circ} \times 36$ means $0.86602 \times 36=31.17672$, and likewise with all the other trigonometrical expressions.

In a triangle the functions of an angle have a certain relation to the opposite side; it is this relationship which enables us to solve the triangle by the application of simple arithmetic.

In triangles the sides are denoted by the letters $a, b$, and $c$; their respective opposite angles are denoted by $A, B$, and $C$, and the area by $Q$.

Example. The side $c$ in a right-angled triangle being 365 feet, and the angle $C=39^{\circ} 20^{\prime}$, how long is the side $a=$ ?

Formula 2. $\quad a=\frac{c}{\sin C}=\frac{365}{\sin 39^{\circ} 20^{\prime}}=\frac{365}{0.63383}=575.86$ feet, the answer.
Or, by logarithms,

$$
\begin{aligned}
\log . a & =\log .365-\log \cdot \sin 39^{\circ} 20^{\prime} \\
& =2.56229-9.80197 \\
& =2.76032, \text { num. }=575.86
\end{aligned}
$$

Formulas for Oblique=Angled Triangles.


$$
\begin{aligned}
& a: b=\sin A: \sin B, \text { and } b: c=\sin B: \sin C . \\
& a: c=\sin A: \sin C, \text { and } Q: a b=\sin C: 2 .
\end{aligned}
$$

1. $\quad a=\frac{c \sin A}{\sin C}$.
2. $\quad a=\frac{c \sin A}{\sin (A+B)}$.
3. $\quad a=\frac{2 Q}{b \sin C}$.
4. $\quad b=\frac{c \sin B}{\sin C}$.
5. $\quad b=\frac{2 Q}{c \sin A}$.
6. $\sin C=\frac{c \sin B}{b}$.
7. $\sin C=\frac{c \sin A}{a}$.
8. $\sin A=\frac{2 Q}{b c}$.
9. $\sin A=\frac{a \sin C}{c}$.
10. $\quad a=\sqrt{b^{2}+c^{2}-2 b c \cos A}$
11. $a=\sqrt{\frac{2 Q \sin A}{\sin B \sin (A+B)}}$.
12. $S=1 / 2(a+b+c)$.
13. $\sin 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{b c}}$.
14. $\sin 1 / 2 B=\sqrt{\frac{(s-a)(s-c)}{a c}}$.
15. $\cos 1 / 2 A=\sqrt{\frac{s(s-a)}{b c}}$.
16. $\cos 1 / 2 B=\sqrt{\frac{s(s-b)}{a c}}$.
17. $Q=\frac{b c \sin A}{2}$.
18. $Q=\frac{a b \sin C}{2}$
19. $Q=\frac{c^{2} \sin A \sin B}{2 \sin (A+B)}$
20. $\quad Q=\sqrt{(S-a)(S-b)(S-c) S^{\prime}}$.
21. $b=\sqrt{\frac{2 Q \sin (A+C)}{\sin A \sin C}}$.
22. $c=\sqrt{\frac{2 Q \sin C}{\sin A \sin \frac{1}{(A+C)}}}$.

## Right=Angled Spherical Triangle.



1. $\sin b=\sin a \sin B$.
2. $\tan ^{\circ} c=\tan a \cos B$.
3. $\cot C=\cos a \tan B$.
4. $\tan c=\sin b \tan C$.
5. $\quad \cos a=\cos b \cos c$.
6. $\cos B=\cos b \sin C$.
7. $\tan a=\frac{\tan b}{\cos C}$.
8. $\sin c=\frac{\tan b}{\tan B}$.
9. $\sin a=\frac{\sin b}{\sin B}$.
10. $\sin C=\frac{\cos B}{\cos b}$.
11. $\cos c=\frac{\cos a}{\cos b}$.
12. $\sin B=\frac{\sin b}{\sin a}$.
13. $\cos C=\frac{\tan b}{\tan a}$.
14. $\tan C=\frac{\tan c}{\sin b}$.
15. $\tan B=\frac{\tan b}{\sin c}$.
16. $\cos c=\frac{\cos C}{\sin B}$.
17. $\cos b=\frac{\cos B}{\sin C}$.
18. $\cos a=\frac{\cot C}{\tan B}$.

The sum of the three angles in a spherical triangle is greater than two right angles and less than six right angles.

By spherical trigonometry we ascertain distances and courses on the surface of the earth, positions and motions of the heavenly bodies, etc., etc. Examples will be furnished in geography and astronomy.

Example. In a right-angled spherical triangle the side or hypothenuse $a=36^{\circ} 20^{\prime}$, the angle $B=68^{\circ} 50^{\prime}$. How long is the side $b=$ ?

Formula 1. $\sin b=\sin a \sin B=\sin 36^{\circ} 20^{\prime} \times \sin 68^{\circ} 60^{\prime}$.
$a \quad$ log. $\sin 36^{\circ} 20^{\prime}=9: 77267$
$B \quad$ log. $\sin 68^{\circ} 50^{\prime}=9: 96966$
The answer, $\quad \log . \sin 33^{\circ} 32^{\prime}=9: 74233 \quad$ or, $b=33^{\circ} 32^{\prime}$.

## Oblique=Angled Spherical Triangle.


19. $\sin a: \sin b=\sin A: \sin B . \quad \sin a=\frac{\sin b \sin A}{\sin B}$.
20. $\sin b: \sin c=\sin B: \sin C$.
$\sin b=\frac{\sin c \sin B}{\sin C}$.
21. $\quad \tan 1 / 2(a+b)=\tan 1 / 2 c \frac{\cos 1 / 2(A-B)}{\cos 1 / 2(A+B)}$.
22. $\quad \tan 1 / 2(a-b)=\tan 1 / 2 c \frac{\sin 1 / 2(A-B)}{\sin 1 / 2(A+B)}$.
23.

$$
\tan 1 / 2(B+C)=\cot 1 / 2 A \frac{\cos 1 / 2(b-c)}{\cos 1 / 2(b+c)} .
$$

24. 

$$
\tan 1 / 2(B-C)=\cot 1 / 2 A \frac{\sin 1 / 2(b-c)}{\sin 1 / 2(b+c)} .
$$

25. 

$$
\cot 1 / 2 A \quad=\tan 1 / 2\left(B-C^{\prime}\right) \frac{\sin 1 / 2(b+c)}{\sin 1 / 2(b-c)} .
$$

26. $\tan 1 / 2 c$

$$
=\tan 1 / 2(a-b) \frac{\sin 1 / 2(A+B)}{\sin 1 / 2(A-B)} .
$$

Example. Oblique-angled spherical triangle. $c=72^{\circ} 30^{\prime}, B=17^{\circ} 30^{\prime}$, $C=79^{\circ} 50^{\prime}$. How long is the side $b=$ ?

Formula 20. $\quad \sin b=\frac{\sin c \sin B}{\sin C}=\frac{\sin 72^{\circ} 30^{\prime} \times \sin 17^{\circ} 30^{\prime}}{\sin 79^{\circ} 50^{\prime}}$.

$$
\begin{aligned}
& + \text { log. } \sin 72^{\circ} 30^{\prime}=9: 97942 \\
& + \text { log. } \sin 17^{\circ} 30^{\prime}=9: 47812 \\
& + \\
& =1: 45754 \\
& +\log \cdot \sin 79^{\circ} 50^{\prime}=9: 99312
\end{aligned}
$$

The answer,

$$
\text { log. } \sin 16^{\circ} 56^{\prime}=9: 46442 \quad \text { or, } b=16^{\circ} 56^{\prime}
$$

## Oblique=Angled Spherical Triangle.


[ $B$ refers to the whole angle between $a$ and $c$, and $b$ to the whole line opposite $B$.]
27. $\tan 1 / 2(m+n) \tan 1 / 2(m-n)=\tan 1 / 2(a+c) \tan \frac{1}{2}(a-c) \tan m=$ $\tan c \cos A$.
28. $\quad \tan C=\frac{\sin m \tan A}{\sin (b-m)}$.
29. $\cos \quad a=\frac{\cos c \cos (b-m)}{\cos m}$.
30. $\quad \cos \quad n=\frac{\cos a \cos m}{\cos c}$.

$$
b=m \pm n .
$$

31. 

$\cot \quad m=\frac{\cos c \tan A}{\tan a}$.

$$
s=\frac{a+b+c}{2}, \quad S=\frac{A+B+C}{2} .
$$

32. 

$$
\sin 1 / 2 A=\sqrt{\frac{\sin (s-c) \sin (s-b)}{\sin b \sin c}}
$$

33. 

$$
\sin 1 / 2 a=\sqrt{\frac{\cos S \cos (S-A)}{\sin B \sin C}}
$$

To find the area of a spherical triangle :
Let $Q$ be the area of the triangle in square degrees. If $R=$ radius of the sphere, the length of one degree will

$$
=\frac{2 \pi R}{360}, \text { or one square degree }=\frac{R^{2}}{3285.58} .
$$

1. 

$$
\cot 1 / 2 Q=\frac{\cot 1 / 2 c \cot 1 / 2 a+\cos B}{\sin B} .
$$

2. $\quad \sin 1 / 2 Q=\frac{\sin 1 / 2 c \sin 1 / 2 a \sin B}{\cos \frac{1}{2} b}$.

## Trigonometrical Formulas.

1. $\sin (\alpha \pm \beta)=\sin a \cos \beta \pm \cos a \sin \beta$.
2. $\cos (\alpha \pm \beta)=\cos a \cos \beta \mp \sin a \sin \beta$.
3. $\sin 2 \alpha=2 \sin a \cos \alpha$.
4. $\quad \sin 3 a \quad=3 \sin a-4 \sin a^{3}=\sin \alpha\left(4 \cos a^{2}-1\right)$.
5. $\cos 2 a=\cos a^{2}-\sin a^{2}=2 \cos a^{2}-1=1-2 \sin a^{2}$.
6. $\cos 3 a \quad=4 \cos a^{3}-3 \cos a=\cos a\left(1-4 \sin a^{2}\right)$.
7. $\sin a+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$.
8. $\sin a-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{a-\beta}{2}$.
9. $\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$.
10. $\cos \alpha-\cos \beta=2 \sin \frac{a+\beta}{2} \sin \frac{\beta-a}{2}$.
11. $\sin a^{2}=1 / 2(1-\cos 2 a)$.
12. $\cos a^{2} \quad=1 / 2(1+\cos 2 \alpha)$.
13. $\sin a^{3} \quad=1 / 4(3 \sin a-\sin 3 a)$.
14. $\cos a^{3} \quad=1 / 4(3 \cos a+\cos 3 a)$.
15. $\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan a \tan \beta}$.
16. $\cot (\alpha \pm \beta)=\frac{\cot \alpha \cot \beta \mp 1}{ \pm \cot \alpha+\cot \beta}$.
17. $\tan 2 a \quad=\frac{2 \tan a}{1-\tan a^{2}}$.
18. $\cot 2 a \quad=\frac{\cot a^{2}-1}{2 \cot a}$.
19. $\tan a \quad=\sqrt{\frac{1-\cos 2 a}{1+\cos 2 a}}=\frac{\sin 2 a}{1+2 \cos a}=\frac{2 \tan 1 / 2 a}{1-\tan 1 / 2 a^{2}}$.
20. $\cot \alpha=\sqrt{\frac{1+\cos 2 a}{1-\cos 2 a}}=\frac{\sin 2 a}{1-\cos 2 \alpha}=\frac{\cot 1 / 2 a^{2}-1}{2 \cot 1 / 2 a}$.
21. $\tan \alpha \pm \tan \beta=\frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}$.
22. $\quad \cot a \pm \cot \beta=\frac{\sin (\beta \pm a)}{\sin \alpha \sin \beta}$.
23. $\frac{\sin \alpha+\sin \beta}{\sin \alpha-\sin \beta}=\frac{\tan 1 / 2(\alpha+\beta)}{\tan 1 / 2(\alpha-\beta)}$.

## Differential and Integral Calculus.

When one quantity depends upon another, so that the variations of one produce certain variations in the other, the one quantity is said to be a function of the other. There are many such functional relations occurring in mechanics and engineering; as, for example, those between time and distance in falling bodies, the expansion of steam in a cylinder, etc.

Thus, in the case of a falling body, we know that the motion begins slowly and grows quicker and quicker, so that after a body has been falling for several seconds it passes over a much greater distance in each later second than it did in the first second. By observing the spaces passed over by a falling body in several consecutive seconds we will find, as did Galileo, that the distances increase proportionally to the squares of the times, or, in modern notation,

$$
s=1 / 2 g t^{2} .
$$

The closer together the successive observations are taken, the more nearly the truth will the deduction be. Thus, if we platted the values of $s$ for a number of values of $t$,-taking the time intervals as one second,and joined the points by straight lines, we should have a broken line, indicating roughly the curve. By taking the time intervals closer, the broken character of the line becomes less apparent. When the time intervals are taken so very close to each other that the broken character of the line can no longer be distinguished, it appears as a smooth curve, the equation of which gives the law connecting the two interdependent variables.

The object of the calculus is to discuss the immediately consecutive values of variables, in order that their relations may be reduced to expressions suitable for use in computation.

The method used is to take any single relation between the variable quantities under consideration, make a small increase in one of them, and compute what the corresponding increase will become in the other. Then, by deducing the ratio of the two increases in value, we get an algebraic expression corresponding to the geometrical construction giving the broken line instead of the curve, as described above. By a simple transposition in the equation the actual value of the increment may be made equal to zero, and, at the same time, permit the ratio of the variations at that instant to be determined.

Thus, let $y=a x^{2}$; then let $x$ be increased by a quantity, $\Delta x$ or $h$, and $y$ will have a corresponding increase, $\Delta y$, and we have

$$
\begin{aligned}
y+\Delta y & =a(x+h)^{2} \\
& =a x^{2}+2 a x h+a h^{2}
\end{aligned}
$$

Subtracting

$$
y=a x^{2}
$$

$$
\Delta y=2 a x h+a h^{2}
$$

Dividing by

$$
\triangle x=h
$$

we get

$$
\frac{\Delta y}{\Delta x}=2 a x+a h
$$

Now, when $\Delta x$ is equal to zero, $\Delta y$ is also equal to zero; and thus, when the increment, $\Delta x=h$, is zero, we have

$$
\frac{0}{0}=2 a x .
$$

That is, the ratio between the increments of $x$ and of $y$ at their zero values is equal to $2 a x$. It is usually stated in this demonstration that the value, 2ax, is reached when the increment is made infinitely small, so that its square, $h^{2}$, may be considered still smaller, and hence negligible; but this manœuvring is altogether unnecessary, as there is no reason to object to the determination of the value of 9 as the true and exact ratio of the two increments.

This is seen by an example in falling bodies. In the equation $y=a x^{2}$, let $a=16$, and substitute $s$ for $y$ and $t$ for $x$,-s representing space, and $t$, time,-and we have $s=16 t^{2}$, and $2 a x$ becomes $32 t$, the well-known formula for the velocity at the end of $t$ seconds.

The integral calculus is the reverse of the differential calculus, being the study of the methods of finding the quantities and expressions which correspond to given differentials. The differential of a quantity is indi-
cated by prefixing the letter $d$, as $d x$ (read differential of $x$ ), and the integral of an expression is indicated by the symbol $\int$, an old-fashioned form of the letter $s$ (signifying summation).

The usual working method of applying the calculus to a technical problem is first to state, in the form of an equation, the relation existing between two immediately consecutive states of the functions under consideration, these being found from observation or from their known relations by differentiation. This statement being made, both sides of the equation are integrated simultaneously, the result being a gencral algebraic statement of the relation between the varying quantities within the limits for which the integration is made.

As an example, we may give the determination of the law of barometric pressure, or the formula for computing differences of altitude by observing differences in atmospheric pressure by the barometer.

Taking a column of air with a base equal to a unit of area (say 1 square metre) and an unknown height, $x$, and calling the pressure at the bottom of the column $=p$, and letting the weight of a unit volume of air (say 1 cubic metre) at the bottom $=q$, we have the following:

Let the height of the column, $x$, be increased by a very small quantity. $d x$, so that it becomes $x+d x$. We then have the pressure on the base increased by some small quantity, $d p$. But this is also equal to $q d x$, or the weight per cubic metre times the portion of a cubic metre which has been added ; hence, we have

$$
d p=q d x .
$$

According to Mariotte's law, the weights of given volumes of air are proportional to the pressures; or, for another pair of pressures and volumes, $p^{\prime}$ and $q^{\prime}$, we have

$$
\frac{q}{q^{\prime}}=\frac{p}{p^{\prime}}, \text { and } q=\frac{q^{\prime}}{p^{\prime}} p,
$$

which, in the abore equation, gives

$$
d p=\frac{q^{\prime}}{p^{\prime}} p d x ;
$$

or, calling the constant quantity $\frac{q^{\prime}}{p^{\prime}}=c$, we have

$$
d p=c p d x
$$

Dividing both sides by $p$, we get

$$
\frac{d p}{p}=c d x
$$

and integrating

$$
\int \frac{d p}{p}=\int c d x, \text { or } \log \cdot p=c x+C
$$

when $x=0, p=p^{\prime}$, and log. $p^{\prime}=C$.
Subtracting, we have log. $p-\log . p^{\prime}=c x$;
but

$$
\begin{gathered}
\log \cdot p-\log \cdot p^{\prime}=\log \cdot \frac{p}{p^{\prime}}, \text { and hence } c x=\log \cdot \frac{p}{p^{\prime}}, \\
x=\frac{1}{c} \log \cdot \frac{p}{p^{\prime}},
\end{gathered}
$$

and we have thus derived a formula giving the value of $x$ for any two pressures,-that is, for the vertical height between two points at which the air pressures are $p$ and $p^{\prime}$.

The whole art of using the calculus in engineering or applied science lies in the framing of the equations and the use of the observed relations of the quantities, the processes of differentiation and integration being almost as much matters of routine as the use of logarithms.

For those desiring to refresh their recollection, reference may be made to Professor Perry's "Calculus for Engineers," Professor R. H. Smith's "Calculus for Engineers and Physicists," and Autenheimer's "Elementarbuch der differential und integral Rechnung," the latter being especially rich in numerical applications to mechanics, physics, and practical science.

$$
\begin{aligned}
& d C=0 . \\
& d(C u)=C d u . \\
& d(u+v)=d u+d v . \\
& d(u v)=u d v+r d u . \\
& d(u v w)=u v d w+u u d v+v w d u . \\
& c\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}} . \\
& d\left(u^{n}\right)=n u u^{n-1} d u \text {. } \\
& d\left(\log _{a^{u}} u\right)=m \frac{d u}{u} . \\
& d(\log u)=\frac{d u}{u} . \\
& d\left(u^{v}\right)=\tau^{\prime} u^{v-1} d u+u^{v} \log u d v . \\
& d\left(a^{v}\right)=a^{n} \log a d v . \\
& d\left(e^{v}\right)=c^{v} d r . \\
& u \sin u=\cos u d u \text {. } \\
& d \cos u=-\sin u d u \text {. } \\
& d \tan u=\sec ^{2} u d u \text {. } \\
& d \cot u=-\operatorname{cosec}^{2} u d u \text {. } \\
& d \sec u=\sec u \tan u d u \text {. } \\
& d \operatorname{cosec} u=-\operatorname{cosec} u \cot u d u \text {. } \\
& d \text { vers } u=\sin u d u \text {. } \\
& d \text { covers } u=-\cos u d u \text {. } \\
& d\left(\sin ^{-1} u\right)=\frac{d u}{\sqrt{1-u^{2}}} . \\
& d\left(\cos ^{-1} u\right)=-\frac{d u}{\sqrt{1-u^{2}}} . \\
& d\left(\tan ^{-1} u\right)=\frac{d u}{1+u^{2}} . \\
& d\left(\cot ^{-1} u\right)=-\frac{d u}{1+u^{2}} . \\
& d\left(\sec ^{-1} u\right)=\frac{d u}{u \sqrt{u^{2}-1}} . \\
& d\left(\operatorname{cosec}^{-1} u\right)=-\frac{d u}{u \sqrt{u^{2}-1}} . \\
& d\left(\operatorname{vers}^{-1} u\right)=\frac{d u \cdot}{\sqrt{2} u-u^{2}} . \\
& d\left(\operatorname{covers}^{-1} u\right)=-\frac{d u}{\sqrt{2 u-u^{2}}} .
\end{aligned}
$$

$\int C d u=C \int d u$
$\int(d u \pm d v)=\int d u \pm \int d v$.
$\int u^{n} d u=\frac{u^{n}+1}{n+1}$.
$\int \frac{d u}{u}=\log u$.
$\int a^{u} d u=\frac{a^{u}}{\log a}$.
$\int e^{u} d u=e^{u}$.
$\int \sin u d u=-\cos u$ or vers $u$.
$\int \cos u d u=\sin u$ or $-\operatorname{covers} u$.
$\int \sec ^{2} u d u=\tan u$.
$\int \operatorname{cosec}^{2} u d u=-\cot u$.
$\int \sec u \tan u d u=\sec u$.
$\int \operatorname{cosec} u \cot u d u=-\operatorname{cosec} u$.
$\int \tan u d u=-\log \cos u=\log \sec u . \quad \int \frac{d u}{\sqrt{u^{2} \pm 1}}=\log \left(u+1 / \overline{\left.u^{2} \pm 1\right)}\right.$.

## MECHANICS.

In considering the action of force upon matter, it is important to have a clear understanding of the terms as used in the following pages.

Without going deeply into the theoretical considerations of analytical mechanics, we will discuss briefly those relations commonly used by the engineer in daily practice, leaving the profounder questions for the elaborate theoretical treatises, such as those of Rankine, Hertz, Lagrange, Du Bois, and others.

There are three elementary quantities used in mechanics, from which numerous compound quantities are derived:

1. Force, usually expressed in units of weight, as pounds, tons, kilogrammes, etc.
2. Distance, expressed in linear units, feet, yards, metres, etc.
3. Time, expressed in hours, minutes, or seconds.

From these we derive a number of compound expressions, some of which are given here, others will be used as occasion requires.

Thus, we have
Work, which is the product of force by distance, and expressed by a combination of units of weight and distance, as foot-pounds, kilogrammetres, etc.

Power, which is the product of force by distance, divided by time, or the performance of a given amount of work in a given time, expressed as foot-pounds per minute, kilogrammetres per second, etc.

Velocity is distance divided by time, as feet per minute, metres per second, miles per hour.

Acceleration is the time-rate of change of the velocity of a body, expressed as a velocity divided by time, feet per second per second, miles per hour per second, etc.

Forces may be conveniently represented by straight lines, the position of the line showing the direction of action of the force, and the length of the line indicating the magnitude of the force on some convenient scale. The convenience of the graphical method of solving problems in statics and mechanics renders it most useful, and in the following pages it will be extensively employed.

So far as precision is concerned, it is quite as practicable to construct force diagrams with a high degree of precision as it is to make the drawings of the structures to which they are to be applied, while the accuracy of the work is materially increased by the possibility of examining the relations of all the forces at once.

## STATICS.

Statical problems are those which deal with the equilibrium of forces acting upon bodies at rest.

It is customary to consider the bodies upon which the forces act as being rigid, although it is well understood that all substances are more or less elastic; it being found more practicable to determine the relations of the forces first, and then to modify these, when necessary, for the influence of the elasticity of the material under consideration.

In order that a body or a structure shall remain at rest, it is necessary that all the forces acting upon it should balance each other. If this were not the case, the body would move in a direction dominated by the preponderating force. This fact is used to aid in the determination of statical problems. The influence of the combined action of all the known forces acting on a body enables the magnitude and direction of the remaining force which holds them in equilibrium to be determined.

The most convenient, rapid, and accurate method of combining and resolving the action of forces is the graphical method.

A single force may be indicated by a straight line, the length of which, on any convenient scale, shows the magnitude of the force.

Thus, a force of 10 pounds may be represented as a straight line 10 inches long, in which case the scale is 1 inch to the pound. The direction of the action of the force is shown by the direction of the line, and,
if unopposed, the body upon which the force acts will move in the direction of the line of action of the force.

If the body does not move, equilibrium must be maintained by reason of the action of a force of equal magnitude to the first force, acting in the opposite direction.

Thus, a weight of 10 pounds, suspended from a cord, hangs stationarr. There must, therefore, be produced in the cord a reacting force of 10 pounds, acting upward, otherwise the weight would fall. The upward reaction in the cord cannot be greater than 10 pounds, or the weight would move upward; hence, we know that the reaction in the cord is exactly equal to the force of the weight, but acts in the opposite direction.

When more than one force is to be considered, the question becomes more complicated, but the principle is the same.


Thus, if we hare two forces, 10,20 , acting upon the point, 0 , we find the magnitude and direction of the opposing force, which just balances and holds them in equilibrium, as follows:

At any convenient place on the paper draw a line, 1, parallel to 10 , and of a length corresponding, on any convenient scale, to the force, 10. Thus, if 10 is 5 pounds, the line, 1 , may be 5 inches, or 5 centimetres, or 5 feet long. From the extremity of 1 draw 2, parallel to 20 , and of a length equal to the force, 20 , on the same scale as used for 1 . Then join the extremities of 1 and 2 by a line, 3 . This last line will then be equal in length to the desired force, which holds 10 and 20 in equilibrium, and it will also be parallel to it in direction. By drawing 03 parallel to 3 we have the balancing force fully determined.

For more than two forces we mar proceed in a similar manner.


Thus, if we have fire forces acting upon the point, $O$, we draw the polygon, having the sides $1,2,3,4$, and 5 , respectively, parallel to the forces and, proportional to their magnitude, upon the same scale, and then close the polygon by the dotted line, 6 , whicll gives the magnitude and direction of the resultant, O6, which will hold the other forces in equilibrium.

If the polygon closes of itself, the system of forces is already in equilibrium ; if it does not close of itself, the length and direction of the side necessary to close it will give the required result.

The foregoing discussion has assumed that the forces under consideration all act at the same point. When, however, the forces act at various points in a body which may be assumed as rigid, the resultant may be found as follows:


Suppose we have any rigid body, upon which several forces, $P^{1}, P^{2}, P^{3}$, are acting at several points. Construct the polygon as in the figure at the right, the line, $1-2$, corresponding to $P^{1} ; 2-3$, to $P^{2}$; and $3-4$, to $P^{3}$. The resultant will then be equal to 1-4. Then choose any point, $O$, as a pole, and draw the rays, $S^{1}, S^{2}, S^{3}, S^{4}$. Now, as in the figure on the left, draw a line, $K^{1} K^{2}$, parallel to $S^{2}$, intersecting $P^{2}$ prolonged. From $K^{2}$ to $K^{3}$ draw a line parallel to $S^{3}$; then draw $K^{1}$ to $K^{4}$, parallel to $S^{1}$; and $K^{3}$ $K^{4}$, parallel to $S^{4}$, and the intersection will give the point, $K^{4}$, through which the resultant must pass.

The position of the pole, $O$, does not affect the result, as will be found by choosing several poles and observing that the position of the resultant is not affected thereby.

If we have a number of parallel forces acting upon a rigid body, the same method may be used, but the diagram becomes simplified.


Thus, if we have the vertical forces, $P^{1}, P^{2}, P^{3}, P^{4}$, we draw a vertical line, as in the diagram on the right, and lay off $1-2=P^{1}, 2-3=P^{2}, 3-4=P^{3}$, $4-5=P^{4}$. Taking any pole, 0 , and drawing the rays, $S^{1}, S^{2}, S^{3}, S^{4}, S^{5}$, we draw, as in the figure on the left, the line, $K^{1} K^{2}$, parallel to $S^{2} ; K^{2} K^{3}$, parallel to $S^{3} ; K^{3} K^{4}$, parallel to $S^{4}$. Then draw $K^{1} K^{5}$, parallel to' $S^{1}$, and $K^{4} K^{-5}$, parallel to $S^{5}$, these two lines intersecting at $K^{5}$. The resultant, equal to $1-5$, will then pass through $\kappa^{-5}$.

## Funicular Polygons.

If we have a flexible cord, secured at the ends and having weights suspended from it at various points, we may use the polar force diagram to determine the various forces acting in the combination.

Thus, if we have a cord suspended from two points, $K^{1}, K^{-5}$, and to the points $K^{2}, K^{3}, K^{4}$, suspend weights, $P^{1}, P^{2}, P^{3}$, the cord will assume a shape similar to that shown in the figure. The combination will be in equilibrium, since the flexibility of the cord permits the weights to draw it into a position in which the forces balance each other. The various parts of the cord will then be subjected to tensions which are to be determined. There will also be vertical and horizontal forces at the points $K^{1}$ and $K^{5}$ which are to be found. All of these questions are solved by the

diagram on the right. First draw the rertical line, 1-4, making 1-2 $=P^{1}$, $2-3=P^{2}$, and $3-4=P^{3}$. Then from 1 draw $S^{1}$, parallel to $K^{1} K^{2}$, and from 4 draw $S^{4}$, parallel to $\dot{K}^{4} K^{5}$, and the intersection of these two rays determines the position of pole, 0 . The rays $S^{2}$ and $S^{3}$ are parallel to $K^{2} K^{3}$ and $K^{3} K^{4}$.

The lengths of the various rays, $S^{1}, S^{2}, S^{3}, S^{4}$, measured on the same scale on which the vertical forces were laid off, will then give the magnitude of the tensions in the parts of the cord to which they are parallel. By drawing a horizontal line, $O H$, through the pole, $O$, the vertical will be divided at a point, $H$, and $1 H$ and $H 4$ will be the vertical reactions at $K^{1}$ and $K^{5}$, while the length, $O H$, will give the horizontal force acting to draw the two ends of the cord together. If the butments were removed, and a rod extending from $K^{1}$ to $K^{5}$ substituted, the length, $O H$, would give the compression on the rod. If the whole diagram be imagined as inverted, and the parts of the cord be replaced by rigid struts, the figure will represent a framework which will sustain the same weights without distortion, the tensions in the various parts of the cord being converted into thrusts in the corresponding members of the framework.

In the preceding example the form taken by the cord is assumed to be given, and the only requirement is the determination of the forces. In some important cases, to be discussed hereafter, it is desirable to determine the form of the curve under various conditions of loading, as well as the stresses. Thus, the data given may be the span and the depth of the lowest point in the curve; also, the position and magnitude of the loads; and it may be required to find the form which these conditions give to the cord. The importance of these questions will be seen when it is understood that the flexibility of the cord permits it to assume a position of equilibrium
under any loading; and hence from it can be deduced the stresses which are produced in rigid bodies, such as beams and similar constructions.

It is well known that a cord suspended from two points on the same horizontal line, and uniformly loaded, will assume the form of a parabola; but instead of acting on this assumption we may proceed just as if we had only to depend upon the methods of graphical statics, and then apply the same methods to the cases of unequal loading and unequal distribution.*

Fig. 1.


Suppose, Fig. 1, that we have the forces, 1, 2, 3, 4, 5, 6, 7, 8, equal in magnitude and at equal distances apart, acting vertically, as under the action of gravity, and that it is desired to determine the shape of the curve assumed by a cord sustaining these forces. The points of suspension are given at $A$ and $K$, the forces are given in position, and the sag, $R S$, of the curve is given. The horizontal tension and the vertical reactions at the points, $A$ and $K$, are required, and also the tension in each portion of the curve.

Referring to the force diagram at the right, we draw the horizontal line, 40 , and draw a perpendicular through 4 . We then lay off the spaces, $A, 1,2,3,4,5,6,7,8$, equal, on any convenient scale, to the forces, and choose any point, 0 , as a pole, and draw the rays, $10,20,30,--80$. We have taken the point, $O$, on the horizontal, because we know that the curve is symmetrical, being uniformly loaded, and for reasons which will appear hereafter. Now, starting at $A$, in the diagram to the left, we draw $A b$, parallel to $A O$; bc, parallel to 10 ; $c d$, parallel to 20 ; and so on until we come to $i K$, parallel to 80 . This gives us a curve, $A, b, c, d, e, f, g, h, i, K$, which is a force polygon corresponding to the forces given. The horizontal tension at $A$ and at $K$ will then be equal to the distance, 40 , measured on the same scale as was used for the given forces in making the diagram, and the vertical reactions will be equal to $A 4$ and 4-8.

Now this diagram, while undoubtedly correct, is not the one we want, as the sag is too small; and this is due to the fact that we have taken our pole, $O$, too far from the point, 4 , or, in other words, we have assumed the tension too great. Having once obtained one equilibrium curve, however, it is easy to transform it into any other one of any desired sag, in the following manner:

Draw the horizontal line, $P Q$, through the lowest point of the curve, which we have already obtained. Then prolong the line, $A b$, until it intersects this horizontal at $m$; also prolong $K i$ until it intersects the horizontal at $n$. Draw $P^{\prime} Q^{\prime}$ through $S$, the point of the desired sag, and drop perpendiculars from $m$ and $n$ until they intersect $P^{\prime} Q^{\prime}$ at $m^{\prime}$ and $n^{\prime}$; join $A m^{\prime}$ and $K n^{\prime}$.

Now, in the force diagram at the right of the figure, draw from $A$ a line, $A O^{\prime}$, parallel to $A m^{\prime}$, and a line, $80^{\prime}$, parallel to $K n^{\prime}$. They will intersect on the horizontal at $O^{\prime}$, and this will be a new pole. Using this pole by drawing rays to $O^{\prime}$ from $A, 1,2,-\cdots-8$, we have a new force diagram. Now, starting again at $A$, we draw $A b^{\prime}$, parallel to $A O^{\prime} ; b^{\prime} c^{\prime}$,

[^0]parallel to $10^{\prime}$, etc., and we get a new catenary, $A^{\prime}, b^{\prime}, c^{\prime}, \ldots-i^{\prime} K$, which will have just the sag required. The distance, $40^{\prime}$, will then be the correct horizontal tension, which corresponds to the sag, $R S$; and the tension in any portion of the curve is equal to the length of the corresponding parallel ray.

All this is very clear; but this is the simple case of uniform loading, and might just as well have been solved by drawing a parabola of the required span and sag. Suppose now, however, that the loads are not uniform. Such an example is shown in Fig. 2. Here the loads are all the same, except that at 6 , which is as much greater as is indicated by the length of the arrow. As before, we know only the magnitude and direction of the forces and the span and sag of the curve, and desire to find the horizontal tension and other forces. Referring to the force diagram on the right, we draw a vertical line, $A 8$, making the distances,

Fig. 2.


A1, 1-2, 2-3,----7-8, proportional to the various forces, and it will be noticed that 5-6 is the large force, the others being equal to each other. We now choose any point, 0 , for a pole, and draw the rays, $A 0,10,20$, ----80. Then, starting at $A$ in the diagram to the left, we draw $A b$, parallel to $A O$; bc, parallel to 10 ; $c d$, parallel to 20 , etc., and get the curve, $A, b, c, d, e, f, g, h, i, k$. We then join $k$ back to $A$ by drawing the inclined line, $A k$. This gives us a complete polygon, but it is not the one we want, for two reasons: first, it has not the right sag; and second, the points of suspension are not on a horizontal line. We can readily bring the points of suspension on a horizontal line, in the following manner: In the force diagram, draw from the line, $O$, a line, $O K$, parallel to $k A$; then will the distances, $R^{\prime}$ and $R$, be the vertical reactions at the points of suspension, and $O K$ will be the tension at $A$ and at $k$, in the direction of the line, $A k$. If, now, we draw in the force diagram a line, $K O^{\prime}$, horizontally through $K$, and place a new pole, $O^{\prime}$, on this horizontal line vertically under $O$, we can draw a new force diagram, as shown in the dotted lines, and the polygon drawn from A, with its sides parallel to the rays of this new diagram, will give us the dotted curve, which has the same sag as the first curve, but has its points of suspension on a horizontal line. We thus see that even if the first curve-obtained by choosing any pole-does not give us a curve with the required points of suspension, that it can readily be transformed into the desired form. If, instead of having the points of suspension on a horizontal line, it is desired to have them at different elevations, it is only necessary to draw a line through $K$, on the force diagram, parallel to a line joining the desired points of suspension, and place the pole on the line so obtained, and the desired curve will be found. Now, to obtain the sag which is wanted, we have only to proceed as in the first case, Fig. 3. In this figure the dotted curve corresponds to the dotted curve of Fig. 2. Draw the horizontal line, $P Q$, through the lowest point, $f$, of the curve already obtained; prolong $A b$ to $m$, and $K i$ to $n$. Draw, also, $P^{\prime} Q^{\prime}$ horizontally through the desired point of lowest sag, and drop perpendiculars from $m$ and $n$ to it at $m^{\prime}$ and
$n^{\prime}$. Join $A m^{\prime}$ and $K n^{\prime}$, and draw from $A$, in the force diagram, a line parallel to $A m^{\prime}$, and from 8, a line parallel to $K n^{\prime}$. These two lines will intersect at the point, $O^{2}$, which will then be the correct pole for the curve of the desired sag. Drawing a new set of rays, we have only to draw the new polygon, $A, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}, g^{\prime}, h^{\prime}, i^{\prime}, K$, with its sides parallel to the corresponding rays, and the problem is solved. The vertical reactions at the point of support are $R^{\prime}$ and $R$, and the horizontal tension is equal to $K O^{2}$ 。

Fig. 3.


In actual practice the two operations of bringing the points of support to the horizontal (or to any desired inclination), and the adjustment of the tension to produce any required sag, may be combined so as to give the proper pole at one operation, as shown in Fig. 4, in which, also, the forces are all shown as different, so as to show the general nature of the solution. We first draw the vertical line of the force diagram on the left, making the spaces from $A$, downward, proportional to the forces of the corresponding numbers, and then choose a trial pole, 0 . Drawing the rays, and constructing the polygon, $A, b, c, d, e, f, g, h, i, k$, and joining $k A$, we have a polygon which has neither the proper position of the points of

Fig. 4.

suspension nor the desired sag, but which does express the equilibrium of forces, and can therefore be transformed into the form we want. We draw $P Q$, parallel to $A k$, and prolong $A b$ and $k i$ until they intersect $P Q$ at $m$ and $n$. Also draw $P^{\prime} Q^{\prime}$ horizontally through the desired point of lowest sag, and drop perpendiculars from $m$ and $n$, intersecting $m^{\prime}$ and $n^{\prime}$. In the force diagram draw $O K$, parallel to $A k$, and draw a horizontal line through $K$. Then, by drawing a line from $A$, parallel to $A m^{\prime}$, and from

8, parallel to $K n^{\prime}$, we find that they intersect at $O^{\prime}$, on the horizontal line, $K O^{\prime}$, and $O^{\prime}$ will at once be the new pole for the final curve, $A, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$, $f^{\prime}, g^{\prime}, h^{\prime}, i^{\prime}, K$.

As a general idea of the process we may imagine the pole to be connected to the points, $A, 1,2,3,4,5,6,7,8$, by elastic cords, so that they will remain taut and straight as $O$ is moved about. Then, if we move the pole up and down anywhere, always keeping it at a constant distance from the line, A8, we shall obtain diagrams which will give correct polygons for the forces under consideration, and of any desired inclination. The horizontal tension being unchanged, the sag will remain constant in all these curves. If we move the pole, 0 , to and from the line, $A 8$, we shall obtain curves of varying sag and correspondingly varying horizontal tensions, and, as we have shown how to obtain the position of the pole for any desired sag, we have only to place it there and proceed with the construction of the curve. If the forces, $1,2,3,-2$, etc., are not spaced equally, it is only necessary to draw verticals through their points of application and use them in the construction of the curve, instead of the lines as given in the figures. By this simple graphical process, therefore, all the problems involved in the construction of such curves may be rapidly and accurately solved.

The space which has been given to the variably-loaded catenary in the preceding pages will be understood when it is seen that the construction of such curves enables the distribution of stresses in a great variety of structures to be readily and accurately determined. The flexible cord, being at liberty to assume a position of equilibrium, is free from any bending stresses, every portion of the curve being, in fact, a resultant of the forces acting upon it, the tension in the various portions of the cord being measured by the length of the corresponding ray in the force diagram. If, now, we invert the catenary, we have the proper curve for an arch subjected to similar forces, the only difference being that the arch is in compression, while the catenary is in tension. This will be discussed more fully when treating of the arch.

If, instead of a cord, we have a horizontal beam resting upon two supports and loaded in any given manner, we may use the catenary to determine the stresses. The beam, unless loaded excessively, will not have an appreciable deflection, and so will not place itself in the line of the catenary. In consequence, it is subjected to internal stresses of a kind differing from the simple tension of the catenary. By drawing the catenary and the force diagram we get the data to determine these internal forces, and thus are able to proportion the beam to resist the loads properly.

If we have a beam, $A G$, loaded with parallel forces, $Q_{1}$ to $Q_{5}$ (Fig. 5), whose load is to be opposed by reactions, $P_{1}$ and $P_{2}$, at $A$ and $G$, we may first determine a resultant, $Q$, of all the forces, and then decompose this into values for $P_{1}$ and $P_{2}$. We also omit the determination of $Q$ altogether, and proceed to determine $P_{1}$ and $P_{2}$ directly, as follows :

Choose any pole, $O$, and form the force polygon, $K 1.2 \ldots 50$, and construct the cord polygon, making its sides parallel to their respective rays, and draw ba, parallel to $K O$, and $f g$, parallel to 05 , their intersections with the lines of the forces, $P_{1}$ and $P_{2}$, being $a$ and $g$. Join $a g$, which will be the closing line of the polygon, and its parallel, O6, in the force polygon gives $P_{2}=5.6$ and $P_{1}=6.7$. If the sides, $a b$ and $f g$, of the cord polygon are prolonged in the other direction we obtain $a^{\prime}$ and $g^{\prime}$, giving, however, the same result, since $a^{\prime} g^{\prime}$ is parallel to $a g$. The cord polygon would then be the figure, $a^{\prime}, g^{\prime}, m, b, d, c, e, f, m, a^{\prime}$, and $m$ indicates the position of the resultant of the forces, $Q_{1}$ to $Q_{5}$, or of $P_{1}$ and $P_{2}$.

The cord polygon, or catenary, therefore, gives the proportion of load borne by each of the supports. But it does more, it enables the determination of both the shear and the statical moment at any point.

A Statical Moment is the product of a force by the normal distance from the point of resistance against which it acts. Thus, a force of 10 pounds, hanging from the end of a rod projecting 36 inches from a wall, has a statical moment of $36 \times 10=360$ inch-pounds, - moment being merely the technical term for leverage.

A statical moment is a compound quantity, expressed in terms of force and distance, as inch-pounds, foot-tons, kilogramme-metres, etc. In the case of a beam resting upon two supports, and having various loads upon it, the statical moment at any point is the product of the resultant of all the forces acting upon the beam on either side of the point into the distance of the line of action of the resultant from the given point for which

Fig. 6.
 mined.

In order to show how the statical moments in any loaded beam may be determined graphically, take the example shown in Fig. 6 .

After constructing the force polygon, AO4, and cord polygon, $a, b, c, d, e, f$, let it be required to find the statical moment for any point, $S$, upon the beam. This moment is the product of the resultant of all the forces upon one side or the other of the line, $S S_{1}$, into the lever arm, $l$, of this resultant from $S S_{1}$.

The magnitude of this resultant is obtained from the distance, $h i=1.5$, in the force polygon, cut off by the rays, 01 and 05 , which are parallel to $b c$ and $f a$, and its point of application is determined by prolonging these sides until they intersect at $g$. By drawing the perpendicular, $g g_{0}$, the lever arm, $l$, of the resultant, $P=h i$, is determined for the force acting at the point, $S$; and hence we have $M=P l$.

This multiplication may also be performed graphically. By drawing the perpendicular, $O k$, in the force polygon, we obtain the altitude of the triangle, Ohi, from the base, $h i$, and this triangle is similar to the triangle, $g s s_{0}$, whose altitude is $l$. Call in $O k=H$, and $s s_{0}=t$, we have
or

$$
\begin{aligned}
& P: H=t: l \\
& M=P l=\stackrel{H}{H} t .
\end{aligned}
$$

This proves that the statical moment at any point in a beam is proportional to the corresponding ordinate of the cord polygon. parallel to the direction of the forces, since $H$ is a constant. By making $H$ equal to unity the moment, $M$, becomes equal to the ordinate, $t$. It is not necessary to determine the position of the point of application, $g$, of the resultant, since it is the relation between the statical moments which is most desirable, whether $H$ be chosen as a unit or not. This property of the cord polygon for parallel forces is most useful, and an example may be found in the case of axles.

The shearing force in a beam at either support is evidently equal to the entire reaction at that support. Thus, in Fig. 6, the shearing force at $A$ is equal to $A 5$ on the force diagram. The shearing force at any other point in the beam is equal to the distance from 5 to the point on $A 4$ corresponding to that point in the force diagram. Thus, the shearing force at $B$ is equal to $1-5$, etc.

## Centre of Gravity.

Every particle of a body is attracted by the force of gravitation to the earth, and the sum of all these forces upon the particles constitutes the weight of the body. In accordance with the methods already given for determining the resultant of a number of parallel forces, the point of application of the resultant of the force of gravity may be found. This point is known as the Centre of Gravity of the body. For homogeneous bodies the position of the centre of gravity may generally be computed from the form of the body. For bodies which are entirely symmetrical and homogeneous, the centre of gravity is situated at the centre of figure.

For bodies which are symmetrical about a given axis, such as a cone, etc., the centre of gravity is situated in the axis. Various methods are used for determining the position of the centre of gravity of non-symmetrical figures, most of them based upon the subdivision of the figure into parts, of which the centres of gravity are known.

The most convenient of these is the graphical method.

This may be done by dividing the figure into a number of strips of uniform width such that their area may be considered as proportional to their middle ordinate, constructing the force and cord polygons, and taking the line of the resultant as a line of gravity. If the figure is not symmetrical, it will be necessary to divide the figure again in another direction and determine another line of gravity, when the position of the centre of gravity will be found at the intersection of the two lines. For figures of simple form larger determinate sections may be taken instead of strips, their area determined in any convenient manner, and the diagram constructed accordingly.

Suppose, for example, that it is required to determine the position of the centre of gravity of the T-shaped section shown in the above cut. The figure is symmetrical about the axis, $Y Y$, so that the centre of gravity must lie somewhere in that line. We may divide the figure into the rectangular portions $b \times c, b_{1} \times c_{1}$, and $b_{2} \times g$, which we will call respectively the areas 1,2 , and 3.

These three forces are laid off at $A, 1,2,3$, a pole, $O$, selected, and $K_{1}^{\prime} K_{1}$ drawn parallel to $O A ; K_{1} K_{2}$, parallel to $O 1 ; K_{2} K_{3}$, parallel to $O 2 ; K_{3} K_{3}{ }^{\prime}$, parallel to 03 , when the intersection of the sides, $K_{1} K_{1}{ }^{\prime}$ and $K_{3} K_{3}{ }^{\prime}$, at $M$ gives a point on the line of gravity, $M M^{\prime}$, whose intersection, $S$, with the axis, $Y Y$, is the centre of gravity of the figure.

The method of moments may also be used
 in determining the position of the centre of gravity, as follows:

This method is based on the fact that the total weight of a body, multiplied by the distance of its centre of gravity from any given axis,-i.e., its statical moment with regard to that axis,-is equal to the sum of the statical moments of its various parts.

Thus, if we have the section here shown, we see that its figure is symmetrical about the axis, $Y Y^{\prime}$, so the centre of gravity must lie in that axis. Taking any convenient axis, $X X^{\prime}$, we divide the section into the three rectangles, $A, B$, and $C$, of which the positions of the centres of gravity are known, we have their distances from the axis, $X X^{\prime}$, equal respectively to $a, b$, and $c$; and their statical moments with reference to the axis, $X X^{\prime}$, will be

$$
A a, B b, \text { and } C c .
$$

The area of the whole figure is equal to $A+B+C$, which we will call $M$, and the distance of its centre of gravity, $x$, from the axis, $X X^{\prime}$, is unknown and sought.

We have

$$
\begin{aligned}
& A a+B b+C c=M x \\
& \frac{A a+B b+C c}{M}=x .
\end{aligned}
$$

Thus, if $A=4$ square inches, $B=5$ square inches, $C=9$ square inches, and $a=12$ inches, $b=9$ inches, $c=4$ inches, we have

$$
\begin{aligned}
& A a=4 \times 12=48 \\
& B b=5 \times 9=45 \\
& C c=9 \times 4=36
\end{aligned}
$$

129
and this, divided by the area of the whole figure, or 18 square inches, gives $\frac{129}{18}=7.166$ for $x$, the distance of the centre of gravity, $S$, from the axis, $X X^{\prime}$ The position of the axis, $X X^{\prime}$, is immaterial, so long as all the moments are taken with reference to the same axis.

When a figure is not symmetrical, the moments must be taken first with reference to a vertical axis and then with reference to a horizontal axis, and the centre of gravity will be found at the intersection of the two lines thus determined.

In practical work the position of the centre of gravity is often most conveniently found by experiment.

Thus, if a scale drawing of the section be cut out of stiff card-board, or better, thin sheet metal, it may be hung up by one corner, a plumb-bob made of a fine thread and weight being suspended from the same point, $a$, as in the figure. By marking the point where the thread intersects the edge of the section, as at $p$, the path
 of the vertical across the section may be drawn from the supporting point. The section is then suspended from another point, $b$, and the point $p^{\prime}$ marked; the intersection of the lines $a p$ and $b p^{\prime}$ gives the position of the centre of gravity, $s$. Care must be taken to have the section perfectly free to oscillate about the point of suspension, usually a pin, and errors due to friction against the wall must be avoided.

Another convenient method is to balance the section across a horizontal knife-edge, in two successive positions, marking the intersection of the two positions of the knife-edge. This latter method may be conveniently applied by using a draftsman's triangular scale as a knife-edge.

The position of the centre of gravity for some of the more generally occurring figures may be obtained from the following diagrams:

## Quadrangle.

$a$ and $b$ parallel.


$$
z=\frac{h}{2}-\frac{h}{6}\left(\frac{b-a}{b+a}\right)
$$

Half a Circle Plane, or Elliptic Plane.


$$
z=0.4244 r
$$

## Circle Sector.



$$
z=\frac{2 c r}{3 b}
$$

Circle Segment $\mathbf{a}=$ area.

$z=\frac{c^{3}}{12 \mathbf{a}}$,
$x=h+z-r$.

Parabola.

$z=\frac{2 h}{5}$.

## Half Sphere.



Convex surface, $z=1 / 2 r$. Solid,

$$
z=3 / 8 r
$$

Spherical Sector.


$$
\text { Solid, } z=3 / 4\left(r-\frac{h}{2}\right)
$$

## Spherical Segment.



Convex surface, $z=\frac{h}{2}$.
Solid, $\quad z=\frac{h}{4}:\left[\frac{4 r-h}{3 r-h}\right]$.

Cone.


Convex surface, $z=\frac{h}{3}$.
Solid,

$$
z=\frac{h}{4}
$$

## Conic Frustum.



Convex
surf'e, $z=\frac{h}{2}-\frac{h}{6}\left[\frac{R-r}{R+r}\right]$.
Solid, $z=\frac{h}{4} \cdot\left[\frac{R^{2}+r(2 R+3 r)}{R^{2}+r(R+r)}\right]$.

## Pyramidic Frustum.

$A$ and $a=$ area of the two bases.


Solid, $z=\frac{h}{4}\left[\frac{A+3 a+2 \sqrt{A a}}{A+a+V^{/} A a}\right]$.

## Irregular Figure.


$P: W=l: z$,

$$
z=\frac{W l}{P} .
$$

To find the Centre of Gravity of Two Bodies, $\boldsymbol{P}$ and $\boldsymbol{Q}$.

$z=\frac{Q u}{P+Q} \quad \quad \quad=\frac{P a}{P+Q}$.

To find the Centre of Gravity of a System of Bodies.

$b=\frac{R a}{P+R}, \quad z=\frac{Q d}{P+R+Q}$.

Half a Circumference of a Circle or Ellipse.


$$
z=0.4244 r
$$

Circle Arc, or Elliptic Arc.


For semicircular line,

$$
z=\frac{2 r}{\pi}=0.6366 r .
$$

Cylindric Surface, with a bottom in one end.


## Statics of Framed Structures.

As the distribution of stresses in simple beams or in suspended cords may be determined graphically, so may the stresses in the various members of framed structures be investigated.

Framed structures are of very general application wherever loads are to be supported, and their discussion may be classified as a system by itself, while their use extends from the simple trussed beam to the bridge and roof truss; also for walking beams and many other uses.

The tensile and compressive stresses in these various forms may readily be examined by means of the force plan, which consists of both the force and cord polygons and their modifications. The subsequent examples will serve to illustrate the principal cases. In all of these cases it is assumed that at the knots-i.e., at the points where several members meet, -a joint is supposed to exist; or at least no account is taken of the resistance to bending at the knots.

In order to form such a plan for any given construction, it is necessary first to determine the division and direction of the forces, and then, beginning at one of the external forces and laying off its direction and magnitude to the next knot, combining it there with the external forces at that point, laying off the resultant to the next bend, etc. Upon such combinations of force triangles or quadrangles the force plan is constructed.

If it is desired to determine the directions of the components of a given or determined force, the principles laid down in the following rules must be borne in mind.

If one force is to be separated into two or more forces, its direction is to be reversed and it is to be made the closing line, $S^{\prime}$, in the paths of the other forces.

If two or more given forces are to be combined with two or more other forces, the force polygon will consist of the given forces and their closing line, S.

The first rule is only a special case under the second or general rule, since the single force may be considered as an unclosed force polygon whose closing line passes backward over the same path to the starting point.


In the investigation of each member in a frame without error, it is best to assume the member to be cut, and to determine the external forces at each section which oppose the internal forces; the direction of the forces may then also be determined with precision.
I. Simple=Trussed Beams.-The beam, $A B C$, is supposed to carry at $B$ a load equal to $2 P$, acting in a direction normal to $A C$, and to be supported at $A$ and $C$. Since $A B=B C$, the reaction at each support is equal to $P$. It is then required to determine the stresses upon the various members from 1 to 5 , as marked in the figure.

Referring to the diagram marked $a$, let $a b$ be the reaction, $P$, which acts upward at $A$. We now have to construct a diagram of the internal forces acting in $A B$ and $A D$. To simplify matters we will give these forces the same numbers as their corresponding members, drawing 1 pandllel to $A B$, and 2 parallel to $A D$. The direction of the force, $P$, in the closing line of the force triangle determines the direction in the other two sides, as shown by the arrows and by the lines 1 and 2. In this case there will be compression in $A B$ and tension in $A D$.

In order to show this clearly, in all the following strain diagrams the forces acting compressively in struts or posts will be indicated by double lines, while all tension members, links, or rods will be shown by single lines.

Following out this idea, we shall, in the following illustrations, show all struts or compression members in the fonstruction drawings as having a measurable thickness, as if made of wood, while the tension members
will be represented by simple lines, although this is not intended to indicate any limit as to the choice of materials.

For the knot at $B$ we make $a b c=2 P$, and, following in the direction dac (because the thrust is from $A$ towards $B$ ), join the closing lines 3 and 4 , hoth of which represent compression. The combination of 2 and 3 - determines 5 , which is tension. This gives an entirely symmetrical plan,

which was to be expected from the symmetrical form of the structure, and an investigation of one-half is practically sufficient.

If the load, $2 P$, is taken as uniformly distributed over the entire distance, $A B C$, instead of being concentrated at $B$, the reactions at $A$ and $B$ will each be equal to $\frac{P}{2}$, and the load at $B=P$, so that one-half of the load on $A B$ and $B C$ is referred to the knots $A, B$, and $C$. From these conditions we obtain the force plan $b$, which is geometrically similar to the other, but only half as large.
II. Double-Trussed Beam (much used for constructions of all sizes).In this case take vertical forces, $P$, at $B$ and $C$, and corresponding vertical reactions at $A$ and $D$. In the first force plan $a$ is drawn equal to $P$, and 1 and 2 parallel respectively to $A B$ and $A E$, thus determining the forces 1 and $2,-1$ being compression, and 2 tension. Lines now drawn parallel to $B E$ and $E F$ determine the compression in 3 and the tension in 5 , while the compression at 4 is the closing line of 3,1 , and $P$; and the other half of

the diagram is similar. If the vertical forces at $A$ and $B$ are not of the same magnitude, which is often the case in practice, the structure should be strengthened by the introduction of the diagonals, $E C$ and $B F$.

The second diagram shows the construction in this case. Let $P_{1}=a_{1} b_{1}$ be the force acting at $A$, and $P_{2}=a_{2} c_{2}$ be the force acting at $B$. Draw a vertical line from 1 to a horizontal through $C_{1}$, which gives the length, 3 , of the vertical force at $B$, and by drawing the dotted diagonal line their resultant is found. If any of the tension members are omitted the framework will tend to take an inclined position until the various parts are at such an angle with each other that both constructions will give the same value for 3 . For this reason it is best in nearly every case to use the diagonal counterbraces.
III. Triple-Trussed Beam.-The uniformly distributed load upon the framework gives the following distribution of forces. The force, $3 P=a b c$, is first decomposed in 2 and 1, or $c e$ and $c a$; then 1 is connected to $a b=2 \dot{P}$
by the line be, and this latter decomposed into 3 and 4 , or ef and $f b ; 2$ and 3 are now joined by $f c$, and the components at 5 and 6 , or $f g$ and $g c$, found. Since 6 and 10 are equal to each other, we may draw ch parallel to $G H$, and equal to $c g$, which gives $g h=7$; the rest of the force plan is similar to the first half.


Triple-Trussed Beam.-III.
IV. Another form of Triple-Trussed Beam is shown below.-The space between $B$ and $C$ is twice as great as between $A$ and $B$, and the uniformly distributed load is equal to $12 P$, acting at the various knots, as shown in the figure.


In the force plan make $a b c=5 P$, and draw parallel to 1 and 2 the lines $a e$ and $e c$; then join 1 with $3 p$ (for the knot at $B$ ), and decompose into 3 and 4 , or ef and $f b$. Now combine 2 with 3 ,-giving $c f$, and draw 5 and 6 parallel to $F C$ and $F G$, respectively. This case differs from the preceding, in that 5 is now compression instead of tension. The equality of the forces 6 and 10 gives $g h=7$, and the similar half of the diagram need not be drawn.

V. Multiple-Trussed Beam.-The beam, $A J$, is divided into eight equal parts, which are represented as being uniformly loaded, the load at each knot being shown in the figure. In constructing the force plan we make $a e=7 P$, and by drawing the lines parallel to 1 and 2 we obtain of and $f e$; then lay off $a b=2 P$, and join the resultant, $b f$. This decomposes into 3 and 4 , or $f g$ and $g b$. The forces 2 and 3 combine to give the resultant, $g e$, which, by drawing lines parallel to $K C$ and $K L$, gives $g h$ and he for the values of 5 and 6. We now find that to proceed further we have three forces of given direction only, and, since this is indeterminate, we must obtain one magnitude as well. This, for example, may be done for the force 7, as follows: the strut, $C L$, sustains the vertical components of 5 and 9 , as well as its own direct load, $2 P$. Now 5 and 9 are equal to each other, since they are placed symmetrically, and carry equal loads from the struts, $B K$ and $K M$; hence, in the force plan, we may make $h i$, which represents the force 7 , equal to twice the projection of 5 upon the vertical $+2 P$. This we can now combine with $6=h e$, giving ie, which in turn decomposes into $i m$ and $m e$, or 10 and 11 . Returning to the knot, $C$, we may now take the line, $h i$, and by drawing parallels to $C L, C M$, and $C D$, obtain the figure, hikc, which determines the forces 8 and 9 . In the same manner proceed from 12 to 15 , which will complete the half plan. It may be noted that the principal beam, $A J$, is subjected to a uniform compression throughout its entire length.

The force plan will, of course, be modified by various distributions of the load, as in the case of simple beams.

Roof trusses furnish many and varied examples of framework. In the following examples a uniformly distributed vertical load is assumed, so

that the burden upon any portion of a rafter may be considered as proportional to the length of that portion.
I. Roof with Simple Principals.-A uniform load, $2 P$, upon each half gives as the external forces $P, 2 P$, and $P$ at $A, B$, and $C$. Lay off in the force plan $a b=P$, and draw $a c$ and $b c$ parallel to $A B$ and $A C$, determining the forces 1 and $2,-1$ being compression, and 2 tension. Then draw the vertical, $c e$, and also draw be parallel to $C D$, thus giving both 3 and 5 , and the diagram is completed by drawing de.
II. Roof with Single=Trussed Principals. -This form is similar to the preceding, with the addition of the struts, $C E$ and $C F$. The distance, $A E$, is to $E B$ as 3 is to 2 ; and the loads upon the respective portions are $6 P$ and $4 P$, which give the forces at the various knots, as shown in the figure. Make ac in the force plan equal to $7 P$, and by drawing lines parallel to $A E$ and $A C$ obtain the forces 1 and 2, or ad and dc; then combine 1 with $5 P=a b$, and decompose the dotted resultant into $d e$ and $e b$, respectively parallel to $E C$ and $E B$, giving the forces 3 and 4 , both being compression. By repeating 2 and 3 , in drawing 7 and 8 , we obtain the figure, cdefg, in which cg gives 5. This latter force might also have been
found by combining 4 and $4 P$, and decomposing the resultant by lines parallel to $B C$ and $B F$, an illustration of the various methods in which the force plan may be used.
III. Another form, with Single-Trussed Principals.-This roof is similar to the preceding, except that the struts, $E C$ and $C F$, are placed horizontally. In this case $A E=E B$, and the external forces at $A$ and $D$ are both


Single-Trussed Roof.-II.
equal to $3 P$. The forces from $a$ to $c$ in the force plan are determined as before, giving $d \alpha$ and $c d$ for the forces 1 and 2, and the combination of 1 with $2 P$ gives the resultant, $d b$, from which the thrusts 3 and 4 , or $d e$ and $e b$, are obtained. The value of 1 is the same as 3 , and 8 is the same as 2, while 5 is the closing line of $c d e d f$ or of $c d f$. The force 5 must also be the combination of the equal forces 4 and 6 with $2 P$, which the diagram shows to be the case. If the rod, $C B$, is omitted, as is frequently done, the strut, $E C F$, if there is no joint at $C$, will oppose its resistance to bending to the


Single-Trussed Roof.-III.
orce 5 ; but there will we a tendeney to rise at the apex, $B$, if the fastening e not made sufficiently stroug.
IV. Third Roof with Single-Trussed Principals.-In this form of truss, requently known as the Belgian or French truss, the single vertical rod of he preceding form is replaced by a triangle, $B C D$.. The struts are placed
in the middle of the rafters and the external forces are distributed as shown in the figure. In the force plan $a b c=3 P$, and 1 and 2 are determined as before. By the decomposition of the resultant of 1 and $2 P$ we obtain the forces 3 and 4, or de and be, and from the resultant, ec, of the forces 2 and 3 we get the tensions 5 and 6 , in $c f$ and $c f$. The second half of the diagram is the symmetrical counterpart of the first.


Single-Trussed Roof.-IV.
V. Roof Truss with Double=Trussed Principals.-This construction does not differ greatly from the preceding, except that the struts employed to strengthen the rafters are divided into two. The spaces are equal to each other and the load uniformly distributed. As shown in the figure this gives a reaction of $5 P$, or $A$ and $D$. In the force plan $a d=5 P$, and lines parallel to $A E$ and $A C$ drawn, determining the forces 1 and 2 , or $d e$ and $e a$. We then combine $e a$ with $a b=2 P$, and decompose the dotted resultant, $e b$, into the thrusts, ef and $f b$, or 3 and 4 , by drawing these lines

parallel to $E C$ and $E F$. Again, we take the resultant of the forces 4 and $2 P$ and decompose it into 5 and 6 , or $f g$ and $g c$, which brings us to the middle of the symmetrical figure. The force 7 is the resultant of 6 and its counterpart, 8 , and the load $2 P$, and the half of this force is therefore equal to the projection of 6 upon the vertical, less $P$, or, in the diagram, to $d h$.
VI. English Roof Truss, with Multiple=Trussed Principals.-Here we have inclined struts, with vertical tie-rods. The load is again uniformly distributed, each space bearing the load of $2 P$. The reactions at $A$ and $D$ are each $=7 P$. In the force plan we have $a b+b c+c d+d e=3 \times$ $2 P+P=7 P$, which gives the length of $a e$. The forces 1 and 2 are found by drawing $f a$ and ef parallel to $A E$ and $A L$. Now consider 1 as combined


Multiple-Trussed Roof.-VI.
with $a b=2 P$, and the resultant, $f b$, decomposed into $f g$ and $g b$, giving the forces 3 and 4. Again, combine 2 and 3 , and then decompose the resultant, $g e$, into 5 and 6 , or $g h$ and $h e$, by drawing these latter parallel to $L F$ and $L M$. In this manner we continue until we reach 12 , or $l d$, which we then project upon the vertical. Now, taking from $d m$ one-half the load $P=d e$, we have me for one-half the stress on the middle rod, $B C$. The remaining half of the force plan is similar.


Polygonal Roof Truss.-VII.
VII. Polygonal $=$ or Sickel=Shaped Roof Truss.-This roof may be considered as a modification of the preceding form, and is used for higher and wider spans. It is hardly proper to assume that the load is here uniformly distributed, even if the spaces are equal, for in the case of snow much less weight would be carried by the steep portions, $A B$ or $G H$, than by the flatter surfaces, $C D$ or $D E$. We must therefore estimate the forces $P_{1}, P_{2}, P_{3}$, acting as $B, C, D, E, F, G$, and make the reactions at $A$ and $B$ equal to $Q=P_{1}+P_{2}+P_{3}$.

In the force plan $a b=P_{1}, b c=P_{2}, c d=P_{3}$, and $a d=Q$, which is first decomposed into 1 and 2 by drawing $e a$ and de parallel to $A B$ and $A J$; then, combining 1 with $P_{1}$, and decomposing the resultant, as before, we get 3 and 4 , or ef and $f b$. Having 2 and 3 , we get in like manner 5 and 6, or $g f$ and $d g$; then combining 4 and 5 with $P_{2}$, and decomposing with parallels to $C K$ and $C D$, we obtain the forces 8 and 9 , and so proceed until we reach 12, which is the middle of the symmetrical figure. The members $K L, D L, E L$, and $M L$ are all subject to tension.

## WIND STRESSES.

In designing large and important roof trusses it is important to investigate the stresses due to wind pressure, as well as those due to the weight of the roof and of snow; and, indeed, in some cases the resistance to wind is the most important of all.

As an illustration of the applicability of the graphical method to the determination of wind stresses, we will take the English roof truss, whose


Wind Stresses.
conditions under a vertical load have already been examined, and consider it as also subjected to a wind stress, $W$.

We have first to determine the forces, $Q_{1}$ and $Q_{2}$, acting at the points, $A$ and $D$. The wind pressure will be taken as acting on the surface of the roof from $A$ to $B$. Let $W$ be the resultant of the entire wind pressure acting normal to $A B$, and let $P$ be the total vertical load upon that half of the truss. By combining these two forces we obtain the direction, FS, of their resultant, and also its magnitude, which we then lay off on the force plan at $c c_{1}$. Upon the other half of the truss we have only the vertical load, which may be considered as acting at $J$, and equal in magnitude to $P$. By prolonging its direction until it intersects the previously determined line at $S$, we have at $S$ a point in the resultant of the entire load upon the roof, including wind pressure. By making $c_{1} a_{2}$ in the force plan equal to $P$, we have ac for the direction of this resultant, which may then be laid off at $S T$ in the drawing. In order to determine the forces
$Q_{1}$ and $Q_{2}$ we must recollect that when we have two closing forces to determine we must also have at least two conditions given. In this case, then, we must first find the direction of $Q_{1}$ and $Q_{2}$.

The wind pressure produces a horizontal thrust which must be met by the stability of the walls or columns upon which the roof rests. In each case it must be determined whether this horizontal thrust is borne equally or unequally by both supports, and in what proportion it is divided. To this end we first find the proportion of the vertical component of the force $a c$, which comes upon each support (as found by the intersection of $S T$, prolonged with $A D$ ), and then combine these vertical forces with their respective horizontal components. It often happens that all the horizontal thrust is borne by one of the supports, which it must of course be prepared to resist. This often occurs in the case of railway stations, and under such circumstances the direction of each force must be determined separately. First prolong the vertical at $D$ downward until it intersects $S T$, and join the intersection with $A$ (the lines are only indicated in the figure). This gives the direction of the force at $A$. We have now both the direction of the reaction at $D$ and the direction of that at $A$. We must also consider the distribution of the forces at the various knots between $A$ and $B$ and between $B$ and $D$. We have for the points between $A$ and $B$ the resultants between the proportional parts of $P$ and $W$, while from $B$ to $D$ we have simply the proportional parts of $P$. This gives at $A$ the force $P_{1}$; at $E, F$, and $G$, the force $P_{2}$; at the peak, the force $P_{3}$; at $H, J$, and $K$, the force $P_{4}=\frac{P}{4}$; and at $D$, the vertical force $P_{5}=\frac{P}{8}$.

Returning now to the force plan, we make $c d=P_{1}, d e=e f=f g=P_{2}, g h$ $=P_{3}, h i=i k=k l=P_{4}$, and $l a=P_{5 .}$. We now have finally the length, $b l$, for the value of the reaction, $Q_{2}$, at the point, $D$, and a line (not shown) from $b$ to $d$ gives the magnitude of the force, $Q_{1}$, acting at $A$.

The determination of the stresses in the various members can now readily be made. The decomposition of $b d$ by drawing $b m$ and $m d$ parallel respectively to $A E$ and $A L$ gives the forces 1 and 2. We thus proceed until we reach the rod, $B C$, or No. 13 , for which we get the tension, $r s=13$, by drawing the vertical, $r s$ from $r$, until it intersects the line, $n s$, drawn parallel to $B D$. We then continue to determine the forces from 15 to 25 , as already shown. The force plan shows that under these conditions similarly placed struts are subjected to dissimilar stresses. The determination of the stresses might have been made in the reverse order, beginning with the triangle, $x b l$, which should give the same results, and which may be used to prove the accuracy of the work. A proof is also made by the accuracy with which the line, $w x$, drawn from $w$, parallel to $K O$, intersects the point, $x$, which was first determined by the intersection of $b x$ and $l x$. As a matter of fact, it will be found to require careful drawing in order to insure the closing of the diagram.

By comparing the last force plan with that found for the same roof truss, under vertical loads only, it will be seen how greatly the wind stresses affect the structure. In order to complete the calculation, a second plan should be drawn, assuming the wind to act also upon BD.

## FRAMED BEAMS.

Beams of various forms are often framed in various shapes and made both of wrought and cast iron, and have many applications, such as walking beams for steam engines, for cranes, arms, etc. A few examples will show the method of investigation for such cases.
I. Cantilevers with Straight Members.-The load, $P$, acts at $A$ in a direction normal to the axis of the frame, which is supported at $B$ and C. The force plan is constructed as follows: Draw $a b=P$, and from its extremities draw $a c$ and $b c$ parallel to 1 and 2, which gives the forces in those members. Each of these is then decomposed into two other forces, -1 into 3 and 4, 2 into 5 and 6, giving the triangles, bec and $a d c$.

The forces 3 and 5 are then combined and the resultant decomposed into 7 and 8 . To do this we transfer $5=d c$ to $f e$, and join the resultant, $f b$, which can readily be separated into 7 and 8 . We proceed in this manner for the remaining members, and as the frame is symmetrical about the axis, $g c$, only one-half of the diagram need be completed. The lines, $g a$ and $b g$, which are the final resultants of 15 with 17 , and 16 with 18 , are
also the external forces at $B$ and $C$, the points of attachment, provided that their direction be permitted to remain the same.


## Cantilever.-I.

II. Double=Loaded Frame.-In this case we have the force, $P_{1}$, acting downwards at $A$, and a force, $P_{2}$, acting upwards at $D$, while the points of attachment remain at $B$ and $C$, as before. The members, $A B$ and $A C$, are polygonal-formed. The force plan is drawn just as before, until the force 13 is reached. At $D$ the members are attached to each other at their intersection, so that the force, $P_{2}$, acts upon both 15 and 16. At this same point we have the action of the forces 12 and 13. Now join the extremities of 12 and 13 by the dotted line shown, and mark off the length of the force, $P_{2}$, which is subtracted, because its action is upward, thus obtaining the resultant of the three forces. We can then draw 15 and 16 and proceed without interruption to 20 . Finally, we draw $b f$ and $e a$, the external forces at $Q_{1}$ and $Q_{2}$, which hold the entire frame in equilibrium.


Cantilever.-II.
III. Framed Boom. - This figure is a portion of a framed arch which may be used for the projecting boom of a large crane. At $A$ and $D$ we have the forces, $P_{1}$ and $P_{2}$, and at $B$ and $C$ the external forces, $Q_{1}$ and $Q_{2}$. The force plan is now required to determine the internal forces acting on the various members of the structure. Before this can be done we must first determine the as yet unknown direction of the force, $Q_{2}$. Prolong $P_{1}$ and $P_{2}$ to their intersection at $E$, and by drawing in the force plan the triangle, abc, determine the direction, $F E$, of their resultant; then prolong $Q_{1}$ until it intersects $E F$ at $G$, and join $C G$, which will be the required direction of the force, $Q_{2}$. Completing the figure in the force plan, we have $c d=Q_{1}$ and $d a=Q_{2}$. We now proceed from $P_{1}=a b$ and lay off the forces 1 and 2 , decomposing 2 into 3 and 4 ; combine 3 and 1 and decompose their resultant, obtaining 5 and 6 . We thus proceed until we reach 12 , which we obtain by combining 9 and 8 and decomposing the resultant into 11 and 12. We now have to combine 10 and 11 with $P_{2}$, and decompose the
resultant into 13 and 14. We first transfer the force 11 to $e$, making it equal to ef, in order to avoid the confusion of lines, which would occur if the construction were made at $a$. Now, drawing the path $11,10, P_{2}$, we have the closing line, $c f$, which decomposes into 13 and 14. We then have 15

and 16 from the resultant of 13 and 12, and finally, 17, as the line joining 15 and 16 with $d$, since 16 and 17 must have the resultant, $a d=Q_{2}$. If the work is correctly done, we will find 17 falls parallel to $B C$, which affords a convenient and valuable proof for the whole work.

## BRIDGE TRUSSES

may be examined in a similar manner to roof trusses.
I. Simple Truss.-In the case of a truss of four panels, with vertical struts and diagonal tie-rods, as in the figure, we have on each pillar a load, $P$, except at the ends, where it is equal to $\frac{P}{2}$, this giving a total load of $4 P$, or a vertical reaction of $2 P$ on each pier. The diagram shown is constructed for one-half of the truss, the forces in the other half being identical. In the diagram we make $a d=2 P$. Since $1 / 2 P$ is supported directly upon the pier at $A$, we make $a b=\frac{3}{2} P$. Then draw 2, parallel to $B D$, and 3 , parallel to $B C$, the lengths of these lines giving the stresses in the corresponding members. From $c$ draw 5 , parallel to $C D$, and from $b$ draw 6, parallel to $C E$. Combine 5 and 2 with $P$ for a resultant, $e d$, and draw 7, parallel to $D E$, and 8, parallel to $D F$. Each member will then have its load given by the lengths of the lines in the diagram, the double lines representing compression and the single lines tension, as before. The middle strut, $F E$, bears a compression equal to its top load, $P$.
II. Simple Truss.-In the case of a truss with diagonal struts and vertical tie-rods, as in the figure, we have similar loading, and the diagram is given below. The tension on EF


Simple Truss.-II. is zero, and there is no compression on $B D$.
III. Combined Truss.-By combining the two simple trusses the combination is formed in which all the loads may be doubled for the same stresses as shown in the previous diagrams, except for those members which


Combined Truss.-III.
coincide. We thus hare loads of $2 P$ on the vertical struts, except the middle one, while the loads on the diagonals remain unchanged.

## Leverage.

The stalical moment of a force, as already explained, is the leverage of that force, -that is, the magnitude of the force, multiplied by the perpendicular distance from the centre about which it acts. If two or more forces are in equilibrium, so that motion does not take place, their statical moments must be equal. This is only a general
 statement of what may be called the principle of the lever.

Thus, the statical moment of the force, $P$, is the force multiplied by the distance, $a$, from the fulcrum, $f$, or $=P a$. In like manner the statical moment of $P^{\prime}$ is equal to $P^{\prime} a^{\prime}$, and, if the beam remains stationary, $P a=P^{\prime} a^{\prime}$.
This is true no matter how the lever arms may be disguised by the form or material which may include them. Thus, the force may act at the perimeter of a wheel, the radius of the wheel then becoming the lever arm, or it may be included in some other form; but the forces themselves must always be considered as acting upon lever arms of a length equal to the perpendicular distance from the lines of action of the forces to the fulcrum.

In the case of a force acting at any point to overturn a mass, the resistance must be considered as the weight of the body acting at the centre of gravity.


Thus, in the case of either wall shown in the illustration, the force, $P$, acting to overturn the wall about the corner, $A$, is opposed by a force, $G$, equal to the weight of the wall, acting at a lever arm, $A M$, equal to the
distance of the corner, $A$, from the centre of gravity, $S$, measured at right angles to the line of the force, $G$. This gives for the moment of stability of the wall

$$
A M \times S
$$

## MOTION.

Falling Bodies.
According to the law of gravitation enunciated by Sir Isaac Newton, every particle of matter in the universe attracts every other particle of matter with a force which varies directly as the mass, and inversely as the square of the distance.

In accordance with this law any body above the surface of the earth, when permitted to fall freely, does so with an accelerated velocity.

The unit or measure of force of gravity is assumed to be the velocity a falling body has attained at the end of the first second of descent. This unit is commonly denoted by the letter $g$; its value at the level of the sea in New York is $g=32.17$ feet per second, in vacuum. $g$ is called the acceleration of gravity. The space fallen through in the first second is $1 / 2 g=$ 16.085 feet.

This value increases with the latitude, and decreases with the elevation above the level of the sea.
$l=$ latitude, $h=$ height in feet above the level of the sea, and $r=$ radius of the earth in feet, at the given latitude, $l$.

$$
\begin{aligned}
& r=20887510(1+0.00164 \cos 2 l) \\
& g=32.16954(1-0.00284 \cos 2 l)\left(1-\frac{2 h}{r}\right)
\end{aligned}
$$

## Notation.

$S=$ the space in feet which the falling body passes through in the time $T$. $u=$ the space in feet which the body falls in the $T$ th second.
$V=$ velocity in feet per second of the falling body at the end of the time $T$. $T=$ time in seconds the body is falling.

In the metric system the value of $g$ is given in metres per second, and is taken as equal to 9.81 metres at latitude $45^{\circ}$ and at the level of the sea.

## Formulas for Accelerated Motion.

Velocity, $V$, in Feet per Second.

1. $\quad V=g T$.
2. $V=\frac{2 S}{T}$.
3. $\quad V=\sqrt{2 g S}$.

4a. $\quad V=4.429 \sqrt{S}$.
4. $V=8.02 \sqrt{S}$.
(Metric.)

## Space, $S$, Fallen through in Feet.

5. $S=\frac{g T^{2}}{2}$.
6. $\quad S=\frac{V T}{2}$.
7. $S=\frac{V^{2}}{2 g}$.
8. $S=\frac{V^{2}}{64.33}$.
9. $T=\frac{V}{g}$.
10. $T=\frac{2 S}{V}$.
11. $T=\sqrt{\frac{2 S}{g}}$.
12. $T=\frac{\sqrt{S}}{4.01}$.

## Time of Fall in Seconds.

8a. $\quad S=\frac{V^{2}}{19.62}$.
(Metric.)

## Space Fallen through in the $\boldsymbol{T}$ th Second..

13. 

$$
\begin{equation*}
u=g\left(T-\frac{1}{2}\right) \tag{14.}
\end{equation*}
$$

$$
T=\frac{u}{g}+\frac{1}{2} .
$$

Example 1. What velocity has a body attained after having fallen freely for a time of $T=21 / 2$ seconds?

Velocity, $V=32.17 \times 2.5=80.2$ feet per second.
Example 4. A body is dropped from a height of $S=98$ feet. What velocity will it have on reaching the ground, and what time is required for its fall?

Formula 4. Velocity, $V=8.02 \sqrt{98}=79.3939$ feet per second.
Formula 12. Time, $T=\frac{\sqrt{S}}{4.01}=\frac{\sqrt{98}}{4.01}=2.46$ seconds.
Example 5. A body was dropped at the opening of a hole in the rock, and reached the bottom in $T=3.5$ seconds. Required the depth of the hole?

Formula 5. Depth, $S=g \frac{T^{2}}{2}=\frac{32.17 \times 3.5^{2}}{2}=196.98$ feet.
Example 8. What space must a body fall through in order to acquire a velocity $V=369$ feet per second?

$$
\text { Space, } S=\frac{V^{2}}{64.33}=\frac{369^{2}}{64.33}=2116.6 \text { feet }
$$

Example 10. What time is required for a body to fall $S=2116.6$ feet, when the final velocity $\mathrm{V}^{\prime}=369$ feet per second?

$$
\text { Time, } T=\frac{2 S}{\mathrm{~V}^{-}}=\frac{2 \times 2116.6}{369}=11.472 \text { seconds. }
$$

Example 13. A body falls freely for a time of $T=41 / 2$ seconds. How much will it fall in the last second?

Formula 13. $u=g(T-1 / 2)=32.17(4.5-0.5)=128.68$ feet.

## Retarded Motion.

A body thrown up vertically will obtain inversely the same motion as when it falls down, because it is the same force that acts upon it, causing retarded motion when it ascends, and accelerated motion when it descends.
$V=$ the velocity at which the body starts to ascend.
$v=$ velocity at the end of the time $t$.
$T=$ time in seconds in which the body will ascend.
$t=$ any time less than $T$.
$S=$ height in feet to which the body will ascend.
$s=$ the space it ascends in the time $t$.

## Velocity in Feet per Second at the End of the Time $t$.

15. 

$$
v=V-g t .
$$

16. $v=\frac{s}{t}-\frac{g t}{2}$.

## Height of Ascension in the Time $t$.

17. 

$$
s=t\left(V-g \frac{t}{2}\right)
$$

$$
\text { 18. } \quad s=t\left(v+g \frac{t}{2}\right)
$$

## Starting Velocity in Feet per Second.

19. 

$$
V=v+g t .
$$

20. 

$V=\frac{s}{t}+g \frac{t}{2}$.
Time of Ascension in Seconds.
21. $\quad t=\frac{V-v}{g}$.
22. $\quad t=\frac{V}{g}-\sqrt{\frac{r^{2}}{g^{2}}-\frac{2 s}{g}}$.

## Starting and Ending Velocities.

| 23. | $v=\sqrt{V^{2}-2 g s}$. |
| :--- | :--- |$| 24 . \quad V=\sqrt{v^{2}+2 g s}$.

Formulas for $T$ and $S$ are the same as for accelerated motion.

Example 22. A ball starts to ascend with a velocity of 135 feet per second. At what velocity will it strike an object 60 feet above?

Find the time $t$ by the Formula 22.

$$
t=\frac{135}{32.16}-\sqrt{\frac{135^{2}}{32.16}-\frac{2}{32.16}}=0.41 \text { seconds, }
$$

until it strikes ; and from Formula 15 we have

$$
v=135-32.16 \times 0.41=121.83 \text { feet per second }
$$

Example 24. With what relocity must a body start to ascend in order to strike an object $s=15$ feet above with a velocity $v=10$ feet per second?

Velocity, $V=\sqrt{10^{2}+2 \times 32.17 \times 15}=32.63$ feet per second.
Force of Gravity.


$$
\begin{aligned}
& V=g T \sin x=\sqrt{2 g S \sin x} \\
& S=\frac{g T^{2} \sin x}{2}=\frac{V^{2} \sin x}{2 g} \\
& T=\frac{V}{g \sin x}=\sqrt{\frac{2 S}{g \sin x}}
\end{aligned}
$$



A body will fall from 0 the distances $a, b, c$, and $d$, in equal times.

$$
T=\sqrt{\frac{2 d}{g}}
$$



A body will fall from $a$ to $b$, via $c$, in the shortest time, if the curve is a cycloid.
$S=4 d$, the length of the cycloid,

$$
T=\pi \sqrt{\frac{a}{2 g}}=\pi \sqrt{\frac{p}{2 \pi g}} .
$$



$$
b=\frac{2 \mathrm{I}^{2} \sin x \cos x}{g}
$$

$$
T=\frac{V \sin x}{g}, \quad S=\frac{V^{2} \sin ^{2} x}{2 g} .
$$



$$
\begin{aligned}
S=g \frac{T^{2} F}{2 W} & =\frac{V^{2} W}{2 g F}, \\
V & =g T \frac{F}{W} \\
T=\frac{V W}{g F^{\prime}} & =\sqrt{\frac{2 g S F}{W}}, \\
F & =\frac{V W}{g T} \\
W & =P+Q, \text { and } F
\end{aligned},=P-Q .
$$

Falling Bodies.
English Units.
$V=$ velocity in feet per second at the end of fall.
$T=$ time in seconds of the fall.
$S=$ space fallen through in feet.

| V | $T$ | $S$ | V | $T$ | $S$ | $V$ | $T$ | $S$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.0031 | . 00015 | 5.1 | 0.1585 | 0.4042 | 11 | 0.3419 | 1.8804 |
| 0.2 | 0.0062 | . 00031 | 5.2 | 0.1616 | 0.4202 | 12 | 0.3730 | 2.2380 |
| 0.3 | 0.0093 | 0.0014 | 5.3 | 0.1647 | 0.4364 | 13 | 0.4041 | 2.6266 |
| 0.4 | 0.0124 | 0.0025 | 5.4 | 0.1678 | 0.4530 | 14 | 0.4352 | 3.0464 |
| 0.5 | 0.0155 | 0.0039 | 5.5 | 0.1709 | 0.4700 | 15 | 0.4663 | 3.4975 |
| 0.6 | 0.0186 | 0.0055 | 5.6 | 0.1740 | 0.4872 | 16 | 0.4973 | 3.9784 |
| 0.7 | 0.0217 | 0.0076 | 5.7 | 0.1771 | 0.5047 | 17 | 0.5284 | 4.4914 |
| 0.8 | 0.0248 | 0.0099 | 5.8 | 0.1802 | 0.5226 | 18 | 0.5595 | 5.0355 |
| 0.9 | 0.0279 | 0.0125 | 5.9 | 0.1833 | 0.5407 | 19 | 0.5906 | 5.6107 |
| 1. | 0.0311 | 0.0155 | 6. | 0.1865 | 0.5595 | 20 | 0.6217 | 6.2170 |
| 1.1 | 0.0342 | 0.0188 | 6.1 | 0.1896 | 0.5782 | 21 | 0.6527 | 6.8502 |
| 1.2 | 0.0373 | 0.0224 | 6.2 | 0.1927 | 0.5973 | 22 | 0.6838 | 7.5218 |
| 1.3 | 0.0404 | 0.0262 | 6.3 | 0.1958 | 0.6168 | 23 | 0.7149 | 8.2213 |
| 1.4 | 0.0435 | 0.0304 | 6.4 | 0.1989 | 0.6365 | 24 | 0.7460 | 8.9520 |
| 1.5 | 0.0466 | 0.0335 | 6.5 | 0.2020 | 0.6565 | 25 | 0.7771 | 9.7125 |
| 1.6 | 0.0497 | 0.0381 | 6.6 | 0.2051 | 0.6768 | 26 | 0.8082 | 10.566 |
| 1.7 | 0.0528 | 0.0432 | 6.7 | 0.2082 | 0.6975 | 27 | 0.8393 | 11.330 |
| 1.8 | 0.0559 | 0.0485 | 6.8 | 0.2113 | 0.7184 | 28 | 0.8704 | 12.185 |
| 1.9 | 0.0590 | 0.0551 | 6.9 | 0.2144 | 0.7397 | 29 | 0.9015 | 13.072 |
| 2. | 0.0622 | 0.0622 | 7. | 0.2176 | 0.7616 | 30 | 0.9325 | 13.987 |
| 2.1 | 0.0653 | 0.0685 | 7.1 | 0.2207 | 0.7835 | 31 | 0.9636 | 14.936 |
| 2.2 | 0.0684 | 0.0756 | 7.2 | 0.2238 | 0.8057 | 32 | 0.9947 | 15.915 |
| 2.3 | 0.0715 | 0.0822 | 7.3 | 0.2269 - | 0.8282 | 33 | 1.0258 | 16.926 |
| 2.4 | 0.0746 | 0.0895 | 7.4 | 0.2300 | 0.8510 | 34 | 1.0569 | 17.967 |
| 2.5 | 0.0777 | 0.0971 | 7.5 | 0.2331 . | 0.8741 | 35 | 1.0879 | 19.038 |
| 2.6 | 0.0808 | 0.1050 | 7.6 | 0.2362 | 0.8975 | 36 | 1.1190 | 20.142 |
| 2.7 | 0.0839 | 0.1135 | 7.7 | 0.2393 | 0.9213 | 37 | 1.1501 | 21.277 |
| 2.8 | 0.0870 | 0.1218 | 7.8 | 0.2424 | 0.9453 | 38 | 1.1812 | 22.443 |
| 2.9 | 0.0901 | 0.1305 | 7.9 | 0.2455 | 0.9697 | 39 | 1.2123 | 23.640 |
| 3. | 0.0932 | 0.1398 | 8. | 0.2487 | 0.9948 | 40 | 1.2434 | 24.868 |
| 3.1 | 0.0963 | 0.1492 | 8.1 | 0.2518 | 1.0168 | 41 | 1.2745 | 26.127 |
| 3.2 | 0.0994 | 0.1590 | 8.2 | 0.2549 | 1.0451 | 42 | 1.3056 | 27.417 |
| 3.3 | 0.1025 | 0.1691 | 8.3 | 0.2580 | 1.0707 | 43 | 1.3367 | 28.739 |
| 3.4 | 0.1056 | 0.1795 | 8.4 | 0.2611 | 1.0966 | 44 | 1.3678 | 29.407 |
| 3.5 | 0.1087 | 0.1886 | 8.5 | 0.2642 | 1.1228 | 45 | 1.3989 | 31.475 |
| 3.6 | 0.1118 | 0.2012 | 8.6 | 0.2673 | 1.1494 | 46 | 1.4300 | 32.890 |
| 3.7 | 0.1149 | 0.2125 | 8.7 | 0.2704 | 1.1762 | 47 | 1.4611 | 34.336 |
| 3.8 | 0.1170 | 0.2223 | 8.8 | 0.2735 | 1.2034 | 48 | 1.4922 | 35.813 |
| 3.9 | 0.1201 | 0.2355 | 8.9 | 0.2766 | 1.2259 | 49 | 1.5233 | 37.321 |
| 4. | 0.1243 | 0.2486 | 9. | 0.2797 | 1.2586 | 50 | 1.5544 | 38.830 |
| 4.1 | 0.1274 | 0.2611 | 9.1 | 0.2828 | 1.2867 | 51 | 1.5854 | 40.413 |
| 4.2 | 0.1305 | 0.2740 | 9.2 | 0.2859 | 1.3151 | 52 | 1.6165 | 42.029 |
| 4.3 | 0.1336 | 0.2872 | 9.3 | 0.2890 | $1.3+38$ | 53 | 1.6475 | 43.659 |
| 4.4 | 0.1367 | 0.2939 | 9.4 | 0.2921 | 1.3729 | 54 | 1.6786 | 45.322 |
| 4.5 | 0.1398 | 0.3145 | 9.5 | 0.2952 | 1.4022 | 55 | 1.7097 | 47.017 |
| 4.6 | 0.1429 | 0.3286 | 9.6 | 0.2983 | 1.4318 | 56 | 1.7407 | 48.740 |
| 4.7 | 0.1460 | 0.3431 | 9.7 | 0.3014 | 1.4618 | 57 | 1.7718 | 50.396 |
| 4.8 | 0.1491 | 0.3578 | 9.8 | 0.3045 | 1.4920 | 58 | 1.8029 | 52.284 |
| 4.9 | 0.152: | 0.3729 | 9.9 | 0.3076 | 1.5226 | 59 | 1.8340 | 54.103 |
| 5. | 0.1554 | 0.3885 | 10. | 0.3108 | 1.5510 | 60 | 1.8651 | 55.953 |

Falling Bodies.

English Units.

$$
V=\frac{2 S}{T} . \quad T=\sqrt{\frac{2 S}{g}} . \quad S=\frac{g T^{2}}{2}
$$

| $V$ | $T$ | S | V | $T$ | $S$ | V | $T$ | $S$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65 | 2.0206 | 65.669 | 530 | 16.478 | 4366.6 | 1030 | 32.027 | 16494 |
| 70 | 2.1769 | 76.260 | 540 | 16.788 | 4452.8 | 1040 | 32.338 | 16815 |
| 75 | 2.3314 | 87.427 | 550 | 17.099 | 4701.7 | 1050 | 32.649 | 17141 |
| 80 | 2.4868 | 97.472 | 560 | 17.409 | 4874.5 | 1060 | 32.950 | 17463 |
| 85 | 2.6422 | 112.29 | 570 | 17.720 | 5050.2 | 1070 | 33.261 | 17794 |
| 90 | 2.7976 | 125.89 | 580 | 18.030 | 5228.7 | 1080 | 33.572 | 18129 |
| 95 | 2.9530 | 140.27 | 590 | 18.341 | 5410.6 | 1090 | 33.883 | 18446 |
| 100 | 3.1085 | 155.42 | 600 | 18.651 | 5595.3 | 1100 | 34.194 | 18806 |
| 110 | 3.4194 | 188.07 | 610 | 18.961 | 5783.1 | 1110 | 34.504 | 19149 |
| 120 | 3.7302 | 223.81 | 620 | 19.271 | 5974.0 | 1120 | 34.815 | 19496 |
| 130 | 4.0411 | 262.67 | 630 | 19.582 | 6168.3 | 1130 | 35.126 | 19846 |
| 140 | 4.3519 | 304.63 | 640 | 19.893 | 6365.7 | 1140 | 35.436 | 20198 |
| 150 | 4.6627 | 349.70 | 650 | 20.204 | 6566.3 | 1150 | 35.747 | 20504 |
| 160 | 4.9736 | 397.88 | 660 | 20.515 | 6770.0 | 1160 | 36.058 | 20913 |
| 170 | 5.2844 | 449.18 | 670 | 20.826 | 6976.7 | 1170 | 36.369 | 21275 |
| 180 | 5.5953 | 503.36 | 680 | 21.137 | 7186.6 | 1180 | 36.680 | 21641 |
| 190 | 5.9061 | 561.08 | 690 | 21.448 | 7399.5 | 1190 | 36.991 | 22009 |
| 200 | 6.2170 | 621.70 | 700 | 21.759 | 7615.6 | 1200 | 37.302 | 22381 |
| 210 | 6.5279 | 689.43 | 710 | 22.070 | 7834.8 | 1210 | 37.613 | 22755 |
| 220 | 6.8387 | 752.26 | 720 | 22.380 | 8056.8 | $12: 20$ | 37.924 | 23133 |
| 230 | 7.1496 | 822.20 | 730 | 22.691 | 8282.2 | 1230 | 38.235 | 23514 |
| 240 | 7.4604 | 895.25 | 740 | 23.002 | 8510.7 | 1240 | 38.546 | 23898 |
| 250 | 7.7713 | 971.41 | 750 | 23.313 | 8742.4 | 1250 | 38.857 | 24285 |
| 260 | 8.0821 | 1050.6 | 760 | 23.623 | 8976.7 | 1260 | 39.168 | 24676 |
| 270 | 8.3930 | 1133.1 | 770 | 23.934 | 9214.6 | 1270 | 39.479 | 25069 |
| 280 | 8.7038 | 1218.5 | 780 | 24.245 | 9455.5 | 1280 | 39.780 | 25459 |
| 290 | 9.0147 | 1308.2 | 790 | 24.556 | 9699.6 | 1290 | 40.090 | 25855 |
| 300 | 9.3255 | 1398.8 | 800 | 24.868 | 9947.2 | 1300 | 40.411 | 26267 |
| 310 | 9.6363 | 1493.7 | 810 | 25.179 | 10197 | 1310 | 40.722 | 26673 |
| 320 | 9.9472 | 1591.6 | 820 | 25.490 | 10451 | 1320 | 41.033 | 27081 |
| 330 | 10.258 | 1690.6 | 830 | 25.801 | 10707 | 1330 | 41.343 | 27493 |
| 340 | 10.569 | 1791.7 | 840 | 26.112 | 10967 | 1340 | 41.654 | 27908 |
| 350 | 10.879 | 1903.8 | 850 | 26.423 | 11230 | 1350 | 41.965 | 28326 |
| 360 | 11.190 | 2014.2 | 860 | 26.733 | 11495 | 1360 | 42.276 | 28747 |
| 370 | 11.501 | 2127.7 | 870 | 27.044 | 11764 | 1370 | 42.587 | 29173 |
| 380 | 11.812 | 2244.3 | 880 | 27.354 | 12035 | 1380 | 42.897 | 29599 |
| 390 | 12.123 | 2364.0 | 890 | 27.665 | 12311 | 1390 | 43.208 | 30029 |
| 400 | 12.434 | 2486.8 | 900 | 27.976 | 12589 | 1400 | 43.519 | 30463 |
| 410 | 12.745 | 2612.7 | 910 | 28.287 | 12871 | 1410 | 43.820 | 30893 |
| 420 | 13.055 | 2741.5 | 920 | 28.598 | 13155 | 1420 | 44.131 | 31333 |
| 430 | 13.366 | 2873.7 | 930 | 28.908 | 13442 | 1430 | 44.442 | 31776 |
| 440 | 13.677 | 3008.9 | 940 | 29.219 | 13733 | 1440 | 44.753 | 32222 |
| 450 | 13.989 | 3144.8 | 950 | $\cdot 29.530$ | 14027 | 1450 | 45.064 | 32671 |
| 460 | 14.300 | 3289.0 | 960 | 29.841 | 14323 | 1460 | 45.375 | 33123 |
| 470 | 14.611 | 3433.6 | 970 | 30.152 | 14623 | 1470 | 45.686 | 33579 |
| 450 | 14.922 | 3581.3 | 980 | 30.463 | 14927 | 1480 | 45.997 | 34037 |
| 490 | 15.233 | 3732.1 | 990 | 30.774 | 15233 | 1490 | 46.308 | 34499 |
| 500 | 15.545 | 3886.2 | 1000 | 31.085 | 1554: | 1500 | 46.619 | 34964 |
| 510 | 15.856 | 4043.3 | 1010 | 31.396 | 15855 | 1510 | 46.930 | 35432 |
| 520 | 16.167 | 4203.4 | 1020 | 31.707 | 16179 | $15: 20$ | 47.241 | 35553 |

## Falling Bodies.

Metric System.
Space, $s$, for terminal velocity, $v$, in metres.

$$
s=\frac{v^{2}}{2 g}
$$

| $v$ | $s$ | $v$ | $s$ | $r$ | $s$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0000 | 4.0 | 0.8157 | 8.0 | 3.2627 |
| 1 | 0.0005 | 1 | 0.8570 | 1 | 3.3447 |
| 2 | 0.0020 | 2 | 0.8993 | 2 | 3.4278 |
| 3 | 0.0046 | 3 | 0.9426 | 3 | 3.5120 |
| 4 | 0.0082 | 4 | 0.9869 | 4 | 3.5971 |
| 5 | 0.0127 | 5 | 1.0323 | 5 | 3.6832 |
| 6 | 0.0184 | 6 | 1.0787 | 6 | 3.7704 |
| 7 | 0.0250 | 7 | 1.1261 | 7 | 3.8586 |
| 8 | 0.0326 | 8 | 1.1746 | 8 | 3.9478 |
| 9 | 0.0413 | 9 | 1.2240 | 9 | 4.0381 |
| 1.0 | 0.0510 | 5.0 | 1.2745 | 9.0 | 4.1293 |
| 1 | 0.0617 | 1 | 1.3260 | 1 | 4.2216 |
| 2 | 0.0734 | 2 | 1.3785 | 2 | 4.3149 |
| 3 | 0.0862 | 3 | 1.4320 | 3 | 4.4092 |
| 4 | 0.0999 | 4 | 1.4866 | 4 | 4.5045 |
| 5 | 0.1147 | 5 | 1.5421 | 5 | 4.6009 |
| 6 | 0.1305 | 6 | 1.5987 | 6 | 4.6982 |
| 7 | 0.1473 | 7 | 1.6563 | 7 | 4.7966 |
| 8 | 0.1652 | 8 | 1.7149 | 8 | 4.8960 |
| 9 | 0.1840 | 9 | 1.7746 | 9 | 4.9965 |
| 2.0 | 0.2039 | 6.0 | 1.8352 | 10.0 | 5.0979 |
| 1 | 0.2248 | 1 | 1.8969 | 1 | 5.2004 |
| 2 | 0.2467 | 2 | 1.9596 | 2 | 5.3039 |
| 3 | 0.2697 | 3 | 2.0234 | 3 | 5.4084 |
| 4 | 0.2936 | 4 | 2.0881 | 4 | 5.5139 |
| 5 | 0.3186 | 5 | 2.1539 | 5 | 5.6204 |
| 6 | 0.3446 | 6 | 2.2207 | 6 | 5.7280 |
| 7 | 0.3716 | 7 | 2.2885 | 7 | 5.8366 |
| 8 | 0.3997 | - 8 | 2.3573 | 8 | 5.9462 |
| 9 | 0.4287 | 9 | 2.4271 | 9 | 6.0568 |
| 3.0 | 0.4588 | 7.0 | 2.4980 | 11.0 | 6.1685 |
| 1 | 0.4899 | 1 | 2.5699 | 12.0 | 7.3410 |
| 2 | 0.5220 | 2 | 2.6428 | 13.0 | 8.6155 |
| 3 | 0.5552 | 3 | 2.7167 | 14.0 | 9.9919 |
| 4 | 0.5893 | 4 | 2.7916 | 15.0 | 11.4703 |
| 5 | 0.6245 | 5 | 2.8676 | 16.0 | 13.0507 |
| 6 | 0.6607 | 6 | 2.9446 | 17.0 | 14.7330 |
| 7 | 0.6979 | 7 | 3.0226 | 18.0 | 16.5172 |
| 8 | 0.7361 | 8 | 3.1016 | 19.0 | 18.4035 |
| 9 | 0.7754 | 9 | 3.1816 | 20.0 | 20.3916 |

## Falling Bodies.

Metric System.
Terminal velocity, $v$, for space, $s$, in metres.

$$
v=\sqrt{2 g s}
$$

| $s$ | $v$ | $s$ | $r$ | $s$ | $v$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0000 | 4.0 | 8.8580 | 8.0 | 12.5271 |
| 1 | 1.4006 | 1 | 8.9681 | 1 | 12.6052 |
| 2 | 1.9807 | 2 | 9.0767 | 2 | 12.6827 |
| 3 | 2.4259 | 3 | 9.1842 | 3 | 12.7598 |
| 4 | 2.8012 | 4 | 9.2904 | 4 | 12.8365 |
| 5 | 3.1318 | 5 | 9.3953 | 5 | 12.9127 |
| 6 | 3.4307 | 6 | 9.4991 | 6 | 12.9884 |
| 7 | 3.7056 | 7 | 9.6019 | 7 | 13.0637 |
| 8 | 3.9614 | 8 | 9.7035 | 8 | 13.1385 |
| 9 | 4.2017 | 9 | 9.8040 | 9 | 13.2130 |
| 1.0 | 4.4290 | 5.0 | 9.9036 | 9.0 | 13.2870 |
| 1 | 4.6452 | 1 | 10.0021 | 1 | 13.3606 |
| 2 | 4.8517 | 2 | 10.0997 | 2 | 13.4338 |
| 3 | 5.0499 | 3 | 10.1963 | 3 | 13.5066 |
| 4 | 5.2405 | 4 | 10.2921 | 4 | 13.5790 |
| 5 | 5.4244 | 5 | 10.3869 | 5 | 13.6511 |
| 6 | 5.6023 | 6 | 10.4809 | 6 | 13.7228 |
| 7 | 5.7747 | 7 | 10.5740 | 7 | 13.7940 |
| 8 | 5.9421 | 8 | 10.6664 | 8 | 13.8650 |
| 9 | 6.1049 | 9 | 10.7580 | 9 | 13.9355 |
| 2.0 | 6.2635 | 6.0 | 10.8488 | 10.0 | 14.0057 |
| 1 | 6.4182 | 1 | 10.9388 | 1 | 14.0756 |
| 2 | 6.5693 | 2 | 11.0281 | 2 | 14.1451 |
| 3 | 6.7169 | 3 | 11.1167 | 3 | 14.2143 |
| 4 | 6.8614 | 4 | 11.2046 | 4 | 14.2831 |
| 5 | 7.0029 | 5 | 11.2918 | 5 | 14.3516 |
| 6 | 7.1415 | 6 | 11.3783 | 6 | 14.4198 |
| 7 | 7.2776 | 7 | 11.4642 | 7 | 14.4877 |
| 8 | 7.4111 | 8 | 11.5495 | 8 | 14.5552 |
| 9 | 7.5423 | 9 | 11.6340 | 9 | 14.6224 |
| 3.0 | 7.6712 | 7.0 | 11.7180 | 11.0 | 14.6893 |
| 1 | 7.7981 | 1 | 11.8014 | 12.0 | 15.3425 |
| 2 | 7.9228 | 2 | 11.8842 | 13.0 | 15.9692 |
| 3 | 8.0457 | 3 | 11.9665 | 14.0 | 16.5720 |
| 4 | 8.1667 | 4 | 12.0482 | 15.0 | 17.1535 |
| 5 | 8.2859 | 5 | 12.1293 | 16.0 | 17.7160 |
| 6 | 8.4035 | 6 | 12.2099 | 17.0 | 18.2612 |
| 7 | 8.5194 | 7 | 12.2900 | 18.0 | 18.7907 |
| 8 | 8.6337 | 8 | 12.3695 | 19.0 | 19.3056 |
| 9 | 8.7466 | 9 | 12.4485 | 20.0 | 19.8071 |

Falling Bodies.
Metric System.
Space, $s$, in metres for time, $t$, from 0.1 to 10 seconds.
$s=1 / 2 g t^{2}$.

| $t$ | $s$ | $t$ | s | $t$ | $s$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0000 | 3.0 | 44.1362 | 6.0 | 176.5446 |
| 1 | 0.0490 | 1 | 47.1276 | 1 | 182.4785 |
| 2 | 0.1962 | 2 | 50.2171 | 2 | 188.5104 |
| 3 | 0.4414 | 3 | 53.4047 | 3 | 194.6404 |
| 4 | 0.7846 | 4 | 56.6904 | 4 | 200.8685 |
| 5 | 1.2260 | 5 | 60.0742 | 5 | 207.1947 |
| 6 | 1.7654 | 6 | 63.5561 | 6 | 213.6190 |
| 7 | 2.4030 | 7 | 67.1360 | 7 | 220.1413 |
| 8 | 3.1386 | 8 | 70.8140 | 8 | 226.7618 |
| 9 | 3.9723 | 9 | 74.5901 | 9 | 233.4802 |
| 1.0 | 4.9040 | 4.0 | 78.4643 | 7.0 | 240.2968 |
| 1 | 5.9339 | 1 | 82.4365 | 1 | 247.2115 |
| 2 | 7.0618 | 2 | 86.5069 | 2 | 254.2243 |
| 3 | 8.2878 | 3 | 90.6753 | 3 | 261.3351 |
| 4 | 9.6119 | 4 | 94.9418 | 4 | 268.5440 |
| 5 | 11.0340 | 5 | 99.3063 | 5 | 275.8510 |
| 6 | 12.5543 | 6 | 103.7690 | 6 | 283.2560 |
| 7 | 14.1726 | 7 | 108.3297 | 7 | 290.7592 |
| 8 | 15.8890 | 8 | 112.9886 | 8 | 298.3604 |
| 9 | 17.7035 | 9 | 117.7455 | 9 | 306.0597 |
| 2.0 | 19.6161 | 5.0 | 122.6004 | 8.0 | 313.8571 |
| 1 | 21.6267 | 1 | 127.5535 | 1 | 321.7526 |
| 2 | 23.7354 | 2 | 132.6046 | 2 | 329.7461 |
| 3 | 25.9422 | 3 | 137.7538 | 3 | 337.8377 |
| 4 | 28.2471 | 4 | 143.0011 | 4 | 346.0274 |
| 5 | 30.6501 | 5 | 148.3465 | 8.5 | 354.3153 |
| 6 | 33.1512 | 6 | 153.7900 | 9.0 | 397.2254 |
| 7 | 35.7503 | 7 | 159.3315 | 9.5 | 442.5875 |
| 8 | 38.4475 | 8 | 164.9711 | 10.0 | 490.4017 |
| 9 | 41.2428 | 9 | 170.7088 | 11.0 | 593.3911 |

## Leverage.



$$
F: W=l: L, \quad F L=W l .
$$

1. $F=\frac{W l}{L}$.
2. $l=\frac{F a}{W+F}$.
3. $W_{=}=\frac{F L}{l}$.
4. $L=\frac{W a}{W+F}$.

$F: W=l: L, \quad F L=W^{\imath} l$.
5. $F=\frac{W l}{L}$.
6. $L=\frac{W a}{W-F}$.
7. $W=\frac{F L}{l}$.
8. $l=\frac{F a}{W-F}$.

$F: W=l: L, \quad F L=W l$.
9. $F=\frac{W^{`} l}{L}$.
10. $L=\frac{W^{\top} a}{F-W}$.
11. $W=\begin{gathered}F L \\ l\end{gathered}$.
12. $l=\frac{F a}{F-W}$.

## Static Moments.

$a f+a^{\prime} f^{\prime}+a^{\prime \prime} f^{\prime \prime}=b r+b^{\prime} r^{\prime}+b^{\prime \prime} r^{\prime \prime}$.


If the sum of the moments that act to move the body in one direction are equal to the sum of the moments that act opposite, the acting forces will be in equilibrium; $c$ being the centre or fulcrum.


To find the fulcrum, $c$, when three forces act on the lever,

$$
\begin{aligned}
R x & =Q(a-b-x)+P(a-x), \\
x & =\frac{Q a+P a-Q b}{R+Q+P} .
\end{aligned}
$$


$Q=$ weight of the lever, $x=$ distance from the centre of gravity of the lever to the fulcrum. Balance the lever over a sharp edge, and the centre of gravity is found.

$$
F=\frac{W l-Q x}{L}, \quad W=\frac{F L+Q x}{l}
$$

## DYNAMICS.

We have already referred to the fact that in practical engineering work there are but three elementary quantities: Force, expressed as a weight; Space, expressed as a lineal distance; and Time, expressed in hours, minutes, or seconds.

In the problems of Dynamics, or the study of force and motion, we have the following relations, in which

$$
\begin{array}{ll}
\quad F=\text { force, } S=\text { space, } T=\text { time, } M=\text { mass, } \\
V=\frac{S}{T}=\text { velocity }, & P=\frac{F S}{T}=F V=\text { power }, \\
K=F S=\text { work, } & K=1 / 2 M V^{2}=\text { work. }
\end{array}
$$

## Dynamical Formulas.

## Force or Pressure, in Pounds.

1. $F=\frac{P}{V}$.
2. $F=\frac{550 \mathrm{FP}}{V}$.
3. $F=\frac{K}{S}$.
4. $F=\frac{K}{V T}$.

## Velocity, in Feet, per Second. For Uniform Motion.

5. $\quad V=\frac{S}{T}$.
6. $\cdot V=\frac{P}{F}$.
7. $V=\frac{550 \mathrm{FP}}{F}$.
8. $\quad V^{-}=\frac{K}{F T}$.

Time of Action, in Seconds. For Uniform Motion.
9. $\quad T=\frac{S}{V}$.
10. $\quad \dot{T}=\frac{F S}{P}$.
11. $T=\frac{F S}{550 I P}$.
12. $T=\frac{K}{F V}$.

## Power, in Foot=Pounds, per Second.

13. $P=F \mathrm{~V}$.
14. $P=\frac{F S}{T}$.
15. $\quad P=550 \mathrm{FP}$.
16. $P=\frac{K}{T}$.

## Space passed through in the Time $T$.

17. $S=V T$.
18. $S=\frac{P T}{F}$.
19. $S=\frac{5.50 T I P}{F}$.
20. $S=\frac{K}{F}$.

## Horsespower.

21. $H=\frac{P}{550}$.
22. $H P=\frac{F V}{550}$.
23. $I P=\frac{F S}{550 T}$.
24. $H P=\frac{K}{550 T}$.

## Work, in Foot=Pounds.

25. $K=F V T$ in time $T$.
26. $K=P T$ in time $T$.
27. $K=F S$.
28. $K=550 H P T$ in time $T$.

It will be observed in the preceding formulas that an element is never divided by an element; but a function is divided by an element only when that function contains that element.

Power divided by velocity gives force, because power contains the elements force and velocity; but power cannot be divided by time, because time is not a constituent element of power.

Work can be divided by either one or two of its three constituent factors. When work is divided by either two of its elements, the product will be the third element.

Different elements or functions cannot be added to or subtracted from one another. Power or space cannot be added to or subtracted from work. Force, velocity, or time cannot be added to or subtracted from space.

In the metric system, force is given in Kilogrammes and space in Metres. Work is given in Kilogrammetres; Power in Kilogrammetres per second.

The metric Horse-power is 75 kilogrammetres per second, $=32,547$ footpounds per minute, or about 1.4 per cent. less than the British horse-power of 33,000 foot-pounds per minute.

$$
\text { Work }(K=F S) \text {. }
$$

Work is the product obtained by multiplying together the elements force, $F$, and space, $S$.

Work may also be expressed by $K=P T$, or the product of power and time.

The work of a steam-engine operating with a constant power will be directly as the time of operation, and so with all labor, whether it be mechanical or manual.

## Moment of a Force ( $F l$ ).

The moment of a force is its lever arm at right angles to its direction of action multiplied by its intensity in pounds or tons.

Momentum (MV).
The momentum of a moving body is the intensity of that constant force which, resisting its movement, will bring it to rest in one second.

$$
\begin{aligned}
M & =\frac{w e i g h t}{32.2} \\
V & =\text { velocity in feet per second }
\end{aligned}
$$

## Moment of Inertia ( $M$ Vr).

The moment of inertia of a rotating body is the moment of its momentum, and is equal to its momentum, $M V$, multiplied by its radius of oscillation, $r$.

## Radius of Oscillation.

The radius of oscillation is the mean lever-arm of the momentum of a revolving body. It is equal to the moment of inertia divided by the momentum of the revolving body.

## Radius of Gyration.

The square of the radius of gyration of an oscillating body is equal to the product of the radius of oscillation and of the distance of the centre of gravity of the suspended body from its point of suspension.

The intensity of the force of momentum is proportional to the distance of the centre of gravity from the axis of suspension, and the mean leverage of the momentum is the radius of oscillation. The square of the "radius of gyration," then, is a convenient product of these two quantities, as including both, and therefore giving them in a convenient mathematical form. If a straight rod be balanced at its middle, we are obliged to consider each half separately and add them together.

## Units of Work.

The usual unit of work in the British notation is the foot-pound, equal to one pound raised through a space of one foot. For large measurements, where this unit is too small, the foot-ton is used, this being the usual unit in ordnance computations.

## Units of Power.

The unit of power most generally used in England and America is the horse-power. In rating the early steam-engines Watt made a number of experiments with powerful draught horses, and arrived at the value of

22,000 foot-pounds per minute as the horse-power. In order to allow liberal measure in proportioning his steam-engines, he increased this by 50 per cent., and called the steam horse-power 33,000 foot-pounds per minute, or 550 foot-pounds per second.

The unit of power generally used in connection with electrical work is the watt, and for most mechanical purposes the kilowatt = 1000 watts is used. One English horse-power $=746$ watts, or one kilowatt $=1.34$ horsepower. The metric horse-power $=736$ watts. Since electric generators are usually rated in kilowatts, and are frequently coupled directly to steamengines, or even built into combined generating sets with them, the power of steam-engines is sometimes rated in kilowatts, and this practice is probably destined to become more and more general as electric driving is introduced. For all practical purposes the horse-power may be taken as three-quarters of a kilowatt.

## Formulas for Rotary Motion.

$F=$ force.
$P=$ power, in foot-pounds, per second.
$V=$ velocity, in feet, per second.
$S=$ space, in feet.
$T=$ time, in seconds.
$K=$ work, in foot-pounds.
$R=$ radius from centre of rotation.
$n=$ revolutions per minute.
$N=$ total number of revolutions in a time $T$.

Force, $\boldsymbol{F}$, acting in the Direction of the Tangent.
29. $F=\frac{60 P}{2 \pi R n}$.
30. $F=\frac{9.55 P}{R n}$.
31. $F=\frac{9.55 K}{R n T}$.
32. $F=\frac{5252 I P}{R n}$.

Circumferential Velocity and Revolutions per Minute.
33. $V=\frac{2 \pi R n}{60}$.
34. $V=0.10472 R n$.
35. $n=\frac{9.55 V}{R}$.
36. $n=\frac{5252 I P}{F R}$.

Time of Operation, in Seconds.
37. $T=\frac{9.55 \mathrm{~S}}{R n}$.
38. $T=\frac{9.55 K}{F R n}$.
39. $T=\frac{F R n}{9.55 P}$.
40. $T=\frac{F R N}{87.5 I P}$.

## Radius of Revolution.

41. $R=\frac{9.55 V}{n}$.
42. $R=\frac{9.55 P}{F / n}$.
43. $R=\frac{5252 I P}{F^{\prime} n}$.
44. $R=\frac{9.55 K}{F n T}$.

## Power Generated, in Foot-pounds, per Second.

45. $P=\frac{2 \pi R n F}{60}$.
46. $P=\frac{F R n}{9.55}$.
47. $\quad P=\frac{F R N}{9.55 T}$.
48. $\quad N=\frac{9.55 P T}{F R}$.

Space Generated, in Feet.
49. $S=\frac{2 \pi R n T}{60}$.
50. $S=\frac{R n T}{9.55}$.
51. $S=\frac{F n N}{755.625 I P}$.
52. $S=N 2 \pi R$.

## Horse=power Generated.

53. $H P=\frac{F R n}{5252}$.
54. $I P=\frac{F R N}{87.5 T}$.
55. $N=\frac{87.5 I P T}{F R}$.
56. $N=\frac{S}{2 \pi R}$.

Work Accomplished, in Foot=pounds, in Time $T$.
57. $K=\frac{F R n T}{9.55} .\left|58 . \quad K=F 2 \pi R N .\left|59 . \quad N=\frac{K}{F 2 \pi R}.\right| 60 . \quad R=\frac{K}{F^{2} 2 \pi N^{.}}\right.$.

## Force, Power, and Work in Moving Bodies.

It requires force, power, and work to change the state of motion or rest of a body.

In the dynamic expression $M V=F T$ we have
1.

Force, $F=\frac{M V}{T}$.
2.

$$
T=\frac{M V}{F}
$$

3. 
4. 

$$
\begin{aligned}
M & =\frac{F T}{V} . \\
V & =\frac{F T}{M} .
\end{aligned}
$$

The force, $F$, required to set a mass, $M$, in motion with velocity, $V$, depends inversely on the time, $T$, of action. The more time the less need the force be for a certain velocity, and therefore it cannot be determined what force has set a mass in motion without knowing its time of action; but when the mass and its velocity are given, then we can determine the exact amount of work bestowed on the motion.

Multiply the dynamic momentum by the velocity, $V$, and we have

$$
M V^{2}=F V T
$$

Here we recognize the work, $\frac{V}{2} F T$, which is that bestowed on the mass, $M$, in giving it the velocity, $V$, or the mass multiplied by one-half the square of its velocity is the work stored in it.

Vis=viva. -The term $M V^{2}$ has formerly been called vis-viva, but that term is now seldom used.

The real work in foot-pounds is $1 / 2 M V^{2}=1 / 2 F V T$. The space, $S$, in which the mass was set in motion is $S=1 / 2 V T$, which inserted in the formula gives the

$$
\text { Work, } K=1 / 2 M V^{2}=F S \text {. }
$$

## Dynamical Formulas for Accelerated or Retarded Motion.

Constant Force, in Pounds, acting on a Body free to move.

$$
F=\frac{G W}{g}=\frac{W V}{g T}=\frac{2 W S}{g T^{2}}=\frac{W V^{2}}{2 g S}=\frac{P T}{S}=\sqrt{\frac{2 P W}{g T}}=\frac{2 K}{G T^{2}}=\frac{K}{S} .
$$

Final Velocity in the Time, $T$, or Uniform Velocity of a moving Body.

$$
V=G T=\frac{g F T}{W}=\frac{2 S}{T}=\sqrt{\frac{2 g S F}{W}}=\sqrt{2 G S}=\frac{P T}{K}=\sqrt{\frac{2 g P T}{W}}=\sqrt{\frac{2 g K}{W}}
$$

Time, in Seconds, in which the Force acts on the Body free to move.

$$
T=\frac{V}{G}=\frac{W V}{g F}=\sqrt{\frac{2 W S}{g F}}=\sqrt{\frac{2 S}{G}}=\frac{2 F S^{2}}{V K}=\frac{K}{P}=\frac{2 S W}{g T F}=\sqrt{\frac{2 W K}{g F^{2}}} .
$$

Constant Acceleration of the Force, $F$, in Feet per Second.

$$
G=\frac{g F}{W^{r}}=\frac{2 S}{T^{2}}=\frac{V}{T}=\frac{V^{2}}{2 S}=\frac{g P T}{W S}=\frac{F V^{2}}{P T}=\frac{g K}{W S}=\frac{2 K}{F T^{2}} .
$$

Space, in Feet, in which the Force acts on the Body free to move.

$$
S=\frac{G T^{2}}{2}=\frac{V^{\prime} T}{2}=\frac{V^{2}}{2 G}=\frac{g F T^{2}}{2 W}=\frac{P T}{F}=\frac{g P T^{2}}{W V}=\frac{g K}{G W}=\frac{K}{F} .
$$

Weight, in Pounds, of the moving Body.

$$
W=\frac{g F}{G}=\frac{g F T^{2}}{2 S}=\frac{2 g F S}{V^{2}}=\frac{g F T}{V}=\frac{g P T^{3}}{2 S^{2}}=\frac{g F^{2} T}{2 P}=\frac{2 g K}{V^{2}}=\frac{g T^{2} K}{2 S^{2}}
$$

Mean Power in Effects during the Time, $T$, or in the Space, $S$.

$$
P=\frac{F S}{T}=\frac{g F^{2} T}{2 W}=\frac{2 W S^{2}}{g T^{3}}=\frac{W V^{2}}{2 g T}=\frac{2 K}{T}=\frac{T K}{2 S}=\frac{V K}{S}=\frac{F V^{2}}{G T}
$$

Work, in Foot=pounds, concentrated in a moving Body.

$$
K=F S=\frac{W V^{2}}{2 g}=\frac{F V T}{2}=\frac{G W V T}{2 g}=\frac{F G T^{2}}{2}=\frac{g F^{2} T^{2}}{2 W}=\frac{2 S P}{T}=P T .
$$

## REVOLVING BODIES.

## Centre of Gyration.

The Centre of Gyration is a point in a revolving body in which, if all the revolving matter were there collected, it would obtain equal angular velocity from and sustain equal resistance to the force that gives it the rotary motion. The distance of the centre of gyration from the axis of rotation for different shapes in practical work will be found in the diagrams on pages 281 and 282.

Formulas for Accelerated Circular Motion.
Force, $F$, in Pounds, acting on the Lever or Radius, $r$, to rotate the Body.

$$
F=\frac{W x^{2} n}{307.49 T r}=\frac{W x^{2} N}{2.562 T^{2} r}=\frac{60 K}{\pi r n T}=\frac{K}{2 \pi r N}
$$

Final Revolutions per Minute in the Time $\boldsymbol{T}$.

$$
n=\frac{120 N}{T}=\frac{307.49 F T r}{W x^{2}}=\frac{60 K}{\pi r T F}=\sqrt{\frac{5872.2 K}{W x^{2}}}
$$

Total Number of Revolutions in the Time $T$.

$$
N=\frac{T n}{120}=\frac{2.562 F T^{2} r}{W x^{2}}=\frac{K}{2 \pi r F}=\frac{T}{1.565 x} \sqrt{\frac{K}{W}} .
$$

Time of Acceleration, in Seconds, from the Start of Change of Motion.

$$
T=\frac{W x^{2} n}{307.49 F r}=\sqrt{\frac{W x^{2} N}{2.562 F r}}=\frac{60 K}{\pi r n F}=\frac{x \sqrt{W K}}{4.09 \mathrm{Fr}} .
$$

## Radius of Gyration, in Feet, of the revolving Body.

$x=\sqrt{\frac{307.49 F r T}{W n}}=\sqrt{\frac{2.562 F r T^{2}}{W N}}=\frac{\kappa T}{3.9 N \sqrt{W N F r}}=\frac{334.9 K}{n \sqrt{W n T F r}}$.
Weight, in Pounds, of the revolving Body.

$$
W=\frac{307.49 T F r}{x^{2} n}=\frac{2.562 T^{2} F r}{x^{2} N}=\frac{5872.2 K}{n^{2} x^{2}}=\frac{K T^{2}}{2.452 x^{2} N^{2}} .
$$

Work, in Foot=pounds, concentrated in a revolving Body.

$$
K=\frac{W x^{2} n^{2}}{5872.2}=\frac{2.452 W x^{2} N^{2}}{T^{2}}=\frac{\pi r n F T}{60}=2 \pi r N F .
$$

## Radius of Gyration.

A Line or Bar.


$$
x=0.5773 l, \quad x=0.2857 l .
$$

A Circumference around its $\mathrm{Di}=$ ameter.
A Disk around its Centre.
A Cylinder around its Axis.


$$
x=0.7072 r .
$$

A Disk around its Diameter.


A Sphere around its Diameter.


Spherical shell, $x=0.8165 r$, Solid,

$$
x=0.6324 r .
$$

Parallelopipedon.


Cylinder.


$$
\begin{aligned}
& x=\sqrt{\frac{4 l^{2}+3 r^{2}}{12}}, \\
& x=\sqrt{\frac{c^{2}+3 r^{2}}{12}}
\end{aligned}
$$

Cone.


$$
x=\sqrt{\frac{2 h^{2}+3 R^{2}}{20}}
$$

$$
x=\sqrt{\frac{12 h^{2}+3 R^{2}}{20}}
$$


Cylinder and Sphere.

$x=\sqrt{a^{2}+\frac{1}{2} r^{2}}, \quad x=\sqrt{a^{2}+\frac{2}{2} r^{2}}$.

## Wedge and Ring.


$r=$ internal radius of ring, $R=$ external radius of ring.

$$
\begin{aligned}
& x=0.204 \sqrt{12 l^{2}+B^{2}+b^{2}}, \\
& x=\sqrt{\frac{R^{2}+r^{2}}{2}} .
\end{aligned}
$$

Fly=wheel.


$$
x=\sqrt{\frac{R^{2}+r^{2}}{2}}
$$

$$
F G: W g=x^{2}: s^{2}
$$

Fly=wheel with Arms.

$x^{2}\left(W^{r}+w\right)=W^{\frac{R^{2}+r^{2}}{2}}+w^{\frac{4 r^{2}+b^{2}}{12}}$,

$$
x=\sqrt{\frac{6 W\left(R^{2}+r^{2}\right)+w\left(4 r^{2}+b^{2}\right)}{12(W+w)}} .
$$

## CENTRAL FORCES.

Central Forces are of two kinds, centrifugal and centripetal.
Centrifugal Force is the resistance which a revolving body offers to being moved in the arc of a circle.

Centripetal Force is that by which a revolving body is attracted or attached to its centre of motion.

The centrifugal and centripetal forces are opposites to each other, and when equal the body revolves in a circle; but when they differ the body will revolve in other curved lines, as the ellipse, the parabola, etc., according to the nature of the difference in the forces. If the centrifugal force is $o$ while the other is acting, the body will move straight to the centre of motion; and if the centripetal force is o while the other is act-
ing, the body will depart from the circle in a straight line, tangent to the circle in the point where the centripetal force ceased to act. The central forces are distinct from the force that has set the body in motion.

If the centrifugal force be made use of to produce an effect, such effect will be at the expense of the one producing the rotary motion.

## Notation.

$F=$ centrifugal force, in pounds.
$W=$ the weight of the revolving body, in pounds.
$v=$ velocity of the revolving body, in feet, per second.
$R=$ radius of the circle in which the body revolves, in feet.
$n=$ number of revolutions per minute.
$F=\frac{W v^{2}}{g R}=\frac{W^{`} v^{2}}{32.2 R}$,
$F=\frac{4 W R \pi^{2} n^{2}}{60^{2} g}=\frac{W^{2} R n^{2}}{2933}=0.00034 W R n^{2}$,
$W=\frac{F g R}{v^{2}}=\frac{2933 F}{R n^{2}}$,

$$
R=\frac{W v^{2}}{F g}=\frac{2933 F}{W n^{2}}
$$

$n=\sqrt{\frac{2933 F}{W R}}$

$$
v=\sqrt{\frac{F R g}{W}}
$$



Thus, if we have a weight of 63 pounds at a radius of 4 feet 4 inches, making 163 revolutions per minute, we have

$$
W=63, R=4.333, n=163
$$

and the centrifugal force, or tension produced on the radial arm, will be

$$
0.00034 W R n^{2}=0.00034 \times 63 \times 4.333 \times 163^{2}=2466 \text { pounds } .
$$

## Centrifugal Force of a Ring.


$r=$ internal radius; $R=$ external radius.

$$
F=\frac{W n_{2}(R-r)}{\pi 4150} .
$$

Centrifugal Force of a Grinding Stone, Thin Disk, or Cylinder rotating around its centre.


$$
F=\frac{W R n^{2}}{\pi 4150} .
$$

Centrifugal Force of a Cylinder rotating around the diameter of its base.


$$
F=\frac{W n^{2} l}{5867}
$$

Centrifugal Force of a Ball.

$$
F=\frac{W n^{2} R}{2933}
$$



## Governor.

$$
\begin{aligned}
n & =\frac{60}{2 \pi} \sqrt{\frac{g}{h}}=\frac{54.16}{\sqrt{h}}=\frac{54.16}{\sqrt{l \cos x}}, \\
h & =\frac{2933}{n^{2}}, \quad l=\frac{2933}{n^{2} \cos x}=\frac{h}{\cos x}, \\
\cos x & =\frac{2933}{n^{2} l}=\frac{h}{l}, \quad r=\sqrt{l^{2}-h^{2}}, \\
x & =\underset{\text { axis. }}{\operatorname{angle} \text { made by arm with the vertical }}
\end{aligned}
$$

For a weighted governor of the Porter type, in which $W=$ the axial weight and $B=$ the weight of the ball, the height, $h$, will be equal to the height of a simple governor multiplied by $\left(1+\frac{W}{B}\right)$.

## PENDULUM.

Simple Pendulum is a material point under the action of gravitation, and suspended at a fixed point by a line of no weight.

Compound Pendulum is a suspended rod and body of sensible magnitude, fixed as the simple pendulum.

Centre of Oscillation is a point at which if all the matter in the compound pendulum were there collected, it would make a simple pendulum oscillate in the same periods.

Angle of Oscillation is the space a pendulum describes when in motion.

The velocity of an oscillating body through the vertical position is equal to the velocity a body would obtain by falling vertically the distance versed sine of half the angle of oscillation.

## Notation.

$l=$ length of the simple pendulum, or the distance between the centre of suspension and centre of oscillation, in inches.
$t=$ time, in seconds, for $n$ oscillations.
$n=$ number of single oscillations in the time $t$.
Example. Required the length of a pendulum that will vibrate seconds? Here $n=1$ and $t=1^{\prime \prime}$.

$$
l=39.10 \frac{t^{2}}{n^{2}}=39.10 \text { inches, the length of a pendulum for seconds. }
$$

Example. Required the length of a pendulum that will make 180 vibrations per minute? Here $t=60^{\prime}$ and $n=180$.

$$
l=\frac{39.10 t^{2}}{n^{2}}=\frac{39.10 \times 60^{2}}{180^{2}}=4.344 \text { inches }
$$

Example. How many vibrations will a pendulum of 25 inches length make in 8 seconds?

$$
n=\frac{6.254 t}{\sqrt{l}}=\frac{6.254 \times 8}{\sqrt{25}}=10 \text { vibrations. }
$$

Example. A pendulum is 137.67 inches long and makes 8 vibrations in 15 seconds. Required the acceleration of gravity, $g$ ?

$$
g=\frac{0.8225 \ln ^{2}}{t^{2}}=\frac{0.8225 \times 137.67 \times 8^{2}}{15^{2}}=32.209
$$

Example. A compound pendulum of two iron balls, $P$ and $Q$, having the centre of suspension between themselves, as shown in the illustrations on the opposite page. $P=38$ pounds, $Q=12$ pounds, $a=25$ inches, and $b=18$ inches. How long is the simple pendulum, and how many vibrations will the pendulum make in 10 seconds?

$$
\begin{aligned}
& x=\frac{a P-b Q}{P+Q}=\frac{25 \times 38-18 \times 12}{38+12}=14.68 \text { inches } . \\
& l=\frac{a^{2} P+b^{2} Q}{x(P+Q)}=\frac{25^{2} \times 38+18^{2} \times 12}{14.68(38+12)}=37.68 \text { inches },
\end{aligned}
$$

the length of the single pendulum.

$$
n=\frac{6.254 t}{\sqrt{l}}=\frac{6.254 \times 10}{\sqrt{37.68}}=10.193 \text { vibrations in } 10 \text { seconds. }
$$

If a compound pendulum is hung up at its centre of oscillation, the former centre of suspension will be the centre of oscillation and the pendulum will oscillate the same time.

Simple Pendulum.

$A=$ centre of gravity, $B=$ centre of gyration,
$C=$ centre of oscillation.

$$
\begin{gathered}
a: b=b: l \\
b=\sqrt{a l}=1.414 a, \\
l=1 \frac{1}{3} a .
\end{gathered}
$$

## Compound Pendulum.


$P$ and $Q$ expressed in pounds or cubic contents.

Connecting wire neglected.

## Length of Pendulum Vibrating Seconds at Sea=level.*

|  | Latitude. | Metres. | Inches. |
| :---: | :---: | :---: | :---: |
| At Equator | $0^{\circ} 00^{\prime}$ | 0.99092 | 39.012 |
| At Washington, D. C | $38^{\circ} 53^{\prime}$ | 0.99299 | 39.094 |
| At New York. | $40^{\circ} 43^{\prime}$ | 0.99316 | 39.101 |
| At Latitude $45^{\circ}$ | $45^{\circ} 00^{\prime}$ | 0.99355 | 39.116 |
| At London, Eng. | $51^{\circ} 31^{\prime}$ | 0.99414 | 39.139 |
| At Stockholm. | $59^{\circ} 21^{\prime}$ | 0.99481 | 39.166 |

## IMPACT.

## Impact of Moving Bodies.

When bodies in motion come in collision with each other, the sum of their concentrated momentum will be the same after the collision as before, but their velocities and sometimes their directions of motion will differ.

In the illustrations on page 287 the bodies are supposed to move in the same straight line, and the formula illustrates the consequences after collision.

## Notation.

$M$ and $m=$ weight of the bodies, in pounds.
$V$ and $v=$ their respective velocities, in feet, per second.
$V^{\prime}$ and $v^{\prime}=$ respective velocities of the bodies after impact.
$K$ and $k=$ coefficient of elasticity, which for perfectly hard bodies $k=0$ and for perfectly elastic bodies $k=1$; therefore the elastic coefficient will always be between 0 and 1 . When the bodies are perfectly hard their velocities after impact will be common.

$$
\text { For } M, \quad K=\frac{M V}{M\left(V-V^{\prime}\right)} ; \quad \text { for } m, \quad k=\frac{m v}{m\left(v-V^{\prime}\right)} .
$$

Example 1. The non-elastic body weighs $M=25$ pounds, and moves at a velocity $V=12$ feet per second; $m=16$ pounds and $v=9$ feet per second. Required the bodies' common velocities $v=$ ? after impact, both bodies moving in the same direction.

$$
v^{\prime}=\frac{M V+m v}{M+m}=\frac{25 \times 12+16 \times 9}{25+16}=10.83 \text { feet per second. }
$$

Example 2. The perfect elastic body $M=84$ pounds, $V=18$ feet per second, $m=48$ pounds, and $v=27$ feet per second. Required the velocity $V^{\prime}=$ ? after impact with the body $m$, the bodies moving in opposite directions.

$$
V=\frac{18(84-48)-2 \times 48 \times 27}{84+48}=-23.64 .
$$

The negative sign denotes that the body will return after the collision with a velocity of 23.63 feet per second.

Example 3. The partly elastic body $M=38$ pounds and $V=79$ feet per second will strike the body in rest $m=24$ pounds. What will be the velocity $v=$ ? of the body $m$, its elasticity being $k^{\prime}=0.6$.

$$
v^{\prime}=\frac{79 \times 38(1+0.6)}{38+24}=70.6 \text { feet per second. }
$$

When a moving body strikes a stationary elastic plane its course of departure from the plane will be equal to its course of incidence.

[^1]
## The Bodies Perfectly Hard.

The bodies move in the same direction.

$$
\begin{aligned}
& v^{\prime}(M+m)=M V+m v, \\
& v^{\prime}=\frac{M V+m v}{M+m}
\end{aligned}
$$



The bodies move in opposite directions.

$$
\begin{aligned}
& v^{\prime}(M+m)=M V-m v, \\
& v^{\prime}=\frac{M V-m v}{M+m}
\end{aligned}
$$



Only one body in motion.

$$
\begin{aligned}
& v^{\prime}(M+m)=M V \\
& v^{\prime}=\frac{M V}{M+m}
\end{aligned}
$$



The Bodies Elastic.
The bodies more in the same direction.

$$
\begin{aligned}
V^{\prime} & =\frac{\Gamma(M-K m)+v m(1+K)}{M+m} \\
v^{\prime} & =\frac{M V(1+k)+v(m+k M)}{M+m}
\end{aligned}
$$



The bodies move in opposite directions.

$$
\begin{aligned}
& V^{\prime}=\frac{V(M-K m)-v m(1+K)}{M+m}, \\
& v^{\prime}=\frac{M V(1+k)-v(m-k M)}{M+m}
\end{aligned}
$$



Only one body in motion.

$$
\begin{aligned}
& V^{\prime}=\frac{V(M-K m)}{M+m} \\
& v^{\prime}=\frac{V M(1+k)}{M+m}
\end{aligned}
$$



## FRICTION.

The resistance to motion which is experienced when one body is moved upon another is expressed by the general term Friction. Theoretically, it is assumed to be due to the interlocking of the roughness and inequalities which exist to a greater or less degree in the surfaces of all solids. The term friction, however, is applied to the resistance encountered by air or gases flowing through pipes or flues, or by water in pipes and channels, and in all cases of motion it is an element to be considered.

The first modern study of the subject of friction was that made in France by General Morin about 1831, and for a long time the laws enunciated by him as the result of his experiments, and the coefficients of friction given by him, were generally accepted and extensively reprinted. It is now generally understood, however, that these laws and results were true only for the conditions under which they were made, and that modern operative conditions require them to be modified. At the same time, the general results of Morin's experiments may here be referred to as forming a basis for the more recent data.

Morin's experiments were made by measuring the force required to cause one body to slide upon another. The ratio between this force and the pressure upon the sliding body is called the coefficient of friction, so that the coefficient of friction is the proportion which the resistance of friction bears to the pressure upon the sliding body. The pressure upon the sliding body is always taken as acting normal to the sliding surfaces. As a result of his experiments, Morin announced:

1. Friction is directly proportional to the pressure ; the coefficient being thus constant at all pressures.
2. Friction, both in amount and coefficient, is independent of the areas in contact; the pressure remaining the same.
3. The coefficient of friction is independent of the velocity of the rubbing surfaces. This is understood to refer to the friction of motion, since it takes a greater force to overcome the friction of rest than to maintain the surfaces in motion thereafter.

The second law is a natural consequence of the first, since any increase in area for the same total pressure reduces the pressure per unit of area in the same proportion. If the area be doubled, the pressure per square inch will be halved, but there will be twice as many square inches, and the frictional resistance will be unchanged.

The principal modifications which have to be made in these laws, in the light of modern practice, are in the expansion of an expression made by Morin himself in connection with the experiments,-namely, that the condition of the surfaces must be taken into consideration. It is now possible to produce surfaces, both plane and cylindrical, so far superior to those with which Morin experimented that the coefficients deduced by him, and tabulated in many reference books since, are now considered far too great in nearly every case. The improvement in lubricants and the influence of temperature also enter as factors, and the number of variables thus introduced make it impossible to do more than furnish general data for preliminary use; and in all undertakings of importance experimental determinations should be made with the given materials, as nearly under the actual conditions as possible.

For plane-sliding friction, in which the speed of the movement is moderate and the pressures not excessive, Morin's laws and coefficients are fairly correct, although the latter are somewhat higher than are found with highly-polished surfaces, well lubricated.

Morin's coefficients of friction, given by him in detail under numerous varying conditions, may be taken in general as follows:

Material. Coefficient.

Any attempt to use closer refinements when the exact conditions are not known is both useless and deceptive.

## Journal Friction.

Recent experiments have shown that Morin's laws do not hold for revolving journals at high speeds and under heavy pressures.

The experiments of Mr. Beauchamp Tower* showed that the coefficient of friction, $f$, increased as the square root of the linear velocity, and diminished directly with the increase in pressure.

If $v=$ the linear velocity in feet per second, and $p=$ the pressure in pounds per square inch, the coefficient $f=c \frac{\sqrt{v}}{p}$, in which $c$ is a constant,
dependent upon the lubricant.

The following values of $c$ may be used with pressures of 100 to 600 pounds per square inch :

| Lubricant. | ${ }^{c}$ | Lubricant. |  |
| :---: | :---: | :---: | :---: |
| Olive oil | 0.289 | Sperm oil . | 0.194 |
| Lard oil | 0.281 | Rape oil | 0.212 |
| Mineral gre | 0.431 | Miner | 0.276 |

With olive oil lubrication, at a velocity of $31 / 2$ feet per second, and pressure ranging from 520 pounds down to 100 pounds per square inch, the coefticient of friction, $f$, varied from 0.001 to 0.0055.

In Mr. Tower's experiments the pressure at which the journal seized varied from 520 to 625 pounds per square inch of projected area-that is the length multiplied by the diameter.

On collar bearings, such as are used for the thrust bearings of screwpropeller shafts, the coefficient of friction is found to be independent of the speed. and for pressures between 45 and 75 pounds per square inch it ranges between 0.040 and $0.03 \overline{5}$. Good practice allows a pressure of 50 pounds per square inch. at which a coefficient of 0.036 may be used.

Tests made by Mr. Albert Kingsbury for the Westinghouse Electric and Manufacturing Company, on journal bearings 9 in . diameter and 30 in . long, and 15 in . diameter and 40 in . long, with flooded lubrication from tank, using heary machine oil, sp. gr. 0.92, gave coefficients of friction ranging from 0.0048 to 0.0024 , the pressures ranging from 82 to 146 pounds per square inch of projected area, and circumferential speeds of 708 to 1890 feet per minute. The bearings were lined with babbitt metal, scraped to fit the shaft. The lower coefficients were obtained with the higher pressures.

In good stationary engine practice, Corliss engines, etc., the upper limit of bearing pressure is placed at 140 pounds per square inch of projected area.

Messrs. Gulowsen and Taylor deduce the following for ball-and-socket hangers, in heavy mill service:

For babbitted boxes, with ring or chain feed lubrication the highest pressure and speed combination permissible is 40 pounds per square inch and 10 feet per second; for cast iron boxes, with similar lubrication, 40 pounds and 5 feet per second. If $p=$ pressure, and $v=$ velocity in feet per second, the following empirical formulas are derived:

$$
\begin{array}{ll}
\text { For babbitted boxes } & p v=400 \\
\text { For cast-iron boxes } & p v=200
\end{array}
$$

Locomotive crank pins may be loaded to 1,500 to 1,700 pounds per square inch, since the alternating stresses permit the entrance of the lubricant. The practical loads on locomotive driving journals are from 190 to $2: 0$ pounds per square inch,

The question of temperature is often an important element in frictional resistance, the work of friction appearing as heat, which, if not carried a way, produces a rapid rise in temperature, The increased temperature reduces the riscosity of the lubricant, which is then iorced ourt by the pressure, and the bearing runs dry and seizes.

Pillow-blocks and similar bearings should contain sufficient mass of metal to permit the heat to be conducted away freely, and attempts to economize in metal by coring out to the limit of mere strength may reduce the thermal conductirity of a bearing to such an extent as to render it liable to heat.

[^2]
## MATERIALS OF ENGINEERING.

Martens divides the materials of engineering into two main classes:

1. Materials of Construction. Being those which constitute the completed structures. To this class belong the metals, woods, stone, cement, etc.
2. Materials of Consumption. Being those which are consumed or transformed while being used. These include such substances as coal, water, oil, etc.

While these distinctions are not rigid or absolute, they may serve as a convenient classification.

Materials of Construction may be considered according to their physical or their chemical properties, or both.

For engineering purposes the chemical properties are not so generally considered as are the physical properties, although in some respects the ultimate composition, as well as the manner of combination, must be taken into account. Materials must generally be defined according to their chemical nomenclature, after which their physical properties demand the most attention. No attempt will be made here to discuss any but the materials in general use, the rarer elements and their combinations forming properly the subjects for treatises on chemistry and physics.

Apart from their chemical composition, the principal properties of importance to the engineer are:

Density, represented by specific gravity.
Resistance, or capacity to oppose stresses.
Hardness, or opposition to penetration.
Toughness, or capacity for elongation under tension.
Brittleness, the opposite of toughness.
Besides these there are many other physical properties, such as behavior during heating or cooling, fusing, or working in innumerable ways, but these must be considered in connection with the operations in which they appear.

The Specific Gravity, or relative density of substances, is the ratio of the weight of a given volume of the substance to the same volume of water. For gases, the unit of comparison is an equal volume of air. The water unit in specific gravity determinations is assumed to be pure and at its temperature of greatest density.

Since, in the metric system, the units of weight are derived from the units of volume in terms of the weight of water, the specific gravity of any substance is also its weight in metric units. Thus, if the specific gravity of a certain iron is 7 , a cubic centimetre of it will weigh 7 grammes, or a cubic decimetre will weigh 7 kilogrammes. In English units there is no such integral relation between the units of weight and volume of water, and hence the weight of a cubic inch or cubic foot of any substance must be given in pounds in addition to the specific gravity, or it can be computed from the latter by multiplying it by the weight of the given volume of water.

Since a submerged body is buoyed up by a force equal to the weight of an equal volume of water, the specific gravity of any solid substance may be found by the following methods:

## To Find the Specific Gravity.

$W=$ weight of a body in the air.
$w=$ weight of the body (heavier than water) immersed in water.
$S=$ specific gravity of the body. Then
1.

$$
W-w: W=1: S . \quad S=\frac{W}{W-w}
$$

Required the specific gravity of a piece of iron ore weighing 6.345 pounds in the air and 4.935 pounds in water, $S=$ ?

$$
S=\frac{6.345}{6.345-4.935}=4.5, \text { the specific gravity }
$$

When the body is lighter than water, attach to it a heavier body that is able to sink the lighter one.
$S=$ specific gravity of the heavier attached body.
$\delta=$ specific gravity of the lighter body.
$W=$ weight of the two bodies in air.
$w=$ weight of the two bodies in water.
$V=$ weight of the heavier body in air.
$v=$ weight of the lighter body in air.
2.

$$
s=\frac{v}{W-w-\frac{V}{S}}
$$

To a piece of wood, which weighs $v=14$ pounds in the air, is fastened a piece of cast-iron, $V=28$ pounds; the two bodies together weigh $w=11.7$ pounds in water. Required the specific gravity of the wood?

$$
\begin{aligned}
W & =V+v=28+14=42 \text { pounds. } \\
S & =7.2, \text { the specific gravity of cast-iron. }
\end{aligned}
$$

Formula 2. $S=\frac{14}{42-11.7-\frac{28}{7.2}}=0.529$, the specific gravity of the
A simple way to obtain the specific gravity of wood is to make it into a rod and place it vertically in water ; then, when in equilibrium, the immersed end is to the whole rod as the specific gravity is to 1 .

A cylinder of wood is 6 feet 3 inches long. When immersed vertically in water it will sink 3 feet 9 inches by its own weight. Required its specific gravity?

$$
3.75: 6.25=S: 1 . \quad S=\frac{3.75}{6.25}=0.600
$$

## To Find the Percentage of Alloy in Metals, or to Find the Propor= tions of Two Ingredients in a Compound.

3. 

$$
V=\frac{W-8(W-w)}{1-\frac{s}{S}}
$$

A metal compounded of silver and gold weighs $W=6$ pounds in the air, and in water $w=5.636$ pounds. Required the proportions of silver and gold?

$$
\begin{gathered}
\begin{array}{c}
S=19.36, \text { the specific gravity of gold. } \\
s=10.51, \text { the specific gravity of silver. }
\end{array} \\
\text { Weight } V=\frac{6-10.51(6-5.636)}{1-\frac{10.51}{19.36}}=4.755 \text { pounds of gold and } \\
1.245 \text { pounds of silver. }
\end{gathered}
$$

| Names of substances. |  | $\begin{aligned} & =0 \\ & \text { 30 } \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$ | Names of substances. | $\begin{aligned} & 0.0 \\ & \text { e. } \\ & \text { en } \\ & \text { in } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Metals. |  | Lb. | Stones.-Continued. |  | Lb |
| Platinum, roll | 22.669 | . 798 | Alabaster, yello | 2.699 | . 0974 |
| wir | 21.042 | . 761 | Coral, red | 2.700 | . 0974 |
| hammered. | 20.337 | . 736 | Granite, Susquehanna | 2.704 | . 0976 |
| purified.. | 19.500 | . 706 | Quincy | 2.652 | . 0958 |
| " crude, grs. | 15.602 | . 565 | ". Patapsc | 2.640 | . 0954 |
| Gold, hammered | 19.361 | . 700 | " Scotch | 2.625 | . 0948 |
| pure cast ... | 19.258 | . 697 | Marble, white Italian. | 2.708 | . 0978 |
| 22 carats' fin | 17.486 | . 733 | " common. | 2.686 | . 0968 |
| " 20 " " $\quad$ " | 15.702 | . 568 | Talc, black | 2.900 | . 0105 |
| Mercury, solid at $-40^{\circ}$ | 15.632 | . 566 | Quartz | 2.660 | . 0962 |
| " ${ }^{\prime \prime}$ " $+32^{\circ} \mathrm{F}$. | 13.619 | . 493 | Slate | 2.672 | . 0965 |
| "، " ${ }^{\text {" }} 60^{\circ} \mathrm{F}$ | 13.580 | . 491 | Pearl, Oriental | 2.650 | . 0957 |
| " " $212^{\circ} \mathrm{F}$ | 13.375 | . 484 | Shale | 2.600 | . 0940 |
| Lead, pure.... | 11.330 | . 410 | Flint, white. | 2.594 | . 093315 |
| Silver, hammerer | 11.388 | . 412 | black | 2.582 | . 0933 |
| Silver, hammere | 10.511 | . 381 | Stone, commo | 2.520 | . 0910 |
| " ${ }^{\text {Bismuth }}$ | 10.474 | . 379 | Bristo | 2.510 | . 0906 |
| Bismuth | 9.823 | . 355 | ill | 2.484 | . 0897 |
| Red lead | 8.940 | . 324 | paving | 2.416 | . 0873 |
| Cinnabar | 8.098 | . 293 | Gypsum, opaq | 2.168 | . 0783 |
| Manganese | 8.030 | . 290 | Grindstone. | 2.143 | . 0775 |
| Copper, wire \& rolled. | 8.878 | . 321 | Salt, commo | 2.130 | . 0770 |
|  | 8.788 | . 318 | Saltpetre | 2.090 | . 0755 |
| Bronze, gun | 8.700 | . 315 | Sulphur, n | 2.033 | . 0735 |
| Brass, common | 7.820 | . 282 | Common soil | 1.984 | . 0717 |
| Steel, cast-steel | 7.919 | . 286 | Rotten stone | 1.981 | . 0416 |
| - common soft | 7.833 | . 283 | Clay | 1.930 | . 0698 |
| " hard'ed \& temp. | 7.818 | . 283 | Brick | 1.900 | . 0686 . |
| Iron, pure. | 7.768 | . 281 | Nitre | 1.900 | . 0636 |
| "، wrought \& rol'd. | 7.780 | . 282 |  | 1.872 | . 0677 |
| " hammered | 7.789 | . 282 | Plaster of Paris..... | 2.473 | . 0894 |
| "\% cast-iron | 7.207 | . 261 | Ivory | 1.822 | . 06559 |
| Tin, from English . | 7.312 | . 265 | Sand | 1.800 | . 0651 |
| Zinc, English | 7.291 | . 264 | Phosph | 1.770 | . 0640 |
| Zinc, rolled | 7.191 | . 260 | Borax. | 1.714 | . 0620 |
| " ${ }^{\text {Antimony }}$ | 6.861 | . 248 |  | 1.640 | . 0593 |
| Antimony | 6.712 | . 244 |  | 1.436 | . 0592 |
| Aluminium | 2.500 5.763 | . 090 | " Maryla | 1.355 1.300 | . 0490 |
|  |  |  | New Ca | 1.270 | . 0460 |
| Stones and Earths. |  |  | bitumin | 1.270 | . 0460 |
| Topaz, Orient | 4.011 | . 145 | Charcoal, triturated | 1.380 | . 0500 |
| Emery | 4.000 | . 144 | Earth, loose. | 1.500 | . 0542 |
| Diamond | 3.521 | . 127 | Amber | 1.078 | . 0387 |
| Limestone, green | 3.180 | . 115 | Pimstone | 1.647 | . 0596 |
| white | 3.156 | . 111 | Lime, qui | . 804 | . 0291 |
| Asbestos, starry | 3.073 | . 111 | Charcoa | . 441 | . 0160 |
| Glass, flint.. | $\stackrel{2}{2} .933$ | . 106 |  |  |  |
| " white | 2.892 | . 104 | Woods |  |  |
| bottle | 2.732 | . 0987 | Alder | . 800 | . 0289 |
| Marble, Preen.. | 2.612 | . 0951 | Apple-tree. | . 793 | . 0287 |
| Mariol Africa | 2.838 2.708 | . 1030 | Ash, the trun | 845 | . 0306 |
| " Egypti | 2.6 | . 0961 | Bay-tre | . | . 0297 |
| Mica | 2.800 | . 1000 | Box, Fre | . 912 | . 0330 |
| Hone, | 2.838 | . 1040 | " Dutch | 1.328 | . 0480 |
| Chalk | 2.784 | . 1000 | " Brazilian red | 1.031 | . 0373 |
| Porphyry | 2.765 | . 0999 | Cedar, wild | . 596 | . 0219 |
| Spar, gree | 2.701 | . 0976 | Palesti | . 613 | . 0222 |
| Alabaster, white | 2.693 2.730 | . 09987 | Am | 1.315 | . 0476 |

Specific Gravity.

| Names of substances. |  |  | Names of substances. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Woods.-Continued. |  |  | Liquids.-Continued. |  | Lb. |
| Citron | . 726 | . 0263 | Oil, olive | . 915 | . 0331 |
| Cocoa-woo | 1.040 | . 0376 | " turpe | . 870 | . 0314 |
| Cherry-tree | . 715 | . 0259 | " whale | . 932 | . 0337 |
|  | 240 | . 0087 | Proof spiri | . 925 | . 0334 |
| Cypress, Span | . 644 | . 0233 | Vinegar | 1.080 | . 0390 |
| Ebony, America | 1.331 | . 0481 | Water, di | 1.000 | . 0361 |
| Indian | 1.209 | . 0437 | se | 1.030 | . 0371 |
| Elder-tree | . 695 | . 0252 | Dead Se | 1.240 | . 0448 |
| Elm, trunk | . 671 | . 0243 | Wine. | . 992 | . 0359 |
| Filbert-tre | . 600 | . 0217 |  | . 997 | . 0361 |
| Fir, male | . 550 | . 0199 |  |  |  |
| femal | . 4908 | . 0180 | Miscellaneous. |  |  |
| Jasmine, Sp | . 770 | . 0279 |  | 905 | . 0327 |
| Juniper-tree. | . 556 | . 0201 |  | 1.650 | . 0597 |
| Lemon-tree | . 703 | . 0254 | Atmospheric air | . 0012 | ... 43 |
| Lignum-vita | 1.333 | . 0482 | Beeswax | . 965 | . 0349 |
| Linden-tree | . 604 | . 0219 | Butter. | . 942 | . 0341 |
| Log-wood | . 913 | . 0331 | Camphor | . 988 | . 0357 |
| Mastic-tree | . 849 | . 0307 | India rubber | . 933 | . 0338 |
| Mahogany | 1.063 | . 0385 | Fat of bee | . 923 | . 0334 |
| Maple. | . 750 | . 0271 | hog | . 936 | . 0338 |
| Medlar | . 944 | . 0342 | mu | . 923 | . 0334 |
| Mulberry | . 897 | . 0324 | Gamboge. | 1.222 | . 0442 |
| Oak, heart o | 1.170 | . 0423 | Gunpowder, loose | . 900 | . 0325 |
| Orange-tree | . 705 | . 0255 |  | 1.000 | . 0361 |
| Pear-tree. | . 661 | . 0239 |  | 1.550 | . 0561 |
| Pomegrana | 1.354 | . 0490 |  | 1.800 | . 0650 |
| Poplar wh | . 383 | . 0138 | Gum Ara | 1.452 | . 0525 |
| $\begin{aligned} & \text { wh } \\ & \text { Plum-tree } \end{aligned}$ | . 7829 | . 0191 | Indigo | 1.009 | . 0365 |
| Quince-tr | . 705 | . 0225 | Mastic | 1.074 | . 03488 |
| Sassafras | . 482 | . 0174 | Spermacet | . 943 | . 0341 |
| Spruce | . 500 | . 0181 | Sugar | 1.605 | . 0580 |
| "" old | . 460 | . 0166 | Tallow, shee | . 924 | . 0334 |
| Pine, yello | . 660 | . 0239 |  | . 934 | . 0338 |
| Vine | . 1.354 | . 0200 |  | . 923 | . 0334 |
| Walnut | . 671 | . 0243 |  |  | Weight |
| Yew, Dutc | . 788 | . 0285 | Gases, at $32^{\circ} \mathrm{F}$. |  | lbic |
| Spanish | . 807 | . 0292 |  |  | lb. |
| Liquids. |  |  |  | 1.000 | . 0807 |
| Acid, acetic. | 1.062 | . 0384 | Ammonia | . 597 | . 0481 |
| " nitric | 1.217 | . 0440 | Carbon dioxid | 1.529 | . 1232 |
| sulphuric | 1.841 | . 0666 | mo | . 937 | . 0770 |
| muriatic | 1.200 | . 0434 | Chlorine | 2.422 | . 1956 |
| "، fluoric | 1.500 | . 0542 | Coal gas ....... $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$ | . 340 | . 0263 |
| " phosphoric | 1.558 | . 0563 | Coal gas ....... $\{$ to | . 450 | . 0348 |
| Alcohol, commercial | . 8732 | . 0301 | Cyanogen. <br> Hydrotuoric | 1.806 2.370 | . 1455 |
| " ${ }_{\text {Ammoniac, liquid }}$ | . 792 | . 02824 | Hydrofluoric acid Hydrochloric acid | 2.370 1.250 | .1833 .1009 |
| Ammoniac, liquid | .897 1.034 | . 0324 | Hydrochloric acid Hydrogen | 1.250 .069 | .1009 .0056 |
| Champagne | . 970 | . 0360 | " sulphide | 1.191 | . 0921 |
| Cider. | 1.018 | . 0361 | Marsh gas | . 559 | . 0454 |
| Egg | 1.090 | . 0394 | Nitrogen | 972 | . 0785 |
| Ether, sulp | . 739 | . 0267 | Nitric oxide | 1.039 | . 0838 |
| Honey | 1.450 | . 0524 | Nitrous | 1.527 | . 1230 |
| Human blo | 1.054 | . 0381 | Oxygen | 1.105 | . 0893 |
| Milk | 1.032 | . 0373 | Sulphur dioxid | 2.247 | . 1739 |
| Oil, linseed | . 910 | . 0340 | Steam, at $212^{\circ}$ | . 469 | . 0380 |

## Weight of Flat Rolled Iron per Lineal Foot.

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 1 inch to $33 / 4$ inches.
Iron weighing 480 pounds per cubic foot.

|  | Width, in inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E. | 1 | 11/4 | 11/2 | 13/4 | 2 | 2114 | 21/2 | $23 / 4$ | 3 | 3114 | 31/2 | $33 / 4$ |
|  | Lb. | b. | Lb. | Lb. |
| ${ }_{1}^{16}$ | 208 | . 260 | . 313 | . 365 | . 417 | . 469 | . 521 | . 573 | . 625 | . 677 | 729 | 781 |
| $1 / 8$ | . 417 | . 521 | . 625 | . 729 | . 833 | . 938 | 1.04 | 1.15 | 1.25 | 1.35 | 1.46 | 1.56 |
| $\frac{3}{16}$ | . 625 | . 781 | . 938 | 1.09 | 1.25 | 1.41 | 1.56 | 1.72 | 1.88 | 2.03 | 2.19 | 2.34 |
| $1 / 4$ | . 833 | 1.04 | 1.25 | 1.46 | 1.67 | 1.88 | 2.08 | 2.29 | 2.50 | 2.71 | 2.92 | 3.13 |
| 16 | 1.04 | 1.30 | 1.56 | 1.82 | 2.08 | 2.34 | 2.60 | 2.86 | 3.13 | 3.39 | 3.65 | 3.91 |
| 3/8 | 1.25 | 1.56 | 1.88 | 2.19 | 2.50 | 2.81 | 3.13 | 3.44 | 3.75 | 4.06 | 4.38 | 4.69 |
| ${ }^{7}$ | 1.46 | 1.82 | 2.19 | 2.55 | 2.92 | 3.28 | 3.65 | 4.01 | 4.38 | 4.74 | 5.10 | 5.47 |
| $1 / 2$ | 1.67 | 2.08 | 2.50 | 2.92 | 3.33 | 3.75 | 4.17 | 4.58 | 5.00 | 5.42 | 5.83 | 6.25 |
| 16 | 1.88 | 2.34 | 2.81 | 3.28 | 3.75 | 4.22 | 4.69 | 5.16 | 5.63 | 6.09 | 6.56 | 7.03 |
| 5/8 | 2.08 | 2.60 | 3.13 | 3.65 | 4.17 | 4.69 | 5.21 | 5.73 | 6.25 | 6.77 | 7.29 | 7.81 |
| $\frac{18}{18}$ | 2.29 | 2.86 | 3.44 | 4.01 | 4.58 | 5.16 | 5.73 | 6.30 | 6.88 | 7.45 | 8.02 | 8.59 |
| $3 / 4$ | 2.50 | 3.13 | 3.75 | 4.38 | 5.00 | 5.63 | 6.25 | 6.88 | 7.50 | 8.13 | 8.75 | 9.38 |
| 13 | 2.71 | 3.39 | 4.06 | 4.74 | 5.42 | 6.09 | 6.77 | 7.45 | 8.13 | 8.80 | 9.48 | 10.16 |
| 7/8 | 2.92 | 3.65 | 4.38 | 5.10 | 5.83 | 6.56 | 7.29 | 8.02 | 8.75 | 9.48 | 10.21 | 10.94 |
| $1{ }^{15}$ | 3.13 | 3.91 | 4.69 | 5.47 | 6.25 | 7.03 | 7.81 | 8.59 | 9.38 | 10.16 | 10.94 | 11.72 |
| 1 | 3.33 | 4.17 | 5.00 | 5.83 | 6.67 | 7.50 | 8.33 | 9.17 | 10.00 | 10.83 | 11.67 | 12.50 |
| 16 | 3.54 | 4.43 | 5.31 | 6.20 | 7.08 | 7.97 | 8.85 | 9.74 | 10.63 | 11.51 | 12.40 | 13.28 |
| 1/8 | 3.75 | 4.69 | 5.63 | 6.56 | 7.50 | 8.44 | 9.38 | 10.31 | 11.25 | 12.19 | 13.13 | 14.06 |
| ${ }^{3} 6$ | 3.96 | 4.95 | 5.94 | 6.93 | 7.92 | 8.91 | 9.90 | 10.89 | 11.88 | 12.86 | 13.85 | 14.84 |
| 1/4 | 4.17 | 5.21 | 6.25 | 7.29 | 8.33 | 9.38 | 10.42 | 11.46 | 12.50 | 13.54 | 14.58 | 15.63 |
| ${ }^{5}$ | 4.37 | 5.47 | 6.56 | 7.66 | 8.7 | 9.8 | 10.94 | 12.03 | 13.13 | 14.22 | 15.31 | 16.41 |
| 3/8 | 4.58 | 5.73 | 6.88 | 8.02 | 9.17 | 10.31 | 11.46 | 12.60 | 13.75 | 14.90 | 16.04 | 17.19 |
| ${ }^{7}$ | 4.79 | 5.99 | 7.19 | 8.39 | 9.58 | 10.78 | 11.98 | 13.18 | 14.38 | 15.57 | 16.77 | 17.97 |
| $1 / 2$ | 5.00 | 6.25 | 7.50 | 8.75 | 10.00 | 11.25 | 12.50 | 13.75 | 15.00 | 16.25 | 17.50 | 18.75 |
| $\frac{9}{16}$ | 5.21 | 6.51 | 7.81 | 9.11 | 10.42 | 11.72 | 13.02 | 14.32 | 15.63 | 16.93 | 18.23 | 19.53 |
| 5/8 | 5.42 | 6.77 | 8.13 | 9.48 | 10.83 | 12.19 | 13.54 | 14.90 | 16.25 | 17.60 | 18.96 | 20.31 |
| 118 | 5.63 | 7.03 | 8.44 | 9.84 | 11.25 | 12.66 | 14.06 | 15.47 | 16.88 | 18.28 | 19.69 | 21.09 |
| $3 / 4$ | 5.83 | 7.29 | 8.75 | 10.21 | 11.67 | 13.13 | 14.58 | 16.04 | 17.50 | 18.96 | 20.42 | 21.88 |
| $1{ }^{13}$ | 6.04 | 7.55 | 9.06 | 10.57 | 12.08 | 13.59 | 15.10 | 16.61 | 18.13 | 19.64 | 21.15 | 22.66 |
| 7/8 | 6.25 | 7.81 | 9.38 | 10.94 | 12.50 | 14.06 | 15.63 | 17.19 | 18.75 | 20.31 | 21.88 | 23.44 |
| $\frac{1}{16}$ | 6.46 | 8.07 | 9.69 | 11.30 | 12.92 | 14.53 | 16.15 | 17.76 | 19.38 | 20.99 | 22.60 | 24.22 |
| 2 | 6.67 | 8.33 | 10.00 | 11.67 | 13.33 | 15.00 | 16.67 | 18.33 | 20.00 | 21.67 | 23.33 | 25.00 |

For Steel add 2 per cent.

## Weight of Flat Rolled Iron per Lineal Foot.

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 4 inches to $63 / 4$ inches.
Iron weighing 480 pounds per cubic foot.

|  | Width, in inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 41/4 | 41/2 | 43/4 | 5 | 5114 | 51/2 | 53/4 | 6 | 61/4 | 61/2 | $63 / 4$ |
|  | L | Lb. |  |
| ${ }_{18}^{16}$ | . 833 | . 885 | . 938 | . 990 | 1.04 | 1.09 | 1.15 | 20 | . 25 | 1.30 | 35 |  |
| 1/8 | 1.67 | 1.77 | 1.88 | 1.98 | 2.08 | 2.19 | 2.29 | 2.40 | 2.50 | 2.60 | 71 | 2.81 |
| $\frac{3}{16}$ | 2.50 | 2.66 | 2.81 | 2.97 | 3.13 | 3.28 | 3.44 | 3.59 | 3.75 | 3.91 | 4.06 | . 22 |
| 1/4 | 3.33 | 3.54 | 3.75 | 3.96 | 4.17 | 4.38 | 4.58 | 4.79 | 5.00 | 5.21 | 5.42 | 5.63 |
| 16 | 4.17 | 4.43 | 4.69 | 4.95 | 5.21 | 5.47 | 5.73 | 5.99 | 6.25 | 6.51 | 6.77 | 7.03 |
| $3 / 8$ | 5.00 | 5.31 | 5.63 | 5.94 | 6.25 | 6.56 | 6.88 | 7.19 | 7.50 | 7.81 | 8.13 | 8.44 |
| ${ }^{7}$ | 5.83 | 6.20 | 6.56 | 6.93 | 7.29 | 7.66 | 8.02 | 8.39 | 8.75 | 9.11 | 9.48 | 9.84 |
| $1 / 2$ | 6.67 | 7.08 | 7.50 | 7.92 | 8.33 | 8.75 | 9.17 | 9.58 | 10.00 | 10.42 | 10.83 | 11.25 |
| 16 | 7.5 | 7.97 | 8. | 8.91 | 9.38 | 9.84 | 10.31 | 10.78 | 11.25 | 11.72 | 12.19 | 66 |
| 5/8 | 8.33 | 8.85 | 9.38 | 9.90 | 10.42 | 10.94 | 11.46 | 11.98 | 12.50 | 13.02 | 13.54 | 14.06 |
| 1 | 9.17 | 9.74 | 10.31 | 10.89 | 11.46 | 12.03 | 12.60 | 13.18 | 13.75 | 14.32 | 14.90 | 15.47 |
| 8/4 | 10.00 | 10.63 | 11.25 | 11.88 | 12.50 | 13.13 | 13.75 | 14.38 | 15.00 | 15.63 | 16.25 | 16.88 |
| $\frac{13}{16}$ | 10.83 | 11.51 | 12.19 | 12.86 | 13.54 | 14.22 | 14.90 | 15.57 | 16.25 | 16.93 | 17.60 | 18.28 |
| 7/8 | 11.67 | 12.40 | 13.13 | 13.85 | 14.58 | 15.31 | 16.04 | 16.77 | 17.50 | 18.23 | 18.96 | 19.69 |
| $\frac{15}{16}$ | 12.50 | 13.28 | 14.06 | 14.84 | 15.63 | 16.41 | 17.19 | 17.97 | 18.75 | 19.53 | 20.31 | 21.09 |
| 1 | 13.33 | 14.17 | 15.00 | 15.83 | 16.67 | 17.50 | 18.33 | 19.17 | 20.00 | 20.83 | 21.67 | 22.50 |
| ${ }_{18}^{18}$ | 14.17 | 15.05 | 15.94 | 16.82 | 17.71 | 18.59 | 19.48 | 20.36 | 21.25 | 22.14 | 23.02 | 23.91 |
| 1/8 | 15.00 | 15.94 | 16.88 | 17.81 | 18.75 | 19.69 | 20.63 | 21.56 | 22.50 | 23.44 | 24.38 | 25.31 |
| ${ }_{18}$ | 15.83 | 16.82 | 17.81 | 18.80 | 19.79 | 20.78 | 21.77 | 22.76 | 23.75 | 24.74 | 25.73 | 26.72 |
| 1/4 | 16.67 | 17.71 | 18.75 | 19.79 | 20.83 | 21.88 | 22.92 | 23.96 | 25.00 | 26.04 | 27.08 | 28.13 |
| $\frac{5}{16}$ | 17.50 | 18.59 | 19.69 | 20.78 | 21.88 | 22.97 | 24.06 | 25.16 | 26.25 | 27.34 | 28.44 | 29.53 |
| $3 / 8$ | 18.33 | 19.48 | 20.63 | 21.77 | 22.92 | 24.06 | 25.21 | 26.35 | 27.50 | 28.65 | 29.79 | 30.94 |
| ${ }^{7}$ | 19.17 | 20.36 | 21.56 | 22.76 | 23.96 | 25.16 | 26.35 | 27.55 | 28.75 | 29.95 | 31.15 | 32.34 |
| 1/2 | 20.00 | 21.25 | 22.50 | 23.75 | 25.00 | 26.25 | 27.50 | 28.75 | 30.00 | 31.25 | 32.50 | 33.75 |
| 16 | 20.83 | 22.14 | 23.44 | 24.74 | 26.04 | 27.34 | 28.65 | 29.95 | 31.25 | 32.55 | 33.85 | 35.16 |
| 5/8 | 21.67 | 23.02 | 24.38 | 25.73 | 27.08 | 28.44 | 29.79 | 31.15 | 32.50 | 33.85 | 35.21 | 36.56 |
| $1{ }^{12}$ | 22.50 | 23.91 | 25.31 | 26.72 | 28.13 | 29.53 | 30.94 | 32.34 | 33.75 | 35.16 | 36.56 | 37.97 |
| $3 / 4$ | 23.33 | 24.79 | 26.25 | 27.71 | 29.17 | 30.63 | 32.08 | 33.54 | 35.00 | 36.46 | 37.92 | 39.38 |
| ${ }_{1}^{13}$ | 24.17 | 25.68 | 27.19 | 28.70 | 30.21 | 31.72 | 33.23 | 34.74 | 36.25 | 37.76 | 39.27 | 40.78 |
| 7/8 | 25.00 | 26.56 | 28.13 | 29.69 | 31.25 | 32.81 | 34.38 | 35.94 | 37.50 | 39.06 | 40.63 | 42.19 |
| $\frac{15}{15}$ | 25.83 | 27.45 | 29.06 | 30.68 | 32.29 | 33.91 | 35.52 | 37.14 | 38.75 | 40.36 | 41.98 | 43.59 |
| 2 | 26.67 | 28.33 | 30.00 | 31.67 | 33.33 | 35.00 | 36.67 | 38.33 | 40.00 | 41.67 | 43.33 | 45.00 |

For Steel add 2 per cent.

## Weight of Flat Rolled Iron per Lineal Foot.

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 7 inches to $93 / 4$ inches.
Iron weighing 480 pounds per cubic foot.

|  | Width, in inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E. | 7 | 71/4 | 71/2 | 73/4 | 8 | 81/4 | $81 / 2$ | $83 / 4$ | 9 | 91/4 | 91/2 | 93/4 |
|  | Lb. |
| ${ }_{18}^{18}$ | 1.46 | 1.51 | 1.56 | 1.61 | 1.67 | 1.72 | 1.77 | 1.82 | 1.88 | 1.93 | 1.98 | 2.03 |
| 1/8 | 2.92 | 3.02 | 3.13 | 3.23 | 3.33 | 3.44 | 3.54 | 3.65 | 3.75 | 3.85 | 3.96 | 4.06 |
| ${ }^{\frac{3}{16}}$ | 4.38 | 4.53 | 4.69 | 4.84 | 5.00 | 5.16 | 5.31 | 5.47 | 5.63 | 5.78 | 5.94 | 6.09 |
| 1/4 | 5.83 | 6.04 | 6.25 | 6.46 | 6.67 | 6.88 | 7.08 | 7.29 | 7.50 | 7.71 | 7.92 | 8.13 |
| ${ }^{5}$ | 29 | 7.55 | 7.81 | 8.07 | 8.33 | 8.59 | 8.85 | 9.11 | 9.38 | 9.64 | 9.90 | 10.16 |
| $3 / 8$ | 8.75 | 9.06 | 9.38 | 9.69 | 10.00 | 10.31 | 10.63 | 10.94 | 11.25 | 11.56 | 11.88 | 12.19 |
| 7 | 10.21 | 10.57 | 10.94 | 11.30 | 11.67 | 12.03 | 12.40 | 12.76 | 13.13 | 13.49 | 13.85 | 14.22 |
| 1/2 | 11.67 | 12.08 | 12.50 | 12.92 | 13.33 | 13.75 | 14.17 | 14.58 | 15.00 | 15.42 | 15.83 | 16.25 |
| 16 | 13.13 | 13.59 | 14.06 | 14.53 | 15.00 | 15.47 | 15.94 | 16.41 | 16.88 | 17.34 | 17.81 | 18.28 |
| 5/8 | 14.58 | 15.10 | 15.63 | 16.15 | 16.67 | 17.19 | 17.71 | 18.23 | 18.75 | 19.27 | 19.79 | 20.31 |
| $\frac{17}{16}$ | 16.04 | 16.61 | 17.19 | 17.76 | 18.33 | 18.91 | 19.48 | 20.05 | 20.63 | 21.20 | 21.77 | 22.34 |
| $3 / 4$ | 17.50 | 18.13 | 18.75 | 19.38 | 20.00 | 20.63 | 21.25 | 21.88 | 22.50 | 23.13 | 23.75 | 24.38 |
| 1 | 18.96 | 19.64 | 20.31 | 20.99 | 21.67 | 22.34 | 23.02 | 23.70 | 24.38 | 25.05 | 25.73 | 26.41 |
| $7 / 8$ | 20.42 | 21.15 | 21.88 | 22.60 | 23.33 | 24.06 | 24.79 | 25.52 | 26.25 | 26.98 | 27.71 | 28.44 |
| $1{ }^{15}$ | 21.88 | 22.66 | 23.44 | 24.22 | 25.00 | 25.78 | 26.56 | 27.34 | 28.13 | 28.91 | 29.69 | 30.47 |
| 1 | 23.33 | 24.17 | 25.00 | 25.83 | 26.67 | 27.50 | 28.33 | 29.17 | 30.00 | 30.83 | 31.67 | 32.50 |
| 16 | 24.79 | 25. | 26.56 | 27.45 | 28 | 29. | 30.10 | 30.99 | 31.88 | 32.76 | 33.65 | 34.53 |
| 1/8 | 26.25 | 27.19 | 28.13 | 29.06 | 30.00 | 30.94 | 31.88 | 32.81 | 33.75 | 34.69 | 35.63 | 36.56 |
| $\frac{3}{16}$ | 27.71 | 28.70 | 29.69 | 30.68 | 31.67 | 32.66 | 33.65 | 34.64 | 35.63 | 36.61 | 37.60 | 38.59 |
| $1 / 4$ | 29.17 | 30.21 | 31.25 | 32.29 | 33.33 | 34.38 | 35.42 | 36.46 | 37.50 | 38.54 | 39.58 | 40.63 |
| $\frac{5}{16}$ | 30. | 31.72 | 32.81 | 33.91 | 35.00 | 36.09 | 37.19 | 38.28 | 39.38 | 40.47 | 41.56 | 42.66 |
| 3/8 | 32.08 | 33.23 | 34.38 | 35.52 | 36.67 | 37.81 | 38.96 | 40.10 | 41.25 | 42.40 | 43.54 | 44.69 |
| $\frac{7}{16}$ | 33.54 | 34.74 | 35.94 | 37.14 | 38.33 | 39.53 | 40.73 | 41.93 | 43.13 | 44.32 | 45.52 | 46.72 |
| 1/2 | 35.00 | 36.25 | 37.50 | 38.75 | 40.00 | 41.25 | 42.50 | 43.75 | 45.00 | 46.25 | 47.50 | 48.75 |
| $\frac{9}{16}$ | 36.46 | 37.76 | 39.06 | 40.36 | 41.67 | 42.97 | 44.27 | 45.57 | 46.88 | 48.18 | 49.48 | 50.78 |
| 5/8 | 37.92 | 39.27 | 40.63 | 41.98 | 43.33 | 44.69 | 46.04 | 47.40 | 48.75 | 50.10 | 51.46 | 52.81 |
| 171 | 39.38 | 40.78 | 42.19 | 43.59 | 45.00 | 46.41 | 47.81 | 49.22 | 50.63 | 52.03 | 53.44 | 54.84 |
| $3 / 4$ | 40.83 | 42.29 | 43.75 | 45.21 | 46.67 | 48.13 | 49.58 | 51.04 | 52.50 | 53.96 | 55.42 | 56.88 |
| $\frac{13}{18}$ | 42.29 | 43.80 | 45.31 | 46.82 | 48.33 | 49.84 | 51.35 | 52.86 | 54.38 | 55.89 | 57.40 | 58.91 |
| 7/8 | 43.75 | 45.31 | 46.88 | 48.44 | 50.00 | 51.56 | 53.13 | 54.69 | 56.25 | 57.81 | 59.38 | 60.94 |
| $\frac{15}{16}$ | 45.21 | 46.82 | 48.44 | 50.05 | 51.67 | 53.28 | 54.90 | 56.51 | 58.13 | 59.74 | 61.35 | 62.97 |
| 2 | 46.67 | 48.33 | 50.00 | 51.67 | 53.33 | 55.00 | 56.67 | 58.33 | 60.00 | 61.67 | 63.33 | 65.00 |

For Steel add 2 per cent.

## Weight of Flat Rolled Iron per Lineal Foot.

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 10 inches to 123/4 inches.
Iron weighing 480 pounds per cubic foot.

|  | Width, in inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 10 | 101/4 | 101/2 | 103/4 | 11 | 111/4 | 111/2 | 113/4 | 12 | 121/4 | 121/2 | 123/4 |
|  | Lb. | b. | Lb. |
| 16 | 2.08 | 14 | 19 | 2.24 | 2.29 | 2.34 | 2.40 | 2.45 | 2.50 | 2.55 | 2.60 | 66 |
| 1/8 | 4.17 | 4.27 | 4.38 | 4.48 | 4.58 | 4.69 | 4.79 | 4.90 | 5.00 | 5.10 | 5.21 | 5.31 |
| $\frac{3}{16}$ | 6.25 | 6.41 | 6.56 | 6.72 | 6.88 | 7.03 | 7.19 | 7.34 | 7.50 | 7.66 | 7.81 | 7.97 |
| 1/4 | 8.33 | 8.54 | 8.75 | 8.96 | 9.17 | 9.38 | 9.58 | 9.79 | 10.00 | 10.21 | 10.42 | 10.63 |
| $\frac{5}{16}$ | 10.42 | 10.68 | 10.94 | 11.20 | 11.46 | 11.72 | 11.98 | 12.24 | 12.50 | 12.76 | 13.02 | 13.28 |
| $3 / 8$ | 12.50 | 12.81 | 13.13 | 13.44 | 13.75 | 14.06 | 14.38 | 14.69 | 15.00 | 15.31 | 15.63 | 15.94 |
| $\frac{3}{16}$ | 14.58 | 14.95 | 15.31 | 15.68 | 16.04 | 16.41 | 16.77 | 17.14 | 17.50 | 17.86 | 18.23 | 18.59 |
| 1/2 | 16.67 | 17.08 | 17.50 | 17.92 | 18.33 | 18.75 | 19.17 | 19.58 | 20.00 | 20.42 | 20.83 | 21.25 |
| ${ }^{9} 6$ | 18.75 | 19.22 | 19.69 | 20.16 | 20.63 | 21.09 | 21.56 | 22.03 | 22.50 | 22.97 | 23.44 | 23.91 |
| 5/8 | 20.83 | 21.35 | 21.88 | 22.40 | 22.92 | 23.44 | 23.96 | 24.48 | 25.00 | $2 \overline{5} .52$ | 26.04 | 26.56 |
| $1{ }_{1}^{6}$ | 22.92 | 23.49 | 24.06 | 24.64 | 25.21 | 25.78 | 26.35 | 26.93 | 27.50 | 28.07 | 28.65 | 29.22 |
| $3 / 4$ | 25.00 | 25.62 | 26.25 | 26.88 | 27.50 | 28.13 | 28.75 | 29.38 | 30.00 | 30.63 | 31.25 | 31.88 |
| ${ }^{13}$ | 27.08 | 27.76 | 28.44 | 29.11 | 29.79 | 30.47 | 31.15 | 31.82 | 32.50 | 33.18 | 33.85 | 34.53 |
| 7/8 | 29.17 | 29.90 | 30.63 | 31.35 | 32.08 | 32.81 | 33.54 | 34.27 | 35.00 | 35.73 | 36.46 | 37.19 |
| $\frac{15}{16}$ | 31.25 | 32.03 | 32.81 | 33.59 | 34.38 | 35.16 | 35.94 | 36.72 | 37.50 | 38.28 | 39.06 | 39.84 |
| 1 | 33.33 | 34.17 | 35.00 | 35.83 | 36.67 | 37.50 | 38.33 | 39.17 | 40.00 | 40.83 | 41.67 | 42.50 |
| ${ }_{1}^{16}$ | 35.42 | 36.30 | 37.19 | 38.07 | 38.96 | 39.84 | 40.73 | 41.61 | 42.50 | 43.39 | 44.27 | 45.16 |
| 1/8 | 37.50 | 38.44 | 39.38 | 40.31 | 41.25 | 42.19 | 43.13 | 44.06 | 45.00 | 45.94 | 46.88 | 47.81 |
| $\frac{3}{16}$ | 39.58 | 40.57 | 41.56 | 42.55 | 43.54 | 44.53 | 45.52 | 46.51 | 47.50 | 48.49 | 49.48 | 50.47 |
| 1/4 | 41.67 | 42.71 | 43.75 | 44.79 | 45.83 | 46.88 | 47.92 | 48.96 | 50.00 | 51.04 | 52.08 | 53.13 |
| $\frac{5}{16}$ | 43.75 | 44.84 | 45.94 | 47.03 | 48.13 | 49.22 | 50.31 | 51.41 | 52.50 | 53.59 | 54.69 | 55.78 |
| $3 / 8$ | 45.83 | 46.98 | 48.13 | 49.27 | 50.42 | 51.56 | 52.71 | 53.85 | 55.00 | 56.15 | 57.29 | 8.44 |
| $\frac{7}{16}$ | 47.92 | 49.11 | 50.31 | 51.51 | 52.71 | 53.91 | 55.10 | 56.30 | 57.50 | 58.70 | 59.90 | 61.09 |
| 1/2 | 50.00 | 51.25 | 52.50 | 53.75 | 55.00 | 56.25 | 57.50 | 58.75 | 60.00 | 61.25 | 62.50 | 63.75 |
| $\frac{9}{16}$ | 52.08 | 53.39 | 54.69 | 55.99 | 57.29 | 58.59 | 59.90 | 61.20 | 62.50 | 63.80 | 65.10 | 6.41 |
| 5 | 54.17 | 55.52 | 56.88 | 58.23 | 59.58 | 60.94 | 62.29 | 63.65 | 65.00 | 66.35 | 67.71 | 9.06 |
| ${ }_{1}^{16}$ | 56.25 | 57.66 | 59.06 | 60.47 | 61.88 | 63.28 | 64.69 | 66.09 | 67.50 | 68.91 | 70.31 | 1.72 |
| $3 / 4$ | 58.33 | 59.79 | 61.25 | 62.71 | 64.17 | 65.63 | 67.08 | 68.54 | 70.00 | 71.46 | 72.92 | 74.38 |
| 18 | 60.42 | 61.93 | 63.44 | 64.95 | 66.46 | 67.97 | 69.48 | 70.99 | 72.50 | 74.01 | 75.52 | 77.03 |
| 7/8 | 62.50 | 64.06 | 65.63 | 67.19 | 68.75 | 70.31 | 71.88 | 73.44 | 75.00 | 76.56 | 78.13 | 79.69 |
| $\frac{15}{16}$ | 64.58 | 66.20 | 67.81 | 69.43 | 71.04 | 72.66 | 74.27 | 75.89 | 77.50 | 79.11 | 80.73 | 82.34 |
| 2 | 66.67 | 68.33 | 70.00 | 71.67 | 73.33 | 75.00 | 76.67 | 78.33 | 80.00 | 81.67 | 83.33 | 85.00 |

For Steel add 2 per cent.

## Weight of Square and Round Wrought=iron per Lineal Foot.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  | 2 | 13.33 | 10.47 | 4 | 53.33 | 41.89 |
| $\frac{1}{16}$ | . 013 | . 010 | $\frac{1}{16}$ | 14.18 | 11.14 | $\frac{1}{16}$ | 55.01 | 43.21 |
| 1/8 | . 052 | . 041 | 1/8 | 15.05 | 11.82 | 1/8 | 56.72 | 44.55 |
| ${ }_{18}{ }^{3}$ | . 117 | . 092 | ${ }^{\frac{3}{16}}$ | 15.95 | 12.53 | $\frac{3}{16}$ | 58.45 | 45.91 |
| 1/4 | . 208 | . 164 | 1/4 | 16.88 | 13.25 | 1/4 | 60.21 | 47.29 |
| $\frac{5}{16}$ | . 326 | . 256 | $\frac{5}{16}$ | 17.83 | 14.00 | $\frac{5}{16}$ | 61.99 | 48.69 |
| $3 / 8$ | . 469 | . 368 | $3 / 8$ | 18.80 | 14.77 | $3 / 8$ | 63.80 | 50.11 |
| $\frac{7}{16}$ | . 638 | . 501 | $\frac{7}{16}$ | 19.80 | 15.55 | $\frac{7}{16}$ | 65.64 | 51.55 |
| 1/2 | . 833 | . 654 | 1/2 | 20.83 | 16.36 | 1/2 | 67.50 | 53.01 |
| ${ }^{9} 8$ | 1.055 | . 828 | $\frac{9}{16}$ | 21.89 | 17.19 | $\frac{9}{16}$ | 69.39 | 54.50 |
| 5/8 | 1.302 | 1.023 | 5/8 | 22.97 | 18.04 | 5/8 | 71.30 | 56.00 |
| $1 \frac{1}{6}$ | 1.576 | 1.237 | $\frac{11}{16}$ | 24.08 | 18.91 | $\frac{11}{16}$ | 73.24 | 57.52 |
| $3 / 4$ | 1.875 | 1.473 | $3 / 4$ | 25.21 | 19.80 | $3 / 4$ | 75.21 | 59.07 |
| $\frac{13}{13}$ | 2.201 | 1.728 | $\frac{13}{16}$ | 26.37 | 20.71 | $\frac{13}{16}$ | 77.20 | 60.63 |
| 7/8 | 2.552 | 2.004 | 7/8 | 27.55 | 21.64 | 7/8 | 79.22 | 62.22 |
| $1{ }^{5}$ | 2.930 | 2.301 | $\frac{15}{15}$ | 28.76 | 22.59 | $\frac{15}{15}$ | 81.26 | 63.82 |
| 1 | 3.333 | 2.618 | 3 | 30.00 | 23.56 | 5 | 83.33 | 65.45 |
| $\frac{1}{16}$ | 3.763 | 2.955 | ${ }_{1}^{18}$ | 31.26 | 24.55 | $\frac{1}{16}$ | 85.43 | 67.10 |
| 1/8 | 4.219 | 3.313 | 1/8 | 32.55 | 25.57 | 1/8 | 87.55 | 68.76 |
| ${ }^{8} 6$ | 4.701 | 3.692 | ${ }^{\frac{3}{6}}$ | 33.87 | 26.60 | $\frac{3}{16}$ | 89.70 | 70.45 |
| 1/4 | 5.208 | 4.091 | 1/4 | 35.21 | 27.65 | 1/4 | 91.88 | 72.16 |
| $\frac{5}{16}$ | 5.742 | 4.510 | $\frac{5}{16}$ | 36.58 | 28.73 | $\frac{5}{16}$ | 94.08 | 73.89 |
| $3 / 8$ | 6.302 | 4.950 | $3 / 8$ | 37.97 | 29.82 | $3 / 8$ | 96.30 | 75.64 |
| ${ }_{1} 7$ | 6.888 | 5.410 | $\frac{7}{16}$ | 39.39 | 30.94 | $\frac{7}{16}$ | 98.55 | 77.40 |
| $1 / 2$ | 7.500 | 5.890 | 1/2 | 40.83 | 32.07 | 1/2 | -100.8 | 79.19 |
| ${ }_{18}$ | 8.138 | 6.392 | $\frac{9}{16}$ | 42.30 | 33.23 | $\frac{9}{16}$ | 103.1 | 81.00 |
| 5/8 | 8.802 | 6.913 | 5/8 | 43.80 | 34.40 | 5/8 | 105.5 | 82.83 |
| $\frac{11}{6}$ | 9.492 | 7.455 | $\frac{11}{16}$ | 45.33 | 35.60 | $\frac{11}{16}$ | 107.8 | 84.69 |
| $3 / 4$ | 10.21 | 8.018 | $3 / 4$ | 46.88 | 36.82 | $3 / 4$ | 110.2 | 86.56 |
| $\frac{1}{19}$ | 10.95 | 8.601 | 13 | 48.45 | 38.05 | $\frac{13}{13}$ | 112.6 | 88.45 |
| 7/8 | 11.72 | 9.204 | 7/8 | 50.05 | 39.31 | 7/8 | 115.1 | 90.36 |
| $\frac{15}{16}$ | 12.51 | 9.828 | $\frac{15}{15}$ | 51.68 | 40.59 | $\frac{15}{16}$ | 117.5 | 92.29 |

For Steel add 2 per cent.

## Weight of Square and Round Wrought-iron per Lineal Foot.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 120.0 | 94.25 | 8 | 213.3 | 167.6 | 10 | 333.3 | 261.8 |
| $\frac{1}{16}$ | 122.5 | 96.22 | ${ }_{1}^{16}$ | 216.7 | 170.2 | $\frac{1}{16}$ | 337.5 | 265.1 |
| 1/8 | 125.1 | 98.22 | 1/8 | 220.1 | 172.8 | 1/8 | 341.7 | 268.4 |
| $\frac{3}{16}$ | 127.6 | 100.2 | $\frac{3}{16}$ | 223.5 | 175.5 | $\frac{3}{16}$ | 346.0 | 271.7 |
| 1/4 | 130.2 | 102.3 | 1/4 | 226.9 | 178.2 | 1/4 | 350.2 | 275.1 |
| $\frac{5}{16}$ | 132.8 | 104.3 | $\frac{5}{16}$ | 230.3 | 180.9 | $\frac{5}{16}$ | 354.5 | 278.4 |
| $3 / 8$ | 135.5 | 106.4 | $3 / 8$ | 233.8 | 183.6 | 3/8 | 358.8 | 281.8 |
| ${ }^{7} 8$ | 138.1 | 108.5 | $\frac{7}{16}$ | 237.3 | 186.4 | ${ }_{18}$ | 363.1 | 285.2 |
| 1/2 | 140.8 | 110.6 | 1/2 | 240.8 | 189.2 | 1/2 | 367.5 | 288.6 |
| ${ }^{\text {\% }}$ | 143.6 | 112.7 | ${ }^{9} 8$ | 244.4 | 191.9 | ${ }^{9} 8$ | 371.9 | 292.1 |
| $5 / 8$ | 146.3 | 114.9 | 5/8 | 248.0 | 194.8 | 5/8 | 376.3 | 295.5 |
| $\frac{14}{6}$ | 149.1 | 117.1 | 18 | 251.6 | 197.6 | $\frac{12}{18}$ | 380.7 | 299.0 |
| $3 / 4$ | 151.9 | 119.3 | $3 / 4$ | 255.2 | 200.4 | $3 / 4$ | 385.2 | 302.5 |
| 18 | 154.7 | 121.5 | $\frac{13}{16}$ | 258.9 | 203.3 | ${ }^{\frac{1}{13}}$ | 389.7 | 306.1 |
| 7/8 | 157.6 | 123.7 | 7/8 | 262.6 | 206.2 | 7/8 | 394.2 | 309.6 |
| $\frac{15}{65}$ | 160.4 | 126.0 | $\frac{18}{16}$ | 266.3 | 209.1 | $\frac{15}{16}$ | 398.8 | 313.2 |
| 7 | 163.3 | 128.3 | 9 | 270.0 | 212.1 | 11 | 403.3 | 316.8 |
| $\frac{1}{18}$ | 166.3 | 130.6 | ${ }_{1}^{18}$ | 273.8 | 215.0 | ${ }^{\frac{1}{16}}$ | 407.9 | 320.4 |
| 1/8 | 169.2 | 132.9 | 1/8 | 277.6 | 218.0 | 1/8 | 412.6 | 324.0 |
| $\frac{3}{16}$ | 172.2 | 135.2 | $\frac{3}{16}$ | 281.4 | 221.0 | $\frac{3}{16}$ | 417.2 | 327.7 |
| 1/4 | 175.2 | 137.6 | 1/4 | 285.2 | 224.0 | 1/4 | 421.9 | 331.3 |
| $\frac{5}{16}$ | 178.2 | 140.0 | $\frac{5}{16}$ | 289.1 | 227.0 | $\frac{5}{18}$ | 426.6 | 335.0 |
| $3 / 8$ | 181.3 | 142.4 | $3 / 8$ | 293.0 | 230.1 | 3/8 | 431.3 | 338.7 |
| $\frac{7}{16}$ | 184.4 | 144.8 | $\frac{7}{16}$ | 296.9 | 233.2 | $\frac{7}{16}$ | 436.1 | 342.5 |
| 1/2 | 187.5 | 147.3 | 1/2 | 300.8 | 236.3 | 1/2 | 440.8 | 346.2 |
| ${ }_{16}$ | 190.6 | 149.7 | $\frac{9}{16}$ | 304.8 | 239.4 | 18 | 445.6 | 350.0 |
| 5/8 | 193.8 | 152.2 | 5/8 | 308.8 | 242.5 | 5/8 | 450.5 | 353.8 |
| $\frac{18}{15}$ | 197.0 | 154.7 | $\frac{11}{16}$ | 312.8 | 245.7 | $\frac{11}{17}$ | 455.3 | 357.6 |
| $3 / 4$ | 200.2 | 157.2 | $3 / 4$ | 316.9 | 248.9 | $3 / 4$ | 460.2 | 361.4 |
| $1{ }_{18}^{68}$ | 203.5 | 159.8 | $\frac{13}{13}$ | 321.0 | 252.1 | 13 | 465.1 | 365.3 |
| $7 / 8$ | 206.7 | 162.4 | 7/8 | 325.1 | 255.3 | 7/8 | 470.1 | 369.2 |
| $\frac{15}{15}$ | 210.0 | 164.9 | $\frac{15}{15}$ | 329.2 | 258.5 | $\frac{15}{15}$ | 475.0 | 373.1 |

For Steel add 2 per cent.

## Weight of Flat Rolled Iron, in Kilogrammes, per Lineal Metre.



For Steel add 2 per cent.

## Weight of Square and Round Wrought=iron, in Kilogrammes, per Lineal Metre.

| Thickness or diameter. | Square. | Round. | Thickness or dianieter. | Square. | Round. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mm. | Kg. | Kg. | Mm. | Kg. | Kg . |
| 5 | 0.195 | 0.152 | 50 | 19.450 | 15.215 |
| 6 | 0.280 | 0.219 | 52 | 21.009 | 16.459 |
| 7 | 0.381 | 0.298 | 54 | 22.686 | 17.749 |
| 8 | 0.498 | 0.390 | 56 | 24.398 | 19.088 |
| 9 | 0.630 | 0.493 | 58 | 26.172 | 20.476 |
| 10 | 0.778 | 0.609 | 60 | 28.080 | 21.913 |
| 11 | 0.941 | 0.737 | 62 | 29.906 | 23.398 |
| 12 | 1.120 | 0.877 | 64 | 32.147 | 24.930 |
| 13 | 1.315 | 1.028 | 66 | 33.890 | 26.514 |
| 14 | 1.525 | 1.193 | 68 | 35.975 | 28.146 |
| 15 | 1.751 | 1.370 | 70 | 38.122 | 29.825 |
| 16 | 1.992 | 1.558 | 72 | 39.743 | 31.554 |
| 17 | 2.248 | 1.759 | 74 | 42.603 | 33.333 |
| 18 | 2.520 | 1.972 | 76 | 44.937 | 35.158 |
| 19 | 2.809 | 2.197 | 78 | 47.334 | 37.032 |
| 20 | 3.112 | 2.435 | 80 | 49.792 | 38.953 |
| 21 | 3.431 | 2.684 | 85 | 56.195 | 43.977 |
| 22 | 3.765 | 2.946 | 90 | 63.018 | 49.303 |
| 23 | 4.116 | 3.220 | 95 | 70.215 | 54.934 |
| 24 | 4.481 | 3.506 | 100 | 77.800 | 60.860 |
| 25 | 4.863 | 3.804 | 105 | 85.775 | 67.107 |
| 26 | 5.259 | 4.115 | 110 | 94.138 | 73.651 |
| 27 | 5.672 | 4.437 | 115 | 102.891 | 80.500 |
| 28 | 6.100 | 4.772 | 120 | 112.000 | 87.650 |
| 29 | 6.543 | 5.119 | 125 | 121.563 | 95.107 |
| 30 | 7.002 | 5.478 | 130 | 131.500 | 102.867 |
| 31 | 7.477 | 5.849 | 135 | 141.791 | 110.933 |
| 32 | 7.967 | 6.232 | 140 | 152.500 | 119.302 |
| 33 | 8.472 | 6.629 | 145 | 163.575 | 127.976 |
| 34 | 9.009 | 7.036 | 150 | 175.100 | 136.954 |
| 35 | 9.531 | 7.456 | 155 | 186.915 | 146.236 |
| 36 | 10.083 | 7.889 | 160 | 199.200 | 155.812 |
| 37 | 10.651 | 8.333 | 165 | 211.811 | 165.714 |
| 38 | 11.234 | 8.789 | 170 | 224.842 | 175.910 |
| 39 | 11.833 | 9.258 | 175 | 238.263 | 186.410 |
| 40 | 12.448 | 9.738 | 180 | 252.000 | 197.213 |
| 41 | 13.078 | 10.212 | 185 | 266.271 | 208.322 |
| 42 | 13.724 | 10.737 | 190 | 280.900 | 219.735 |
| 43 | 14.385 | 11.255 | 195 | 295.835 | 231.452 |
| 44 | 15.062 | 11.784 | 200 | 311.200 | 243.473 |
| 45 | 15.755 . | 12.326 | 205 | 326.920 | 256.790 |
| 46 | 16.462 | 12.880 | 210 | 343.090 | 269.465 |
| 47 | 17.187 | 13.446 | 215 | 359.600 | 28.2 .453 |
| 48 | 17.925 | 14.024 | 220 | 376.550 | 295.744 |
| 49 | 18.680 | 14.614 | 225 | 393.860 | 309.340 |

For Steel add 2 per cent.

## Weight of Sheet=metal.

British Units.
Weight of Iron, Copper, Lead, and Zinc per Square Foot.

| Thickness, in inches. | Cast-iron. | Wrought- or sheet-iron. | Sheetcopper. | Sheet-lead. | Sheet-zinc. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lb. | Lb. | Lb. | Lb. | Lb. |
| $\frac{1}{16}$ | 2.346 | 2.517 | 2.890 | 3.694 | 2.320 |
| 1/8 | 4.693 | 5.035 | 5.781 | 7.382 | 4.642 |
| $\frac{3}{16}$ | 7.039 | 7.552 | 8.672 | 11.074 | 6.961 |
| 1/4 | 9.386 | 10.070 | 11.562 | 14.765 | 9.275 |
| ${ }_{1}^{5}$ | 11.733 | 12.588 | 14.453 | 18.456 | 11.61 |
| $3 / 8$ | 14.079 | 15.106 | 17.344 | 22.148 | 13.93 |
| $\frac{7}{16}$ | 16.426 | 17.623 | 20.234 | 25.839 | 16.23 |
| 1/2 | 18.773 | 20.141 | 23.125 | 29.530 | 18.55 |
| $\stackrel{9}{16}$ | 21.119 | 22.659 | 26.016 | 33.222 | 20.87 |
| 5/8 | 23.466 | 25.176 | 28.906 | 36.913 | 23.19 |
| $1 \frac{11}{6}$ | 25.812 | 27.694 | 31.797 | 40.604 | 25.53 |
| $3 / 4$ | 28.159 | 30.211 | 34.688 | 44.296 | 27.85 |
| ${ }_{1}^{13}$ | 30.505 | 32.729 | 37.578 | 47.987 | 30.17 |
| 7/8 | 32.852 | 35.247 | 40.469 | 51.678 | 32.47 |
| $\frac{15}{16}$ | 35.199 | 37.764 | 43.359 | 55.370 | 34.81 |
| 1 | 37.545 | 40.282 | 46.250 | 59.061 | 37.13 |
| 1/8 | 42.238 | 45.317 | 52.031 | 66.444 | 41.78 |
| $1 / 4$ | 46.931 | 50.352 | 57.813 | 73.826 | 46.42 |
| $3 / 8$ | 51.625 | 55.387 | 63.594 | 81.210 | 51.04 |
| 1/2 | 56.317 | 60.422 | 69.375 | $88.59,2$ | 55.48 |
| 5/8 | 61.011 | 65.458 | 75.156 | 95.975 | 60.35 |
| 3/4 | 65.704 | 70.493 | 80.938 | 103.358 | 65.00 |
| 7/8 | 70.397 | 75.528 | 86.719 | 110.740 | 69.61 |
| 2 | 75.090 | 80.563 | 92.500 | 118.128 | 74.25 |

## Weight of Sheet=metal.

Metric Linits.
Weight, in Kilogrammes, per Square Metre.

| Thickness. | Cast-iron. | Wrought-iron. | Steel. | Copper. |
| :---: | :---: | :---: | :---: | :---: |
| Mm. | Kg. | Kg. | Kg. | Kg. |
| 0.5 | 3.625 | 3.89 | 3.925 | 4.45 |
| 1 | 7.25 | 7.78 | 7.85 | 8.90 |
| 2 | 14.50 | 15.56 | 15.70 | 17.80 |
| 3 | 21.75 | 23.34 | 23.55 | 26.70 |
| 4 | 29.00 | 31.12 | 31.40 | 35.60 |
| 5 | 36.25 | 38.90 | 39.25 | 44.50 |
| 6 | 43.50 | 46.68 | 47.10 | 53.40 |
| 7 | 50.75 | 54.46 | 54.95 | 62.30 |
| 8 | 58.00 | 62.24 | 62.80 | 71.20 |
| 9 | 65.25 | 70.02 | 70.65 | 80.10 |
| 10 | 72.50 | 77.80 | 78.50 | 89.00 |
| 11 | 79.75 | 85.58 | 86.35 | 97.90 |
| 12 | 87.00 | 93.36 | 94.20 | 106.80 |
| 13 | 94.25 | 101.14 | 102.05 | 115.70 |
| 14 | 101.50 | 108.92 | 109.90 | 124.60 |
| 15 | 108.75 | 116.70 | 117.75 | 133.50 |
| 16 | 116.00 | 124.48 | 125.60 | 142.40 |
| 17 | 123.25 | 132.26 | 133.45 | 151.30 |
| 18 | 130.50 | 140.04 | 141.30 | 160.20 |
| 19 | 137.75 | 147.82 | 149.15 | 169.10 |
| 20 | 145.00 | 155.60 | 157.00 | 178.00 |
| 21 | 152.25 | 163.38 | 164.85 | 186.90 |
| 22 | 159.50 | 171.17 | 172.70 | 195.80 |
| 23 | $166 . \%$ \% | 178.94 | 180.55 | 204.70 |
| 24 | 174.00 | 186.72 | 188.40 | 213.60 |
| 25 | 181.25 | 194.50 | 196.25 | 222.50 |
| 26 | 188.50 | 202.28 | 204.10 | 231.40 |
| 27 | 195.75 | 210.06 | 211.95 | 240.30 |
| 28 | 203.00 | 217.84 | 219.80 | 249.20 |
| 29 | 210.25 | 225.62 | 227.65 | 258.10 |
| 30 | 217.50 | 233.40 | 235.50 | 267.00 |

## Weight of Rolled Sheets of Wrought=iron and Steel.

## British Units.

Specific Gravity of Iron, 7.70; of Steel, 7.85 .

| No. of gauge. | Birmingham Wire Gauge. |  |  | American (13. \& S.) Wire Gauge. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thickness, in inches. | Weight, in pounds, per square foot. |  | Thickness, in inches. | Weight, in pounds, per square foot. |  |
|  |  | Iron. | Steel. |  | Iron. | Steel. |
| 0000 | . 454 | 18.16 | 18.52 | . 4600 | 18.40 | 18.76 |
| 000 | . 425 | 17.00 | 17.34 | . 4096 | 16.39 | 16.72 |
| 00 | . 380 | 15.20 | 15.50 | . 3648 | 14.59 | 14.88 |
| 0 | . 340 | 13.60 | 13.87 | . 3249 | 13.00 | 13.26 |
| 1 | . 300 | 12.00 | 12.24 | . 2893 | 11.57 | 11.80 |
| 2 | . 284 | 11.36 | 11.59 | . 2576 | 10.31 | 10.52 |
| 3 | . 259 | 10.35 | 10.56 | . 2294 | 9.18 | 9.36 |
| 4 | . 238 | 9.52 | 9.71 | . 2043 | 8.17 | 8.33 |
| 5 | . 220 | 8.80 | 8.98 | . 1819 | 7.27 | 7.42 |
| 6 | . 203 | 8.12 | 8.28 | . 1620 | 6.48 | 6.61 |
| 7 | . 180 | 7.19 | 7.34 | . 1443 | 5.77 | 5.88 |
| 8 | . 165 | 6.60 | 6.73 | . 1285 | 5.14 | 5.24 |
| 9 | . 148 | 5.92 | 6.04 | . 1144 | 4.57 | 4.66 |
| 10 | . 134 | 5.36 | 5.47 | . 1019 | 4.07 | 4.15 |
| 11 | . 120 | 4.80 | 4.89 | . 0907 | 3.63 | 3.70 |
| 12 | . 109 | 4.35 | 4.44 | . 0808 | 3.23 | 3.29 |
| 13 | . 095 | 3.80 | 3.87 | . 0720 | 2.88 | 2.93 |
| 14 | . 083 | 3.32 | 3.38 | . 0641 | 2.56 | 2.61 |
| 15 16 | . 07.2 | $\stackrel{2.88}{2.60}$ | $\stackrel{2.94}{2.65}$ | . 0571 | 2.28 | ${ }_{2}^{2.32}$ |
|  |  |  |  |  |  |  |
| 17 | . 058 | 2.32 | 2.37 | . 0453 | 1.81 | 1.84 |
| 18 | . 049 | 1.96 | 1.99 | . 0403 | 1.61 | 1.64 |
| 19 | . 042 | 1.68 | 1.71 | . 0359 | 1.43 | 1.46 |
| 20 | . 035 | 1.39 | 1.42 | . 0320 | 1.27 | 1.30 |
| 21 | . 032 | 1.27 | 1.30 | . 0285 | 1.13 | 1.16 |
| 22 | . 028 | 1.11 | 1.14 | . 0253 | 1.01 | 1.03 |
| $\begin{aligned} & 23 \\ & 24 \end{aligned}$ | . 025 | . 997 | 1.02 .898 | . 02226 | . 903 | . 9221 |
| 25 | . 020 | . 800 | . 816 | . 0179 | . 715 | . 729 |
| 26 | . 018 | . 719 | . 734 | . 0159 | . 638 | . 651 |
| 27 | . 016 | . 610 | . 653 | . 0142 | . 570 | . 581 |
| 28 | . 014 | . 560 | . 571 | . 0126 | . 505 | . 515 |
| 29 | . 013 | . 520 | . 531 | . 0113 | . 450 | . 459 |
| 30 | . 012 | . 480 | . 489 | . 0100 | . 400 | . 409 |
| 31 | . 010 | . 399 | . 408 | . 0089 | . 357 | . 364 |
| 32 | . 009 | . 359 | . 367 | . 0080 | . 318 | . 324 |
| 33 | . 008 | . 320 | . 326 | . 0071 | .283 | . 288 |
| 34 | . 007 | . 230 | . 286 | . 0063 | .252 | . 257 |
| 35 | . 0005 | . 200 | . 201 | . 00505 | . 224 | . 2228 |
| 36 | . 004 | . 159 | . 162 | . 0050 | . 200 | . 204 |

## Dimensions and Weights of Spheres.

British Units.
Sizes in inches, weights in pounds.

| Diameter. | Surface. | Capacity. | Cast-iron. | Lead. | Water. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. | Sq. inch. | Cub. inch. | Lb. | Lb. | Lb. |
| 1.000 | 3.1416 | . 5236 | . 1365 | . 2147 | . 0188 |
| 1.125 | 3.9760 | . 7455 | . 1943 | . 3062 | . 0264 |
| 1.250 | 4.9087 | 1.0226 | . 2673 | . 4200 | . 0368 |
| 1.375 | 5.9395 | 1.3611 | . 3550 | . 5579 | . 0490 |
| 1.500 | 7.0686 | 1.7671 | . 4607 | . 7248 | . 0636 |
| 1.625 | 8.2957 | 2.2467 | . 5861 | . 9227 | . 0809 |
| 1.750 | 9.6211 | 2.8061 | . 7325 | 1.1528 | . 1050 |
| 1.875 | 11.044 | 3.4514 | . 9000 | 1.4156 | . 1242 |
| 2.000 | 12.566 | 4.1888 | 1.0920 | 1.7180 | . 1508 |
| 2.125 | 14.186 | 5.0243 | 1.3124 | 2.0631 | . 1809 |
| 2.250 | 15.904 | 5.9640 | 1.5592 | 2.4482 | . 2147 |
| 2.375 | 17.720 | 7.0143 | 1.8334 | 2.8811 | . 2525 |
| 2.500 | 19.635 | 8.1812 | 2.1328 | 3.3554 | . 2945 |
| 2.625 | 21.647 | 9.4708 | 2.4725 | 3.8892 | . 3410 |
| 2.750 | 23.758 | 10.889 | 2.8400 | 4.4623 | . 3920 |
| 2.875 | 25.967 | 12.442 | 3.2512 | 5.1056 | . 4479 |
| 3.000 | 28.274 | 14.137 | 3.6855 | 5.7982 | . 5089 |
| 3.125 | 30.680 | 15.979 | 4.1721 | 6.5568 | . 5752 |
| 3.250 | 33.183 | 17.974 | 4.6835 | 7.3623 | . 6471 |
| 3.375 | 35.785 | 20.129 | 5.2612 | 8.2521 | . 7246 |
| 3.500 | 38.484 | 22.449 | 5.8525 | 9.2073 | . 8081 |
| 3.625 | 41.282 | 24.941 | 6.5089 | 10.231 | . 8979 |
| 3.750 | 44.179 | 27.612 | 7.2135 | 11.323 | . 99941 |
| 3.875 | 47.173 | 30.466 | 7.9556 | 12.500 | 1.0968 |
| 4.00 | 50.265 | 33.510 | 8.7361 | 13.744 | 1.2064 |
| 4.25 | 56.745 | 40.194 | 10.510 | 16.482 | 1.4470 |
| 4.50 | 63.617 | 47.713 | 12.439 | 19.569 | 1.7177 |
| 4.75 | 70.882 | 56.115 | 14.666 | 23.035 | 2.0202 |
| 5.00 | 78.540 | 65.450 | 17.063 | 26.843 | 2.3562 |
| 5.25 | 86.590 | 75.766 | 19.810 | 31.089 | 2.7276 |
| 5.50 | 95.033 | 87.114 | ${ }^{22.720}$ | 35.729 | 3.1361 |
| 5.75 | 103.87 | 99.541 | 26.000 | 40.856 | 3.5835 |
| 6.0 | 113.10 | 113.10 | 29.484 | 46.385 | 4.0716 |
| 6.5 | 132.73 | 143.79 | 37.453 | 58.976 | 5.1765 |
| 7.0 | 153.94 | 179.59 | 46.820 | 73.659 | 6.4653 |
| 7.5 | 176.71 | 220.89 | 57.587 | 90.598 | 7.9520 |
| 8.0 | 201.06 | 268.08 | 69.889 | 109.95 | 9.6509 |
| 8.5 | 226.98 | 321.55 | 83.839 | 131.38 | 11.576 |
| 9.0 | 254.47 | 381.70 | 99.51 | 156.55 | 13.741 |
| 9.5 | 283.53 | 448.92 | 117.03 | 184.12 | 16.161 |
| 10.0 | 314.16 | 523.60 | 136.50 | 214.75 | 18.850 |
| 11.0 | 380.13 | 696.91 | 181.76 | 285.83 | 26.289 |
| 12.0 | 452.39 | 904.78 | 235.87 | 371.09 | 32.572 |
| 13.0 | 530.92 | 1150.3 | 299.62 | 471.80 | 41.411 |
| 14.0 | 615.72 | 1436.7 | 374.56 | 589.27 | 51.721 |
| 15.0 | 706.84 | 1767.1 | 460.69 | 724.78 | 63.616 |
| 16.0 | 804.24 | 2144.6 | 559.11 | 879.61 | 77.206 |
| 17.0 | 853.96 | 2572.4 | 670.71 | 1055.0 | 92.607 |
| 18.0 | 1017.8 | 3053.6 | 796.08 | 1252.4 | 109.93 |
| 19.0 | 1134.1 | 3591.3 | 936.27 | 1472.9 | 129.29 |
| 20.0 | 1256.6 | 4188.8 | 1092.00 | 1718.0 | 150.80 |

## Dimensions and Weights of Cast=iron Spheres.

Metric Units.
Sizes in centimetres, weights in kilogrammes.
For Lead, multiply by 1.575 .

| Diameter. | Volume. | Weight. | Diameter. | Volume. | Weight. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cm. | Cub. cm. | Kg. | Cm. | Cub. cm. | Kg. |
| 1.0 | . 524 | . 004 | 21.0 | 4849.05 | 35.16 |
| 1.5 | 1.767 | . 013 | 21.5 | 5203.72 | 37.73 |
| 2.0 | 4.189 | . 030 | 22.0 | 5575.28 | 40.42 |
| 2.5 | 8.181 | . 059 | 22.5 | 5964.12 | 43.24 |
| 3.0 | 14.137 | . 102 | 23.0 | 6370.63 | 46.19 |
| 3.5 | 22.449 | . 165 | 23.5 | 6795.20 | 49.27 |
| 4.0 | 33.510 | . 243 | 24.0 | 7238.23 | 52.48 |
| 4.5 | 47.713 | . 346 | 24.5 | 7700.11 | 55.83 |
| 5.0 | 65.45 | . 475 | 25.0 | 8181.23 | 59.31 |
| 5.5 | 87.11 | . 632 | 25.5 | 8681.98 | 62.94 |
| 6.0 | 113.10 | . 820 | 26.0 | 9202.77 | 66.72 |
| 6.5 | 143.79 | 1.043 | 26.5 | 9744.08 | 70.64 |
| 7.0 | 179.59 | 1.302 | 27.0 | 10305.99 | 74.72 |
| 7.5 | 220.89 | 1.601 | 27.5 | 10889.22 | 78.95 |
| 8.0 | 268.08 | 1.944 | 28.0 | 11494.04 | 83.33 |
| 8.5 | 321.56 | 2.331 | 28.5 | 12120.85 | 87.88 |
| 9.0 | 381.70 | 2.767 | 29.0 | 12770.08 | 92.58 |
| 9.5 | 448.92 | 3.255 | 29.5 | 13442.02 | 97.45 |
| 10.0 | 523.60 | 3.796 | 30.0 | 14137.17 | 102.49 |
| 10.5 | 606.13 | 4.394 | 31.0 | 15598.53 | 113.09 |
| 11.0 | 696.91 | 5.053 | 32.0 | 17157.28 | 124.39 |
| 11.5 | 796.33 | 5.773 | 33.0 | 18816.57 | 136.42 |
| 12.0 | 904.78 | 6.560 | 34.0 | 20579.53 | 149.20 |
| 12.5 | 1022.64 | 7.414 | 35.0 | 22449.30 | 162.76 |
| 13.0 | 1150.35 | 8.340 | 36.0 | 24429.02 | 177.11 |
| 13.5 | 1288.25 | 9.340 | 37.0 | 26521.95 | 192.28 |
| 14.0 | 1436.76 | 10.416 | 38.0 | 28730.91 | 208.30 |
| 14.5 | 1596.26 | 11.573 | 39.0 | 31059.35 | 225.18 |
| 15.0 | 1767.15 | 12.812 | 40.0 | 33510.32 | 242.95 |
| 15.5 | 1949.82 | 14.14 | 41.0 | 36086.96 | 261.63 |
| 16.0 | 2144.66 | 15.55 | 42.0 | 38792.35 | 281.24 |
| 16.5 | 2352.07 | 17.05 | 43.0 | 41629.77 | 301.82 |
| 17.0 | 2572.44 | 18.65 | 44.0 | 44602.24 | 323.37 |
| 17.5 | 2806.16 | 20.34 | 45.0 | 47712.94 | 345.91 |
| 18.0 | 3053.63 | 22.14 | 46.0 | 50965.01 | 369.50 |
| 18.5 | 3315.24 | 24.04 | 47.0 | 54361.60 | 394.12 |
| 19.0 | 3591.36 | 26.04 | 48.0 | 57905.58 | 419.82 |
| 19.5 | 3882.42 | 28.15 | 49.0 | 61600.87 | 446.61 |
| 20.0 | 4188.79 | 30.37 | 50.0 | 65449.85 | 474.51 |
| 20.5 | 4510.87 | 32.70 | 100.0 | 523598.80 | 3796.09 |

## Weight of Cast=iron Pipe per Foot in Length.

British Units.
For Wrought-iron multiply by 1.067 ; for Lead, by 1.575 ; for Copper, by 1.23 ; for Brass, by 1.16.

|  | Thickness of pipe, in inches. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4 | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 | 11/8 | 11/4 | $13 / 8$ | 11/2 | 13/4 | 2 |
| $\overline{\text { Ins. }}$ | Lb. |  | Lb. |  |
| I | 3.07 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3.69 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4.30 4.92 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5.53 | 8.76 |  |  |  |  |  |  |  |  |  |  |  |
| $1 / 4$ | 6.15 | 9.69 |  |  |  |  |  |  |  |  |  |  |  |
|  | 6.76 7.37 | 10.6 |  |  |  |  |  |  |  |  |  |  |  |
|  | 7.98 | 12.5 | 17.2 | 22.3 |  |  |  |  |  |  |  |  |  |
| $1 / 4$ | 8.60 | 13.4 | 18.5 | 23.8 |  |  |  |  |  |  |  |  |  |
|  | 9.21 | 14.3 | 19.7 | 25.4 |  |  |  |  |  |  |  |  |  |
|  | 9.83 | 15.2 | 20.9 | 26.9 |  |  |  |  |  |  |  |  |  |
|  | 10.3 | 16.1 | 22.2 | 28.5 | 35.1 | 42.0 |  |  |  |  |  |  |  |
|  | 11.1 11.7 | 17.1 | 24.4 | 30.0 | 36.9 38.8 | 44.1 46.3 |  |  |  |  |  |  |  |
|  | 12.3 | 18.9 | 25.8 | 31.5 | 40.6 | 48.5 |  |  |  |  |  |  |  |
|  | 12.9 | 19.8 | 27.1 | 34.6 | 42.5 | 50.6 | 59.1 | 67.8 |  |  |  |  |  |
|  | 13.5 | 20.8 | 28.3 | 36.1 | 44.3 | 52.8 | 61.5 | 70.6 |  |  |  |  |  |
|  | 14.2 | 21.7 | 29.5 | 37.7 | 46.1 | 54.9 | 64.0 | 73.3 |  |  |  |  |  |
|  | 14.8 | 22.6 | 30.8 | 39.2 | 48.0 | 57.1 | 66.4 | 76.1 |  |  |  |  |  |
|  | 15.4 | 23.5 | 32.0 | 40.8 | 49.8 | 59.2 | 68.9 | 78.9 | 89.2 | 99.8 |  |  |  |
|  | 16.6 | 25.4 | 34.5 | 43.8 | 53.5 | 63.5 | 73.8 | 84.4 | 95.3 | 107.0 |  |  |  |
|  | 17.8 | 27.2 29.1 | 36.9 39.4 | 46.9 50.0 | 57.2 60.9 | 67.8 72.1 | 78.7 83.7 | 89.4 95.5 | 102.0 | 113.0 120.0 | 126 | 151 | 177 |
|  | 20.3 | 30.9 | 41.8 | 53.1 | 64.6 | 76.4 | 88.6 | 101.0 | 114.0 | 127.0 | 140 | 168 | 197 |
|  | 21.5 | 32.8 | 44.3 | 56.1 | 68.3 | 80.7 | 93.5 | 107.0 | 120.0 | 134.0 | 148 | 177 | 207 |
|  | 22.8 | 34.6 | 46.8 | 59.2 | 72.0 | 85.1 | 98.4 | 112.0 | 126.0 | 140.0 | 155 | 185 | 217 |
|  | 24.0 | 36.4 | 49.2 | 62.3 | 75.7 | 89.3 | 103.0 | 118.0 | 132.0 | 147.0 | 163 | 194 | 226 |
|  | 25.1 | 38.3 | 51.7 | 65.3 | 79.4 | 93.6 | 108.0 | 123.0 | 138.0 | 154.0 | 170 | 202 | 23.5 |
|  | 26.4 | 40.1 | 54.1 | 68.4 | 83.0 | 97.9 | 113.2 | 129.0 | 145.0 | 161.0 | 177 | 211 | 245 |
|  | 27.6 28.8 | 42.0 43.8 | 56.6 59.1 | 71.5 | 86.7 90.4 | 102.0 | 11 |  |  | 168.0 | 185 | 228 |  |
| 12 | 30.0 | 45.7 | 61.5 | 77.7 | 94.1 | 111.0 | 128.0 | 145.0 | 163.0 | 181.0 | 199 | 237 | 275 |
| 13 |  |  | 66.4 | 83.8 | 102.0 | 120.0 | 138.0 | 156.0 | 175.0 | 195.0 | 214 | 254 | 294 |
| 14 |  |  | 71.4 | 89.4 | 109.0 | 128.0 | 148.0 | 168.0 | 188.0 | 208.0 | 229 | 271 | 314 |
| 15 |  |  | 76.3 | 96.1 | 116.0 | 137.0 | 158.0 | 179.0 | 200.0 | 222.0 | 244 | 289 | 334 |
| 16 |  |  | 81.2 | 102.0 | 124.0 | 145.0 | 167.0 | 190.0 | 212.0 | 235.0 | 258 | 306 | 353 |
| 15 |  |  | 86.1 | 108.0 | 131.0 | 154.0 | 177.0 | 201.0 | 225.0 | 249.0 | 273 | 323 | 373 |
| 18 |  |  | 91.0 | 115.0 | 139.0 | 163.0 | 187.0 | 212.0 | 237.0 | 262.0 | 288 | 340 | 393 |
| 19 |  |  | 96.0 | 121.0 | 146.0 | 171.0 | 197.0 | 223.0 | 249.0 | 276.0 | 303 | 357 | 412 |
| 20 |  |  | 101.0 | 127.0 | 153.0 | 180.0 | 207.0 | 234.0 | 261.0 | 289.0 | 317 | 375 | 432 |
| $\begin{aligned} & 21 \\ & 22 \end{aligned}$ |  |  |  | 133.0 | 161.0 | 188.0 | 217.0 | 245.0 | 274.0 | 303.0 | 332 | 392 | 452 |
| $\stackrel{22}{23}$ |  |  |  | 139.0 | 168.0 | 196.0 | 227.0 | 256.0 | 286.0 | 316.0 | 347 | 409 | 471 |
| 24 |  |  |  | 150.0 | 183.0 | 214.0 | 246.0 | 278.0 | 311.0 | 330.0 343.0 | 362 <br> 375 | 444 | 491 |
| 20 |  |  |  |  | 190.0 | 223.0 | 256.0 | 289.0 | 323.0 | 357.0 | 391 | 461 | 531 |
| $26$ |  |  |  |  | 198.0 | 231.0 | 266.0 | 300.0 | 335.0 | 370.0 | 406 | 478 | 550 |
| 27 |  |  |  |  | 205.0 | 240.0 | 276.0 | 311.0 | 348.0 | 384.0 | 421 | 495 | 570 |
| ${ }_{20}^{28}$ |  |  |  |  | 212.0 | 249.0 | 286.0 | 323.0 | 360.0 | 397.0 | 436 | 512 | 590 |
| $\begin{aligned} & 30 \\ & 32 \end{aligned}$ |  |  |  |  | 227.0 | 266.0 | 305.0 | 345.0 | 384.0 | 424.0 | 465 | 547 | 629 |
| 34 |  |  |  |  | 257.0 | 383.0 | 325.0 | 367.0 389 | 434.0 | 479.0 | 524 | 581 | 708 |
| 36 |  |  |  |  | 271.0 | 318.0 | 364.0 | 411.0 | 458.0 | 506.0 | 554 | 650 | 74 |
| 42 |  |  |  |  | 315.0 | 370.0 | 423.0 | 478.0 | 532.0 | 588.0 | 644 | 753 | 864 |
| 48 |  |  |  |  | 359.0 | 422.0 | 482.0 | 544.0 | 605.0 | 669.0 | 733 | 856 | 982 |

The weight of a spigot and faucet joint may be taken as equal to 8 inches of straight pipe, and the weight of two flanges as equal to 12 inches of straight pipe.

## Weight of Cast=iron Pipe.

Metric Units.
Weight, in Kilogrammes, per Metre of Length.
For Wrought-iron multiply by 1.067 ; for Lead, by 1.575 ; for Copper, by 1.23 ; for Brass, by 1.16.

| Inside diameter. | Thickness, in millimetres. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 15 | 20 | 25 | 30 | 40 |
| Mm . | Kg. | Kg. | Kg. | Kg. | Kg. | Kg. |
| 25 | 8.0 | 13.7 | 20.5 | 28.5 |  |  |
| 30 | 9.1 | 15.4 | 22.8 | 31.3 | 41.0 |  |
| 35 | 10.2 | 17.1 | 25.1 | 34.4 | 44.4 | 68.3 |
| 40. | 11.4 | 18.8 | 27.3 | 37.0 | 47.8 | 72.9 |
| 45 | 12.5 | 20.5 | 29.6 | 39.9 | 51.2 | 77.4 |
| 50 | 13.7 | 22.2 | 31.8 | 42.8 | 54.7 | 82.0 |
| 60 | 15.9 | 25.6 | 36.5 | 48.4 | 61.5 | 91.1 |
| 70 | 18.2 | 29.0 | 41.0 | 54.1 | 68.3 | 100.2 |
| 80 | 20.5 | 32.5 | 45.6 | 59.8 | 75.2 | 109.3 |
| 90 | 22.8 | 36.0 | 50.1 | 65.5 | 82.0 | 118.4 |
| 100 | 25.1 | 39.3 | 54.7 | 71.1 | 88.8 | 129.8 |
| 110 | 27.3 | 42.8 | 59.2 | 76.9 | 95.7 | 136.7 |
| 120 | 29.6 | 46.1 | 63.8 | 82.5 | 102.5 | 144.9 |
| 130 | 31.8 | 49.5 | 68.3 | 88.3 | 109.3 | 154.9 |
| 140 | 34.4 | 52.8 | 72.9 | 94.0 | 116.2 | 164.0 |
| 150 | 36.5 | 56.5 | 77.4 | 99.6 | 123.0 | 173.1 |
| 160 | 38.7 | 59.8 | 82.0 | 105.4 | 129.8 | 182.2 |
| 170 | 41.8 | 63.2 | 86.5 | 110.7 | 136.7 | 191.3 |
| 180 | 43.3 | 66.6 | 91.5 | 116.6 | 143.5 | 200.4 |
| 190 | 45.6 | 70.1 | 97.7 | 122.3 | 150.3 | 209.5 |
| 200 | 47.8 | 73.5 | 100.2 | 128.1 | 157.2 | 218.7 |
| 210 | 50.1 | 76.9 | 104.8 | 133.8 | 164.0 | 227.8 |
| 220 | 52.4 | 80.2 | 109.3 | 139.5 | 170.8 | 236.9 |
| 230 | 54.7 | 83.9 | 113.8 | 145.2 | 177.7 | 246.0 |
| 240 | 56.9 | 86.8 | 118.4 | 150.9 | 184.5 | 255.1 |
| 250 | 59.2 | 90.5 | 123.0 | 156.6 | 191.3 | 264.2 |
| 260 | 61.5 | 94.0 | 127.6 | 162.3 | 198.2 | 273.3 |
| 270 | 63.8 | 97.3 | 132.1 | 168.0 | 205.0 | 282.4 |
| 280 | 66.1 | 100.8 | 136.7 | 173.7 | 211.8 | 291.5 |
| 290 | 68.3 | 104.9 | 141.2 | 179.4 | 218.7 | 300.7 |
| 300 | 70.6 | 107.6 | 144.9 | 185.1 | 225.5 | 309.7 |
| 325 |  | 116.2 | 157.2 | 199.3 | 242.6 | 332.5 |
| 350 |  | 124.7 | 168.5 | 213.5 | 259.7 | 355.3 |
| 375 |  | 133.2 | 179.9 | 227.8 | 276.7 | 378.1 |
| 400 |  | 141.8 | 191.3 | 241.9 | 293.8 | 400.9 |
| 450 |  | 158.9 | 214.1 | 270.5 | 328.9 | 446.4 |
| 500 | ... | 175.9 | 236.9 | 298.9 | 362.1 | 492.0 |
|  |  |  |  |  |  |  |

The weight of spigot and faucet joint $=0.2$ metre.
The weight of two flanges $=0.3$ metre .

## Weight of Bridge Rivets per Hundred.

This table also applies to Button-headed Bolts.

| Length of rivet under head. | Diameter of rivet, in inches. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 | 11/8 | 11/4 |
| Inch. | Lb. |
| 1012 | 5.7 | 12.8 | 22.0 | 29.3 | 43.9 | 66.6 | 93.3 | 127.1 |
|  | 6.1 | 13.5 | 23.1 | 30.9 | 46.1 | 69.4 | 96.9 | 131.5 |
|  | 6.5 | 14.2 | 24.1 | 32.4 | 48.2 | 72.1 | 100.4 | 135.8 |
|  | 6.9 | 14.8 | 25.2 | 34.0 | 50.3 | 74.9 | 103.9 | 140.2 |
|  | 7.3 | 15.5 | 26.3 | 35.5 | 52.5 | 77.7 | 107.4 | 144.5 |
|  | 7.7 | 16.2 | 27.4 | 37.1 | 54.6 | 80.5 | 110.9 | 148.9 |
|  | 8.0 | 16.9 | 28.5 | 38.7 | 56.7 | 83.3 | 114.5 | 153.2 |
|  | 8.4 | 17.6 | 29.6 | 40.2 | 58.8 | 86.0 | 118.0 | 157.5 |
|  | 8.8 | 18.3 | 30.7 | 41.8 | 61.0 | 88.8 | 121.5 | 161.9 |
|  | 9.2 | 19.0 | 31.7 | 43.3 | 63.1 | 91.6 | 125.0 | 166.2 |
|  | 9.6 | 19.7 | 32.8 | 44.9 | 65.2 | 94.4 | 128.5 | 170.6 |
|  | 10.0 | 20.4 | 33.9 | 46.5 | 67.4 | 97.2 | 132.1 | 174.9 |
|  | 10.4 | 21.1 | 35.0 | 48.0 | 69.5 | 99.9 | 135.6 | 179.3 |
|  | 10.8 | 21.8 | 36.1 | 49.6 | 71.6 | 102.7 | 139.1 | 183.6 |
|  | 11.2 | 22.5 | 37.2 | 51.1 | 73.7 | 105.5 | 142.6 | 188.0 |
|  | 11.6 | 23.2 | 38.3 | 52.7 | 75.9 | 108.3 | 146.1 | 192.3 |
|  | 11.9 | 23.9 | 39.3 | 54.3 | 78.0 | 111.1 | 149.7 | 196.7 |
|  | 12.3 | 24.6 | 40.4 | 55.8 | 80.1 | 113.8 | 153.1 | 201.0 |
|  | 12.7 | 25.3 | 41.5 | 57.4 | 82.3 | 116.6 | 156.7 | 205.4 |
|  | 13.1 | 26.0 | 42.6 | 58.9 | 84.4 | 119.4 | 160.2 | 209.7 |
|  | 13.5 | 26.7 | 43.7 | 60.5 | 86.5 | 122.2 | 163.7 | 214.1 |
|  | 13.9 | 27.4 | 44.8 | 62.1 | 88.6 | 125.0 | 167.3 | 218.4 |
|  | 14.3 | 28.1 | 45.9 | 63.6 | 90.8 | 127.8 | 170.8 | 222.8 |
|  | 14.7 | 28.7 | 46.9 | 65.2 | 92.9 | 130.5 | 174.3 | 227.1 |
|  | 15.1 | 29.4 | 48.0 | 66.7 | 95.0 | 133.3 | 177.8 | 231.4 |
|  | 15.5 | 30.1 | 49.1 | 68.3 | 97.2 | 136.1 | 181.3 | 235.8 |
|  | 15.8 | 30.8 | 50.2 | 69.9 | 99.3 | 138.9 | 184.9 | 240.1 |
|  | 16.2 | 31.5 | 51.3 | 71.4 | 101.4 | 141.7 | 188.4 | 244.5 |
|  | 16.6 | 32.2 | 52.4 | 73.0 | 103.5 | 144.4 | 191.9 | 248.8 |
|  | 17.0 | 32.9 | 53.5 | 74.5 | 105.7 | 147.2 | 195.4 | 253.2 |
|  | 17.4 | 33.6 | 54.5 | 76.1 | 107.8 | 150.0 | 198.9 | 257.5 |
|  | 18.2 | 35.0 | 56.7 | 79.2 | 112.1 | 155.6 | 206.0 | 266.2 |
|  | 19.0 | 36.4 | 58.9 | 82.3 | 116.3 | 161.1 | 213.1 | 274.9 |
|  | 19.7 | 37.8 | 61.1 | 85.5 | 120.6 | 166.7 | 220.1 | 283.6 |
|  | 20.5 | 39.2 | 63.2 | 88.6 | 124.8 | 172.2 | 227.1 | 292.3 |
|  | 23.6 | 44.7 | 71.9 | 101.1 | 142.0 | 194.5 | 255.3 | 327.1 |
|  | 26.8 | 50.3 | 80.6 | 113.7 | 158.9 | 216.7 | 283.4 | 361.9 |
|  | 29.9 | 55.9 | 89.3 | 126.2 | 175.9 | 239.0 | 311.6 | 396.6 |
|  | 33.0 | 61.4 | 98.0 | 138.7 | 193.0 | 261.2 | 339.7 | 431.4 |
|  | 39.3 | 72.5 | 115.4 | 163.7 | 227.0 | 305.7 | 367.9 | 501.0 |

## Weight of Two (2) Rivet Heads, in Pounds.

| Before <br> driving | .037 | .116 | .222 | .273 | .453 | .780 | 1.16 | 1.67 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atter <br> driving | .032 | .082 | .147 | .246 | .369 | .545 | .746 | 1.02 |

Weight of Body per Inch of Length, in Pounds.

| driving | .031 | .056 | .087 | .125 | .170 | .223 | .282 | .348 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Weight of Bolts per Hundred.

Square Heads and Nuts.
Dimensions in inches.

|  | Diameter. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4 | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 | 11/8 | 11/4 | 13/8 | 11/2 |
|  | Lb. |
| 11/2 | 3.9 | 9.7 | 20.4 | 37.0 | 58.0 |  |  |  |  |  |  |
| $3 / 4$ | 4.2 | 10.5 | 21.3 | 37.9 | 60.5 |  | $\ldots$ |  |  |  |  |
| 2 | 4.6 | 11.3 | 22.4 | 39.9 | 63.2 | 97.7 | 145 |  | .... | .... |  |
| $1 / 4$ | 5.0 | 12.1 | 23.6 | 42.0 | 66.0 | 101.6 | 149 | $\ldots$ | .... | .... | .... |
| 1/2 | 5.4 | 12.9 | 25.0 | 44.4 | 69.0 | 105.6 | 153 | $\ldots$ | $\ldots$ | $\ldots$ |  |
| $3 / 4$ | 5.8 | 13.7 | 26.4 | 46.2 | 72.1 | 109.7 | 158 | $\ldots$ | .... | .... |  |
| 3 | 6.2 | 14.5 | 27.8 | 48.3 | 75.2 | 113.8 | 163 | 200 | 289 | 350 | 480 |
| 1/2 | 6.9 | 16.1 | 30.6 | 52.5 | 81.4 | 122.0 | 174 | 213 | 305 | 370 | 500 |
| 4 | 7.6 | 17.7 | 33.4 | 56.7 | 87.6 | 130.2 | 185 | 226 | 322 | 390 | 520 |
| 1/2 | 8.3 | 19.2 | 36.2 | 60.9 | 93.8 | 138.4 | 196 | 240 | 339 | 410 | 545 |
| 5 | 9.0 | 20.7 | 39.0 | 65.1 | 100.0 | 146.6 | 207 | 255 | 356 | 430 | 570 |
| 1/2 | 9.7 | 22.2 | 41.8 | 69.2 | 106.1 | 154.9 | 218 | 270 | 373 | 450 | 595 |
| 6 | 10.4 | 23.7 | 44.6 | 73.4 | 112.2 | 163.2 | 229 | 285 | 390 | 470 | 620 |
| 1/2 | 11.1 | 25.2 | 47.4 | 77.6 | 118.3 | 171.5 | 240 | 300 | 407 | 490 | 645 |
| 7 | 11.8 | 26.7 | 50.2 | 81.8 | 124.4 | 179.8 | 251 | 315 | 434 | 510 | 670 |
| 1/2 | 12.5 | 28.2 | 53.1 | 86.0 | 130.5 | 187.1 | 262 | 330 | 451 | 530 | 695 |
| 8 | 13.2 | 29.7 | 56.0 | 90.0 | 136.6 | 195.4 | 273 | 345 | 468 | 550 | 725 |
| 9 |  | 33.1 | 61.5 | 98.0 | 148.8 | 212.0 | 295 | 375 | 505 | 590 | 775 |
| 10 |  | 36.5 | 67.0 | 106.3 | 161.0 | 229.0 | 317 | 405 | 540 | 630 | 825 |
| 11 |  | 40.0 | 72.5 | 114.6 | 173.2 | 246.0 | 339 | 435 | 575 | 670 | 875 |
| 12 |  | 43.5 | 78.0 | 122.9 | 184.4 | 263.0 | 361 | 465 | 610 | 710 | 925 |
| 13 |  |  | 83.5 | 131.2 | 196.6 | 280.0 | 383 | 495 | 645 | 751 | 975 |
| 14 |  |  | 89.0 | 139.5 | 208.8 | 297.0 | 405 | 525 | 680 | 793 | 1025 |
| 15 |  |  | 94.5 | 148.0 | 221.0 | 314.0 | 427 | 555 | 715 | 835 | 1075 |
| 16 |  |  | 100.0 | 156.5 | 233.2 | 331.0 | 449 | 585 | 750 | 877 | 1125 |
| 17 |  |  | 105.5 | 165.0 | 245.4 | 348.0 | 471 | 615 | 785 | 919 | 1175 |
| 18 |  |  | 111.0 | 173.5 | 257.6 | 365.0 | 493 | 645 | 820 | 961 | 1225 |

## Weight of Bolts per Hundred.

Hexagon Heads and Nuts.
Dimensions in inches.

| Length. | Diameter. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4 | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 | 11/8 | 11/4 | 13/8 | 11/3 |
|  | Lb. |
| 11/2 | 3.4 | 8.5 | 17.7 | 32.5 | 49.0 |  |  |  |  |  |  |
| $3 / 4$ | 3.7 | 9.3 | 18.6 | 33.4 | 51.5 |  | ... |  |  |  |  |
| 2 | 4.1 | 10.1 | 19.7 | 35.4 | 54.2 | 86.6 | 128 |  |  |  |  |
| 1/4 | 4.5 | 10.9 | 20.9 | 37.5 | 57.0 | 90.6 | 132 |  |  |  |  |
| 1/2 | 4.9 | 11.7 | 22.3 | 39.9 | 60.0 | 94.6 | 136 |  |  |  |  |
| $3 / 4$ | 5.3 | 12.5 | 23.7 | 41.7 | 63.1 | 98.7 | 141 |  | .... |  |  |
| 3 | 5.7 | 13.3 | 25.1 | 43.8 | 66.2 | 102.8 | 144 | 174 | 255 | 310 | 430 |
| 1/2 | 6.1 | 14.1 | 26.6 | 45.7 | 69.4 | 107.0 | 151 | 187 | 271 | 330 | 450 |
| 4 | 6.8 | 15.7 | 29.4 | 49.9 | 75.6 | 115.2 | 162 | 200 | 288 | 350 | 470 |
| 1/2 | 7.5 | 17.0 | 32.2 | 56.1 | 81.8 | 123.4 | 173 | 214 | 305 | 370 | 495 |
| 5 | 8.2 | 18.7 | 35.0 | 58.3 | 88.0 | 131.6 | 184 | 229 | 322 | 390 | 520 |
| 1/2 | 8.9 | 20.2 | 37.8 | 62.4 | 94.1 | 139.9 | 195 | 244 | 339 | 410 | 545 |
| 6 | 9.6 | 21.7 | 40.6 | 66.6 | 100.2 | 148.2 | 206 | 259 | 356 | 430 | 570 |
| 1/2 | 10.3 | 23.2 | 43.4 | 70.8 | 106.3 | 156.5 | 217 | 274 | 373 | 450 | 595 |
| 7 | 11.0 | 24.7 | 46.2 | 75.0 | 112.4 | 164.8 | 228 | 289 | 400 | 470 | 620 |
| 1/2 | 11.7 | 26.2 | 49.1 | 79.2 | 118.5 | 172.1 | 239 | 304 | 417 | 490 | 645 |
| 8 | 12.4 | 27.7 | 52.0 | 83.2 | 124.6 | 180.3 | 250 | 319 | 424 | 510 | 670 |
| 9 |  | 29.7 | 54.8 | 87.0 | 130.8 | 189.0 | 262 | 336 | 465 | 530 | 700 |
| 10 |  | 33.1 | 60.3 | 95.0 | 143.0 | 206.0 | 284 | 366 | 500 | 570 | 750 |
| 11 |  | 36.6 | 65.8 | 103.6 | 155.2 | 223.0 | 306 | 396 | 535 | 610 | 800 |
| 12 |  | 40.1 | 71.3 | 111.9 | 166.4 | 240.0 | 328 | 426 | 570 | 650 | 850 |
| 13 |  |  | 76.8 | 120.2 | 178.6 | 257.0 | 350 | 456 | 605 | 691 | 900 |
| 14 |  |  | 82.3 | 128.5 | 190.8 | 274.0 | 372 | 486 | 640 | 733 | 950 |
| 15 |  |  | 87.8 | 137.0 | 203.0 | 291.0 | 384 | 516 | 675 | 775 | 1000 |
| 16 |  |  | 93.3 | 145.5 | 215.2 | 308.0 | 416 | 546 | 710 | 817 | 1050 |
| 17 |  |  | 98.8 | 154.0 | 227.4 | 325.0 | 438 | 576 | 745 | 859 | 1100 |
| 18 |  |  | 104.3 | 162.5 | 239.6 | 342.0 | 460 | 606 | 780 | 901 | 1150 |

United States Standard Screw Threads.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 立M, | Why |  | chen |  | $\stackrel{-B_{7}+}{(0)}$ |  | $\theta$ |  | $\hat{\theta}$ | T1, | 1.1 |
| In. |  |  | Inch. | S | Sq | Inch. | Inch. | Inch. | Inch. | nch. | In. |
| 1/4 | 20 |  | . 0062 | . 049 | . 027 |  | ${ }^{7} 6$ | $3 \frac{1}{4}$ | ${ }_{10}^{10}$ | 1/4 | ${ }_{18}{ }^{\frac{3}{6}}$ |
| 5 | 18 | . 240 | . 0074 | . 077 | . 045 | $\frac{19}{32}$ | $\frac{17}{3}$ | $\frac{11}{12}$ | $\frac{10}{12}$ | $\frac{5}{16}$ | $1 /$ |
| $3 / 8$ | 16 | . 2 | . 0078 | 10 | . 68 | ${ }_{1}^{11}$ | 5/8 | $\frac{51}{64}$ | 64 | 3 | 5 |
| $\frac{7}{16}$ | 14 | . 344 | . 0089 | . 150 | . 093 | ${ }_{3}^{25}$ | $\frac{23}{32}$ | $\frac{9}{10}$ | $1 \frac{7}{64}$ | ${ }_{1}^{7}$ | 3 |
| $1 / 2$ | 13 | . 400 | . 0096 | . 196 | . 126 | 7/8 | $\frac{13}{16}$ | 1 | $1 \frac{15}{64}$ | 1/2 | 7 |
| ${ }^{9}$ | 12 | . 454 | . 0104 | . 249 | . 162 | ${ }^{\frac{31}{3}}$ | ${ }^{2} \frac{29}{2}$ | 11/8 | $16 \frac{12}{12}$ | $\frac{9}{16}$ |  |
| 5/8 | 11 | . 507 | . 0113 | . 307 | . 20 | $1_{1 \frac{1}{16}}$ | 1 | $1 \frac{7}{32}$ | 11/2 | 5/8 |  |
| $3 / 4$ | 10 | . 620 | . 0125 | . 442 | . 302 | 11/4 | $1_{13} \frac{3}{6}$ | $1_{17}^{7}$ | 149 | $3 / 4$ |  |
| 7/8 | 9 | . 731 | . 0138 | . 601 | . 420 | $1{ }_{1} \frac{7}{6}$ | 13/8 | $1 \frac{121}{32}$ | $2 \frac{1}{32}$ | 7/8 |  |
| 1 | 8 | . 837 | . 0156 | . 785 | 550 | 1/8 | $1_{16} 9$ | 178 | $2 \frac{19}{64}$ | 1 | $\frac{15}{15}$ |
| 1/8 | 7 | . 940 | . 0178 | . 994 | . 694 | $1 \frac{1}{1} \frac{3}{6}$ | $13 / 4$ | $2 \frac{3}{32}$ | $2 \frac{9}{16}$ | 11/8 | $1 \frac{1}{16}$ |
| 1/4 | 7 | 1.065 | . 0178 | 1.227 | . 893 | 2 | $1 \frac{15}{16}$ | $2 \frac{5}{16}$ | $2{ }_{63}{ }^{5}$ | 11/4 | $1_{16}^{3}$ |
| $3 / 8$ | 6 | 1.160 | . 0208 | 1.485 | 1.057 | $2{ }^{\frac{3}{16}}$ | 21/8 | $2 \frac{17}{3}$ | $3 \frac{3}{32}$ | 13/8 | $\frac{5}{16}$ |
| 1/2 | 6 | 1.284 | . 0208 | 1.767 | 1.295 | 23/8 | $2 \frac{5}{16}$ | $23 / 4$ | 323 | 1/2 | $\frac{7}{16}$ |
| 5/8 | 51/2 | 1.389 | . 0227 | 2.074 | 1.515 | $2 \frac{9}{16}$ | 21/2 | $23 \frac{31}{3}$ | $35 / 8$ | 15/8 | $1 \frac{9}{16}$ |
| $3 / 4$ | 5 | 1.491 | . 0250 | 2.405 | 1.746 | $23 / 4$ | $22 \frac{1}{16}$ | $3 \frac{3}{16}$ | $3 \frac{57}{4}$ | $13 / 4$ | $1 \frac{11}{16}$ |
| 7/8 | 5 | 1.616 | . 0250 | 2.761 | 2.051 | 215 | 27/8 | $33 \frac{13}{3 \frac{3}{2}}$ | $4{ }^{5}$ | 17/8 | $1 \frac{1}{1} \frac{1}{6}$ |
| 2 | 41/2 | 1.712 | . 0277 | 3.142 | 2.30 | \% | $3 \frac{1}{16}$ | \% | 64 | 2 | $1 \frac{1}{16}$ |
| 1/4 | 41/2 | 1.962 | . 0277 | 3.976 | 3.023 | 31/2 | $3{ }_{16}$ | $4{ }_{16}^{16}$ | 461 | 21/4 | $2 \frac{3}{16}$ |
| 1/2 | 4 | 2.176 | . 0312 | 4.909 | 3.719 | 37/8 | $3{ }^{1 \frac{3}{3}}$ | $41 / 2$ | $5 \frac{31}{6}$ | 21/2 | $2 \frac{7}{16}$ |
| $3 / 4$ | 4 | 2.426 | 0312 | 5.940 | 4.620 | 41/4 | $4 \frac{3}{16}$ | $4 \frac{29}{3}$ 9 | 6 | 23/4 | $2 \frac{11}{16}$ |
| 3 | 31/2 | 2.629 | . 0357 | 7.069 | 5.428 | $45 / 8$ | $4{ }_{19} 9$ | $53 / 8$ | $6 \frac{17}{32}$ | 3 | $2 \frac{15}{16}$ |
| 1/4 | 31/2 | 2.879 | . 0357 | 8.296 | 6.510 | 5 | 415 | $51 \frac{3}{6}$ | $7 \frac{1}{16}$ | 31/4 | $3 \frac{3}{16}$ |
| 1/2 | 31/4 | 3.100 | . 0384 | 9.621 | 7.548 | $53 / 8$ | $5{ }_{\frac{5}{16}}$ | $6{ }^{\frac{7}{32}}$ | 7399 | $31 / 2$ | $3 \frac{7}{16}$ |
| $3 / 4$ | 3 | 3.317 | . 0413 | 11.045 | 8.641 | 53/4 | $5 \frac{11}{16}$ | $6 \frac{21}{3}$ | 81/8 | $33 / 4$ | $3 \frac{1}{1} \frac{1}{6}$ |
| 4 | 3 | 3.567 | . 0413 | 12.566 | 9.96 | 61/8 | $6 \frac{1}{16}$ | $7 \frac{3}{32}$ | $8 \frac{4}{64}$ | 4 | ${ }_{1}^{15}$ |
| 1/4 | 27/8 | 3.798 | . 0435 | 14.186 | 11.329 | 61/2 | $6 \frac{7}{16}$ | $7{ }^{9} 16$ | $9^{\frac{3}{16}}$ | 41/4 | $4 \frac{3}{16}$ |
| $1 / 2$ | 23/4 | 4.028 | . 0454 | 15.904 | 12.753 | 67/8 | 613 | $7 \frac{31}{3 \frac{1}{2}}$ | $93 / 4$. | 4122 | $4 \frac{7}{16}$ |
| $3 / 4$ | 25/8 | 4.256 | . 0476 | 17.721 | 14.226 | 71/4 | $7 \frac{3}{16}$ | $8 \frac{13}{32}$ | 101/4 | $43 / 4$ | $4 \frac{1}{16}$ |
| 5 | $21 / 2$ | 4.480 | . 0500 | 19.635 | 15.763 | 75/8 | $7{ }^{9} 9$ | $8 \frac{27}{32}$ | $10 \frac{49}{64}$ | 5 | $4 \frac{16}{16}$ |
| $1 / 4$ | $21 / 2$ | 4.730 | . 0500 | 21.648 | 17.572 | 8 | $71 \frac{15}{16}$ | $9{ }^{9} 9$ | 1123 | 51/4 | $5 \frac{3}{16}$ |
| 1/2 | $23 / 8$ | 4.953 | . 0526 | 23.758 | 19.267 | 83/8 | $8{ }_{16}^{16}$ | $9_{3}^{2 \frac{3}{2}}$ | 117/8 | 51/2 | $5 \frac{7}{16}$ |
| $3 / 4$ | $23 / 8$ | 5.203 | . 0526 | 25.967 | 21.262 | $83 / 4$ | $8 \frac{1}{16}$ | $10^{\frac{5}{32}}$ | 123/8 | $53 / 4$ | 511 |
| 6 | 21/4 | 5.423 | . 0555 | 28.274 | 23.098 | 91/8 | $9_{1} \frac{1}{6}$ | $10 \frac{19}{32}$ | $12 \frac{15}{16}$ | 6 | 515 |

## Whitworth Screw Bolts and Nuts.

| Size of bolt and thickness of nut. | Number of threads per inch. | Diameter at bottom of thread. | Area at bottom of thread. | Thickness of bolt head. | Nut across plate. | Nut across corners. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. |  | Inch. | Inch. | Inch. | Inch. | Inch. |
| 1/8 | 40 | . 093 | . 0067 | . 109 | . 338 | . 390 |
| ${ }_{1} \frac{3}{6}$ | 24 | . 134 | . 0141 | . 164 | . 448 | . 517 |
| 1/4 | 20 | . 186 | . 0271 | . 219 | . 525 | . 606 |
| ${ }^{5}$ | 18 | . 241 | . 0458 | . 273 | . 601 | . 694 |
| $3 / 8$ | 16 | . 295 | . 0683 | . 328 | . 709 | . 819 |
| $\frac{7}{16}$ | 14 | . 346 | . 0940 | . 383 | . 820 | . 947 |
| 1/2 | 12 | . 393 | . 1215 | . 437 | . 919 | 1.06 |
| $\frac{9}{16}$ | 12 | . 456 | . 1633 | . 492 | 1.011 | 1.16 |
| 5/8 | 11 | . 508 | . 2032 | . 547 | 1.101 | 1.27 |
| $\frac{11}{16}$ | 11 | . 571 | . 2560 | . 601 | 1.201 | 1.38 |
| $3 / 4$ | 10 | . 622 | . 3038 | . 656 | 1.301 | 1.50 |
| ${ }^{13}$ | 10 | . 684 | . 3674 | . 711 | 1.390 | 1.60 |
| 7/8 | 9 | . 733 | . 422 | . 766 | 1.479 | 1.70 |
| $\frac{15}{16}$ | 9 | . 795 | . 496 | . 820 | 1.574 | 1.82 |
| 1 | 8 | . 840 | . 554 | . 875 | 1.670 | 1.95 |
| 1/8 | 7 | .942 | . 697 | . 984 | 1.860 | 2.15 |
| 1/4 | 7 | 1.067 | . 894 | 1.094 | 2.048 | 2.36 |
| $3 / 8$ | 6 | 1.161 | 1.059 | 1.203 | 2.215 | 2.55 |
| 1/2 | 6 | 1.286 | 1.30 | 1.312 | 2.413 | 2.78 |
| $5 / 8$ | 5 | 1.369 | 1.47 | 1.422 | 2.576 | 2.97 |
| $3 / 4$ | 5 | 1.494 | 1.75 | 1.581 | 2.758 | 3.18 |
| 7/8 | 41/2 | 1590 | 1.99 | 1.641 | 3.018 | 3.48 |
| 2 | 41/2 | 1.715 | 2.31 | 1.750 | 3.149 | 3.63 |
| 1/8 | $41 / 2$ | 1.840 | 2.66 | 1.859 | 3.337 | 3.85 |
| 1/4 | 4 | 1.930 | 2.92 | 1.969 | 3.546 | 4.09 |
| $3 / 8$ | 4 | 2.055 | 3.31 | 2.078 | 3.750 | 4.33 |
| 1/2 | 4 | 2.180 | 3.73 | 2.187 | 3.894 | 4.49 |
| 5/8 | 4 | 2.305 | 4.17 | 2.297 | 4.049 | 4.67 |
| $3 / 4$ | 31/2 | 2.384 | 4.46 | 2.406 | 4.181 | 4.82 |
| $7 / 8$ | $31 / 2$ | 2.509 | 4.92 | 2.516 | 4.346 | 5.02 |
| 3 | $31 / 2$ | 2.634 | 5.45 | 2.625 | 4.530 | 5.23 |

Whitworth threads are inclined at an angle of 55 degrees, and have one-sixth of the total depth of thread rounded off at the top and also at the bottom.

The Whitworth system is the standard for Great Britain, and is also used extensively on the Continent pending the adoption of a satisfactory international metric screw thread system. In many of the leading machine shops of France, Switzerland, Belgium, and Germany the bolts are made in English units with Whitworth threads, all other parts of the machines being in metric units.

British Standard Fine Screw Threads.

Engineering Standards Committee.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Full Diameter. | No. of Threads per In. | Pitch. | Standard Depth of Thread. | Effective Diameter. | Core Diameter. | Cross Sect'l Area Bottom of Thread. |
| Ins. |  |  | In. | Ins. | Ins. | Sq. Ins. |
| $\frac{1}{4}$ | 25 22 | $\begin{aligned} & .0400 \\ & .0455 \end{aligned}$ | $\begin{aligned} & .0256 \\ & .0291 \end{aligned}$ | $.2244$ | $\begin{aligned} & .1988 \\ & .2543 \end{aligned}$ | $\begin{aligned} & .0310 \\ & .0508 \end{aligned}$ |
| ${ }_{\frac{3}{8}}{ }^{16}$ (.375) | 20 | . 0500 | . 0320 | . 3430 | . 3110 | . 0760 |
| ${ }_{17}^{76}$ (.4375) | 18 | . 0556 | . 0355 | . 4019 | . 3664 | . 1054 |
| $\frac{1}{2}$ (.5) | 16 | . 0625 | . 0400 | . 4600 | . 4200 | . 1385 |
| ${ }_{16}^{96}$ (.5625) | 16 | . 0625 | . 0400 | . 5225 | . 4825 | . 1828 |
| ${ }_{5}^{5}$ | 14 | . 0714 | . 0457 | . 5793 | . 5335 | . 22235 |
| $\frac{11}{16}$ (.6875) | 14 | . 0714 | . 0457 | . 6418 | . 5960 | . 2790 |
| 等 (.75) | 12 | . 0833 | .0534 | . 6966 | . 6433 | . 3250 |
| ${ }_{1}^{13}$ (.8125) | 12 | . 0833 | . 0534 | . 7591 | . 7058 | . 3913 |
| (.875) | 11 | . 0909 | . 0582 | . 8168 | . 7586 | . 4520 |
| ${ }_{115}^{16}$ (.9375) | 11 | . 0909 | . 0582 | . 8793 | . 8211 | . 5295 |
| 1 | 10 | . 1000 | . 0640 | . 9360 | . 8719 | . 5971 |
| $1 \frac{1}{8} \quad$ (1.125) | 9 | . 1111 | . 0711 | 1.0539 | . 9827 | . 7585 |
| $1 \frac{1}{4}$ (1.25) | 9 | . 1111 | . 0711 | 1.1789 | 1.1077 | . 9637 |
| $1 \frac{3}{8}$ (1.375) | 8 | . 1250 | . 0800 | 1.2950 | 1.2149 | 1.1593 |
| 11 ${ }^{\frac{1}{2}}$ (1.5) | 8 | . 1250 | . 0800 | 1.4200 | 1.3399 | 1.4100 |
| $1 \frac{5}{8}$ (1.625) | 8 | . 1250 | . 0800 | 1.5450 | 1.4649 | 1.6854 |
| $1 \frac{3}{4}$ (1.75) | 7 | . 1429 | . 0915 | 1.6585 | 1.5670 | 1.9285 |
| *17 (1.875) | 7 | . 1429 | . 0915 | 1.7835 | 1.6920 | 2.2485 |
| 2 | 7 | . 1429 | . 0915 | 1.9085 | 1.8170 | 2.5930 |
| $*_{21} \frac{1}{8} \quad(2.125)$ | 7 | . 1429 | . 0915 | 2.0335 | 1.9420 | 2.9620 |
| $2 \frac{1}{4}$ (2.25) | 6 | . 1667 | . 1067 | 2.1433 | 2.0366 | 3.2576 |
| *23 ${ }^{\frac{3}{8}}$ (2.375) | 6 | . 1667 | . 1067 | 2.2683 | 2.1616 | 3.6698 |
| $2 \frac{1}{2}$ (2.5) | 6 | . 1667 | . 1067 | 2.3933 | 2.2866 | 4.1065 |
| *25 (2.625) | 6 | . 1667 | . 1067 | 2.5183 | 2.4116 | 4.5677 |
| $2 \frac{3}{4}$ (2.75) | 6 | . 1667 | . 1067 | 2.6433 | 2.5366 | 5.0535 |
| *27 (2.875) | 6 | . 1667 | . 1067 | ${ }^{2} .7683$ | 2.6616 | 5.5039 |
| 3 | 5 | . 2000 | . 1281 | 2.8719 | 2.7439 | 5.9133 |
| *31 ${ }^{\frac{1}{8}}$ (3.125) | 5 | . 2000 | . 1281 | 2.9969 | 2.8689 | 6.4643 |
| $3 \frac{1}{3} \quad(3.25)$ | 5 | . 2000 | . 1281 | 3.1219 | 2.9119 | 7.0399 |
| *33 ${ }^{\frac{3}{1}}$ (3.375) | 45 | . 2000 | . 1281 | 3.2469 | 3.1189 | 7.6400 |
| * $3 \frac{1}{2}$ | 4.5 | . 2222 | . 1423 | 3.3577 | 3.2154 | 8.1201 |
| *35 ${ }^{\text {5 }}$ (3.625) | 4.5 | . 2222 | . 1423 | 3.4827 | 3.3404 | 8.7637 |
| - ${ }^{3}$ | 4.5 | . 22222 | . 1423 | 3.6077 | 3.4654 | 9.4319 |
| *3 ${ }^{\frac{7}{8}}$ (3.875) | 4.5 | . 22222 | . 1423 | 3.7327 | 3.5904 | 10.1246 |
| 4 | 4.5 | . 2222 | . 1423 | 3.8577 | 3.7154 | 10.8418 |
| $*_{41}{ }_{1} \quad(3.125)$ | 4.5 | . 2222 | . 1423 | 3.9827 | 3.8404 | 11.5836 |
| $*_{4}{ }_{4}^{4}$ (4.25) | 4 | . 2500 | . 1601 | 4.0899 | 3.9298 | 12.1292 |
| ${ }^{4}{ }_{4}^{38}$ (4.375) | 4 | . 2500 | . 1601 | 4.2149 | 4.0548 | 12.9131 |
| $4 \frac{1}{2}$ $(4.5)$ <br> $* 4^{5}$  <br> $(4.625)$  | 4 | . 25000 | . 1601 | 4.3399 4.4649 | 4.1798 4.3048 | 13.7215 14.5545 |
| *4 ${ }_{4}^{\frac{3}{4}}$ (4.75) | 4 | . 2500 | . 1601 | 4.5899 | 4.4298 | 15.4120 |
| ${ }^{1} \frac{7}{8}$ (4.875) | 4 | . 2500 | . 1601 | 4.7149 | $4.5548^{\prime}$ | 16.2910 |
| ${ }^{8}$ | 4 | . 2500 | . 1601 | 4.8399 | 4.6798 | 17.2006 |
| *5, $\frac{1}{8}$ (5.125) | 5 | . 2500 | . 1601 | 4.9649 | 4.8048 | 18.1318 |
| ${ }^{5} 518$ | 3.5 | . 2857 | . 1830 | 5.0670 | 4.8841 | 18.7352 |
| *), ${ }^{3}$ 3 (5.375) | 3.5 | . 2857 | . 1830 | 5.1920 | 5.0091 | 19.7065 |
| 5-1 (5.5) | 3.5 | . 2857 | . 1830 | 5.3170 | 5.1341 | 20.7023 |
| *-5. ${ }^{5}$ (5.625) | 3.5 | . 2857 | . 1830 | 5.4420 | 5.2591 | 21.7226 |
|  | 3.5 | . 2857 | . 1830 | 5.5670 | 5.3841 | 22.7675 |
| *5 ${ }^{\frac{7}{8}}$ (5.875) | 3.5 | . 2857 | . 1830 | 5.6920 | 5.5091 | 23.8370 |
| 6 | 3.5 | . 2857 | . 1830 | 5.8170 | 5.6341 | 24.9310 |

* The Committee recommend that for general use these sizes be dispensed with. From the pitches contained in the above table only two additional chasers are required beyond those already employed in cutting the Whitworth pitches.


## British Standard Pipe Threads.

Schedule of Sizes.
Engineering Standards Committee, April 1905.

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Bore of Tube. | Approximate Outside Diameter of Black Tube. | Gauge <br> Diameter <br> Top of Thread | Depth of Thread. | Core Diameter. | Number of Threads per Inch. |
| Ins. | Ins. | Ins. | In. | Ins. |  |
| 1/8 | $\frac{13}{3}$ | . 383 | . 0230 | . 337 | 28 |
| 1/4 | ${ }^{\frac{17}{2}}$ | . 518 | . 0335 | . 451 | 19 |
| 3/8 | $\frac{11}{16}$ | . 656 | . 0335 | . 589 | 19 |
| 1/2 | ${ }_{3}^{27}$ | . 825 | . 0455 | . 734 | 14 |
| 5/8 | ${ }^{\frac{1}{15}}$ | . 902 | . 0455 | . 811 | 14 |
| $3 / 4$ | $1 \frac{1}{16}$ | 1.041 | . 0455 | . 950 | 14 |
| 7/8 | $1{ }^{\frac{7}{32}}$ | 1.189 | . 0455 | 1.098 | 14 |
| 1 | $1 \frac{11}{32}$ | 1.309 | . 0580 | 1.193 | 11 |
| 11/4 | $1 \frac{11}{16}$ | 1.650 | . 0580 | 1.534 | 11 |
| 11/2 | $1 \frac{129}{32}$ | 1.882 | . 0580 | 1.766 | 11 |
| $13 / 4$ | $2 \frac{5}{32}$ | 2.116 | . 0580 | 2.000 | 11 |
| 2 | 23/8 | 2.347 | . 0580 | 2.231 | 11 |
| 21/4 | 25/8 | 2.587 | . 0580 | 2.471 | 11 |
| $21 / 2$ | 3 | 2.960 | . 0580 | 2.844 | 11 |
| $23 / 4$ | 31/4 | 3.210 | . 0580 | 3.094 | 11 |
| 3 | 31/2 | 3.460 | . 0580 | 3.344 | 11 |
| 31/4 | $33 / 4$ | 3.700 | . 0580 | 3.584 | 11 |
| $31 / 2$ | 4 | 3.950 | . 0580 | 3.834 | 11 |
| $33 / 4$ | 41/4 | 4.200 | . 0580 | 4.084 | 11 |
| 4 | 41/2 | 4.450 | . 0580 | 4.334 | 11 |
| 41/2 | 5 | 4.950 | . 0580 | 4.834 | 11 |
| 5 | 51/2 | 5.450 | . 0580 | 5.334 | 11 |
| 51/2 | 6 | 5.950 | . 0580 | 5.834 | 11 |
| 6 | 61/2 | 6.450 | . 0580 | 6.334 | 11 |
| 7 | $71 / 2$ | 7.450 | . 0640 | 7.322 | 10 |
| 8 | $81 / 2$ | 8.450 | . 0640 | 8.322 | 10 |
| 9 | 91/2 | 9.450 | . 0640 | 9.322 | 10 |
| 10 | 101/2 | 10.450 | . 0640 | 10.322 | 10 |
| 11 | 111/2 | 11.450 | . 0800 | 11.290 | 8 |
| 12 | 121/2 | 12.450 | . 0800 | 12.290 | 8 |
| 13 | 133/4 | 13.680 | . 0800 | 13.520 | 8 |
| 14 | $143 / 4$ | 14.680 | . 0800 | 14.520 | 8 |
| 15 | $153 / 4$ | 15.680 | . 0800 | 15.520 | 8 |
| 16 | 163/4 | 16.680 | . 0800 | 16.520 | 8 |
| 17 | $173 / 4$ | 17.680 | . 0800 | 17.520 | 8 |
| 18 | $183 / 4$ | 18.680 | . 0800 | 18.520 | 8 |

Threads of the Standard Whitworth Form.

## Standard Machine Screws.

## American Society of Mechanical Engineers.

## Oval Fillister Head Screws.

$\mathrm{A}=$ Diameter of Body
$\mathrm{B}=1.6 \mathrm{~A}=$ Diameter of Head
$\mathrm{C}=0.80 \mathrm{~A}=$ Thickness of Head (oval)
$\mathrm{D}=0.235 \mathrm{~A}=$ Width of Slot
$\mathrm{E}=0.5 \mathrm{C}=0.4 \mathrm{~A}=$ Depth of Slot
$\mathrm{F}=2.186 \mathrm{~A}=$ Radius of Head
$\mathrm{K}=0.65 \mathrm{~A}=$ Thickness of Head (flat)


| $\mathbf{A}$ | B | C | $\mathbf{1}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{K}$ | Threads <br> per inch. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .070 | .1120 | .0560 | .0164 | .0280 | .1530 | .0455 | 72 |
| .085 | .1360 | .0680 | .0200 | .0340 | .1858 | .0552 | 64 |
| .100 | .1600 | .0800 | .0235 | .0400 | .2186 | .0650 | 56 |
| .110 | .1760 | .0880 | .0258 | .0440 | .2404 | .0715 | 48 |
| .125 | .2000 | .1000 | .0294 | .0500 | .2732 | .0812 | 44 |
| .140 | .2240 | .1120 | .0329 | .0560 | .3060 | .0910 | 40 |
| .165 | .2640 | .1320 | .0388 | .0660 | .3607 | .1072 | 36 |
| .190 | .3040 | .1520 | .0446 | .0760 | .4153 | .1235 | 32 |
| .215 | .3440 | .1720 | .0505 | .0860 | .4700 | .1397 | 28 |
| .240 | .3840 | .1920 | .0564 | .0960 | .5246 | .1560 | 24 |
| .250 | .4000 | .2000 | .0587 | .1000 | .5465 | .1625 | 24 |
| .270 | .4320 | .2160 | .0634 | .1080 | .5902 | .1755 | 22 |
| .320 | .5120 | .2560 | .0752 | .1280 | .6995 | .2080 | 20 |
| .375 | .6000 | .3000 | .0881 | .1500 | .8197 | .2437 | 16 |

## Flat Head Screws.

$\mathrm{A}=$ Diameter of Body
$\mathrm{B}=2 \mathrm{~A}-0.0052=$ Diameter of Head
$\mathrm{C}=\frac{\mathrm{A}-0.0052}{1.739}=$ Thickness of Head
$\mathrm{D}=0.23 \overline{5} \mathrm{~A}=$ Width of Slot
$\mathrm{D}=\frac{1}{3} \mathrm{C}=\frac{\mathrm{A}-0.0052}{5.217}=$ Depth of Slot


| A | B | C | D | F | Threads <br> per inch. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .070 | .1348 | .0373 | .0164 | .0124 | 72 |
| .085 | .1648 | .0459 | .0200 | .0153 | 64 |
| .100 | .1948 | .0545 | .0235 | .182 | 56 |
| .110 | .2448 | .0603 | .0258 | .0201 | 48 |
| .125 | .2448 | .0689 | .0294 | .0229 | 44 |
| .140 | .2748 | .0775 | .0329 | .0258 | 40 |
| .165 | .3248 | .0919 | .0388 | .0306 | 36 |
| .190 | .378 | .1063 | .0446 | .0354 | 32 |
| .215 | .4248 | .1206 | .0505 | .0402 | 28 |
| .240 | .4748 | .1350 | .0564 | .0450 | 24 |
| .250 | .4948 | .1408 | .0587 | .0469 | 24 |
| .270 | .5348 | .1523 | .0634 | .0508 | 22 |
| .320 | .6348 | .1816 | .0752 | .605 | 20 |
| .375 | .7448 | .2126 | .0881 | .0709 | 16 |

## Standard Machine Screws. <br> American Society of Mechanical Engineers.

## Round Head for Machine Screws.

A = Diameter of Body
$\mathrm{B}=1.83 \mathrm{~A}=$ Diameter of Head
$\mathrm{C}=0.703 \mathrm{~A}=$ Thickness of Head
$\mathrm{D}=0.235 \mathrm{~A}=$ Width of Slot
$\mathrm{E}=0.40 \mathrm{~A}=$ Depth of Slot
$\mathrm{F}=1.095 \mathrm{~A}=$ Rad. of Top of Head
$\mathrm{G}=0.70 \mathrm{~A}=$ Rad. of Sides of Head
$\mathrm{H}=0.068 \mathrm{~A}=$ Dist. from bottom of Head to center of G
$\mathrm{I}=0.213 \mathrm{~B}=$ Dist. from center of Head to center of G


| A | 13 | ' | D | E | F | G | H | I | Thread perin. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 070 | . 1281 | . 0492 | . 0164 | . 0280 | . 0766 | . 0490 | . 0048 | . 0149 | 72 |
| . 085 | . 1555 | . 0597 | . 0200 | . 0340 | . 0931 | . 0595 | . 0058 | . 0181 | 64 |
| . 100 | . 1830 | . 0703 | . 0235 | . 0400 | . 1095 | . 0700 | . 0068 | . 0213 | 56 |
| . 110 | . 2013 | . 0773 | . 0258 | . 0440 | . 1204 | . 0770 | . 0075 | . 0234 | 48 |
| . 125 | . 2287 | . 0879 | . 0294 | . 0500 | . 1369 | . 0875 | . 0085 | . 0266 | 44 |
| . 140 | . 2562 | . 0984 | . 0329 | . 0560 | . 1533 | . 0980 | . 0095 | . 0298 | 40 |
| . 165 | . 3019 | . 1160 | . 0388 | . 0660 | . 1807 | . 1155 | . 0112 | . 0351 | 36 |
| . 190 | . 3477 | . 1336 | . 0446 | . 0760 | . 2080 | . 1330 | . 0129 | . 0405 | 32 |
| $\therefore 25$ | . 3934 | . 1511 | . 0505 | . 0860 | . 2354 | . 1505 | . 0146 | . 0458 | 28 |
| . 240 | . 4392 | . 1687 | . 0564 | . 0960 | . 2628 | . 1680 | . 0163 | . 0511 | 24 |
| . 250 | .4575 | . 1757 | . 0587 | . 1000 | . 2737 | . 1750 | . 0170 | . 0532 | 24 |
| . 270 | . 4944 | . 1898 | . 0634 | . 1080 | . 2956 | . 1890 | . 0184 | . 0575 | 22 |
| . 320 | . 58.56 | . 2250 | . 0752 | . 1280 | . 3504 | .2240 | . 0218 | . 0682 | 20 |
| . 375 | . 6862 | . 2636 | . 0881 | . 1500 | . 4106 | . 26.25 | . 0255 | . 0799 | 16 |

Flat Fillister Head Screws.
A == Diameter of Body
$\mathrm{B}=1.6 \mathrm{~A}=$ Diameter of Head
$\mathrm{K}=0.6 \overline{\mathrm{n}} \mathrm{A}=$ Thickness of Head
$\mathrm{D}=0.235 \mathrm{~A}=$ Width of Slot
$\mathbf{E}=0.5 \mathrm{~K}=0.325 \mathrm{~A}=$ Depth of Slot


| A | B | K | D | E | Threads per Inch. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 070 | . 1120 | . 0455 | . 0164 | . 0227 | 72 |
| . 085 | . 1360 | . 0552 | . $0: 200$ | . 0276 | 64 |
| . 100 | . 1600 | . 0650 | .023.5 | . 0325 | 56 |
| . 110 | . 1760 | . 0715 | .0058 | . 0357 | 48 |
| . 125 | . 2000 | . 0812 | . 0294 | . 0406 |  |
| . 140 | . 2240 | . 0910 | . 03229 | . 0455 | 40 |
| . 165 | . 2640 | . 1072 | . 0388 | . 05336 | 36 |
| . 190 | . 3040 | . 1235 | . 0446 | . 0617 | 32 |
| . 215 | . 3440 | . 1397 | . 0.505 | . 0698 | $28$ |
| . 240 | . 3840 | . 1560 | . 0564 | . 0780 |  |
| . 250 | . 4000 | . 1625 | . 0587 | . 0812 | 24 |
| . 270 | . 4320 | . 1755 | .0634 | . 0877 | 22 |
| . 320 | . 5120 | . 2080 | . 0752 | . 1040 | 20 |
| . 375 | . 6000 | . 2437 | . 0881 | .1218 | 16 |

## Wrought-iron Steam Pipe.

United States Standard.

| Inner diameter. |  |  |  | $\begin{aligned} & \text { Threads per inch } \\ & \text { of screw. } \end{aligned}$ | Inner diameter. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Inch. | Inch. | Inch. | Lb. |  |  | Inch. | Inch. | Lb. |  |
| 1/8 | . 270 | . 068 | . 24 | 27 | $41 / 2$ | 4.508 | . 246 | 12.49 | 8 |
| 4 | . 364 | . 088 | . 42 | 18 | 5 | 5.045 | . 259 | 14.50 | 8 |
| $3 / 8$ | . 494 | . 091 | . 56 | 18 | 6 | 6.065 | . 280 | 18.76 | 8 |
| $1 / 3$ | . 623 | . 1109 | . 84 | 14 | 7 | 7.023 | . 301 | 23.27 | 8 |
| $1^{3 / 4}$ | . 824 | . 113 | 1.12 | 14 | 8 | 7.982 | . 322 | 28.18 | 8 |
|  | 1.380 | . 140 | 2.24 | $111^{1 / 2}$ | 10 | 10.019 | . 366 | 40.00 | 8 |
| $1 / 2$ | 1.611 | . 145 | 2.68 | $111 / 2$ | 11 | 11.00 | . 375 | 45.00 | 8 |
| 2 | 2.067 | . 154 | 3.61 | 111/2 | 12 | 12.00 | . 375 | 49.00 | 8 |
| 1/2 | 2.468 | . 204 | 5.74 | 8 | 13 | 13.25 | . 375 | 54.00 | 8 |
| 3 | 3.067 | . 217 | 7.54 | 8 | 14 | 14.25 | . 375 | 58.00 | 8 |
| 1/2 | 3.548 4.026 | . 2236 | 9.00 10.66 | 8 | 15 | 15.25 | . 375 | 62.00 | 8 |
|  | 4.026 | . 237 | 10.66 | 8 |  |  |  |  |  |

Metric Screw Threads.
Systéme Internationale.

|  |  |  |  |  | 宅范 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm |
| $\begin{aligned} & 6 \\ & 7 \end{aligned}$ | $\begin{aligned} & 4,593 \\ & 5,593 \end{aligned}$ | $\} 1,0$ | 0,7036 | 12 | $\begin{aligned} & 30 \\ & 33 \end{aligned}$ | $\begin{aligned} & 25,075 \\ & 28,075 \end{aligned}$ | $\} 3,5$ | 2,4628 | 46 50 |
| $\begin{aligned} & 8 \\ & 9 \end{aligned}$ | $\begin{aligned} & 6,241 \\ & 7,241 \end{aligned}$ | $\} 1,25$ | 0,8795 | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | $\begin{aligned} & 36 \\ & 39 \end{aligned}$ | $\begin{aligned} & 30,371 \\ & 33,371 \end{aligned}$ | $\} 4,0$ | 2,8146 | 54 <br> 58 |
| $\begin{aligned} & 10 \\ & 11 \end{aligned}$ | $\begin{aligned} & 7,889 \\ & 8,889 \end{aligned}$ | $\} 1,5$ | 1,0555 | $\begin{aligned} & 18 \\ & 19 \end{aligned}$ | $\begin{aligned} & 42 \\ & 45 \end{aligned}$ | $\begin{aligned} & 35,667 \\ & 38,667 \end{aligned}$ | \} 4,5 | 3,1664 | 63 |
| 12 | 9,537 | 1,75 | 1,2314 | 21 | 48 | 40,964 |  |  | 71 |
| 14 16 16 | 11,185 |  |  | 23 | 52 | 4, 4,964 | \} 5,0 | 3,5182 | 77 |
| 16 | 13,185 | $\}^{2,0}$ | 1,4073 $\{$ | 26 | 56 60 | 48,260 52,260 |  | 3,8701 | 82 88 |
| $\begin{aligned} & 18 \\ & 20 \end{aligned}$ | 14,482 16,482 | 2,5 | 1,7591 | 29 32 | $60$ | $\begin{gathered} 52,260 \\ 55.556 \end{gathered}$ | $\}^{5,5}$ | 3,8701 | 88 94 |
| 22 | 18,482 |  | 1,7591 | 32 35 | $\begin{aligned} & 64 \\ & 68 \end{aligned}$ | $\begin{aligned} & 55,556 \\ & 59,556 \end{aligned}$ | $\} 6,0$ | 4,22 | 94 100 |
| $\begin{aligned} & 24 \\ & 27 \end{aligned}$ | $\begin{aligned} & 19,778 \\ & 22,778 \end{aligned}$ | $\} 3,0$ | 2,1109 $\{$ | $\begin{aligned} & 38 \\ & 42 \end{aligned}$ | $\begin{aligned} & 72 \\ & 76 \end{aligned}$ | $\begin{aligned} & 62,853 \\ & 66,853 \end{aligned}$ | $\} 6,5$ | 4,5737 | 105 110 110 |
|  |  |  |  |  |  | 70,149 | 7,0 | 4,9255 | 116 |

Angle of thread $60^{\circ}$. Flattened $\frac{1}{8}$ on top. Rounded $\frac{1}{16}$ at bottom.

## Standard Cast=iron Pipe.

Metric System.

| Inside <br> diam- <br> eter. | Thick- <br> ness. | Outside <br> diameter. | Weight <br> per <br> metre. | Inside <br> diam- <br> eter. | Thick- <br> ness. | Outside <br> diameter. | Weight <br> per <br> metre. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mm. | Mm. | Mm. | Kilo. | Mm. | Mm. | Mm. | Kilo. |
| 40 | 8.0 | 56 | 8.75 | 375 | 14.0 | 403 | 124.04 |
| 50 | 8.0 | 66 | 10.57 | 400 | 14.5 | 429 | 136.89 |
| 60 | 8.5 | 77 | 13.26 | 425 | 14.5 | 454 | 145.15 |
| 70 | 8.5 | 87 | 15.20 | 450 | 15.0 | 480 | 158.87 |
| 80 | 9.0 | 98 | 18.24 | 475 | 15.5 | 506 | 173.17 |
| 90 | 9.0 | 108 | 20.29 | 500 | 16.0 | 532 | 188.04 |
| 100 | 9.0 | 118 | 22.34 | 550 | 16.5 | 583 | 212.90 |
| 125 | 9.5 | 144 | 29.10 | 600 | 17.0 | 634 | 238.90 |
| 150 | 10.0 | 170 | 36.44 | 650 | 18.0 | 686 | 273.86 |
| 175 | 10.5 | 196 | 44.36 | 700 | 19.0 | 738 | 311.15 |
| 200 | 11.0 | 222 | 52.86 | 750 | 20.0 | 790 | 350.76 |
| 225 | 11.5 | 248 | 61.95 | 800 | 21.0 | 842 | 392.69 |
| 250 | 12.0 | 274 | 71.61 | 900 | 22.5 | 945 | 472.76 |
| 275 | 12.5 | 300 | 81.85 | 1000 | 24.0 | 1048 | 559.76 |
| 300 | 13.0 | 326 | 92.68 | 1100 | 26.0 | 1152 | 666.81 |
| 325 | 13.5 | 352 | 104.08 | 1200 | 28.0 | 1256 | 783.15 |
| 350 | 14.0 | 378 | 116.07 |  |  |  |  |

## Cast-iron Pipe.

The following tables of dimensions and weights of standard cast-iron pipe for water mains are those adopted by the New England Water Works Association at its meeting in September, 1902. Ten classes of pipe are given, designated by the letters of the alphabet, the difference between the various classes being in the matter of thickness,-the inside diameter remaining constant for any size pipe, and the variation in thickness affecting the outside diameter. Table No. 1, herewith, gives the dimensions of the various sizes, and Table No. 2 gives the weights for standard 12 -foot lengths of the various diameters and thicknesses.

The various classes are required to stand hydrostatic tests, as follows :
Pounds per square inch for diameters of

20 inches and larger.
Class A
20 inches.
Class B............................................ . . 200

| 200 |
| :--- |
| 250 |

300
Class C.......................................... 250
Class D.......................................... . . . . . . 300
Class E............................................. 350
300
300

Class F............................................. . . . . 350
350
350

Table No. 1.
General Dimensions of Pipes and Special Castings.


| Nominal diameter. | Classes. | Actual outside diameter. | Diam. of sockets. |  | Depth of sockets. |  | " a " | " ${ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Pipe. | Special castings. | Pipe. | Special castings. |  |  |
| Inch. |  | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inc |
| 4 | A, C, E | 4.80 | 5.60 | 5.70 | 3.0 | 4.0 | 1.50 | 1.3 |
| 4 | G, I, K | 5.00 | 5.80 | 5.70 | 3.0 | 4.0 | 1.50 | 1.3 |
| 6 | A, C, E | 6.90 | 7.77 | 7.80 | 3.0 | 4.0 | 1.50 | 1.4 |
| 6 | G, I | 7.10 | 7.90 | 7.80 | 3.0 | 4.0 | 1.50 | 1.4 |
| 8 | A, C, E | 9.05 | 9.85 | 10.00 | 3.5 | 4.0 | 1.50 | 1.5 |
| 8 | G, I | 9.30 | 10.10 | 10.00 | 3.5 | 4.0 | 1.50 | 1.5 |
| 10 | A, B, C, D | 11.10 | 11.90 | 12.10 | 3.5 | 4.5 | 1.50 | 1.5 |
| 10 | E, F, G, H | 11.40 | 12.20 | 12.10 | 3.5 | 4.5 | 1.50 | 1.5 |
| 12 | A, B, C, D | 13.20 | 14.00 | 14.20 | 3.5 | 4.5 | 1.50 | 1.6 |
| 12 | E, F, G, H | 13.50 | 14.30 | 14.20 | 3.5 | 4.5 | 1.50 | 1.6 |
| 14 | A, B, C, D | 15.30 | 16.10 | 16.35 | 3.5 | 4.5 | 1.50 | 1.7 |
| 14 | E, F, G, H | 15.65 | 16.45 | 16.35 | 3.5 | 4.5 | 1.50 | 1.7 |
| 16 | A, B, C, D | 17.40 | 18.40 | 18.60 | 4.0 | 5.0 | 1.75 | 1.8 |
| 16 | E, F, G, H | 17.80 | 18.80 | 18.60 | 4.0 | 5.0 | 1.75 | 1.8 |
| 18 | A, B | 19.25 | 20.25 | 20.40 | 4.0 | 5.0 | 1.75 | 1.9 |
| 18 | C, D | 19.50 | 20.50 | 20.40 | 4.0 | 5.0 | 1.75 | 1.9 |
| 18 | E, F | 19.70 | 20.70 | 20.70 | 4.0 | 5.0 | 1.75 | 1.9 |
| 20 | A, B | 21.30 | 22.30 | 22.50 | 4.0 | 5.0 | 1.75 | 2.0 |
| 20 | C, D | 21.60 | 22.60 | 22.50 | 4.0 | 5.0 | 1.75 | 2.0 |
| 20 | E, F | 21.90 | 22.90 | 23.00 | 4.0 | 5.0 | 1.75 | 2.0 |
| 24 | A, B | 25.40 | 26.40 | 26.60 | 4.0 | 5.0 | 2.00 | 2.1 |
| 24 | C, D | 25.80 | 26.80 | 26.60 | 4.0 | 5.0 | 2.00 | 2.1 |
| 24 | E, F | 26.10 | 27.10 | 27.10 | 4.0 | 5.0 | 2.00 | 2.1 |
| 30 | A. B | 31.60 | 32.60 | 32.60 | 4.5 | 5.0 | 2.00 | 2.3 |
| 30 | C, D | 32.00 | 33.00 | 33.00 | 4.5 | 5.0 | 2.00 | 2.3 |
| 30 | E, F | 32.40 | 33.40 | 33.40 | 4.5 | 5.0 | 2.00 | 2.3 |
| 36 | A, B | 37.80 | 38.80 | 38.80 | 4.5 | 5.0 | 2.00 | 2.5 |
| 36 | C, D | 38.30 | 39.30 | 39.30 | 4.5 | 5.0 | 2.00 | 2.5 |
| 36 | E, F | 38.70 | 39.70 | 39.70 | 4.5 | 5.0 | 2.00 | 2.5 |
| 42 | A, B | 44.00 | 45.00 | 45.00 | 5.0 | 5.0 | 2.00 | 2.8 |
| 42 | C, D | 44.50 | 45.50 | 45.50 | 5.0 | 5.0 | 2.00 | 2.8 |
| 42 | E, F | 45.10 | 46.10 | 46.10 | 5.0 | 5.0 | 2.00 | 2.8 |
| 48 | A, B | 50.20 | 51.20 | 51.20 | 5.0 | 5.0 | 2.00 | 3.0 |
| 48 | C, D | 50.80 | 51.80 | 51.80 | 5.0 | 5.0 | 2.00 | 3.0 |
| 48 | E, F | 51.40 | 52.40 | 52.40 | 5.0 | 5.0 | 2.00 | 3.0 |
| 54 | A, B | 56.40 | 57.40 | 57.40 | 5.5 | 5.5 | 2.25 | 3.2 |
| 54 | C, D | 57.10 | 58.10 | 58.10 | 5.5 | 5.5 | 2.25 | 3.2 |
| 54 | E, F | 57.80 | 58.80 | 58.80 | 5.5 | 5.5 | 2.25 | 3.8 |
| 60 | A, B | 62.60 | 63.60 | 63.60 | 5.5 | 5.5 | 2.25 | 3.4 |
| 60 | C. D | 63.40 | 64.40 | 64.40 | 5.5 | 5.5 | 2.25 | 3.4 |
| 60 | E, F | 64.20 | 65.20 | 65.20 | 5.5 | 5.5 | 2.25 | 4.0 |


|  |  |  |  |  |  |  |  | 0099］ | 01＇\％ | 00IGI | 06．L | 008EL | 0L＇I | 006II | $09^{\prime} \mathrm{I}$ | 0080 L | $00^{\circ} \mathrm{L}$ | 0068 | OT＇T |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 0098 L | $06^{\circ} \mathrm{L}$ | 098\％L | 7L＇L | 0060I | \＃$\square^{\circ}$ L | 0086 | L8．L | 0098 | 0\％＇L | 0068 | $80^{\circ} \mathrm{L}$ | $\stackrel{09}{19}$ |
|  |  |  |  |  |  |  |  | 0090 L | 0 ${ }^{\circ}$ L | 0716 | cg＇I | $08 L 8$ | $0{ }^{\circ} \mathrm{I}$ | 006L | ${ }^{9} \mathcal{C}^{\circ} \mathrm{L}$ | 0469 | 0I＇I | 0\＆L9 | ${ }^{4} 6^{\circ}$ | 85 |
|  |  |  |  |  |  |  |  | 0988 | \＆9＇L | 00LL | 07＇I | 0 O69 | $L 6^{\circ} \mathrm{I}$ | $0<79$ | 8L＇L | 0999 | 00＇L | 0067 | L8＊ | $\boldsymbol{7}$ |
|  |  |  |  |  |  |  |  | 0989 | LE＇L | 0069 | ${ }_{9}^{\text {c／}} \cdot \underline{T}$ | 0089 | 8L＇L | 0887 | 70． | 027\％ | $06^{\circ}$ | 0088 | $62^{\circ}$ | 98 |
|  |  |  |  |  |  |  |  | 0895 | $07^{\circ} \mathrm{L}$ | 078\％ | ${ }^{01}{ }^{\text {L }}$［ | 0968 | L0＇L | 0098 | 16． | 0878 | L8＊ | 0987 | ［ 4. | $0 ¢$ |
|  |  |  |  |  |  |  |  | 0778 | ${ }_{76} 0^{\circ} \mathrm{L}$ | 0008 | ${ }^{9} 6{ }^{\circ}$ | 0LLZ | $88^{\circ}$ | 089\％ | $0^{0}{ }^{\circ}$ | 0677 | $74^{\circ}$ | 0 0¢07 | ¢9 ${ }^{\circ}$ | $\ddagger 8$ |
|  |  |  |  |  |  |  |  | 0Lも\％ | $76^{\circ}$ | $09 \% \%$ | $98^{\circ}$ | 0807 | $61^{\circ}$ | 076I | 71 | 092I | $99^{\circ}$ | 0I9I | $09^{\circ}$ | 07 |
|  |  |  |  |  |  |  |  | 0707 | 98＊ | 0L6I | 08． | 06LI | c $\square^{\circ}$ | 0991 | $69^{\circ}$ | 0791 | 89 ${ }^{\circ}$ | 0LPI | $49^{\circ}$ | 81 |
|  |  |  |  | 0065 | 06. | 0081 | $98^{\circ}$ | 00LL | 08＊＊ | 0091 | $94^{\circ}$ | 009L | $04^{\circ}$ | 0IbI | $9^{\circ}{ }^{\circ}$ | 0IEL | $09^{\circ}$ | GIZL | ${ }^{99}$ | $9[$ |
|  |  |  |  | 08GL | $88^{\circ}$ | 09EI | $61^{\circ}$ | 088I | $\underline{96}{ }^{\circ}$ | 008L | 04． | 087， | $99^{\circ}$ | GGIL | ［9＊ | 9801 | 29＊ | 0L0L | $89^{\circ}$ | DI |
|  |  |  |  | 0L\％I | $44^{\circ}$ | 09IL | $84^{\circ}$ | 060L | $69^{\circ}$ | 9801 | $99^{\circ}$ | 086 | L9 ${ }^{\circ}$ | 076 | $19^{\circ}$ | 998 | $89^{\circ}$ | 018 | $66^{\circ}$ | ZI |
|  |  |  |  | 96. | $0 L^{\circ}$ | 988 | $49^{\circ}$ | 978 | $89^{\circ}$ | 908 | $09^{\circ}$ | 991 | $99^{\circ}$ |  | 89＊ | 989 | $0{ }^{\text {－}}$ | 099 | 200 |  |
|  |  | C89 | $89^{\circ}$ |  |  | 089 | $89^{\circ}$ |  |  | GLG | 89＊ |  |  | 979 | $85^{\circ}$ |  |  | 926 | $75^{\circ}$ | $8$ |
|  |  | 015 | $\underset{9}{79}$ |  |  | 9Lb | $\mathrm{OG}^{\circ}$ |  |  | 988 | $95^{\circ}$ |  |  | 998 | $75^{\circ}$ |  |  | 08\％ | $88^{\circ}$ | 9 |
| 92.6 | $86^{\circ}$ | 096 | $96^{\circ}$ |  |  | GEZ | $\boldsymbol{6} \boldsymbol{6}^{\circ}$ |  |  | $08 \%$ | $68^{*}$ |  |  | ¢LZ | $98^{\circ}$ |  |  | 007 | $\mathcal{E}^{\circ}$ |  |
| $\cdot q \cdot 1$ | －บว碞 | $\cdot q$＇ | －प\％uI | ${ }^{\circ} \mathrm{qr}$ I | －youI | ${ }^{\circ} \mathrm{q}$＇T | －प०uI | －qT | －प०uI | ${ }^{\text {Q }}$＇I | －YouI | $\bullet$＇TI | －पouI | ${ }^{\text {q＇I }}$ | －प\％uI | ${ }^{\text {q／}}$ | －qoul | ${ }^{\circ} \mathrm{q}$ I | －पouI | ${ }^{\text {－YOuI }}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & r_{1}^{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \end{aligned}$ |
| ${ }^{\circ} \mathrm{I}$ | Su以 | I | －10 | H | U10 | $\cdots{ }^{1}$ Ss | －10 | －${ }^{\text {s }}$ | rio | ＇ris | －10 | －（I Ss | IO | 0 Os | セID | ＇g 8s | ID | V 8 | ［1） |  |

[^3]Sizes and Weights of Cast=iron Pipe Connections.

| Crosses. |  | Tees. |  | $45^{\circ}$ Branch Pipes. |  | Plugs. |  | Reducers. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. | Lb. | Inch. | Lb. | Inc | Lb. | Inch. | Lb. | Inch. | Lb. |
| ${ }_{3}^{2}$ | 40 104 | 2 | 28 76 | ${ }_{6}$ | $4 \begin{array}{r}90 \\ 145\end{array}$ | ${ }_{3}^{2}$ |  | $3 \times$ $4 \times$ |  |
| ${ }_{3} \times 2$ | 104 90 | ${ }_{3} \times 2$ | 76 | ${ }_{8}^{6} \times$ | +145 <br> 300 | 3 4 | $\stackrel{5}{8}$ | $4 \times$ | 40 |
|  | 150 | 4 | 100 | $8 \times 6$ | 290 | 6 | 12 | $6 \times$ | 4.95 |
| $4 \times 3$ | 114 | $4 \times 3$ | 90 |  | 2765 | 8 | 26 | $6 \times$ | 80 |
| $4 \times 2$ | 110 | $4 \times 2$ | 87 | $24 \times 24$ | 202145 | 10 | 46 | $8 \times$ | 126 |
|  | 200 | 6 | 150 |  | 4170 | 12 | 66 | $8 \times$ | 116 |
| $6 \times 4$ | 150 | $6 \times 4$ | 130 | 36 | 10300 | 14 | 70 | $8 \times$ | 116 |
| $6 \times 3$ | 150 | $6 \times 3$ | 125 |  |  | 16 | 100 | $10 \times$ | 212 |
|  | 325 | $6 \times 2$ | 120 |  |  | 20 | 150 | $10 \times$ | 150 |
| $8 \times 6$ | 265 |  | 266 | Sleeves. |  | 24 | 185 | $10 \times$ | 128 |
| $8 \times .4$ | 265 | $8 \times 6$ | 252 |  |  | 30 | 370 | $12 \times 1$ | 278 |
| $8 \times 3$ | 225 | $8 \times 4$ | 222 |  |  |  |  | $12 \times$ |  |
|  | 510 | $8 \times 3$ | 220 |  |  |  |  | $12 \times$ |  |
| $10 \times 8$ | 415 | 10 | 390 |  |  | $1 / 8$ or $45^{\circ}$ |  | $12 \times$ | 250 |
| $10 \times 6$ | 388 | $10 \times 8$ | 330 |  |  | $14 \times 1$ | 475 |
| $10 \times 4$ | 338 | $10 \times 6$ | 312 |  |  | $14 \times 10430$ |
| $12 \times 3$ | 700 | $10 \times 4$ 10 | 290 | Inch. |  |  |  | $\begin{aligned} & 14 \times \\ & 14 \times \end{aligned}$ | 8 340 <br> 6 285 |
| $12 \times 10$ | 650 |  | 565 |  | Lb. |  |  | $16 \times 1$ | 475 |
| $12 \times 8$ | 615 | $12 \times 10$ | 510 | $2 \quad 10$ |  |  |  | $16 \times 1$ | 435 |
| $12 \times 6$ | 540 | $12 \times 8$ | 492 |  |  | $20 \times 1$ | 690 |
| $12 \times 4$ | 525 | $12 \times 6$ | 484 | 3 | 20 |  |  | $20 \times 1$ | 575 |
| $12 \times 3$ | 495 | $12 \times 4$ | 460 | 4 44 <br> 4 45 |  |  |  |  |  | $20 \times 12540$ |  |
| $14 \times 10$ | 750 | $14 \times 12$ | 650 |  |  | Inch. | Lb. | $20 \times$ | 8300 |
| $14 \times 8$ | 635 | $14 \times 10$ | 650 | $10 \quad 140$ |  |  |  | $30 \times 241305$ |  |
| $14 \times 6$ | 570 | $14 \times 8$ | 575 |  |  |  |  |  |  |
|  | 1025 | $14 \times 6$ | 545 | 12 | 176 | 346 |  | $30 \times 18$$36 \times 30$ | 181385 |
| $16 \times 14$ | 1070 | $14 \times 4$ | $52 \overline{5}$ | 14 208 <br> 16  |  |  | 85 |  |  |
| $16 \times 12$ | 1025 | $14 \times 3$ | 490 | 16  <br> 20 340 |  |  |  |  |  | $36 \times 30$ | 1730 |
| $16 \times 10$ | 1010 |  | 790 |  |  | 8 <br> 100 <br> 190 |  |  |  |
| $16 \times 8$ | 825 | $16 \times 14$ | 850 | 24 710 <br> 30 965 |  | $12 \quad 290$ |  | Caps. |  |
| $16 \times 6$ | 700 | $16 \times 12$ | 825 |  |  |  |  |  |  |  |  |  |
| $16 \times 4$ | 650 1790 | 16×10 | 890 | $36 \quad 1500$ |  | 12242430 | 74014252000 |  |  |  |
| $\begin{aligned} & 20 \\ & 20 \times 12 \end{aligned}$ | 1790 1370 | $16 \times 8$ $16 \times 6$ | 755 630 |  |  |  |  | Lb. |  |
| $20 \times 10$ | 1225 | $16 \times 4$ | 655 | $90^{\circ}$ Elbows. |  |  |  |  | Inch. |
| $20 \times 8$ | 1000 | 20 | 1375 |  |  | 1 | 15 |  |  |
| $20 \times 6$ $20 \times 4$ | 1000 | $20 \times 16$ | 1115 |  |  | $\left\lvert\, \begin{array}{cc} \frac{1}{16} & \text { or } 221 \\ \text { Bends. }^{\circ} \\ \hline \end{array}\right.$ |  |  |  |
| $24 \times$ | 1000 | 20x | 1025 |  |  | 4 |  |  | 25 |
| $24 \times 20$ | 2020 | $20 \times 8$ | 100 900 |  |  | 8 | 75 |  |  |
| $24 \times 6$ | 1340 | 20× 6 | 875 |  |  | 1012 | 100120 |  |  |
| $30 \times 20$ | 2635 | $20 \times 4$ | 845 |  |  |  |  |  |  |
| $30 \times 8$ | 1995 | ${ }_{24}^{21 \times 10}$ | 1465 1875 | Inch. | Lb. |  |  |  |  |
|  |  | $24 \times 12$ | 1425 |  |  | Dripboxes. |  |  |  |
|  |  | $\left.\right\|_{30} ^{24 \times 6}$ | 1375 | $48$ |  |  |  | Inch. | Lb. |
|  |  | $30 \times 24$ | 2640 | 6 | 110 | 150 |  |  |  |
|  |  | $30 \times 20$ | 2200 | 8 | 145 |  |  | Inch. | Lb. |
|  |  | 30 $\times 12$ | 2035 | 10 | 225 | 8 | 155 |  |  |
|  |  | $30 \times 10$ | 2050 | 12 | 370 450 | 10 | 165 |  |  |
|  |  | ${ }_{36}^{30 \times 6}$ | 1825 5140 | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ | 450 525 | 12 | 260 500 | $\begin{aligned} & \mathbf{x} \\ & \hline \end{aligned}$ | 235 |
|  |  | $136 \times 30$ | 4200 | 20 | 900 | 24 | 1280 | 10 | 760 |
|  |  | $36 \times 12$ | 4050 | 24 | 1400 | 30 | 1735 | 20 | 1420 |

## Lap=welded American Charcoal Iron Boiler Tubes.

Tables of Standard Sizes.
Morris, Tasker \& Co.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. |  |  | Inch. | Inch. | Feet. | et. | Inch. |  | Lb. |
|  | . 856 | . 07 | 3.142 | 2.689 | 4.460 | 3.819 | 5 |  | 708 |
|  | 1.106 | . 072 | 3.927 | 3.474 | 3.455 | 3.056 | . 960 | 1.227 | . 90 |
|  | 1.334 | . 083 | 4.712 | 4.191 | 2.863 | 2.547 | 1.396 | 1.767 | 1.25 |
|  | 1.560 | . 095 | 5.498 | 4.901 | 2.448 | 2.183 | 1.911 | 2.405 | 1.66 |
|  | 1.804 | . 098 | 6.283 | 5.667 | 2.118 | 1.909 | 2.556 | 3.142 | 1.98 |
|  | 2.054 | . 098 | 7.069 | 6.484 | 1.850 | 1.698 | 3.314 | 3.976 | . 23 |
|  | 2.283 | . 109 | 7.854 | 7.172 | 1.673 | 1.528 | 4.094 | 4.909 | 2.75 |
|  | 2.533 | . 109 | 8.639 | 7.957 | 1.508 | 1.390 | 5.039 | 5.940 | 3.04 |
|  | 2.783 | . 109 | 9.425 | 8.743 | 1.373 | 1.273 | 6.083 | 7.069 | 3.33 |
|  | 3.012 | . 1119 | 10.210 | 9.462 | 1.268 | 1.175 | 7.125 | 8.296 | 3.958 |
|  | 3.262 | . 119 | 10.995 | 10.248 | 1.171 | 1.091 | 8.357 | 9.621 | 4.27 |
|  | ${ }_{3.741}^{3.512}$ | . 119 | 11 | 11.03 | 1.088 | 1.018 | 9.687 | 11.045 | .590 |
|  | 4.241 | . 130 | 14.137 | 13.323 | . 901 | . 819 | 14.126 | 15.904 | 01 |
|  | 4.720 | . 140 | 15.708 | 14.818 | . 809 | . 764 | 17.497 | 19.635 | 7.22 |
| 6 | 5.699 | . 151 | 18.849 | 17.904 | . 670 | . 637 | 25.509 | 28.274 | 9.34 |
| 7 | 6.657 | . 172 | 21.991 | 20.914 | . 574 | . 545 | 34.805 | 38.484 | 12.43 |
| 8 | 7.636 | . 182 | 25.132 | 23.989 | . 500 | . 478 | 45.795 | 50.265 | 15.109 |
| 9 | 8.615 | . 193 | 28.274 | 27.055 | . 144 | . 424 | 58.291 | 63.617 | 18.002 |
| 10 | 9.573 | . 214 | 31.416 | 30.074 | . 399 | . 382 | 71.975 | 78.540 | 22.190 |

## Wrought=iron Welded Tubes.

Extra strong.

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Inch. | Inch. | Inch. | Inch. |
| 1/8 | . 405 | . 100 |  | . 205 |  |
| $1 / 4$ | . 540 | . 123 |  | .294 |  |
| $1 / 8$ | . 675 | . 127 |  | . 421 |  |
| 1/2 | .840 1.050 | . 149 | . 298 | . 7342 | . 2422 |
| $1^{4}$ | 1.315 | . 182 | . 364 | . 951 | . 587 |
| 1/4 | 1.660 | . 194 | . 388 | 1.272 | . 884 |
|  | 1.900 | . 203 | . 406 | 1.494 | 1.088 |
| $2^{1 / 2}$ | 2.375 | . 221 | . 442 | 1.933 |  |
|  | $\bigcirc 87$ | . 280 | . 560 | 2.315 | 1.755 |
| 3 | 3.5 | . 304 | . 608 |  |  |
| 1/2 | 4.0 | . 321 | . 64 | 3.358 | ${ }_{3}^{2.716}$ |
| 4 | 4.5 | . 341 | . 682 | 3.818 | 3.136 |

## Different Standards for Wire Gauge in Use in the

 United States.Dimensions in decimal parts of an inch.

| Number of wire gauge. | American, or Brown \& Sharpe. | Birmingham, or Stubs' | Washburn \& Moen Mfg. Co., Worcester, Mass. | Trenton Iron Co., Trenton, N. J. | $\begin{gathered} \text { United } \\ \text { States } \\ \text { Standard. } \end{gathered}$ | Old English, from Brass Mfrs. List. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000000 |  |  | . 46 |  | . 46875 |  |
| 00000 |  |  | . 43 | . 45 | . 43750 | ........ |
| 0000 | .460000 | . 454 | . 393 | . 40 | . 40625 |  |
| 000 | . 409640 | . 425 | . 362 | . 36 | . 37500 |  |
| 00 | . 364800 | . 380 | . 331 | . 33 | . 34375 |  |
| 0 | . 324950 | . 340 | . 307 | . 305 | . 31250 |  |
| 1 | . 289300 | . 300 | . 283 | . 285 | . 28125 |  |
| 2 | . 257630 | . 284 | . 263 | . 265 | . 26563 |  |
| 3 | . 229420 | . 259 | . 244 | . 245 | . 25000 |  |
| 4 | . 204310 | . 238 | . 225 | . 225 | . 23438 |  |
| 5 | . 181940 | . 220 | . 207 | . 205 | . 21875 |  |
| 6 | . 162020 | . 203 | . 192 | . 190 | . 20313 |  |
| 7 | . 144280 | . 180 | . 177 | . 175 | . 18750 |  |
| 8 | . 128490 | . 165 | . 162 | . 160 | . 17188 |  |
| 9 | . 114430 | . 148 | . 148 | . 145 | . 15625 |  |
| 10 | . 101890 | . 134 | . 135 | . 130 | . 14063 |  |
| 11 | . 090742 | . 120 | . 120 | . 1175 | . 12500 |  |
| 12 | . 080808 | . 109 | . 105 | . 1050 | . 10938 |  |
| 13 | . 071961 | . 095 | . 092 | . 0925 | . 09375 |  |
| 14 | . 064084 | . 083 | . 080 | . 0800 | . 07813 | . 083 |
| 15 | . 057068 | . 072 | . 072 | . 0700 | . 07031 | . 072 |
| 16 | . 050820 | . 065 | . 063 | . 0610 | . 06250 | . 065 |
| 17 | . 045257 | . 058 | . 054 | . 0525 | . 05625 | . 058 |
| 18 | . 040303 | . 049 | . 047 | . 0450 | . 05000 | . 049 |
| 19 | . 035390 | . 042 | . 041 | . 0390 | . 01375 | . 040 |
| 20 | . 031961 | . 035 | . 035 | . 0340 | . 03750 | . 035 |
| 21 | . 028462 | . 032 | . 032 | . 0300 | . 03438 | . 0315 |
| 22 | . 025347 | . 028 | . 028 | . 0270 | . 03125 | . 0295 |
| 23 | . 022571 | . 025 | . 025 | . 0240 | . 02813 | . 0270 |
| 24 | . 020100 | . 022 | .023 | . 0215 | . 02500 | . 0250 |
| 25 | . 017900 | . 020 | .020 | . 0190 | . 02188 | . 0230 |
| 26 | . 015940 | . 018 | . 018 | . 0180 | . 01875 | . 0205 |
| 27 | . 014195 | . 016 | . 017 | . 0170 | . 01719 | . 01875 |
| 28 | . 012641 | . 014 | . 016 | . 0160 | . 01563 | . 01650 |
| 29 | . 011257 | . 013 | . 015 | . 0150 | . 01406 | . 01550 |
| 30 | . 010025 | . 012 | . 014 | . 0140 | . 01250 | . 01375 |
| 31 | . 008928 | . 010 | . 0135 | . 0130 | . 01094 | . 01225 |
| 32 | . 007950 | . 009 | . 0130 | . 0120 | . 01016 | . 01125 |
| 33 | . 007080 | . 008 | . 0110 | . 0110 | . 00938 | . 01025 |
| 34 | . 006304 | . 007 | . 0100 | . 0100 | . 00859 | . 00950 |
| 35 | . 005614 | . 005 | . 0095 | . 0090 | . 00781 | . 00900 |

## Wire.-Iron, Steel, Copper, Brass.

Weight, in Pounds, of 100 Feet.
Birmingham Wire Gauge.

| Number of gauge. | Per 100 lineal feet. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Iron. | Steel. | Copper. | Brass. |
|  | Lb. | Lb. | Lb. | Lb. |
| 0000 | 54.62 | 55.13 | 62.39 | 58.93 |
| 000 | 47.86 | 48.32 | 54.67 | 51.64 |
| 00 | 38.27 | 38.63 | 43.71 | 41.28 |
| 0 | 30.63 | 30.92 | 34.99 | 33.05 |
| 1 | 23.85 | 24.07 | 27.24 | 25.73 |
| 2 | 21.37 | 21.57 | 24.41 | 23.06 |
| 3 | 17.78 | 17.94 | 20.30 | 19.18 |
| 4 | 15.01 | 15.15 | 17.15 | 16.19 |
| 5 | 12.82 | 12.95 | 14.65 | 13.84 |
| 6 | 10.92 | 11.02 | 12.47 | 11.78 |
| 7 | 8.586 | 8.667 | 9.807 | 9.263 |
| 8 | 7.214 | 7.283 | 8.241 | 7.783 |
| 9 | 5.805 | 5.859 | 6.630 | 6.262 |
| 10 | 4.758 | 4.803 | 5.435 | 5.133 |
| 11 | 3.816 | 3.852 | 4.359 | 4.117 |
| 12 | 3.148 | 3.178 | 3.596 | 3.397 |
| 13 | 2.392 | 2.414 | 2.732 | 2.580 |
| 14 | 1.826 | 1.843 | 2.085 | 1.969 |
| 15 | 1.374 | 1.387 | 1.569 | 1.482 |
| 16 | 1.119 | 1.130 | 1.279 | 1.208 |
| 17 | . 8915 | . 900 | 1.018 | . 9618 |
| 18 | . 6363 | . 6423 | . 7268 | . 6864 |
| 19 | . 4675 | . 4720 | . 5340 | . 5043 |
| 20 | . 3246 | . 3277 | . 3709 | . 3502 |
| 21 | . 2714 | . 2740 | . 3100 | . 2929 |
| 22 | . 2079 | . 2098 | . 2373 | . 2241 |
| 23 | . 1656 | . 1672 | . 1892 | . 1788 |
| 24 | . 1283 | . 1295 | . 1465 | . 1384 |
| 25 | . 1060 | . 1070 | . 1211 | . 1144 |
| 26 | . 0859 | . 0867 | . 0981 | . 0926 |
| 27 | . 0678 | . 0685 | . 0775 | . 0732 |
| 28 | . 0519 | . 0524 | . 0593 | . 0560 |
| 29 | . 0448 | . 0452 | . 0511 | . 0483 |
| 30 | . 0382 | . 0385 | . 0436 | . 0412 |
| 31 | . 0265 | . 0267 | . 0303 | . 0286 |
| 32 | . 0215 | . 0217 | . 0245 | . 0231 |
| 33 | . 0170 | . 0171 | . 0194 | . 0183 |
| 34 | . 0130 | . 0131 | . 0148 | . 0140 |
| 35 | . 0066 | . 0067 | . 0076 | . 0071 |
| 36 | . 0042 | . 0043 | . 0048 | . 0046 |

United States Standard Gauge for Sheet= and Plate= iron and Steel, 1893.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000000 |  | . 500000 | 12.700000 | 320 | 20. | 9.072 | 97.65 |  |
| 000000 |  | . 468750 | 11.906250 | 300 | 18.750 | 8.505 | 91.55 |  |
| 00000 |  | . 437500 | 11.112500 | 280 | 17.500 | 7.938 | 85.44 | 188.37 |
| 0000 |  | . 406250 | 10.318750 | 260 | 16.250 | 7.371 | 79.33 | 174.91 |
| 000 | $3 / 8$ | . 375000 | 9.525000 | 240 | 15.000 | 6.804 | 73.24 | 161.46 |
| 00 | - $\frac{13}{32}$ | . 343750 | 8.731250 | 220 | 13.750 | 6.237 | 67.13 | 148.00 |
| 0 |  | . 312500 | 7.937500 | 200 | 12.500 | 5.670 | 61.03 | 134.55 |
| 1 |  | . 281250 | 7.143750 | 180 | 11.250 | 5.103 | 54.93 | 121.09 |
| 2 |  | . 265625 | 6.746875 | 170 | 10.625 | 4.819 | 51.88 | 114.37 |
| 3 |  | . 250000 | 6.350000 | 160 | 10.000 | 4.536 | 48.82 | 107.64 |
| 4 | $\frac{15}{64}$ | . 234375 | 5.953125 | 150 | 9.375 | 4.252 | 45.77 | 100.91 |
| 5 |  | 218750 | 5.556250 | 140 | 8.750 | 3.969 | 42.72 | 94.18 |
| 6 |  | . 203125 | 5.159375 | 130 | 8.125 | 3.685 | 39.67 | 87.45 |
| 7 |  | . 187500 | 4.762500 | 120 | 7.500 | 3.402 | 36.62 | 80.72 |
| 8 |  | . 171875 | 4.365625 | 110 | 6.875 | 3.118 | 33.57 | 74.00 |
| 9 |  | . 156250 | 3.968750 | 100 | 6.250 | 2.835 | 30.52 | 7.27 |
| 10 |  | . 140625 | 3.571875 | 90 | 5.625 | 2.552 | 27.46 | 60.55 |
| 11 |  | . 125000 | 3.175000 | 80 | 5.000 | 2.268 | 24.41 | 53.82 |
| 12 |  | . 109375 | 2.778125 | 70 | 4.375 | 1.984 | 21.36 | 47.09 |
| 13 | ${ }^{32}$ | . 093750 | 2.381250 | 60 | 3.750 | 1.701 | 18.31 | 40.36 |
| 14 | ${ }^{5} 4$ | . 078125 | 1.984375 | 50 | 3.125 | 1.417 | 15.26 | 33.64 |
| 15 |  | . 070312500 | 1.785937500 | 45 | 2.812500 | 1.276 | 13.73 | 30.27 |
| 16 |  | . 062500000 | 1.587500000 | 40 | 2.500000 | 1.134 | 12.21 | 26.91 |
| 17 |  | . 056250000 | 1.428750000 | 36 | 2.250000 | 1:021 | 10.99 | 24.22 |
| 18 | $\frac{1}{20}$ | . 050000000 | 1.270000000 | 32 | 2.000000 | . 9072 | 9.765 | 21.53 |
|  |  | . 043750000 | 1.111250000 | 28 | 1.750000 | . 7938 | 8.544 | 18.84 |
| 20 |  | . 037500000 | . 952500000 | 24 | 1.500000 | . 6804 | 7.324 | 16.15 |
| 21 |  | . 034375000 | . 873125000 | 22 | 1.375000 | . 6237 | 6.713 | 14.80 |
| 22 |  | . 031250000 | . 793750000 | 20 | 1.250000 | . 5670 | 6.103 | 13.46 |
| 23 | ${ }^{\frac{9}{20}}$ | . 028125000 | . 714375000 | 18 | 1.125000 | . 5103 | 5.493 | 12.11 |
|  | ${ }^{\frac{1}{40}}$ | . 025000000 | . 635000000 | 16 | 1.000000 | . 4536 | 4.882 | 10.76 |
| 25 | $\frac{7}{320}$ | . 021875000 | . 555625000 | 14 | . 875000 | . 3969 | 4.272 | 9.42 |
| 26 |  | . 018750000 | . 476250000 | 12 | . 750000 | . 3402 | 3.662 | 8.07 |
| 27 |  | . 017187500 | . 436562500 | 11 | . 687500 | . 3119 | 3.357 | 7.40 |
| 28 | $\frac{1}{64}$ | . 015625000 | . 396875000 | 10 | . 625000 | . 2835 | 3.052 | 6.73 |
| 29 |  | . 014062500 | . 357187500 | 9 | . 562500 | . 2551 | 2.746 | 6.05 |
| 30 | ${ }^{\frac{1}{80}}$ | . 012500000 | . 317500000 | 8 | . 500000 | . 2268 | 2.441 | 5.38 |
| 31 |  | . 010937500 | . 277812500 |  | . 437500 | . 1984 | 2.136 | 4.71 |
| 32 |  | .010156250 | . 257968750 | 61/2 | . 406250 | . 1843 | 1.983 | 4.37 |
| 33 | $\begin{array}{\|} 12803 \\ \hline 320 \end{array}$ | .009375000 | . 238125000 | 6 | . 375000 | . 1701 | 1.831 | 4.04 |
| 34 |  | . 008593750 | . 218281250 | 51/2 | . 343750 | 1559 | 1.678 | 3.70 |
| 35 | 640 | . 007812500 | . 198437500 |  | . 312500 | . 1417 | 1.526 | 3.36 |
| 36 | ${ }^{9} 28$ | . 007031250 | . 178593750 | $41 / 2$ | . 281250 | . 1276 | 1.373 | 3.03 |
| 37 | ${ }^{\frac{17}{25} 76}$ | . 006640625 | . 168671875 | $41 / 4$ | . 265625 | . 1205 | 1.297 | 2.87 |
| 38 | I $\frac{1}{60}$ | . 006250000 | . 158750000 |  | . 250000 | . 1134 | 1.221 | 2.69 |

## Crane Chains.



| "D. B. G " Special Crane. |  |  |  |  |  |  | Crane. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Inch. | Inch. | b. | Inch. | Lb. | Lb. | Lb. | Lb. | Lb. | Lb. |
| 1/4 | ${ }_{3}^{25}$ | 7/8 | 7/8 | 1932 | 3864 | 1288 | 1680 | 3360 | 1120 |
| $\frac{5}{16}$ | ${ }_{3}^{27}$ | 1 | $1 \frac{1}{16}$ | 2898 | 5796 | 1932 | 2520 | 5040 | 1680 |
| $3 / 8$ | $\frac{31}{3}$ | $1_{1}^{7} \frac{7}{7}$ | $11 / 4$ | 4186 | 8372 | 2790 | 3640 | 7280 | 2427 |
| $\frac{7}{16}$ | $1{ }_{3}{ }^{5}$ | 2 | $13 / 8$ | 5796 | 11592 | 3864 | 5040 | 10080 | 3360 |
| 1/2 | $1 \frac{11}{3 \frac{1}{2}}$ | 21/2 | $1_{11}^{11}$ | 7728 | 15456 | 5182 | 6720 | 13440 | 4480 |
| ${ }_{16}$ | $1 \frac{13}{3}$ | $3 \frac{2}{10}$ | 17/8 | 9660 | 19320 | 6440 | 8400 | 16800 | 5600 |
| 5/8 | 1293 | 41/8 | $2 \frac{1}{16}$ | 11914 | 22828 | 7942 | 10360 | 20720 | 6907 |
| $\frac{11}{16}$ | $1 \frac{27}{3}$ | 5 | 21/4 | 14490 | 28980 | 9660 | 12600 | 25200 | 8400 |
| $3 / 4$ | $1{ }^{3 \frac{1}{3}}$ | 57/8 | 21/2 | 17388 | 34776 | 11592 | 15120 | 30240 | 10080 |
| $\frac{13}{16}$ | $2 \frac{3}{32}$ | $6{ }^{7}$ | $2 \frac{11}{16}$ | 20286 | 40572 | 13524 | 17640 | 35280 | 11760 |
| 7/8 | $2 \frac{7}{32}$ | 8 | 27/8 | 22484 | 44968 | 14989 | 20440 | 40880 | 13627 |
| ${ }_{1}^{18}$ | $2 \frac{15}{3}$ | 9 | $3 \frac{1}{16}$ | 25872 | 51744 | 17248 | 23520 | 47040 | 15680 |
| 1 | $2 \frac{19}{32}$ | $10 \frac{7}{10}$ | $31 / 4$ | 29568 | 59136 | 19712 | 26880 | 53760 | 17920 |
| $\frac{1}{16}$ | $2{ }^{2} \frac{23}{2}$ | $11 \frac{2}{10}$ | $3_{1 / 5}^{5}$ | 33264 | 66538 | 22176 | 30240 | 60480 | 20160 |
| 1/8 | $2 \frac{27}{3}$ | 121/2 | $33 / 4$ | 37576 | 75152 | 25050 | 34160 | 68320 | 22773 |
| ${ }^{3} 6$ | $3{ }^{\frac{5}{32}}$ | $13 \frac{7}{10}$ | $37 / 8$ | 41888 | 83776 | 27925 | 38080 | 76160 | 25387 |
| 1/4 | $3 \frac{7}{32}$ | 16 | 41/8 | 46200 | 92400 | 30800 | 42000 | 84000 | 28000 |
| ${ }_{15}^{5}$ | $3 \frac{15}{3}$ | 161/2 | $43 / 8$ | 50512 | 101024 | 33674 | 45920 | 91840 | 30613 |
| $3 / 8$ | $35 / 8$ | 184 $\frac{4}{10}$ | $4 \frac{9}{16}$ | 55748 | 111496 | 37165 | 50680 | 101360 | 33787 |
| ${ }_{1}^{7}$ | $3{ }_{3}^{25}$ | 197 ${ }^{18}$ | $43 / 4$ | 60368 | 120736 | 40245 | 54880 | 109760 | 36587 |
| 1/2 | $3_{3 \frac{31}{2}}$ | $211_{1}^{70}$ | 5 | 66528 | 133056 | 44352 | 60480 | 120960 | 40320 |

The distance from centre of one link to centre of next is equal to the inside length of link, but in practice $\frac{1}{32}$ inch is allowed for weld. This is approximate, and, where exactness is required, chain should be made so.

For Chain Sheaves.-The diameter, if possible, should be not less than twenty times the diameter of chain used.

Example. For 1-inch chain use 20 -inch sheaves.

## Window Glass.

Number of Lights per Box of 50 Feet.

| Inch. | No. | Inch. | No. | Inch. | No. | Inch. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 150 | $12 \times 18$ | 33 | $16 \times 44$ | 10 | $26 \times 32$ | 9 |
| $7 \times 9$ $\times 9$ | 115 | -12 $\times 20$ | 30 | 18× 20 | - 20 | $26 \times 32$ 26 | 8 |
| $8 \times 10$ | 90 | $12 \times 22$ | 27 | $18 \times 22$ | 18 | $26 \times 36$ | 8 |
| $8 \times 11$ | 82 | $12 \times 24$ | 25 | $18 \times 24$ | 17 | $26 \times 40$ | 7 |
| $8 \times 12$ | 75 | $12 \times 26$ | 23 | $18 \times 26$ | 15 | $26 \times 42$ | 7 |
| $8 \times 13$ | 70 | $12 \times 28$ | 21 | $18 \times 28$ | 14 | $26 \times 44$ | 6 |
| $8 \times 14$ | 64 | $12 \times 30$ | 20 | $18 \times 30$ | 13 | $26 \times 48$ | 6 |
| $8 \times 15$ | 60 | $12 \times 32$ | 18 | $18 \times 32$ | 13 | $26 \times 50$ | 6 |
| $8 \times 16$ | 55 | $12 \times 34$ | 17 | $18 \times 34$ | 12 | $26 \times 54$ | 5 |
| $9 \times 11$ | 72 | $13 \times 14$ | 40 | $18 \times 36$ | 11 | $26 \times 58$ | 5 |
| $9 \times 12$ | 67 | $13 \times 16$ | 35 | $18 \times 38$ | 11 | $28 \times 30$ | 9 |
| $9 \times 13$ | 62 | $13 \times 18$ | 31 | $18 \times 40$ | 10 | $28 \times 32$ | 8 |
| $9 \times 14$ | 57 | $13 \times 20$ | 28 | $18 \times 44$ | 9 | $28 \times 34$ | 8 |
| $9 \times 15$ | 53 | $13 \times 22$ | 25 | $20 \times 22$ | 16 | $28 \times 36$ | 7 |
| $9 \times 16$ | 50 | $13 \times 24$ | 23 | $20 \times 24$ | 15 | $28 \times 38$ | 7 |
| $9 \times 17$ | 47 | $13 \times 26$ | 21 | $20 \times 26$ | 14 | $28 \times 40$ | 6 |
| $9 \times 18$ | 44 | $13 \times 28$ | 19 | $20 \times 28$ | 13 | $28 \times 44$ | 6 |
| $9 \times 20$ | 40 | $13 \times 30$ | 18 | $20 \times 30$ | 12 | $28 \times 46$ | 6 |
| $10 \times 12$ | 60 | $14 \times 16$ | 32 | 20×32 | 11 | $28 \times 50$ | 5 |
| $10 \times 13$ | 55 | $14 \times 18$ | 29 | $20 \times 34$ | 11 | $28 \times 52$ | 5 |
| $10 \times 14$ | 52 | $14 \times 20$ | 26 | $20 \times 36$ | 10 | $28 \times 56$ | 4 |
| $10 \times 15$ | 48 | $14 \times 22$ | 23 | $20 \times 38$ | 9 | $30 \times 36$ | 7 |
| $10 \times 16$ | 45 | $14 \times 24$ | 22 | $20 \times 40$ | 9 | $30 \times 40$ | 6 |
| $10 \times 17$ | 42 | $14 \times 26$ | 20 | $20 \times 44$ | 8 | $30 \times 42$ | 6 |
| $10 \times 18$ | 40 | $14 \times 28$ | 18 | $20 \times 46$ | 8 | $30 \times 44$ | 5 |
| $10 \times 20$ | 36 | $14 \times 30$ | 17 | $20 \times 48$ | 8 | $30 \times 46$ | 5 |
| $10 \times 22$ | 33 | $14 \times 32$ | 16 | $20 \times 50$ | 7 | $30 \times 48$ | 5 |
| $10 \times 24$ | 30 | $14 \times 34$ | 15 | $20 \times 60$ | 6 | $30 \times 50$ | 5 |
| $10 \times 26$ | 28 | $14 \times 36$ | 14 | $22 \times 24$ | 14 | $30 \times 54$ | 4 |
| $10 \times 28$ | 26 | $14 \times 40$ | 13 | $22 \times 26$ | 13 | $30 \times 56$ | 4 |
| $10 \times 30$ | 24 | $14 \times 44$ | 11 | $22 \times 28$ | 12 | $30 \times 60$ | 4 |
| $10 \times 32$ | 22 | $15 \times 18$ | 27 | $22 \times 30$ | 11 | $32 \times 42$ | 5 |
| $10 \times 34$ | 21 | $15 \times 20$ | 24 | $22 \times 32$ | 10 | $32 \times 44$ | 5 |
| $11 \times 13$ | 50 | $15 \times 22$ | 22 | $22 \times 34$ | 10 | $32 \times 46$ | 5 |
| $11 \times 14$ | 47 | $15 \times 24$ | 20 | $22 \times 36$ | 9 | $32 \times 48$ | 5 |
| $11 \times 15$ | 44 | $15 \times 26$ | 18 | $22 \times 38$ | 9 | $32 \times 50$ | 4 |
| $11 \times 16$ | 41 | $15 \times 28$ | 17 | $22 \times 40$ | 8 | $32 \times 54$ | 4 |
| $11 \times 17$ | 39 | $15 \times 30$ | 16 | $22 \times 44$ | 8 | $32 \times 56$ | 4 |
| $11 \times 18$ | 36 | $15 \times 32$ | 15 | $22 \times 46$ | 7 | $32 \times 60$ | 4 |
| $11 \times 20$ | 33 | $16 \times 18$ | 25 | $22 \times 50$ | 7 | $34 \times 40$ | 5 |
| $11 \times 22$ | 30 | $16 \times 20$ | 23 | $24 \times 28$ | 11 | $34 \times 44$ |  |
| $11 \times 24$ | 27 | $16 \times 22$ | 20 | $24 \times 30$ | 10 | $34 \times 46$ | 5 |
| $11 \times 26$ | 25 | $16 \times 24$ | 19 | $24 \times 32$ | 9 | $34 \times 50$ | 4 |
| $11 \times 28$ | 23 | $16 \times 26$ | 17 | $24 \times 36$ | 8 | $34 \times 52$ | 4 |
| $11 \times 30$ | 21 | $16 \times 28$ | 16 | $24 \times 40$ | 8 | $34 \times 56$ | 4 |
| $11 \times 32$ | 20 | $16 \times 30$ | 15 | $24 \times 44$ | 7 | $36 \times 44$ | 5 |
| $11 \times 34$ | 19 | $16 \times 32$ | 14 | $24 \times 46$ | 7 | $36 \times 50$ | 4 |
| $12 \times 14$ | 43 | $16 \times 34$ | 13 | $24 \times 48$ | 6 | $36 \times 56$ | 4 |
| $12 \times 15$ | 40 | $16 \times 36$ | 12 | $24 \times 50$ | 6 | $36 \times 60$ | 3 |
| $12 \times 16$ | 38 | $16 \times 38$ | 12 | $24 \times 54$ | 5 | $36 \times 64$ | 3 |
| $12 \times 17$ | 35 | $16 \times 40$ | 11 | $24 \times 56$ | 5 | $40 \times 60$ | 3 |

## Roofing Slate.

A square of slating is 100 square feet of finished roofing. Slating is usually so laid that the third slate laps the first slate by three inches. To compute the number of slates of a given size required to cover a square of roof, subtract 3 inches from the length of the slate, multiply the remainder by the width of the slate, and divide by 2 ; the result is the number of square inches of roof covered per slate. Divide 14,400 (the number of square inches in a square) by the number thus found, and the result will be the number of slates required for a square.

## Slate.

Dimensions and Number per Square.

| Dimensions, <br> in inches. | Number <br> per square. | Dimensions, <br> in inches. | Number <br> per square. | Dimensions, <br> in inches. | Number <br> per square. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 12$ | 533 | $9 \times 16$ | 246 | $16 \times 20$ | 137 |
| $7 \times 12$ | 457 | $10 \times 16$ | 221 | $12 \times 22$ | 126 |
| $8 \times 12$ | 400 | $9 \times 18$ | 213 | $14 \times 22$ | 108 |
| $9 \times 12$ | 355 | $10 \times 18$ | 192 | $12 \times 24$ | 114 |
| $7 \times 14$ | 374 | $12 \times 18$ | 160 | $14 \times 24$ | 98 |
| $8 \times 14$ | 327 | $10 \times 20$ | 169 | $16 \times 24$ | 86 |
| $9 \times 14$ | 291 | $11 \times 20$ | 154 | $14 \times 26$ | 89 |
| $10 \times 14$ | 261 | $12 \times 20$ | 141 | $16 \times 26$ | 78 |
| $8 \times 16$ | 277 | $14 \times 20$ | 121 |  |  |

Thickness, $1 / 8$ inch, $\frac{3}{16}$ inch, $1 / 4$ inch, increasing by eighths to 1 inch.
The weight of slate is about 174 pounds per cubic foot, or, per square foot of various thicknesses, as follows:

| Thickness, in inches.. | $1 / 8$ | $\frac{3}{16}$ | $1 / 4$ | $3 / 8$ | $1 / 2$ | $5 / 8$ | $3 / 4$ | $7 / 8$ | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight, in pounds.... | 1.81 | 2.71 | 3.62 | 5.43 | 7.25 | 9.06 | 10.88 | 12.69 | 14.50 |

## Tin Plates (Tinned Sheet=steel).



Weight and Thickness of Lead Pipe.

| تِّ | $\frac{\text { 空 }}{\stackrel{y y y y}{z}}$ |  |  |  |  |  | $\begin{aligned} & \text { 邑 } \\ & \text { ÿñ } \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In. |  | Lb. Oz. | In. | Lb. | Lb. | In. |  | Lb. Oz . | In | Lb. | Lb. |
| 3/8 | AAA | 112 | . 180 | 68 | 492 | 1 | A | 40 | . 210 | 857 | 214 |
| $3 / 8$ | AA | 15 | . 150 | 27 | 406 | 1 | B | 34 | . 170 | 745 | 186 |
| $3 / 8$ | A | 12 | . 130 | 1381 | 347 | 1 | C | 2 | . 140 | 562 | 140 |
| 3/8 | B | 0 | . 125 | 1342 | 335 | 1 | D | 2 | . 125 | 518 | 129 |
| $3 / 8$ | C | $0 \quad 14$ | . 110 | 1187 | 296 | 1 | E | 2 | . 100 | 475 | 118 |
| $3 / 8$ |  | $0 \quad 10$ | . 087 | 1085 | 271 | 1 |  | 18 | . 090 | 325 | 81 |
| $\frac{7}{16}$ |  | 0 91/2 | . 080 | 775 | 193 | $11 / 4$ | AAA | $6 \quad 12$ | . 275 | 962 | 240 |
| $1 / 2$ | AAA | 30 | . 250 | 1787 | 446 | 1114 | AA | $5 \quad 12$ | . 250 | 823 | 205 |
| $1 / 2$ |  | 28 | . 225 | 1655 | 413 | 11/4 | A | 411 | . 210 | 685 | 171 |
| 1/2 | AA | 20 | . 180 | 1393 | 343 | $11 / 4$ | B | 311 | . 170 | 546 | 136 |
| $1 / 2$ | A | 10 | . 160 | 1285 | 321 | $11 / 4$ | C | 3 | . 135 | 420 | 105 |
| $1 / 2$ | B | 13 | . 125 | 980 | 245 | $11 / 4$ | D | 2 | . 125 | 350 | 87 |
| 1/2 | C | 0 | . 100 | 82 | 195 | 11/4 |  | 2 | . 095 | 322 | 80 |
| $1 / 2$ | D | 09 | . 065 | 468 | 117 | $11 / 2$ | AAA | 8 | . 290 | 742 | 185 |
| $1 / 2$ |  | $0 \quad 10$ | . 070 | 556 | 139 | 11/2 | AA | 70 | . 250 | 700 | 175 |
| $1 / 2$ |  | 0 12 | . 090 | 625 | 156 | 11/2 | A | $6 \quad 4$ | . 220 | 628 | 157 |
| 5/8 | AAA | 38 | . 230 | 1548 | 387 | $11 / 2$ | B | 50 | . 180 | 506 | 126 |
| 5/8 | AA | 212 | . 210 | 1380 | 345 | $11 / 2$ | C | 4 | . 150 | 430 | 107 |
| 5/8 | A | 28 | . 180 | 1152 | 288 | 11/2 | D | 38 | . 140 | 315 | 78 |
| 5/8 | B | 20 | . 160 | 987 | 246 | 11/2 |  | 30 | . 120 | 245 | 61 |
| 5/8 | C | 17 | . 117 | 795 | 198 | $13 / 4$ | B | 50 |  |  | 116 |
| 5/8 | D | 14 | . 100 | 708 | 177 | $13 / 4$ | C | 40 |  |  | 93 |
| $3 / 4$ | AAA | 414 | . 290 | 1462 | 365 | 13/4 | D | 310 | . 125 | 318 | 79 |
| $3 / 4$ | AA | 38 | . 225 | 1225 | 306 | 2 | AAA | $10 \quad 11$ | . 300 | 611 | 152 |
| $3 / 4$ | A | 30 | . 190 | 1072 | 268 | 2 | AA | $8 \quad 14$ | . 250 | 511 | 127 |
| $3 / 4$ | B | 23 | . 150 | 65 | 216 | 2 | A | 70 | . 210 | 405 | 101 |
| $3 / 4$ | C | $1 \begin{array}{ll}1 & 12\end{array}$ | . 125 | 782 | 195 | 2 | B | 6 | . 190 | 360 | 90 |
| $3 / 4$ | D | 13 | . 090 | 505 | 126 | 2 | C | 50 | . 160 | 260 | 65 |
| 1 | AAA | 60 | . 300 | 1230 | 307 | 2 | D | 40 | . 090 | 200 | 50 |
| 1 | AA | 48 | . 230 | 910 | 227 |  |  |  |  |  |  |

## Corrugated Iron.

The following table is calculated for sheets $301 / 2$ inches wide before corrugating.

|  |  |  |  | Weight per square of 100 square feet, when laid, allowing 6 inches lap in length and $21 / 2$ inches, or one corrugation, in width of sheet, for sheet lengths of |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $5^{\prime}$ | $6^{\prime}$ | 7' | $8^{\prime}$ | $9{ }^{\prime}$ | $10^{\prime}$ |  |
|  | Inch. | Lb. |
| 16 | . 065 | 2.61 | 3.28 | 365 | 358 | 353 | 350 | 348 | 346 | 2.95 |
| 18 | . 049 | 1.97 | 2.48 | 275 | 270 | 267 | 264 | 262 | 261 | 2.31 |
| 20 | . 035 | 1.40 | 1.76 | 196 | 192 | 190 | 188 | 186 | 185 | 1.74 |
| 22 | . 028 | 1.12 | 1.41 | 156 | 154 | 152 | 150 | 149 | 148 | 1.46 |
| 24 | . 022 | . 88 | 1.11 | 123 | 121 | 119 | 118 | 117 | 117 | 1.22 |
| 26 | . 018 | . 72 | . 91 | 101 | 99 | 97 | 97 | 96 | 95 | 1.06 |

## Skylight and Floor Glass.

Weight per Cubic Foot, 156 Pounds.
Weight per Square Foot.

| Thickness, in inches. .. | $1 / 8$ | $\frac{3}{16}$ | $1 / 4$ | $3 / 8$ | $1 / 2$ | $5 / 8$ | $3 / 4$ | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight, in pounds ..... | 1.62 | 2.43 | 3.25 | 4.88 | 6.50 | 8.13 | 9.75 | 13 |

## Flagging.

Weight per Cubic Foot, 168 Pounds.
Weight per Square Foot.

| Thickness, in inches.. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight, in pounds ..... | 14 | 28 | 42 | 56 | 70 | 84 | 98 | 112 |

Number and Weight of Shingles (Pine) per Square of 100 Feet.

| Number of inches ex- <br> posed to weather. | Number of shingles <br> per square. | Weight per square, in <br> pounds. |
| :---: | :---: | :---: |
| 4 | 900 | 216 |
| $41 / 2$ | 800 | 192 |
| 5 | 720 | 173 |
| $51 / 2$ | 655 | 157 |
| 6 | 600 | 144 |

## Shipping Weights of Corrugated Iron.

## United States Standard Gauge.

| Black. |  | Gallanized. |  |
| :---: | :---: | :---: | :---: |
| No. | Lb. per square foot. | No. | Lb. per square foot. |
| 16 | . 2.75 | 16 | . 2.91 |
| 18 | 2.20 | 18 | 2.36 |
| 20 | . 1.65 | 20 | . 1.82 |
| 22 | . 1.38 | 22 | . 1.54 |
| 24 | . 1.11 | 24 | . 1.27 |
| 26 | . 0.84 | 26 | . 0.99 |

Add to net surface 23 to 26 per cent. for roofing with 6 -inch end laps. Add to net surface 20 to 22 per cent. for siding with 4 -inch end laps. All side laps $=1$ corrugation $=21 / 2$ inches.
Example. 1600 square feet roof $=2000$ square feet sheeting $=2000 \times 1.65$ pounds $=3300$ pounds black corrugated iron.

## Weight of Roofing.

## Table for Computing Loads upon Roofs.

Pounds per Square of 100 Square Feet.

Yellow pine, Northern, sheathing, 1 inch thick ......................... . 300
Yellow pine, Southern, sheathing, 1 inch thick................................... 400
Spruce, sheathing, 1 inch thick ................................................... . 200
Chestnut or maple, sheathing, 1 inch thick ....................................... . 400
Ash or oak, sheathing, 1 inch thick ................................................ . . . 500
Shingles, pine ............................................................................... . . . . . . . . . . 200
Slates, $1 / 4$ inch thick....................................................................... 900
Sheet-iron, $\frac{1}{16}$ inch thick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Sheet-iron, $\frac{1}{16}$ inch thick, and laths............................................... 500
Iron, corrugated ........................................................... 100 to 375
Iron, galvanized, flat..................................................... . 100 to 350
Tin ........................................................................ . . 70 to 125
Felt and asphalt ............................................................ 100
Felt and gravel ........................................................... . . 800 to 1000
Skylights. glass, $\frac{3}{16}$ inch to $1 / 2$ inch thick........................... 250 to 700
Sheet-lead................................................................... . . . . 500 to 800
Copper ..................................................................... 80 to 125
Zinc ........................................................................ . . 100 to 200
Tiles, flat....................................................................... . . . . 1500 to 2000
Tiles, flat, with mortar............................ . . .................. . . 2000 to 3000
Tiles, pan ...................................................................... . . . . . . . 1000

## Timber Measurement.

Two methods are in use for the measurement of timber: the method of board measure, and the use of the cubic foot.

Board Measure, abbreviated B.M., employs as a unit one square foot of surface by one inch in thickness. For boards one inch thick the board measure, therefore, is equal to the number of square feet. For any thickness the board measure is obtained by multiplying the width in inches by the thickness in inches and by the length in feet, and dividing by 12. The table on page 334 gives the board measure for various widths and thicknesses for a length of one foot, and hence the tabular figures must be multiplied by the length of the board in feet.
Table of Board Measure.

| $\begin{aligned} & \text { Width, } \\ & \text { in } \\ & \text { inches. } \end{aligned}$ | Thickness, in inches. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 11/2 | 2 | 21/2 | 3 | 31/2 | 4 | 41/2 | 5 | 51/2 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 |
| 1 | . 0833 | . 1250 | . 1667 | . 2083 | . 2500 | . 2917 | . 3333 | . 3750 | . 4167 | . 4583 | . 50 | . 5833 | . 6667 | . 750 | . 8333 | . 9167 | 1.00 | 1.167 | 1.333 |
| 11/2 | . 1250 | . 1875 | . 2500 | . 3125 | . 3750 | . 4063 | . 5000 | . 5625 | . 6250 | . 6875 | . 75 | . 875 | 1.000 | 1.125 | 1.250 | 1.375 | 1.50 | 1.750 | 2.000 |
| 2 | . 1667 | . 2500 | . 3333 | . 4688 | . 5625 | . 5833 | . 6667 | . 7500 | . 8333 | . 9167 | 1.00 | 1.167 | 1.333 | 1.500 | 1.667 | 1.833 | 2.00 | 2.333 | 2.667 |
| 21/2 | $\therefore 2083$ | . 3125 | . 4167 | . 5208 | . 625 | . 7292 | . 8333 | . 9375 | 1.042 | 1.146 | 1.25 | 1.458 | 1.667 | 1.875 | 2.083 | 2.292 | 2.50 | 2.917 | 3.333 |
| 3 | . 2500 | . 3750 | . 5000 | . 6250 | . 750 | . 875 | 1.000 | 1.125 | 1.250 | 1.375 | 1.50 | 1.750 | 2.000 | 2.250 | 2.500 | 2.750 | 3.00 | 3.500 | 3.000 |
| $31 / 2$ | . 2917 | . 4375 | . 5833 | . 7292 | . 875 | 1.021 | 1.167 | 1.313 | 1.458 | 1.604 | 1.75 | 2.042 | 2.333 | 2.625 | 2.917 | 3.208 | 3.50 | 4.083 | 4.667 |
| 4 | . 3333 | . 5000 | . 6667 | . 8333 | 1.000 | 1.167 | 1.333 | 1.500 | 1.667 | 1.833 | 2.00 | 2.333 | 2.667 | 3.000 | 3.333 | 3.667 | 4.00 | 4.667 | 5.333 |
| 41/2 | . 3750 | . 5625 | . 7500 | . 9375 | 1.125 | 1.313 | 1.500 | 1.688 | 1.875 | 2.063 | 2.25 | 2.625 | 3.000 | 3.375 | 3.750 | 4.125 | 4.50 | 5.250 | 6.000 |
| 5 | . 4167 | . 6250 | . 8333 | 1.042 | 1.250 | 1.457 | 1.666 | 1.875 | 2.083 | 2.292 | 2.50 | 2.917 | 3.333 | 3.750 | 4.167 | 4.583 | 5.00 | 5.833 | 6.667 |
| 51/2 | . 4583 | . 6875 | . 9167 | 1.146 | 1.375 | 1.603 | 1.833 | 2.063 | 2.292 | 2.521 | 2.75 | 3.208 | 3.667 | 4.125 | 4.583 | 5.042 | 5.50 | 6.417 | 7.333 |
| 6 | . 5000 | . 750 | 1.000 | 1.250 | 1.50 | 1.750 | 2.000 | 2.250 | 2.500 | 2.750 | 3.00 | 3.500 | 4.000 | 4.50 | 5.000 | 5.500 | 6.00 | 7.000 | 8.000 |
| 7 | . 5833 | . 875 | 1.167 | 1.458 | 1.75 | 2.042 | 2.333 | 2.625 | 2.917 | 3.208 | 3.50 | 4.083 | 4.667 | 5.25 | 5.833 | 6.417 | 7.00 | 8.167 | 9.333 |
| 8 | . 6667 | 1.000 | 1.333 | 1.667 | 2.00 | 2.333 | 2.667 | 3.000 | 3.333 | 3.667 | 4.00 | 4.667 | 5.333 | 6.00 | 6.667 | 7.333 | 8.00 | 9.333 | 10.67 |
| 9 10 | . 7500 | 1.125 | 1.500 | 1.875 | 2.25 | 2.625 | 3.000 | 3.375 | 3.750 | 4.125 | 4.50 | 5.249 | 6.000 | 6.75 | 7.500 | 8.250 | 9.00 | 10.50 | 12.00 |
| 10 | . 8333 | 1.250 1.375 | 1.667 1.833 | 2.083 | 2.50 | 2.917 3.208 | 3.333 | 3.750 4.125 | 4.167 | 4.583 | 5.00 | 5.833 | 6.667 | 7.50 | 8.333 | 9.167 | 10.00 | 11.67 | 13.33 |
| 12 | 1.000 | 1.500 | 2.000 | 2.500 | 2.75 3.00 | 3.208 3.500 | 3.666 4.000 | 4.125 4.500 | 4.583 5.000 | 5.042 5.500 | 5.50 6.00 | 6.417 7.000 | 7.333 8.000 | 8.25 | ${ }_{10} 9.167$ | 10.08 | 11.00 | 12.83 | 14.67 |
| 13 | 1.083 | 1.625 | 2.167 | 2.708 | 3.00 3.25 | 3.792 | 4.333 | 4.875 | 5.000 5.417 | 5.500 | 6.00 6.50 | 7.000 7.583 | 8.000 | 9.00 9.75 | 10.00 10.83 | 11.00 11.92 | 12.00 13.00 | 14.00 | 16.00 <br> 17.33 |
| 14 | 1.167 | 1.750 | 2.333 | 2.917 | 3.50 | 4.083 | 4.667 | 5.250 | 5.833 | 6.417 | 7.00 | 8.167 | 9.333 | 10.50 | 11.67 | 12.83 | 14.00 | 16.33 | 18.67 |
| 15 | 1.250 | 1.875 | 2.500 | 3.125 | 3.75 | 4.375 | 5.000 | 5.625 | 6.250 | 6.875 | 7.50 | 8.750 | 10.00 | 11.25 | 12.50 | 13.75 | 15.00 | 17.50 | 20.00 |
| 16 | 1.333 | 2.00 | 2.667 | 3.333 | 4.00 | 4.667 | 5.333 | 6.00 | 6.667 | 7.333 | 8.00 | 9.333 | 10.67 | 12.00 | 13.33 | 14.67 | 16.00 | 18.67 | 21.33 |
| 18 | 1.500 | 2.25 | 3.000 | 3.750 | 4.50 | 5.250 | 6.000 | 6.75 | 7.500 | 8.250 | 9.00 | 10.50 | 12.00 | 13.50 | 15.00 | 16.50 | 18.00 | 21.00 | 24.00 |
| 20 | 1.667 | 2.50 | 3.333 | 4.167 | 5.00 | 5.833 | 6.667 | 7.50 | 8.333 | 9.167 | 10.00 | 11.67 | 13.33 | 15.00 | 16.67 | 18.30 | 18.00 20.00 | 23.33 | 26.67 |

Multiply the tabular value for the given width and thickness by the length in feet to obtain the board measure Round and square timber is measured in cubic feet.


The volume of square timber is obtained by the ordinary rales of mensuration.

## Wrought Spikes.

Size and Number in Keg of 150 Pounds.

|  | Diameter, in inches. |  |  |  |  |  | Diameter, in inches. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4 | $\frac{5}{16}$ | $3 / 8$ | $\frac{7}{16}$ | 1/2 |  | 1/4 | $\frac{5}{16}$ | $3 / 8$ | $\frac{7}{16}$ | 1/2 |
| 3 $31 / 2$ | 2250 | 1208 |  |  |  | $\delta$ | 1161 | 662 635 | 48.2 | 445 384 380 | 306 256 |
|  | 1650 | 1135 |  |  |  | 9 |  | 573 | 424 | 300 | 240 |
| $41 / 2$ | 1464 | 1064 |  |  |  | 10 |  |  | 391 | 270 | 222 |
| 5 | 1380 | 930 | 742 |  |  | 11 |  |  |  | 249 | 203 |
| 6 | 1292 | 868 | 570 |  |  | 12 |  |  |  | 236 | 180 |

## Wire Spikes.

Size and Number to the Pound.

| Title. | Number of wire. | Length, in inches. | Number per pound. | Title. | Number of wire. | Length, in inches. | Number per pound. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10d. <br> 16 d. <br> 20d. <br> 30d. <br> 40d. <br> 50d. | $\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$ | $\begin{aligned} & 31 / 2 \\ & 31 / 2 \\ & 41 / 2 \\ & 41 / 2 \\ & 51 / 2 \end{aligned}$ | $\begin{aligned} & 50 \\ & 30 \\ & 2.5 \\ & 26 \\ & 20 \\ & 15 \\ & 12 \end{aligned}$ | $\begin{aligned} & \text { 60d. } \\ & 6^{1 / 2} \text { in. } \\ & 7 \\ & \text { in. } \\ & 8 \\ & 8 \\ & 9 \\ & \text { in. } \end{aligned}$ | $\begin{array}{r} 1 \\ 1 \\ 0 \\ 00 \\ 00 \end{array}$ | $\begin{aligned} & 6 \\ & 66^{1 / 2} \\ & 7 \\ & 8 \\ & 9 \end{aligned}$ | $\begin{gathered} 10 \\ 9 \\ 7 \\ 5 \\ 41 / 2 \end{gathered}$ |

## Wire Nails.

Length and Number to the Pound.

| $\stackrel{\dot{ \pm}}{\dot{H}}$ |  |  |  | $\begin{aligned} & \stackrel{\vdots}{\Xi} \\ & \underset{\Xi}{\Xi} \end{aligned}$ | $\begin{gathered} \stackrel{8}{\mathscr{E}} \\ \underset{=}{0} \end{gathered}$ |  | $\underset{B}{\dot{E}}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 3 / 4 \\ 1^{7 / 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  | 714 |  |
| 2d. | $1_{11}^{1 / 8}$ | 1200 | 876 | 710 |  | 1558 | $\begin{aligned} & 1500 \\ & 1140 \end{aligned}$ | 1350 |  | 411 | 411 |  |
| 3d. | $11 / 4$ | 720 | 568 | 429 |  | 980 |  | 913 |  | 251 | 251 |  |
| 4d. | 11/2 | 432 | 357 | 274 |  | 760 | 760 | 584 |  | 209 | 165 |  |
| 5d. | $13 / 4$ | 300 | 235 | 235 | 142 | 575 |  | 410 |  | 142 | 142 | 270 |
| 6 d . | 2 | 252 | 204 | 157 | 124 | 350 |  | 310 | 157 |  | 103 | 204 |
| 7 d. | $21 / 4$ | 186 | 139 | 139 | 92 | 275 |  | 238 | 139 | 182 |  |  |
| 8d. | $21 / 2$ | 132 | 99 | 99 | 82 | 190 |  | 170 | 99 | 125 |  |  |
| 9d. | $23 / 4$ | 105 | 90 | 90 | 62 | 173 |  | 150 | 90 | 114 |  |  |
| 10d. | 3 | 87 | 69 | 83 | 50 | 137 |  | 121 | 67 | 83 |  |  |
| 12d. | $31 / 4$ | 66 | 53 | 64 | 38 | 98 |  | 97 | 53 |  |  |  |
| 16d. | $31 / 2$ | 51 | 43 | 59 | 30 | 81 |  | 72 | 43 |  |  |  |
| 20 d . | 4 | 35 | 31 | 43 | 23 | 71 |  | 54 |  |  |  |  |
| 30 d . | $41 / 2$ | 27 | 24 |  |  |  |  | 46 |  |  |  |  |
| 40d. | 5 | 21 | 18 | ... |  |  |  | 36 |  |  |  |  |
| $50 \mathrm{~d} .$ 60d. | $5_{6}^{1 / 2}$ | 15 12 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

## Size and Weight of Lag Screws.

| Length, in inches. | Diamcter, in inches. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 8$ | $\frac{7}{16}$ | $1 / 2$ | $5 / 8$ | $3 / 4$ |
| 11\% | $\begin{gathered} \text { Lb. per } 100 \text {. } \\ 6.88 \end{gathered}$ | Lb. per 100. | Ll. per 100. | Lb. per 100 | Lb. per 100 |
| $13 / 4$ | 7.50 | 11.75 | 16.88 |  |  |
| 2 | 8.25 | 12.62 | 17.18 | . . . . . . . . . |  |
| $21 / 4$ | 9.25 | 12.88 | 18.07 |  |  |
| $21 / 2$ | 9.62 | 13.28 | 19.18 |  |  |
| 3 | 10.82 | 16.62 | 2:. 00 | 34.07 | , |
| $31 / 2$ | 11.50 | 18.18 | 24.00 | 35.88 |  |
| 4 | 13.31 | 18.88 | 26.82 | 39.25 | 64.00 |
| $41 / 2$ | 14.82 | 19.50 | 28.25 | 42.62 | 67.88 |
| 5 | 16.50 | 21.25 | 30.37 | 47.75 | 71.37 |
| $5^{1 / 2}$ | 17.37 | 23.56 | 33.88 | 51.62 | 79.37 |
| 6 | 18.82 | 25.31 | 35.37 | 55.12 | 86.62 |

Dimensions of Wood Screws.

| No. of Screw. | Diameter of Body. | Diameter of Flat Head. |  | Diameter of Round Head. | Depth of Round Head. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sharp Corner. | Round Corner. |  |  |
| 0 | . 05784 | . 11 | . 10968 | . 106 | . 042 |
| 1 | . 071 | . 136 | . 1356 | . 130125 | . 051 |
| $\stackrel{2}{2}$ | . 08416 | . 162 | . 16152 | . 15425 | . 06 |
| 3 | . 09732 | . 188 | . 18744 | . 178375 | . 069 |
| 4 | . 11048 | . 214 | . 21336 | . 2025 | . 078 |
| 5 | . 12364 | . 24 | . 23952 | .226625 | . 087 |
| 7 | . 13688 | . 266 | . 2652 | . 27074875 | . 096 |
| 8 | . 16312 | . 318 | . 31704 | . 299 | . 114 |
| 9 | . 17628 | . 344 | . 34296 | . 323125 | . 123 |
| 10 | . 18944 | . 37 | . 36888 | . 34725 | . 132 |
| 11 | .2026 | .396 .422 | . 39488 | . 371375 | . 141 |
| 13 | . 21756 | . 422 | . 42072 | . 39519625 | . 15 |
| 14 | . 24208 | . 474 | . 47256 | . 44375 | . 168 |
| 15 | . 25524 | . 5 | . 49848 | . 467875 | . 177 |
| 16 | . 2681 | .5 206 | . 5244 | . 492 | . 186 |
| 17 | . 28156 | .552 | . 55032 | . 516125 | . 195 |
| 19 | . 30788 | . 604 | . 60216 | . 564375 | . 213 |
| 20 | . 32104 | . 63 | . 62808 | . 5885 | . 222 |
| 21 | . 3342 | . 656 | . 654 | . 612625 | . 231 |
| $\stackrel{22}{22}$ | . 34736 | . 682 | . 67992 | . 63675 | . 24 |
| 24 | . 36052 | . 738 | .70584 .73176 | . 6680875 | . 249 |
| 25 | . 38684 | . 76 | . 75768 | . 709125 | . 267 |
| 26 | . 4 | . 786 | . 7836 | . 73325 | . 276 |
| 27 | . 41316 | . 812 | . 80952 | . 757375 | . 285 |
| 28 | . 42639 | . 838 | . 8354 | . 7815 | . 294 |
| $\stackrel{29}{29}$ | . 43998 | . 864 | . 861136 | . 8056 | . 303 |
| 30 | . 45264 | . 89 | . 88128 | .8:970 | . 312 |

Angle of flat head, $41^{\circ}$. Included angle, $8: 2^{\circ}$. Length of thread, $7^{7}$ of entire length of screw.

Wrought=iron Welded Extra Strong Pipe.

| Diameter. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Nomiual <br> internal. Actual <br> external. Actual <br> internal. Thickness. | Nominal weight <br> per foot. |  |  |  |
| Iuch. | Inch. | Inch. | Inch. | Lb. |
| $1 / 8$ | .405 | .205 | .100 | .29 |
| $1 / 4$ | .540 | .294 | .123 | .54 |
| $3 / 8$ | .675 | .421 | .127 | .74 |
| $1 / 2$ | .840 | .542 | .149 | 1.09 |
| $3 / 4$ | 1.050 | .736 | .157 | 1.39 |
| 1 | 1.315 | .951 | .182 | 2.17 |
| $11 / 4$ | 1.660 | 1.272 | .194 | 3.00 |
| $11 / 2$ | 1.900 | 1.494 | .203 | 3.63 |
| 2 | 2.375 | 1.933 | .221 | 5.02 |
| $21 / 2$ | 2.875 | 2.315 | .280 | 7.67 |
| 3 | 3.500 | 2.892 | .304 | 10.25 |
| $31 / 2$ | 4.000 | 3.358 | .321 | 12.47 |
| 4 | 4.500 | 3.818 | .311 | 14.97 |
| 5 | 5.563 | 4.813 | .375 | 20.54 |
| 6 | 6.625 | 5.750 | .437 | 28.58 |

Wrought=iron Welded Double Extra Strong Pipe.

| Diameter. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{c}\text { Nominal } \\ \text { internal. }\end{array}$ | $\begin{array}{c}\text { Actual } \\ \text { external. }\end{array}$ | $\begin{array}{c}\text { Actual } \\ \text { internal. }\end{array}$ | Thickness. | \(\left.\begin{array}{c}Nominal weight <br>

per foot.\end{array}\right\}\)

Lap=welded Charcoal Iron Boiler Tubes.

| Diameter. |  | Thickness. | Length of tube per square foot of |  | Nominal weight per foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| External. | Internal. |  | External surface. | Internal surface. |  |
| Inch. | Inch. | Inch. | Feet. | Feet. | Lb. |
| 3 | 2.782 | . 109 | 1.273 | 1.373 | 3.33 |
| $31 / 4$ | 3.010 | . 120 | 1.175 | 1.260 | 3.96 |
| 31/2 | 3.260 | . 120 | 1.091 | 1.172 | 4.28 |
| $33 / 4$ | 3.510 | . 120 | 1.018 | 1.088 | 4.60 |
| 4 | 3.732 | . 134 | . 955 | 1.024 | 5.47 |
| $41 / 4$ | 3.982 | . 134 | . 899 | . 959 | 5.82 |
| $41 / 2$ | 4.232 | . 134 | . 849 | . 902 | 6.17 |
| $43 / 4$ | 4.482 | . 134 | . 804 | . 852 | 6.53 |
| 5 | 4.704 | . 148 | . 764 | . 812 | 7.58 |
| $51 / 4$ | 4.954 | . 148 | . 728 | . 771 | 7.97 |
| $51 / 2$ | 5.204 | . 148 | . 694 | . 734 | 8.36 |
| 6 | 5.670 | . 165 | . 637 | . 673 | 10.16 |

## Double Galvanized Spiral Riveted Pressure Pipe.

For Compressed Air.

| Inside diameter, in inches. | Thickness. |  | Approximate weight per foot, in pounds. | Approximate bursting pressure, in pounds, per square inch. | Safe working pressure, in pounds, per square inch. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B. W. G. | Inches. |  |  |  |
| 3 | 20 | . 035 | 21/4 | 900 | 300 |
| 4 | 20 | . 035 | 3 | 700 | 220 |
| 5 | 20 | . 035 | 4 | 550 | 175 |
| 6 | 18 | . 049 | 5 | 700 | 2:20 |
| 7 | 18 | . 049 | 6 | 600 | 185 |
| 8 | 18 | . 049 | 7 | 500 | 150 |
| 9 | 18 | . 049 | 8 | 450 | 135 |
| 10 | 16 | . 065 | 11 | 500 | 150 |
| 11 | 16 | . 065 | 12 | 450 | 135 |
| 12 | 16 | . 065 | 14 | 400 | 120 |
| 13 | 16 | . 065 | 15 | 380 . | 115 |
| 14 | 14 | . 083 | 20 | 470 | 140 |
| 15 | 14 | . 083 | 22 | 450 | 135 |
| 16 | 14 | . 083 | 24 | 400 | 120 |
| 18 | 14 | . 083 | 29 | 370 | 110 |
| 20 | 14 | . $08: 3$ | 34 | 325 | 100 |
| 22 | 12 | . 109 | 40 50 | 365 | 110 100 |
| 2 | 12 | . 109 | 50 | 335 | 100 |

A variety of joints can be used to connect lengths, but the surest are bolted joints where the pipe is to carry an excessive pressure. Flanged, leaded, and cement joints may also be conveniently used according to pressure and permanency of pipe line.

## Riveted Hydraulic Pipe.

Pelton Water-wheel Company.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 18 | . 05 | 810 | 2.25 | 18 | 12 | . 109 | 295 | 25.25 |
| 4 | 18 | . 05 | 607 | 3.00 | 18 | 11 | . 125 | 337 | 29.00 |
| 4 | 16 | . 062 | 760 | 3.75 | 18 | 10 | . 140 | 378 | 32.50 |
| 5 | 18 | . 050 | 485 | 3.75 | 18 | 8 | . 171 | 460 | 40.00 |
| 5 | 16 | . 062 | 605 | 4.50 | 20 | 16 | . 062 | 151 | 16.00 |
| 5 | 14 | . 078 | 757 | 5.75 | 20 | 14 | . 078 | 189 | 19.75 |
| 6 | 18 | . 050 | 405 | 4.25 | 20 | 12 | . 109 | 265 | 27.50 |
| 6 | 16 | . 062 | 505 | 5.25 | 20 | 11 | . 125 | 304 | 31.50 |
| 6 | 14 | . 078 | 630 | 6.50 | 20 | 10 | . 140 | 340 | 35.00 |
| 7 | 18 | . 050 | 346 | 4.75 | 20 | 8 | . 171 | 415 | 45.50 |
| 7 | 16 | . 062 | 433 | 6.00 | 22 | 16 | . 062 | 138 | 17.75 |
| 7 | 14 | . 078 | 540 | 7.50 | 22 | 14 | . 078 | 172 | 22.00 |
| 8 | 16 | . 062 | 378 | 7.00 | 22 | 12 | . 109 | 240 | 30.50 |
| 8 | 14 | . 078 | 472 | 8.75 | 22 | 11 | . 125 | 276 | 34.50 |
| 8 | 12 | . 109 | 660 | 12.00 | 22 | 10 | . 140 | 309 | 39.00 |
| 9 | 16 | . 062 | 336 | 7.50 | 22 | 8 | . 171 | 376 | 50.00 |
| 9 | 14 | . 078 | 420 | 9.25 | 24 | 14 | . 078 | 158 | 23.75 |
| 9 | 12 | . 109 | 587 | 12.75 | 24 | 12 | . 109 | 220 | 32.00 |
| 10 | 16 | . 062 | 307 | 8.25 | 24 | 11 | . 125 | 253 | 37.50 |
| 10 | 14 | . 078 | 378 | 10.25 | 24 | 10 | . 140 | 283 | 42.00 |
| 10 | 12 | . 109 | 530 | 14.25 | 24 | 8 | . 171 | 346 | 50.00 |
| 10 | 11 | . 125 | 607 | 16.25 | 24 | 6 | . 200 | 405 | 59.00 |
| 10 | 10 | . 140 | 680 | 18.25 | 26 | 14 | . 078 | 145 | 25.50 |
| 11 | 16 | . 062 | 275 | 9.00 | 26 | 12 | . 109 | 203 | 35.50 |
| 11 | 14 | . 078 | 344 | 11.00 | 26 | 11 | . 125 | 233 | 39.50 |
| 11 | 12 | . 109 | 480 | 15.25 | 26 | 10 | . 140 | 261 | 44.25 |
| 11 | 11 | . 125 | 553 | 17.50 | 26 | 8 | . 171 | 319 | 54.00 |
| 11 | 10 | . 140 | 617 | 19.50 | 26 | 6 | . 200 | 373 | 64.00 |
| 12 | 16 | . 062 | 252 | 10.00 | 28 | 14 | . 078 | 135 | 27.25 |
| 12 | 14 | . 078 | 316 | 12.25 | 28 | 12 | . 109 | 188 | 38.00 |
| 12 | 12 | . 109 | 442 | 17.00 | 28 | 11 | . 125 | 216 | 42.25 |
| 12 | 11 | . 125 | 506 | 19.50 | 28 | 10 | . 140 | 242 | 47.50 |
| 12 | 10 | . 140 | 567 | 21.75 | 28 | 8 | . 171 | 295 | 58.00 |
| 13 | 16 | . 062 | 233 | 10.50 | 28 | 6 | . 200 | 346 | 69.00 |
| 13 | 14 | . 078 | 291 | 13.00 | 30 | 12 | . 109 | 176 | 39.50 |
| 13 | 12 | . 109 | 407 | 18.00 | 30 | 11 | . 125 | 202 | 45.00 |
| 13 | 11 | . 125 | 467 | 20.50 | 30 | 10 | . 140 | 226 | 50.50 |
| 13 | 10 | . 140 | 522 | 23.00 | 30 | 8 | . 171 | 276 | 61.75 |
| 14 | 16 | . 062 | 216 | 11.25 | 30 | 6 | . 200 | 323 | 73.00 |
| 14 | 14 | . 078 | 271 | 14.00 | 30 | $1 / 4$ | . 250 | 404 | 90.00 |
| 14 | 12 | . 109 | 378 | 19.50 | 36 | 11 | . 125 | 168 | 54.00 |
| 14 | 11 | . 125 | 433 | 22.25 | 36 | 10 | . 140 | 189 | 60.50 |
| 14 | 10 | . 140 | 485 | 25.00 | 36 | ${ }^{\frac{3}{16}}$ | . 187 | 253 | 81.00 |
| 15 | 16 | . 062 | 20:2 | 11.75 | 36 | 1/4 | . 250 | 337 | 109.00 |
| 15 | 14 | . 078 | 252 | 14.75 | 36 |  | . 312 | 420 | 135.00 |
| 15 | 12 | . 109 | 352 | 20.50 | 40 | 10 | . 140 | 170 | 67.50 |
| 15 | 11 | .125 | 405 | 23.25 | 40 | - ${ }^{3} 6$ | . 187 | $2: 6$ | 90.00 |
| 15 | 10 | . 140 | $45 \%$ | 26.00 | 40 | $1 / 4$ | $\therefore 250$ | 303 | 120.00 |
| 16 | 16 | . 062 | 190 | 13.00 | 40 |  | . 312 | 378 | 150.00 |
| 16 | 14 | . 078 | 237 | 16.00 | 40 | 3/8 | . 375 | 455 | 180.00 |
| 16 | 12 | . 109 | 332 | 22.25 | 42 | 10 | . 140 | 162 | 71.00 |
| 16 | 11 | . 125 | 379 | 24.50 | 42 | ${ }^{3} 5$ | . 187 | 216 | 94.50 |
| 16 | 10 | . 140 | 425 | 28.50 | 42 | $1 / 4$ | . 250 | 289 | 126.00 |
| 18 | 16 | . 062 | 168 | 14.75 | 42 | ${ }^{5}$ | . 312 | 360 | 158.00 |
| 18 | 14 | . 078 | 210 | 18.50 | 42 | $3 / 8$ | . 375 | 435 | 190.00 |

## Weight of Wrought=iron Pipe.

Metric System.
Weight, in Kilogrammes, per Metre.

|  | Thickness, in millimetres. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
| Mm. | Kg. |
| 10 | . 58 | . 95 | 1.36 | 1.83 | 2.34 | 2.90 | 2.51 | 4.87 |
| 13 | . 73 | 1.17 | 1.65 | 2.20 | 2.78 | 3.41 | 4.09 | 5.60 |
| 15 | . 83 | 1.31 | 1.85 | 2.43 | 3.07 | 3.75 | 4.51 | 6.09 |
| 20 | 1.07 | 1.68 | 2.34 | 3.04 | 3.80 | 4.60 | 5.46 | 7.30 |
| 25 | 1.31 | 2.05 | 2.83 | 3.65 | 4.54 | 5.46 | 6.43 | 8.50 |
| 30 | 1.56 | 2.41 | 3.42 | 4.26 | 5.26 | 6.31 | 7.40 | 9.74 |
| 35 | 1.80 | 2.78 | 3.80 | 4.87 | 5.99 | 7.16 | 8.38 | 10.96 |
| 40 | 2.05 | 3.14 | 4.26 | 5.48 | 6.72 | 8.00 | 9.31 | 12.18 |
| 45 | 2.29 | 3.51 | 4.77 | 6.09 | 7.45 | 8.86 | 10.32 | 13.39 |
| 50 | 2.53 | 3.87 | 5.26 | 6.69 | 8.18 | 9.72 | 11.30 | 14.61 |
| 55 | 2.78 | 4.24 | 5.75 | 7.30 | 8.91 | 10.57 | 12.27 | 15.83 |
| 60 | 3.02 | 4.60 | 6.23 | 7.92 | 9.64 | 11.42 | 13.25 | 17.04 |
| 70 | 3.51 | 5.33 | 7.21 | 9.13 | 11.10 | 13.01 | 15.20 | 19.48 |
| 80 | 3.99 | 6.06 | 8.18 | 10.35 | 12.56 | 14.83 | 17.14 | 21.91 |

Weight of Copper Pipe.
Metric System.
Weight, in Kilogrammes, per Metre.

|  | Thickness, in millimetres. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
| Mm. | Kg. |
| 10 | . 68 | 1.10 | 1.58 | 2.12 | 2.71 | 3.37 | 4.07 | 5.66 |
| 13 | . 85 | 1.36 | 1.92 | 2.55 | 3.22 | 3.96 | 4.75 | 6.50 |
| 15 | . 96 | 1.53 | 2.15 | 2.83 | 3.56 | 4.35 | 5.24 | 7.07 |
| 20 | 1.24 | 1.95 | 2.71 | 3.53 | 4.41 | 5.34 | 6.33 | 8.48 |
| 25 | 1.52 | 2.38 | 3.28 | 4.24 | 5.26 | 6.33 | 7.46 | 9.90 |
| 30 | 1.81 | 2.80 | 3.85 | 4.93 | 6.11 | 7.32 | 8.60 | 11.31 |
| 35 | 2.09 | 3.22 | 4.41 | 5.66 | 6.96 | 8.31 | 9.73 | 12.72 |
| 40 | 2.38 | 3.65 | 4.98 | 6.36 | 7.80 | 9.30 | 10.86 | 14.14 |
| 45 | 2.66 | 4.07 | 5.54 | 7.07 | 8.65 | 10.29 | 11.99 | 15.55 |
| 50 | 2.94 | 4.50 | 6.11 | 7.78 | 9.50 | 11.28 | 13.12 | 16.96 |
| 55 | 3.22 | 4.92 | 6.67 | 8.48 | 10.35 | 12.27 | 14.25 | 18.38 |
| 60 | 3.51 | 5.34 | 7.24 | 9.19 | 11.20 | 13.26 | 15.38 | 19.79 |
| 70 | 4.07 | 6.19 | 8.37 | 10.60 | 12.89 | 15.24 | 17.64 | 22.62 |

## Standard Flanges.

The following standard dimensions for pipe flanges were prepared by a committee of the American Society of Mechanical Engineers in 1892 and revised in 1900.

| OHECOM | Pipe size, in inches. |
| :---: | :---: |
|  | $\begin{aligned} & \text { Pipe thickness, } \\ & \frac{P+100}{.4 S} d+.333\left(1-\frac{d}{100}\right) . \end{aligned}$ |
| N | Thickness, nearest fraction, in inches. |
|  <br>  | Stress on pipe per square inch at 200 pounds. |
| 4 + - | Radius of fillet, in inches. |
| $1{ }^{1}$ <br> N 心 स N <br>  <br>  | Flange diameters, in inches. |
|  <br>  | Flange thickness, in inches. |
|  | Width of flange face, in inches. |
|  <br> AW NWN <br>  <br>  | Bolt circle diameter, in inches. |
|  | Number of bolts. |
|  | Bolt size diameters, in inches. |
|  | Bolt length, in inches. |
| OTM出 <br>  | Stress on each bolt per square inch, at bottom of thread, at 200 pounds. |

Sizes up to 24 inches are designed for 200 pounds or less.
Sizes from 24 to 48 inches are divided into two scales, one for 200 pounds, the other for less.

The two sizes of bolts given are for medium and high pressures.
The sudden increase in diameters at 16 inches is due to the possible insertion of wrought-iron pipe, making. with a nearly constant width of gasket, a greater diameter desirable.

When wrought-iron pipe is used, if thinner flanges than those given are sufficient, it is proposed that bosses be used to bring the nuts up to the standard lengths. This avoids the use of a reënforcement around the pipe.

Figures in the third, fourth, fifth, and last columns refer only to pipe for 200 pounds pressure.

The above standards, while not officially adopted, are used by many manufacturers.

## Standard Dimensions of Welded Flanges for Steel Pipes.

United States Navy.


|  | Pressures from 201 to 250 pounds per square inch. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dimensions of flange. |  |  |  |  | Bolts. |  |  |  |
|  | Diameter. | Mean thickness. A | Radius of fillet. B | Diameter of female part. C | Depth of female part. D | Number. | Diameter. | Diam- eter of pitch circle. | Pitch. |
| 1/2 | $3{ }^{\frac{3}{6}}$ | 1/2 | $\frac{3}{16}$ | 13/8 | 1/8 | 3 | 1/2 | $2 \frac{3}{16}$ | 2.290 |
| $3 / 4$ | $3{ }^{7}{ }_{16}$ | 1/2 | $\frac{3}{16}$ | $15 / 8$ | 1/8 | 3 | 1/2 | $2 \frac{7}{16}$ | 2.552 |
| 1 | 311 | $\frac{9}{16}$ | 3 <br> 18 | 17/8 | 1/8 | 4 | 1/2 | $21 \frac{1}{16}$ | 2.110 |
| 11/4 | 315 | $\frac{9}{16}$ | -3 | 21/8 | 1/8 | 4 | 1/2 | 215 | 2.307 |
| 11/2 | $4 \frac{1}{1} \frac{1}{6}$ | $1{ }^{9} 8$ | ${ }^{3} 16$ | 21/2 | 1/8 | 4 | 5/8 | $3 \frac{7}{16}$ | 2.700 |
| 2 | $53 / 8$ | $5 / 8$ | 1/4 | $3{ }_{1}{ }^{3} 6$ | 1/8 | 6 | $5 / 8$ | 41/8 | 2.160 |
| 21/2 | $57 / 8$ | $5 / 8$ | 1/4 | 311 | 1/8 | 6 | $5 / 8$ | $45 / 8$ | 2.421 |
| 3 | $6 \frac{7}{16}$ | $5 / 8$ | 1/4 | 41/4 | - ${ }^{3}$ | 6 | $5 / 8$ | $5{ }_{16}{ }^{3}$ | 2.716 |
| $31 / 2$ | 615 | 116 | 1/4 | 43/4 | $\frac{3}{16}$ | 8 | $5 / 8$ | 511 | 2.233 |
| 4 | 7.9 | 110 | $\frac{5}{16}$ | $53 / 8$ | $\frac{3}{16}$ | 8 | $5 / 8$ | $6 \frac{5}{16}$ | 2.479 |
| 41/2 | $81 / 8$ | $3 / 4$ | $\frac{5}{16}$ | $5 \frac{15}{16}$ | ${ }^{3} 8$ | 8 | $5 / 8$ | 67/8 | 2.700 |
| 5 | $85 / 8$ | $3 / 4$ | $\frac{5}{16}$ | $61_{16}^{7}$ | $\frac{3}{16}$ | 10 | $5 / 8$ | $73 / 8$ | 2.317 |
| $51 / 2$ | $9{ }^{9} 9$ | $3 / 4$ | ${ }^{5} 5$ | $7 \frac{1}{16}$ | $\frac{3}{16}$ | 10 | $3 / 4$ | 81/8 | 2.552 |
| 6 | $10 \frac{3}{16}$ | $\frac{13}{16}$ | $3 / 8$ | $71 \frac{1}{16}$ | ${ }_{1}^{3}$ | 10 | $3 / 4$ | $83 / 4$ | 2.749 |
| $61 / 2$ | $10_{16}^{13}$ | 13 16 | 3/8 | $8{ }_{1}^{5}$ | ${ }_{1}{ }^{3}$ | 12 | $3 / 4$ | 93/8 | 2.454 |
| 7 | 111/4 | 7/8 | $3 / 8$ | $83 / 4$ | $\frac{3}{16}$ | 12 | $3 / 4$ | 913 | 2.569 |
| $71 / 2$ | 121/4 | 7/8 | $3 / 8$ | $93 / 8$ | ${ }^{3} 6$ | 12 | 7/8 | $10 \frac{9}{16}$ | 2.765 |
| 8 | 127/8 | 15 | $\frac{7}{16}$ | 10 | $\frac{3}{16}$ | 12 | 7/8 | $11_{16}^{3}$ | 2.929 |
| $81 / 2$ | $13 \frac{7}{16}$ | ${ }_{1}^{15}$ | ${ }^{7} 7$ | 10, $\frac{9}{16}$ | ${ }^{3} 16$ | 14 | 7/8 | 113/4 | 2.637 |
| 9 | $13_{1 \frac{1}{15}}$ | $\frac{15}{16}$ | $\frac{7}{16}$ | $11 \frac{1}{16}$ | $\frac{3}{16}$ | 14 | 7/8 | 121/4 | 2.749 |
| 91/2 | $14 \frac{15}{15}$ | 1 | ${ }^{7}$ | 113/4 | $\frac{3}{16}$ | 14 | 1 | 13 $\frac{1}{16}$ | 2.931 |
| 10 | 151/2 | 1 | 1/2 | 12, ${ }_{16}$ | ${ }^{\frac{3}{16}}$ | 14 | 1 | $135 / 8$ | 3.057 |
| $101 / 2$ | $16 \frac{1}{16}$ | $1_{1 / 16}^{16}$ | 1/2 | 127/8 | - ${ }^{3}$ | 15 | 1 | $14_{16}{ }^{3}$ | 2.971 |
| 11 | 16-9 ${ }^{\frac{9}{6}}$ | $1_{1}^{16}$ | 1/2 | 133/8 | ${ }^{3} 16$ | 15 | 1 | 14111 | 3.076 |
| 1112/2 | 171/8 | $1 \frac{1}{16}$ | 1/2 | 1315 | 3 16 16 | 16 | 1 | 151/4 | 2.994 |
| 12 | $18_{18}^{5}$ | 11/8 | $\frac{9}{16}$ | $143 / 4$ | ${ }_{1}{ }^{3}$ | 16 | 11/8 | $16_{16}^{3}$ | 3.178 |
| 13 | 19.5 | $1 \frac{3}{16}$ | $\frac{9}{16}$ | 153/4 | $\frac{3}{16}$ | 17 | 11/6 | $17{ }_{17}{ }^{3}$ | 3.176 |
| 14 | $20{ }_{16}{ }^{5}$ | 11/4 | $\frac{9}{16}$ | $163 / 4$ | -3 | 18 | 11/8 | $188_{16}{ }^{3}$ | 3.174 |
| 15 | 215/8 | 11/4 | 116 | $18 \frac{1}{16}$ | 3 <br> 16 | 19 | 11/8 | 191/2 | 3.224 |

## Standard Welded Steel Flanges.

## United States Navy.

| $4$ |  | Dime | sions of | flange. |  |  |  | lts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diameter. | Mean thickness. A | $\begin{gathered} \begin{array}{c} \text { Radius } \\ \text { of } \\ \text { fillet. } \end{array} \\ B \end{gathered}$ | Diameter of female part. C | $\begin{gathered} \text { Depth } \\ \text { of } \\ \text { female } \\ \text { part. } \\ D \end{gathered}$ | $\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$ | Diameter. | Diameter of pitch circle | Pitch. |
| 1/2 | $3 \frac{3}{16}$ | 1/2 | $\frac{3}{16}$ | 13/8 | 1/8 | 3 | 1/2 | $2 \frac{3}{16}$ | 2.291 |
| $3 / 4$ | $3 \frac{7}{16}$ | 1/2 | $\frac{3}{16}$ | $15 / 8$ | 1/8 | 4 | 1/2 | $2 \frac{7}{16}$ | 1.914 |
| 1 | $3{ }_{1}^{11}$ | $\frac{9}{16}$ | $\frac{3}{16}$ | $17 / 8$ | 1/8 | 4 | 1/2 | 21118 | 2.110 |
| 11/4 | $4 \frac{7}{16}$ | $\frac{9}{16}$ | $\frac{3}{16}$ | 21/4 | 1/8 | 5 | 5/8 | $3 \frac{3}{16}$ | 2.002 |
| 11/2 | $4 \frac{1}{1} \frac{1}{6}$ | $\frac{9}{16}$ | $\frac{3}{16}$ | 21/2 | 1/8 | 5 | 5/8 | $3 \frac{7}{16}$ | 2.160 |
| 2 | 53/8 | 5/8 | 1/4 | $3 \frac{3}{16}$ | 1/8 | 6 | $5 / 8$ | 41/8 | 2.160 |
| 21/2 | $57 / 8$ | 5/8 | 1/4 | $3 \frac{11}{16}$ | 1/8 | 7 | $5 / 8$ | 45/8 | 2.075 |
| 3 | $6 \frac{13}{16}$ | $\frac{11}{16}$ | 1/4 | $4 \frac{5}{16}$ | $\frac{3}{16}$ | 7 | $3 / 4$ | 53/8 | 2.412 |
| $31 / 2$ | $73 / 8$ | $\frac{11}{16}$ | 1/4 | 47/8 | $\frac{3}{16}$ | 8 | $3 / 4$ | $5 \frac{1}{15}$ | 2.331 |
| 4 | 8 | $3 / 4$ | $\frac{5}{16}$ | 51/2 | $\frac{3}{16}$ | 9 | $3 / 4$ | $6 \frac{9}{16}$ | 2.290 |
| 41/2 | $8 \frac{9}{16}$ | $3 / 4$ | $\frac{5}{16}$ | $6 \frac{1}{16}$ | $\frac{3}{16}$ | 9 | $3 / 4$ | 71/8 | 2.487 |
| 5 | $9{ }_{1}^{16}$ | ${ }_{1}^{13}$ | $\frac{5}{16}$ | $6{ }_{16} 9$ | $\frac{3}{16}$ | 10 | $3 / 4$ | 75/8 | 2.395 |
| 51/2 | $95 / 8$ | $\frac{13}{16}$ | ${ }_{15}^{5}$ | . $71 / 8$ | $\frac{3}{16}$ | 11 | $3 / 4$ | $8 \frac{3}{16}$ | 2.338 |
| 6 | $103 / 4$ | 7/8 | $3 / 8$ | 77/8 | $\frac{3}{16}$ | 11 | 7/8 | $9 \frac{1}{16}$ | 2.588 |
| 61/2 | 111/4 | 7/8 | $3 / 8$ | 83/8 | $\frac{3}{16}$ | 12 | 7/8 | $9 \frac{9}{16}$ | 2.504 |
| 7 | 1113 ${ }_{1}$ | $\frac{15}{15}$ | 3/8 | $8 \frac{1}{16}$ | ${ }_{1} \frac{3}{6}$ | 12 | 7/8 | 101/8 | 2.650 |
| $71 / 2$ | $12{ }^{\frac{5}{16}}$ | ${ }_{16}^{15}$ | 3/8 | $9{ }_{1}^{76}$ | $\frac{3}{16}$ | 12 | 7/8 | 105/8 | 2.781 |
| 8 | $133 / 8$ | 1 | $\frac{7}{16}$ | $10 \frac{3}{16}$ | $\frac{3}{16}$ | 12 | 1 | 111/2 | 3.011 |
| 81/2 | $13_{16}^{15}$ | 1 | ${ }_{1}^{7}$ | $103 / 4$ | $\frac{3}{16}$ | 12 | 1 | $12 \frac{1}{16}$ | 3.158 |
| 9 | $14 \frac{7}{16}$ | $1 \frac{1}{16}$ | $\frac{7}{16}$ | 111/4 | $\frac{3}{16}$ | 13 | 1 | 129 ${ }_{16}$ | 3.036 |
| 91/2 | 15 | $1 \frac{1}{16}$ | ${ }_{1}{ }^{7}$ | $11_{16}^{13}$ | $\frac{3}{16}$ | 14 | 1 | 131/8 | 2.945 |
| 10 | 155/8 | 11/8 | 1/2 | $12 \frac{7}{16}$ | ${ }_{1} \frac{3}{16}$ | 14 | 1 | 133/4 | 3.085 |
| 101/2 | $16{ }_{1} \frac{3}{6}$ | 11/8 | 1/2 | 13 | ${ }^{\frac{3}{6}}$ | 15 | 1 | $14_{16}^{5}$ | 2.997 |
| 11 | $16 \frac{11}{16}$ | 11/8 | 1/2 | 131/2 | $\frac{3}{16}$ | 15 | 1 | 14136 | 3.102 |
| 111/2 | $17_{16}^{11}$ | $1 \frac{3}{16}$ | 1/2 | 141/8 | $\frac{3}{16}$ | 15 | 11/8 | $15 \frac{9}{16}$ | 3.260 |
| 12 | $18 \frac{5}{16}$ | $1 \frac{3}{16}$ | $\frac{9}{16}$ | $143 / 4$ | $\frac{3}{16}$ | 16 | 11/8 | $16{ }_{1}{ }_{16}$ | 3.178 |
| 13 | 193/8 | 11/4 | $\frac{9}{16}$ | $15_{16}^{13}$ | $\frac{3}{16}$ | 17 | 11/8 | 171/4 | 3.188 |
| 14 | $20 \frac{7}{16}$ | $1 \frac{5}{16}$ | $\frac{9}{16}$ | 167/8 | $\frac{3}{16}$ | 17 | 11/8 | $18_{16}^{5}$ | 3.384 |
| 15 | $22 \frac{3}{16}$ | 13/8 | $\frac{11}{11}$ | $18 \frac{5}{16}$ | $\frac{3}{16}$ | 17 | 11/4 | 197/8 | 3.672 |

## Standard Welded Steel Flanges.

United States Navy.

| " |  | Dime | nsions of | flange. |  |  |  | lts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diameter. | Mean thickness. A | $\begin{gathered} \text { Radius } \\ \text { of } \\ \text { fillet. } \\ B \end{gathered}$ | Diameter of female part. C | Depth of female part. D | Num- ber. | Diameter. | Diameter of pitch circle. | Pitch. |
| 1/2 | $31 / 4$ | $1 / 2$ | $\frac{3}{16}$ | $1_{16}^{7}$ | 1/8 | 4 | 1/2 | 21/4 | 1.765 |
| $3 / 4$ | $31 / 2$ | 1/2 | $\frac{3}{16}$ | $1 \frac{1}{16}$ | 1/8 | 4 | 1/2 | $2 \frac{7}{16}$ | 1.914 |
| 1 | $33 / 4$ | $\frac{9}{16}$ | $\frac{3}{16}$ | $1 \frac{15}{16}$ | 1/8 | 4 | $1 / 2$ | $23 / 4$ | 2.160 |
| 11/4 | $41 / 2$ | $\frac{9}{16}$ | $\frac{3}{16}$ | $2 \frac{5}{16}$ | 1/8 | 5 | 5/8 | 31/4 | 2.042 |
| 11/2 | $43 / 4$ | 5/8 | $\frac{3}{16}$ | $2 \frac{9}{16}$ | 1/8 | 5 | 5/8 | $31 / 2$ | 2.199 |
| 2 | $5 \frac{7}{16}$ | 5/8 | 1/4 | $31 / 4$ | 1/8 | 6 | $5 / 8$ | $4_{16} \frac{3}{6}$ | 2.192 |
| 21/2 | 63/8 | $\frac{11}{11}$ | 1/4 | $37 / 8$ | 1/8 | 6 | $3 / 4$ | $4 \frac{15}{16}$ | 2.585 |
| 3 | 67/8 | $\frac{11}{16}$ | 1/4 | 43/8 | $\frac{3}{16}$ | 7 | $3 / 4$ | $5^{\frac{7}{16}}$ | 2.440 |
| $31 / 2$ | $7 \frac{7}{16}$ | $3 / 4$ | $1 / 4$ | $4 \frac{15}{16}$ | $\frac{3}{16}$ | 8 | $3 / 4$ | 6 | 2.356 |
| 4 | 81/8 | $3 / 4$ | $\frac{5}{16}$ | 55/8 | $\frac{3}{16}$ | 9 | 8/4 | $6 \frac{11}{16}$ | 2.334 |
| 41/2 | 85/8 | $\frac{13}{16}$ | $\frac{5}{16}$ | 61/8 | $\frac{3}{16}$ | 10 | $3 / 4$ | $7{ }^{\frac{3}{16}}$ | 2.258 |
| 5 | $9 \frac{11}{16}$ | 7/8 | $\frac{5}{16}$ | $6 \frac{13}{16}$ | $\frac{3}{16}$ | 10 | 7/8 | 8 | 2.513 |
| 51/2 | $10 \frac{3}{16}$ | 7/8 | $\frac{5}{16}$ | $7{ }^{5}$ | $\frac{3}{16}$ | 10 | 7/8 | 81/2 | 2.670 |
| 6 | 107/8 | $\frac{15}{15}$ | $3 / 8$ | 8 | $\frac{3}{16}$ | 10 | 7/8 | $9 \frac{3}{16}$ | 2.886 |
| 61/2 | $11 \frac{13}{16}$ | $\frac{15}{16}$ | $3 / 8$ | 85/8 | $\frac{3}{16}$ | 10 | 1 | $9 \frac{15}{16}$ | 3.122 |
| 7 | $12 \frac{5}{16}$ | 1 | $3 / 8$ | $91 / 8$ | $\frac{3}{16}$ | 11 | 1 | $10 \frac{15}{16}$ | 2.981 |
| 71/2 | 127/8 | $1_{1 \frac{1}{16}}$ | $3 / 8$ | $91 \frac{1}{16}$ | 3 16 | 11 | 1 | 11 | 3.141 |
| 8 | 14 | $1 \frac{1}{16}$ | $\frac{7}{16}$ | $10 \frac{7}{16}$ | $\frac{3}{16}$ | 11 | 11/8 | 117/8 | 3.391 |
| 81/2 | $14{ }^{16}$ | 11/8 | $\frac{7}{16}$ | 11 | $\frac{3}{16}$ | 12 | 11/8 | $12 \frac{7}{16}$ | 3.256 |
| 9 | $15 \frac{1}{16}$ | 11/8 | $\frac{7}{16}$ | 111/2 | ${ }^{3} 8$ | 12 | 11/8 | $12 \frac{15}{16}$ | 3.387 |
| 91/2 | $155 / 8$ | $1 \frac{3}{16}$ | $\frac{7}{16}$ | $12{ }_{1}^{16}$ | $\frac{3}{16}$ | 13 | 11/8 | 131/2 | 3.262 |
| 10 | $16_{16}^{5}$ | 11/4 | 1/2 | 123/4 | $\frac{3}{16}$ | 13 | 11/8 | $14 \frac{3}{16}$ | 3.425 |
| 101/2 | 171/4 | 11/4 | 1/2 | 133/8 | $\frac{3}{16}$ | 13 | 11/4 | $14 \frac{15}{16}$ | 3.610 |
| 11 | $17 \frac{15}{16}$ | $1 \frac{5}{16}$ | 1/2 | $14_{16}^{16}$ | $\frac{3}{16}$ | 14 | 11/4 | 155/8 | 3.506 |
| 111/2 | $18 \frac{5}{16}$ | $1 \frac{5}{16}$ | 1/2 | $14 \frac{7}{16}$ | $\frac{3}{16}$ | 14 | 11/4 | 16 | 3.590 |
| 12 | 19 | $13 / 8$ | $\frac{9}{16}$ | 151/8 | $\frac{3}{16}$ | 14 | 11/4 | $16 \frac{11}{16}$ | 3.745 |
| 13 | $20 \frac{1}{16}$ | $1 \frac{7}{16}$ | $\frac{9}{16}$ | $16 \frac{3}{16}$ | $\frac{3}{16}$ | 15 | 11/4 | $173 / 4$ | 3.718 |
| 14 | 215 | $11 / 2$ | $\frac{9}{16}$ | $173 / 8$ | $\frac{3}{16}$ | 15 | $13 / 8$ | 1919 | 3.992 |
| 15 | $22 \frac{15}{16}$ | $1 \frac{9}{16}$ | ${ }^{\frac{11}{1} 6}$ | $18 \frac{11}{16}$ | $\frac{3}{16}$ | 16 | $13 / 8$ | 203/8 | 4.000 |

## Standard Welded Steel Flanges.

## United States Navy.

|  | Pressures from 400 to 500 pounds per square inch. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dimensions of flange. |  |  |  |  | Bolts. |  |  |  |
|  | Diameter. | Mean thickness. A | $\begin{gathered} \text { Radius } \\ \text { of } \\ \text { fillet. } \\ B \end{gathered}$ | Diameter of female part. C' | Depth of female part. D | Number. | Diameter. | Diameter of pitch circle. | Pitch. |
| 1/2 | $31 / 2$ | 1/2 | $\frac{3}{16}$ | 15/8 | 1/8 | 4 | 1/2 | $2{ }^{7}{ }^{7}$ | 1.914 |
| $3 / 4$ | $31 \frac{5}{16}$ | $\frac{9}{16}$ | $\frac{3}{16}$ | 13/4 | 1/8 | 4 | $5 / 8$ | $2 \frac{11}{16}$ | 2.110 |
| 1 | 41/4 | $\frac{9}{16}$ | $\frac{3}{16}$ | $2 \frac{1}{16}$ | 1/8 | 4 | $5 / 8$ | 3 | 2.350 |
| 11/4 | 41/2 | $5 / 8$ | $\frac{3}{16}$ | $2 \frac{5}{16}$ | 1/8 | 5 | $5 / 8$ | $31 / 4$ | 2.040 |
| $11 / 2$ | $43 / 4$ | $5 / 8$ | $\frac{3}{16}$ | $2 \frac{9}{16}$ | 1/8 | 5 | 5/8 | 31/2 | 2.199 |
| 2 | $57 / 8$ | $\frac{11}{16}$ | 1/4 | $33 / 8$ | 1/8 | 6 | $3 / 4$ | $4 \frac{7}{16}$ | 2.323 |
| $21 / 2$ | $63 / 8$ | $\frac{11}{16}$ | 1/4 | $37 / 8$ | 1/8 | 6 | $3 / 4$ | $4 \frac{1}{1} \frac{5}{6}$ | 2.585 |
| 3 | $6 \frac{15}{16}$ | $3 / 4$ | 1/4 | $4{ }_{1} \frac{7}{6}$ | $\frac{3}{16}$ | 7 | $3 / 4$ | 51/2 | 2.468 |
| $31 / 2$ | $71 / 2$ | $\frac{13}{16}$ | 1/4 | 5 | $\frac{3}{16}$ | 8 | $3 / 4$ | $6 \frac{1}{16}$ | 2.381 |
| 4 | 85/8 | $\frac{13}{16}$ | $\frac{5}{16}$ | $53 / 4$ | $\frac{3}{16}$ | 8 | 7/8 | $6 \frac{1}{16}$ | 2.724 |
| $41 / 2$ | $9 \frac{3}{16}$ | 7/8 | $\frac{5}{16}$ | 65 $\frac{5}{16}$ | $\frac{3}{16}$ | 9 | 7/8 | $71 / 2$ | 2.618 |
| 5 | $10 \frac{5}{16}$ | $\frac{15}{15}$ | $\frac{5}{16}$ | $71 / 8$ | $\frac{3}{16}$ | 9 | 1 | $8 \frac{7}{16}$ | 2.942 |
| 51/2 | $10 \frac{11}{16}$ | ${ }_{16}^{15}$ | $\frac{5}{16}$ | $71 / 2$ | $\frac{3}{16}$ | 9 | 1 | $8 \frac{13}{6}$ | $3.076^{\prime}$ |
| 6 | $117 / 8$ | 1 | $3 / 8$ | $8 \frac{5}{16}$ | ${ }_{1} \frac{3}{6}$ | 9 | 11/8 | $93 / 4$ | 3.403 |
| 61/2 | 123/8 | $1_{1 \frac{1}{16}}$ | $3 / 8$ | 813 | $\frac{3}{16}$ | 10 | 11/8 | 101/4 | 3.220 |
| 7 | $121 \frac{1}{6}$ | $1_{1 \frac{1}{16}}$ | $3 / 8$ | $93 / 8$ | $\frac{3}{16}$ | 10 | 11/8 | $10 \frac{13}{1} \frac{3}{6}$ | 3.397 |
| $71 / 2$ | $131 / 2$ | 11/8 | 3/8 | $91 \frac{15}{16}$ | $\frac{3}{16}$ | 11 | 11/8 | 113/8 | 3.248 |
| 8 | $14 \frac{9}{16}$ | $1 \frac{3}{16}$ | $\frac{7}{16}$ | 1011 ${ }_{1}$ | $\frac{3}{16}$ | 11 | 11/4 | 121/4 | 3.499 |
| $81 / 2$ | 151/8 | $1 \frac{3}{16}$ | $\frac{7}{16}$ | 111/4 | 3 16 | 11 | 11/4 | $121 \frac{13}{6}$ | 3.659 |
| 9 | $15 \frac{11}{16}$ | 11/4 | $\frac{7}{16}$ | 1113 | $\frac{3}{16}$ | 12 | 11/4 | $133 / 8$ | 3.501 |
| 91/2 | 161/4 | 156 | $\frac{7}{16}$ | $123 / 8$ | $\frac{3}{16}$ | 12 | 11/4 | $13_{1 \frac{15}{16}}$ | 3.649 |
| 10 | $167 / 8$ | $13 / 8$ | 1/2 | 13 | $\frac{3}{16}$ | 12 | 11/4 | $14 \frac{9}{16}$ | 3.812 |
| 101/2 | $17 \frac{15}{16}$ | $13 / 8$ | 1/2 | $13 \frac{11}{16}$ | $\frac{3}{16}$ | 12 | $13 / 8$ | $153 / 8$ | 4.025 |
| 11 | 185/\% | $1{ }_{1} \frac{7}{16}$ | 1/2 | $143 / 8$ | ${ }_{1} \frac{3}{6}$ | 13 | $13 / 8$ | $16{ }_{1}^{16}$ | 3.882 |
| 111/2 | 19 | 11/2 | $1 / 2$ | $143 / 4$ | $\frac{3}{16}$ | 13 | $13 / 8$ | $16 \frac{7}{16}$ | 3.973 |
| 12 | $19 \frac{11}{16}$ | 11/2 | $\frac{9}{16}$ | $15 \frac{7}{16}$ | $\frac{3}{16}$ | 13 | $13 / 8$ | 171/8 | 4.138 |
| 13 | $21_{1 \frac{3}{16}}$ | 15/8 | $\frac{9}{16}$ | 165/8 | $\frac{3}{16}$ | 13 | 11/2 | $18 \frac{7}{16}$ | 4.455 |
| 14 | $22{ }^{\frac{5}{16}}$ | $1 \frac{11}{16}$ | $\frac{9}{16}$ | $173 / 4$ | $\frac{3}{16}$ | 14 | 11/2 | $19 \frac{9}{16}$ | 4.389 |
| 15 | 235/8 | $13 / 4$ | ${ }_{1}^{11}$ | $19 \frac{1}{16}$ | $\frac{3}{16}$ | 15 | 11/2 | 207/8 | 4.372 |

## Extra Heavy Flanges.

Standard dimensions for extra heavy flanges for pipe fittings and valves, adopted by leading manufacturers in the United States, January 1, 1902.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In. | Inch. | Inch. | Inch. |  | Inch. | In. | Inch. | Inch. | Inch. |  | Inch. |
| 2 | 61/2 | 7/8 | 5 |  | $5 / 8$ | 9 | 16 | $13 / 4$ |  | 12 | 7/8 |
| $21 / 2$ | $71 / 2$ | 1 | $57 / 8$ | 4 | $3 / 4$ | 10 | 171/2 | $17 / 8$ | 151/4 | 16 |  |
| 3 | $81 / 4$ | 11/8 | 65 \% | 8 | 5 | 12 | 20 | 2 | $173 / 4$ | 16 |  |
| $31 / 2$ |  | $1^{\frac{3}{16}}$ | $71 / 4$ | 8 | $5 / 8$ | 14 | 221/2 | $21 / 8$ | 20 | 20 | 8 |
| 4 | 10 | $11 / 4$ | $77 / 8$ | 8 |  | 15. | 231/2 |  | 21 | 20 | 1. |
| 41/2 | 101/2 | ${ }_{15}^{5}$ | $81 / 2$ | 8 | -3/4 | 16 | 25 | 21/4 | $221 / 2$ | 20 | 1 |
| 5 | 11 | $13 / 8$ | $91 / 4$ | 8 | 3 | 18 | 27 | 238 | $241 / 2$ | 24 |  |
| 6 | 121/2 | $17{ }_{16}$ | 1058 | 12 | $3 / 4$ | 20 | $291 / 2$ | $21 / 2$ | ${ }_{26}{ }^{63} 4$ | 24 | $11 / 8$ |
| 7 | 14 | 11/2 | 117/8 | 12 | 7/8 | 22 | $311 / 2$ | 258 | $283 / 4$ | 28 | 11/8 |
| 8 | 15 | 15/8 | 13 | 12 | 7/8 | 24 | 34 | $23 / 4$ | $311 / 4$ | 28 | 11/8 |

The foregoing table includes the following features: bolt holes are in multiples of four, in order to enable the positions of connections to be varied by right angles; bolt holes to be drilled to straddle vertical axis; the distance between bolt centres not to exceed $35 / 8$ inches, which is accomplished on all but the $21 / 2$-inch size; distance from centre of bolt to edge of the flange should always equal or exceed the diameter of bolt plus $1 / 8$ inch for 9 -inch valves and under, and diameter of bolt plus not less than $1 / 4$ inch for sizes larger.

The bolt circle diameters, as above stated, will allow the use of calking recess on pipe flanges, provided such device is specified.

The above standard sizes have been adopted by the following firms, and will be furnished by other firms to order :
The Eaton, Cole \& Burnham Company . . . . . . . . . . . . . Bridgeport, Conn.
Chapman Valve Manufacturing Company Indian Orchard, Mass.
Walworth Manufacturing Company ..... Boston, Mass.
Crane Company Chicago, Ill.
The Pratt \& Cady Company Hartford, Conn.
Jenkins Bros. New York City.
General Fire Extinguisher Company. Providence, R. I.
Builders' Iron FoundryJarecki Manufacturing CompanyErie, Penna.
Crosby Steam Gauge and Valve Company Boston, Mass.
The Kennedy Valve Manufacturing Company. New York City.
The Ludlow Valve Manufacturing Company Troy, N. Y.
The Lunkheimer Company Cincinnati, Ohio.
The Michigan Brass and Iron Works. Detroit, Mich.
The Kelly \& Jones Company New York City.
Eastwood Wire Manufacturing Company Belleville, N. J.
National Tube Company ..... Pittsburg, Penna.
Coffin Valve Company ..... Boston, Mass.
Rensselaer Manufacturing Company. ..... Troy, N. Y.
The Mason Regulator Company Boston, Mass.
McNab \& Harlin Manufacturing Company. New York City.
The John Davis Company Chicago, Ill.
Watson \& McDaniel Company Philadelphia, Penna.
Ross Valve Company. Troy, N. Y.
Edward P. Bates Syracuse, N. Y.

## Dimensions of Cast=iron Pipe Fittings.



For Pressures from 50 to 1000 Pounds.
$B=$ thickness of body.
$F=$ thickness of flanges.

| Size. | 50 ll , |  | 100 ll. |  | 150 lb . |  | 200 ll. |  | 300 ll . |  | 500 lb . |  | 1000 lb . |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B$ | $F$ | $B$ | $F$ | B | $F$ | $B$ | $F$ | B | $F$ | $B$ | $F$ | $B$ | F' |
| Inch. | In. |
| 1 | 3/8. | $3 / 4$ | $3 / 8$ | $1{ }_{13}^{13}$ | 3/8 | 16 | $\frac{7}{16}$ | ${ }_{16}^{13}$ | $\frac{7}{16}$ | ${ }_{1}^{13}$ | 1/2 | 7/8 | 1/2 | 7/8 |
| 11/4 | $\frac{7}{16}$ | 7/8 | $\frac{7}{16}$ | $\frac{15}{16}$ | $\frac{7}{16}$ | $\frac{15}{16}$ | 1/2 | 1 | $1 / 2$ | 1 | $\frac{17}{32}$ | 1 | $\frac{17}{32}$ | 1 |
| 11/2 | ${ }_{16}^{7}$ | 7/8 | $\frac{7}{16}$ | $1{ }^{15}$ | $\frac{7}{16}$ | ${ }_{15}^{15}$ | 1/2 | 1 | 1/2 | 1 | 5/8 | 11/4 | 5/8 | 11/4 |
| 2 | ${ }^{7} 16$ | 7/8 | $\frac{7}{16}$ | $\frac{1}{15}$ | $\begin{aligned} & 7 \\ & 16\end{aligned}$ | $\frac{15}{16}$ | $\frac{9}{16}$ | 1 | $\frac{9}{16}$ | 1 | $5 / 8$ | 11/4 | $5 / 8$ | $11 / 4$ |
| 21/2 | 1/2 | 1 | $1 / 2$ | 1 | 1/2 | 1 | $\frac{9}{16}$ | 1 | $\frac{9}{16}$ | 1 | ${ }^{11} 16$ | $13 / 8$ | ${ }^{25}$ | $11 / 2$ |
| 3 | $1 / 2$ | 1 | $1 / 2$ | 1 | $1 / 2$ | 1 | $5 / 8$ | $11 / 8$ | $5 / 8$ | 11/8 | $3 / 4$ | $11 / 2$ | ${ }^{27}$ | $13 / 4$ |
| $31 / 2$ | ${ }_{16}{ }^{9}$ | $11 / 8$ | ${ }^{9} 6$ | $11 / 8$ | $\frac{9}{16}$ | $11 / 8$ | 5/8 | $11 / 8$ | 5/8 | $11 / 8$ | $3 / 4$ | 11/2 | 1 | $13 / 4$ |
| 4 | $\frac{9}{16}$ | 11/8 | $\frac{9}{16}$ | $11 / 8$ | $\frac{9}{16}$ | 11/8 | ${ }^{11} 16$ | $11 / 4$ | $\frac{11}{16}$ | 11/4 | 7/8 | $13 / 4$ | $11 / 8$ | 2 |
| $41 / 2$ | $\frac{9}{16}$ | $11 / 8$ | ${ }^{9} 6$ | 11/8 | $\frac{9}{16}$ | 11/8 | $\frac{11}{16}$ | 11/4 | $\frac{11}{16}$ | 11/4 | 7/8 | $13 / 4$ | 11/4 | 2 |
| 5 | $\frac{9}{16}$ | $11 / 8$ | 9 ${ }^{\text {¢ }}$ | $11 / 8$ | $5 / 8$ | $11 / 4$ | $3 / 4$ | 11/4 | $3 / 4$ | 11/4 | 1 | 17/8 | $13 / 8$ | $21 / 8$ |
| 6 | ${ }^{9} 6$ | $11 / 8$ | $\frac{9}{16}$ | 11/8 | ${ }^{\frac{11}{16}}$ | $13 / 8$ | $\stackrel{13}{16}$ | $13 / 8$ | $\frac{13}{16}$ | $13 / 8$ | 11/8 | 2 | $11 / 2$ | $21 / 4$ |
| 7 | $\frac{9}{16}$ | $11 / 8$ | $5 / 8$ | $11 / 4$ | $\frac{11}{16}$ | $1{ }_{16}$ | ${ }_{1}^{13}$ | $11 / 2$ | $\frac{15}{16}$ | $11 / 2$ | 11/4 | $21 / 8$ | $15 / 8$ | $23 / 8$ |
| 8 | $\frac{9}{16}$ | $11 / 8$ | $5 / 8$ | $11 / 4$ | $3 / 4$ | $11 / 2$ | $7 / 8$ | $11 / 2$ | 1 | 11/2 | $13 / 8$ | $21 / 4$ | $13 / 4$ | $21 / 2$ |
| 9 | 16 | $11 / 8$ | $5 / 8$ | $11 / 4$ | $3 / 4$ | $11 / 2$ | $\frac{15}{16}$ | $15 / 8$ | $1_{1 \frac{1}{16}}$ | 15/8 | 11/2 | 23/8 | 17/8 | 25/8 |
| 10 | $\frac{9}{16}$ | $11 / 8$ | $\frac{11}{16}$ | $13 / 8$ | $\frac{13}{16}$ | $1{ }_{16}$ | 1 | $13 / 4$ | 11/8 | $13 / 4$ | 13/4 | $21 / 2$ | 2 | $23 / 4$ |
| 11 | $5 / 8$ | $1 \frac{5}{16}$ | $\frac{11}{16}$ | 11/2 | 7/8 | $1 \frac{11}{16}$ | $1_{1 / 16}$ | $17 / 8$ | $1_{16}^{3}$ | $17 / 8$ | $13 / 4$ | $25 / 8$ | 21/4 | $27 / 8$ |
| 12 | $5 / 8$ | $1_{16}^{15}$ | $3 / 4$ | $1{ }_{16}$ | $7 / 8$ | $13 / 4$ | $11 / 8$ | 2 | $1 \frac{5}{16}$ | 2 | 17/8 | $23 / 4$ | 21/2 | 3 |
| *O. D. | 16 | $1_{16}^{7}$ | $1{ }_{1}^{13}$ | $15 / 8$ | $\frac{15}{16}$ | $17 / 8$ | $1 \frac{3}{16}$ | 21/8 | $1 \frac{7}{16}$ | 21/8 | 2 | 3 | 23/4 | $31 / 2$ |
| 15 | $\frac{11}{16}$ | $1_{16}^{7}$ | $\frac{13}{16}$ | $1_{17}^{16}$ | $\frac{15}{16}$ | 115 | $1_{1} \frac{3}{6}$ | 21/8 | 11/2 | $21 / 4$ |  |  |  |  |
| 16 | $3 / 4$ | $1 \frac{9}{16}$ | 7/8 | $13 / 4$ | 1 | 2 | $11 / 4$ | $21 / 4$ | $1_{16}^{9}$ | $23 / 8$ |  |  |  |  |
| 18 | $3 / 4$ | $15 / 8$ | $7 / 8$ | $17 / 8$ | $1_{1}^{1} \frac{1}{16}$ | $2{ }^{3} 16$ | $13 / 8$ | $23 / 8$ | $1 \frac{11}{16}$ | $21 / 2$ |  |  |  |  |
| 20 | $\frac{13}{13}$ | $13 / 4$ | 15 | $1{ }_{1}^{15}$ | $11 / 8$ | 21/4 | 11/2 | $21 / 2$ | 17/8 | $23 / 4$ |  |  |  |  |
| 22 | ${ }^{13} 16$ | $13 / 4$ | 1 | $2 \frac{1}{16}$ | $1_{16}^{3}$ | 23/8 | 15/8 | 25/8 | 2 | - |  |  |  |  |
| 24 | $7 / 8$ | 17/8 | $1 \frac{1}{16}$ | $21 / 8$ | $1_{16}^{5}$ | $25 / 8$ | $1 \frac{11}{16}$ | $23 / 4$ | $21 / 8$ | $31 / 4$ |  |  |  |  |
| 26 | $\frac{15}{16}$ | 2 | $11 / 8$ | $21 / 4$ | $1 \frac{5}{16}$ | $2 \frac{11}{16}$ | $1 \frac{13}{16}$ | 27/8 | 21/4 | $33 / 8$ |  |  |  |  |
| 28 | 15 | 2 | $1{ }_{1} \frac{3}{6}$ | 23/8 | $13 / 8$ | $23 / 4$ | $1{ }^{1 \frac{1}{15}}$ |  | 23/8 | $31 / 2$ |  |  |  |  |
| 30 | 1 | 2 | 11/4 | $21 / 2$ | $1_{17}^{7}$ | $22_{13}^{13}$ | 2 | 31/4 | $21 / 2$ | $33 / 4$ |  |  |  |  |
| 32 | 1 | 2 | $11 / 4$ | $21 / 2$ | $11 / 2$ | $2_{16}^{15}$ | $21 / 8$ | $33 / 8$ | $25 / 8$ | 4 |  |  |  |  |
| 34 | $1 \frac{1}{16}$ | $21 / 8$ | $1_{16}^{5}$ | $25 / 8$ | $1 \frac{9}{16}$ | $3 \frac{1}{16}$ | $2 \frac{3}{16}$ | $31 / 2$ | $23 / 4$ | 41/8 |  |  |  |  |
| 36 | $1 \frac{1}{16}$ | 21/8 | $13 / 8$ | $23 / 4$ | $15 / 8$ | $3-\frac{3}{16}$ | $2 \frac{5}{16}$ | $35 / 8$ | $27 / 8$ | $43 / 8$ |  |  |  |  |

*0. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Dimensions of Steel Fittings and Flanges.


As made by Best \& Co., Pittsburg, Pa.
For Pressures from 150 to 1000 Pounds.
$B=$ thickness of body.
$F=$ thickness of flange.
$O=$ diameter of male.
$I=$ diameter of female
$m=$ height of male.
$f=$ depth of female.

*O. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

## Dimensions of Pipe Fittings.

As made by Best \& Co., Pittsburg, Pa.

## Pipe Bends.

Made of Standard and Extra Heavy Pipe.

$R=$ radius. $\quad H=$ centre to face $. \quad U=$ centre to centre.

| Size. | Standard radius. |  |  | Minimum radius. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $R$ | H | $U$ | $R$ | H | $U$ |
| Inch. | Ft. In. |
| 1/8 | 3 | - $33 / 4$ | 6 | 1 | .. $13 / 4$ | 2 |
| $1 / 4$ | - $31 / 2$ | . $41 / 2$ | - 7 | . $11 / 4$ | .. $21 / 4$ | - $21 / 2$ |
| $3 / 8$ | - 4 | . $51 / 4$ | . 8 | . $11 / 2$ | .. $23 / 4$ | 3 |
| 1/2 | - 5 | .. $61 / 2$ | . 10 | .. $13 / 4$ | .. $31 / 4$ | $31 / 2$ |
| $3 / 4$ | 6 | . $73 / 4$ | .. 12 | . 2 | .. $33 / 4$ | 4 |
| 1 | .. 7 | . $91 / 4$ | . 14 | . $21 / 4$ | .. $41 / 2$ | $41 / 2$ |
| 11/4 | - 8 | .. 101/2 | . 16 | .. $23 / 4$ | .. $51 / 4$ | $51 / 2$ |
| 11/2 | - 10 | . . $123 / 4$ | .. 20 | . $31 / 4$ | . 6 | $61 / 2$ |
| 2 | - 12 | .. 15 | 24 | .. $41 / 2$ | . $71 / 2$ | 9 |
| $21 / 2$ | . 11 | .. $171 / 2$ | 24 | .. 6 | .. $91 / 2$ | .. 12 |
| 3 | . 18 | .. 22 | 3 .. | . 7 | .. 11 | .. 14 |
| $31 / 2$ | - 20 | $21 / 2$ | 34 | 9 | .. 131/2 | . 18 |
| 4 | .. 24 | 25 |  | . 12 | . 17 | . 24 |
| $41 / 2$ | 22 | $2 \quad 71 / 2$ | 44 | . 15 | .. 201/2 | 26 |
| 5 | 26 | 3 .. | 5 .. | .. 18 | .. 24 | 3 |
| 6 | 3 .. | 3 61/2 |  | . 24 | $261 / 2$ | 4 |
| 7 |  | 47 |  | 26 | 31 | 5 |
| 8 | $4 \quad 6$ | $5 \quad 2$ | 9 | 32 | 310 | 6 |
| 10 | 56 | 66 | $11 .$. | 44 | 54 | $8 \quad 8$ |
| 12 | 76 | 88 | 15 .. | 66 | 78 | 13 |
| * O. D. |  |  |  |  |  |  |
| 14 | 8 | $9 \quad 6$ | 16 | 76 |  | 15 |
| 16 | 10 . | $11 \quad 10$ | 20 | 86 | $10 \quad 4$ | 17 |
| 18 | 12 | 14 | 24 | 96 | $11 \quad 6$ | 19 |
| 20 | 14 | 16 | 28 | $10 \quad 6$ | 126 | 21 |
| 22 | 16 | 18 | 32 | 11 6 | 136 | 23 |
| 24 | 18 | 20 | 36 | 126 | 146 | 25 |

* O. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Beuds below heavy lines made in two pieces.

## Dimensions of Pipe Fittings.

As made by Best \& Co., Pittsburg, Pa.

## Pipe Bends.

Made of standard and Extra Heavy Pipe.

Long Radius, for Pressures from 50 to 300 Pounds.

$R=$ radius.
$H=$ centre to face.
$h=$ centre to face, on short end.

| Size. | $R$ | H | $h$ |
| :---: | :---: | :---: | :---: |
| Inch. | Ft. In. | Ft. In. | Inch. |
| 2 | .. $5 \frac{13}{16}$ | . 7 | $43 / 4$ |
| 21/2 | .. $61 / 2$ | .. $73 / 4$ | 5 |
| 3 | .. $71 / 4$ | .. $81 / 2$ | $51 / 2$ |
| $31 / 2$ | . $77 / 8$ | .. $91 / 4$ | 6 |
| 4 | .. $8_{19} \frac{9}{16}$ | .. 10 | $63 / 4$ |
| 41/2 | .. $9 \frac{1}{16}$ | .. 101/2 | 71/4 |
| 5 | .. $9 \frac{7}{16}$ | . 11 | $73 / 4$ |
| 6 | .. 101/4 | .. 12 | 81/2 |
| 7 | .. $111_{1 \frac{3}{16}}$ | .. 13 | 9 |
| 8 | . $121 / 8$ | . . 14 | $93 / 4$ |
| 10 | . . 14, 14 | .. 161/2 | 111/4 |
| 12 | .. 167/8 | .. 19 | 121/2 |
| *O. D. |  |  |  |
| 14 | . $18 \frac{11}{16}$ | .. 21 | 14 |
| 16 | .. $21 \frac{1}{16}$ | .. $231 / 2$ | 16 |
| 18 | . $233 / 8$ | 22 | 17 |
| 20 | $21_{16}^{3}$ | 24 | 18 |
| 22 | $231 / 8$ | 26 | 19 |
| 24 | $247 / 8$ | 28 | 21 |

Extra Long Radius, for Pressures from 50 to 300 Pounds.

$S=$ radius.
$C=$ centre to face.

| $S$ | C |
| :---: | :---: |
| Ft. In. | Ft. In. |
| $9_{15}^{5}$ | .. $101 / 2$ |
| . $101 / 4$ | . . 111/2 |
| . . 111/2 | . . $123 / 4$ |
| . . 125/8 | . . 14 |
| .. 139 ${ }^{\text {d }}$ | .. 15 |
| .. $14_{16}{ }^{5}$ | . $153 / 4$ |
| .. $141 \frac{5}{15}$ | .. $161 / 2$ |
| . . 161/4 | . . 18 |
| .. $17 \frac{11}{126}$ | .. 191/2 |
| .. 191/8 | . 21 |
| .. $222 \frac{13}{16}$ | $2 \quad 3 / 4$ |
| 2 23/8 | $241 / 2$ |
| $25^{3} 5$ | $271 / 2$ |
| $28^{13}$ | $2111 / 4$ |
| 3 3 3/8 | 3 3 |
| $33_{15} 3_{16}$ | 36 |
| 3 6 1/8 | 39 |
| $387 / 8$ |  |

$45^{\circ}$ Elbows and Y's, for Pressures from 50 to 150 Pounds.

$f=$ radius.
$b=$ centre to face.
$l=$ centre to face.
$a=$ centre to face, on short end.

| $f$ | $b$ | $l$ | $a$ |
| :---: | :---: | :---: | :---: |
| Inch. | Inch. | Ft. In. | In. |
| 41/8 | 27/8 | . 9 | 21/2 |
| 5 | $33 / 8$ | . 10 | 3 |
| $5 \frac{11}{16}$ | $35 / 8$ | . $111 / 2$ | 3 |
| $5 \frac{15}{16}$ | $37 / 8$ | .. 121/4 | $31 / 4$ |
| $65 / 8$ | 41/8 | . $131 / 2$ | $31 / 2$ |
| $73 / 8$ | $41 / 2$ | . . 141/4 | $33 / 4$ |
| 715 | 47/8 | .. 161/4 | 3/4 |
| $8 \frac{5}{16}$ | 51/8 | . . $171 / 4$ | 41/4 |
| 91/8 | $55 / 8$ | . $181 / 2$ | $41 / 2$ |
| $97 / 8$ | 6 | 21 | $41 / 2$ |
| 11 | 61/2 | . 24 | 5 |
| 12 | 71/4 | $231 / 2$ | 6 |
| 131/4 | 73/4 | 25 | 61/2 |
| $141 / 8$ | 83/8 | $273 / 4$ | 71/4 |
| $151 / 2$ | 91/8 | $2103 / 4$ | 73/4 |
| $163 / 8$ | 91/2 | $3{ }^{3} 13 / 4$ | $81 / 4$ |
| 183/4 | 103\% | $353 / 4$ | 83/4 |
| 20 | 113/8 | $383 / 4$ | $9^{1} 4$ |

* O. D. 14 inches and larger is for lap-weld steel pipe whose ontside diameter is of sizes given.


## Dimensions of Angle, Globe, and Check Valves.

As made by Best \& Co., Pittsburg, Pa.


Hy. for 150 pounds pressure.
X Hy. for 200 pounds pressure.

## Diameter of Wheels for Valves.



Dimensions of hrdraulic ralves to 5000 pounds on application.

Angle Check Valves to order.

| Size of valves, in inches. | 1 | 11/4 | 11/2 | 2 |  |  | 2 | 4 | 41/2 | 5 |  | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle and Globe Val |  |  |  | 8 | 9 | 10 | 12 | 12 | 14 | 14 |  | 16 | 16 | 18 |
| Lt., Std.. and Hy. Gate Valves | 41/2 | 6 | 6 | 7 | 7 | 10 | 10 | 10 | 10 | 12 |  | 13 | 13 | 14 |
| X Hy., XX Hy. Gate Valves. | 41/2 | 6 | 6 | 7 | $81 / 2$ | 10 | 10 | 12 | 12 | 13 |  | 14 | 14 | 15 |
| Hyd. Gate Valves | 41/2 | 6 | 6 | 7 | 81/2 | 12 | 12 | 14 | 4 | 14 |  | 16 | 16 | 18 |
| X Hyd. Gate Val |  | 6 | 7 | 81 | 10 | 12 | 12 |  | 16 | 16 |  | 18 | 20 | 24 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Size of valves, in inches. | 9 | 10 | 12 | 14 | 15 | 16 | 18 | 20 | 22 | 24 |  | 26 | 28 | 30 |
| Angle and Globe Valves | 18 | 20 | 24 | 30 |  |  |  |  |  |  |  |  |  |  |
| Lt., Std., and Hy. Gate Valves | 14 | 15 | 15 | 18 | 20 | 24 | 24 | 30 | 32 | 32 |  | 32 | 36 | 36 |
| X Hy, XX Hr, Gate Valves. | 16 | 18 | 20 | 22 | 24 | 24 | 30 | 30 | - 32 | 36 |  |  |  |  |
| Hyd. Gate Valves. X Hyd. Gate Valv | 18 | $\because$ | 20 | 24 |  |  |  |  |  |  |  |  |  |  |

## Butterfly Valves.

Light, Standard, and X Hy.-Dimensions in inches.
Size of valve $\ldots \ldots \ldots . .4 \begin{array}{lllllllllllll} & 4 & 5 & 6 & 7 & 8 & 10 & 12 & 14 & 15 & 16 & 18 & 20 \\ 22 & 24\end{array}$
 Double Butterfly Valves to order.


## Dimensions of Gate Valves.

As made by Best \& Co., Pittsburg, Pa.

Inside Screw.

$l=$ face to face.
$L=$ face to face by-pass ralves.
$S=$ centre to top of wheel.
$O=$ centre to top of stem, when open.

Outside Screw and Yoke.
No By-pass.
With By-pass.


| Size. | Light and Standard. |  |  |  | Hy., X Hy., Xx Hy. |  |  |  | Hydc., X Hydc. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $l$ | $S$ | 0 | $L$ | $l$ | $S$ | 0 | $L$ | $l$ | $S$ |
| Inch. | In. | Ft. In. | Ft. In. | In. | In. | Ft. In. | Ft. In. | In. | Inch. | Inch. 81/ |
| 11/4 |  |  |  |  |  |  |  |  | 71/2 | 101/2 |
| 11/2 |  |  |  |  |  |  |  |  | 111/2 | 123/4 |
| 2 | 8 | 3/8 | 14 |  |  |  |  |  | 12 | 141/8 |
| 21/2 | $83 / 4$ | $121 / 2$ | .. 155/8 |  | 91/2 | 123/8 | 15 |  | 14 | 17 |
| 3 | 83/4 | 14 | 193/8 |  | 111/8 | 161/8 | 193/8 |  | $141 / 2$ | 18 |
| $31 / 2$ |  |  |  |  | 117/8 | 181/8 | 213/4 |  | 141/2 | 18 |
|  | 93/8 | $163 / 4$ | 23 |  | 12 | 19 | $233 / 8$ |  | 201/2 | 22 |
| $41 / 2$ | 101/4 | 19 | 24 |  | 131/4 | . $213 / 4$ | .. 261/2 |  | $211 / 2$ | 23 |
| 5 | 95/8 | 191/2 | 26 |  | 15 | .. 225/8 | .. $277 / 8$ | $181 / 2$ | $221 / 2$ | 24 |
| 6 | 107/8 | 221/4 | . $313 / 4$ |  | 157/8 | . $251 / 2$ | .. 317/8 | 19 | 24 | $251 / 2$ |
| 7 | 111/2 | 24 | .. $361 / 4$ |  | $161 / 4$ | - $291 / 8$ | $361 / 2$ | 20 | 25 | 28 |
| 8 | 117/8 | $251 / 4$ | 34 | $181 / 2$ | 161/2 | . $323 / 4$ | 3 51/4 | 205/8 | 26 | 291/2 |
| 9 | 127/8 | . $263 / 4$ | $3 \quad 71 / 2$ | 19122 | 17 | .. 343/4 | 3 81/8 | $217 / 8$ | 26 | $321 / 4$ |
| 10 | 135/8 | 303/8 | $3101 / 4$ | 21 | 18 | 3 15/8 |  | $223 / 4$ | 27 | 35 |
| 12 | 145/8 | 333/8 | $4 \quad 61 / 4$ | 22 | 193/4 | $3 \quad 81 / 4$ | $4 \quad 83 / 4$ | $233 / 4$ | $301 / 2$ | 391/4 |
| 14 | 157/8 | $3 \quad 11 / 2$ | $5 \quad 21 / 2$ | 24 | 211/2 | 42 | 5 41/2 | $257 / 8$ | $321 / 2$ | $431 / 4$ |
| 15 |  |  |  |  | 211⁄2 | $4 \quad 53 / 4$ | $5 \quad 91 / 4$ | 261/8 |  |  |
| 16 | 183/4 | 37 | 6 1/2 | 261/2 |  | 48 | 6 1 $1 / 2$ | $327 / 8$ |  |  |
| 18 | 20 | 3 101/4 | $7 \quad 73 / 4$ | $263 / 4$ |  | $5 \quad 23 / 4$ | 6 912/2 | $331 / 4$ |  |  |
| 20 | 21 | 42 | $7 \quad 43 / 4$ | 27 |  | $5 \quad 81 / 2$ | $7 \quad 51 / 4$ | $351 / 4$ |  | I |
| 22 | 221/2 | $463 / 8$ | 8 | 32 |  | $6 \quad 23 / 4$ | 8 11/2 | $351 / 2$ |  |  |
| 24 | 24 | 410 | $8 \quad 8$ | $327 / 8$ |  | 68 | $8 \quad 87 / 8$ | $357 / 8$ |  |  |
| 26 | 26 | $5 \quad 21 / 2$ | $\begin{array}{ll}9 & 43 / 4\end{array}$ | $327 / 8$ |  | Cast | n, |  |  |  |
| 28 | 28 | $5 \quad 53 / 41$ | 101 | 3412 |  | Cast | n. |  | 10 | H. |
| 30 | 30 | 59 | $10 \quad 7$ | 36 |  |  | e 12 to 1 | 16, |  |  |

U．S．Standard


|  |  |
| :---: | :---: |
|  | N |
| 商发荡菏 |  |
| 辿 |  |
| M－ |  |
| M，¢ |  |
|  |  |
| Mr |  |
|  |  |
|  | $\stackrel{\square}{6}$ |
| Oin | E |
|  | $\cdots$ |
|  | $\bar{\omega}$ |
|  | $\pm$ |
|  | $\stackrel{\square}{\square}$ |
|  | ล |
|  |  |
|  | $\infty$ |
|  |  |
|  | N |
|  | N |
|  |  |


－suo！u』 od！d psepuets dof suo！suru！a
Engineers， 1901.


## －suo！un od！d p．iepue7S

## Standard Sleeve Nuts and Upsets.

Passaic Rolling Mill Company.


## Standard Steel Eye Bars.

Passaic Rolling Mill Company.



| $W$ | $t$ | $D$ | $d$ | $S-S$ | $L$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Width <br> of bar. | Minimum <br> thickness <br> of bar. | Diameter <br> of head. | Diameter <br> of largest <br> pin-hole.. | Sectional area of <br> head on lines $S$ - <br> in excess of that <br> in body of bar. | Additional length <br> of bar beyond <br> centre of pin-hole <br> to form one head. |
| Inch. | Inch. | Inch. | Inch. | Per cent. | Inch. |
| 3 | $3 / 4$ | 7 | $2 \frac{11}{16}$ | 42 | $141 / 2$ |
| 3 | $3 / 4$ | 8 | $3 \frac{1}{16}$ | 42 | $181 / 2$ |
| 4 | $3 / 4$ | $91 / 2$ | $3 \frac{15}{16}$ | $371 / 2$ | $181 / 2$ |
| 4 | $3 / 4$ | $101 / 2$ | $47 / 8$ | 39 | $231 / 2$ |
| 5 | $3 / 4$ | $111 / 2$ | $43 / 8$ | 41 | 21 |
| 5 | $3 / 4$ | $121 / 2$ | $53 / 8$ | 41 | $251 / 2$ |
| 6 | $7 / 8$ | $131 / 2$ | $47 / 8$ | 42 | 22 |
| 6 | $7 / 8$ | $141 / 2$ | $57 / 8$ | 42 | $261 / 2$ |
| 7 | 1 | 16 | $57 / 8$ | 43 | 28 |
| 8 | $11 / 8$ | 18 | 7 | $371 / 2$ | $321 / 2$ |
| 10 | $11 / 4$ | 23 | 9 | 40 | 40 |

## Notes on Passaic Steel Eye Bars.

Passaic standard steel eye bars are forged without the addition of extraneous metal and without welds of any kind, and are guaranteed under the conditions given in the above table to develop the full strength of the bar when tested to destruction.

The maximum sizes of pin-holes, given in the above table, allow an excess in the net section of the head over that of the body of the bar of 40 per cent. when the thickness of the head is the same as the thickness of the body of the bar. The thickness of the head is usually $\frac{1}{16}$ of an inch thicker than the body of the bar; and where a number of eye bars are to be placed closely together, as at a joint, the thicknesses of the heads should be considered $1 / 8$ of an inch greater than the bodies of the bars, in order to allow for the increased thickness of the heads and for the usual roughness of forged work.

Unless otherwise specified, the steel manufactured by the Passaic Rolling Mill Company for the use of eye bars is open-hearth medium steel, conforming with the standard specifications of the Association of American Steel Manufacturers.

All eye bars are finished to length, and the eyes bored at the specified distances, centre to centre, according to United States standard measurements.

Eye bars having larger or smaller heads than the above standards can be furnished by special arrangement.

## Standard Pins and Nuts.

Passaic Rolling Mill Company.


| D | $T$ | $S$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter of pin. | Diameter of thread. | Length of thread. | diameter of nut. | diameter of nut. | one nut. |
| Inch. | Inch. | Inch. | Inch. | Inch. | Lb. |
| $1_{13}{ }^{3}$ | 1 | 11/2 | 13/4 | 2 |  |
| $1_{16}^{7}$ | 1 | 11/2 | $13 / 4$ | 2 |  |
| $1 \frac{11}{16}$ | 11/2 | $11 / 2$ | 31/4 | $33 / 4$ | 1.5 |
| $1 \frac{115}{16}$ | 11/2 | 11/2 | $31 / 4$ | $33 / 4$ | 1.5 |
| $2 \frac{3}{16}$ | 11/2 | 11/2 | $31 / 4$ | $33 / 4$ | 1.5 |
| $2 \frac{7}{16}$ | $13 / 4$ | 11/2 | 31/4 | $33 / 4$ | 1.5 |
| $2 \frac{1}{16}$ | 2 | 11/2 | $33 / 4$ | 41/4 | 2.5 |
| $2 \frac{15}{16}$ | $21 / 4$ | 11/2 | $41 / 2$ | 51/4 | 3.0 |
| $3_{\frac{3}{16}}$ | 21/2 | 11/2 | 41/2 | $51 / 4$ | 2.8 |
| $3_{\text {1 }}{ }^{7}$ | 21/2 | 11/2 | $41 / 2$ | $51 / 4$ | 2.8 |
| $3 \frac{1}{1} \frac{1}{6}$ | 23/4 | 11/2 | 43/4 | $51 / 2$ | 3.0 |
| $3 \frac{1}{15}$ | 3 | 11/2 | $43 / 4$ | $51 / 2$ | 3.0 |
| 43/8 | $31 / 2$ | 11/2 | $51 / 2$ | 61/4 | 3.8 |
| 45/8 | $31 / 2$ | $11 / 2$ | $51 / 2$ | 61/4 | 3.8 |
| $47 / 8$ | 4 | 11/2 | 6 | 7 | 6.7 |
| 53/8 | 4 | 2 | 6 | 7 | 6.7 |
| 57/8 | 4 | 2 | \% | 8 | 9.1 |
| 7 | 5 | 21/4 | 8 | 91/4 | 12.0 |
| 8 | ${ }^{6}$ | 21/4 | 101/2 | 12 | 18.8 |
| 9 | 7 | 21/4 | 101/2 | 12 | 22.8 |



- HOVG SGAIM NGglanin do Sanvils XIS hlim sadod


## Standard Wire Hoisting Rope.

John A. Roebling's Sons Company.
Composed of 6 Strands and a Hemp Centre, 19 Wires to the Strand.
Swedish Iron.

| Trade number. | Diameter, in inches. | Approximate circumference, in inches. | Weight per foot, in pounds. | Approximate breaking strain, in tons of 2000 pounds. |
| :---: | :---: | :---: | :---: | :---: |
| $\ldots$ | 23/4 | 85/8 | 11.95 | 114.0 |
| $\ldots$ | 21/2 | 77/8 | 9.85 | 95.0 |
| 1 | 21/4 | 71/8 | 8.00 | 78.0 |
| 2 | 2 | 61/4 | 6.30 | 62.0 |
| 3 | 13/4 | $51 / 2$ | 4.85 | 48.0 |
| 4 | 15/8 | 5 | 4.15 | 42.0 |
| 5 | 11/2 | $43 / 4$ | 3.55 | 36.0 |
| 51/2 | 13/8 | 41/4 | 3.00 | 31.0 |
| 6 | 11/4 | 4 | 2.45 | 25.0 |
| 7 | 11/8 | $31 / 2$ | 2.00 | 21.0 |
| 8 | 1 | 3 | 1.58 | 17.0 |
| 9 | 7/8 | $23 / 4$ | 1.20 | 13.0 |
| 10 | $3 / 4$ | 21/4 | . 89 | 9.7 |
| 101/4 | 5/8 | 2 | . 62 | 6.8 |
| 101/2 | ${ }^{\text {9 }}$ | $13 / 4$ | . 50 | 5.5 |
| 103/4 | 1/2 | 11/2 | . 39 | 4.4 |
| $10 a$ | ${ }_{1}^{7}$ | 11/4 | . 30 | 3.4 |
| 10 b | $3 / 8$ | 11/8 | . 22 | 2.5 |
| 10 c | $\frac{5}{16}$ | 1 | . 15 | 1.7 |
| 10d | $1 / 4$ | $3 / 4$ | . 10 | 1.2 |
| 1 | 21/4 | 71/8 | 8.00 | 156.0 |
| 2 | 2 | 61/4 | 6.30 | 124.0 |
| 3 | $13 / 4$ | $51 / 2$ | 4.85 | 96.0 |
| 4 | 15/8 | 5 | 4.15 | 84.0 |
| 5 | 11/2 | $43 / 4$ | 3.55 | 72.0 |
| 51/2 | 13/8 | 41/4 | 3.00 | 62.0 |
| 6 | 11/4 | 4 | 2.45 | 50.0 |
| 7 | 11/8 | $31 / 2$ | 2.00 | 42.0 |
| 8 | 1 | 3 | 1.58 | 34.0 |
| 9 | 7/8 | 23/4 | 1.20 | 26.0 |
| 10 | $3 / 4$ | $21 / 4$ | . 89 | 19.4 |
| 101/4 | 5/8 | 2 | . 62 | 13.6 |
| 101/2 | $\frac{9}{16}$ | 13/4 | . 50 | 11.0 |
| 103/4 | 1/2 | 11/2 | . 39 | 8.8 |
| $10 a$ | ${ }_{16}$ | 11/4 | . 30 | 6.8 |
| 10 b | 3/8 | 11/8 | . 22 | 5.0 |
| 10 c | $\frac{5}{16}$ | 1 | . 15 | 3.4 |
| 10d | 1/4 | $3 / 4$ | . 10 | 2.4 |

Transmission or Haulage Rope.
John A. Roebling's Sons Company.
Composed of 6 Strands and a Hemp Centre, 7 Wires to the Strand.
Swedish Iron.

| Trade number. | Diameter, in inches. | Approximate circumference, in inches. | Weight per foot, in pounds. | Approximate breaking strain, in tons of 2000 pounds. |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 11/2 | $43 / 4$ | 3.55 | 34.0 |
| 12 | 13/8 | 41/4 | 3.00 | 29.0 |
| 13 | $11 / 4$ | 4 | 2.45 | 24.0 |
| 14 | $11 / 8$ | $31 / 2$ | 2.00 | 20.0 |
| 15 | 1 | 3 | 1.58 | 16.0 |
| 16 | 7/8 | 23/4 | 1.20 | 12.0 |
| 17 | $3 / 4$ | 21/4 | . 89 | 9.3 |
| 18 | $\frac{1}{12} 6$ | $21 / 8$ | . 75 | 7.9 |
| 19 | 5/8 | 2 | . 62 | 6.6 |
| 20 | $\frac{9}{16}$ | $13 / 4$ | . 50 | 5.3 |
| 21 | 1/2 | 11/2 | . 39 | 4.2 |
| 22 | $\frac{7}{16}$ | 11/4 | . 30 | 3.3 |
| 23 | $3 / 8$ | 11/8 | . 22 | 2.4 |
| 24 |  | 1 | . 15 | 1.7 |
| 25 | $\frac{9}{32}$ | 7/8 | . 125 | 1.4 |
|  |  | Cast-steel. |  |  |
| 11 |  | $43 / 4$ | 3.55 | 68.0 |
| 12 | $13 / 8$ | 41/4 | 3.00 | 58.0 |
| 13 | 11/4 | 4 | 2.45 | 48.0 |
| 14 | $11 / 8$ | $31 / 2$ | 2.00 | 40.0 |
| 15 | 1 | 3 | 1.58 | 32.0 |
| 16 |  | 23/4 | 1.20 | 24.0 |
| 17 | $3 / 4$ | $21 / 4$ | . 89 | 18.6 |
| 18 | $\frac{11}{116}$ | 21/8 | . 75 | 15.8 |
| 19 | $5 / 8$ | 2 | . 62 | 13.2 |
| 20 | $\frac{9}{16}$ | $13 / 4$ | . 50 | 10.6 |
| 21 | 1/2 | 11/2 | . 39 | 8.4 |
| 22 | ${ }^{7}$ | 11/4 | . 30 | 6.6 |
| 23 | $3 / 8$ | 11/8 | . 22 | 4.8 |
| 24 | $\frac{5}{16}$ | $1$ | $\text { . } 15$ | 3.4 |
| 25 | ${ }^{9} 9$ | 7/8 | . 125 | 2.8 |

## Extra Strong Crucible Cast=steel Rope.

John A. Roebling's Sons Company.
Composed of 6 Strands and a Hemp Centre, 19 Wires to the Strand.

| Trade number. | Diameter, in inches. | Approximate circumference, in inches. | Weight per foot, in pounds. | Approximate breaking strain, in tens of 2000 pounds. |
| :---: | :---: | :---: | :---: | :---: |
| $\ldots$ | 23/4 | 85/8 | 11.95 | 266.0 |
| .... | $21 / 2$ | 77/8 | 9.85 | 222.0 |
| 1 | $21 / 4$ | 71/8 | 8.00 | 182.0 |
| 2 | 2 | 61/4 | 6.30 | 144.0 |
| 3 | 13/4 | 51/2 | 4.85 | 112.0 |
| 4 | 15/8 | 5 | 4.15 | 97.0 |
| 5 | 11/2 | 43/4 | 3.55 | 84.0 |
| 51/2 | 13/8 | 41/4 | 3.00 | 72.0 |
| 6 | 11/4 | 4 | 2.45 | 58.0 |
| 7 | 11/8 | $31 / 2$ | 2.00 | 49.0 |
| 8 | 1 | 3 | 1.58 | 39.0 |
| 9 | 7/8 | $23 / 4$ | 1.20 | 30.0 |
| 10 | $3 / 4$ | 21/4 | . 89 | 22.0 |
| 101/4 | 5/8 | 2 | . 62 | 15.8 |
| 101/2 | $\frac{9}{16}$ | 13/4 | . 50 | 12.7 |
| 103/4 | 1/2 | 11/2 | . 39 | 10.1 |
| $10 a$ | $\frac{7}{16}$ | 11/4 | . 30 | 7.8 |
| $10 b$ | 3/8 | 11/8 | . 22 | 5.78 |
| $10 c$ | ${ }^{5}$ | 1 | . 15 | 4.05 |
| 10d | $1 / 4$ | $3 / 4$ | . 10 | 2.70 |
|  |  | 7 Wires to th | trand. |  |
| 11 | 11/2 | 43/4 | 3.55 | 79.0 |
| 12 | 13/8 | 41/4 | 3.00 | 68.0 |
| 13 | 11/4 | 4 | 2.45 | 56.0 |
| 14 | 11/8 | $31 / 2$ | 2.00 | 46.0 |
| 15 | 1 | 3 | 1.58 | 37.0 |
| 16 | 7/8 | 23/4 | 1.20 | 28.0 |
| 17 | $3 / 4$ | 21/4 | . 89 | 21.0 |
| 18 | $\frac{11}{16}$ | 21/8 | . 75 | 18.4 |
| 19 | 5/8 | 2 | . 62 | 15.1 |
| 20 | $\frac{9}{16}$ | $13 / 4$ | . 50 | 12.3 |
| 21 | 1/2 | 11/2 | . 39 | 9.70 |
| 22 | $\frac{7}{16}$ | 11/4 | . 30 | 7.50 |
| 23 | $3 / 8$ | 11/8 | . 22 | 5.58 |
| 24 | $\frac{5}{16}$ | 1 | . 15 | 3.88 |
| 25 | $\frac{9}{32}$ | 7/8 | . . 125 | 3.22 |

Hoisting Ropes.
$6 \times 19$
(A. Leschen \& Sons Rope Company.)

Hercules.

| Diameter. | Approximate <br> Breaking Strain <br> in Tons of <br> 2000 Pounds. | Minimum Size <br> of Drums or Sheaves <br> in Feet. | Average Weight <br> Per Foot. |
| :---: | :---: | :---: | :---: |
| $3 / 8$ | 7 |  |  |
| $\frac{1}{16}$ | 10 | 2 | .22 |
| $1 / 2$ | $121 / 2$ | $21 / 2$ | .30 |
| $\frac{9}{16}$ | 17 | 3 | .39 |
| $5 / 8$ | 20 | $31 / 2$ | .50 |
| $3 / 4$ | 29 | 4 | .62 |
| $7 / 8$ | 36 | $41 / 2$ | .89 |
| 1 | 50 | 5 | 1.20 |
| $11 / 8$ | 60 | 6 | 1.58 |
| $11 / 4$ | 76 | 7 | 2.00 |
| $13 / 8$ | 96 | $71 / 2$ | 2.45 |
| $11 / 2$ | 113 | 8 | 3.00 |
| 15 | 128 | $81 / 2$ | 3.55 |
| $13 / 4$ | 157 | 9 | 4.15 |
| 2 | 191 | 11 | 4.85 |
| $21 / 4$ | 238 | 12 | 6.30 |
| $21 / 2$ | 266 | $131 / 2$ | 8.00 |
|  |  |  | 9.85 |

## Haulage Ropes.

$6 \times 7$
Hercules.

| Diameter. | Approximate <br> Breaking Strain <br> in Tons of <br> 2000 Pounds. | Minimum Size <br> of Drums or Sheares <br> in Feet. | Average Weight <br> Per Foot. |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | $111 / 2$ | $33 / 4$ | .39 |
| $5 / 8$ | $181 / 2$ | $41 / 2$ | .62 |
| 334 | $251 / 2$ | $51 / 4$ | .89 |
| $7 / 8$ | $331 / 2$ | 6 | 1.20 |
| 1 | 47 | $63 / 4$ | 1.58 |
| $11 / 8$ | 58 | 8 | 2.00 |
| $11 / 4$ | 74 | $91 / 4$ | 2.45 |

Hoisting Ropes.
Patent Flattened Strand.
(A. Leschen \& Sons Rope Company.)

Crucible Steel.

| Diameter. | Approximate Breaking Strain in Tons of 2000 Pounds. | Minimum Size of Drums or Sheaves in Feet. | Average Weight Per Foot. |
| :---: | :---: | :---: | :---: |
| 1/2 | $91 / 2$ | 11/2 | . 44 |
| $5 / 8$ | 15 | 21/4 | . 73 |
| $3 / 4$ | 21 | 3 | 1.00 |
| 7/8 | 29 | $31 / 2$ | 1.35 |
| 1 | 38 | 4 | 1.80 |
| 11/8 | 47 | $41 / 2$ | 2.30 |
| 11/4 | 56 | 5 | 2.80 |
| $13 / 8$ | 69 | 51/2 | 3.40 |
| 11/2 | 81 | $53 / 4$ | 4.00 |
| 15/8 | 94 | 61/4 | 4.75 |
| $13 / 4$ | 109 | 71/4 | 5.40 |
| 2 | 140 | 8 | 7.50 |
| 21/4 | 176 | $81 / 2$ | 9.25 |
| .... | .... | $\cdots$ | ... |
| .... |  |  | .... |
|  | - $\quad .$. | $\ldots$ | ... |

Haulage Ropes.
Patent Flattened Strand.

| Diameter. | Approximate <br> Breaking Strain <br> in Tons of <br> 2000 Pounds. | Minimum Size <br> of Drums or Sheares <br> in Feet. | Average Weight <br> Per Foot. |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 9 | $21 / 2$ | .44 |
| $5 / 8$ | 14 | $31 / 2$ | .73 |
| $3 / 4$ | 20 | $41 / 2$ | 1.00 |
| $7 / 8$ | 27 | 5 | 1.35 |
| 1 | 36 | $53 / 4$ | 1.80 |
| $11 / 8$ | 45 | $61 / 4$ | 2.30 |
| $11 / 4$ | 54 | $71 / 4$ | 2.80 |

## Hoisting Ropes.

Patent Flattened Strand.
(A. Leschen \& Sons Rope Company.)

Hercules.

| Diameter. | Approximate Breaking Strain in Tons of 2000 Pounds. | Minimum Size of Drums or Sheaves in Feet. | Average Weight Per Foot. |
| :---: | :---: | :---: | :---: |
| 1/2 | 131/2 | 23/4 | . 44 |
| $5 / 8$ | 221/2 | 31/2 | . 73 |
| $3 / 4$ | 32 | 4 | 1.00 |
| 7/8 | 401/2 | 41/2 | 1.35 |
| 1 | 56 | 5 | 1.80 |
| 11/8 | 67 | 6 | 2.30 |
| 11/4 | 84 | 7 | 2.80 |
| $13 / 8$ | 106 | $71 / 2$ | 3.40 |
| 11/2 | 124 | 8 | 4.00 |
| 15/8 | 140 | $81 / 2$ | 4.75 |
| $13 / 4$ | 168 | 9 | 5.40 |
| 2 | 211 | 11 | 7.50 |
| $21 / 4$ | 260 | 12 | 9.25 |
| $\ldots$ | $\ldots$ | $\ldots$ | . |
| $\ldots$ | ... | ... | .... |
| .... | $\ldots$ | .... | $\ldots$ |

Haulage Ropes.
Patent Flattened Strand.

| Diameter. | Approximate <br> Breaking Strain <br> in Tons of <br> 2000 Pounds. | Minimum Size <br> of Drums or Sheaves <br> in Feet. | A verage Weight <br> Per Foot. |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 13 | $33 / 4$ | .44 |
| $5 / 8$ | 21 | $41 / 2$ | .73 |
| $3 / 4$ | 30 | $51 / 4$ | 1.00 |
| $7 / 8$ | 38 | 6 | 1.35 |
| 1 | 53 | $63 / 4$ | 1.80 |
| $11 / 8$ | 64 | 8 | 2.30 |
| $11 / 4$ | 80 | $91 / 4$ | 2.80 |

## Hoisting Ropes.

Patent Flattened Strand.
(A. Leschen \& Sons Rope Company.)

Swedes Iron.

| Diameter. | Approximate Breaking Strain in Tons of 2000 Pounds. | Minimum Size of Drums or Sheaves in Feet. | Average Weight Per Foot. |
| :---: | :---: | :---: | :---: |
| 1/2 | 4 | 2 | . 38 |
| $5 / 8$ | 6 | 3 | . 57 |
| $3 / 4$ | 9 | $31 / 2$ | . 83 |
| 5/8 | 13 | 4 | 1.20 |
| 1 | 17 | $43 / 4$ | 1.58 |
| 11/8 | $\ldots$ | .... | . |
| 11/4 | $\ldots$ | .... | $\ldots$ |
| $13 / 8$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 11/2 | .... | $\ldots$ | .... |
| 15/8 | $\ldots$ | $\ldots$ | $\ldots$ |
| $13 / 4$ |  | $\ldots$ | $\cdots$ |
| 2 $21 / 4$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $\ldots$. |  |  |  |
| .... | .... | $\ldots$ | $\ldots$ |
| $\ldots$ | $\ldots$ | $\cdots$ | ... |
|  |  |  |  |

## Haulage Ropes.

Patent Flattened Strand.

| Diameter. | Approximate <br> Breaking. Strain <br> in Tons of <br> 2000 Pounds. | Minimum Size <br> of Drums or Sheaves <br> in Feet. | Average Weight <br> Per Foot. <br> D |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | $41 / 2$ | $31 / 2$ | .38 |
| $5 / 8$ | 7 | $43 / 4$ | .60 |
| $3 / 4$ | 10 | 6 | .87 |
| $7 / 8$ | $131 / 2$ | $63 / 4$ | 1.20 |
| 1 | 18 | $73 / 4$ | 1.58 |
| $11 / 3$ | $221 / 2$ | $81 / 2$ | 2.00 |
| $11 / 4$ | 27 | $91 / 2$ | 2.50 |

## Weight, Length, and Strength of Steel Wire.

John A. Roebling's Sons Company.

| Number, Roebling gauge. | Diameter, in iuches. | Area, in square inches. | Breaking load at rate of 100,000 pounds per square inch | Weight, in pounds. |  | Number of feet in $2(010)$ pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Per 1000 feet. | Per mile. |  |
| 000000 | . 460 | . 166191 | 15619.0 | 558.4 | 2948.0 | 3582 |
| 00000 | . 430 | . 145221 | 14522.0 | 487.9 | 2576.0 | 4099 |
| 0000 | . 393 | . 121304 | 12130.0 | 407.6 | 2152.0 | 4907 |
| 000 | . 362 | . 102922 | 10292.0 | 345.8 | 1826.0 | 5783 |
| 00 | . 331 | . 086049 | 8605.0 | 289.1 | 1527.0 | 6917 |
| 0 | . 307 | . 074023 | 7402.0 | 248.7 | 1313.0 | 8041 |
| 1 | . 283 | . 062902 | 6290.0 | 211.4 | 1116.0 | 9463 |
| 2 | . 263 | . 054325 | 5433.0 | 182.5 | 964.0 | 10957 |
| 3 | . 244 | . 046760 | 4676.0 | 157.1 | 830.0 | 12730 |
| 4 | . 225 | . 039761 | 3976.0 | 133.6 | 705.0 | 14970 |
| 5 | . 207 | . 033654 | 3365.0 | 113.1 | 597.0 | 17687 |
| $\frac{6}{7}$ | . 192 | . 028953 | 2895.0 | 97.3 | 514.0 | 205.59 |
| 8 | . 162 | . .020612 | 2061.0 | 89.3 | 866.0 | 24878 |
| 9 | . 148 | . 017 20:3 | 1720.0 | 57.8 | 305.0 | 34600 |
| 10 | . 135 | . 014314 | 1431.0 | 48.1 | 254.0 | 41584 |
| 11 | . 120 | . 011310 | 1131.0 | 38.0 | 201.0 | 52631 |
| 12 | . 105 | . 008659 | 866.0 | 29.1 | 154.0 | 68752 |
| 13 | . 092 | . 006648 | 665.0 | 22.3 | 118.0 | 89525 |
| 14 | . 080 | . 005027 | 503.0 | 16.9 | 89.2 | 118413 |
| 15 | . 072 | . 004071 | 407.0 | 13.7 | 72.2 | 146198 |
| 16 | . 063 | . 003117 | 312.0 | ${ }^{10.5}$ | 55.3 40.6 | 191022 |
| 18 | . 017 | . 001735 | 174.0 | 5.83 | 30.8 | 343112 |
| 19 | . 041 | . 001320 | 132.0 | 4.44 | 23.4 | 4508.56 |
| 20 | . 035 | . 000962 | 96.0 | 3.23 | 17.1 | 618620 |
| 21 | . 032 | . 000804 | 80.0 | 2.70 | 14.3 | 740193 |
| 22 | . 028 | . 000616 | 62.0 | 2.07 | 10.9 | 966651 |
| 23 | . 025 | . 000491 | 49.0 | 1.65 | 8.71 |  |
| 24 | . 023 | . 000415 | 42.0 | 1.40 | 7.37 |  |
| 25 | . 020 | . 000314 | 31.0 | 1.06 | 5.58 |  |
| 26 27 | . 018 | .000254 .000227 | 25.0 23.0 | .855 .763 | 4.51 4.03 |  |
| 28 | . 016 | . 000201 | 20.0 | . 676 | 3.57 |  |
| 29 | . 015 | . 000177 | 18.0 | . 594 | 3.14 |  |
| 30 | . 014 | . 000154 | 15.0 | . 517 | 2.73 |  |
| 31 | . 0135 | . 000143 | 14.0 | . 481 | 2.54 |  |
| 32 | . 0130 | . 000133 | 13.0 | . 446 | 2.36 |  |
| 33 34 | . 0110 | . 000095 | 9.5 | . 319 | 1.69 |  |
| 34 35 | . 0100 | .000079 .000071 | 7.9 | . 264 | 1.39 1.26 |  |
| 36 | . 0090 | . 000064 | 6.4 | . 214 | 1.13 |  |

This table was calculated on a basis of 483.84 pounds per cubic foot for steel wire.

The breaking loads were calculated for 100,000 pounds per square inch throughout, simply for convenience, so that the breaking loads for wires of any strength per square inch may be quickly determined by multiplying the values given in the table by the ratio between the strength per square inch and 100,000 . Thus, a No. 15 wire, with a strength per square inch of 150,000 pounds, will break with a load of $407 \times \frac{150,000}{100,000}=6610.5$ pounds.

It must not be thought from this table that steel wire invariably has a strength of 100.000 pounds per square inch. As a matter of fact, it ranges from 45,000 pounds per square inch for soft annealed wire to over 400,000 pounds per square inch for hard wire.

## STRENGTH OF MATERIALS.

When a body is subjected to the action of external forces certain deformations are produced. These deformations are called strains, and the forces by which they are produced are called stresses.

The application of the external stresses is opposed by the production of internal stresses. The extent to which these internal stresses are capable of resisting the external stresses constitutes the strength of the material.

Thus, when a man lifts a weight so that it is suspended from his arm, stresses of sufficient magnitude to sustain the weight against the action of gravity are produced in the muscles. In like manner, a weight suspended from an iron rod produces internal stresses upon the fibres of the metal: and since equilibrium exists,-the weight being sustained,-the internal forces must balance the external ones.

Since the internal forces are brought into play by the production of deformation, or strain, it follows that every force, however slight, when acting upon a resistant body must produce some deformation, in order that the internal fibre stress by which the external force is to be opposed shall appear. No body, therefore, is absolutely rigid; since, if a body could be entirely rigid, no internal stresses could be produced and no external stresses could be resisted.

In the use of materials of engineering it is necessary to know the extent to which they may safely be subjected to certain external forces. It is also important to know the extent to which they become deformed under determinate loads, as well as the manner in which the stresses and strains are distributed. These various properties constitute the resistance of the materials, and it is upon a knowledge of the resistance of materials that the ability to make a correct distribution of them in any given structure depends.

The manner in which the fibres of a material act in resisting deformation is not entirely understood. Apparently, the first and smaller deformations act only to separate the particles to distances within their range of attraction for each other, so that, when the external force is' removed, the original relation of the particles is resumed. When, however, the deformation becomes sufficiently great for the range of attraction of the particles to be exceeded, the original relations are not resumed upon the removal of the external stresses, but a portion of the deformation remains, the structure of the material being more or less broken down. This is very clearly shown by the change in the appearance of the polished surface of a metal under stress, the bright surface suddenly becoming dulled when the stress exceeds a magnitude which affects the permanent structure. This was first observed by Professor J. B. Johnson, as long ago as 1892, and has recently been further investigated in France by M. Frémont.

Further increase of external stress after the structure of the material has broken down is followed by rapidly-increasing deformation and rupture.

It is obvious that no material should ever be subjected to such stresses in practice as will result in the breaking down of its molecular structure, since no further effective resistance can then be expected of it. It is, therefore, of little importance to know the force which produces rupture in a material. The important thing to know is the magnitude of the load at which the break-down begins, so that the structure under consideration may be so proportioned that this load is approached only, within a certain known limit. In other words, it is not the breaking load which is required, but the permissible fibre stress to which the material may be subjected.

The external forces which act to cause strains in a material may produce

## Tension, Compression or Crushing, Bending, Shearing, Torsion;

and, in most instances, several of these actions are produced at the same time.

Up to the point at which the molecular structure of the material breaks down under stress; the deformation produced exists only during the appli-
cation of the stress, and the material returns to its original dimensions and form upon the removal of the stress. This property of returning to its original form and dimensions is called the elasticity of the material. Since a body does not return to its original dimensions and form when loaded to the point of structural break-down, its elasticity is then said to have been overcome, or its elastic limit reached.

Up to the elastic limit the deformation of a body is directly proportional to the load,-that is, the strain is proportional to the stress. If a certain elongation is observed with a load of 100 pounds, double that elongation will be produced by 200 pounds, and so on until the elastic limit is reached. This is known as Hooke's Law.

If the material is subjected to a continually-increasing load in a testing machine provided with an autographic recorder, the line of the record will be a straight one, making a constant angle to the axes; while as soon as the elastic limit is closely approached it becomes a curve, the curvature rapidly changing until rupture occurs.

The determination of the true elastic limit has been a matter of much discussion. Theoretically, it is the point at which "set" first occurs; practically, it is often assumed to correspond to the load at which the weighbeam of the testing machine drops, showing the sudden yield of the material. An examination of autographic test diagrams shows that the departure from Hooke's law begins gradually, not suddenly, the deviation from a straight line being at first slight, but rapidly increasing.

The true elastic limit is determined as the point at which strain ceases to be proportional to stress; but this point is not readily determined in practice, except with precise and accurate testing machines, and hence the yield point, or point at which the drop of the beam of the ordinary testing machine occurs, is usually substituted for it. While admitting that this is not absolutely correct, it is quite within the working limits of accuracy under existing shop conditions.

In practice, the loads or stresses upon a body are expressed in units of weight per unit of area, as pounds per square inch or kilogrammes per square centimetre. Elongations are expressed either as the extension of a unit of length or in percentages of the length of test-piece.

The Modulus of Elasticity of a material is the result obtained by dividing the stress per unit of area by the strain per unit of length. If we call the stress per unit of area $=S$, and the corresponding elongation per unit of length $=e$, we have

$$
\text { Modulus of elasticity }=E=\frac{S}{e}
$$

Thus, if an elongation of 0.01 is produced in a bar of 10 inches in length and 1 square inch cross-section by a load of 30,000 pounds, the modulus of elasticity will be

$$
E=\frac{30,000}{0.001}=30,000,000
$$

Since this is constant up to the yield point, it may be used for the determination of the elongation produced by any other load. Thus,

$$
e=\frac{S}{E}=\frac{S}{30,000,000}
$$

and any value of $e$ can be obtained for any given value of $S$.
In the use of any material in the construction of a framework, a machine, or any kind of mechanism, it is most important to use judgment and common sense in a careful examination of the case under consideration before attempting to apply any of the rules or tables. The actual magnitude and direction of the forces acting should be determined as closely as possible, for we may be well assured that they will be in action whether taken into account or not. It has been well said that "theory takes into account all the conditions which can be ascertained, but practice has to take into account all the conditions there are."

In the design of structural work, such as bridges, roofs, buildings, etc., the size and direction of action of loads can generally be determined with a fair degree of accuracy, the principal uncertainty being as to the action of wind pressure. In machine design, however, the stresses are much
more difficult of determination, the number and complex action of forces often rendering determinate analysis impossible. Under such circumstances recourse must often be had to empirical rules, based upon the experience gained in practice. In such cases, also, careful exercise of judgment is demanded, in order that one may be assured that the case under consideration is similar to those from which the experience has been derived; and too frequently errors have been made by blindly following the precedent set by some excellent authority, but wholly inapplicable to the case in hand.

Before applying any rules, tables, or formulas, the end to be obtained should be intelligently considered. In some instances it is the actual strength of the material which must be taken into account, but in machine design this is not often the case. More generally, it is the stiffness which must be considered. It is always necessary that a machine should retain the relative position of its parts to such an extent that the movements may continue within determinate limits of accuracy, and that no undue binding or friction be created in the running parts.

Steam machinery must be so rigid that valve seats, etc., will remain tight and true, lathe beds must not spring under heavy cuts, planer uprights must stand firmly to their work; and all these and many other parts must be made far heavier than would be necessary for mere strength, in order that ample rigidity may be obtained.

In many instances the principal value to be obtained from a study of the distribution of stresses in a machine is to ascertain the relative disposition of the material, and not the absolute strength to be used. Experience has shown how heavy certain portions must be, in order that deflection or spring may be kept within working limits, while a graphical analysis of the distribution of the stresses will then show where metal may safely be spared and where it must be lavishly disposed.

It must be remembered, also, that break-downs usually occur by reason of unusual or abnormal stresses. Machines rarely break down under regular working loads. It is when some sudden shock occurs that the rupture takes place. While it is not to be expected that provision can be made for all accidents, yet the possible accidents should be considered in the original design ; and often a little forethought as to whence the unusual stress may be expected will materially modify the disposition of the material.

Bearing the preceding considerations in mind, the following rules, formulas, and tables may be used, as representing both theory and practice.

## Tension.

By far the greater number of tests of materials are made by pulling a test-piece, and observing or recording successive stages in the strains produced by the increasing stresses. The points usually observed are

## Elastic Limit, Ultimate Strength, Ductility, Stiffness, Resilience.

As already stated, the elastic limit is the point at which the strain ceases to be proportional to the stress. In testing machines which are not provided with a recording attachment the nearest approach which can usually be had to this value is the stress observed at the moment of the drop of the beam. When a diagram of the test is automatically produced the point at which the line distinctly deviates from a straight one, at a definite angle with the axes, shows the elastic limit.

The ultimate strength is found when the material yields so rapidly that no further increase in load can be made. Both the elastic limit and the ultimate strength are alwars referred to the original area of the test specimen. In general, the elastic limit is reached at a stress about equal to six-tenths of the ultimate, but this varies for different materials and conditions.

The ductility of a material when subjected to tension is measured by the elongation in a given length or by the reduction of fractured area.

The stiffness is measured by the angle which the test-line makes with the coördinate axes, the portion within the elastic limit alone being considered.

Resilience is the amount of work performed in the production of strain by stress. It is, therefore, expressed in terms of force by length, usually in inch-pounds. When a piece is strained to the elastic limit, the work required is called the elastic resilience. When the load is applied gradually, the work done is equal to one-half the product of the stress at the elastic limit by the extension. When the load is applied instantaneously, the elastic deformation is double that produced by the same load applied slowly. When the force is applied by a drop, producing percussion, the product of the weight by the fall will give the work.

An examination of the following table, from data of the Pencord Iron Works, will serve to show the relations which exist in open-hearth basic steel, such as is used in structural work.

Open=hearth Basic Structural Steel.
Pencoyd Iron Works.

| Percentage of carbon. | Tensile strength, in pounds, per square inch. |  | Ductility. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Ultimate strength. | Elastic <br> limit. | Stretch in 8 inches. | Reduction of fractured area. |
|  |  |  | Per cent. | Per cent. |
| . 08 | 54000 | 32500 | 32 | 60 |
| . 09 | 54800 | 33000 | 31 | 58 |
| . 10 | 5.5700 | 33500 | 31 | 57 |
| . 11 | ${ }_{5} 5500$ | 34000 | 30 | 56 |
| . 12 | 57400 | 34500 | 30 | 55 |
| . 13 | 58200 | 35000 | 29 | 54 |
| . 14 | 59100 | 35500 | 29 | 53 |
| . 15 | 60000 | 36000 | 28 | 52 |
| . 16 | 60800 | 36500 | 28 | 51 |
| . 17 | 61600 | 37000 | 27 | 50 |
| . 18 | 62500 | 37500 | 27 | 49 |
| . 19 | 63300 | 38000 | 26 | 48 |
| . 20 | 61200 | 38500 | 26 | 47 |
| . 21 | 65000 | 39000 | 25 | 46 |
| . 22 | 65800 | 39500 | 25 | 45 |
| . 23 | 66600 | 40000 | 24 | 44 |
| . 24 | 67400 | 40500 | 24 | 43 |
| . 25 | 68200 | 41000 | 23 | 42 |

The predominant elements other than carbon in the above steels average as follows: manganese, 0.40 per cent.; phosphorus, 0.04 per cent.; sulphur, 0.05 per cent. Any increase of these constituents is attended by an increase of tensile strength and a diminished ductility. The tensile strength of steel is also affected to some extent by the heat treatment to which it has been subjected. Bessemer or open-hearth acid steel will generally show a higher tensile strength than basic steel, owing to the higher proportion of phosphorus, sulphur, and manganese present.

For convenient distinguishing terms it is customary to classify steel in three grades: "mild or soft," "medium," and "hard," and although the different grades blend into each other, so that no line of distinction exists, in a general sense the grades below 0.15 carbon may be considered as "soft" steel, from 0.15 to 0.30 carbon as "medium," and above that "hard" steel. Each grade has its own advantages for the particular purpose to which it is adapted. The soft steel is well adapted for boiler plate and similar uses, where its high ductility is advantageous. The medium grades are used for general structural purposes, while harder steel is especially adapted for axles and shafts and any service where good wearing surfaces are desired. Mild steel has superior welding property as compared to hard steel, and will endure higher heat without injury. Steel below 0.10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of 0.15 carbon will occasionally submit to the same treatment, but will usually bend around a curve whose radius is equal to the thickness of the specimen; about 90 per cent. of specimens stand the latter bending test without fracture. As the steel becomes harder, its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes 0.20 , little over 25 per cent. of specimens will stand the last-described bending test. Steel having about 0.40 per cent. carbon will usually harden sufficiently to cut soft iron and maintain an edge.

## Compression.

When a material is subjected to a compressive load a crushing action is produced. This is frequently misunderstood, many assuming that the material is really compressed into a smaller volume than before. As a matter of fact, the only reduction in volume which can be produced is that permitted by the presence of voids in the material, the matter being pressed into the spaces existing in it. Liquids, in which no voids exist, are practically incompressible, while most metals may be materially increased in density under the hammer or the forging press; but it must be understood in all such cases that the increased density is due to the reduction in voids, and not the crowding of the actual particles of the metal closer together.

Crushing, however, is the usual effect of a heavy compressive stress, the material spreading in some other dimension as the yielding occurs along the line of compression. For ductile materials no definite point of rupture can be determined, since the change of shape becomes too great before any sign of rupture appears. Brittle materials, such as cast-iron, stone, bricks, cement, etc., have crushing points which may be more clearly determined. Many materials show a fairly distinct elastic limit under compression, the upsetting being proportional to stress within such limit.

The manner of rupture under crushing is a matter of less importance than the determination of a safe working stress, and this is generally taken as the upsetting or yield point. For brittle materials, in which no such yield point can be determined, the actual crushing load must be used, the safe working load being made a certain proportion of the crushing load.

## Shearing.

By shearing is understood the resistance which a material opposes to displacement in a plane. This action rarely, if ever, takes place alone. When a cutting edge begins to shear a bar, for example, true shearing takes place only for a very short distance, the material then bending and flowing down with further pressure, so that with a thick bar the fibres are torn apart before the shearing edge has passed entirely through, and the divided piece falls off, the fracture clearly indicating the combing actions to which it has been subjected. These actions are still more clearly shown by polishing the surface of the metal and etching it to bring out the distortion of the fibres. The relation of the shearing to the tensile strength cannot be expressed as any definite ratio, varying with the materials and their disposition.

## Bending.

When a body, such as a beam, is subjected to the action of a force producing deflection, there are reactions at the supports, and if no motion is produced these external forces must be equal to each other, or in equilibrium. In like manner, these external forces are opposed by internal forces acting upon the fibres of the material. In the case of a horizontal beam, the fibres in the upper portion are subjected to compression and those in the lower portion to tension, there being a portion between these where the reversal of stress takes place and where the fibre stress is zero.

In such materials as steel and wrought-iron the resistance to compression and tension may be taken as equal, and this neutral axis, as it is called, then coincides with the centre of gravity of the section of the beam. When the beam is of symmetrical section the neutral axis naturally coincides with the centre of figure. If the beam is to resist the external forces, the internal stresses upon its fibres at any point must be equal to the bending moment of the external forces at the same point. The sum of the moments of the internal forces about the neutral axis is called the moment of resistance.

This moment of resistance is determined as follows :
Let $S$ be the stress per unit of area in the extreme outer fibre of the cross-section ; $a$, the cross-section of a fibre; $y$, the distance of any other fibre from the neutral axis. Then the moment of any fibre stress at a distance, $y$, from the neutral axis will be

$$
\frac{S}{v} a y^{2} ;
$$

and the sum of all the fibre-stress moments of the cross-section, taken with reference to the neutral axis, is

$$
\frac{S}{v} \Sigma a y^{2} .
$$

The quantity $\Sigma a y^{2}$, or the sum of all the elements of the area multiplied by the squares of their respective distances from the neutral axis, is called the moment of inertia of the section, and is always symbolized as $I$, so that we have for the moment of resistance of any section

$$
M=\frac{S}{v} I .
$$

The value of the moment of inertia depends upon the form of the cross-section; the value of $v$ is also dependent upon the shape of the section, while the value of $S$. the maximum permissible fibre stress, is governed by the material. These formulas are true only when the material is subjected to strains within the elastic limit, and the value of $S$ should always be chosen within that limit. As a general rule, the maximum fibre stress should not exceed one-half the elastic limit of the material.

Since both $I$ and $v$ depend upon the shape of the section, we may consider them by themselves, and write the moment of resistance

$$
M=S \frac{I}{v}
$$

The factor $\frac{I}{v}$, or the moment of inertia divided by the distance of the extreme fibre from the neutral axis, is called by Reuleaux and by Unwin the Section Modulus. It may be called

$$
Q=\frac{I}{v} .
$$

The radius of gyration of any section may be obtained by taking the square root of the quotient obtained by dividing the moment of inertia by
the area of the section. Thus, if $R$ be the radius of gyration, $I$ the moment of inertia, and $A$ the area of the section, we have

$$
R=\sqrt{\frac{I}{A}}
$$

This will be seen to be of use in connection with struts and pillars.
We thus see that an expression for the internal forces in a body subjected to bending stresses-such as a beam-has been obtained, and that it contains buttwo elements, the fibre stress on the material and the shape of the cross-section of the beam. It is only necessary, therefore, to place this expression for the moment of resistance, $S \frac{I}{v}$, equal to the moment of the external forces, to have their relation fully expressed. Thus, for a cantilever or projecting beam of a length, $l$, carrying a load, $W$, at its extremity, we have

$$
W l=S \frac{I}{v}, \quad \text { or } \quad W=\frac{S}{l} \cdot \frac{I}{v} .
$$

For a cantilever carrying a load, $W$, uniformly distributed, the lever arm, $l$, is one-half as long, and we have

$$
W=2 \frac{S}{l} \cdot \frac{I}{v}
$$

For a beam carrying a load, $W$, in the middle, we have

$$
W^{-}=4 \frac{S}{l} \cdot \frac{I}{v}
$$

and for a beam carrying a load, $W$, uniformly distributed, we have

$$
W=8 \frac{S}{l} \cdot \frac{I}{v}
$$

In the preceding formulas $W$ is the load, in pounds, which will produce a fibre stress, $S$, in pounds; $l$ being the length of the beam, in inches; $I$, the moment of inertia of the section; and $v$, the distance of the most remote fibre from the neutral axis. By taking $S$ as about one-half the elastic limit of the material, the proper working load, $W$, can readily be determined. Good practice takes $S$ at 14,000 pounds for wrought-iron and 16,000 pounds for structural steel. Other values will be tabulated hereafter.

The determination of the value of the moment of inertia for the section used is evidently the principal feature in the problem. Most of the important sections have been reduced to formulas, as in the following tables:

## Elements of Usual Sections.

## Pencoyd Iron Works.

Moments refer to horizontal axis, as shown. This table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked * are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. $A=$ area of section.

| Shape of <br> section. | Moment of inertia. | Section <br> modulus. | Distance of <br> base from <br> entre of <br> gravity. |
| :---: | :---: | :---: | :---: | | Least radius of |
| :---: |
| gyration. |

## Elements of Usual Sections.

## Pencoyd Iron Works.

Moments refer to horizontal axis, as shown. This table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked * are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. $A=$ area of section.

| Shape of section. | Moment of inertia. | Section modulus. | Distance of base from centre of gravity. | Least radius of gyration. |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{f-c}{k-x \rightarrow 0}$ | $0.1098 r^{4}$ * | $\begin{aligned} & W_{1}=0.1908 r^{3 *} * \\ & W_{2}=0.2587 r^{3} \end{aligned}$ | $0.4244 r$ | $0.0699 r^{2}$ * |
|  | $0.7854 b a^{3}$ * | $0.7854 b a^{2}$ * | ............ |  |
|  | $\frac{A h^{2}}{10.4}$ | $\frac{A h}{7.4}$ | $\frac{h}{3.5}$ | $\frac{h}{5}$ |
|  | $\frac{A h^{2}}{9.9}$ | $\frac{A h}{6.7}$ | $\frac{h}{3.1}$ | $\frac{h b}{2.6(h+b)}$ |
| $3$ | $\frac{A h^{2}}{19}$ | $\frac{A h}{9.5}$ | $\frac{h}{2}$ | $\frac{h}{4.74}$ |
|  | $\frac{A h^{2}}{10.9}$ | $\frac{A h}{7.6}$ | $\frac{h}{3.3}$ | $\frac{b}{4.66}$ |
|  | $\frac{A h^{2}}{6.1}$ | $\frac{A h}{3.0}$ | $\frac{h}{2}$ | $\frac{b}{5.2}$ |
| $\frac{n}{n}$ | $\frac{A h^{2}}{6.73}$ | $\frac{A h}{3.3}$ | $\frac{h}{2}$ | $\frac{b}{3.56}$ |

## Moment of Inertia of Rectangles.

$\xrightarrow{\text { A X }}$

| Depth,in inches. | Width of rectangle, in inches. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 / 4$ | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 |
| 6 | 4.50 | 6.75 | 9.00 | 11.25 | 13.50 | 15.75 | 18.00 |
| 7 | 7.15 | 10.72 | 14.29 | 17.86 | 21.44 | 25.01 | 28.58 |
| 8 | 10.67 | 16.00 | 21.33 | 26.67 | 32.00 | 37.33 | 42.67 |
| 9 | 15.19 | 22.78 | 30.38 | 37.97 | 45.56 | 53.16 | 60.75 |
| 10 | 20.83 | 31.25 | 41.67 | 52.08 | 62.50 | 72.92 | 83.33 |
| 11 | 27.73 | 41.59 | 55.46 | 69.32 | 83.18 | 97.06 | 110.92 |
| 12 | 36.00 | 54.00 | 72.00 | 90.00 | 108.00 | 126.00 | 144.00 |
| 13 | 45.77 | 68.66 | 91.54 | 114.43 | 137.31 | 160.20 | 183.08 |
| 14 | 57.17 | 85.75 | 114.33 | 142.92 | 171.50 | 200.08 | 228.67 |
| 15 | 70.31 | 105.47 | 140.63 | 175.78 | 210.94 | 246.09 | 281.25 |
| 16 | 85.33 | 128.00 | 170.67 | 213.33 | 256.00 | 298.67 | 341.33 |
| 17 | 102.35 | 153.53 | 204.71 | 255.89 | 307.06 | 358.24 | 409.42 |
| 18 | 121.50 | 182.25 | 243.00 | 303.75 | 364.50 | 425.25 | 486.00 |
| 19 | 142.90 | 214.34 | 285.79 | 357.24 | 428.68 | 500.14 | 571.58 |
| 20 | 166.67 | 250.00 | 333.33 | 416.67 | 500.00 | 583.33 | 666.67 |
| 21 | 192.94 | 289.41 | 385.88 | 482.34 | 578.81 | 675.28 | 771.75 |
| 22 | 221.83 | 332.75 | 443.67 | 554.58 | 665.50 | 776.42 | 887.33 |
| 23 | 253.48 | 380.22 | 506.96 | 633.70 | 760.44 | 887.18 | 1013.92 |
| 24 | 288.00 | 432.00 | 576.00 | 720.00 | 864.00 | 1008.00 | 1152.00 |
| 25 | 325.52 | 488.28 | 651.04 | 813.80 | 976.56 | 1139.32 | 1302.08 |
| 26 | 366.17 | 549.25 | 732.33 | 915.42 | 1098.50 | 1281.58 | 1464.67 |
| 27 | 410.06 | 615.09 | 820.13 | 1025.16 | 1230.19 | 1435.22 | 1640.25 |
| 28 | 457.33 | 686.00 | 914.67 | 1143.33 | 1372.00 | 1600.67 | 1829.33 |
| 29 | 508.10 | 762.16 | 1016.21 | 1270.26 | 1524.31 | 1778.36 | 2032.42 |
| 30 | 562.50 | 843.75 | 1125.00 | 1406.25 | 1687.50 | 1968.75 | 2250.00 |
| 31 | 620.65 | 930.97 | 1241.30 | 1551.62 | 1861.94 | 2172.26 | 2482.60 |
| 32 | 682.67 | 1024.00 | 1365.33 | 1706.67 | 2048.00 | 2389.33 | 2730.67 |
| 33 | 748.69 | 1123.03 | 1497.38 | 1871.72 | 2246.06 | 2620.40 | 2994.76 |
| 34 | 818.83 | 1228.25 | 1637.67 | 2047.08 | 2456.50 | 2865.92 | 3275.33 |
| 35 | 893.23 | 1339.84 | 1786.46 | 2233.07 | 2679.68 | 3126.30 | 3572.92 |
| 36 | 972.00 | 1458.00 | 1944.00 | 2430.00 | 2916.00 | 3402.00 | 3888.00 |
| 37 | 1055.27 | 1582.90 | 2110.54 | 2638.17 | 3165.80 | 3693.44 | 4221.08 |
| 38 | 1143.17 | 1714.75 | 2286.33 | 2857.92 | 3429.50 | 4001.08 | 4572.67 |
| 39 | 1235.81 | 1853.72 | 2471.62 | 3089.53 | 3707.44 | 4325.34 | 4943.24 |
| 40 | 1333.33 | 2000.00 | 2666.67 | 3333.33 | 4000.00 | 4666.67 | 5333.33 |

## Moments of Inertia of Standard Sections.

Pencoyd Iron Works.


When not otherwise specified, the inertia is the greatest around centre of gravity, or for horizontal axis in figures.
$A=$ total area of section.

## I Beam Section.

$s=$ taper of flange.

$$
l=k-\frac{2 s}{3}
$$

$$
I=\frac{b h^{3}-c k^{3}}{12}+\frac{c s^{3}}{18}+\frac{c s l^{2}}{4} .
$$

$$
I, \text { axis } x y=\frac{m b^{3}}{6}+\frac{k t^{3}}{12}+\frac{s\left(\frac{b-t}{2}\right)^{3}}{9}+2 s\left(\frac{b-t}{2}\right)\left(\frac{b}{6}+\frac{t}{3}\right)^{2}
$$

## Channel Section.



$$
s=\text { taper of flange. } \quad r=\frac{s}{b-t}
$$

$$
\begin{aligned}
I & =\frac{b h^{3}-\frac{1}{8 r}\left(k^{4}-l^{4}\right)}{12} \\
I, \text { axis } x y & =\frac{2 m b^{3}+l t^{3}+\frac{r}{2}\left(b^{4}-t^{4}\right)}{3}-A d^{2} . \\
d & =\frac{m b^{2}+\frac{k t^{2}}{2}+\frac{s}{3}(b-t)(b+2 t)}{A} .
\end{aligned}
$$

## Deck Beam Section.



$$
s=\text { taper of flange. }
$$

$a=$ area of bulb.

$$
o=m-\frac{s}{3}
$$

$$
I=\frac{a w^{2}}{15}+a l^{2}+\frac{t c^{3}}{3}+\frac{b d^{3}}{3}-\frac{m^{3}(b-t)}{3}+
$$

$$
\frac{(b-t) s^{3}}{36}+\frac{s(b-t) o^{2}}{2}
$$

$I$, axis $x y=\frac{a k^{2}}{12.4}+\frac{n t^{3}}{12}+\frac{\left(p+\frac{s}{4}\right)^{b^{3}}}{12}$.

$$
d=\frac{a(2 h-k)+t(h-k)^{2}+(b-t) p^{2}+s(b-t)\left(p+\frac{\delta}{3}\right)}{2 A} .
$$

## Tee Section.

$$
\begin{aligned}
I & =\frac{t c^{3}+b d^{3}-(b-t) a^{3}}{3} . \\
I, \text { axis } x y & =\frac{f b^{3}+(h-f) t^{3}}{12} . \\
d & =\frac{b f^{2}+t\left(h^{2}-f^{2}\right)}{2 A} .
\end{aligned}
$$



## Angle Section.

$I=\frac{t c^{3}+b d^{3}-(b-t)(d-t)^{3}}{3}$, for even or uneven angles.
$I$, axis $u v=\frac{t\left(b-d_{1}\right)^{3}+h d_{1}{ }^{3}-(h-t)\left(d_{1}-t\right)^{3}}{3}$, for uneven angles. $x y$ passes through centre of gravity parallel to ee.

$I$, axis $x y=\frac{2 d^{4}-2(d-t)^{4}+t\left[b-\left(2 d-\frac{t}{2}\right)\right]^{3}}{3}$, for even angles.

A close approximation for the latter is the following: $I$, axis $x y=\frac{A b^{2}}{25}$, for even angles.
$I$, axis $x y=\frac{A h^{2} b^{2}}{13\left(h^{2}+b^{2}\right)}$, for uneven angles.

$$
\begin{aligned}
d & =\frac{b t^{2}+t\left(h^{2}-t^{2}\right)}{2 A}, \text { for even and uneven angles. } \\
d^{\prime} & =\frac{h t^{2}+t\left(b^{2}-t^{2}\right)}{2 A}, \text { for uneven angles. }
\end{aligned}
$$

In uneven angles the distance from centre of gravity in direction of the long leg exceeds that in the direction of the short leg by half the difference in the length of the two legs.

In angles and tees of equal legs and thickness

$$
d=1 / 4\left(b+\frac{3}{2} t\right), \text { nearly. }
$$

## Inertia of Compound Shapes.

"The moment of inertia of any section about any axis is equal to the $I$ about a parallel axis passing through its centre of gravity + the area of the section multiplied by the square of the distance between the axes."

By use of this rule, the moments of inertia or radii of gyration of any single sections being known, corresponding values can readily be obtained for any combination of these sections.

Example 1. A combination of two 9-inch
 channels of 3.89 square inches section and two $12^{\prime \prime} \times 14^{\prime \prime}$ plates, as shown.

Axis $A B$ of Section.

| $I$ for two channels, column V., page 382, | $=95.78$ |
| :--- | ---: |
| $I$ for two plates $=\frac{12 \times .25^{3}}{12} \times 2=.03125$ |  |
| 6 (area of plates) $\times 45 / 8^{2}$ | $=128.34375$ |
|  | $=\frac{128.375}{224.155}$ |

which, divided by area (13.78), gives $16.27=R^{2}$ or 4.03 radius of combined section.

## Axis CD.

Find distance, $d=(.60)$, from column XII., page 383 , then obtaining the distance (4.17) between axes $C D$ and $E F$.
$I$ for two channels around axis $E F$ from column VI. $=3.54$
Area of channels $\times$ square of distance $=7.78 \times 4.17^{2}=135.286$
$I$ for two plates $=\frac{.5 \times 12^{3}}{12}$
$=72.000$
$I$ for combined section
$=\overline{210.826}$


Radius of gyration $=\sqrt{\frac{210.826}{13.78}}=3.91$.
By similar methods inertia or radius of gyration for any combination of shapes can readily be obtained.

Example 2. A "built-up beam" composed of
4 angles $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$.
2 plates $8^{\prime \prime} \times \frac{1 / 2 \prime \prime}{2^{\prime \prime}}$
1 plate $15^{\prime \prime} \times \frac{3}{2} 8^{\prime \prime}$.
Axis $A B$.
$\begin{array}{lll}I \text { of two } 8^{\prime \prime} \times 1 / 2^{\prime \prime} \text { plates }=\frac{8 \times 1 / 2^{3}}{12} \times 2 & = & .167 \\ +8(\text { area }) \times 73 / 4^{2}(\text { square of distance, } d) & =\underline{480.500} \\ & & 480.667 \\ I \text { of one } 15^{\prime \prime} \times 3 / 8^{\prime \prime} \text { plate }=\frac{155^{3} \times 3 / 8}{12} & = & 105.469 \\ I \text { of four } 3^{\prime \prime} \times 3^{\prime \prime} \times 14^{\prime \prime} \text { angles }=4 \times 1.25 & =5.000 \\ +5.76 \text { (area) } \times 6.66^{2}\left(\text { square of distance, } d^{1}\right) & =\underline{255.488} \\ & = & 260.488 \\ \text { Inertia of combined section around } A B & = & 816.624\end{array}$
Radius of gyration $=\sqrt{\frac{846.624}{19.385}}=6.61$.

## Radius of Gyration of Compound Shapes.

In the case of a pair of any shape without a web the ralue of $R$ can always be readily found without considering the moment of inertia.

The radius of gyration for any section around an axis parallel to another axis passing through its centre of gravity is found as follows:

Let $r=$ radius of gyration around axis through centre of gravity ; $R=$ radius of gyration around another axis parallel to above ; $d=$ distance between axis.

$$
R=\sqrt{d^{2}+r^{2}}
$$

Wher $r$ is small, $R$ may be taken as equal to $d$ without material error. Thus, in the case of a pair of channels latticed together, or a similar construction.

Example 1. Two $9^{\prime \prime}$ channels of 3.89 square inches section placed $5.68^{\prime \prime}$ apart; required the radius of gyration around axis $C D$ for combined section.

Find in column X., page $382, r=.67$ and $r^{2}=0.45$.
Find distance from base of channel to neutral axis, same page $=.60$, this added to one-half the distance between the two bars, $2.84^{\prime \prime}=3.44^{\prime \prime} d$, and $d^{2}=11.8336$.

Radius of gyration of the pair as placed $=$

$$
\sqrt{11.8336+0.45}=3.505
$$



The value of $R$ for the whole section in relation to the axis $A B$ is the same as for the single channel, to be found in the tables.

Example 2. Four $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles, placed
 as shown, form a column of 10 inches square; required the radius of gyration.

Find in column VIII., page 401, $r=.93$ and $r^{2}=.8649$.

Find distance from side of angle to neutral axis, same page, $=.84$. Subtract this from half the width of column $=5-.84=4.16=d$, or distance between two axes. $d^{2}=17.3056$. $^{\circ}$

Radius of gyration of four angles as placed =

$$
\sqrt{17.3056+.8649}=4.26
$$

When the angles are large, as compared with the outer dimensions of the combined section, the radius of gyration can be taken without serious error from the table of radii of gyration for square columns, on page 382.

## Elements of Pencoyd Structural Shapes.

In the following tables various fundamental properties of rolled sections are given, whereby the strength or stiffness of each can be readily determined.

The calculations are made for the least and greatest thickness of the various shapes; intermediate thicknesses of these can be approximated by interpolation.

Moments of Inertia for the sections are obtained as hereafter described.

Radius of Gyration, equal to $\sqrt{\frac{\text { Inertia }}{\text { area }}}$, is used for determining the resistance of struts or columns.

Section Modulus, equal to $\frac{\text { Inertia }}{\text { distance from axis to extreme fibres }}$, is used for determining transverse strength in beams, etc.

Coefficient for Safe Load is the calculated load, in net tons, on a beam one foot between supports, that produces fibre strains of 16,000 pounds per square inch. A corresponding load for any beam is found by dividing this coefficient by the length of span in feet.

Coefficients for Deflection are based on a modulus of elasticity of $28,000,000$ pounds. They apply to beams one foot long, bearing one ton ( 2000 pounds). The deflection of any beam, in inches, is found by multiplying its coefficient by the load in net tons and by the cube of the length in feet.

Maximum Load, in Net Tons, indicates the greatest load that a beam, however short, should carry, unless its web is reinforced to prevent crippling. This load is obtained by the formula:

$$
W=\frac{2 x d t}{1+\frac{l^{2}}{3000 c^{2}}} \quad \begin{aligned}
& \begin{array}{l}
x=8 \text { tons. } \\
d=\text { depth of beam. } \\
t=\text { thickness of web. } \\
l=d \times \text { secant } 45^{\circ}\left(l^{2}=2 d^{2}\right) .
\end{array}
\end{aligned}
$$

Elements of Pencoyd Beams.


| I. | II. | III. | IV. | V. | VI. | VII. | VIII. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Size, } \\ \text { in } \\ \text { inches. } \end{gathered}$ | Section number. | Area, in square inches. | Weight per foot, in pounds. | Moments of inertia. |  | Square of radius of gyration. |  |
|  |  |  |  | Axis $A B$. | Axis CD. | Axis $A B$. | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ |
| 24 | 240 B | 23.53 | 80.0 | 2111.40 | 42.84 | 89.73 | 1.82 |
| 24 | 244B | 29.42 | 100.0 | 2497.30 | 57.53 | 84.88 | 1.96 |
| 20 | 200B | 19.10 | 65.0 | 1179.71 | 27.72 | 61.76 | 1.45 |
| 20 | 207B | 29.42 | 100.0 | 1649.55 | 55.57 | 56.07 | 1.89 |
| 18 | 180B | 16.13 | 55.0 | 809.05 | 21.17 | 50.16 | 1.31 |
| 18 | 187B | 26.46 | 90.0 | 1187.99 | 46.03 | 44.90 | 1.74 |
| 15 | 150B | 12.35 | 42.0 | 443.71 | 14.43 | 35.93 | 1.17 |
| 15 | 158B | 23.54 | 80.0 | 773.84 | 40.69 | 32.87 | 1.73 |
| 12 | 120B | 9.27 | 31.5 | 218.71 | 9.45 | 23.59 | 1.02 |
| 12 | 127B | 19.12 | 65.0 | 403.48 | 28.93 | 21.10 | 1.51 |
| 10 | 100B | 7.34 | 25.0 | 123.07 | 6.81 | 16.77 | 0.93 |
| 10 | 103B | 11.75 | 40.0 | 175.48 | 12.36 | 14.93 | 1.05 |
| 9 | 90B | 6.17 | 21.0 | 84.94 | 5.06 | 18.77 | 0.82 |
| 9 | 93B | 10.30 | 35.0 | 112.76 | 7.25 | 10.95 | 0.70 |
| 8 | 80B | 5.29 | 18.0 | 57.36 | 3.72 | 10.84 | 0.70 |
| 8 | 83B | 7.50 | 25.5 | 69.14 | 4.70 | 9.22 | 0.63 |
| 7 | 70B | 4.42 | 15.0 | 36.61 | 2.64 | 8.28 | 0.60 |
| 7 | 72B | 5.88 | 20.0 | 42.55 | 3.20 | 7.24 | 0.54 |
| 6 | 60B | 3.60 | 12.25 | 22.09 | 1.83 | 6.14 | 0.51 |
| 6 | 68 B | 7.03 | 23.90 | 41.98 | 7.89 | 5.97 | 1.12 |
| 6 | 68B | to 8.15 | to 27.70 | 45.36 | 8.99 | 5.57 | 1.10 |
| 5 | 50B | 2.87 | 9.75 | 12.12 | 1.21 | 4.22 | 0.42 |
| 5 | 52B | 4.34 | 14.75 | 15.18 | 1.67 | 3.50 | 0.39 |
| 4 | 40B | 2.20 | 7.50 | 5.90 | 0.76 | 2.68 | 0.34 |
| 4 | 43B | 3.08 | 10.50 | 7.07 | 1.00 | 2.30 | 0.32 |
| 3 | 30B | 1.62 | 5.50 | 2.43 | 0.45 | 1.50 | 0.28 |
| 3 | 32B | 2.20 | 7.50 | 2.87 | 0.59 | 1.30 | 0.27 |

Elements of Pencoyd Beams.


| IX. | X. | XI. | XII. | XIII. | XIV. | XV. | IV. | I. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius of gyration. |  | Section modulus. | Coefficient for greatest safe load, in net tons. | Coefficient for deflection. |  | Maximum load, in net tons. |  |  |
| $\begin{gathered} \text { Axis } \\ A B . \end{gathered}$ | Axis <br> $C D$. | $\begin{gathered} \text { Axis } \\ A B . \end{gathered}$ |  | Distributed load. | Centre load. |  |  |  |
| 9.47 | 1.35 | 176.0 | 938.4 | . 00000076 | . 00000122 | 75.8 | 80.0 | 24 |
| 9.21 | 1.40 | 208.1 | 1109.9 | . 00000064 | .00000103 | 143.4 | 100.0 | 24 |
| 7.86 | 1.20 | 118.0 | 629.2 | . 00000137 | . 00000217 | 74.2 | 65.0 | 20 |
| 7.49 | 1.37 | 165.0 | 889.8 | . 00000097 | . 00000155 | 184.8 | 100.0 | 20 |
| 7.08 | 1.14 | 89.9 | 479.4 | . 00000198 | :000 00317 | 65.6 | 55.0 | 18 |
| 6.70 | 1.32 | 132.0 | 712.9 | . 00000135 | . 00000216 | 178.2 | 90.0 | 18 |
| 5.99 | 1.08 | 59.2 | 315.5 | . 00000357 | . 00000578 | 47.6 | 42.0 | 15 |
| 5.73 | 1.32 | 103.2 | 550.3 | . 00000207 | . 00000331 | 162.6 | 80.0 | 15 |
| 4.86 | 1.01 | 36.5 | 194.4 | . 00000727 | . 00001172 | 35.6 | 31.5 | 12 |
| 4.59 | 1.23 | 67.3 | 358.7 | . 00000397 | . 00000635 | 134.4 | 65.0 | 12 |
| 4.10 | 0.96 | 24.6 | 131.3 | . 0000129 | . 0000208 | 27.0 | 25.0 | 10 |
| 3.86 | 1.03 | 35.1 | 187.2 | . 0000091 | . 0000146 | 78.8 | 40.0 | 10 |
| 3.71 | 0.91 | 18.9 | 100.7 | . 0000185 | . 0000302 | 21.2 | 21.0 | 9 |
| 3.31 | 0.84 | 25.1 | 133.6 | . 0000142 | . 0000227 | 93.8 | 35.0 | 9 |
| 3.29 | 0.84 | 14.3 | 76.5 | . 0000275 | . 0000447 | 19.4 | 18.0 | 8 |
| 3.04 | 0.79 | 17.3 | 92.2 | . 0000231 | . 0000371 | 58.8 | 25.5 | 8 |
| 2.88 | 0.78 | 10.5 | 55.8 | . 0000433 | . 0000700 | 17.2 | 15.0 | 7 |
| 2.69 | 0.74 | 12.2 - | 64.8 | . 0000376 | . 0000603 | 43.2 | 20.0 | 7 |
| 2.48 | 0.71 | 7.4 | 39.3 | . 0000717 | . 0001161 | 13.8 | 12.25 | 6 |
| 2.44 | 1.06 | 14.0 | 74.6 | . 0000370 | . 0000591 | 30.8 | 23.90 | 6 |
| 2.36 | 1.05 | 15.1 | 80.6 | . 0000342 | . 0000547 | 50.2 | 27.70 | 6 |
| 2.05 | 0.65 | 4.9 | 25.9 | . 0001305 | . 0002115 | 11.0 | 9.75 | 5 |
| 1.87 | 0.62 | 6.1 | 32.4 | . 0001054 | . 0001689 | 36.8 | 14.75 | 5 |
| 1.64 | 0.58 | 3.0 | 15.7 | . 0002671 | . 0004346 | 8.2 | 7.50 | 4 |
| 1.52 | 0.57 | 3.5 | 18.9 | . 0002263 | . 0003627 | 23.4 | 10.50 | 4 |
| 1.23 | 0.53 | 1.6 | 8.6 | . 0006452 | . 0010552 | 5.4 | 5.50 | 3 |
| 1.14 | 0.52 | 1.9 | 10.2 | . 0005575 | . 0008934 | 15.6 | 7.50 | 3 |

## Elements of Pencoyd Channels.



| I. | II. | III. | IV. | V. | VI. | VII. | VIII. | 1x. | x . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Size, } \\ \text { in } \\ \text { inches. } \end{gathered}$ | Section number. | Area,insquareinches. | Weight per foot, in pounds. | Moments of inertia. |  | Square of radius of gyration. |  | Radius of gyration. |  |
|  |  |  |  | $\begin{gathered} \text { Axis } \\ A B . \end{gathered}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & A B \text {. } \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ |
| 15 | 150 C | 9.69 | 33.0 | 311.21 | 3.10 | 32.12 | 0.84 | 5.67 | 0.91 |
| 15 | 155C | 16.17 | 55.0 | 469.85 | 17.20 | 29.06 | 1.06 | 5.39 | 1.03 |
| 13 | 130C | 9.39 | 31.9 | 238.26 | 11.48 | 25.38 | 1.22 | 5.04 | 1.11 |
| 13 | 130C | 14.27 | 48.5 | 306.25 | 16.22 | 21.47 | 1.14 | 4.63 | 1.07 |
| 12 | 120 C | 6.02 | 20.5 | 129.27 | 3.90 | 21.47 | 0.65 | 4.63 | 0.81 |
| 12 | 128C | 6.01 | 20.5 | 123.98 | 3.10 | 20.63 | 0.52 | 4.54 | 0.72 |
| 12 | 128C | 9.40 | 32.0 | 164.30 | 4.42 | 17.48 | 0.47 | 4.18 | 0.69 |
| 10 | 100C | 4.41 | 15.0 | 67.11 | 2.28 | 15.22 | 0.52 | 3.90 | 0.72 |
| 10 | 104C | 10.29 | 35.0 | 124.61 | 5.99 | 12.11 | 0.58 | 3.48 | 0.76 |
| 9 | 90C | 3.89 | 13.25 | 47.89 | 1.77 | 12.31 | 0.45 | 3.51 | 0.67 |
| 9 | 95 C | 5.98 | 20.30 | 70.21 | 3.99 | 11.65 | 0.66 | 3.41 | 0.81 |
| 9 | 95 C | 8.23 | 28.00 | 85.40 | 5.17 | 10.32 | 0.63 | 3.21 | 0.79 |
| 8 | 80 C | 3.31 | 11.25 | 32.51 | 1.32 | 9.82 | 0.40 | 3.13 | 0.63 |
| 8 | 84 C | 6.25 | 21.25 | 51.85 | 2.97 | 8.30 | 0.48 | 2.88 | 0.69 |
| 7 | 70 C | 2.86 | 9.75 | 21.37 | 0.98 | 7.47 | 0.34 | 2.73 | 0.59 |
| 7 | 74 C | 5.81 | 19.75 | 35.85 | 2.49 | 6.17 | 0.43 | 2.48 | 0.66 |
| 6 | 60 C | 2.35 | 8.00 | 13.07 | 0.69 | 5.56 | 0.29 | 2.36 | 0.54 |
| 6 | 65C | 4.46 | 15.10 | 25.15 | 5.20 | 5.64 | 1.17 | 2.38 | 1.08 |
| 5 | 50 C | 1.91 | 6.50 | 7.37 | 0.47 | 3.86 | 0.25 | 1.96 | 0.50 |
| 5 | 52 C | 3.38 | 11.50 | 10.43 | 0.82 | 3.09 | 0.24 | 1.76 | 0.49 |
| 4 | 40 C | 1.54 | 5.25 | 3.74 | 0.32 | 2.43 | 0.21 | 1.56 | 0.45 |
| 4 | 42 C | 2.13 | 7.25 | 4.52 | 0.44 | 2.12 | 0.21 | 1.46 | 0.46 |
| 3 | 30 C | 1.18 | 4.00 | 1.61 | 0.20 | 1.36 | 0.17 | 1.17 | 0.41 |
| 3 | 32 C | 1.76 | 6.00 | 2.05 | 0.31 | 1.16 | 0.18 | 1.07 | 0.42 |
|  | 22 C | 1.12 | 3.80 | 0.80 | 0.19 | 0.71 | 0.17 | 0.85 | 0.42 |
| 2 | 20 C | 0.87 | 2.90 | 0.48 | 0.08 | 0.55 | 0.10 | 0.74 | 0.31 |
| 2 | 20 C | 1.06 | 3.60 | 0.54 | 0.11 | 0.51 | 0.10 | 0.71 | 0.32 |
| 13/4 | 17C | 0.33 | 1.13 | 0.15 | 0.01 | 0.46 | 0.03 | 0.67 | 0.16 |

## Elements of Pencoyd Channels.



| XI. | XII. | XIII. | XIV. | XT. | XVI. | I. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance, $d$, from base to neutral axis. | Section modulus. | Coefficient for greatest safe load, in net tons. | Coefficient for deflection. |  | Maximum load, in net tons. | Size, in inches. |
|  | Axis $A B$. |  | Distributed load. | Centre load. |  |  |
| 0.79 | 41.5 | 221.3 | . 00000514 | . 00000826 | 45.0 | 15 |
| 0.95 | 62.7 | 334.1 | . 00000340 | . 00000546 | 135.4 | 15 |
| 1.01 | 36.7 | 195.5 | . 00000651 | . 00001042 | 43.4 | 13 |
| 0.97 | 47.1 | 251.3 | . 00000507 | . 00000811 | 130.0 | 13 |
| 0.70 | 21.6 | 114.9 | . 00001237 | . 00001986 | 23.4 | 12 |
| 0.62 | 20.7 | 110.2 | . 00001290 | . 00002072 | 24.2 | 12 |
| 0.62 | 27.4 | 146.0 | . 00000974 | . 00001564 | 82.4 | 12 |
| 0.64 | 13.4 | 71.6 | . 00002384 | . 00003838 | 16.4 | 10 |
| 0.76 | 24.9 | 132.9 | . 00001284 | . 00002067 | 106.8 | 10 |
| 0.60 | 10.6 | 56.8 | . 00003341 | . 00005379 | 15.6 | 9 |
| 0.74 | 15.6 | 83.2 | . 00002210 | . 00003536 | 39.0 | 9 |
| 0.75 | 19.0 | 101.2 | . 00001817 | . 00002907 | 79.0 | 9 |
| 0.57 | 8.1 | 43.4 | . 00004921 | . 00007923 | 13.6 | 8 |
| 0.66 | 13.0 | 69.1 | . 00003086 | . 00004968 | 57.0 | 8 |
| 0.54 | 6.1 | 32.6 | . 00007487 | . 00012054 | 13.2 | 7 |
| 0.65 | 10.2 | 54.6 | . 00004463 | . 00007185 | 57.8 | 7 |
| 0.51 | 4.4 | 23.2 | . 00012242 | . 00019709 | 10.8 | 6 |
| 1.07 | 8.4 | 44.7 | . 00006170 | . 00009872 | 28.2 | 6 |
| 0.49 | 3.0 | 15.7 | . 00021710 | . 00034953 | 9.2 | 5 |
| 0.50 | 4.2 | 22.3 | . 00015340 | . 00024697 | 21.4 | 5 |
| 0.46 | 1.9 | 10.0 | . 00042781 | . 00068877 | 8.2 | 4 |
| 0.46 | 2.3 | 12.1 | . 00035398 | . 00056991 | 18.4 | 4 |
| 0.43 | 1.1 | 5.7 | . 00099377 | . 00159997 | 6.0 | 3 |
| 0.45 | 1.4 | 7.3 | . 00078050 | . 00125660 | 16.0 | 3 |
| 0.47 | 0.7 | 3.8 | . 00200000 | . 00322000 | 8.6 |  |
| 0.36 | 0.5 | 2.6 | . 00333333 | . 00536666 | 6.6 | 2 |
| 0.37 | 0.5 | 2.9 | . 00296980 | . 00478138 | 9.6 | 2 |
| 0.18 | 0.2 | 0.9 | . 01066672 | . 01717342 | 2.0 | 13/4 |

Bending Moments, etc., for Beams of Uniform Section.

| Mode of loading. <br> Lengths, in inches; loads, in pounds. | Bending moment, in inch-pounds. | Maximum load, in pounds. | Deflection, in inches. | Remarks. |
| :---: | :---: | :---: | :---: | :---: |
| One end firmly fixed, other end loaded. | $\begin{gathered} P x \\ \operatorname{Maximum} \text { when } \\ x=l \end{gathered}$ | $\frac{S Q}{l}$ | $\frac{P l^{3}}{3 E I}$ | Weakest section at right support. |
| Supported at both ends, loaded at centre. | $\begin{gathered} \frac{P x}{2} \\ \text { Maximum }=\frac{P l}{4} \end{gathered}$ | $\frac{4 S Q}{l}$ | $\frac{P l^{3}}{48 E I}$ | Weakest section at centre of beam. |
| Supported at both ends, loaded any place. | For the left side, $\frac{P b x}{l}$ <br> For the right side, $\frac{P a y}{l}$ | $\frac{l S Q}{a b}$ | $\frac{P a b(2 l-a) \sqrt{3 a(2 l-a)}}{27 l E I}$ | Weakest section at point of application of load. |
| One end fixed, other end supported, loaded at centre. | For the left side, $\frac{5 P x}{16}$ <br> For the right side, $P l\left(\frac{5}{32}-\frac{11 y}{16 l}\right)$ | $\frac{16 S Q}{3 l}$ | $\frac{3 P l^{3}}{322 E I}$ | Weakest section at right support. |


Bending Moments, etc., for Beams of Uniform Section.

| Mode of loading. <br> Lengths, in inches ; loads, in pounds. | Bending moment, in inch-pounds. | Maximum load, in pounds. | Deflection, in inches. | Remarks. |
| :---: | :---: | :---: | :---: | :---: |
| Both ends supported, load uniformly distributed. | $\begin{gathered} \frac{W x}{2}\left(1-\frac{x}{l}\right) \\ \text { Maximum }=\frac{W l}{8} \end{gathered}$ | $\frac{8 S Q}{l}$ | $\frac{5 W l^{3}}{384 E I}$ | Weakest section at centre. |
| One end supported, other end fixed, load uniformly distributed. | $\begin{gathered} \frac{W x}{2}\left(\frac{3}{4}-\frac{x}{l}\right) \\ \text { Maximum }=\frac{W l}{8} \end{gathered}$ | $\frac{8 S Q}{l}$ | $\frac{5 W l^{3}}{926 E I}$ | Weakest section at right support. |
| Both ends fixed, load uniformly distributed. | $\begin{gathered} \frac{W l}{2}\left(\frac{x}{l}-\frac{x^{2}}{l^{2}}-\frac{1}{6}\right) \\ \text { Maximum }=\frac{W l}{12} \end{gathered}$ | $\frac{12 S Q}{l}$ | $\frac{W l^{3}}{384 E I}$ | Weakest section at either support. |
| One end fixed, load distributed, increasing uniformly towards the fixed end. | $\begin{gathered} \frac{W x^{3}}{3 l^{2}} \\ \text { Maximum }=\frac{W l}{3} \end{gathered}$ | $\frac{3 S Q}{l}$ | $\frac{W l^{3}}{15 E I}$ | Weakest section at right support |

Woth ends sup-
ported, load
listributed, de-
ereasing uni-
formly towards
the centre,

## Thrust.

Bodies subjected to thrust, such as columns, struts, etc., generally fail by bending sideways,-this showing the practical impossibility of maintaining the thrust in the exact axial line. As in the case of beams, the shape of the cross-section of the column is an important element in the supporting power, but with this must be considered the length and the manner in which the ends are held.

The cross-section is best represented by the least radius of gyration, usually indicated by $r$. The length of the column or strut being taken as $l$, in inches, we have the ratio, $\frac{l}{r}$, as representing the proportions of the column. The manner of supporting the ends are classified according to the extent to which the column is secured and the degree to which it is maintained in the line of the thrust.

Owing to the complex nature of the stresses in columns it is difficult to determine the maximum fibre stresses, and the various formulas which have been devised are the consequence of attempts to embody the results of experimental investigations. These have been conducted to determine the crippling loads required for the various conditions, the safe load then being taken as a certain portion of the crippling load, the latter being divided by a so-called factor of safety.

The following discussion of the subject, prepared by Mr. James Christie to accompany the tabulated results of his experiments for the Pencoyd Iron Company, represent standard current practice.

Struts are generally classified in four divisions, with respect to the manner in which the ends are secured,-viz., "fixed-ended," "flat-ended," "hinged-ended," and "round-ended."

In the class of "fixed ends" the struts are supposed to be so rigidly attached at both ends to the contiguous parts of the structure that the attachment would not be severed if the member was subjected to the ultimate load. "Flat-ended" struts are supposed to have their ends flat and normal to the axis of length, but not rigidly attached to the adjoining parts. "Hinged ends" embrace the class which have both ends properly fitted with pins or ball and socket joints of substantial dimensions, as compared with the section of the strut, the centres of these end joints being practically coincident with an axis passing through the centre of gravity of the section of the strut. "Round-ended" struts are those which have only central points of contact, such as balls or pins resting on flat plates, butstill the centres of the balls or pins coincident with the proper axis of the strut.

If in hinged-ended struts the balls or pins are of comparatively insignificant diameter, it will be safest in such cases to consider the struts as round-ended.

If there should be any serious deviation of the centres of round or hinged ends from the proper axis of the strut there will be a reduction of resistance that cannot be estimated without knowing the exact conditions.

When the pins of hinged-end struts are of substantial diameter, well fitted and exactly centred, experiment shows that the hinged-ended will be equally as strong as flat-ended struts. But a very slight inaccuracy of the centring rapidly reduces the resistance to lateral bending, and, as it is almost impossible in practice to uniformly maintain the rigid accuracy required, it is considered best to allow for such inaccuracies to the extent given in the tables, which are the average of many experiments.

It is considered good practice to increase the factors of safety as the length of the strutis increased, owing to the greater inability of the long struts to resist cross strains, etc. For similar reasons it is considered advisable to increase the factor of safety for hinged and round ends in a greater ratio than for fixed or flat ends.

Presuming that one-third of the ultimate load would constitute the greatest safe load for the shortest struts, the following progressive factors of safety are adopted for the increasing lengths:
$3+.01 \frac{l}{r}$ for flat and fixed ends.

$$
3+.015 \frac{l}{r} \text { for hinged and round ends. }
$$

$l=$ length of strut. $\quad r=$ least radius of gyration.
From the above we derive the following factors of safety :

| $\frac{l}{r}$ | Fixed <br> and flat <br> ends. | Hinged <br> and <br> round <br> ends. | $\frac{l}{r}$ | Fixed <br> and flat <br> ends. | Hinged <br> and <br> round <br> ends. | $\frac{l}{r}$ | Fixed <br> and flat <br> ends. | Hinged <br> and <br> round <br> ends. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 3.2 | 3.30 | 110 | 4.1 | 4.65 | 200 | 5.0 | 6.00 |
| 30 | 3.3 | 3.45 | 120 | 4.2 | 4.80 | 210 | 5.1 | 6.15 |
| 40 | 3.4 | 3.60 | 130 | 4.3 | 4.95 | 220 | 5.2 | 6.30 |
| 50 | 3.5 | 3.75 | 140 | 4.4 | 5.10 | 230 | 5.3 | 6.45 |
| 60 | 3.6 | 3.90 | 150 | 4.5 | 5.25 | 240 | 5.4 | 6.60 |
| 70 | 3.7 | 4.05 | 160 | 4.6 | 5.40 | 250 | 5.5 | 6.75 |
| 80 | 3.8 | 4.20 | 170 | 4.7 | 5.55 | 260 | 5.6 | 6.90 |
| 90 | 3.9 | 4.35 | 180 | 4.8 | 5.70 | 270 | 5.7 | 7.05 |
| 100 | 4.0 | 4.50 | 190 | 4.9 | 5.85 | 280 | 5.8 | 7.20 |

## Cast=iron Columns.

Cast-iron columns are sometimes used in buildings of moderate height, but their use is not to be recommended for buildings where the iron framework must be rigid and afford sufficient lateral stability. The manner in which cast-iron columns are connected together and the mode of attaching beams and girders to them does not permit of obtaining sufficient rigidity for such buildings. Cast-iron columns have more or less internal strains, due to the unequal cooling of the metal in the moulds, which makes it necessary to employ a large factor of safety. No cast-iron column should be used in a building with a factor of safety less than 8. Particular attention should be paid to the designing of the cast-iron brackets for supporting the beams and girders, in order that they may not be subjected to large internal strains, making them liable to break off under a sudden shock. The tables on pages 411 and 412 furnish an easy method of determining the safe loads on round and square cast-iron columns. Where the loads are eccentrically applied, producing bending strains in the columns, cast-iron columns are inadmissible, because of their inability to resist such strains.

Table No. 1.

## Struts of Wrought=iron or Extreme Soft Steel.

Destructive pressure, in pounds, per square inch.

| $\frac{\text { Length. }}{\substack{\text { Least radius of } \\ \text { gyration. }}}$ | Fixed ends. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 46000 | 46000 | 46000 | 44000 |
| 30 | 43000 | 43000 | 43000 | 40250 |
| 40 | 40000 | 40000 | 40000 | 36500 |
| 50 | 38000 | 38000 | 38000 | 33500 |
| 60 | 36000 | 36000 | 36000 | 30500 |
| 70 | 34000 | 34000 | 33750 | 27750 |
| 80 | 32000 | 32000 | 31500 | 25000 |
| 90. | 31000 | 30900 | 29750 | 22750 |
| 100 | 30000 | 29800 | 28000 | 20500 |
| 110 | 29000 | 28050 | 26150 | 18500 |
| 120 | 28000 | 26300 | 24300 | 16500 |
| 130 | 26750 | 24900 | 22650 | 14650 |
| 140 | 25500 | 23500 | 21000 | 12800 |
| 150 | 24250 | 21750 | 18750 | 11150 |
| 160 | 23000 | 20000 | 16500 | 9500 |
| 170 | 21500 | 18400 | 14650 | 8500 |
| 180 | 20000 | 16800 | 12800 | 7500 |
| 190 | 18750 | 15650 | 11800 | 6750 |
| 200 | 17500 | 14500 | 10800 | 6000 |
| 210 | 16250 | 13600 | 9800 | 5500 |
| 220 | 15000 | 12700 | 8800 | 5000 |
| 230 | 14000 | 11950 | 8150 | 4650 |
| 240 | 13000 | 11200 | 7500 | 4300 |
| 250 | 12000 | 10500 | 7000 | 4050 |
| 260 | 11000 | 9800 | 6500 | 3800 |
| 270 | 10500 | 9150 | 6100 | 3500 |
| 280 | 10000 | 8500 | 5700 | 3200 |
| 290 | 9500 | 7850 | 5350 | 3000 |
| 300 | 9000 | 7200 | 5000 | 2800 |
| 310 | 8500 | 6600 | 4750 | 2650 |
| 320 | 8000 | 6000 | 4500 | 2500 |
| 330 | 7500 | 5550 | 4250 | 2300 |
| 340 | 7000 | 5100 | 4000 | 2100 |
| 350 | 6750 | 4700 | 3750 | 2000 |
| 360 | 6500 | 4300 | 3500 | 1900 |
| 370 | 6150 | 3900 | 3250 | 1800 |
| 380 | 5800 | 3500 | 3000 | 1700 |
| 390 | 5500 | 3250 | 2750 | 1600 |
| 400 | 5200 | 3000 | 2500 | 1500 |

Table No. 2.

## Struts of Wrought=iron or Extreme Soft Steel.

Greatest safe load, in pounds per square inch of cross-section, for vertical struts. Both ends are supposed to be secured as indicated at the head of each column.

If both ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

| $\frac{\text { Length. }}{\substack{\text { Least radius of } \\ \text { gyration. }}}$ | Fixed euds. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 14380 | 14380 | 13940 | 13330 |
| 30 | 13030 | 13030 | 12460 | 11670 |
| 40 | 11760 | 11760 | 11110 | 10140 |
| 50 | 10860 | 10860 | 10130 | 8930 |
| 60 | 10000 | 10000 | 9230 | 7820 |
| 70 | 9190 | 9190 | 8330 | 6850 |
| 80 | 8420 | 8420 | 7500 | 5950 |
| 90 | 7950 | 7920 | 6840 | 5230 |
| 100 | 7500 | 7450 | 6220 | 4560 |
| 110 | 7070 | 6840 | 5620 | 3980 |
| 120 | 6670 | 6260 | 5060 | 3440 |
| 130 | 6220 | 5790 | 4580 | 2960 |
| 140 | 5800 | 5340 | 4120 | 2510 |
| 150 | 5390 | 4830 | 3570 | 2120 |
| 160 170 | 5000 4570 | 4350 3920 | 3060 2640 | 1760 1530 |
|  |  |  |  |  |
| 180 | 4170 | 3500 | 2250 | 1310 |
| 190 | 3830 | 3190 | 2020 | 1150 |
| 200 | 3500 | 2900 | 1800 | 1000 |
| 210 | 3190 | 2670 | 1590 | 890 |
| 220 | 2880 | 2440 | 1400 | 790 |
| 230 | 2640 | 2250 | 1260 | 720 |
| 240 250 | 2410 2180 | 2070 1910 | 1140 1040 | 650 600 |
| 250 | 2180 | 1910 | 1040 |  |
| 260 | 1960 | 1750 | 940 | 550 |
| ${ }_{280}^{270}$ | 1840 | 1610 | 870 | 500 440 |
| 280 | 1720 | 1460 1330 | 790 | 440 |
| 300 | 1500 | 1200 | 670 | 370 |
| 310 | 1390 | 1080 | 620 | 350 |
| 320 | 1290 | 970 | 580 | 320 |
| 330 | 1190 | 880 | 540 | 290 |
| 340 | 1090 | 800 | 490 | 260 |
| 350 | 1040 | 720 | 450 | 240 |
| 360 | 980 | 650 | 420 | 230 |
| 370 | 920 | 580 | 380 | 210 |
| 380 | 850 | 510 | 340 | 200 |
| 390 400 | 800 740 | 470 430 | 310 280 | 80 70 |
| 400 | 740 | 430 | 280 | 70 |

Table No. 3.

## Struts of Medium Steel.

Destructive pressure, in pounds per square inch, for steel of medium grade, tensile strength about 70,000 pounds per square inch.

For extreme soft steel, use Table No. 1.

| $\frac{\text { Length. }}{\substack{\text { Least radius of } \\ \text { gyration. }}}$ | Fixed ends. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 70000 | 70000 | 70000 | 66900 |
| 30 | 51000 | 51000 | 51000 | 47700 |
| 40 | 46000 | 46000 | 46000 | 41900 |
| 50 | 44000 | 44000 | 44000 | 38800 |
| 60 | 42000 | 42000 | 42000 | 35600 |
| 70 | 40000 | 40000 | 39700 | 32600 |
| 80 | 38000 | 38000 | 37400 | 29700 |
| 90 | 36100 | 36000 | 34700 | 26500 |
| 100 | 34200 | 34000 | 31900 | 23400 |
| 110 | 33100 | 32000 | 29800 | 21100 |
| 120 | 31900 | 30000 | 27700 | 18800 |
| 130 | 30100 | 28000 | 25500 | 16500 |
| 140 | 28200 | 26000 | 23200 | 14200 |
| 150 | 26800 | 24000 | 20700 | 12300 |
| 160 | 25300 | 22000 | 18100 | 10400 |
| 170 | 23400 | 20000 | 15900 | 9240 |
| 180 | 21400 | 18000 | 13700 | 8030 |
| 190 | 19400 | 16200 | 12200 | 6990 |
| 200 | 17900 | 14800 | 11000 | 6120 |
| 210 | 16200 | 13600 | 9800 | 5500 |
| 220 | 15000 | 12700 | 8800 | 5000 |
| 230 | 14000 | 11950 | 8100 | 4650 |
| 240 | 13000 | 11200 | 7500 | 4300 |
| 250 | 12000 | 10500 | 7000 | 4050 |
| 260 | 11000 | 9800 | 6500 | 3800 |
| 270 | 10500 | 9150 | 6100 | 3500 |
| 280 | 10000 | 8500 | 5700 | 3200 |
| 290 | 9500 | 7850 | 5330 | 3000 |
| 300 | 9000 | 7200 | 5000 | 2800 |

Table No. 4.

## Struts of Medium Steel.

Greatest safe load for steel of medium grade, tensile strength about 70,000 pounds.

For extreme soft steel, use Table No. 2.
The figures are the working loads, in pounds per square inch, for vertical struts.

Both ends are supposed to be secured as indicated at the head of each column.

If both ends are not secured alike, takc a mean proportional between the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

| Length. <br> Least radius of <br> gyration. | Fixed ends. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 21900 | 21900 | 21200 |
| 30 | 15400 | 15400 | 14800 | 20300 |
| 40 | 13500 | 13500 | 12800 | 11600 |
| 50 | 12600 | 12600 | 11700 | 10300 |
| 60 | 11700 | 11700 | 10800 | 9130 |
| 70 | 10800 | 10800 | 9800 | 8050 |
| 80 | 10000 | 10000 | 8900 | 7070 |
| 90 | 9260 | 9230 | 7980 | 6090 |
| 100 | 8550 | 8500 | 7090 | 5200 |
| 110 | 8070 | 7800 | 6410 | 4540 |
| 120 | 7590 | 7140 | 5770 | 3920 |
| 130 | 7000 | 6510 | 5150 | 3330 |
| 140 | 6410 | 5910 | 4550 | 2780 |
| 150 | 5950 | 5330 | 3940 | 2340 |
| 160 | 5500 | 4780 | 3350 | 1920 |
| 170 | 4980 | 4250 | 2860 | 1660 |
| 180 | 4460 | 3750 | 2400 | 1410 |
| 190 | 3960 | 3310 | 2080 | 1190 |
| 200 | 3580 | 2960 | 1830 | 1020 |
| 210 | 3180 | 2670 | 1590 | 890 |
| 220 | 2880 | 2440 | 1400 | 790 |
| 230 | 2640 | 2250 | 1250 | 720 |
| 240 | 2410 | 2070 | 1140 | 650 |
| 250 | 2180 | 1910 | 1040 | 600 |
| 260 | 1960 | 1750 | 940 | 550 |
| 270 | 1840 | 1610 | 860 | 500 |
| 280 | 1720 | 1460 | 790 | 440 |
| 290 | 1610 | 1330 | 720 | 410 |
| 300 | 1500 | 1200 | 670 | 370 |
|  |  |  |  |  |
|  |  |  |  |  |

Table No. 5.

## Struts of Hard Steel.

Destructive pressure, in pounds per square inch, for hard steel, tensile strength about 100,000 pounds.

For softer steel, see Table No. 3.

| $\frac{\text { Length. }}{\substack{\text { Least radius of } \\ \text { gyration. }}}$ | Fixed ends. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 100000 | 100000 | 100000 | 95600 |
| 30 | 74000 | 74000 | 74000 | 69300 |
| 40 | 62000 | 62000 | 62000 | 56600 |
| 50 | 60000 | 60000 | 60000 | 52900 |
| 60 | 58000 | 58000 | 58000 | 49100 |
| 70 | 55500 | 55500 | 55100 | 45300 |
| 80 | 53000 | 53000 | 52200 | 41400 |
| 90 | 49900 | 49700 | 47800 | 36600 |
| 100 | 46800 | 46500 | 43700 | 32000 |
| 110 | 44700 | 43200 | 40400 | 28500 |
| 120 | 42600 | 40000 | 36900 | 25100 |
| 130 | 39400 | 36700 | 33500 | 21600 |
| 140 | 36300 | 33500 | 29900 | 18200 |
| 150 | 34200 | 30700 | 26500 | 15700 |
| 160 | 32200 | 28000 | 23100 | 13300 |
| 170 | 29800 | 25500 | 20300 | 11800 |
| - 180 | 27400 | 23000 | 17500 | 10300 |
| 190 | 25100 | 21000 | 15800 | 9060 |
| 200 | 22900 | 19000 | 14100 | 7860 |
| 210 | 20300 | 17200 | 12400 | 6950 |
| 220 | 18300 | 15500 | 10700 | 6100 |
| 230 | 16900 | 14400 | 9820 | 5600 |
| 240 | 15500 | 13400 | 8960 | 5140 |
| 250 | 14200 | 12400 | 8270 | 4780 |
| 260 | 12900 | 11500 | 7630 | 4460 |
| 270 | - 12200 | 10600 | 7060 | 4050 |
| 280 | 11400 | 9700 | 6500 | 3650 |
| 290 | 10900 | 9000 | 6130 | 3440 |
| 300 | 10600 | 8500 | 5890 | 3300 |

Table No. 6.

## Struts of Hard Steel.

Greatest safe load for hard steel, tensile strength about 100,000 pounds.
For soft steel, see Table No. 4.
The flgures are the working loads, in pounds per square inch, for vertical struts.

Both ends are supposed to be secured as indicated at the head of each column.

If both ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

| Length. <br> Least radius of <br> gration. | Fixed ends. | Flat ends. | Hinged ends. | Round ends. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 20 | 31200 | 31200 | 30300 | 29000 |
| 30 | 22400 | 22400 | 21400 | 20100 |
| 40 | 18200 | 18200 | 17200 | 15700 |
| 50 | 17100 | 17100 | 16000 | 14100 |
| 60 | 16100 | 16100 | 14900 | 12600 |
| 70 | 15000 | 15000 | 13600 | 11200 |
| 80 | 13900 | 13900 | 12400 | 9860 |
| 90 | 12800 | 12700 | 11000 | 8410 |
| 100 | 11700 | 11600 | 9710 | 7110 |
| 110 | 10900 | 10500 | 8670 | 6130 |
| 120 | 10100 | 9520 | 7690 | 5230 |
| 130 | 9160 | 8530 | 6770 | 4360 |
| 140 | 8250 | 7610 | 5860 | 3570 |
| 150 | 7600 | 6820 | 5050 | 2990 |
| 160 | 7000 | 6090 | 4280 | 2460 |
| 170 | 6340 | 5420 | 3660 | 2130 |
| 180 | 5710 | 4790 | 3070 | 1810 |
| 190 | 5120 | 4280 | 2700 | 1550 |
| 200 | 4580 | 3800 | 2350 | 1310 |
| 210 | 3980 | 3370 | 2020 | 1130 |
| 220 | 3520 | 2980 | 1700 | 970 |
| 230 | 3190 | 2720 | 1500 | 870 |
| 240 | 2870 | 2480 | 1360 | 780 |
| 250 | 2580 | 2250 | 1220 | 710 |
| 260 | 2300 | 2050 | 1100 | 650 |
| 270 | 2240 | 1860 | 1000 | 570 |
| 280 | 1960 | 1670 | 900 | 510 |
| 290 | 1850 | 1520 | 830 | 470 |
| 300 | 1800 | 1420 | 780 | 440 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Elements of Pencoyd Z=Bars.

|  |  |  |  | $\left[-,-\frac{R}{-2}\right.$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Weight per | Moments of iuertia. |  |  | Resistance. |  |
|  |  | inches. | in pounds. | Axis $A B$. | Axis $C D$ | Axis EF. | Axis $A B$. | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ |
| 30Z | $25 / 8 \times 3 \times 25 / 8 \times 1 / 4$ | 1.94 | 6.60 | 2.81 | 2.61 | 0.59 | 1.9 | 1.0 |
| $31 Z$ | $2 \frac{11}{16} \times 3 \frac{1}{16} \times 2 \frac{11}{16} \times \frac{5}{16}$ | 2.44 | 8.29 | 3.52 | 3.38 | 0.74 | 2.3 | 1.3 |
| 32 Z | $23 / 4 \times 31 / 8 \times 23 / 4 \times 3 / 8$ | 2.94 | 10.00 | 4.34 | 4.22 | 0.92 | 2.8 | 1.7 |
| 33 Z | $22 \frac{11}{32} \times 3 \times 22 \frac{21}{32} \times \frac{7}{16}$ | 3.25 | 11.15 | 4.20 | 4.24 | 0.95 | 2.8 | 1.7 |
| 34Z | $2 \frac{11}{16} \times 3 \frac{1}{32} \times 2 \frac{11}{16} \times \frac{15}{32}$ | 3.51 | 11.93 | 4.54 | 4.64 | 1.01 | 3.0 | 1.9 |
| 35Z | $2 \frac{23}{3} \times 3 \frac{1}{16} \times 2 \frac{23}{3} \times 1 / 2$ | 3.75 | 12.75 | 4.88 | 5.04 | 1.11 | 3.2 | 2.0 |
| 40Z | $27 / 8 \times 4 \times 27 / 8 \times 1 / 4$ | 2.32 | 7.88 | 5.95 | 3.47 | 0.95 | 3.0 | 1.3 |
| 41Z | $2 \frac{15}{16} \times 4 \frac{1}{16} \times 2 \frac{15}{16} \times \frac{5}{16}$ | 2.91 | 9.89 | 7.52 | 4.49 | 1.23 | 3.7 | 1.6 |
| 42 Z | $3 \times 41 / 8 \times 3 \times 3 / 8$ | 3.52 | 11.90 | 9.14 | 5.58 | 1.53 | 4.4 | 2.0 |
| 43 Z | $2 \frac{31}{32} \times 4 \times 2 \frac{31}{32} \times \frac{7}{16}$ | 3.96 | 13.46 | 9.40 | 6.09 | 1.63 | 4.7 | 2.2 |
| 44Z | $3 \frac{1}{32} \times 4 \frac{1}{16} \times 3 \frac{1}{32} \times 1 / 2$ | 4.56 | 15.50 | 10.92 | 7.21 | 1.94 | 5.4 | 2.6 |
| 45Z | $3 \frac{3}{32} \times 41 / 8 \times 3 \frac{3}{32} \times \frac{9}{16}$ | 5.16 | 17.54 | 12.40 | 8.40 | 2.27 | 6.0 | 3.0 |
| 462 | $3 \frac{1}{16} \times 4 \times 3 \frac{1}{16} \times 5 / 8$ | 5.55 | 18.80 | 12.11 | 8.73 | 2.32 | 6.1 | 3.2 |
| 47Z | $31 / 8 \times 4 \frac{1}{16} \times 31 / 8 \times 1 \frac{16}{16}$ | 6.14 | 20.87 | 13.52 | 9.95 | 2.67 | 6.7 | 3.6 |
| 48Z | $3 \frac{3}{16} \times 41 / 8 \times 3 \frac{3}{16} \times 3 / 4$ | 6.75 | 22.95 | 14.97 | 11.24 | 3.03 | 7.3 | 4.0 |
| 50Z | $3 \frac{3}{16} \times 5 \times 3 \frac{3}{16} \times \frac{5}{16}$ | 3.36 | 11.42 | 13.14 | 5.81 | 1.86 | 5.3 | 1.9 |
| 51Z | $31 / 4 \times 5{ }^{\frac{1}{16}} \times 31 / 2 \times 3 / 8$ | 4.05 | 13.77 | 15.93 | 7.20 | 2.28 | 6.3 | 2.4 |
| 52Z | $3 \frac{5}{16} \times 51 / 8 \times 3 \frac{5}{16} \times \frac{7}{16}$ | 4.75 | 16.15 | 18.76 | 8.67 | 2.75 | 7.3 | 2.8 |
| 53 Z | $3 \frac{7}{32} \times 5 \times 3 \frac{7}{32} \times 1 / 2$ | 5.23 | 17.78 | 19.03 | 8.77 | 2.76 | 7.6 | 3.0 |
| 54 Z | $3 \frac{9}{32} \times 5 \frac{1}{16} \times 3 \frac{9}{32} \times \frac{9}{16}$ | 5.91 | 20.09 | 21.65 | 10.19 | 3.20 | 8.6 | 3.4 |
| $55 Z$ | $3 \frac{11}{32} \times 51 / 8 \times 3 \frac{11}{3} \times 5 / 8$ | 6.60 | 22.44 | 24.33 | 11.70 | 3.73 | 9.5 | 3.9 |
| 562 | $31 / 4 \times 5 \times 31 / 4 \times \frac{11}{16}$ | 6.96 | 23.66 | 23.68 | 11.37 | 3.59 | 9.5 | 3.9 |
| 57Z | $3 \frac{5}{16} \times 5 \frac{1}{16} \times 3 \frac{5}{16} \times 3 / 4$ | 7.64 | 25.97 | 26.16 | 12.83 | 4.12 | 10.3 | 4.4 |
| 602 | $31 / 2 \times 6 \times 31 / 2 \times 3 / 8$ | 4.59 | 15.61 | 25.32 | 9.11 | 3.11 | 8.4 | 2.8 |
| 61Z | $3 \frac{9}{16} \times 6 \frac{1}{16} \times 3 \frac{9}{16} \times \frac{7}{16}$ | 5.39 | 18.32 | 29.80 | 10.95 | 3.74 | 9.8 | 3.3 |
| 62 Z | $35 / 8 \times 61 / 8 \times 35 / 8 \times 1 / 2$ | 6.19 | 21.05 | 34.36 | 12.87 | 4.37 | 11.2 | 3.8 |
| 63Z | $31 / 2 \times 6 \times 31 / 2 \times \frac{9}{16}$ | 6.68 | 22.71 | 34.64 | 12.59 | 4.37 | 11.6 | 3.9 |
| 64 Z | $3 \frac{9}{16} \times 6 \frac{1}{16} \times 3 \frac{9}{16} \times 5 / 8$ | 7.46 | 25.36 | 38.86 | 14.42 | 4.92 | 12.8 | 4.4 |
| 65Z | $35 / 8 \times 61 / 8 \times 35 / 8 \times \frac{11}{16}$ | 8.25 | 28.05 | 43.18 | 16.34 | 5.66 | 14.1 | 5.0 |
| $66 Z$ | $31 / 2 \times 6 \times 31 / 2 \times 3 / 4$ | 8.64 | 29.37 | 42.12 | 15.44 | 5.61 | 14.0 | 4.9 |
| 67 Z | $3 \frac{9}{16} \times 6 \frac{1}{16} \times 3 \frac{9}{16} \times \frac{13}{16}$ | 9.38 | 31.89 | 46.13 | 17.27 | 6.16 | 15.2 | 5.5 |
| 68Z | $35 / 8 \times 61 / 8 \times 35 / 8 \times 7 / 8$ | 10.16 | 34.54 | 50.22 | 19.18 | 6.85 | 16.4 | 6.0 |

## Elements of Pencoyd Z-Bars.



| Radius of gyration. |  |  | Coefficient, in net tons, for greatest safe load distributed. |  | Coefficient for deflection about axis $A B$. |  | Maximum load. innet tons. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Axis } \\ A B . \end{gathered}$ | $\begin{aligned} & \text { Axis } \\ & \text { CD. } \end{aligned}$ | Least. <br> Axis <br> EF. | $\begin{gathered} \text { Fibre stress, } \\ 16,000 \\ \text { pounds. } \end{gathered}$ | Fibre stress, 12,000 pounds. | Distributed. | Centre. |  |  |
| 1.20 | 1.16 | 0.55 | 100 | 7.5 | . 0005694 | . 0009167 | 11.0 | 30Z |
| 1.20 | 1.18 | 0.55 | 12.3 | 9.2 | . 0004545 | . 0007317 | 14.4 | 31Z |
| 1.21 | 1.20 | 0.56 | 14.8 | 11.1 | . 0003687 | . 0005937 | 18.0 | 32 Z |
| 1.13 | 1.14 | 0.54 | 14.9 | 11.2 | . 0003809 | . 0006132 | 20.4 | $33 Z$ |
| 1.14 | 1.15 | 0.54 | 16.0 | 12.0 | . 0003524 | . 0005674 | 22.2 | $34 Z$ |
| 1.14 | 1.16 | 0.55 | 17.0 | 12.8 | . 0003279 | . 0005279 | 24.0 | 35Z |
| 1.60 | 1.22 | 0.64 | 15.9 | 11.9 | . 0002689 | . 0004329 | 13.6 | 40Z |
| 1.61 | 1.24 | 0.65 | 19.7 | 14.8 | . 0002128 | . 0003426 | 18.2 | $41 Z$ |
| 1.62 | 1.26 | 0.66 | 23.6 | 17.7 | . 0001750 | . 0002817 | 23.0 | 42 Z |
| 1.54 | 1.24 | 0.64 | 25.1 | 18.8 | . 0001702 | . 0002740 | 26.6 | $43 Z$ |
| 1.55 | 1.27 | 0.65 | 28.7 | 21.5 | . 0001465 | . 0002359 | 31.2 | 412 |
| 1.55 | 1.28 | 0.66 | 32.1 | 24.1 | . 0001290 | . 0002077 | 35.8 | 45 Z |
| 1.48 | 1.26 | 0.65 | 32.3 | 24.2 | . 0001321 | . 0002127 | 39.0 | 46Z |
| 1.48 | 1.27 | 0.66 | 35.5 | 26.6 | . 0001183 | . 0001905 | 43.6 | 47Z |
| 1.49 | 1.29 | 0.67 | 38.7 | 29.0 | . 0001069 | . 0001721 | 48.6 | 48Z |
| 1.98 | 1.32 | 0.74 | 28.0 | 21.0 | . 0001218 | . 0001961 | 21.4 | 50Z |
| 1.98 | 1.33 | 0.75 | 33.6 | 25.2 | . 0001005 | 0001618 | 27.0 | $51 Z$ |
| 1.99 | 1.35 | 0.76 | 39.1 | 29.3 | . 0000853 | . 0001373 | 32.8 | 52 Z |
| 1.91 | 1.30 | 0.73 | 40.6 | 30.5 | . 0000841 | . 0001354 | 37.6 | 53 Z |
| 1.91 | 1.31 | 0.74 | 45.6 | 34.2 | . 0000739 | . 0001190 | 43.2 | $54 Z$ |
| 1.92 | 1.33 | 0.75 | 50.6 | 38.0 | . 0000658 | . 0001059 | 49.0 | $55 Z$ |
| 1.84 | 1.28 | 0.72 | 50.5 | 37.9 | . 0000676 | . 0001088 | 53.2 | 56Z |
| 1.85 | 1.30 | 0.73 | 55.1 | 41.3 | . 0000612 | . 0000984 | 59.0 | 57Z |
| 2.35 | 1.41 | 0.82 | 45.0 | 33.8 | . 0000632 | . 0001017 | 30.8 | 60Z |
| 2.35 | 1.43 | 0.83 | 52.4 | 39.3 | . 0000537 | . 0000864 | 37.6 | $61 Z$ |
| 2.36 | 1.44 | 0.84 | . 59.8 | 44.9 | . 0000466 | . 0000750 | 44.6 | $62 Z$ |
| 2.28 | 1.37 | 0.81 | 61.6 | 46.2 | . 0000462 | . 0000744 | 50.2 | 63 Z |
| 2.28 | 1.39 | 0.81 | 68.4 | 51.3 | . 0000412 | . 0000663 | 57.0 | 64Z |
| 2.29 | 1.41 | 0.83 | 75.2 | 56.4 | . 0000370 | . 0000596 | 64.0 | $65 Z$ |
| 2.21 | 1.34 | 0.81 | 74.9 | 56.2 | . 0000380 | . 0000612 | 69.0 | 66Z |
| 2.22 | 1.36 | 0.81 | 81.2 | 60.9 | . 0000347 | . 0000559 | 76.0 | 67 Z |
| 2.22 | 1.37 | 0.82 | 87.5 | 65.6 | . 0000319 | . 0000513 | 83.0 | $68 Z$ |

## Elements of Z-Bar Columns.

$I=$ moment of inertia.


The thicknesses of Web Plate and Z-Bars are the same.

| Size of Z-bar, in inches. | $77^{\prime \prime}$ web plate. $71 / 4 / 1$ face to face. |  |  |  |  | $8^{\prime \prime}$ web plate. $81 / 4^{\prime \prime}$ face to face. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Area of 42 bars and 1 plate. | Axis $X X$. |  | Axis $Y Y$. |  | $\begin{aligned} & \text { Area } \\ & \text { of 4Z- } \\ & \text { bars } \\ & \text { and 1 } \\ & \text { plate. } \end{aligned}$ | Axis $X X$. |  | Axis YY. |  |
|  |  | 1. | $R$. | 1. | $R$. |  |  | R. | 1. | $R$. |
|  | 20.99 |  | 3.55 |  | 3.70 | 21.36 | 09 |  |  |  |
| 6 | 24.62 | 30 | 3.5 | 346.98 | 3.75 | 25.06 | 391.45 | 3 |  | 2 |
| $\times 61 / 8 \times 35 / 8 \times 1 / 2$ | 28. | 347.80 | 3.51 | 409.27 | 3.80 | 28. | 444.60 | 3.93 | 409 | 7 |
| $\times 6 \times 31 / 2 \times \frac{9}{16}$ | 30.66 | 365.19 | 3.45 | 426.34 | 3.73 | 31. | 469.13 | 3.88 | 42 | 69 |
| $3 \frac{9}{16} \times 6 \frac{1}{16} \times 3 \frac{9}{16} \times 5 / 8$ | 34.22 | 402 | 3.43 | 489.21 | 3. | 34.84 | 518.08 | 3 | 48 | 75 |
| 1/8 | 37.81 | 440.3 | 3.41 | 555.79 | 3.83 |  | 566 | 3.83 | 55 |  |
| $31 / 2 \times 6 \times 31 / 2 \times 3 / 4$ | 39.81 | 448.24 | 3.36 | 562.39 | 3.76 | 40.56 | 579.76 | 3 | 56 | 3.72 |
| $3_{19}{ }^{9} \times 66_{16}^{16} \times 3_{1}$ | 43.21 |  | 3.34 | 628 | 3.81 | 44.02 | 62 |  |  |  |
| $35 / 8 \times 61 / 8 \times 35 / 8 \times 7 / 8$ |  |  | 3.32 | 69 | 3. | 47.64 |  |  |  |  |
|  | $7{ }^{\prime \prime}$ web plate. $73 / 4^{\prime \prime}$ face to face. |  |  |  |  | $8{ }^{\prime \prime}$ web plate. $81 / 4^{\prime \prime}$ face to face. |  |  |  |  |
| 5 |  | 193.88 | 3.52 |  | 3.07 | 15.94 |  |  |  |  |
| $31 / 4 \times 5 \frac{1}{16} \times 31 / 4 \times 3 / 8$ |  | 23 | 3.50 | 183.49 | 3 | 19.20 |  | 3.92 | 18 | 9 |
| $3{ }^{\frac{5}{16}} \times 51 / 8 \times 3 \frac{5}{16} \times \frac{7}{16}$ | 22.0 |  | 3.48 | 222.06 | 3.17 | 22.50 |  | 3.91 |  |  |
| $33_{32}^{7} \times 5 \times 3 \frac{7}{32} \times 1 / 2$ | 24.42 |  |  | 234.48 | 3 | 24.92 | 370.54 | 3. | 234 | 3.07 |
| $3 \frac{9}{32} \times 5 \frac{1}{16} \times 3{ }_{3}{ }^{\frac{9}{2}} \times$ | 27 |  |  | 27 | 3.15 | 28. | 41 | 3.8 |  |  |
| $3 \frac{11}{32} \times 51 / 8 \times 3 \frac{11}{32} \times 5 / 8$ | 30.78 |  | 3.39 | 31 | 3. | 31 | 45 | 3. |  | 17 |
| $31 / 4 \times 5 \times 31 / 4 \times \frac{11}{16}$ |  |  | 3.34 | 320. | 3.13 | 33.34 | 47 | 3. | 32 | 0 |
| $3 \frac{5}{16} \times 5_{16}^{16} \times 3 \frac{5}{16} \times 3 / 4$ |  |  |  | 36 | 3.18 |  |  |  |  |  |
|  | $6^{\prime \prime}$ web plate. $61 / 4^{\prime \prime}$ face to face. |  |  |  |  | $7{ }^{\prime \prime}$ web plate. $71 / 4 / 1$ face to face. |  |  |  |  |
| $27 / 8 \times 4 \times 27 / 8 \times 1 / 4$ |  |  | 3.07 |  |  | 3 |  |  |  |  |
| $2 \frac{15}{16} \times 4 \frac{1}{16} \times 2 \frac{15}{16} \times \frac{5}{16}$ |  |  | 3.05 | 85 | 2.52 | 13.83 | 16 |  |  |  |
| $3 \times 41 / 8 \times 3 \times 3 / 8$ | 16.33 | 15 | 3.04 | 107.87 | 2.57 | 16. | 199. |  | 107 | 2.54 |
| $2 \frac{31}{32} \times 4 \times 2 \frac{31}{32} \times \frac{7}{16}$ | 18.47 | 16 | 3.00 | 115.62 | 2.50 | 18. | 220. | 3. |  | 2.47 |
| $3 \frac{1}{32} \times 4 \frac{1}{16} \times 3 \frac{1}{32} \times 1 / 2$ | 21.24 | 18 | 2. | 138. | 2. | 21. | 250 | 3. | 138 | 2.52 |
| $3 \frac{3}{32} \times 41 / 8 \times 3 \frac{3}{32}$ | 2 | 210.64 | 2.96 | 163.07 | 2.60 | 24.58 | 280 | 3.38 | 163 | 2.58 |
| $3 \frac{1}{16} \times 4 \times 3 \frac{1}{16} \times 5 / 8$ |  | 22 | 2.92 | 167.28 | 2.5 | 26. | 296 |  |  | 1 |
| $31 / 8 \times 4 \frac{1}{16} \times 31 / 8 \times \frac{1}{1}$ | 2 | 24 | 2.91 | 192.77 | 2.59 | 29. | 323 | 3.32 |  | 6 |
| $\underline{3 \frac{3}{16} \times 41 / 8 \times 3 \frac{3}{16} \times 3 / 4}$ | 31 | 26 | 2. | 220 | 2. | 32 |  |  |  | 2.61 |
|  | $6^{\prime \prime}$ web plate, $61 / 4^{\prime \prime}$ face to face. |  |  |  |  | $7^{\prime \prime}$ wel plate. $71 / 4^{\prime \prime}$ face to face. |  |  |  |  |
| $25 / 8 \times 3 \times 25 \times 1 / 4$ | 9.2 | 84.78 | 3.03 |  | . 85 |  |  | 3.44 |  |  |
| $2116 \times 3{ }_{16}^{16} \times 2 \frac{11}{16} \times \frac{5}{16}$ | 11.64 | 105. | 3.01 | 41.89 | 1.90 | 11.9 | 139. | 3. | 41 |  |
| $23 / 4 \times 31 / 8 \times 23 / 4 \times 3 / 8$ | 14.01 | 125.10 | 2.99 | 53.41 | 1.95 | 14.39 | 166.5 | 3.40 | 53. | 93 |
| $2 \frac{21}{32} \times 3 \times 2 \frac{21}{32} \times \frac{7}{16}$ | 15. | 134.6 | 2.93 | 55.2 | 1.88 | 16.06 | 180.30 | . 3 | 55. | . 85 |
| $22_{3}^{23} \times 3{ }_{1}^{16} \times 2 \times 2 \frac{23}{2} \times 1 / 2$ | 18. |  | 2.92 | 67.1 | 1.8 | 18.5 | 205 |  |  | 90 |

Elements of Pencoyd Tees.

## Uneven Legs.



| I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX | X | XI. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Size, in inches. | Area in square inches. | Weight per foot, in pounds. | Moments of inertia. |  | Resistance. |  | Radius of gyration. |  | Dist., $d$ from base to neutral axis. |
|  |  |  |  | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{gathered} \text { Axis } \\ C D . \end{gathered}$ |  |
| 66 T | $6 \times 41 / 2$ | 8.21 | 28.2 | 14.74 | 13.81 | 4.71 | 4.60 | 1.33 | 1.29 | 1.37 |
| 64 T | $6 \times 4$ | 4.6 | 15.6 | 5.82 | 8.19 | 1.92 | 2.73 | 1.12 | 1.33 | 0.97 |
| 65 T | $6 \times 51 / 4$ | 11.58 | 39.0 | 28.68 | 18.75 | 8.19 | 6.25 | 1.57 | 1.27 | 1.75 |
| 53 T | $5 \times 31 / 2$ | 4.95 | 17.0 | 5.29 | 5.47 | 2.17 | 2.19 | 1.03 | 1.05 | 1.06 |
| 54 T | $5 \times 4$ | 4.54 | 15.3 | 6.16 | 5.41 | 2.11 | 2.16 | 1.17 | 1.09 | 1.08 |
| 42 T | $4 \times 2$ | 1.93 | 6.5 | 0.53 | 1.75 | 0.34 | 0.87 | 0.52 | 0.95 | 0.46 |
| 43 T | $4 \times 3$ | 2.67 | 9.0 | 1.99 | 2.10 | 0.90 | 1.05 | 0.87 | 0.89 | 0.78 |
| 44 T | $4 \times 3$ | 3.05 | 10.2 | 2.24 | 2.44 | 1.02 | 1.22 | 0.85 | 0.89 | 0.81 |
| 45 T | $4 \times 41 / 2$ | 4.29 | 14.6 | 7.87 | 2.80 | 2.50 | 1.40 | 1.37 | 0.81 | 1.37 |
| 46 T | $41 / 2 \times 31 / 2$ | 4.65 | 15.8 | 4.93 | 3.67 | 2.05 | 1.63 | 1.03 | 0.89 | 1.11 |
| 47 T | $4 \times 41 / 2$ | 3.38 | 11.4 | 6.31 | 2.11 | 1.96 | 1.06 | 1.37 | 0.79 | 1.28 |
| 38 T | $31 / 2 \times 3$ | 2.11 | 7.0 | 1.65 | 1.18 | 0.75 | 0.67 | 0.88 | 0.75 | 0.80 |
| 39 T | $31 / 2 \times 3$ | 2.46 | 8.5 | 1.91 | 1.41 | 0.88 | 0.81 | 0.88 | 0.75 | 0.83 |
| 30 T | $3 \times 11 / 2$ | 1.20 | 4.0 | 0.18 | 0.60 | 0.16 | 0.40 | 0.39 | 0.71 | 0.36 |
| 317 | $3 \times 21 / 2$ | 1.46 | 5.0 | 0.78 | 0.60 | 0.42 | 0.40 | 0.73 | 0.64 | 0.66 |
| 32 T | $3 \times 21 / 2$ | 1.76 | 6.0 | 0.93 | 0.74 | 0.51 | 0.49 | 0.73 | 0.65 | 0.68 |
| $33 T$ | $3 \times 21 / 2$ | 2.06 | 7.0 | 1.08 | 0.89 | 0.60 | 0.59 | 0.72 | 0.66 | 0.71 |
| 34 T | $3 \times 21 / 2$ | 2.38 | 8.0 | 1.32 | 0.91 | 0.78 | 0.61 | 0.74 | 0.62 | 0.80 |
| 35 T | $3 \times 31 / 2$ | 2.46 | 8.3 | 2.82 | 0.89 | 1.17 | 0.59 | 1.07 | 0.60 | 1.08 |
| 36 T | $3 \times 31 / 2$ | 2.81 | 9.5 | 3.19 | 1.04 | 1.33 | 0.69 | 1.07 | 0.61 | 1.10 |
| 28 T | $23 / 4 \times 13 / 4$ | 1.96 | 6.6 | 0.56 | 0.60 | 0.50 | 0.44 | 0.54 | 0.56 | 0.64 |
| 29 T | $23 / 4 \times 2$ | 2.14 | 7.2 | 0.82 | 0.61 | 0.66 | 0.44 | 0.62 | 0.54 | 0.75 |
| 25 T | $21 / 2 \times 11 / 4$ | 0.97 | 3.3 | 0.10 | 0.33 | 0.11 | 0.26 | 0.32 | 0.58 | 0.31 |
| 26 T | $21 / 2 \times 23 / 4$ | 1.68 | 5.7 | 1.16 | 0.43 | 0.60 | 0.34 | 0.83 | 0.51 | 0.83 |
| 27 T | $21 / 2 \times 3$ | 1.76 | 6.0 | 1.48 | 0.44 | 0.71 | 0.35 | 0.92 | 0.50 | 0.93 |
| 24 T | $21 / 4 \times \frac{9}{16}$ | 0.66 | 2.2 | 0.01 | 0.24 | 0.03 | 0.21 | 0.14 | 0.60 | 0.17 |
| 20 T | $2 \times \frac{9}{16}$ | 0.60 | 2.0 | 0.01 | 0.17 | 0.03 | 0.17 | 0.14 | 0.53 | 0.17 |
| 22 T | $2 \times 1{ }_{1}^{16}$ | 0.62 | 2.0 | 0.04 | 0.16 | 0.05 | 0.16 | 0.24 | 0.51 | 0.23 |
| 21 T | $2 \times 1$ | 0.72 | 2.5 | 0.05 | 0.17 | 0.07 | 0.17 | 0.26 | 0.49 | 0.27 |
| 23 T | $2 \times 11 / 2$ | 0.91 | 3.0 | 0.16 | 0.17 | 0.15 | 0.17 | 0.42 | 0.44 | 0.45 |
| 17 T | $13 / 4 \times 1 \frac{1}{16}$ | 0.56 | 1.9 | 0.05 | 0.11 | 0.06 | 0.13 | 0.30 | 0.45 | 0.24 |
| 18 T | $13 / 4 \times 11 / 4$ | 1.04 | 3.5 | 0.12 | 0.21 | 0.14 | 0.24 | 0.35 | 0.45 | 0.40 |
| 15 T | $11 / 2 \times 1{ }^{15}$ | 0,41 | 1.4 | 0.02 | 0.07 | 0.03 | 0.09 | 0.22 | 0.41 | 0.21 |
| 12 T | $11 / 4 \times \frac{15}{16}$ | 0.35 | 1.2 | 0.02 | 0.03 | 0.03 | 0.05 | 0.24 | 0.30 | 0.22 |

Elements of Pencoyd Angles.


| I. | II. | III. | IV. | v. | VI. | VII. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section number. | Size, in inches. | Thickness. | Area, in square inches. | Weight per foot, in pounds. | Moments of inertia. |  |
|  |  |  |  |  | Axis $A B$. | Axis EF. |
| 880 A | $8 \times 8$ | 1/2 | 7.75 | 26.4 | 48.47 | 19.60 |
| 888A | $81 / 4 \times 81 / 4$ | 1 | 15.29 | 52.8 | 94.14 | 39.01 |
| 660 A | $6 \times 6$ | 3/8 | 4.36 | 14.8 | 15.37 | 6.20 |
| 669A | $61 / 4 \times 61 / 4$ | $\frac{15}{16}$ | 10.65 | 35.9 | 36.69 | 15.48 |
| 550A | $5 \times 5$ | $3 / 8$ | 3.61 | 12.3 | 8.73 | 3.54 |
| 559 A | $51 / 4 \times 51 / 4$ | $\frac{15}{15}$ | 8.77 | 29.4 | 20.72 | 9.09 |
| 440 A | $4 \times 4$ | $\frac{5}{16}$ | 2.40 | 8.2 | 3.69 | 1.50 |
| 447A | $41 / 4 \times 41 / 4$ | $3 / 4$ | 5.69 | 18.6 | 8.71 | 3.82 |
| 350A | $31 / 2 \times 31 / 2$ | $\frac{5}{16}$ | 2.09 | 7.1 | 2.45 | 0.99 |
| 355A | $35 / 8 \times 35 / 8$ | $5 / 8$ | 4.06 | 13.7 | 4.60 | 1.97 |
| 330A | $3 \times 3$ | 1/4 | 1.44 | 4.9 | 1.25 | 0.50 |
| 336A | $3 \frac{3}{16} \times 3^{\frac{3}{16}}$ | 5/8 | 3.51 | 11.5 | 3.01 | 1.32 |
| 275A | $23 / 4 \times 23 / 4$ | 1/4 | 1.31 | 4.5 | 0.95 | 0.39 |
| 279A | $3 \times 3$ | 1/2 | 2.70 | 8.6 | 2.11 | 0.90 |
| 250 A | $21 / 2 \times 21 / 2$ | $\frac{3}{16}$ | 0.90 | 3.1 | 0.54 | 0.22 |
| 255 A | $25 / 8 \times 25 / 8$ | 1/2 | 2.33 | 7.8 | 1.33 | 0.59 |
| 225A | $21 / 4 \times 21 / 4$ | $\frac{3}{16}$ | 0.81 | 2.7 | 0.39 | 0.16 |
| 228A | $2 \frac{7}{16} \times 2 \frac{7}{16}$ | $3 / 8$ | 1.66 | 5.4 | 0.85 | 0.37 |
| 220A | $2 \times 2$ | ${ }^{3}{ }^{3}$ | 0.71 | 2.5 | 0.27 | 0.11 |
| 223A | $2 \frac{3}{16} \times 2 \frac{3}{16}$ | $3 / 8$ | 1.47 | 4.8 | 0.61 | 0.26 |
| 175A | $13 / 4 \times 13 / 4$ | $\frac{3}{16}$ | 0.62 | 2.1 | 0.18 | 0.08 |
| 178A | $1_{16}^{15} \times 1_{15}^{15}$ | $3 / 8$ | 1.28 | 4.1 | 0.39 | 0.18 |
| 150 A | $11 / 2 \times 11 / 2$ | 1/8 | 0.36 | 1.2 | 0.08 | 0.03 |
| 154A | $13 / 4 \times 13 / 4$ | 3/8 | 1.14 | 3.5 | 0.29 | 0.13 |
| 125A | $11 / 4 \times 11 / 4$ | 1/8 | 0.30 | 1.0 | 0.05 | 0.02 |
| 127 A | $13 / 8 \times 13 / 8$ | 1/4 | 0.62 | 2.0 | 0.10 | 0.04 |
| 110A | $1 \times 1$ | 1/8 | 0.23 | 0.8 | 0.02 | 0.01 |
| 112A | $11 / 8 \times 11 / 8$ | 1/4 | 0.49 | 1.5 | 0.05 | 0.02 |

Elements of Pencoyd Angles.


| VIII. | IX. | X . | XI. | I. |
| :---: | :---: | :---: | :---: | :---: |
| Radius of gyration. |  | Resistance. | Distance from base to neutral axis. | Section number. |
| Axis $A B$. | Axis $E F$. | Axis $A B$. | $d$. |  |
| 2.50 | 1.59 | 8.34 | 2.19 | 880A |
| 2.48 | 1.60 | 16.18 | 2.43 | 888A |
| 1.88 | 1.19 | 3.53 | 1.64 | 660 A |
| 1.86 | 1.21 | 8.43 | 1.90 | 669 A |
| 1.56 | 0.99 | 2.42 | 1.39 | 550 A |
| 1.54 | 1.02 | 5.76 | 1.65 | 559 A |
| 1.24 | 0.79 | 1.28 | 1.12 | 440A |
| 1.24 | 0.82 | 3.10 | 1.34 | 447A |
| 1.08 | 0.69 | 0.98 | 0.99 | 350 A |
| 1.06 | 0.70 | 1.84 | 1.13 | 355A |
| 0.93 | 0.59 | 0.58 | 0.84 | 330A |
| 0.93 | 0.61 | 1.39 | 1.02 | 336A |
| 0.85 | 0.55 | 0.48 | 0.78 | 275A |
| 0.88 | 0.58 | 1.02 | 0.93 | 279A |
| 0.77 | 0.49 | 0.30 | 0.70 | 250 A |
| 0.76 | 0.50 | 0.75 | 0.84 | 255A |
| 0.69 | 0.44 | 0.24 | 0.63 | 225 A |
| 0.72 | 0.47 | 0.50 | 0.75 | 228A |
| 0.62 | 0.39 | 0.19 | 0.58 | 220A |
| 0.64 | 0.42 | 0.40 | 0.68 | 223 A |
| 0.54 | 0.36 | 0.15 | 0.51 | 175A |
| 0.55 | 0.38 | 0.30 | 0.63 | 178A |
| 0.47 | 0.28 | 0.07 | 0.42 | 150A |
| 0.50 | 0.34 | 0.25 | 0.57 | 154A |
| 0.41 | 0.26 | 0.06 | 0.35 | 125A |
| 0.40 | 0.25 | 0.11 | 0.43 | 127A |
| 0.29 | 0.21 | 0.03 | 0.30 | 110A |
| 0.32 | 0.20 | 0.07 | 0.37 | 112A |

## Elements of Pencoyd Angles.



| 1. | II. | III. | IV. | V. | VI. | VII. | VIII. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section number. | Size, in iuches. | Thickness. | Area, in square inches. | Weight per foot, pounds. | Moments of inertia. |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & C D . \end{aligned}$ | $\begin{gathered} \text { Axis } \\ E F . \end{gathered}$ |
| 860A | $8 \times 6$ | 1/2 | 6.75 | 23.0 | 44.38 | 21.73 | 12.04 |
| 868A | $81 / 4 \times 61 / 4$ | 1 | 13.29 | 45.6 | 85.34 | 41.67 | 24.76 |
| 730A | $7 \times 31 / 2$ | 1/2 | 5.00 | 17.0 | 25.29 | 4.37 | 3.64 |
| 738A | $71 / 4 \times 33 / 4$ | 1 | 9.79 | 32.5 | 48.59 | 8.47 | 7.47 |
| 650 A | $61 / 2 \times 4$ | 3/8 | 3.80 | 12.9 | 16.83 | 5.03 | 3.29 |
| 659A | $67 / 8 \times 43 / 8$ | $\frac{15}{16}$ | 9.48 | 31.9 | 42.40 | 12.91 | 9.28 |
| 640A | $6 \times 4$ | $3 / 8$ | 3.61 | 12.2 | 13.48 | 4.91 | 3.04 |
| 649 A | $63 / 8 \times 43 / 8$ | $\frac{15}{15}$ | 9.01 | 29.4 | 33.95 | 12.47 | 8.57 |
| 630A | $6 \times 31 / 2$ | $3 / 8$ | 3.42 | 11.6 | 12.82 | 3.32 | 2.39 |
| 639 A | $63 / 8 \times 37 / 8$ | $\frac{15}{16}$ | 8.54 | 28.6 | 32.56 | 7.74 | 6.50 |
| 500 A | $51 / 2 \times 31 / 2$ | 3/8 | 3.23 | 11.0 | 10.15 | 3.28 | 2.14 |
| 504A | $53 / 4 \times 33 / 4$ | 5/8 | 5.47 | 17.9 | 17.62 | 5.85 | 3.82 |
| 540 A | $5 \times 4$ | 3/8 | 3.23 | 11.0 | 8.13 | 4.65 | 2.50 |
| 546A | $5 \frac{3}{16} \times 4 \frac{3}{16}$ | $3 / 4$ | 6.35 | 21.3 | 15.65 | 8.74 | 4.95 |
| 510 A | $5 \times 31 / 2$ | $\frac{5}{16}$ | 2.56 | 8.7 | 6.58 | 2.71 | 1.65 |
| 517A | $51 / 4 \times 33 / 4$ | $3 / 4$ | 6.07 | 20.0 | 15.51 | 6.41 | 4.17 |
| 530A | $5 \times 3$ | $\frac{5}{16}$ | 2.40 | 8.2 | 6.27 | 1.75 | 1.20 |
| 537A | $51 / 4 \times 31 / 4$ | $3 / 4$ | 5.69 | 18.7 | 14.75 | 4.18 | 3.05 |
| 450A | $41 / 2 \times 3$ | ${ }_{15}^{5}$ | 2.25 | 7.7 | 4.72 | 1.72 | 1.10 |
| 457A | $43 / 4 \times 31 / 4$ | $3 / 4$ | 5.32 | 17.4 | 11.04 | 4.07 | 2.96 |
| 410 A | $4 \times 31 / 2$ | $\frac{5}{16}$ | 2.25 | 7.7 | 3.57 | 2.56 | 1.18 |
| 417A | $41 / 4 \times 33 / 4$ | $3 / 4$ | 5.32 | 17.4 | 8.42 | 6.06 | 3.08 |

Elements of Pencoyd Angles.


| IX. | X. | XI. | XII. | XIII. | XIV. | xv. | I. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius of gyratiou. |  |  | Resistance. |  | Distance from base to neutral axis. |  | Section number. |
| $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | Axis <br> $C D$. | $\begin{aligned} & \text { Axis } \\ & E F \text {. } \end{aligned}$ | $\begin{gathered} \text { Axis } \\ A B . \end{gathered}$ | Axis $C D .$ | d. | $l$. |  |
| 2.56 | 1.79 | 1.34 | 8.03 | 4.80 | 2.47 | 1.47 | 860A |
| 2.53 | 1.77 | 1.37 | 15.43 | 9.20 | 2.72 | 1.72 | 868A |
| 2.25 | 0.93 | 0.85 | 5.66 | 1.61 | 2.53 | 0.78 | 730A |
| 2.23 | 0.93 | 0.87 | 10.85 | 3.10 | 2.77 | 1.02 | 738A |
| 2.10 | 1.15 | 0.93 | 3.87 | 1.62 | 2.15 | 0.90 | 650 A |
| 2.12 | 1.17 | 0.99 | 9.58 | 4.07 | 2.45 | 1.20 | 659 A |
| 1.93 | 1.17 | 0.92 | 3.32 | 1.60 | 1.94 | 0.94 | 610 A |
| 1.91 | 1.18 | 0.98 | 8.21 | 3.98 | 2.24 | 1.24 | 649 A |
| 1.91 | 0.99 | 0.84 | 3.24 | 1.23 | 2.04 | 0.79 | 630 A |
| 1.95 | 0.95 | 0.87 | 8.05 | 2.77 | 2.33 | 1.08 | 639 A |
| 1.77 | 1.01 | 0.81 | 2.76 | 1.22 | 1.82 | 0.82 | 500 A |
| 1.79 | 1.03 | 0.84 | 4.66 | 2.10 | 1.97 | 0.97 | 501 A |
| 1.59 | 1.20 | 0.88 | 2.34 | 1.57 | 1.53 | 1.03 | 540 A |
| 1.57 | 1.17 | 0.88 | 4.50 | 2.93 | 1.71 | 1.21 | 546 A |
| 1.60 | 1.03 | 0.80 | 1.93 | 1.02 | 1.59 | 0.84 | 510 A |
| 1.60 | 1.03 | 0.83 | 4.51 | 2.38 | 1.81 | 1.06 | 517A |
| 1.62 | 0.85 | 0.71 | 1.59 | 0.75 | 1.68 | 0.68 | 530A |
| 1.61 | 0.86 | 0.73 | 4.40 | 1.78 | 1.90 | 0.90 | 537 A |
| 1.45 | 0.87 | 0.70 | 1.55 | 0.75 | 1.46 | 0.71 | 450 A |
| 1.44 | 0.87 | 0.75 | 3.61 | 1.76 | 1.69 | 0.94 | 457 A |
| 1.26 | 1.07 | 0.72 | 1.27 | 1.00 | 1.18 | 0.93 | 410A |
| 1.26 | 1.07 | 0.76 | 2.95 | 2.33 | 1.10 | 1.15 | 417 A |

Section Elements.
Elements of Pencoyd Angles.


Elements of Pencoyd Angles.


| IX. | X. | XI. | XII. | XIII. | XIV. | XV. | I. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius of gyration. |  |  | Resistance. |  | Distance from base to neutral axis. |  | Section number. |
| $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & \text { CD. } \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & E F \text {. } \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & A B . \end{aligned}$ | $\begin{aligned} & \text { Axis } \\ & \text { C'D. } \end{aligned}$ | $d$. | $l$. |  |
| 1.27 | 0.89 | 0.67 | 1.23 | 0.73 | 1.26 | 0.76 | 430A |
| 1.25 | 0.80 | 0.67 | 2.33 | 1.16 | 1.40 | 0.90 | 435A |
| 1.10 | 0.91 | 0.64 | 0.95 | 0.73 | 1.06 | 0.81 | 300A |
| 1.13 | 0.95 | 0.69 | 2.00 | 1.53 | 1.25 | 1.00 | 305A |
| 1.12 | 0.74 | 0.56 | 0.76 | 0.41 | 1.11 | 0.61 | 310 A |
| 1.15 | 0.77 | 0.59 | 1.58 | 0.88 | 1.26 | 0.76 | 314A |
| 1.13 | 0.56 | 0.48 | 0.72 | 0.27 | 1.21 | 0.46 | 316A |
| 1.13 | 0.57 | 0.48 | 1.09 | 0.41 | 1.28 | 0.53 | 318A |
| 0.94 | 0.75 | 0.56 | 0.55 | 0.40 | 0.92 | 0.67 | 325A |
| 0.99 | 0.80 | 0.53 | 1.20 | 0.88 | 1.05 | 0.80 | 329 A |
| 0.96 | 0.58 | 0.45 | 0.54 | 0.26 | 0.99 | 0.49 | 320A |
| 0.99 | 0.61 | 0.18 | 1.14 | 0.57 | 1.14 | 0.61 | 324 A |
| 0.79 | 0.60 | 0.40 | 0.29 | 0.19 | 0.76 | 0.51 | 200A |
| 0.85 | 0.66 | 0.44 | 0.88 | 0.60 | 0.94 | 0.69 | 205A |
| 0.72 | 0.42 | 0.35 | 0.23 | 0.11 | 0.74 | 0.37 | 206A |
| 0.73 | 0.46 | 0.36 | 0.46 | 0.24 | 0.86 | 0.48 | 209A |
| 0.63 | 0.44 | 0.34 | 0.18 | 0.11 | 0.64 | 0.39 | 215 A |
| 0.64 | 0.48 | 0.34 | 0.36 | 0.24 | 0.76 | 0.50 | 218A |
| 0.64 | 0.35 | 0.30 | 0.18 | 0.07 | 0.69 | 0.31 | 210A |
| 0.65 | 0.38 | 0.32 | 0.36 | 0.17 | 0.80 | 0.42 | 213A |

## Radii of Gyration for Two Angles, with Sides Parallel.

The radii of gyration correspond to axes shown.


| Size, in inches. | Thickness. | Weight per foot, in pounds. | $d$. | Radius of gyration. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{0}$. | $r_{1}$. | $\mathrm{r}_{2}$. | $r_{3}$. |
| $8 \times 8$ | 1/2 | 26.4 | 2.19 | 2.50 | 3.32 | 3.45 | 3.58 |
| $81 / 4 \times 81 / 4$ | 1 | 52.8 | 2.43 | 2.48 | 3.47 | 3.61 | 3.74 |
| $6 \times 6$ | 3/8 | 14.8 | 1.64 | 1.88 | 2.49 | 2.62 | 2.76 |
| $61 / 4 \times 61 / 4$ | $\frac{15}{16}$ | 35.9 | 1.90 | 1.86 | 2.66 | 2.80 | 2.94 |
| $5 \times 5$ | $3 / 8$ | 12.3 | 1.39 | 1.56 | 2.09 | 2.22 | 2.35 |
| $51 / 4 \times 51 / 4$ | $\frac{15}{16}$ | 29.4 | 1.65 | 1.54 | 2.26 | 2.40 | 2.54 |
| $4 \times 4$ | $\frac{5}{16}$ | 8.2 | 1.12 | 1.24 | 1.67 | 1.80 | 1.94 |
| $41 / 4 \times 41 / 4$ | $3 / 4$ | 18.6 | 1.34 | 1.24 | 1.82 | 1.97 | 2.12 |
| $31 / 2 \times 31 / 2$ | $\frac{5}{16}$ | 7.1 | 0.99 | 1.08 | 1.46 | 1.60 | 1.74 |
| $35 / 8 \times 35 / 8$ | $5 / 8$ | 13.7 | 1.13 | 1.06 | 1.55 | 1.69 | 1.84 |
| $3 \times 3$ | $1 / 4$ | 4.9 | 0.84 | 0.93 | 1.25 | 1.39 | 1.53 |
| $3 \frac{3}{16} \times 3 \frac{3}{16}$ | $5 / 8$ | 11.5 | 1.02 | 0.93 | 1.38 | 1.52 | 1.68 |
| $23 / 4 \times 23 / 4$ | 1/4 | 4.5 | 0.78 | 0.85 | 1.15 | 1.29 | 1.43 |
| $3 \times 3$ | 1/2 | 8.6 | 0.93 | 0.88 | 1.28 | 1.42 | 1.57 |
| $21 / 2 \times 21 / 2$ | ${ }^{3} 6$ | 3.1 | $0.70^{\circ}$ | 0.77 | 1.04 | 1.17 | 1.32 |
| $25 / 8 \times 25 / 8$ | 1/2 | 7.8 | 0.84 | 0.76 | 1.13 | 1.28 | 1.43 |
| $21 / 4 \times 21 / 4$ | $\frac{3}{16}$ | 2.7 | 0.63 | 0.69 | 0.93 | 1.07 | 1.21 |
| $2 \frac{7}{16} \times 2 \frac{7}{16}$ | $3 / 8$ | 5.4 | 0.75 | 0.72 | 1.04 | 1.18 | 1.34 |
| $2 \times 2$ | $\frac{3}{16}$ | 2.5 | 0.58 | 0.62 | 0.85 | 0.99 | 1.14 |
| $2 \frac{3}{16} \times 2 \frac{3}{16}$ | $3 / 8$ | 4.8 | 0.68 | 0.64 | 0.93 | 1.08 | 1.23 |
| $13 / 4 \times 13 / 4$ | $\frac{3}{16}$ | 2.1 | 0.51 | 0.54 | 0.74 | 0.88 | 1.04 |
| $1 \frac{1}{15} \times 1{ }^{\frac{1}{15}}$ | $3 / 8$ | 4.1 | 0.63 | 0.55 | 0.84 | 0.98 | 1.14 |
| $11 / 2 \times 11 / 2$ | 1/8 | 1.2 | 0.42 | 0.47 | 0.63 | 0.77 | 0.92 |
| $13 / 4 \times 13 / 4$ | $3 / 8$ | 3.5 | 0.57 | 0.50 | 0.76 | 0.91 | 1.07 |
| $11 / 4 \times 11 / 4$ | 1/8 | 1.0 | 0.35 | 0.41 | 0.54 | 0.68 | 0.83 |
| $13 / 8 \times 13 / 8$ | 1/4 | 2.0 | 0.43 | 0.40 | 0.59 | 0.73 | 0.90 |
| $1 \times 1$ | 1/8 | 0.8 | 0.30 | 0.29 | 0.42 | 0.57 | 0.73 |
| $11 / 8 \times 11 / 8$ | 1/4 | 1.5 | 0.37 | 0.32 | 0.49 | 0.64 | 0.81 |

$r_{1}, r_{2}$, and $r_{3}$ will also be radii of gyration for star columns.

## Radii of Gyration for Two Angles, with Sides Parallel.

The radii of gyration correspond to axes shown.


| Size, in inches. | Thickness. | Weight per foot, in pounds. | $d$. | Radius of gyration. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{0}$. | $r_{1}$. | $r_{2}$. | $r_{3}$. |
| $8 \times 6$ | 1/2 | 23.0 | 2.47 | 2.56 | 2.32 | 2.44 | 2.57 |
| $81 / 4 \times 61 / 4$ | 1 | 45.6 | 2.72 | 2.53 | 2.47 | 2.60 | 2.74 |
| $7 \times 31 / 2$ | 1/2 | 17.0 | 2.53 | 2.25 | 1.21 | 1.34 | 1.48 |
| $71 / 4 \times 33 / 4$ | 1 | 32.5 | 2.77 | 2.23 | 1.38 | 1.51 | 1.68 |
| $61 / 2 \times 4$ | $3 / 8$ | 12.9 | 2.15 | 2.10 | 1.46 | 1.58 | 1.72 |
| $67 / 8 \times 43 / 8$ | $\frac{15}{16}$ | 31.9 | 2.45 | 2.12 | 1.68 | 1.81 | 1.96 |
| $6 \times 4$ | 3/8 | 12.2 | 1.94 | 1.93 | 1.50 | 1.62 | 1.76 |
| $63 / 8 \times 43 / 8$ | $\frac{15}{16}$ | 29.4 | 2.24 | 1.94 | 1.71 | 1.85 | 2.00 |
| $6 \times 31 / 2$ | 3/8 | 11.6 | 2.04 | 1.94 | 1.27 | 1.39 | 1.53 |
| $63 / 8 \times 37 / 8$ | $\frac{15}{16}$ | 28.6 | 2.33 | 1.95 | 1.44 | 1.58 | 1.74 |
| $51 / 2 \times 31 / 2$ | 3/8 | 11.0 | 1.82 | 1.77 | 1.30 | 1.43 | 1.56 |
| $53 / 4 \times 33 / 4$ | 5/8 | 17.9 | 1.97 | 1.79 | 1.41 | 1.55 | 1.69 |
| $5 \times 4$ | 3/8 | 11.0 | 1.53 | 1.59 | 1.58 | 1.71 | 1.85 |
| $5_{16} \frac{3}{} \times 4_{1 \frac{3}{3}}$ | $3 / 4$ | 21.3 | 1.71 | 1.57 | 1.68 | 1.82 | 1.97 |
| $5 \times 31 / 2$ | $\frac{5}{16}$ | 8.7 | 1.59 | 1.60 | 1.33 | 1.45 | 1.59 |
| $51 / 4 \times 33 / 4$ | $3 / 4$ | 20.0 | 1.81 | 1.60 | 1.48 | 1.62 | 1.77 |
| $5 \times 3$ | $\frac{5}{16}$ | 8.2 | 1.68 | 1.62 | 1.09 | 1.21 | 1.35 |
| $51 / 4 \times 31 / 4$ | $3 / 4$ | 18.7 | 1.90 | 1.61 | 1.24 | 1.39 | 1.54 |
| $41 / 2 \times 3$ | $\frac{5}{16}$ | 7.7 | 1.46 | 1.45 | 1.12 | 1.25 | 1.39 |
| $43 / 4 \times 31 / 4$ | $3 / 4$ | 17.4 | 1.69 | 1.44 | 1.28 | 1.42 | 1.58 |

## Radii of Gyration for Two Angles, with Sides Parallel.

The radii of gyration correspond to axes shown.


| Size, in inches. | Thickness. | Weight per foot, in pounds. | d. | Radius of gyration. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{0}$. | $r_{1}$. | $r_{2}$. | $r_{3}$ |
| $4 \times 31 / 2$ | $\frac{5}{16}$ | 7.7 | 1.18 | 1.26 | 1.42 | 1.55 | 1.69 |
| $41 / 4 \times 33 / 4$ | $3 / 4$ | 17.4 | 1.40 | 1.26 | 1.57 | 1.71 | 1.86 |
| $4 \times 3$ | $\frac{5}{16}$ | 7.1 | 1.26 | 1.27 | 1.17 | 1.30 | 1.44 |
| $41 / 8 \times 31 / 8$ | 5/8 | 13.8 | 1.40 | 1.25 | 1.20 | 1.35 | 1.50 |
| $31 / 2 \times 3$ | $\frac{5}{16}$ | 6.6 | 1.06 | 1.10 | 1.22 | 1.35 | 1.49 |
| $3 \frac{13}{16} \times 3 \frac{5}{16}$ | 5/8 | 12.9 | 1.25 | 1.13 | 1.38 | 1.52 | 1.67 |
| $31 / 2 \times 21 / 2$ | 1/4 | 4.9 | 1.11 | 1.12 | 0.97 | 1.09 | 1.23 |
| $33 / 4 \times 23 / 4$ | 1/2 | 9.4 | 1.26 | 1.15 | 1.08 | 1.22 | 1.37 |
| $31 / 2 \times 2$ | 1/4 | 4.5 | 1.21 | 1.13 | 0.72 | 0.86 | 1.00 |
| $35 / 8 \times 21 / 8$ | 3/8 | 6.6 | 1.28 | 1.13 | 0.78 | 0.92 | 1.07 |
| $3 \times 21 / 2$ | 1/4 | 4.5 | 0.92 | 0.94 | 1.00 | 1.13 | 1.29 |
| $31 / 4 \times 23 / 4$ | 1/2 | 8.7 | 1.05 | 0.99 | 1.13 | 1.27 | 1.42 |
| $3 \times 2$ | 1/4 | 4.1 | 0.99 | 0.96 | 0.76 | 0.89 | 1.04 |
| $31 / 4 \times 21 / 4$ | 1/2 | 7.9 | 1.14 | 0.99 | 0.88 | 1.03 | 1.18 |
| $21 / 2 \times 2$ | ${ }^{3} 6$ | 2.7 | 0.76 | 0.79 | 0.79 | 0.92 | 1.07 |
| $213 \times 2{ }_{16}$ | 1/2 | 7.0 | 0.94 | 0.85 | 0.95 | 1.09 | 1.24 |
| $21 / 4 \times 11 / 2$ | $\frac{3}{16}$ | 2.3 | 0.74 | 0.72 | 0.56 | 0.70 | 0.85 |
| $2 \frac{7}{16} \times 1 \frac{11}{16}$ | $3 / 8$ | 4.4 | 0.86 | 0.73 | 0.66 | 0.81 | 0.97 |
| $2 \times 11 / 2$ | $\frac{3}{16}$ | 2.1 | 0.64 | 0.63 | 0.59 | 0.73 | 0.88 |
| $2 \frac{3}{16} \times 1 \frac{11}{16}$ | $3 / 8$ | 4.3 | 0.76 | 0.64 | 0.69 | 0.84 | 1.00 |
| $2 \times 11 / 4$ | $\frac{3}{16}$ | 1.9 | 0.69 | 0.64 | 0.47 | 0.61 | 0.77 |
| $2 \frac{3}{16} \times 1 \frac{7}{16}$ | $3 / 8$ | 3.9 | 0.80 | 0.65 | 0.57 | 0.72 | 0.88 |

## Radii of Gyration for Two Angles, with Sides Parallel.

The radii of gyration correspond to axes shown.


| Size, in inches. | Thickness. | Weight per foot, in pounds. | $d$. | Radius of gyration. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{0}$. | $r_{1}$. | $r_{2}$. | $r_{3}$. |
| $8 \times 6$ | 1/2 | 23.0 | 1.47 | 1.79 | 3.56 | 3.69 | 3.83 |
| $81 / 4 \times 61 / 4$ | 1 | 45.6 | 1.72 | 1.77 | 3.71 | 3.85 | 4.00 |
| $7 \times 31 / 2$ | 1/2 | 17.0 | 0.78 | 0.93 | 3.38 | 3.53 | 3.67 |
| $71 / 4 \times 33 / 4$ | 1 | 32.5 | 1.02 | 0.93 | 3.56 | 3.70 | 3.85 |
| $61 / 2 \times 4$ | $3 / 8$ | 12.9 | 0.90 | 1.15 | 3.00 | 3.14 | 3.28 |
| $67 / 8 \times 43 / 8$ | $\frac{1}{15}$ | 31.9 | 1.20 | 1.17 | 3.24 | 3.38 | 3.53 |
| $6 \times 4$ | $3 / 8$ | 12.2 | 0.94 | 1.17 | 2.74 | 2.87 | 3.01 |
| $63 / 8 \times 43 / 8$ | ${ }_{1}^{15}$ | 29.4 | 1.24 | 1.18 | 2.96 | 3.11 | 3.26 |
| $6 \times 31 / 2$ | 3/8 | 11.6 | 0.79 | 0.99 | 2.81 | 2.95 | 3.10 |
| $63 / 8 \times 37 / 8$ | $\frac{15}{15}$ | 28.6 | 1.08 | 0.95 | 3.04 | 3.18 | 3.33 |
| $51 / 2 \times 31 / 2$ | 3/8 | 11.0 | 0.82 | 1.01 | 2.54 | 2.68 | 2.82 |
| $53 / 4 \times 33 / 4$ | 5/8 | 17.9 | 0.97 | 1.03 | 2.66 | 2.80 | 2.95 |
| $5 \times 4$ | $3 / 8$ | 11.0 | 1.03 | 1.20 | 2.21 | 2.34 | 2.48 |
| $5_{16}{ }^{3} \times 4_{16}$ | $3 / 4$ | 21.3 | 1.21 | 1.17 | 2.32 | 2.46 | 2.61 |
| $5 \times 31 / 2$ | $\frac{5}{16}$ | 8.7 | 0.84 | 1.03 | 2.25 | 2.39 | 2.53 |
| $51 / 4 \times 33 / 4$ | $3 / 4$ | 20.0 | 1.06 | 1.03 | 2.41 | 2.56 | 2.71 |
| $5 \times 3$ | $\frac{5}{16}$ | 8.2 | 0.68 | 0.85 | 2.33 | 2.47 | 2.62 |
| $51 / 4 \times 31 / 4$ | $3 / 4$ | 18.7 | 0.90 | 0.86 | 2.49 | 2.64 | 2.79 |
| $41 / 2 \times 3$ | $\frac{5}{16}$ | 7.7 | 0.71 | 0.87 | 2.06 | 2.19 | 2.34 |
| $43 / 4 \times 31 / 4$ | $3 / 4$ | 17.4 | 0.94 | 0.87 | 2.22 | 2.37 | 2.52 |

## Radii of Gyration for Two Angles, with Sides Parallel.

The radii of gyration correspond to axes shown.


| Size, in inches. | Thickness. | Weight per foot, in pounds. | d. | Radius of gyration. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{0}$. | $r_{1}$ | $r_{2}$. | $r_{3}$. |
| $4 \times 31 / 2$ | ${ }_{1}^{56}$ | 7.7 | 0.93 | 1.07 | 1.73 | 1.86 | 2.00 |
| $41 / 4 \times 33 / 4$ | $3 / 4$ | 17.4 | 1.15 | . 1.07 | 1.88 | 2.03 | 2.18 |
| $4 \times 3$ | ${ }_{1}^{5}$ | 7.1 | 0.76 | 0.89 | 1.79 | 1.92 | 2.07 |
| $41 / 8 \times 31 / 8$ | 5/8 | 13.8 | 0.90 | 0.80 | 1.88 | 2.02 | 2.17 |
| $31 / 2 \times 3$ | $\frac{5}{16}$ | 6.6 | 0.81 | 0.91 | 1.53 | 1.66 | 1.81 |
| $3_{116}^{13} \times 3_{1}^{5}$ | 5/8 | 12.9 | 1.00 | 0.95 | 1.68 | 1.82 | 1.98 |
| $31 / 2 \times 21 / 2$ | 1/4 | 4.9 | 0.61 | 0.74 | 1.58 | 1.71 | 1.86 |
| $33 / 4 \times 23 / 4$ | 1/2 | 9.4 | 0.76 | 0.77 | 1.71 | 1.85 | 2.00 |
| $31 / 2 \times 2$ | 1/4 | 4.5 | 0.46 | 0.56 | 1.65 | 1.80 | 1.95 |
| $35 / 8 \times 21 / 8$ | $3 / 8$ | 6.6 | 0.53 | 0.57 | 1.71 | 1.85 | 2.00 |
| $3 \times 21 / 2$ | 1/4 | 4.5 | 0.67 | 0.75 | 1.31 | 1.45 | 1.60 |
| $31 / 4 \times 23 / 4$ | 1/2. | 8.7 | 0.80 | 0.80 | 1.44 | 1.58 | 1.73 |
| $3 \times 2$ | 1/4 | 4.1 | 0.49 | 0.58 | 1.38 | 1.52 | 1.67 |
| $31 / 4 \times 21 / 4$ | $1 / 2$ | 7.9 | 0.64 | 0.61 | 1.51 | 1.66 | 1.81 |
| $21 / 2 \times 2$ | $\frac{3}{16}$ | 2.7 | 0.51 | 0.60 | 1.10 | 1.23 | 1.38 |
| $213 \times 2 \frac{5}{16}$ | 1/2 | 7.0 | 0.69 | 0.66 | 1.27 | 1.41 | 1.56 |
| $21 / 4 \times 11 / 2$ | $\frac{3}{16}$ | 2.3 | 0.37 | 0.42 | 1.03 | 1.17 | 1.33 |
| $2 \frac{7}{16} \times 1 \frac{11}{16}$ | $3 / 8$ | 4.4 | 0.48 | 0.46 | 1.13 | 1.28 | 1.43 |
| $2 \times 11 / 2$ | $\frac{3}{16}$ | 2.1 | 0.39 | 0.44 | 0.90 | 1.04 | 1.19 |
| $2{ }_{1} \frac{3}{6} \times 1{ }_{11}^{11}$ | $3 / 8$ | 4.3 | 0.50 | 0.48 | 0.99 | 1.14 | 1.30 |
| $2 \times 11 / 4$ | $\frac{3}{16}$ | 1.9 | 0.31 | 0.35 | 0.94 | 1.09 | 1.24 |
| $3 \frac{3}{16} \times 1 \frac{7}{16}$ | $3 / 8$ | 3.9 | 0.42 | 0.38 | 1.03 | 1.18 | 1.34 |

## Safe Loads, in Tons of 2000 Pounds, for Hollow Cylindrical Cast=iron Columns.

Passaic Rolling Mill Company.
Square ends. Factor of safety of 8.

|  |  | Length of column, in feet. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |  |  |
| 6 | $3 / 4$ | 47 | 41 | 36 | 31 | 27 | 24 | 21 |  |  | 12.4 | 39 |
| 6 | 4 | 60 | 52 | 46 | 40 | 35 | 30 | 26 |  |  | 15.7 | 49 |
| 7 | 3/4 | 60 | 54 | 48 | 43 | 38 | 34 | 30 | 27 | 24 | 14.7 | 46 |
| 7 | 1 | 76 | 69 | 62 | 55 | 49 | 43 | 38 | 34 | 30 | 18.9 | 60 |
| 8 | $3 / 4$ | 72 | 67 | 61 | 55 | 50 | 45 | 40 | 36 | 33 | 17.1 | 53 |
| 8 |  | 93 | 86 | 78 | 71 | 64 | 58 | 52 | 47 | 42 | 22.0 | 69 |
| 8 | 11/4 | 112 | 104 | 94 | 86 | 77 | 69 | 62 | 56 | 51 | 26.5 | 83 |
| 9 | $3 / 4$ | 85 | 80 | 74 | 68 | 62 | 57 | 52 | 47 | 43 | 19.4 | 61 |
|  |  | 110 | 103 | 95 | 88 | 80 | 73 | 67 | 61 | 55 | 25.1 | 78 |
| 9 | $11 / 4$ | 133 | 125 | 115 | 106 | 97 | 89 | 81 | 73 | 67 | 30.4 | 95 |
| 9 | 11/2 | 155 | 145 | 134 | 123 | 113 | 103 | 91 | 85 | 78 | 35.3 | 110 |
| 10 | 1 | 127 | 120 | 112 | 105 | 97 | 89 | 82 | 76 | 69 | 28.3 | 88 |
| 10 | $11 / 4$ | 154 | 146 | 136 | 127 | 118 | 109 | 100 | 92 | 84 | 34.4 | 107 |
| 10 | $11 / 2$ | 180 | 170 | 159 | 148 | 137 | 127 | 117 | 107 | 98 | 40.1 | 125 |
| 10 | $13 / 4$ | 203 | 192 | 180 | 168 | 155 | 143 | 132 | 121 | 111 | 45.4 | 142 |
| 11 | 1 | 144 | 137 | 129 | 122 | 114 | 106 | 100 | 91 | 85 | 31.4 | 98 |
| 11 | $11 / 4$ | 175 | 167 | 158 | 148 | 139 | 129 | 122 | 112 | 103 | 38.3 | 119 |
| 11 | $11 / 2$ | 204 | 195 | 184 | 173 | 161 | 151 | 143 | 130 | 121 | 44.8 | 140 |
| 11 | $13 / 4$ | 232 | 221 | 209 | 197 | 184 | 172 | 162 | 148 | 137 | 50.9 | 159 |
| 11 | 2 | 258 | 246 | 233 | 219 | 205 | 191 | 181 | 164 | 152 | 56.6 | 176 |
| 12 | 1 | 160 | 154 | 147 | 139 | 131 | 123 | 115 | 108 | 101 | 34.6 | 108 |
| 12 | 11/4 | 196 | 188 | 180 | 170 | 160 | 150 | 141 | 132 | 123 | 42.2 | 131 |
| 12 | $11 / 2$ | 229 | 220 | 210 | 199 | 187 | 176 | 165 | 154 | 144 | 49.5 | 154 |
| 12 | $13 / 4$ | 261 | 251 | 239 | 226 | 213 | 201 | 188 | 176 | 164 | 56.4 | 176 |
| 12 | 2 | 291 | 279 | 266 | 252 | 238 | 224 | 210 | 196 | 183 | 62.8 | 196 |
| 13 | 1 | 177 | 170 | 163 | 156 | 148 | 140 | 132 | 124 | 117 | 37.7 | 118 |
| 13 | 11/4 | 216 | 209 | 200 | 191 | 181 | 172 | 162 | 152 | 143 | 46.1 | 144 |
| 13 | 1112 | 254 | 245 | 23.5 | 224 | 213 | 201 | 190 | 179 | 168 | 54.2 | 169 |
| 13 | $13 / 4$ | 289 | 280 | 268 | 256 | 243 | 229 | 217 | 204 | 192 | 61.9 | 193 |
| 13 | 2 | 324 | 312 | 300 | 286 | 272 | 257 | 242 | 228 | 214 | 69.1 | 216 |
| 14 | 1 | 193 | 187 | 180 | 173 | 165 | 157 | 149 | 141 | 134 | 40.8 | 128 |
| 14 | 11/4 | 237 | 229 | 221 | 212 | 203 | 193 | 183 | 173 | 164 | 50.1 | 156 |
| 14 | 1112 | 278 | 270 | 260 | 250 | 239 | 227 | 215 | 204 | 193 | 58.9 | 184 |
| 14 | $13 / 4$ | 318 | 308 | 297 | 285 | 273 | 260 | 246 | 233 | 220 | 67.4 | 210 |
| 14 | 2 | 356 | 345 | 333 | 320 | 305 | 291 | 276 | 261 | 247 | 75.4 | 235 |
| 15 | 1 | 209 | 204 | 197 | 190 | 183 | 175 | 167 | 159 | 151 | 44.0 | 137 |
| 15 | $11 / 4$ | 257 | 250 | 242 | 233 | 224 | 214 | 205 | 195 | 185 | 54.0 | 168 |
| 15 | 11/2 | 303 | 295 | 285 | 275 | 264 | 253 | 241 | 229 | 218 | 63.6 | 199 |
| 15 | $13 / 4$ | 347 | 337 | 327 | 315 | . 302 | 289 | 276 | 263 | 249 | 72.9 | 227 |
| 15 | 2 | 389 | 378 | 366 | 353 | 339 | 324 | 309 | 294 | 280 | 81.7 | 255 |
| 16 | $11 / 4$ | 277 | 270 | 262 | 254 | 245 | 235 | 225 | 216 | 206 | 57.8 | 180 |
| 16 | 11/2 | 327 | 319 | 311 | 300 | 290 | 278 | 267 | 25.5 | 244 | 68.4 | 214 |
| 16 | $13 / 4$ | 375 | 366 | 356 | 344 | 332 | 319 | 306 | 292 | 279 | 78.4 | 245 |
| 16 | 2 | 421 | 411 | 400 | 387 | 373 | 358 | 343 | 328 | 313 | 88.0 | 275 |
| 16 | $21 / 4$ | 465 | 454 | 441 | 427 | 412 | 396 | 379 | 363 | 346 | 97.2 | 304 |

## Safe Loads, in Tons of 2000 Pounds, for Hollow Square Cast=iron Columns.

Passaic Rolling Mill Company.
Square ends. Factor of safety of 8 .

|  |  | Length of column, in feet. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |  |  |
| 6 | $3 / 4$ | 64 | 57 | 51 | 45 | 40 | 36 | 32 |  |  | 15.8 | 49 |
| 6 | 1 | 81 | 73 | 65 | 58 | 51 | 45 | 40 |  |  | 20.0 | 63 |
| 7 | $3 / 4$ | 80 | 73 | 67 | 61 | 55 | 50 | 45 |  |  | 18.8 | 59 |
| 7 | \% | 102 | 94 | 86 | 78 | 70 | 63 | 57 |  |  | 24.0 | 75 |
| 8 | $3 / 4$ | 96 | 90 | 83 | 77 | 71 | 65 | 59 | 54 | 49 | 21.8 | 68 |
| 8 |  | 123 | 116 | 107 | 99 | 91 | 83 | 76 | 69 | 63 | 28.0 | 88 |
| 8 | 11/4 | 149 | 139 | 129 | 119 | 110 | 100 | 92 | 84 | 76 | 33.8 | 106 |
| 9 | $3 / 4$ | 112 | 106 | 100 | 93 | 87 | 80 | 74 | 69 | 63 | 24.8 | 77 |
| 9 |  | 144 | 137 | 129 | 121 | 112 | 104 | 96 | 89 | 82 | 32.0 | 100 |
| 9 | 11/4 | 175 | 166 | 156 | 146 | 136 | 126 | 116 | 107 | 99 | 38.8 | 121 |
| 9 | 11/2 | 203 | 193 | 182 | 170 | 158 | 146 | 135 | 125 | 115 | 45.0 | 141 |
| 10 | 1 | 166 | 159 | 151 | 142 | 134 | 125 | 117 | 109 | 101 | 36.0 | 113 |
| 10 | 11/4 | 201 | 193 | 183 | 173 | 163 | 152 | 142 | 132 | 123 | 43.8 | 137 |
| 10 | $11 / 2$ | ${ }_{2}^{235}$ | 225 | 214 | 202 | 189 | 177 | 166 | 154 | 143 | 51.0 | 159 |
| 10 | 13/4 | 266 | 254 | 242 | 228 | 215 | 201 | 188 | 175 | 162 | 57.8 | 181 |
| 11 | 1 | 187 | 180 | 172 | 164 | 156 | 147 | 138 | 130 | 122 | 40.0 | 125 |
| 11 | 114 | 227 | 219 | 210 | 200 | 190 | 179 | 169 | 158 | 148 | 48.8 | 152 |
| 11 | $11 / 2$ | 266 | 256 | 246 | 234 | 222 | 209 | 197 | 185 | 174 | 57.0 | 178 |
| 11 | $13 / 4$ | 302 | 291 | 279 | 266 | 252 | 238 | 224 | 210 | 197 | 64.8 | 202 |
| 11 | 2 | 336 | 324 | 310 | 295 | 280 | 264 | 249 | 234 | 219 | 72.0 | 225 |
| 12 | 1 | 208 | 201 | 194 | 186 | 177 | 169 | 160 | 151 | 143 | 44.0 | 138 |
| 12 | 11/4 | 254 | 246 | 237 | 227 | 217 | 206 | 196 | 185 | 174 | 53.8 | 168 |
| 12 | $11 / 2$ | 297 | 288 | 278 | 266 | 254 | 242 | 229 | 217 | 205 | 63.0 | 197 |
| 12 | $13 / 4$ | 338 | 328 | 316 | 303 | 289 | 275 | 261 | 247 | 233 | 71.8 | 224 |
| 12 | 2 | 377 | 366 | 352 | 338 | 323 | 307 | 291 | 275 | 260 | 80.0 | 250 |
| 13 | 1 | 228 | 222 | 215 | 208 | 199 | 191 | 182 | 173 | 164 | 48.0 | 150 |
| 13 | $11 / 4$ | 279 | 272 | 263 | 254 | 244 | 233 | 223 | 212 | 201 | 58.8 | 184 |
| 13 | $11 / 2$ | 328 | 319 | 309 | 298 | 286 | 274 | 261 | 249 | 236 | 69.0 | 216 |
| 13 | $13 / 4$ | 375 | 365 | 353 | 341 | 327 | 313 | 298 | 284 | 270 | 78.8 | 246 |
| 13 | 2 | 419 | 407 | 394 | 380 | 365 | 350 | 334 | 317 | 301 | 88.0 | 275 |
| 14 | 1 | 249 | 243 | 236 | 229 | 221 | 213 | 204 | 195 | 186 | 52.0 | 163 |
| 14 | $11 / 4$ | 305 | 298 | 290 | 281 | 271 | 261 | 250 | 239 | 228 | 63.8 | 199 |
| 14 | $11 / 2$ | 359 | 351 | 341 | 330 | 319 | 307 | 294 | 281 | 268 | 75.0 | 234 |
| 14 | $13 / 4$ | 411 | 401 | 390 | 378 | 365 | 351 | 336 | 322 | 307 | 85.8 | 268 |
| 14 | 2 | 460 | 449 | 437 | 423 | 408 | 393 | 376 | 360 | 344 | 96.0 | 300 |
| 15 | 1 | 270 | 264 | 258 | 250 | 243 | 235 | 226 | 217 | 208 | 56.0 | 175 |
| 15 | 11/4 | 331 | 324 | 316 | 308 | 298 | 288 | 277 | 266 | 255 | 68.8 | 215 |
| 15 | 111 | 390 | 382 | 373 | 362 | 351 | 339 | 327 | 314 | 301 | 81.0 | 253 |
| 15 | $13 / 4$ | 446 | 437 | 427 | 415 | 402 | 388 | 374 | 359 | 345 | 92.8 | 289 |
| 15 | 2 | 501 | 490 | 479 | 465 | 451 | 436 | 420 | 403 | 386 | 104.0 | 325 |
| 16 | $11 / 4$ | 357 | 350 | 343 | 334 | 325 | 315 | 305 | 294 | 286 | 73.8 | 231 |
| 16 | 112 | 421 | 413 | 404 | 394 | 383 | 372 | 359 | 347 | 334 | 87.0 | 272 |
| 16 | $1^{13} / 4$ | 482 | 474 | 463 | 452 | 440 | 426 | 412 | 397 | 383 | 99.8 | 312 |
| 16 | 2 | 541 | 532 | 520 | 507 | 493 | 478 | 463 | 446 | 429 | 112.0 | 350 |
| 16 | 21/4 | 598 | 588 | 575 | 561 | 545 | 529 | 511 | 493 | 475 | 123.8 | 387 |

## Torsion.

When a prismatic body is subjected to the action of a force tending to rotate it about its geometric axis, it opposes to such a force its resistance to torsion. This resistance consists of the moments of the fibre stresses in the cross-section of the prism, and, until the elastic limit is reached, there exists an equilibrium between the external rotating forces on the one hand, and the stress moments of the various elements of the section on the other hand; both being taken with regard to the polar axis through the centre of gravity of the section, and at right angles to it.

In computing these relations it is necessary to use the polar moment of inertia of the section, which may be indicated by $I_{p}$, and determined from the two moments of inertia of the section, taken at right angles to each other through the centre of gravity of the section.

If we have $I_{1}$ and $I_{2}$ to be the moments of inertia of the section of the prism under consideration, we have

$$
\text { Polar Moment of Inertia }=I_{p}=I_{1}+I_{2}
$$

The most usual sections for bodies under torsion are the circle, as in shafting, and the square and rectangle, which occur in various examples of machine framing. The polar moments of inertia for these are given in the annexed table.

Torsion Sections.
Number.

We then have the following relation :
Let $M$ be the statical moment of the external forces at any section of the prism; $I_{p}$, the polar moment of inertia for that section ; $v$, the distance
of the furthest element of the section from the centre of gravity of the section ; $S$, the shearing fibre stress of the material at the distance, $a$, being taken at $\frac{4}{5}$ the permissible fibre stress for direct tension.

Then we have

$$
M=S \frac{I_{p}}{v}
$$

The relative rotation which two sections of a prism at a given distance apart make with each other is called the angle of torsion. This may be represented by $\vartheta$.

If we call the distance between two sections $x$, we have

$$
\frac{d \vartheta}{d x}=\frac{M}{I_{p} G}
$$

in which $G$ is the modulus of torsion for the material used, and is equal to ${ }_{5}^{2}$ of the modulus of elasticity, $E$.

An example will make the application of the formulas clear.
Suppose a round shaft of wrought-iron, 4 inches in diameter and 48 inches long, is held at one end. A twisting force of 1000 pounds is applied at the other end, with a lever arm of 24 inches.

From the equation, $M=S \frac{I_{p}}{v}$, we have

$$
S=\frac{v}{I_{p}} M
$$

For a circular section, $I_{p}=\frac{\pi}{32} d^{4}$, and we have $M=24,000, d=4$, and $v=\frac{d}{2}, \pi=3.1416$.

Hence,

$$
S=\frac{16 d}{\pi d^{4}} \cdot 24,000=1909 \text { pounds. }
$$

To get the angle of torsion we have, from the torsion table,

$$
\vartheta=\frac{S}{G} \cdot \frac{l}{v}=\frac{1909}{11,200,000} \cdot \frac{48}{2}=0.004,
$$

which is the length of arc of torsion for a radius 1 , practically equal to the tangent of the angle ; the corresponding angle being $0^{\circ} 14^{\prime}$.

The following tables give the essential elements for all the conditions of torsion which are of probable occurrence in practice.


## 

Torsion Table.

| Number. | Application. | Moment, M. | Twisting force, $P$. | Angle of torsion, $\vartheta$. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IV. |  | $M=$ the sum of the moments within $x$. | $P=\frac{S I_{p}}{v R}$ | $\begin{aligned} \vartheta & =\frac{P R l_{o}}{I_{p} G} \\ & =\frac{S}{G} \cdot \frac{l_{o}}{v} \end{aligned}$ | General form of Cases I., II., and III. Weakest section at $B$. The value of $\vartheta$ in III. will be reached in IV., when $l_{o}=\frac{l}{3}$. |
| V. |  | In the portion $c$, $M=P R \frac{c_{1}}{l}$ <br> In the portion $c_{1}$, $M=P R \frac{c}{l}$ | When $c_{1}<c$ $P=\frac{S I_{p}}{v R} \cdot \frac{l}{c}$ | $\begin{aligned} \vartheta & =\frac{P R}{I_{p} G} \cdot \frac{c c_{1}}{l} \\ & =\frac{S}{G} \cdot \frac{c_{1}}{l} \end{aligned}$ | The shorter portion, $c_{1}$, is the weaker. |
| VI. |  | $M=P R\left(\frac{1}{2}-\frac{x}{l}\right)$ | $P=2 \frac{S I_{p}}{v R}$ | $\begin{aligned} \vartheta & =1 / 8 \frac{P R l}{I_{p} G} \\ & =1 / 8 \frac{S}{G} \cdot \frac{l}{v} \end{aligned}$ | Weakest points at $A_{1}$ and $B$. |

## Resistance to Internal Pressure.

| Number. | Application. | Pressure, $p$. | Thickness, $\delta$. |
| :---: | :---: | :---: | :---: |
|  |  | $p=S\left(\sqrt{1+\frac{2 \delta}{r}}-1\right)$ | $\frac{\delta}{r}=\frac{p}{S}\left(1+\frac{p}{S}\right)$ |
| $\begin{aligned} & \dot{0} \\ & \text { © } \\ & \text { İ } \\ & \text { O } \\ & \dot{ヨ} \end{aligned}$ |  | $p=2 S \frac{\delta}{r}$ | $\frac{\delta}{r}=\frac{p}{2 S}$ |
|  |  | $p=S\left(\frac{\delta}{r}\right)^{2}$ | $\frac{\delta}{r}=\sqrt{\frac{p}{S}}$ |
|  |  | $p=\frac{3}{2} S\left(\frac{\delta}{r}\right)^{2}$ | $\frac{\delta}{r}=\sqrt{\frac{2}{3}} \sqrt{\frac{p}{S}}$ |

$p=$ internal pressure, in pounds per square inch.
$S=$ fibre stress upon material.
$E=$ modulus of elasticity.
$\delta=$ thickness of plate, in inches.
For the deflection, $f$, we have for Case III.,

$$
\frac{f}{\delta}=\frac{5}{6}\left(\frac{r}{\delta}\right)^{4} \frac{p}{E}
$$

and for Case IV.,

$$
\frac{f}{\delta}=\frac{1}{6}\left(\frac{r}{\delta}\right)^{4} \frac{p}{E}
$$

## Thick Cylinders.

When the walls of a cylinder are very thick, as in the case of a hydraulic press, the material is not all strained uniformly for agiven internal stress, the greater strain taking place upon the inner portion. The resistance under such conditions may be found by the formulas of Lamé:

$$
p=S \frac{(r+\delta)^{2}-r^{2}}{(r+\delta)^{2}+r^{2}} \quad \text { and } \quad \frac{\delta}{r}=\sqrt{\frac{S+p}{S-p}}-1
$$

in which $r$ is the internal radius, $\delta$ is the thickness, and $S$ is the fibre stress.
When $p$ reaches the elastic limit of the material the inner fibres will begin to yield, regardless of the thickness of the walls.

For a discussion of the strengthening of cylinders by hooping, see Reuleaux's "Constructor."

## Springs.

The deflection and supporting power of the various forms of springs exhibit very fully the laws of bending, torsion, and elasticity; and the data for various forms are given in the following tables, as prepared by Reuleaux.

The quantities in the tables are
$\boldsymbol{E}=$ modulus of elasticity $=30,000,000$ for steel ;
$G=$ modulus of torsion $=\frac{2}{5} E$;
$S=$ fibre stress;
$\vartheta=$ angle of torsion $=$ length of arc for radius 1 .
The other data used in the formulas are indicated in the illustrations.

| ＊səu！l pə170p <br> әч7 Кq umoys se <br>  ＇名u！xds JとIns <br>  <br>  | $\frac{q}{2} \cdot \frac{H}{S}=\frac{l}{f}$ | $\frac{\varepsilon q q!d}{\varepsilon 2 d} 9=f$ |  $\frac{2}{{ }_{z} 4 q ?} \cdot \frac{9}{S}=d$ |  |  | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  <br>  риә әчд әวџิ๐ะ uI －वu！puəq <br>  แıoj！̣и јо $\kappa$ кpog | $\frac{q}{2} \cdot \frac{G}{S}=\frac{l}{f}$ | $\frac{\varepsilon Y q 9 A}{8 l d} 9=f$ | $\frac{2}{z \nmid q} \cdot \frac{9}{S}=d$ |  |  | E－ |
| $48 / r=$ <br> риә әч7 ภи！ฺฺセய イq pa．ınəəs əq IIIM $\frac{2}{x} \mathcal{L}=\frac{y}{\kappa}$ O7 ио！ุвய！！xordde uV | $\frac{q}{2} \cdot \frac{d}{S}=\frac{l}{f}$ | $\frac{\varepsilon^{\varepsilon} Y q \mathcal{H}}{82 d} 9=f$ | $\frac{2}{8 थ q} \cdot \frac{9}{S}=d$ |  |  | － |
| ＇syırexoy |  | －นо！əәнә【 | －xәmod 3u！ | 匕 0 0 0 0 0 | －60．0）${ }^{\text {d }}$ | 㾔 |

## s．su！ads



|  |  |  |
| :---: | :---: | :---: |
|  |  | $\begin{gathered} \sim \\ \sim \\ \sim \end{gathered}$ |
| $f-R \vartheta=\frac{32}{\pi} \cdot \frac{P}{G} \cdot \frac{R^{2} l}{d^{4}}$ |  |  |
|  |  |  |
|  |  | punox fo suịıas reo!̣ән |
|  |  |  |
| ＇IIA | 'IIIA | ${ }^{\prime} \mathrm{XI}$ |

Springs．

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \sim 10 \\ & \sim \mid O \\ & 1 \mid \% \\ & 1 / 2 \end{aligned}$ |  |
|  |  |  |  |
|  |  | $\begin{aligned} & \approx \mid \& 4 \\ & =10 \\ & v_{2} \\ & \text { II } \\ & 4 \end{aligned}$ |  |
| －amen |  |  |  |
| . |  |  |  |
| ${ }^{\circ} \mathrm{N}$ I | ${ }^{\prime} \mathbf{X}$ | ${ }^{\text {＇IX }}$ | IIX |

## Specifications for Structural Steel.

Condensed from the Standard Specifications of the Association of American Steel Manufacturers.

## Process of Manufacture.

1. Steel shall be made by either the open hearth or Bessemer process.

## Test Pieces.

2. All tests and inspections shall be made at place of manufacture prior to shipment.
3. The tensile strength, limit of elasticity, and ductility shall be determined from a standard test piece, planed or turned parallel throughout its entire length, cut from the finished material. The elongation shall be measured on an original length of 8 inches, except when the thickness of the finished material is $\frac{5}{16}$ of an inch or less, in which case the elongation shall be measured in a length equal to sixteen times the thickness; and except in rounds of $5 / 8$ of an inch or less in diameter, in which case the elongation shall be measured in a length equal to eight times the diameter of section tested. Two test pieces shall be taken from each heat of finished material, one for tension and one for bending.
4. Every finished piece of steel shall be stamped with the heat number. Steel for pins shall have the heat numbers stamped on the ends. Rivet and lacing steel, and small pieces for tie plates and stiffeners, may be shipped in bundles securely wired together, with the heat number on a metal tag attached.

## Finish.

5. Finished bars must be free from injurious seams, flaws, or cracks, and have a workmanlike finish.

## Chemical Properties.

6. Steel for buildings, train sheds, highway bridges, and similar structures shall not contain more than 0.10 per cent. of phosphorus.
7. Steel for railway bridges shall not contain more than 0.08 per cent. of phosphorus.

## Physical Properties.

8. Structural steel shall be of three grades: rivet steel, soft steel, and medium steel.

## Rivet Steel.

9. Rivet steel shall have an ultimate strength of 48,000 to 58,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 26 per cent., and shall bend 180 degrees, flat on itself, without fracture on the outside of the bent portion.

## Soft Steel.

10. Soft steel shall have an ultimate strength of 52,000 to 62,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 25 per cent., and shall bend 180 degrees, flat on itself, without fracture on the outside of the bent portion.

## Medium Steel.

11. Medium steel shall have an ultimate strength of 60,000 to 70,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 22 per cent., and shall bend 180 degrees, around a curve having a diameter equal to the thickness of the piece tested, without fracture on the outside of the bent portion.

## Pin Steel.

12. Pins made from either of the above-mentioned grades of steel shall, on specimen test pieces cutata depth of 1 inch from the surface of finished material, fill the physical requirements of the grade of steel from which they are rolled for ultimate strength, elastic limit, and bending, but the required percentage of elongation shall be decreased 5 per cent.

## Eye Bar Steel.

13. Eye bar material $1 \frac{1}{2}$ inches and less in thickness, made of either of the above-mentioned grades of steel, shall, on test pieces cut from finished material, fill the requirements of the grade of steel from which it is rolled. For thicknesses greater than $11 / 2$ inches there will be allowed a reduction in percentage of elongation of 1 per cent. for each $1 / 8$ of an inch increase in thickness, to a minimum of 20 per cent. for medium steel and 22 per cent. for soft steel.

## Full Size Test of Steel Eye Bars.

14. Full size tests of steel eye bars shall be required to show not less than 10 per cent. elongation in the body of the bar, and a tensile strength not more than 5000 pounds below the minimum tensile strength required in specimen tests of the grade of steel from which the bars are rolled. The bars will be required to break in the body; should a bar break in the head, but develop 10 per cent. elongation and the ultimate strength specified, it shall not be cause for rejection, provided not more than one-third of the total number of bars tested break in the head.

## Variation in Weight.

15. A variation in cross-section or weight of more than $21 / 2$ per cent. from that specified will be sufficient cause for rejection, except in the case of sheared plates.

When sheared plates are ordered by weight, the permissible variation shall not be more than $2 \frac{1}{2}$ per cent. from that specified, except for plates $1 / 4^{\prime \prime}$ to $\frac{5}{16}{ }^{\prime \prime}$ thick ( 10.2 to 12.75 pounds per square foot), which, when ordered to weight, shall not average a variation greater than 5 per cent. above or below the theoretical weight for plates over 75 inches wide.

When sheared plates are ordered to gauge, the overweight shall not exceed the percentages given in the following table:

## Percentages of Allowable Overweights for Sheared Plates when ordered to Gauge.

| Thickness of plate. | Width of plate. |  |  |
| :---: | :---: | :---: | :---: |
|  | Up to 75 inches. | 75 to 100 inches. | Over 100 inches. |
|  | 10 | 14 |  |
| $\frac{5}{16}$ inch | 8 | 12 | 18 |
| $3 / 8$ inch | 7 | 10 | 16 |
| $\frac{7}{18}$ inch | 6 | 8 | 13 |
| $1 / 2$ inch | 5 | 7 | 10 |
| 9 inch | $41 / 2$ | $61 / 2$ | 9 |
| $5 / 8$ inch | 4 | 6 | $81 / 2$ |
| Over $5 / 8$ inch | $31 / 2$ | 5 | 8 |
|  |  |  | $61 / 2$ |

## Timber.

The following data for the strength of wooden posts and beams are based upon tests made at the government arsenal at Watertown and by the Forestry Division of the United States Department of Agriculture.

Thus, tests made on pillars of white and yellow pine at Watertown gave the following results for the breaking loads in pounds per square inch:

|  | Ratio of length to thickness. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| Yellow pine. | 4400 | 4275 | 4100 | 3875 | 3600 | 3275 | 2900 | 2475 | 2130 | 1760 | 1480 |
| White pine | 2450 | 2390 | 2300 | 2190 | 2000 | 1890 | 1700 | 1490 | 1320 | 1090 | 910 |
| Hemlock | 2200 | 2150 | 2050 | 1950 | 1850 | 1700 | 1530 | 1340 | 1190 | 980 | 820 |

The following general facts concerning the physical properties of timber are deduced from the experiments of the Forestry Division :

1. That bleeding (the experiments were made on long leaf yellow pine) has no material effect on the strength of timber; the flexibility is slightly increased, but the bled timber will probably endure exposure to the weather as well as the other.
2. That moisture reduces the strength of timber, whether that moisture be the sap or water absorbed after seasoning. In general, seasoned timber, or with not more than 12 per cent. moisture, is from 75 per cent. to 100 per cent. stronger than green timber.
3. When artificially dried, timber contains a uniform percentage of moisture throughout, a condition requiring months or even years to attain in air-dried, heavy timber.

When kiln-dried at usual temperatures, wood shows no loss of strength compared with air-dried timber of the same percentage of moisture. The effect of very high temperatures and pressures (as used in vulcanizing) is lower strengths than when air-dried.
4. Large timbers are equal in strength per square inch of section, tested every way, to small timbers, provided they are equally sound and contain the same percentage of moisture.
5. The tests seem to indicate that the strength of woods of uniform structure increases with the specific gravity, irrespective of species,-i.e., in general, the heaviest wood is the strongest. Oak seems not to belong to the list of woods to which this general remark applies.

The data on properties of timbers must be used with considerable judgment and caution. Seasoned wood will gain weight to the extent of 5 to 15 per cent. if exposed to the weather, and this excess will be reduced if the wood is kept a week in a warm, dry place.

Some of the individual tests made by the United States Forestry Division varied considerably from the mean values given in the table. In the case of tension tests, which varied most from the average, a few were as low as 25 per cent., while others reached 190 per cent. of the mean.

The elastic limit given in connection with the data from the United States Forestry Division is the relative elastic limit suggested by Professor Johnson, as there is no definite "elastic limit" in timber similar to that in some metals. This relative elastic limit is taken where the rate of deflection is 50 per cent. more than it is under initial loads.

Modulus of ultimate bending is extreme fibre stress on beam at rupture. The modulus of elastic bending is the fibre stress when the rate of deflection is increased 50 per cent. The modulus of elasticity is derived from transverse tests.

## Physical Properties of Wood.

Seasoned timber, moisture 12 per cent. and under. Stresses given in pounds per square inch.

| Name of material. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ash (American) | 17000 | 7200 | 1900 | 1100 | 6280 |
| Birch | 15000 | 8000 |  |  | 5600 |
| Box | 20000 | 10300 |  |  |  |
| Cedar (white) |  | 5200 | 700 | 400 | 1370 |
| Cedar (American red) | 10800 | 6000 |  |  |  |
| Chestnut | 11500 | 5300 |  |  | 1530 |
| Cottonwood (see poplar)........ |  |  |  |  |  |
| Douglas spruce (Oregon pine)... | 13000 | 5700 | 800 | 500 |  |
|  | 13000 |  |  | 1300 |  |
| Gum |  | 7100 | 1400 | 800 | 5890 |
| Hemlock | 8700 | 5700 |  | 400 | 2750 |
| Hickory (American average) ... | 19600 | 9500 | 2700 | 1100 | 6000 |
| Lignum vitæ | 11800 | 9900 |  |  |  |
| Mahogany (Spanish)............. | 14900 | 8200 |  |  |  |
| Maple | 11150 | 7150 | 1800 | 500 | 6350 |
| Oregon pine (see Douglas spruce) |  |  |  |  |  |
| Oak (red) | 10250 | 7200 | 2300 | 1100 |  |
| Oak (black or yellow) | 10000 | 7300 | 1800 | 1100 |  |
| Oak (white) | 13600 | 8500 | 2200 | 1000 | 4400 |
| Oak (live) |  | 10400 |  |  | 8480 |
| Pine (Southern yellow, longleafed) | 13000 | 8000 | 1260 | 835 | 5600 |
| Pine (Cuban) | 13000 | 8700 | 1200 | 770 |  |
| Pine (loblolly) | 13000 | 7400 | 1150 | 800 |  |
| Pine (white) | 10000 | 5400 | 700 | 400 | 2500 |
| Poplar. | 7000 | 5000 |  |  |  |
| Spruce (Northern) . ............. | 11000 | 6000 |  | 400 | 3250 |
| Spruce pine (pinus glabra of Southern States) | 12000 | 7300 | 1200 | 800 |  |
| Walnut (black) ................. | 10500 | 7500 | 2500 |  | 4700 |

Physical Properties of Wood.
Seasoned timber, moisture 12 per cent. and under. Stresses given in pounds per square inch.

| Elastic limit. | Modulus of elasticity. | Modulus of ultimate bending. | Modulus of elastic bending. | Ordinary working stress. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Tension. | Compression. | Transverse. |  |
| 7900 | 1640000 | 10800 | 7900 | 2000 | 1000 | 1200 | 39 |
|  | 1645000 | 11700 |  | - 2000 | 1000 | 1200 | 33 |
|  |  |  |  | 2500 | 1200 | 1500 |  |
| 5800 | 910000 | 6300 | 5800 | 1200 | 600 | 800 | 23 |
|  |  | 7200 |  | 1400 | 700 | 900 | .... |
|  | 1140000 | 8100 |  | 1400 | 600 | 900 | 41 |
| 6400 | 1680000 | 7900 | 6400 | 1400 | 700 | 1000 | 32 |
|  | 1530000 |  |  |  |  |  |  |
| 7800 | 1700000 | 9500 | 7800 | 1200 | 900 | 900 | 37 |
|  |  | 7100 |  |  |  | 750 | 25 |
| 11200 | 2390000 | 16000 | 11000 | 2000 | 1200 | 1800 | 50 |
|  |  | 11700 |  | 1500 | 1200 | 1500 | 83 |
|  | 1255000 | 9550 |  | 1500 | 1200 | 1500 | 53 |
|  |  | 10000 |  |  |  |  | 49 |
| 9200 | 1970000 | 11400 | 9200 | 1400 | 900 | 1200 | 45 |
| 8100 | 1740000 | 10800 | 8100 | 1400 | 900 | 1200 | 45 |
| 9600 | 2090000 | 13100 | 9600 | 1700 | 1000 | 1500 | 50 |
| 9040 | 1851500 | 11300 |  |  |  |  |  |
| 10000 | 2070000 | 12600 | 9500 | 1600 | 1000 | 1500 | 38 |
| 11100 | 2370000 | 13600 | 10640 |  |  |  | .... |
| 9200 | 2050000 | 11300 | 9400 | 1600 | 900 | 1200 | 33 |
| 6400 | 1390000 | 7900 | 6400 | 1200 | 700 | 900 | 24 |
|  |  | 6500 |  | 900 | 600 | 750 |  |
|  | 1400000 | 8000 |  | 1200 | 700 | 900 | 26 |
| 8400 | 1640000 | 10000 | 8400 | 1200 | 700 | 900 | 30 |
| 5700 | 1306000 | 8000 |  | 1000 | 1000 | 900 | 38 |

## Greatest Safe Load, Uniformly Distributed, for Rectan = gular Wooden Beams One Inch Thick.

|  | Kind of timber. | Length of span, in feet. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
|  |  | Safe loads, in pounds, per inch of thickness. |  |  |  |  |  |  |  |  |  |
| 5 | Hemlock | 520 | 350 | 260 | 210 | 170 | 150 | 130 | 120 | 100 | 90 |
|  | Spruce or pine. | 620 | $\pm 20$ | 310 | 250 | 210 | 180 | 160 | 140 | 120 | 110 |
|  | Oak | 830 | 550 | 420 | 330 | 280 | 240 | 210 | 190 | 170 | 150 |
|  | Yellow pi | *800 | 700 | 520 | 420 | 350 | 300 | 260 | 230 | 210 | 190 |
| 6 | Hemlock | *640 | 500 | 380 | 300 | 250 | 210 | 190 | 170 | 150 | 40 |
|  | Spruce or | 900 | 600 | 450 | 360 | 300 | $\stackrel{260}{ }$ | 220 | 200 | 180 | 160 |
|  |  | 1200 | 800 | 600 | 480 | 400 | 340 | 300 | 270 | 240 | 220 |
|  | Yellow | *960 | *960 | 750 | 600 | 500 | 430 | 370 | 330 | 300 | 270 |
| 7 | Hemlock | *750 | 680 | 510 | 410 | 340 | 290 | 260 | 230 | 200 | 90 |
|  | Spruce or | *1120 | 820 | 610 | 490 | 410 | 350 | 310 | 270 | 240 | 220 |
|  | Oak | 1630 | 1090 | 820 | 6.50 | 540 | 470 | 410 | 360 | 330 | 300 |
|  | Yellow | *1120 | *1120 | 1020 | 820 | 680 | 580 | 510 | 450 | 410 | 370 |
| 8 | Hemlock | *850 | *850 | 670 | 530 | 440 | 380 | 330 | 300 | 270 | 40 |
|  | Spruce or | *1280 | 1060 | 800 | 640 | 530 | 460 | 400 | 360 | 320 | 290 |
|  | Oak | *2130 | 1420 | 1070 | 850 | 710 | 610 | 530 | 470 | 430 | 390 |
|  | Yellow | *1280 | *1280 | *1280 | 1070 | 890 | 760 | 670 | 590 | 530 | 480 |
| 9 | Hemlock | *960 | *960 | 840 | 670 | 560 | 480 | 420 | 370 | 340 | 310 |
|  | Spruce or | *1440 | 1350 | 1010 | 810 | 670 | 580 | 510 | 450 | 400 | 370 |
|  | Oak | *2400 | 1800 | 1350 | 1080 | 900 | 770 | 670 | 600 | 540 | 490 |
|  | Yell | *1440 | *1440 | *1440 | 1350 | 1120 | 960 | 840 | 750 | 670 | 610 |
| 10 | Hemlock | *1070 | *1070 | 1040 | 830 | 690 | 590 | 520 | 460 | 420 | 380 |
|  | Spruce or pine. |  |  | 1250 | 1000 | 830 | 710 | 620 | 560 | 500 | 450 |
|  | Oak | *2670 | 2220 | 1670 | 1330 | 1110 | 950 | 830 | 740 | 670 | 610 |
|  | Yellow | *1600 | *1600 | *1600 | *1600 | 1390 | 1190 | 1040 | 930 | 830 | 760 |
| 12 | Hemlock | *1280 | *1280 | *1280 | 1200 | 1000 | 860 | 750 | 670 | 600 | 540 |
|  | Spruce or P | *1920 | *1920 | 1800 | 1440 | 1200 | 1030 | 900 | 800 | 720 | 650 |
|  | Oak | *3200 | *3200 | 2400 | 1920 | 1600 | 1370 | 1200 | 1070 | 960 | 870 |
|  | Yellow | *1920 | *1920 | *1920 | *1920 | *1920 | 1710 | 1500 | 1330 | 1200 | 1090 |
| 14 | Hemlock | *1490 | *1490 | *1490 | *1490 | 1360 | 1170 | 1020 | 900 | 820 | 40 |
|  | Spruce or pine. | *2240 | *2240 | *2240 | 1960 | 1630 | 1400 | 1220 | 1090 | 980 | 890 |
|  | Oak | *3730 | *3730 | 3270 | 2610 | 2180 | 1870 | 1630 | 1450 | 1310 | 1190 |
|  | Yellow | *2240 | *2240 | *2240 | *2240 | *2240 | *2240 | 2040 | 1810 | 1630 | 1480 |
| 16 | Hemlock | *1710 | *1710 | *1710 | *1710 | *1710 | 1520 | 1330 | 1180 | 1070 | 970 |
|  | Spruce or pine. | *2560 | *2560 | *2560 | 2550 | 2130 | 1830 | 1600 | 1420 | 1280 | 1160 |
|  | Oak | *4270 | *4270 | * 4270 | 3410 | 2840 | 2440 | 2130 | 1900 | 1710 | 1550 |
|  | Yellow pine | *2560 | *2560 | *2560 | *2560 | *2560 | *2560 | *2560 | 2370 | 2130 | 1940 |
| 18 | Hemlock | *1920 | *1920 | *1920 | *1920 | *1920 | *1920 | 1690 | 1500 | 1350 | 1230 |
|  | Spruce or pine. | *2880 | *2880 | *2880 | *2880 | 2700 | 2310 | 2030 | 1800 | 1620 | 1470 |
|  | Oak | *4800 | *4800 | *4800 | 4320 | 3600 | 3090 | 2700 | 2400 | 2160 | 1960 |
|  | Yellow pine | *2880 | *2880 | *2880 | *2880 | *2880 | *2880 | *2880 | *2880 | 2700 | 2450 |

The short lengths, marked with a star, are computed to resist longitudinal shearing.

## Greatest Safe Central Loads for Rectangular Wooden Beams One Inch Thick.

| . | Kind of timber. | Length of span, in feet. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ |  | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
| - |  | Safe loads, in pounds, per inch of thickness. |  |  |  |  |  |  |  |  |  |
|  | Hemlock | 260 | 170 | 130 | 100 | 90 | 75 | 65 | 60 | 50 | 45 |
|  | Spruce or pine. | 310 | 210 | 160 | 120 | 100 | 90 | 80 | 70 | 60 | 55 |
|  | Oak | 420 | 280 | 210 | 170 | 140 | 120 | 100 | 95 | 85 | 5 |
|  | Yellow pine | 520 | 350 | 260 | 210 | 170 | 150 | 130 | 120 | 100 | 5 |
|  | Hemlock | 380 | 250 | 190 | 150 | 120 | 110 | 95 | 85 | 75 | 70 |
|  | Spruce or pine. | 450 | 300 | 220 | 180 | 150 | 130 | 110 | 100 | 90 | 80 |
|  | Oak | 600 | 400 | 300 | 240 | 200 | 170 | 150 | 130 | 120 | 110 |
|  | Yello | 750 | 500 | 370 | 300 | 250 | 210 | 190 | 170 | 150 | 140 |
| 7 | Hemlock | 510 | 340 | 260 | 200 | 170 | 150 | 130 | 110 | 100 | 9.7 |
|  | Spruce or p | 610 | 410 | 310 | 240 | 200 | 170 | 150 | 140 | 120 | 110 |
|  | Oak | 820 | 540 | 410 | 330 | 270 | 230 | 200 | 180 | 160 | 150 |
|  | Yellow pine | 1020 | 680 | 510 | 410 | 340 | 290 | 260 | 230 | 200 | 190 |
| 8 | Hemlock | 670 | 440 | 330 | 270 | 220 | 190 | 170 | 150 | 130 | 120 |
|  | Spruce or pine. | 800 | 530 | 400 | 320 | 270 | 230 | 200 | 180 | 160 | 150 |
|  | Oak | 1070 | 710 | 530 | 430 | 360 | 300 | 270 | 240 | 210 | 190 |
|  | Yello | 1330 | 890 | 670 | 530 | 440 | 380 | 330 | 300 | 270 | 240 |
| 9 | Hemlock | 840 | 560 | 420 | 340 | 280 | 240 | 210 | 190 | 170 | 150 |
|  | Spruce or | 1010 | 670 | 510 | 400 | 340 | 290 | 250 | 220 | 200 | 190 |
|  | Oak | 1350 | 900 | 670 | 540 | 450 | 390 | 340 | 300 | 270 | 250 |
|  | Yello | *1440 | 1120 | 840 | 670 | 560 | 480 | 420 | 370 | 340 | 310 |
| 0 | Hemlock | 1040 | 690 | 520 | 420 | 350 | 300 | 260 | 230 | 210 | 190 |
|  | Spruce or p | 1250 | 830 | 620 | 500 | 410 | 360 | 310 | 280 | 250 | 230 |
|  | Oak | 1670 | 1110 | 830 | 670 | 550 | 480 | 420 | 370 | 330 | 300 |
|  | Yellow p | *1600 | 1390 | 1040 | 830 | 690 | 590 | 520 | 460 | 410 | 380 |
| 12 | Hemlock | *1280 | 1000 | 750 | 600 | 500 | 430 | 370 | 330 | 00 | 70 |
|  | Spruce or pine. | 1800 | 1200 | 900 | 720 | 600 | 510 | 450 | 400 | 360 | 330 |
|  | Oak | 2400 | 1600 | 1200 | 960 | 800 | 690 | 600 | 530 | 480 | 440 |
|  | Yellow pine | *1920 | *1920 | 1500 | 1200 | 1000 | 860 | 750 | 670 | 600 | 540 |
| 14 | Hemlock | *1490 | 1360 | 1020 | 820 | 680 | 580 | 510 | 450 | 410 | 370 |
|  | Spruce or | *2240 | 1630 | 1220 | 980 | 810 | 700 | 610 | 540 | 490 | 440 |
|  | Oak | 3270 | 2180 | 1630 | 1310 | 1090 | 930 | 820 | 730 | 650 | 590 |
|  | Yellow pine | *2240 | *2240 | 2040 | 1630 | 1360 | 1170 | 1020 | 910 | 810 | 740 |
| 16 | Hemlock | *1710 | *1710 | 1330 | 1070 | 890 | 760 | 660 | 590 | 530 | 480 |
|  | Spruce or pine | *2560 | 2130 | 1600 | 1280 | 1060 | 910 | 800 | 710 | 640 | 580 |
|  | Oak | * 1270 | 2840 | 2130 | 1710 | 1420 | 1220 | 1060 | 950 | 850 | 780 |
|  | Yellow pine | *2560 | *2560 | *2560 | 2130 | 1780 | 1520 | 1330 | 1180 | 1060 | 970 |
| 18 | Hemlock | *1920 | *1920 | 1690 | 1350 | 1120 | 960 | 840 | 750 | 670 | 610 |
|  | Spruce or p | *2880 | 2700 | 2030 | 1620 | 1350 | 1160 | 1010 | 900 | 810 | 740 |
|  | Oak | *1800 | 3600 | 2700 | 2160 | 1800 | 1540 | 1350 | 1200 | 1080 | 980 |
|  | Yellow pine | *2880 | *2880 | *2880 | 2700 | 2250 | 1930 | 1690 | 1500 | 1350 | 1230 |

The short lengths, marked with a star, are computed to resist longitudinal shearing.

Total Safe Load, in Net Tons, for Square Pillars.
For Hemlock Pillars take $\frac{9}{10}$ of Load for White Pine.

|  | Kind of timber. | Side of square pillar, in inches. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 16 |
|  |  | Total safe load, in net tons. |  |  |  |  |  |  |  |  |  |
| 6 | Yellow p | 7.3 | 11.8 | 17.3 | 23.8 | 31.3 | 39.8 | 49.3 | 71.3 | 97.3 | 127.3 |
|  | White pine | 4.5 | 7.2 | 10.5 | 14.4 | 18.9 | 24.0 | 29.7 | 42.9 | 58.5 | 76.5 |
| 7 | Yellow pine | 7.1 | 11.6 | 17.1 | 23.6 | 31.1 | 39.6 | 49.1 | 71.1 | 97.1 | 127.1 |
|  | White pine | 4.4 | 7.1 | 10.3 | 14.3 | 18.7 | 23.6 | 29.5 | 42.8 | 58.4 | 76.4 |
| 8 | Yellow | 6.8 | 11.3 | 16.8 | 23.3 | 30.8 | 39.3 | 48.8 | 70.8 | 96.8 | 126.8 |
|  | White pine | 4.2 | 6.9 | 10.2 | 14.1 | 18.6 | 23.7 | 29.4 | 42.6 | 58.2 | 76.2 |
| 9 | Yellow pin | 6.5 | 11.0 | 16.5 | 23.0 | 30.5 | 39.0 | 48.5 | 70.5 | 96.5 | 126.5 |
|  | White pine | 4.1 | 6.8 | 10.1 | 14.0 | 18.5 | 23.6 | 29.3 | 42.5 | 58.1 | 76.1 |
| 10 | Yellow pine | 6.2 | 10.7 | 16.2 | 22.7 | 30.2 | 38.7 | 48.2 | 70.2 | 96.2 | 126.2 |
|  | White pine | 3.9 | 6.6 | 9.9 | 13.8 | 18.3 | 23.4 | 29.1 | 42.3 | 57.9 | 75.9 |
| 11 | Yellow pine | 5.8 | 10.3 | 15.8 | 22.3 | 29.8 | 38.3 | 47.8 | 69.8 | 95.8 | 125.8 |
|  | White pin | 3.7 | 6.4 | 9.7 | 13.6 | 18.1 | 23.2 | 28.9 | 42.1 | 57.7 | 75.7 |
| 2 | Yellow pine | 5.4 | 9.9 | 15.4 | 21.9 | 29.4 | 37.9 | 47.4 | 69.4 | 95.4 | 125.4 |
|  | White pine | 3.5 | 6.2 | 9.5 | 13.4 | 17.9 | 23.0 | 28.7 | 41.9 | 57.5 | 75.5 |
| 3 | Yellow pin | 5.0 | 9.5 | 15.0 | 21.5 | 29.0 | 37.5 | 47.0 | 69.0 | 95.0 | 125.0 |
|  | White pine | 3.3 | 6.0 | 9.3 | 13.2 | 17.7 | 22.8 | 28.5 | 41.7 | 57.3 | 75.3 |
| 14 | Yellow pine | 4.5 | 9.0 | 14.5 | 21.0 | 28.5 | 37.0 | 46.5 | 68.5 | 94.5 | 124.5 |
|  | White | 3.0 | 5.7 | 9.0 | 12.9 | 17.4 | 22.5 | 28.2 | 41.4 | 57.0 | 75.0 |
| 15 | Yellow pine | 3.9 | 8.4 | 13.9 | 20.5 | 27.9 | 36.4 | 45.9 | 67.9 | 93.9 | 123.9 |
|  | White pin | 2.8 | 5.5 | 8.8 | 12.7 | 17.2 | 22.3 | 28.0 | 41.2 | 56.8 | 74.8 |
| 16 | Yellow pine | 3.4 | 7.9 | 13.4 | 19.9 | 27.4 | 35.9 | 45.4 | 67.4 | 93.4 | 123.4 |
|  | White pine | 2.5 | 5.2 | 8.5 | 12.4 | 16.9 | 22.0 | 27.7 | 40.9 | 56.5 | 74.5 |
| 7 | Yellow pine | 2.5 | 7.3 | 12.8 | 19.3 | 26.8 | 35.3 | 44.8 | 66.8 | 92.8 | 122.8 |
|  | White pine | 1.7 | 4.9 | 8.2 | 12.1 | 16.6 | 21.7 | 27.4 | 40.6 | 56.2 | 74.2 |
| 8 | Yellow pin | 2.3 | 6.7 | 12.2 | 18.7 | 26.2 | 34.7 | 44.2 | 66.2 | 92.2 | 122.2 |
|  | White pine. | 1.5 | 4.6 | 7.9 | 11.8 | 16.3 | 21.4 | 27.1 | 40.3 | 55.9 | 73.9 |
| 19 | Yellow pin | 2.1 | 6.0 | 11.5 | 18.0 | 25.5 | 34.0 | 43.5 | 65.5 | 91.5 | 121.5 |
|  | White pine | 1.4 | 4.2 | 7.6 | 11.4 | 15.9 | 21.0 | 26.7 | 39.9 | 55.6 | 73.5 |
| 20 | Yellow pin | 1.9 | 5.3 | 10.8 | 17.3 | 24.8 | 33.3 | 42.8 | 64.8 | 90.8 | 120.8 |
|  | White pine | 1.2 | 3.9 | 7.2 | 11.1 | 15.6 | 20.7 | 26.4 | 39.6 | 55.2 | 73.2 |
| 21 | Yellow pin | 1.7 | 2.6 | 10.1 | 16.6 | 24.1 | 32.6 | 42.1 | 64.0 | 90.1 | 120.1 |
|  | White pine | 1.1 | 1.7 | 6.8 | 10.7 | 15.2 | 20.3 | 26.0 | 39.2 | 54.8 | 72.8 |
| 22 | Yellow pine | 1.5 | 2.4 | 9.3 | 15.8 | 23.3 | 31.8 | 41.3 | 63.3 | 89.3 | 119.3 |
|  | White pine.... | 1.0 | 1.6 | 6.4 | 10.3 | 14.8 | 19.9 | 25.6 | 38.8 | 54.4 | 72.4 |

## Average Strengths of Materials.

In the foregoing discussion of the strength of materials it has been assumed that the elastic limit, ultimate strength, modulus of elasticity, and similar data concerning the materials to be used are known for the especial case under consideration, and attention has mainly been given to the distribution of stresses and strains. In all important works the material should be tested and its properties ascertained, and during the conduct of the work frequent tests should be made by competent persons, using reliable testing machines; the test pieces being selected with care to represent the actual material employed.

In the absence of specific data concerning the actual materials to be used, the values in the following tables may be takel as representing fairly average results.

The tables which have been given of the strength of standard rolled sections represent experimental results made by the makers, and may be accepted, also, as closely corresponding to the similar sections of other mills.

Data concerning the strength and proportions of various machine parts will be discussed in connection with the subject of machine design.

In the use of materials of construction judgment should be used in connection with the results of tests, since it is manifestly absurd to take the resistance of the material to the pound when the load may be known only to the nearest ton. Care should also be taken to use records of strength of materials in the same general sense in which the original experiments were made, so far as can be ascertained, otherwise there can be no certainty that the conditions under which the resistance was ascertained are reproduced in the case in point. No records of experimental work can take the place of sound judgment on the part of the engineer, and he should always be liberal in his allowances for unforeseen stresses and shocks.

In many cases it must be remembered that strength is not the only element to be taken into account, but that stability and massiveness may sometimes demand far more material than the mere stresses would indicate. The effects of impact may require masses of metal for their reception, while in other cases the section may depend upon the amount of heat to be carried away. When it is realized that the actual strength is but one of several elements involved in engineering design, it will be understood that the main thing is to be on the right side, and that an extreme apparent precision may be far from representing true accuracy.
Average Ultimate Strengths of Materials.
Pounds per Square Inch.

For quiescent loads, as in buildings, divide above values by the following factors : tension, 10 ; compression, 5 transverse, 6 ; shearing, 5 .

| 00000097 | 0008 | 00005 | 00027 | 00009 | 00085 | ．．．．．．．．．．．．．．．saeq pə⿺𠃊⿴囗⿱一一 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000000 LT ， | 000٪b | 00008 | 00097 | 0008 | 00098 |  |
| 000000 ¢\％， |  |  | 0002\％ | 00008 |  | ．prerauurun＇ox！̣il uosi |
| $000000 ¢$ |  |  |  | 00009 |  |  |
|  | 00001 |  |  |  |  |  |
|  |  |  |  | 000¢8 |  | ．．．．．．．．．．．．．．．．．．．．．．．．－su！̣ч⿺ иохІ |
| 000000 \％L | 0000\％ | 0008L | 0009 | 000GL | 00008 |  |
| 0000008 |  |  | 0007 | 0000\％ |  |  |
| 0000008 L |  |  | 0000L | 00009 |  |  |
| 000000 ct |  |  |  | 00098 |  |  |
| 000000 OL | 0007\％， | 00008 | 0009 | 000\％ | （000 0b） | ．．．．．．．．．．．．．．．．．．．．．．．．．．．． qseว＇ıəddo |
|  |  |  |  | 00008 | 000 0¢ | ．．． stioq joddo |
| 000009 D |  |  | 0000才 | 00099 |  | ．．．．．．．．．．．．．．．．．uṭqux ‘əzuoıg |
| 000000 F［ |  |  | 000Fz | 00009 |  | ．．．．．．．．．．．．＇．лочdsоцd＇əzuохя |
|  |  |  | 00008 | 00009 | 000 0zL |  |
| 000000 OL | 00089 |  | 0000 I | 00078 | （000 07．） |  |
|  |  |  |  | 00091 | 000 0ZL | ．．．．．．．．．．．．．．．．．．．．．шии！̣unโв＇əzuоля |
| 000000 t［ |  |  | 0009I | 00008 |  |  |
|  |  |  |  | 00009 |  | ．．．．．．．．．．．．．．．．．．．．рәтъәиие＇әцџ̣м ssвıg |
| 0000006 | 00007 | 00098 | 0009 | 000\％ 7 | （000 08） | 7รษอ 'ssecg |
|  |  |  | $0007 \%$ | 0000F |  | ．．．．．．．［כসว！̣⿺＇mnu！unโV |
| 000000 LI |  | 0007， | 0099 | 0009 L | 000 ZI |  |
|  | －ә．тидти． јо sn！npow |  | －7！u！I O！̣Selut | －Ho！sicta | －uoissoxdmon |  |

[^4]Average Ultimate Strengths of Materials.

| Material. | Compression. | Tension. | Elastic limit. | Shearing. | Modulus of rupture. | Modulus of elasticity. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metals.-Continued. |  |  |  |  |  |  |
| Lead, cast....... |  | 2000 | 1000 |  |  | 1000000 |
| Lead-pipe |  | 1600 |  |  |  |  |
| Silver, cast |  | 40000 | 4000 |  |  | 10000000 |
| Steel castings. | 70000 | 70000 | 40000 | 60000 | 70000 | 30000000 |
| Steel, structural, 0.10 per cent. carbon | 56000 | 56000 | 30000 | 48000 | 54000 | 29000000 |
| Steel, structural, 0.15 per cent. carbon | 64000 | 64000 | 33000 | 50000 | 60000 | 29000000 |
| Steel wire, annealed |  | 80000 | 40000 |  |  | 29000000 |
| Steel wire, unannealed. |  | 120000 | 60000 |  |  | 30000000 |
| Steel wire, crucible |  | 180000 | 80000 |  |  | 30000000 |
| Steel wire for suspension bridges |  | 200000 | 90000 | ........... |  | 30000000 |
| Steel wire, special tempered |  | 300000 |  |  |  |  |
| Tin, cast. | (6000) | 3500 | 1800 |  | 4000 | 4000000 |
| Zinc, cast. | (20000) | 5000 | 4000 |  | 7000 | 13000000 |
| Flax yarn ....................... |  | 25000 |  |  |  |  |
| Glass, common green | 20000 | 3000 | 3000 |  | 4000 | 8000000 |
| Glass flooring | 10000 | 3000 |  |  | 3000 |  |
| Glass wire, for skylights |  |  | 5000 |  | 5000 |  |
| Leather, ox |  | 4000 |  |  |  | 240000 |
| Rope, hemp |  | 8000 | ............. |  |  |  |
| Rope, manila. |  | 9000 |  |  |  |  |
| Silk fibre |  | 5000 |  |  |  | 1300000 |

Compression values enclosed in parentheses indicate loads producing 10 per cent. reduction in original lengths.

## Average Ultimate Strengths of Materials.

Pounds per Square Inch.

| Material. | Compression. | Tension. | Modulus of rupture |
| :---: | :---: | :---: | :---: |
| Building Stones. |  |  |  |
| Bluestone | 13500 | 1400 | 2700 |
| Granite, average | 15000 | 600 | 1800 |
| Granite, Connecticut. | 12000 |  |  |
| Granite, New Hampshire | 15000 |  | 1500 |
| Granite, Massachusetts | 16000 |  | 1800 |
| Granite, New York | 15000 |  |  |
| Limestone, average | 7000 | 1000 | 1500 |
| Limestone, Hudson River, New York. | 17000 | ........ |  |
| Limestone, Ohio | 12000 |  | 1500 |
| Marble, average | 8000 | 700 |  |
| Marble, Vermont | 8000 | 700 | 1200 |
| Sandstone, average | 5000 | 150 | 1200 |
| Sandstone, New Jersey | 12000 |  | 650 |
| Sandstone, New York | 10000 | ........ | 1700 |
| Sandstone, Ohio | 9000 | 100 | 700 |
| Slate | 10000 | 10000 | 5000 |
| Stonework | ( $\frac{4}{10}$ strength of stone) |  |  |
| Bricks. |  |  |  |
| Bricks, light red | 1000 | 40 |  |
| Bricks, good comm | 10000 | 200 | 600 |
| Bricks, best hard | 12000 | 400 | 800 |
| Bricks, Philadelphia pressed | 6000 | 200 | 600 |
| Brickwork, common (lime mortar) | 1000 | 50 |  |
| Brickwork, good (cement and lime mortar) | 1500 | 100 |  |
| Brickwork, best (cement mortar). | 2000 | 300 |  |
| Terra-cotta | 5000 |  |  |
| Terra-cotta work | 2000 |  |  |
| Cements, etc. Cement, Rosendale, one month old. | 1200 | 200 | 200 |
| Cement, Portland, one month old | 2000 | 400 | 400 |
| Cement, Rosendale, one year old | 2000 | 300 | 400 |
| Cement, Portland, one year old. | 3000 | 500 | 800 |
| Mortar, lime, one year old | 400 | 50 | 100 |
| Mortar, lime and Rosendale, one year old | 600 | 75 | 200 |
| Mortar, Rosendale cement, one year old. | 1000 | 125 | 300 |
| Mortar, Portland cement, one year old. | 2000 | 250 | 600 |
| Concrete, Portland, one month old | 1000 | 200 | 100 |
| Concrete, Rosendale. one month old | 500 | 100 | 50 |
| Concrete, Portland, one year old | 2000 | 400 | 150 |
| Concrete, Rosendale, one year old. | 1000 | 200 | 75 |

Safe strengths of stone, brick, and cement, $\frac{1}{10}$ to $\frac{1}{30}$ of ultimate,

## MACHINE DESIGN.

"A machine," according to the definition of Professor Reuleaux, is "a combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motions."

In designing a machine, therefore, it is essential to consider the resistance or strength of the bodies of which it is composed, also the work which it is to perform and the determinate motions to be made.

The resistance of the parts of a machine includes the proportions of the main framing, as well as the various shafts, gear-wheels, pulleys, connecting rods, and other parts, in most of which the actual strength is of less importance than the stiffness, or rigidity, and the mass necessary to furnish satisfactory solidity to absorb vibrations and shocks. The resistance also includes the proportions of the various fastenings, such as bolts, rivets, keys, pins, etc.

The work which the machine is compelled to do is the basis upon which the dimensions and form of the resistant parts are determined, and this is usually taken from the resistance opposed to the motion by the material to be cut, the weight to be lifted or propelled, or, in general, the opposing forces to be overcome.

The determinate motions involve some of the most intricate problems in machine design, and properly form the subject of a distinct science,that of Kinematics, the science of controlled motion, considered apart from the magnitude and character of the forces involved.

It is impossible to do more here than to give the results of accepted modern practice with regard to these various elements of machine design, with such suggestions as experience may indicate for use with the special requirements of each case.

Usually, the determinate motions demand the first attention. The form of the work to be done must be considered at the one end of the system, and the nature of the motion from which it is to be effected at the other, the machine standing between them and effecting the transformation. Thus, in the case of the steam engine, the flowing steam, passing through a pipe, is converted into the rotary motion of the shaft, fy-wheel, and pulley. In like manner, the rotary motion communicated to the shaft of a Jacquard loom is transformed into all the complicated sequence of intermittent, yet determinate movements, which, through the medium of cards, heddles, shuttles, beams, etc., produce the elaborate woven fabric.

Having laid out the movements, and thus determined the positions of the various centres and connections, the forces to be transmitted must be considered and the dimensions of the actual pieces computed.

In many portions of a machine the dimensions of the parts may be based upon the direct knowledge of the strength of the materials, but in other cases empirical rules, based upon the results of experience, must be employed. Both methods will here be given, according to current practice, and whenever a rational method, used the direct strength of the material, is practicable, it will be given.

## FASTENINGS.

## Riveting.

Rivets are used to secure structures of sheet metal, and may be employed solely for strength, as in structural iron or steel work; or for strength and tightness combined, as in tank and boiler construction.

For strength alone the following method may be used for proportioning riveted connections:*

For any given thickness, $\delta$, of plate it is impracticable to make the riveted joint the same strength as the plate itself, but the ratio between the strength of the plate and the strength of the joint can be made a maximum. This will best be attained, with the assumption of a sufficient margin, when the strength of the rivets and the strength of the remainder of the metal between the rivet-holes are equal to each other,-i.e., when

[^5]they reach their limit of elasticity at the same time. If the rivets and plate are of the same material, we have the stress in the cross-section of the rivets as 0.8 that of the plate. From this we derive the following formulæ, in which the friction of the joint is neglected as being of uncertain value:

Let
$\delta=$ the thickness of the plate, in inches;
$d=$ the diameter of rivet, in inches;
$a=$ the pitch of rivets, - i.e., the distance from centre to centre of adjacent rivets, in inches;
$n=$ the number of rows of rivets ;
$\phi=$ the efficiency of the joint, being the ratio of the resistance of the joint to that of the full plate;
then the highest efficiency will be attained when we have, for lap-joint riveting,

$$
\frac{a}{\delta}=n \frac{\pi}{5}\left(\frac{d}{\delta}\right)^{2}+\frac{d}{\delta}
$$

which gives

$$
\phi=1-\frac{d}{a}=\frac{1}{1+\frac{1}{n} \cdot \frac{5}{\pi} \cdot \frac{\delta}{d}}
$$

or for butt-joint riveting,

$$
\frac{a}{\delta}=2 n \frac{\pi}{5}\left(\frac{d}{\delta}\right)^{2}+\frac{d}{\delta}
$$

which gives

$$
\phi=1-\frac{d}{a}=\frac{1}{1+\frac{1}{2 n} \cdot \frac{5}{\pi} \cdot \frac{\delta}{d}} .
$$

The overlap of the plate is subjected both to shearing and bending. For the former conditions call the lap $b^{\prime}$, and for the latter $b^{\prime \prime}$, measuring in both cases from the centre of the rivets to the edge of the joint. To obtain the same resistance in the lap as in the perforated portion of the plate, we have, for lap-joint riveting,

$$
\begin{aligned}
& \frac{b^{\prime}}{\delta}=5 / 8 \frac{a-d}{n \delta}=\frac{\pi}{8}\left(\frac{d}{\delta}\right)^{2}, \\
& \frac{b^{\prime \prime}}{\delta}=\left(0.5+0.56 \sqrt{\frac{d}{\delta}}\right) ;
\end{aligned}
$$

for butt-joint riveting,

$$
\begin{aligned}
& \frac{b^{\prime}}{\delta}=5 / 8 \frac{a-d}{n \delta}=\frac{\pi}{4}\left(\frac{d}{\delta}\right), \\
& \frac{b^{\prime \prime}}{\delta}=\left(0.5+0.79 \sqrt{\frac{d}{\delta}}\right) \frac{d}{\delta} .
\end{aligned}
$$

In both cases a good value of $b$, in practice, giving sufficient room for rivet-heads, will be secured by making

$$
b=1.5 d, \text { or } \frac{b}{\delta}=1.5 \frac{d}{\delta}
$$

A point of interest is the superficial pressure, $p$, which exists between the body of the rivet and the cylindrical surface of the rivet-hole. If $S_{2}$ is the stress in the punched plate, we have, for lap-riveted joints,
for butt-riveted joints,

$$
\frac{p}{S_{2}}=0.2 \pi \frac{d}{\delta}
$$

$$
\frac{p}{S_{2}}=0.4 \pi \frac{d}{\delta}
$$

The following table will serve to redace the numerical labor of these calculations:

## Proportions for Riveted Joints.



An examination of the preceding table shows that the higher efficiencies require the use of inconveniently large rivets. This may be avoided if more than two rows of rivets can be used, since they may then be dis-

posed in groups. In this arrangement each row in a group has one less rivet than the preceding row, as shown in the illustration.

Thus, the rivets are arranged according to a certain pitch, $a$, for the middle row of a joint, and $2,3,4$, or 5 rivets are selected as the base of a group. The next row on each side will have a wider pitch, and the next still wider, and so on.

If, as before, we take
$\delta=$ thickness of plate, in inches ;
$d=$ diameter of rivet, in inches ;
$a=$ pitch of rivets, in inches;
$\phi=$ efficiency of joint; and
$m=$ number of rivets in the middle row of each group;
we have
Table for Group Riveting.

| $m=$ | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{d}{\delta}=$ | 1.6 | 1.6 | 1.6 | 1.6 |
| $\frac{a}{d}=$ | 2.5 | 3.33 | 4.25 | 5.2 |
| $\frac{a}{\delta}=$ | 4.0 | 5.32 | 6.80 | 8.32 |
| $\phi=$ | .8 | .90 | .94 | .96 |

The rivet-holes, in all cases, are made $\frac{1}{16}$ larger than the diameter of the rivet.

## Boiler Riveting.

The necessity for making a tight joint has necessitated modifications of the proportions of joints based solely upon considerations of strength. The following tables represent standard practice:

Table of Proportions for Riveted Joints with Iron Plates and Rivets.

| Thickness of plate. | $1 / 4^{\prime \prime}$ | $\frac{6}{16}{ }^{\prime \prime}$ | $3 / 8{ }^{\prime \prime}$ | ${ }^{\frac{7}{16}}{ }^{\prime \prime}$ | $12^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter of rivet. | $5 / 811$ | $\frac{11}{16}{ }^{\prime \prime}$ | $3 / 4{ }^{\prime \prime}$ | $\frac{13}{18}{ }^{\prime \prime}$ | $7 / 8^{\prime \prime}$ |
| Diameter of rivet-hole | $\frac{11}{16}{ }^{\prime \prime}$ | $3 / 4{ }^{\prime \prime}$ | $\frac{13}{13}{ }^{\prime \prime}$ | $7 / 8^{\prime \prime}$ | $\frac{15}{15 \prime}$ |
| Pitch-single riveting | $2^{\prime \prime}$ | $2 \frac{1}{16}^{\prime \prime}$ | $21 / 8^{\prime \prime}$ | $2 \frac{3}{16}{ }^{\prime \prime}$ | $21 / 4^{\prime \prime}$ |
| Pitch-double riveting | $3^{\prime \prime}$ | $31 / 8^{\prime \prime}$ | $31 / 4^{\prime \prime}$ | $33 / 8^{\prime \prime}$ | $31 / 2^{\prime \prime}$ |
| Efficiency-single riveting | . $66 \%$ | . $64 \%$ | . $62 \%$ | . $60 \%$ | . $58 \%$ |
| Efficiency-double riveting | . $77 \%$ | . $76 \%$ | . $75 \%$ | . $74 \%$ | .73\% |

Table of Proportions for Riveted Joints in Steel Plates with Iron Rivets.

|  | Inch. | Inch. | Inch. | Inch. | Inch. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Thickness of plate. | 1/4 | $\frac{5}{16}$ | $3 / 8$ | $\frac{7}{16}$ | 1/2 |
| Diameter of rivet. | $\frac{11}{16}$ | $3 / 4$ | $\frac{13}{13}$ | 7/8 | $\frac{15}{16}$ |
| Diameter of rivet-hole | $3 / 4$ | $\frac{13}{16}$ | 7/8 | $\frac{15}{16}$ | 1 |
| Pitch-single riveting | 2 | $2 \frac{1}{16}$ | 21/8 | $2 \frac{3}{16}$ | 21/4 |
| Pitch-double riveting | 3 | $31 / 8$ | $31 / 4$ | $33 / 8$ | $31 / 2$ |

## Bolts.

The dimensions of standard bolts and nuts will be found on pages 312 and 313, the United States standard being used in America and the Whitworth standard in Great Britain and on the Continent.

Bolts are usually made of wrought-iron or mild steel. Fibre stresses of 10,000 to 15,000 pounds per square inch might be permitted under normal conditions of loading, but very often a heavy initial stress is put upon a bolt by reason of the tension applied when the nut is screwed up. A source of weakness is also found in the varying cross-section of the bolt at different points, thus preventing uniform stretching. The result is frequent breakages at the root of the thread, especially at the point where the thread merges into the full body of the bolt, since the change in section at this point localizes the stretch. By drilling a central hole from the head to the beginning of the thread, and thus making the cross-section of the main body of the bolt the same as at the bottom of the thread, the stretch may be distributed. For ordinary joints the fibre stress on bolts may be taken as 8000 pounds for iron and 11,000 pounds for mild steel.

Bolted flange-joints to resist steam-, air-, or water-pressure must be designed for tightness rather than for strength. Here it is the initial tension upon the bolts which holds the faces of the joint together. The sum of the initial tensions of all the bolts in a flange-joint must be greater than the force acting to separate the joint, or it will open and leakage will occur. Under such conditions the maximum stress which should be put upon the bolts is about 6000 pounds per square inch, and lower stresses, down to 3000 pounds, are preferable. Instead of using larger bolts, the stresses should be reduced by using more of them. Recommended spacings for bolts on pipe flanges will be found in the table of standard flanges on page 341.

For pipe flanges the number of bolts is always made a multiple of four, in order to permit any member to be rotated $90^{\circ}$ in making connections. For other bolted work the distance between bolt-centres for steam-tight work should not be less than $6 d$, in which $d$ is the diameter of the bolt, while for heavy pressures a spacing of $4 d$ is to be preferred.

For steam cylinders, or similar situations, the number of bolts may be determined by the following formula:

$$
N=\frac{p}{2400}\left(\frac{D}{d}\right)^{2}
$$

in which

$$
N=\text { number of bolts }
$$

$D=$ diameter of cylinder, in inches;
$d=$ diameter of bolts;
$p=$ pressure, in pounds per square inch.
Thus, for a cylinder 36 inches in diameter, with a pressure of 100 pounds, we have, for $11 / 4$-inch bolts,

$$
N=\frac{100}{2400}\left(\frac{36}{1.25}\right)^{2}=35 \text { bolts. }
$$

For moderate pressures, say under 50 pounds, the number of bolts may be taken as

$$
N=2+\frac{D}{2}
$$

the diameter of the bolts then being chosen so as to keep the fibre stress within the predetermined limit.

For all general purposes the proportions of bolts are made according to the standard sizes, the United States standard, page 312, being used in America, and the Whitworth standard in Great Britain and on the Continent of Europe. For some purposes, however, special threads are advisable. In such cases the proportions should be directly designed for the
existing conditions. The forms most generally used are the square thread, suited to receive pressure in either direction, and the trapezoidal thread, flat on one face and inclined on the other, to sustain heavy pressures in one direction, as in screw-presses and similar work.


Referring to the figures,
$d=$ outside diameter of screw;
$d_{1}=$ bottom diameter of thread;
$s=$ pitch ;
$P=$ total load on screw.
For a fibre stress of 3000 pounds the diameter, $d_{1}$, at the bottom of the thread is obtained from

$$
d_{1}=0.02 \sqrt{P} ; P=2360 d_{1}^{2} ;
$$

or for a fibre stress of 6000 pounds per square inch,

$$
d_{1}=0.0145 \sqrt{P} ; P=4720 d_{1}{ }^{2} .
$$

The depth of thread, both for square and trapezoidal threads, is

$$
t=\frac{d}{10}=\frac{d_{1}}{8}
$$

and for square threads

$$
s=\frac{d}{5}=\frac{d_{1}}{4}
$$

and for trapezoidal threads

$$
s=\frac{2}{15} d=\frac{d_{1}}{6}
$$

For such threads the nut should be made deeper than for ordinary bolts; from $11 / 2$ to 2 times the outside diameter of the screw being a proportion found in practice. This insures a sufficient number of threads in the nut and provides for wear.

In important structures, or where much vibration is expected, some form of nut-lock is used to prevent the bolt from working loose.

One of the oldest and most useful forms is the jam-nut shown at $A$. Both nuts should be truly faced, so that they will bear fairly upon each other. The thin nut is frequently placed under the thicker one, but this is immaterial, since a nut of a thickness of 0.45 to $0.4 d$ is as strong as the bolt thread. At $B$ is shown a split pin, often used in connection with a jam-nut. At $C$ is shown an arrangement with a key upon the nut, making

a very convenient and secure combination. In all three cases the action is such as to tighten the nut upon the thread.

Numerous patented devices have been made to secure bolts and nuts, but the design necessarily varies according to the conditions. In some cases a washer is arranged to be bent up against the face of the nut, or a wedge is driven between the nut and some portion of the structure; these methods being used in rail-joints. In other cases set-screws are used, or special nuts with ratchets are employed, as in heavy steam-engine work. These forms are modified in many ways, according to the ingenuity of the designer. Numerous examples will be found in Reuleaux's "Constructor" and in Unwin's "Machine Design."

Wrenches.


For most purposes wrenches to fit the standard nuts are to be had as a regular article of trade, being drop-forged to standard sizes. If special
wrenches are desired, the following proportions may be used, the unit being the diameter, $D$, of the hexagon nut across the flat.


## Keyed Fastenings.

For many purposes, where the amount of movement is slight, and where the parts may be required to be readily disconnected, keys or cotters may be used. The principal proportions of such cotters have been determined empirically. The depth of a cotter is made equal to the diameter of the rod to be secured, and the thickness is made one-fourth of the depth. The taper varies from 1 in 30 to 1 in 100 . For many purposes $1 / 8$ inch in the foot is taken $=1$ in 96 . A greater taper than 1 in 30 is apt to cause the cotter to fly back. The general proportions of a gib and cotter connection are shown in the figure.

The use of gibs, as shown in the figure, increases the bearing surface of the cotter, and such gibs should always be used when the parts are to be frequently disconnected.

If

$$
\begin{aligned}
& d=\text { diameter of rod; } \\
& h=\text { mean depth of cotter } ; \\
& t=\text { thickness of cotter ; }
\end{aligned}
$$

we have

$$
h=d ; t=0.25 d
$$

The tip of the cotter should not be less than $3 / 4$ d.


Keys are used to secure the hubs of pulleys, wheels, levers, etc., to shafts, to prevent rotation of one piece upon another.

If the shaft to which a hub is to be keyed is proportioned to stand a certain load, the dimensions of the key may be based upon the diameter of the shaft.

Let

$$
\begin{aligned}
d & =\text { diameter of shaft } \\
s & =\text { breadth of key; } \\
s^{1} & =\text { depth of key. }
\end{aligned}
$$

Then, according to Reuleaux,

$$
s=\frac{d}{5}+0.16 \text { inch } ; s^{1}=\frac{d}{10}+0.16 \text { inch } .
$$

Feathers or splines are keys upon which a sleeve or collar may slide in a direction parallel to the axis of the shaft, while compelled to rotate with it. The proportions of a feather may be taken as a key placed on adge,-i.e., with the greater dimension of the cross-section upon the radius of the shaft.

The following table, while giving dimensions differing slightly from those determined by the formula of Reuleaux, correspond with American machine shop practice.

Standard Keys, Splines, Etc.

| $\begin{gathered} \text { Iiameter } \\ \text { of } \\ \text { shaft. } \end{gathered}$ | Key. |  | Spline. |  | Double spline. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wide. | Deep. | Wide. | Deep. | Wide. | Deep. |
| Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. |
| $3 / 4$ | $\frac{3}{16}$ | ${ }^{5}{ }^{5}$ | $\frac{5}{32}$ | ${ }^{\frac{3}{16}}$ | 1/8 | $\frac{5}{32}$ |
| 1 | 1/4 | ${ }_{1}{ }^{3} 6$ | $\frac{3}{16}$ | 1/4 | 1/8 | $\frac{5}{32}$ |
| 11/4 | ${ }_{1}^{5}$ | 1/4 | 1/4 | ${ }_{16}^{5}$ | ${ }^{\frac{5}{2}}$ | ${ }_{1}{ }^{36}$ |
| 11/2 | 3/8 | $\frac{5}{16}$ | $\frac{5}{16}$ | 3/8 | ${ }_{1}{ }^{3} 6$ | 1/4 |
| 2 | $\frac{7}{16}$ | $3 / 8$ | - $3 / 8$ | $\frac{7}{16}$ | 1/4 | ${ }_{16}$ |
| 21/2 | $\frac{9}{16}$ | $\frac{7}{16}$ | $\frac{7}{16}$ | $\frac{9}{16}$ | $\frac{5}{16}$ | $3 / 8$ |
| 3 | 5/8 | 1/2 | 1/2 | 5/8 | $3 / 8$ | $\frac{7}{16}$ |
| $31 / 2$ | $3 / 4$ | $\frac{9}{16}$ | 196 | $3 / 4$ | $\frac{7}{16}$ | ${ }_{16}$ |
| 4 | 7/8 | 5/8 | 5/8 | 7/8 | 1/2 | 5/8 |
| 5 | 1 | $3 / 4$ | $3 / 4$ | 1 | $\frac{9}{16}$ | $3 / 4$ |
| 6 | 11/8 | 7/8 | 7/8 | 11/8 | 5/8 | 7/8 |

Double splines are set opposite to each other, and their sizes are taken from the last two columns of the table. For sizes of shafts not tabulated take the sizes of keys for shafts of the next
 smaller size. Thus, for a $41 / 2$-inch shaft take sizes for 4 -inch shaft.

## JOURNALS.

The most important form of journal is the overhung form shown in the illustration, and from its computed dimensions other forms may be proportioned. The ratio of length, $l$, to diameter, $d$, varies according to the service and the character of the bearing. For rigid bearings, such as pillow-blocks, with the pressure constant in one direction, $\frac{l}{d}=1.5$ to 2 , while for crank pins and similar locations, in which the pressure is alternating in direction, $\frac{l}{d}=1$ to 1.3 .

When ball and socket bearings are used, as in shafting hangers, etc., $\frac{l}{d}=4$ in general practice.

Referring to the figure, let
$d=$ diameter of journal ;
$l=$ length of journal ;
$e=$ shoulder of collar;
$p=$ pressure per square inch of projected area;
$P=$ total load on journal ;
$S=$ fibre stress on material;
$n=$ revolutions per minute.


We then have

$$
d=\sqrt{\frac{16}{\pi S}\left(\frac{l}{d}\right)} \sqrt{P}
$$

For speeds up to 150 revolutions per minute the following values may be used:

## Constant Pressure.

|  | Wrought-iron. | Cast-iron. | Steel. |
| :---: | :---: | :---: | :---: |
| $p=$ | 700 | 360 | 700 |
| $S=$ | 8500 | 4260 | 14000 |
| $\frac{l}{d}=$ | 1.5 | 1.5 | 2 |
| $d=$ | $0.03 \sqrt{P}$ | $0.043 \sqrt{P}$ | $0.027 \sqrt{P}$ |

## Intermittent Pressure.

|  | Wrought-iron. | Cast-iron. | Steel. |
| :---: | :---: | :---: | :---: |
| $p=$ | 1400 | 700 | 1400 |
| $S=$ | 7000 | 3500 | 12000 |
| $\frac{l}{d_{-}}=$ | 1 | 1 | 1.3 |
| $d=$ | $0.027 \sqrt{P}$ | $0.037 \sqrt{P}$ | $0.024 \sqrt{P}$ |

When the speeds become higher than 150 revolutions per minute, the ratio, $\frac{l}{d}$, should be determined from the speed, according to the following formulas:

## Constant Pressure.

$$
\begin{array}{rcc} 
& \text { Wrought-iron. } & \text { Steel. } \\
S= & 8500 & 14000 \\
\frac{l}{d}= & 0.13 \sqrt{n} & 0.17 \sqrt{n} \\
d= & 0.0244 \sqrt{\frac{l}{d}} \sqrt{P} & 0.019 \sqrt{\frac{l}{d}} \sqrt{P}
\end{array}
$$

## Intermittent Pressure.

$$
\begin{array}{rcc}
S= & 7000 & 12000 \\
\frac{l}{d}= & 0.08 \sqrt{n} & 0.10 \sqrt{n} \\
d= & 0.0273 \sqrt{\frac{l}{d}} \sqrt{P} & 0.02 \sqrt{\frac{l}{d}} \sqrt{P}
\end{array}
$$

The value of $\frac{l}{d}$ is first computed, and then substituted in the following formula to find the value of $d$.

The depth of shoulder, $e$, is obtained from the diameter of the journal.

$$
e=0.07 d+1 / 8 \text { inch. }
$$

The following table gives the diameters of journals for various pressures for speeds not exceeding 150 revolutions. For higher speeds the formulas should be used.

Table of Journal Proportions.
Total pressure, $P$, pounds.

| $\begin{aligned} & \text { Diameter } \\ & \text { of } \\ & \text { journal, } \\ & d . \end{aligned}$ | Direction of pressure, constant. |  | Direction of pressure, alternating. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Wrought-iron. $\frac{l}{d}=1.5 .$ | $\begin{aligned} & \text { Steel. } \\ & \frac{l}{d}=2 . \end{aligned}$ | Wrought-iron. $\frac{l}{d}=1 .$ | Steel. $\frac{l}{d}=1.3$ |
| Inch. | Lb. | Lb. | Lb. | Lb. |
| 1.00 | 1100 | 1400 | 1400 | 1800 |
| 1.25 | 1700 | 2200 | 2200 | 2200 |
| 1.50 | 2500 | 3200 | 3200 | 4100 |
| 1.75 | 3400 | 4300 | 4300 | 5200 |
| 2.00 | 4500 | 5700 | 5700 | 7300 |
| 2.25 | 5700 | 6800 | 6800 | 9300 |
| 2.50 | 7000 | 8900 | 8900 | 11400 |
| 2.75 | 8500 | 10700 | 10700 | 13800 |
| 3.00 | 10000 | 13000 | 13000 | 16500 |
| 3.25 | 11800 | 15000 | 15000 | 19300 |
| 3.50 | 13700 | 17300 | 17300 | 22400 |
| 3.75 | 15800 | 19800 | 19800 | 25000 |
| 4.00 | 17900 | 22700 | 22700 | 29300 |
| 4.25 | 20000 | 25600 | 25600 | 33100 |
| 4.50 | 23000 | 28700 | 28700 | 37100 |
| 4.75 | 25000 | 32000 | 32000 | 41300 |
| 5.0 | 28000 | 35500 | 35500 | 45800 |
| 5.5 | 34000 | 43000 | 43000 | 55400 |
| 6.0 | 40000 | 51000 | 51000 | 66000 |
| 6.5 | 47000 | 60000 | 60000 | 79200 |
| 7.0 | 55000 | 69500 | 69500 | 89800 |
| 7.5 | 63000 | 80000 | 80000 | 103000 |
| 8.0 | 72000 | 91000 | 91000 | 117000 |
| 8.5 | 81000 | 102000 | 102000 | 132000 |
| 9.0 | 91000 | 115000 | 115000 | 148000 |
| 9.5 | 101000 | 128000 | 128000 | 165000 |
| 10.0 | 112000 | 142000 | 142000 | 183000 |
| 10.5 | 124000 | 156000 | 156000 | 202000 |
| 11.0 | 135000 | 172000 | 172000 | 222000 |
| 11.5 | 148000 | 188000 | 188000 | 242000 |
| 12.0 | 160000 | 204000 | 204000 | 264000 |

The use of the table is apparent.
When the diameter of the journal is given, the load which may be put upon it is found. When a given load is to be put upon a journal, the nearest value in the proper column is found and the corresponding diameter of journal taken.

Necked journals, formed in the body of a shaft, are naturally stronger than overhung journals, but the diameter in this case is determined by the duty to be performed by the shaft, which will generally make it larger than would be required for an overhung journal.

## PIVOTS.

The bearing end of a vertical shaft or spindle is termed a pivot. Such pivot bearings are usually made with a recess in the middle, with cross oil channels. Taking the diameter of the recess as $1 / 3$ the diameter of the shaft, we may make the oil channels $\frac{1}{12}$ the diameter in width.

Let
$P=$ total vertical pressure on pivot, in pounds;
$p=$ pressure, in pounds, per square inch $;$
$d=$ diameter of pivot, in inches;
$n=$ number of revolutions per minute.

We then have the following relations, according to Reuleaux :

## Formulas for Pivots.

| Wrought-iron <br> or steel on <br> bronze. | Cast-iron <br> on <br> bronze. | Iron or steel <br> on <br> lignum vitæ. |
| :---: | :---: | :---: |

Slow-moving
$\left\{\begin{array}{l}p=1422\end{array}\right.$
700
pivots
$\left\{\begin{array}{l}p=1422 \\ d=0.035 \sqrt{P} \quad 0.05 \sqrt{P}\end{array}\right.$
$n=$ or $<150\left\{\begin{array}{lcc}p=700 & 350 & 1422 \\ d=0.05 \sqrt{P} & 0.07 \sqrt{P} & 0.035 \sqrt{P}\end{array}\right.$
$n>150$$\left\{\begin{array}{llll}\cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots & p=1422 \\ d=0.004 \sqrt{P n} & \ldots \ldots \ldots & d=0.035 \sqrt{P}\end{array}\right.$


| $d=$ | $0.035 \sqrt{ } \times$ | $0.05 \sqrt{P}$ | $0.07 \sqrt{P}$ |
| :---: | :---: | :---: | :---: |
|  | $P$ | $P$ | $P$ |
| 1.00 | 816 | 398 | 204 |
| 1.25 | 1275 | 622 | 319 |
| 1.50 | 1836 | 895 | 459 |
| 1.75 | 2500 | 1219 | 625 |
| 2.00 | 3265 | 1592 | 816 |
| 2.25 | 4132 | 2016 | 1033 |
| 2.50 | 5102 | 2488 | 1275 |
| 2.75 | 6173 | 3011 | 1543 |
| 3.00 | 7347 | 3494 | 1836 |
| 3.25 | 8622 | 4205 | 2155 |
| 3.50 | 10000 | 4877 | 2500 |
| 3.75 | 11479 | 5599 | 2869 |
| 4.00 | 13061 | 6370 |  |
| 4.25 | 14745 | 7192 | 3686 |
| 4.50 | 16530 | 8063 | 4132 |
| 4.75 | 18418 | 8983 | 4604 |
| 5.00 | 20498 | 9954 | 5102 |
| 5.25 | 22140 | 10974 | 5535 |
| 5.50 | 24694 | 12044 | 6673 |
| 5.75 | 26990 | 13164 | 6747 |
| 6.00 | 29388 | 14334 | 7344 |
| 6.25 | 31890 | 15630 | 7972 |
| 6.50 | 34490 37190 | 16900 18220 | 8623 9298 |
| 6.75 | 37190 | 18220 | 9298 |
| 7.00 | 41690 | 19600 | 10000 |

The three columns headed $P$ give the total pressures permissible for wrought-iron or steel on bronze, cast-iron on bronze, and wrought-iron or steel on lignum vitæ, respectively. If the load is given, find the nearest value in the proper column and take the corresponding diameter.

The frictional resistance of a flat pivot bearing may be determined as follows:

Let

$$
\begin{aligned}
& F=\text { the tangential frictional resistance, in pounds }, \\
& \quad \text { at the periphery of the pivot; } \\
& r_{0}=\text { the radius of shaft, in inches } ; \\
& r_{1}=\text { the radius of recess, in inches } ; \\
& P=\text { total load on shaft, in pounds } ; \\
& f=\text { coefficient of friction. }
\end{aligned}
$$

Then

$$
F=\frac{f}{2} P\left(1+\frac{r_{1}}{r_{0}}\right) .
$$

If we take, as indicated above, $r_{1}=1 / 3 r_{0}$,


$$
F=2 / 3 f P .
$$

These formulas apply also to collar bearings of the form here shown.

For very heavy pressures, as in the thrust bearings of screw-propeller shafts, the thrust is taken upon a number of collars. Good practice limits the pressure upon such collars from 40 to 80 pounds per square inch. If

$$
\begin{aligned}
& n=\text { the number of collars } \\
& d=\text { diameter of shaft } ; \\
& D=\text { outside diameter of collars } \\
& P=\text { total thrust }
\end{aligned}
$$

we have, according to Seaton,

$$
D=\sqrt{d^{2}+\frac{P}{47 n}} .
$$

This provides for a pressure of 60 pounds per square inch on the collars. The thickness of each collar is made $=0.4(D-d)$, and the space between the collars may be $0.75(D-d)$.

## SHAFTING.

In determining the dimensions of shafting there are two principal elements to be considered: the strength and the stiffness. Generally, the load acting upon the shaft is given in either one of two forms,- as horsepower to be transmitted at a given number of revolutions per minute, or as a twisting moment, or torque, expressed in a certain force acting at the end of a lever of a given length. In the latter case, the torque is here considered to be in inch-pounds. Thus, a belt pulling 100 pounds over a 20 -inch pulley would give 100 pounds at a lever arrin of 10 inches, or 1000 inch-pounds, etc.

In order that satisfactory results may be secured, a shaft should be so proportioned that it may not be subjected to a fibre stress at the circumference greater than the predetermined limit; and also that it may not be twisted through a greater angle than has been established as satisfactory. It is, therefore, necessary to compute the diameter by two methods, one for strength and the other for stiffness, and use the result which gives the greatest size.

In the formulas the following symbols are
$P=$ the force acting to rotate the shaft;
$R=$ the lever arm at which it acts ;
$N=$ the horse-power transmitted;
$n=$ the number of revolutions per minute;
$d=$ the diameter of the shaft ;
$L=$ the length of shaft, in feet;
$\vartheta=$ the angle of torsion, in degrees :
$S=$ the fibre stress at the circumference;
$G=$ the modulus of torsion of the material $=\frac{2}{5}$ of the modulus of elasticity.

We then have, for strength,

$$
d=\sqrt[3]{\frac{16}{\pi S} P R}
$$

and for stiffness,

$$
d=\sqrt[4]{\frac{32}{\pi G} \cdot \frac{12 \cdot L}{\vartheta^{0}} \cdot \frac{360}{2 \pi} P R} .
$$

Taking the fibre stress, $S=6800$ pounds, we have for wrought-iron shafts, for strength,

$$
d=0.091 \sqrt[3]{P R}=3.33 \sqrt[3]{\frac{N}{n}}
$$

In taking the torsion of shafting into consideration, the greatest allowable twist in degrees should not be over $0.075^{\circ}$ per foot in length of shaft-ing,-that is, $\vartheta^{\circ}=0.075 L$, which gives for stiffness, against torsion,

$$
d=0.3 \sqrt[4]{P R}=4.7 \sqrt[4]{\frac{N}{n}}
$$

The quotient of effect, $\frac{N}{n}$, is obtained from the relation to the statical moment, $P R$, as follows :

$$
P R=\frac{33000 \times 12}{2 \pi} \cdot \frac{N}{n}=63025 \frac{N}{n} .
$$

From these formulas the following table for round wrought-iron shafts has been calculated. An inspection of the table will show that it is quite possible for a shaft to be strong enough to resist permanent deformation and yet be so light as to be liable to spring under its load. For example, a shaft 26 feet long, with a twisting force of 220 pounds applied at one end, and acting with a lever arm of 20 inches, gives a turning moment, $P R=$ 4400 inch-pounds, which would require a shaft only $11 / 2$ inches diameter (see column 2). This. however, would permit far too much torsion, and in order that the angular deflection should not exceed the limit of $0.075^{\circ}$ per foot, a corresponding value of $P R$, in column 4 , must be found, and against it, in column 1, will be given the diameter,-in this case about $23 / 8$ inches,-which, by comparison with column 2, gives about five-fold strength.

For short shafts this examination of angular deflection is unnecessary, as, for example, in the short lengths between two gear-wheels, for here the value of $\vartheta$ will be small enough in any case. With longer shafts, and in all special constructions, it is important to consider the angular deflection and keep it within the given limit.

For steel shafts, whose modulus of resistance is $\frac{5}{3}$ greater than wrought-
iron, the diameters in both cases may be taken as $\sqrt[3]{0.6}$, -that is, 0.84 times that of correspondingly-loaded wrought-iron shafts.

Shafting which is subjected to sudden and violent shocks, as in rolling mills, etc., must be made much stronger than the preceding formulas require, and these must be classed with the special cases which occur in every branch of construction.

## Wrought=iron Shafting.

| d. | For strength. |  | For stiffness (torsional). |  |
| :---: | :---: | :---: | :---: | :---: |
|  | PR. | $\frac{N}{n}$. | PR. | $\frac{N}{n}$. |
| Inch. |  |  |  |  |
| 1. | 1327 | . 021 | 123 |  |
| 11/4 | 2591 | . 052 | 301 | . 0048 |
| 11/2 | 4479 | . 071 | 625 | . 0099 |
| 13/4 | 7112 | . 114 | 1157 | . 0183 |
| 2 | 10616 | . 168 | 1975 | . 0313 |
| 21/4 | 15115 | . 239 | 3164 | . 0502 |
| 21/2 | 20730 | . 329 | 4822 | . 0765 |
| $23 / 4$ | 27600 | . 438 | 7061 | . 1120 |
| 3 | 35830 | . 568 | 10000 | . 1587 |
| $31 / 2$ | 56890 | . 902 | 18520 | . 2941 |
| 4 | 84930 | 1.347 | 31600 | . 5015 |
| $41 / 2$ | 120900 | 1.919 | 50620 | . 8032 |
| 5 | 165800 | 2.632 | 77160 | 1.2240 |
| $51 / 2$ | 220800 | 3.503 | 111000 | 1.7920 |
| 6 | 286600 | 4.548 | 160000 | 2.5390 |
| $61 / 2$ | 364400 | $5.78 \dot{4}$ | 220300 | 3.4960 |
| 7 | 455200 | 7.222 | 296400 | 4.7040 |
| $71 / 2$ | 559800 | 8.883 | 390600 | 6.2000 |
| 8 | 679400 | 10.780 | 505700 | 8.0240 |
| $81 / 2$ | 815000 | 12.930 | 644400 | 10.2300 |
| 9 | 967400 | 15.350 | 810000 | 12.8600 |
| $91 / 2$ | 1138000 | 18.050 | 982700 | 15.6000 |
| 10 | 1327000 | 21.050 | 1230000 | 19.5900 |
| 101/2 | 1536000 | 24.380 | 1501000 | 23.8100 |
| 11 | 1766000 | 28.020 | 1808000 | 28.6800 |
| 111/2 | 2018000 | 32.020 | 2159000 | 34.2600 |
| 12 | 2293000 | 36.390 | 2560000 | 40.6200 |

$d=$ diameter of shaft, in inches ;
$R=$ lever arm of torque, in inches (as radius of pulley or gear-wheel);
$P=$ force on lever arm, in pounds;
$N=$ actual horse-power transmitted;
$n=$ revolutions per minute.
Find the nearest value for $P R$ or $\frac{N}{n}$, both for strength and for stiffness, and take the largest diameter of shaft corresponding. For steel shafts multiply this diameter by 0.84 .

For any given shaft the angle of torsion, $\vartheta$, for a given statical moment, $P R$, may be found from the following formulas:

$$
\begin{aligned}
\vartheta & =0.00062 \frac{P R L}{d^{4}}, \\
& =0.0001208 \mathrm{~S} \frac{L}{d},
\end{aligned}
$$

in which $L$ is the length of shaft, in feet, and $d$ the diameter, in inches,$S$ being the fibre stress at the point of application on the shaft.

When the force is applied at one end of the shaft and taken off at the other, $L$ is the whole length of the shaft. When the twisting forces are applied over the whole length of the shaft uniformly, $L$ may be taken as one-half the length of the shaft; and when the twisting forces diminish uniformly from one end to the other, $L$ is taken as one-third the length.

For a number of twisting forces applied at various points along the shaft, multiply the horse-power at each point by its distance from the end of the shaft, add the several products together, and divide by the total horse-power transmitted. The quotient may be used as the mean value of $L$ in the formula.

Since the modulus of elasticity is practically the same for iron and steel, these formulas are good for either material.

Since $P R=63025 \frac{N}{n}$, the above formulas can easily be used when the load is given in horse-power for a given number of revolutions instead of torque.

Thus, suppose a shaft 164 feet long transmitting 70 horse-power at 100 revolutions, the power being taken off by machines uniformly distributed along its length. The effective length, $L$, may then be taken as $\frac{164}{2}=82$ feet. We also have $\frac{N}{n}=\frac{70}{100}=0.7$, and from the preceding table, under the column for torsional stiffness, we find the values 0.5015 , corresponding to 4 inches diameter, and 0.8032 , corresponding to $41 / 2$ inches diameter, so that we make the shaft $4 \frac{1}{4}$ inches diameter. - We have, also,

$$
P R=63025 \frac{N}{n}=63025 \times 0.7=44117
$$

The angular deflection will then be

$$
\vartheta=0.00062 \frac{44117 \times 82}{(4.25)^{4}}=6.88
$$

or $6^{\circ} 53^{\prime}$.

## Hollow Shafts.

Since the metal close to the axis of a shaft is of much less value in resisting stresses than the portion near the perimeter, there is a manifest adrantage in using hollow or tubular shafting. Such shafts are very gencrally used for screw-propeller engines.

If
$d=$ the diameter of a solid shaft;
$d^{\prime}=$ the outside diameter of a hollow shaft of equal strength ;
$d_{0}=$ diameter of hole through hollow shaft;
$\psi=\frac{d_{0}}{d_{1}}=$ ratio of external to internal diameter of hollow shaft ;
hen

$$
d_{1}=\sqrt[3]{\frac{d^{3}}{1-\psi 4}} .
$$

For $d=$ unity we hare, for the following values of $\psi$, the corresponding values of $d_{1}$ :

$$
\begin{array}{lllllll}
\psi=0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\
d_{1}=1.002 & 1.000 & 1.021 & 1.047 & 1.096 & 1.192 & 1.427
\end{array}
$$

For any diameter solid shaft, therefore, we have simply to multiply by the value for $d_{1}$, for the chosen ratio of external to internal diameters, to get the external diameter of a hollow shaft of equal strength.

In marine practice the ratio, $\psi$, of diameter to bore is generally 0.5 , the bore being one-half the external diameter. The external diameter will then be 1.02 times that of an equivalent solid shaft, or only 2 per cent. greater, and, at the same time, the shaft will be 25 per cent. lighter.

The power which a hollow shaft will transmit may be obtained by finding the capacity of the corresponding solid shaft.

Thus, for

$$
\begin{array}{lllllll}
\psi=0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\
d=0.998 & 0.992 & 0.979 & 0.955 & 0.912 & 0.839 & 0.7
\end{array}
$$

Thus, a shaft 10 inches in diameter, with a 5 -inch hole through it, will transmit as much power as a solid shaft $10 \times 0.979=9.79$ inches diameter.

## Deflection of Shafts.

In proportioning a shaft to carry a given load the practical method is to determine the pressures upon the journals and proportion them according to the methods already given. The rest of the shaft can then be proportioned according to the statical moments at various points, determined graphically, as follows:

Draw the line, $A-C$, equal in length to the distance between centres of journals, and upon it construct any triangle, $A B C$, whose apex lies on the line of the load, $Q$. Draw $A-3$ normal to $A-C$, making $A-3=Q$; draw 3-O parallel to $B-C$, and $2-O$ parallel to $A-C$; then $A-2=P_{1}, 2-3=P_{2}$.

The two journals may then be proportioned for these pressures.
By dropping the perpendiculars from the ends of the hub-seat we may divide $Q$ into two forces, $Q_{1}$ and $Q_{2}$, shown in the force polygon by $O-b$, parallel to $B_{1} B_{2}$, giving $A-b=Q_{1}, b-3=Q_{2}$. The vertical ordinate, $t$, at any point of the surface of moments is proportional to the statical moment, $M_{y}$, at its point of intersection with the axis, as, for example, the ordinate, $t_{1}$, at the base of the
 journal for $P_{1}$. We have, in any case,

$$
y^{3}=\frac{32}{\pi S} M_{y}, \quad d_{1}{ }^{3}=\frac{32}{\pi S} M_{1}
$$

$S$ being the fibre stress; and hence

$$
\frac{y}{d_{1}}=\sqrt[3]{\frac{M_{y}}{M_{1}}}, \text { or }=\sqrt[3]{\frac{t}{t_{1}}}
$$

from which $y$ can readily be obtained.

A similar diagram may be drawn for any loading, and the relative proportions of the various parts of the shaft or axle determined. The graphical method has the further advantage of showing the distribution of stresses on the axle at one time; and even if a straight axle is used the points of greatest stress are thus clearly seen.

The practice of mounting heavy fly-wheels, or the rotor members of large electric generators, upon engine shafts, renders it necessary to consider the influence of bending and twisting moments combined. This may be done by uniting the two moments into an equivalent or "ideal" bending moment, such that the proportions of the shaft may be computed from it directly.

Let
$M_{d}=$ the twisting moment for a given shaft section;
$M_{b}=$ the bending moment for the same section.
Then the ideal moment, combining them both, will be

$$
M=3 / 8 M_{b}+5 / 8 \sqrt{M_{b}^{2}+M_{d}{ }^{2}} .
$$

The application of this formula is best seen by an example.

If we have a wheel subjected to a force of 6000 pounds, at a radius of 12 inches, on a shaft 100 inches long, being 20 inches from one end and 80 inches from the other, we have a bending moment, $M_{b}{ }^{1}$, of

$$
6000 \times \frac{80}{100} \times 20=96000 \text { inch-pounds }
$$

We have, also, the twisting moment,

$$
M_{d}=P R=6000 \times 12=72000 \text { inch-pounds. }
$$

The combined moment will then be

$$
\begin{aligned}
M & =3 / 8 \cdot 96000+5 / 8 \sqrt{72000^{2}+96000^{2}} \\
& =36000+75000=111000 \text { inch-pounds }
\end{aligned}
$$

and the corresponding shaft diameter from the table, page 450 , is about $43 / 8$ inches. For the twisting moment of 72,000 inch-pounds alone the diameter would have been about $33 / 4$ inches.

The graphical methoơ may be applied to this problem very effectively.


Referring to the figure, first construct the link polygon, $a b c$, for the bending moments, and the force polygon, a10, giving the forces, $P_{1}$ and $P_{2}$, and also acc', the surface of moments for the shank, $A C$.

The moment, $M_{d}$, is yet to be determined. In the force polygon, with a distance, $R$, from the pole, $O$, draw a vertical ordinate ; this will be $M_{d}$. Lay its value off at $c^{\prime} c_{1}$ and $b b_{1}$, and five-eighths of these values give $c^{\prime} c_{0} b_{0} b$ for the parallelogram of torsion for the shank, $C B$.

The combination of the bending and twisting moments may then be made according to the formula. Make $c c_{2}=3 / 8 c^{\prime}$, and join $c b$; then at
any point of the polygon, as, for example, at $f$, the distance, $f f_{2}=3 / 8 f f^{\prime}$. Now transfer $c^{\prime} c_{0}$ to $a b$, at $c^{\prime} c_{0^{\prime}}$; then will the hypothenuse of the triangle, $c_{2} c^{\prime} c_{0}^{\prime}$, divided by $c_{2} c_{0}^{\prime}=\sqrt{\left(3 / 8 c c^{\prime}\right)^{2}+\left(5 / 8 c_{1} c^{\prime}\right)^{2}}$, and the sum, $c c_{2}+c_{2} c_{0}^{\prime}=$ $c c_{2}+c_{2} c_{3}$, the desired moment, $\left(M_{b}\right)_{i}$, for the point, $C$. In the same manner we obtain $f f_{2}+f_{2} f_{0}^{\prime}=f f_{2}+f_{2} f_{3}$, the moment, $\left(M_{b}\right)_{i}$, for the point, $F$. The line, $c_{3} f_{3} b_{0}$, is a curve (hyperbola), which may be taken approximately with sufficient accuracy as a straight line, $c_{3} b_{02}$. The various dimensions may be obtained from the polygon, $a c b b_{v} c_{3} c^{\prime}$, in a similar manner, as shown in the discussion of axles.

## BEARINGS.

The form and shape of bearings in which journals are carried vary much with the service demanded. For line shafting the most satisfactory results are obtained with cast-iron boxes, usually made four diameters in length, and supported on spherical seats in adjustable screw-plugs, permitting a limited adjustment and enabling the box to align itself to the shaft. Such boxes are used in drop-hangers, pillow-blocks, and wall-

brackets, the whole being a general article of manufacture. When the bearing is made rigid, the length is rarely more than one to two diameters, as it is difficult to maintain good alignment for greater lengths, and heating and cutting are apt to follow.

The proportions of a standard pillow-block bearing are given in the illustration, this being a form used in heavy mill shafting, in the outboard bearings of steam engines, and similar work.

The proportions of the pillow-block are in terms of a modulus, $d_{1}=$ $1.15 d+0.4$ inches, in which $d$ is the diameter of the journal to run in the bearing.

The dimensions of the brasses are in terms of the modulus, $e=0.07 d+$ 0.125 inch.

The main bearings of steam engines are similar in design, but are gen-
erally made with side brasses and adjustments to take up wear both horizontally and vertically, the casting of the pillow-block forming a portion of the engine bed-plate. For various designs of such bearings see Reuleaux's "Constructor"' and Unwin's "Machine Design."

The proportions of hangers and pillow-blocks for shafting are given in the following illustrations.


The dimensions of the hanger are in terms of the modulus, $d^{\prime}=1.4 d+$ $0.2{ }^{5}$ inches. The drop, $a$, varies according to local conditions. The screw-

plugs are of cast-iron, as are also the boxes. Lateral adjustment is made by providing slotted bolt-holes in the base of the hanger.

The wall-bracket is based upon the same modulus as the hanger, $d_{1}=$ $1.4 d+0.25$ inches.

The pillow-block differs from the hangers in having no verticle adjustment, the spherical sockets being cast in the base and cap, as shown in

the illustration. The modulus is $d_{1}=1.4 d+0.25$ inches. These designs are originally due to Wm. Sellers \& Co., of Philadelphia.,

## Steam Engine Bearings.

In designing bearings for steam engines it is necessary to take into account the direction of the pressure, and to provide means for taking up the wear. For horizontal engines such bearings are generally fitted with fourpart boxes, there being an under and an upper brass held by the main bolts, and a pair of side brasses held up to the shaft by wedges or setscrews. The brasses themselves may be made of bronze, phosphor bronze, or gun metal, and lined with a shell of babbitt or white metal, hammered into place and bored out to the diameter of the shaft, with a slight allowance for expansion. Unwin recommends the clearance to be 0.5 to 0.8 per cent. of the journal diameter.

The main journal bearings of modern steam engines are made of a diameter about one-half the bore of the the cylinder, and about as long as the cylinder diameter.

In the case of vertical engines the pressures are mainly vertical, and side brasses are not necessary. It is important in such bearings to see that the brasses are eased off at the sides near the joint, otherwise a powerful wedging action is exerted to cause side binding and consequent heating. The loss of bearing surface by such easing is trifling and the relief to the bearing is marked. This easing also provides for the ready entrance of the lubricant.

An example of a four-part bearing for the main journal of a horizontal engine is shown in the illustration, the dimensions being in millimetres. The wedges which hold the sides of the box to their places are operated by the long bolts screwing into nuts in the bed plate, while the lock-nuts on the upper ends of these bolts tighten down upon tubes slipped on the bolts and bearing upon the tops of the wedges.


The following notes by Mr. P. H. Been will be found useful :
Bearings for horizontal engines are generally made in four parts, 1 bottom, 2 sides and 1 top shell.

The cap is independent of the shells.
The side shell, on the side away from the cylinder, is adjustable by two set screws.

The other side shell is adjustable by shims.
The bottom shell bears on a centre rib only, which allows it to rock with deflection of shaft.

Bearings for vertical engines are in two parts, 1 lower and 1 upper shell.
The lower shell is a ball and socket, which allows shell to rock with deflection of shaft. The upper shell is cast with the cap.

There is no way provided for taking up the wear of these shells.
It has been found unnecessary as all the wear is down.
In the case of direct-connected electric-generating sets, when the shell has worn down a great amount, shims are taken out of the base of the generator, which allows the rotor to come central with the yoke.

A simpler form of engine bearing, shown below, provides for the taking up of the wear by two screws on one side only, the other side being packed up from time to time with thin shims of metal.


Mr. Asa M. Mattice says, in regard to the arrangement of oil grooves, designers frequently seem loath to sacrifice bearing area, apparently losing sight of the fact that no area, no matter how great, can be sufficient unless properly lubricated. Oil grooves should be large, arranged so as to keep the oil well distributed, and should have the edges well rounded off to facilitate the entrance of oil between bearing and journal. The simple removal of the sharp edge of the groove is not sufficient. Too many designers, moreover, seem to look upon the matter of oil grooves as of too little importance to be worthy of their consideration, but rather something to be leit to the shop to take care of, or to be neglected entirely. The result frequently is an oil grooving which does more harm than good, leading the oil to certain parts of the bearing and leaving other parts dry.

While long bearings are thcoretically desirable as increasing the bearing surface without giving the increased velocity of rubbing surfaces caused by increase in diameter, it is found impracticable to make long bearings conform exactly to the alignment of the shaft.

This difficulty may be overcome by dividing the bearing into two parts, each with its own ball-and-socket movement. Such a double bearing is shown in the illustration, from a design used by the Alioth Company for a steam-turbine dynamo; the journal being 130 mm . diameter by 480 mm . in length or about 5 in . by 19 in .


The two sphcrically seated boxes are supported in a yoke and held down by another yoke fitted into the cap, so that every opportunity is afforded for the bearings to adapt themselves to the journal. Ring lubrication is provided, the oil chamber being formed in the base of the bearing, this being cast in the bed-plate of the machine. The coils of pipe shown in the oil chamber are for the circulation of cooling water for keeping the temperature of the oil down when necessary. For speeds up to 35 ft . per second the ring lubrication is found sufficient, and at higher speeds the oil mar be fed direct under pressure. The bearing is well ventilated by an effective air circulation. The many excellent features of this modern bearing may readily be modified according to the location and service.

## Ball and Roller Bearings.

In order to substitute rolling for sliding friction ball or roller, bearings are often employed. Their efficiency depends much upon the perfection of workmanship and correctness of design. Since the surface of contact is necessarily small the pressure upon unit area is correspondingly high.

Good American practice gives the following loads as permissible in actual every day service for steel balls:

| Diameter. | Load. |
| :---: | :---: |
| $1 / 4 \mathrm{inch}$. | 40 pounds |
| $3 / 8$ inch. | 100 pounds |
| $1 / 2$ inch | 200 pounds |
| $5 / 8$ inch | 300 pounds |
| $3 / 4$ inch. | 500 pounds |
| $7 / 8$ inch. | 700 pounds |
| inch | 1000 pounds |

According to Stribeck the permissible pressure upon steel balls varies as the square of the diameter of the ball.

Thus if

$$
\begin{aligned}
& P=\text { load in kilogrammes } \\
& d=\text { diameter of ball in centimetres } \\
& C=\text { a constant coefficient }
\end{aligned}
$$

we have

$$
P=C d^{2}
$$

and for hardened steel balls between truly cylindrical rings, the coefficient $C$ may be taken between 30 and 50 .

If, however the ball races be hollowed to a curve with a radius equal to $\frac{2}{3} d$ the coefficient $C$ may be taken as 100 .

For British units, taking $d$ in eighths of an inch, and the working load in pounds the coefficient $C$ becomes 7 to 11 for cylindrical races and 22 for races hollowed to a radius $\frac{2}{3} d$. The cylindrical races for ball bearings are shown at A, and the Stribeck races at B, these being for radial bearings.


If four points of contact are desired, the arrangement shown at C is recommended, care being taken to have the contact points diagonally opposite, but this form requires very accurate construction.

Thrust bearings require the races to be made normal to the axis of the shaft, as shown at D.



A very effective four-point contact thrust bearing may be made as shown at $E$, but the races in the rings must be very accurately made, as shown, with the contact points on lines passing through the centre 0 , so that the rolling action of a cone is reproduced; otherwise conical rollers may be used as at F.


Stribeck recommends the use of but a single ring of balls for any bearing as it is difficult to distribute the pressure between several rings, but two rings are sometimes used with an equalizer.

The balls may be inserted into the race by leaving an opening on one side, this being closed afterward by an inserted piece secured by a screw. A better plan is to use one-half as many balls, inserting them all on one side, and then separating them by springs containing felt plugs, as shown below. This enables both rings to be made solid, and gives a noiseless combination, the felt plugs carrying the lubricant. This ingenious device is due to Conrad, and these bearings are made by the Deutschen Waffen und Munitionsfabrik.



Pillar Crane. $39,000 \mathrm{lb}$. Vertical and $21,000 \mathrm{lb}$. Horizontal Thrust on the Ball Bearings. Dimensions in Millimetres.
The above illustration shows both radial and thrustball bearings in the same apparatus, being the bearing for a pillar crane.

Roller bearings should be made with very short rollers, in order to avoid side binding, as long rollers are apt to become canted sidewise. A successful modification is seen in the Hyatt roller bearing, in which the rollers are made of flexible coils of steel, readily adapting themselves to the journal.


## COUPLINGS.

The simplest form of coupling is the plain cylindrical muff coupling shown in the illustration. The thickness $\delta=\frac{d}{3}+0.25$ inch, $d$ being the
diameter of the shaft: diameter of the shaft; the length being $8 \delta$. This coupling is cheap, and serves for light work.

For heavier shafts the plate coupling is used.

The thickness of the hub $\delta=\frac{d}{3}+0.25$ inch,
 and the length of hub on each plate $=4 \delta$. The other dimensions are based on the modulus, $d^{\prime}=$ $0.125 d+\frac{5}{16}$ inch, this being the diameter of the bolts. The number of bolts, $N=2+0.8 d$.

The two halves of a plate coupling should be forced on their respective shafts and keyed fast as well, and should then be turned up and faced off

on the same centres as were used in turning the shafts. All pulleys, gears, etc., should then be put on the shaft in halves, the plates of the coupling not being removed.


For screw-propeller shafts the plates are forged on the shafts, as shown in the jllustration.

According to Seaton, the diameter, $d^{\prime}$, of the bolts in such couplings should be :

$$
\begin{aligned}
& \text { For } 4 \text { bolts, } d^{\prime}=0.32 d \text {; } \\
& \text { For } 5 \text { bolts, } d^{\prime}=0.28 d ; \\
& \text { For } 6 \text { bolts, } d^{\prime}=0.25 d ; \\
& \text { For } 8 \text { bolts, } d^{\prime}=0.20 d \text {; } \\
& \text { For } 10 \text { bolts, } d^{\prime}=0.18 d \text {; }
\end{aligned}
$$

Thickness of plate $=\frac{b}{2}=0.3 d$;
Diameter of bolt circle $=1.6 d$;

$$
\text { Outside diameter, } D=1.6 d+21 / 4 d^{\prime} \text {. }
$$

Number of bolts, one for every two inches diameter of shaft.
For ordinary line shafting the double-cone coupling of Sellers' has been rery extensively used. As shown in the illustration, the tightening of the

bolts draws the cones together and clamps them upon the shafts. The dimensions given are in terms of the modulus, $\delta=\frac{d}{3}+0.25 \mathrm{inch}, d$ being the diameter of the shaft. This coupling permits a slight variation
in the diameters of the shafts, and, unlike the plate coupling, it may be removed and replaced satisfactorily to permit the placing of pulleys upon the shaft.

When it is desired to disconnect portions of a transmission, various
 forms of clutch couplings are used. A great variety of these have been designed, and, as an example, the cone clutch is given.

The general proportions of a cone clutch are given in the illustration, based on the modulus, $\delta=\frac{d}{3}+0.25$ inch. The angle of bevel, $a$, is made not less than $10^{\circ}$, or it is found difficult to disengage the parts. If $P R$ is the turning moment, or torque, to be transmitted, the axial pressure, $Q$, to hold the parts in engagement will be

$$
Q=\frac{P R}{r}\left(\frac{\sin a}{f}+\cos a\right)
$$

in which $r$ is the radius of the cone bearing and $f$ the coefficient of friction. For iron on iron, $f$ may be taken at 0.15 , and $r$ should not be made less than $3 d,-$ preferably greater.

For connecting shafts which are placed at an angle with each other the universal joint is employed, shown in skeleton in the illustration. While this is convenient, it must be remembered that the angular velocity transmitted is not uniform. If $a$ is the angle between the shafts, and $\omega$ and $\omega_{1}$ the angular movements of the two shafts, respectively, then

$$
\tan \omega_{1}=\tan \omega \cos \alpha
$$

The variation thus has a period of
 $180^{\circ}$

The following table gives the values of $\omega_{1}$ for successive values of $\omega$, for various angles, $a$ :

| $\omega$ | $a=10^{\circ}$ |  | $20^{\circ}$ |  | $30^{\circ}$ |  | $40^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deg. | Deg. | Min. | Deg. | Min. | Deg. | Min. | Deg. | Min. |
| 30 | 29 | 38 | 28 | 29 | 26 | 34 | 23 | 51 |
| 45 | 44 | 34 | 43 | 12 | 40 | 54 | 37 | 27 |
| 60 | 59 | 34 | 58 | 26 | 56 | 22 | 53 | 4 |
| 90 | 90 | - | 90 | . | 90 | . | 90 |  |
| 120 | 120 | 26 | 121 | 34 | 123 | 38 | 126 | 56 |
| 135 | 135 | 26 | 136 | 48 | 139 | 6 | 142 | 33 |
| 150 | 150 | 22 | 151 | 31 | 153 | 26 | 156 | 1 |
| 180 | 180 | . | 180 | . | 180 | . | 180 | . |

Where this variation is injurious it may be avoided by using two universal joints which correct each other.

## LEVERS.

The proportions of the various forms of lever arms used in machine design are dependent upon various considerations. Thus, the ends are determined by the diameters of the pins to be inserted.


In the above forms the proportions are given in terms of the diameter of the pin. These dimensions are for wrought-iron; for cast-iron they should be doubled.

The calculations of the dimensions of simple lever arms of rectangular section are made upon the assumption that the force, $P$, acts in a plane, passing through the middle of the arm and in a direction normal to the arm.

If we let
$h=$ width of the arm at the axis;
$b=$ thickness of the arm at the axis;
$S=$ the maximum permissible fibre stress;

$$
b=6 \frac{P R}{S h^{2}}
$$

Taking $S$ for wrought-iron $=8500$, and for cast-iron $=4250$, we have, for wrought-iron, $b=0.00072 \frac{P R}{h^{2}}$; for cast-iron, $0.00144 \frac{P R}{h^{2}}$.
These formulas are adapted for the determination of $b$ when $h$ has been selected, the latter being most conveniently chosen with regard to the other condition.

Example. Let $P=4400$ pounds, $R=24$ inches for a lever arm of wrought-iron, and $h=71 / 8$ inches, we have

$$
b=0.00072 \frac{4400 \times 24}{(7.125)^{2}}=11 / 2 \text { inches }
$$

If $b$ is kept constant for the whole
 length of the arm, the width at the small end may be $0.5 h$, while if a constant ratio of $b: h$ is kept, the small end $=2 / 3 h$.

If, as often occurs, the force, $P$, does not act in the middle plane, then there must exist a combined bending and twisting stress on the arm. We may then derive a combined stress whose bending moment will give an ideal arm, $R^{\prime}$.

If the plane in which the force, $P$, acts is distant from the middle of the arm by an amount, $a$, we may make, approximately,

$$
R^{\prime}=3 / 8 R+5 / 8 \sqrt{R^{2}+a^{2}}
$$

Thus, if the lever in the preceding example was acted upon by the same force with an overhang, $a$, of 15 inches, we have

$$
\begin{aligned}
R^{\prime} & =3 / 8 \cdot 24+5 / 8 \sqrt{24^{2}+15^{2}} \\
& =9+5 / 8 \cdot 28.3=26.7
\end{aligned}
$$

whence

$$
b=0.00072 \frac{4400 \times 26.7}{(7.125)^{2}}=1.66 \text { inches }
$$

Sometimes it is desired to make a lever arm of ribbed or I-section to secure lightness or economy of material. The dimensions may then best be obtained by computing the rectangular section and transforming this into the section desired.

Let $h_{0}$ be the width and $b_{0}$ the thickness of the rectangular section as found in the preceding method, and let $h$ and $b$ be the corresponding dimensions in the section selected from among those given in the illustration.


Then we have

$$
\frac{b}{b_{0}}=\frac{1}{1+a}
$$

in which

$$
a=\left(\frac{B}{b}-1\right)\left[6 \frac{c}{h}-12\left(\frac{c}{h}\right)^{2}\right] .
$$

These formulas permit a choice of the ratios, $\frac{B}{b}$ and $\frac{c}{h}$, which may be left to the judgment of the designer.

In the structural built-up sections the value of the angle-irons has been neglected, as it may be considered as making up for the weakening effect of the rivet-holes.

The following table of values of $\frac{1}{1+a}$ enables the transformation to be readily effected.

Table for Transforming Arm Sections.

|  | Values of $\frac{1}{1+a}$. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c | $\frac{B}{b}=\mathbf{2 . 5}$ | 3 | 3.5 | 4 | 4.5 | 5 | 6 | 7 | 8 | 10 |
| 6 | . 50 | . 43 | . 38 | . 33 | . 30 | . 27 | . 23 | . 20 | . 18 | . 14 |
| 7 | . 52 | . 45 | . 40 | . 35 | . 32 | . 29 | . 25 | . 21 | . 19 | . 15 |
| 8 | . 54 | . 47 | . 42 | . 37 | . 34 | . 31 | . 26 | . 23 | . 20 | . 16 |
| 9 | . 56 | . 49 | . 44 | . 39 | . 36 | . 33 | . 28 | . 24 | . 22 | . 18 |
| 10 | . 58 | . 51 | . 46 | . 41 | . 37 | . 34 | . 29 | . 26 | . 23 | . 19 |
| 11 | . 60 | . 53 | . 48 | . 43 | . 39 | . 36 | . 31 | . 27 | . 24 | . 20 |
| 12 | . 62 | . 55 | . 50 | . 44 | . 41 | . 37 | . 32 | :29 | . 26 | . 21 |
| 14 | . 64 | . 58 | . 52 | . 47 | . 44 | . 40 | . 35 | . 31 | . 28 | . 23 |
| 16 | . 67 | . 60 | . 55 | . 50 | . 47 | . 43 | . 38 | . 34 | . 30 | . 25 |
| 18 | . 69 | . 63 | . 57 | . 52 | . 49 | . 46 | . 40 | . 36 | . 33 | . 27 |
| 20 | . 71 | . 65 | . 60 | . 55 | . 52 | . 48 | . 42 | . 38 | . 34 | . 29 |
| 22 | . 73 | . 67 | . 62 | . 57 | . 53 | . 50 | . 45 | . 40 | . 37 | . 31 |
| 24 | . 75 | . 68 | . 61 | . 59 | . 56 | . 52 | . 47 | . 42 | . 38 | . 33 |
| 27 | . 76 | . 71 | . 66 | . 62 | . 58 | . 55 | . 50 | . 45 | . 41 | . 35 |
| 30 | . 78 | . 73 | . 68 | . 64 | . 61 | . 57 | . 52 | . 47 | . 43 | . 37 |
| 33 | . 79 | . 75 | . 70 | . 66 | . 63 | . 60 | . 54 | . 50 | . 45 | . 39 |
| 36 | . 81 | . 76 | . 72 | . 68 | . 65 | . 61 | . 56 | . 52 | . 48 | . 41 |
| 40 | . 83 | . 78 | . 74 | . 70 | . 67 | . 64 | . 58 | . 54 | . 50 | 44 |
| 45 | . 84 | . 80 | . 76 | . 72 | . 69 | . 66 | . 61 | . 57 | . 53 | 47 |
| 50 | . 85 | . 81 | . 78 | . 74 | . 71 | . 68 | . 63 | . 59 | . 56 | 49 |

Example. A lever arm has a length, $R=78.75$ inches, and the journal pressure at the end $=P=5500$ pounds. It is to be of cast-iron of double T-section with a height, $h_{0}=125 / 8$ inches. We have, for a rectangular section,

$$
b_{0}=0.00144 \frac{5500 \times 78.75}{(12.625)^{2}}=3.9 \text { inches. }
$$

With this the I-section may be compared. Here we may take $c: h=$ $1: 12, B: b=4$, and we get from the table $\frac{1}{1+a}=0.44$ and $b=0.44 b_{0}=1.71$ inches, and the flange breadth, $B=1.71 \times 4=6.84$ inches, the flange thickness $=c=\frac{1}{12} h=\frac{12.625}{12}=1.05$ inches, all of which are practical dimensions. It may be found desirable to have $c=b$ or any reasonable ratio, or $B: b$, and $c: h$ be chosen.

Example. A wrought-iron arm has been found to require $b_{0}=23 / 8$ inches, $h=125 / 8$ inches. It is desired to make $\frac{b}{b_{0}}=0.25$, and in column 10 we find 0.25 opposite $\frac{h}{c}=16$; hence, $b=0.57$ inch and $B=10 \times 0.59=5.90$ inches, and $c=\frac{12.625}{16}=0.8$ inch.

This table may be used for transforming sections for many other purposes, such as beams, crane booms, struts, etc.

## CRANKS.

The general proportions of engine cranks are obtained from the methods already given. The diameter and length of pin are found, as are those of a journal subjected to alternating stresses, according to the table on page 44.5 , and the shaft is determined by the values of the twisting and bending moments upon it. The thickness of metal about the hub and eye of the crank is then proportioned according to the diameters of the shaft and pin, as shown on page 465.

For important structures it is desirable to make a graphical analysis of all the stresses upon the crank and its shaft. Starting with a pin proportioned to resist the maximum effort of the connecting rod upon it, the following graphostatic analysis will enable all the parts to be equal in strength to the pin, according to Reuleaux :

The Crank Axle.-Having calculated $d$ and $l$, draw the skeleton diagram of the crank,-that is, the neutral axis, $A B C D E$, in which $B C$ represents the axis of the crank arm, which in this case lies normal to the axis of the shaft, and is placed in its proportional distance from the centre of the crank pin, $A$, and from the bearing, $D$. Then lay off the force, $P$, from $a$, normal to $E a$, choose the pole, $O$, of the force polygon (this being best placed upon a line passing through the end of $P$ and parallel to the axis, $E a$ ), draw the ray, $a d O$, and line, $d E$, also the ray, $O P_{1}$, parallel to $d E$ t then $a d E$ will represent the cord polygon for the bending which $P$ prociuces upon the axle, $a C E$, and $P P_{1}$ represents the force upon the journal, $E$, and $P_{1} a$ the force upon the journal, $D$. Also make $a F$ equal to the crank radius, $R$, and draw $F G$; this latter will be the twisting moment which $P$ exerts upon the axis. This moment, $M_{d}$, may be combined with the bending moment, $M_{b}$, to give for each point an ideal bending moment,

$$
M_{i}=3 / 8 M_{b}+5 / 81 \overline{M_{b}^{2}+M_{a^{2}}},
$$

from which the polygon curve, $c^{\prime} d^{\prime} e^{\prime}$, and surface of moments, $C^{\prime} c^{\prime} d^{\prime} e^{\prime} E$, are obtained. From the latter, in combination with the pin diameter, $d$, and ordinate, $t$. of the base of the pin, the diameter of the shaft may be obtained according to formula

$$
\frac{y}{d_{1}}=\sqrt[3]{\frac{t}{t_{1}}}
$$

The Crank Arm.-Prolong $E a$ to $a_{0}$, and transfer the cord polygon, $D a d$, to the base line, $B C$,-that is, make the angle $a_{0} B C=$ the angle $D a d$, and then will $B a_{0} C$ be, with horizontal ordinates, the surface of moments for the bending of
 the crank arm due to the force, $P$. Also make $C c_{0}=B b_{0}=C c$, then will the horizontal ordinates of the torsion rectangle, $B b_{n} c_{0} C$, be the moments with which $P$ acts to twist the crank arm about the axis, $B C$. This moment may again be combined with the bending moment to give an ideal moment, as before; ( $a_{0} a^{\prime}=3 / 8 a_{0} C$, draw $B a^{\prime}$, make at any point, $H$, the space, $H i=5 / 8 B b_{0}$, and make $H h=h_{0} h^{\prime}+h^{\prime} i$ ), which gives the surface of moments, $B b^{\prime} h F C$, for the crank arm. From this and from the diameter, $d$, and ordinate, $t$, we can construct the conoidal form of the arm, $I K L M$, according to formula

$$
\frac{y}{d_{1}}=\sqrt[3]{\frac{t}{t_{1}}}
$$

From this, again, the profile, STUV, of an arm of rectangular section may be derived, the width, $h$, being assumed for any point, and the corresponding thickness, $b$, obtained from the value, $y$, of the conoid, according to the formula

$$
\frac{b}{y}=0.6\left(\frac{y}{h}\right)^{2}
$$

If the position of the axis, $B C$, does not give satisfactory results, the operation must be repeated with a better relation of parts. By proceeding in this manner the dimensions of a crank and axle may be so determined that they will be equal in strength to the pin upon which the power is exerted.

For a similar treatment of other forms of cranks and cranked axles see Reuleaux's "Constructor."

## CONNECTING RODS.

The body of a connecting rod may be made of wrought-iron, cast-iron, steel, or even of wood. In the latter case it is usually only subject to tension.

If the rod is of circular cross-section of diameter, $D$, and the force of tension be $P$, we have the following relations:

$$
\begin{array}{ll}
\text { wrought-iron, } \frac{D}{\sqrt{P}}=0.015 ; & \text { cast-iron, } \frac{D}{\sqrt{P}}=0.03 \\
\text { steel, } & \frac{D}{\sqrt{P}}=0.012 ;
\end{array} \text { oak, } \frac{D}{\sqrt{P}}=0.06 .
$$

These give stresses of $5600,9500,2800$, and 400 pounds, respectively, or about two-thirds the value given for ordinary conditions.

For short connecting rods the formulas cited are all right for compression as well as for tension, but for long rods a greater diameter should be used to provide against buckling. Owing to the great variety of conditions, a factor of safety, $m$, must be introduced, and we have the following formulas, in which $D$ is the diameter of the round rod; $L$, its length, in inches ; and $P$, the total pressure, in pounds:

$$
\left.\begin{array}{ll}
\text { wrought-iron or steel, } D & =0.0164 \sqrt[4]{m} \sqrt{L \sqrt{P} ;} \\
\text { cast-iron, } & D=0.0195 \sqrt[4]{m} \sqrt{L \sqrt{P} ;} \\
\text { wood, } & D
\end{array}\right)=0.034 \sqrt[4]{m} \sqrt{L \sqrt{P}} .
$$

We have for

$$
\begin{array}{rl}
m & =1.5 \\
2.0 & 3.0
\end{array} 4.0 \quad 6.0 \quad 8.0 \quad 10.0 \quad 15.0 \quad 20.0
$$

For various services the following values of $m$ may be taken: locomotive engines, $m=2$ to 5 ; high-speed stationary engines, $m=10$; ordinary stationary engines, $m=20$ to 25 ; marine engines, $m=30$ to 40 .

The above dimensions are for the middle of the rod. When the rod is tapered both ways, it is made $0.8 D$ at the crank ends and $0.7 D$ at the crosshead end. For high-speed engines the size is usually made greatest at the crank end, being about $1.7 D$, the cross-head end being $0.7 D$.

For rods of a rectangular cross-section, in which the depth of crosssection $=h$ and thickness $=b$, we have, for any given ratio of $h$ to $b$,

$$
h=0.0144 \sqrt[4]{m} \sqrt[4]{\left(\frac{h}{b}\right)^{3}} \sqrt{L \sqrt{P}}
$$

In order to simplify the use of this formula, the following table will be of use:

$$
\begin{array}{rl}
\frac{h}{b} & =1.5 \\
1.6 & 1.7 \\
1.8 & 1.9 \\
2.0 & 2.1 \\
\sqrt[4]{\left(\frac{h}{b}\right)^{3}} & =1.36 \\
& 1.42 \\
1.49 & 1.55 \\
1.62 & 1.68 \\
1.74 & 1.80 \\
1.87 & 1.93 \\
1.99
\end{array}
$$

Example. Let $P=30,000$ pounds, $L=72$ inches, $\frac{h}{b}=2.5$. Taking $m=2$ for a locomotive engine, we have
and

$$
\begin{array}{rlrl} 
& \sqrt[4]{m} & =1.19 \\
\text { and } & h & =0.0144 \times 1.19 \times 1.9 \\
& \text { and } & b & =\frac{3.8}{2.5}=1.52 \text { inches }
\end{array}
$$

## Connecting=rod Ends.

The general proportions of a strap end for a connecting rod are given in the illustration. The dimensions are in terms of the modulus,

$$
d_{1}=d+0.2 \text { inch }
$$

$d$ being the diameter of the journal or crank pin. The dimensions of the brasses are in terms of the unit,

$$
e=0.07 d+0.125 \text { inch }
$$

The modulus, $d_{1}$, is assumed on the basis of an ordinary overhung crank pin. For a cranked axle or an eccentric, however, the increased diameter would give unsuitable dimensions, and in such cases the modulus becomes

$$
d_{1}^{\prime}=d_{1}+\sqrt{\frac{b}{b^{1}}} \sqrt{\frac{d^{1}}{d}}
$$

in which $d_{1}$ is the modulus for an overhung crank pin for the same press: ure as the one under consideration; $b$ and $d$ being the corresponding values for the overhung pin and $b^{1}$ and $d^{1}$ those selected for the new one.


For heavy service the marine type of rod end is used, one form being shown in the illustration. Here the end of the rod is forged into a $T$, and the brasses, cored out as shown, form the bearing and the rod end, the bolts and steel cap forming the resistance to the driving stresses.


The dimensions here are based upon the diameter of the bolts at the bottom of the thread. The bolts are turned down, as shown, in order to distribute the strain and avoid breakage at the base of the thread.

Taking fibre stresses of 5000 pounds for wrought-iron and 6600 pounds for steel, we have, according to Unwin, for the diameter of the bolts at the bottom of the thread,

$$
\begin{aligned}
\delta & =0.02 \sqrt{P} \text { for wrought-iron } \\
& =0.018 \sqrt{P} \text { for steel }
\end{aligned}
$$

the other dimensions being in terms of $\delta ; P$ being the one-half maximum pressure upon the piston, or the pressure upon one bolt.

For rods of moderate size, where a closed end is permissible, the following type is convenient, compact, and inexpensive.


The proportions of the above type of stub end are based on the modulus,

$$
\delta=0.15 d+0.2 \text { inch } .
$$

The brasses are based on $t=0.08 d+1 / 8$ inch.
The diameter of the bolts is $0.02 d=0.25$ inch, taking the nearest even size.

The taper of the wedge is made $1 / 8$ inch to the inch.
The square end brass is made with a small lip on each side on the end only, to prevent lateral movement; the collar on the pin prevents the lateral movement of the bevelled brass.

The brasses should not be left open upon the pin, but either fitted close, and filed off when wear is to be taken up, or else a number of sheets of copper foil placed between them before boring the hole, forming slivers which can be taken out one at a time when necessary.

A variety of connecting-rod ends will be found in Reuleaux's "Constructor" and Unwin's "Machine Design."

## ECCENTRICS.

Eccentrics may be considered
 as cranks in which the diameter of the pin is greater than the sum of the crank circle plus the shaft diameter.

The breadth of the eccentric (properly the length of pin, $l$ ) is the same as that of the equivalent overhung journal subjected to the same pressure ; for the depth of flange, $a$, we have

$$
a=1.5 e=0.07 l+0.2,
$$

from which the other dimensions can be determined as in the illustrations.

For some forms of shafts with multiple cranks or other obstructions the eccentrics cannot be made as shown before, but must be in halves, bolted together.

The eccentric straps may be proportioned as in the illustrations, the modulus being derived from that for the equivalent overhung journal, as

already described. The diameter of the bolts, $\delta$, is found from the two moduli, as follows:

$$
\delta=0.33 d_{1}+0.06 d_{1}^{\prime} .
$$

The form on the left is intended to be made in cast-iron, and that on the right in wrought-iron. The most important feature in the operation of eccentrics is the maintenance of complete lubrication, as otherwise the high lineal velocity of the rubbing surfaces is apt to produce heating.

In the form shown in the illustration the strap is made wider than the eccentric, and the lip is bevelled as shown, thus forming a circular channel on each side, in which the oil collects and is distributed over the

rubbing surfaces. When this form of strap is to be used in the horizontal position the strap should be divided at an angle of $45^{\circ}$ with the horizontal, otherwise the oil will run out at the joint, when standing. In practice, cast-iron on cast-iron is found to give excellent results as to wear and smooth running.

## CROSS-HEADS.

For a simple $T$ cross-head the dimensions shown in the illustration may be used. If $P$ is the maximum load upon the rod the journals are to

be computed for a load of $1 / 2 P$, and the depth, $h$, in the middle may be made $=2.5 d+\frac{1}{14} A$. The thickness, $b$, may be determined from

$$
b=0.00035 \frac{P A}{h^{2}},
$$

which corresponds to a fibre stress of 8500 pounds for wrought-iron.

The arrangement of cross-heads for use in connection with guide bars depends very much upon the form of guides employed. Some examples will serve to indicate the general proportions.

For four-bar guides the following design may be employed, the proportions being those given
 by Unwin. The length and diameter of the pin are determined by the pressure upon the rod, the diameter usually being about 0.8 the size for the crank pin, and the
 length equal to the diameter. The dimensions of the other parts are in terms of the pin diameter, $d$. The cross-head itself is of wrought-iron, with castiron slide blocks.

When but two guide bars are used the form of crosshead shown here may be employed.

The dimensions are in terms of the pin diameter.

In these cross-heads the length and width, $\lambda$ and $\beta$, of the slides should be so proportioned that the pressure should not be more than 40 to 60 pounds per square inch. For large engines the slides may be fitted with bronze shoes and with setscrews or wedges for adjustment. If, however, the area is made large, the wear is very slight, and no such provision is necessary.

In some engines of moderate size the guides are cast on the frame and
bored out in line with the cylinder. The cross-head shown below is an example designed for use with such guides. Numerous special forms of cross-heads will be found in Reuleaux's "Constructor" and Unwin's "Machine Design."

The pressure on the guides depends upon the total pressure on the piston-rod and upon the maximum angle which the connecting rod makes

with the line of the guides. Assuming that the greatest pressure occurs when the position of the crank is at right angles with the line of the guides, we have

$$
P_{1}=\frac{1}{\sqrt{n^{2}-1}} P
$$

in which $P_{1}$ is the pressure on the guide; $P$, the total pressure on the piston-rod; and $n$, the ratio of the length of the connecting rod to the radius of the crank. Thus, if the connecting rod be made 5 cranks in length, we have

$$
P_{1}=\frac{1}{\sqrt{25=1}} P=0.204 P
$$

If the pressure on the piston is 10,000 pounds, the greatest pressure on the guides will be 2040 pounds; and at 40 pounds per square inch a single slide-block should have an area of 51 square inches.

## GEARING.

In the transmission of motion by toothed gearing it is necessary to know the number of teeth and their shape, as well as the dimensions of the cylinders, cones, or other figures upon which they are formed.

In all cases toothed gear-wheels are substitutes for smooth, rolling surfaces, the teeth being employed merely to obviate the slipping which might otherwise take place.

If we consider two spur-gears in engagement with each other, we can imagine the teeth being made smaller and smaller in size and, at the same time, greater and greater in number, until they become indefinitely small and the surfaces become practically smooth. Such rolling surfaces constitute the pitch surfaces of the gear-wheels, and the aim of toothed-gearing design is to shape the teeth so that the rolling action of the pitch surfaces may be maintained and, at the same time, forces of determinate magnitude transmitted without slip. In discussing gear-teeth, therefore, the pitch circles, of which the rolling action is to be reproduced, are the basis upon which the teeth are constructed.

Let
$R=$ radius of pitch circle;
$t=$ distance from centre to centre of adjacent teeth $=$ circumferential pitch;
$Z=$ number of teeth.
We then have

$$
\frac{R}{t}=\frac{Z}{2 \pi}=0.15916 Z
$$

When the gear-wheels are of large size and to be cast, made from wooden patterns, it is desirable to work to definite and convenient lineal pitch distances, in which case the pitch, $t$, is selected, and the corresponding radius, $R$, found for the given number of teeth, thus,

$$
R=0.15916 Z t
$$

Thus, for a wheel of 75 teeth and $21 / 2$ inches pitch, we hare

$$
R=0.15916 \times 187.5=29.85 \text { inches },
$$

and the pitch diameter $=2 R=59.70$ inches.
In order to abridge the work of computation the following table may we used. It is only necessary to take out the number corresponding to the number of teeth and multiply it by the pitch to obtain the radius of the corresponding pitch circle. The pitch may be taken in any unit, inches, sixteenths of an inch, millimetres, etc., and the radius will be in the same unit.

Thus, for 75 teeth, we find opposite 70 and under 5 the number 11.94; and $11.94 \times 2.5=29.85$ inches, the same as before .

## Table of Radii of Gear=wheels.

Multiply tabular number for given number of teeth by the circumferential pitch to obtain radius.

| Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | . 1.59 | . 318 | . 477 | . 637 | . 796 | . 955 | 1.114 | 1.273 | 1.432 |
| 10 | 1.59 | 1.75 | 1.91 | 2.07 | 2.23 | 2.39 | 2.55 | 2.71 | 2.86 | 3.02 |
| 20 | 3.18 | 3.34 | 3.50 | 3.66 | 3.82 | 3.98 | 4.14 | 4.30 | 4.46 | 4.62 |
| 30 | 4.77 | 4.93 | 5.09 | 5.25 | 5.41 | 5.57 | 5.73 | 5.89 | 6.05 | 6.21 |
| 40 | 6.37 | 6.53 | 6.68 | 6.84 | 7.00 | 7.16 | 7.32 | 7.48 | 7.64 | 7.80 |
| 50 | 7.96 | 8.12 | 8.28 | 8.44 | 8.59 | 8.75 | 8.91 | 9.07 | 9.23 | 9.39 |
| 60 | 9.55 | 9.71 | 9.87 | 10.03 | 10.19 | 10.35 | 10.50 | 10.66 | 10.82 | 10.98 |
| 70 | 11.14 | 11.30 | 11.46 | 11.62 | 11.78 | 11.94 | 12.10 | 12.25 | 12.41 | 12.57 |
| 80 | 12.73 | 12.89 | 13.05 | 13.21 | 13.37 | 13.53 | 13.69 | 13.85 | 14.01 | 14.16 |
| 90 | 14.32 | 14.48 | 14.64 | 14.80 | 14.96 | 15.12 | 15.28 | 15.44 | 15.60 | 15.76 |
| 100 | 15.92 | 16.07 | 16.23 | 16.39 | 16.55 | 16.71 | 16.87 | 17.03 | 17.19 | 17.35 |
| 110 | 17.51 | 17.67 | 17.83 | 17.98 | 18.14 | 18.30 | 18.46 | 18.62 | 18.78 | 18.94 |
| 120 | 19.10 | 19.26 | 19.42 | 19.58 | 19.73 | 19.89 | 20.05 | 20.21 | 20.37 | 20.53 |
| 130 | 20.69 | 20.85 | 21.01 | 21.17 | 21.33 | 21.49 | $21.6 \overline{5}$ | 21.80 | 21.96 | 22.12 |
| 140 | 23.28 | 22.44 | 22.60 | 22.76 | 22.92 | 23.08 | 23.24 | 23.40 | 23.55 | 23.71 |
| 150 | 23.87 | 24.03 | 24.19 | 24.35 | 24.51 | 24.67 | 24.83 | 24.99 | 25.15 | 25.31 |
| 160 | 25.46 | 25.62 | 25.78 | 25.94 | 26.10 | 26.26 | 26.42 | 26.58 | 26.74 | 26.90 |
| 170 | 27.06 | 27.21 | 27.37 | 27.53 | 27.69 | 27.85 | 28.01 | 28.17 | 28.33 | 28.49 |
| 180 | 28.65 | 28.81 | 28.97 | 29.13 | 29.28 | 29.44 | 29.60 | 29.76 | 29.92 | 30.08 |
| 190 | 30.24 | 30.40 | 30.56 | 30.72 | 30.88 | 31.04 | 31.19 | 31.35 | 31.51 | 31.67 |
| 200 | 31.83 | 31.99 | 32.15 | 32.31 | 32.47 | 32.63 | 32.79 | 32.95 | 33.10 | 33.26 |
| 210 | 33.42 | 33.58 | 33.74 | 33.90 | 34.06 | 34.22 | 34.38 | 34.54 | 34.70 | 34.85 |
| 220 | 35.01 | 35.17 | 35.33 | 35.49 | 35.65 | 35.81 | 35.97 | 36.13 | 36.29 | 36.45 |
| 230 | 36.61 | 36.76 | 36.92 | 37.08 | 37.24 | 37.40 | 37.56 | 37.72 | 37.88 | 38.04 |
| 240 | 38.20 | 38.36 | 38.51 | 38.67 | 38.83 | 38.99 | 39.15 | 39.31 | 39.47 | 39.63 |
| 250 | 39.79 | 39.95 | 40.11 | 40.27 | 40.42 | 40.58 | 40.74 | 40.90 | 41.06 | 41.22 |
| 260 | 41.38 | 41.54 | 41.70 | 41.86 | 42.02 | 42.18 | 42.34 | 42.49 | 42.65 | 42.81 |
| 270 | 42.97 | 43.13 | 43.29 | 43.45 | 43.61 | 43.77 | 43.93 | 44.09 | 44.25 | 44.40 |
| 280 | 44.56 | 44.72 | 41.88 | 45.04 | 45. 20 | 45.36 | 45.52 | 45.68 | 45.84 | 46.00 |
| 290 | 46.15 | 46.31 | 46.47 | 46.63 | 46.79 | 46.95 | 47.11 | 47.27 | 47.43 | 47.59 |

For small pitches, especially for cut gearing, the so-called Diametral Pitch is much used.

Thus, we have, as before,

$$
\frac{R}{t}=\frac{Z}{2 \pi} ; \text { or } \frac{2 R}{t}=\frac{Z}{\pi} ;
$$

whence

$$
Z=2 R \frac{\pi}{t}
$$

Or, the number of teeth is equal to the pitch diameter of the gear multiplied by $\pi$, divided by the circumferential pitch. By making the circumferential pitch an aliquot part of $\pi$, the relation of the number of teeth to the diameter may be very simply expressed. Thus, instead of making a gear of $1 / 2$-inch pitch, the pitch may be made equal to

$$
\frac{\pi}{6}=\frac{3.1416}{6}=0.5236 \mathrm{inch},
$$

and we have

$$
\frac{\pi}{t}=6 \text { and } Z=2 R \times 6,
$$

so that for every wheel we have only to choose the diameter and multiply by 6 to obtain the number of teeth; or select the number of teeth and divide by 6 to obtain the diameter. In like manner we may choose pitches of $\pi, 1 / 2 \pi, 1 / 3 \pi, 1 / 4 \pi$, etc., or, as they are commonly called, one pitch, two pitch, three pitch, etc., these really meaning the number of teeth corresponding to each inch in diameter of the wheel ; hence, the name, Diametral Pitch.

Since such gears are cut with standard cutters, the fractional circumferential pitch is provided for in the making of the cutter, and need not be further considered.

For convenience in selecting the approximate size of tooth required, the following table, showing the lineal value of diametral pitches, is given:

| Diametral <br> pitch. | Circumferential <br> pitch. | Diametral <br> pitch. | Circumferential <br> pitch. |
| :---: | :---: | :---: | :---: |
| 1 | Inch. |  | Inch. |
| 2 | 3.1416 | 6 | .5236 |
| 3 | 1.5708 | 7 | .4488 |
| 4 | 1.0472 | 8 | .3927 |
| 5 | .7854 | 9 | .3491 |
|  | .6283 | 10 | .3142 |

Thus, 3 diametral pitch is about equal to 1 inch circumferential pitch, 4 diametral pitch is a little more than $3 / 4$ inch, and so on. The diametral system simply throws the inconvenient fraction into the size of the gearcutter, and thus simplifies all the succeeding work.

The form of gear teeth is a subject to which much study has been given. Formerly, when each establishment made its own gear-cutters and designed its own tooth outlines, the question was of more practical importance than at the present time, when accurately-formed cutters are regular articles of merchandise, and when it is only necessary to indicate the diametral pitch and the number of teeth to enable the proper cutter to be selected.

Two systems are in general use, the epicycloidal and the involute, and their respective merits have been actively discussed. Practice has shown, however, that there is little real difference between them, but the facility with which the involute system adapts itself to the design of machines for automatically generating tooth outlines gives it practical advantages.

Epicycloidal teeth are generated in the following mannor:
External Teeth (Fig. a).-Given the number of teeth, $Z$, and pitch, $t$, or ratio, $\frac{t}{\pi}$, of the wheel. Make $O P=R=\frac{Z t}{2 \pi}=1 / 2 Z\left(\frac{t}{\pi}\right)$, and the radius, $r_{0}$, of the rolling circle, $W=0.875 t$, or $=2.75 \frac{t}{\pi}$; draw the outside circle of the teeth, $K$, with a radius $=R+0.3 t$, and the inside circle, $F$, with radius $=R-0.4 t$, and make the thickness of tooth $=\frac{1}{4} \frac{2}{2} t . \quad$ Arc $S b=$ arc

$a b ; \operatorname{arc} S c=\operatorname{arc} i c . S a$, the face curve, is generated by the rolling of $W$ upon $T ; S i$, the flank curve, by the rolling of $W$ in $T$. For pinions of eleven teeth, Si becomes a straight line and radial. Pinions with as few as seven teeth can be made to work on this system, for although the flanks are undercut, they are still within the limits of the theoretical flank profile, as shown in the following illustration, where a 7 -tooth pinion is shown with a rack tooth. The backlash is $\frac{1}{10} t$.

Internal Teeth (Fig. b). The generation of internal teeth is similar to the preceding. The radius of base circle is $-R$, and the length of tooth above and below the pitch circle is $0.3 t$ and $0.4 t$, as before ; $r_{0}=$ $0.875 t=2.75 \frac{t}{\pi}$, and the thickness of tooth $=\frac{19}{40} t$. The flank, $S a$, is generated by rolling $W$ upon $T$, and the face, $S i$, by rolling $W$ inside of $T$.

In the case of a rack, $R=\infty, S a$ and $S i$ then become similar portions of the common cycloid.

In teeth of this form the line of action coincides with the rolling circles, the portion included being $=$ arc $b a+$ the corresponding arc, $b_{1} a_{1}$, of the opposing wheel, when both are external gears, and + the arc, ci, for an internal gear working with a spur gear. The duration of action, $e$, varies between 1.22 and 1.60.

Involute teeth are generated as follows:
The curve is developed by unwrapping a line from a base circle, which is concentric with and bears a definite relation to the pitch circle.

External and Internal Teeth.-Given the number of teeth, $Z$, and pitch, $t$, or ratio, $\frac{t}{\pi}$, for the required wheel. Make $O P=R=\frac{Z t}{2 \pi}=$ $\frac{1}{2} Z\left(\frac{t}{\pi}\right)$, and draw the outer and inner circles, giving the distances, $f=$ $0.4 t, k=0.3 t$, above and below the pitch circle; also make the thickness of the tooth $=\frac{1}{4} \frac{\mathrm{~g}}{} \mathrm{t}$.

Draw the line, $N P N_{1}$, at an angle of $75^{\circ}$ with $O P$, and it will be tangent to the base circle, $G$, the radius of which $=r=0.966 R=0.154 Z t=$


Limiting case of epicycloidal gear teeth, showing 7 -tooth pinion engaged with rack.
$0.483 Z\left(\frac{t}{\pi}\right)$. If, now, we unwrap the line, $N P$, upon the circle, $G$, from $P$ outward to $a$ and inward to $g$, the path, $a P g$, of the point, $P$, will be the

required tooth outline, which for whecls of fewer than 55 teeth may be prolonged by a radial line to reach the bottom circle.

For two equal wheels of 14 teeth, $c$ is only a little greater than unity ; it varies between 1 and 2.5.


Rack Teeth.-The profile, $a P i$, is straight and makes an angle of $75^{\circ}$ with the pitch line, $T$. The angle $75^{\circ}$ can readily be laid off by using the drawing triangles of $45^{\circ}$ and $30^{\circ}$ together.

For low-numbered pinions on the involute system care must be taken to avoid interference. Thus, in the illustration below, in which a 12 -tooth

pinion is shown engaged with a rack, it will be seen that the radial flanks of the pinion are crossed by the dotted line of action of the rack teeth, as at $\Lambda g$. This may be remedied by reducing the length of the rack teeth, or by rounding off their points.

## Diametral Pitch Formulas.

Brown \& Sharpe Manufacturing Company.
Let

```
P= the diametral pitch;
D' = the pitch diameter;
D= the outside diameter;
N= the number of teeth;
V= the velocity ratio;
d}=\mathrm{ the pitch diameter;
d= the outside diameter; { pinion. run together.
n= the number of teeth;
v= the velocity ratio;
a= distance between the centres of the two wheels;
b= the number of teeth in both wheels.
```

Formulas.

$$
\begin{array}{lll}
b=2 a P ; & n=\frac{P D^{\prime} V}{v} ; & d=\frac{2 a(n+2)}{b} ; \\
n=\frac{b V}{v+V} ; & V=\frac{n v}{N} ; & a=\frac{b}{2 P} ; \\
N=\frac{n v}{V} ; & v=\frac{N V}{n} ; & D^{\prime}=\frac{2 a v}{v+V} ; \\
n=\frac{N V}{v} ; & v=\frac{P D^{\prime} V}{n} ; & d^{\prime}=\frac{2 a V}{v+V} ; \\
N=\frac{b v}{v+V} ; & D=\frac{2 a(N+2)}{b} ; & a=\frac{D^{\prime}+d^{\prime}}{2} .
\end{array}
$$

## Circular Pitch.

With its Equivalent in Diametral Pitch, Depth of Space, and Thickness of Tooth.

| Circular pitch. | Diametral pitch. | Thickness of tooth on pitch line. | Depth to be cut in gear. | Addendum. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. |  | Inch. | Inch. | Inch. |
| 6 | . 5236 | 3.0000 | 4.1196 | 1.9098 |
| 5 | . 6283 | 2.5000 | 3.4330 | 1.5915 |
| 4 | . 7854 | 2.0000 | 2.7464 | 1.2732 |
| $31 / 2$ | . 8976 | 1.7500 | 2.4031 | 1.1140 |
| 3 | 1.0472 | 1.5000 | 2.0598 | . 9550 |
| 23/4 | 1.1424 | 1.3750 | 1.8882 | . 8754 |
| 21/2 | 1.2566 | 1.2500 | 1.7165 | . 7958 |
| 21/4 | 1.3963 | 1.1250 | 1.5449 | .7162 |
| 2 | 1.5708 | 1.0000 | 1.3732 | . 6366 |
| 17/8 | 1.6755 | . 9375 | 1.2874 | . 5968 |
| 13/4 | 1.7952 | . 8750 | 1.2016 | . 5570 |
| 15/8 | 1.9333 | . 8125 | 1.1158 | . 5173 |
| 11/2 | 2.0944 | . 7500 | 1.0299 | . 4775 |
| 13/8 | 2.2848 | . 6875 | . 9441 | . 4377 |
| 11/4 | 2.5133 | . 6250 | . 8583 | . 3979 |
| 11/8 | 2.7925 | . 5625 | .7724 | . 3581 |
| 1 | 3.1416 | . 5000 | . 6866 | . 3183 |
| ${ }_{1}^{15}$ | 3.3510 | . 4687 | . 6437 | . 2984 |
| 7/8 | 3.5904 | . 4375 | . 6007 | . 2785 |
| $\frac{13}{18}$ | 3.8666 | . 4062 | . 5579 | . 2586 |
| $3 / 4$ | 4.1888 | . 3750 | . 5150 | . 2387 |
| ${ }^{\frac{1}{16}}$ | 4.5696 | . 3437 | . 4720 | . 2189 |
| 5/8 | 5.0265 | . 3125 | . 4291 | . 1989 |
| ${ }^{\frac{9}{16}}$ | 5.5851 | . 2812 | . 3862 | . 1790 |
| 1/2 | 6.2832 | . 2500 | . 3433 | . 1592 |
| $\frac{7}{18}$ | 7.1808 | . 2187 | . 3003 | . 1393 |
| $3 / 8$ | 8.3776 | . 1875 | .2575 | . 1194 |
| ${ }_{15}^{5}$ | 10.0531 | . 1562 | . 2146 | . 0995 |
| 1/4 | 12.5664 | . 1250 | . 1716 | . 0796 |
| 1/8 | 25.1327 | . 0625 | . 0858 | . 0398 |
| $\frac{1}{16}$ | 50.2655 | . 0312 | . 0429 | . 0199 |

Toothed Gearing.

## Diametral Pitch.

With its Equivalent in Circular Pitch, Depth of Space, and Thickness of Tooth.

| Diametral pitch. | Circular pitch. | Thickness of tooth on pitch line. | Depth to be cut in gear. | Addendum. |
| :---: | :---: | :---: | :---: | :---: |
|  | Inch. | Inch. | Inch. | Inch. |
| 1/2 | 6.2832 | 3.1416 | 4.3142 | 2.0000 |
| $3 / 4$ | 4.1888 | 2.0944 | 2.8761 | 1.3333 |
| 1 | 3.1416 | 1.5708 | 2.1571 | 1.0000 |
| 11/4 | 2.5133 | 1.2566 | 1.7257 | . 8000 |
| 11/2 | 2.0944 | - 1.0472 | 1.4381 | . 6666 |
| 13/4 | 1.7952 | . 8976 | 1.2326 | . 5714 |
| 2 | 1.5708 | . 7854 | 1.0785 | . 5000 |
| 21/4 | 1.3963 | . 6981 | . 9587 | . 4444 |
| 21/2 | 1.2566 | . 6283 | . 8628 | . 4000 |
| 23/4 | 1.1424 | . 5712 | . 7844 | . 3636 |
| 3 | 1.0472 | . 5236 | . 7190 | . 3333 |
| $31 / 2$ | . 8976 | . 4488 | . 6163 | . 2857 |
| 4 | . 7854 | . 3927 | . 5393 | . 2500 |
| 5 | . 6283 | . 3142 | . 4314 | . 2000 |
| 6 | . 5236 | . 2618 | . 3595 | . 1666 |
| 7 | . 4488 | . 2244 | . 3081 | . 1429 |
| 8 | . 3927 | . 1963 | . 2696 | . 1250 |
| 9 | . 3491 | . 1745 | . 2397 | . 1111 |
| 10 | . 3142 | . 1571 | . 2157 | . 1000 |
| 11 | . 2856 | . 1428 | . 1961 | . 0909 |
| 12 | . 2618 | . 1309 | . 1798 | . 0833 |
| 14 | . 2244 | . 1122 | . 1541 | . 0714 |
| 16 | . 1963 | . 0982 | . 1348 | . 0625 |
| 18 | . 1745 | . 0873 | . 1198 | . 0555 |
| 20 | . 1571 | . 0785 | . 1079 | . 0500 |
| 22 | . 1428 | . 0714 | . 0980 | . 0455 |
| 24 | . 1309 | . 0654 | . 0898 | . 0417 |
| 26 | . 1208 | . 0604 | . 0829 | . 0385 |
| 28 | . 1122 | . 0561 | . 0770 | . 0357 |
| 30 | . 1047 | . 0524 | . 0719 | . 0333 |
| 32 | . 0982 | . 0491 | . 0674 | . 0312 |
| 36 | . 0873 | . 0436 | . 0599 | . 0278 |
| 40 | . 0785 | . 0393 | . 0539 | . 0250 |
| 48 | . 0654 | . 0327 | . 0449 | . 0208 |

## Strength of Gear Teeth.

(Lewis.)
$W=$ load transmitted, in pounds;
$p=$ circular pitch ;
$f=$ face ;
$y=$ factor for different number and forms of teeth;
$s=$ safe working stress of material.

$$
W=s p f y
$$

| Number of teeth. | Value of factor, $y$. |  |  | Number of teeth. | Value of factor, $y$. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | 高害 |  |  |  | - |
| 12 | . 078 | . 067 | . 052 | 27 | . 111 | . 100 | . 064 |
| 13 | . 083 | . 070 | . 053 | 30 | . 114 | . 102 | . 065 |
| 14 | . 088 | . 072 | . 054 | 34 | . 118 | . 104 | . 066 |
| 15 | . 092 | . 075 | . 055 | 38 | . 122 | . 107 | . 067 |
| 16 | . 094 | . 077 | . 056 | 43 | . 126 | . 110 | . 068 |
| 17 | . 096 | . 080 | . 057 | 50 | . 130 | . 112 | . 069 |
| 18 | .098* | . 083 | . 058 | 60 | . 134 | . 114 | . 070 |
| 19 | . 100 | . 087 | . 059 | 75 | . 138 | . 116 | . 071 |
| 20 | . 102 | . 090 | . 060 | 100 | . 142 | . 118 | . 072 |
| 21 | . 104 | . 092 | . 061 | 150 | . 146 | . 120 | . 073 |
| 23 | . 106 | . 094 | . 062 | 300 | . 150 | . 122 | . 074 |
| 25 | . 108 | . 097 | . 063 | Rack | . 154 | . 124 | . 075 |

Safe Working Stress, s, for Different Speeds.

| Material. | Speed of teeth, in feet, per minute. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 100 \\ \text { or less. } \end{gathered}$ | 200 | 300 | 600 | 900 | 1200 | 1800 | 2400 |
| Cast-iron | 8000 | 6000 | 4800 | 4000 | 3000 | 2400 | 2000 | 1700 |
| Steel | 20000 | 15000 | 12000 | 10000 | 7500 | 6000 | 5000 | 4300 |

When great strength is required, and the pressure is always in one direction only, the teeth may be shaped with a much greater angle of curvature on the back than on the working faces, it being only necessary that the back outlines clear each other properly. This may be done by making the working faces of the teeth according to the epicycloidal form, as already described, and the backs of the teeth of the involute curve, using an angle of $53^{\circ}$ instead of $75^{\circ}$, as in the usual method. This is equivalent to the use of a generating circle for the involute of a diameter of 0.8 times the pitch diameter of the gear-wheel. The so-called "thumb-shaped" teeth thus derived are sharp on the point and thick at the base, and are much stronger than the ordinary form of teeth.

There has been much controversy as to the relative merits of epicycloidal and involute teeth, but in actual practice there is little difference. With wheels properly proportioned to their work, and especially with the correct relations of the axes firmly maintained, either form answers all practical requirements fully. The greater convenience with which involute teeth may be made, especially in the machines in which the tonth profile is automatically generated, gives it advantages in construction which in most cases far outweigh any points of superiority which have been advanced for the epicycloidal system.

## Bevel Gears.

When the axes between which motion is to be transmitted are not parallel, but intersect each other, the gear teeth must be formed upon conical surfaces. Such gears are broadly called bevel gears, and when the shafts form a right angle with each other and the wheels are equal to each other in diameter they are called mitre gears.

The geometrical figures, which are formed by one cone rolling upon another, require that both cones should have a common apex. The surface thus developed is called a spher-
 ical cycloid. Of these there are five particular forms, as with the plane cycloids, the latter being really those for a cone with an apex angle of $180^{\circ}$. The spherical cycloid is very similar in forin to the plane cycloid, as are also the corresponding evolutes.

The use of the spherical cycloid for the formation of bevel gear teeth would involve many difficulties. In order to construct such teeth it is, therefore, common to use the method (first devised by Tredgold) of auxiliary circles, based upon the supplementary cones, and enabling the teeth to be laid out in a similar manner to those of spur gears. The auxiliary circles for the bevel gears, $R$ and $R_{1}$, are those of the spur gears having the same pitch, their radii being respectively $r$ and $r_{1}$, the elements $B S$ and $C S$ of the supplementary cones.

For any given angle, $a$, between the axes, the radius, $r$, and the number of teeth, 3 , for the auxiliary circle can be determined from the radii, $R$ and $R_{1}$, and tooth numbers, $Z$ and $Z_{1}$, by the following formula :

$$
\begin{aligned}
& \frac{r}{R}=\frac{\sqrt{R^{2}+R_{1}^{2}+2 R R_{1} \cos a}}{R_{1}+R \cos a}, \\
& \frac{z}{Z}=\frac{\sqrt{Z^{2}+Z_{1}^{2}+2 Z Z_{1} \cos a}}{Z_{1}+Z \cos a}
\end{aligned}
$$

If the axes are at right angles we have

$$
\frac{r}{R}=\frac{\sqrt{R^{2}+R_{1}^{2}}}{R^{1}}, \quad \frac{z}{Z}=\frac{V^{\prime} \overline{Z^{2}+Z_{1}^{2}}}{Z_{1}}, \quad \frac{r}{r_{1}}=\left(\frac{n_{1}}{n}\right)^{2} .
$$

Example. A pair of bevel gears have 30 and 50 teeth, and an angle between axes $a=60^{\circ}$; hence, $\cos a=1 / 2$, and we have for the auxiliary circle of the 30 -tooth gear

$$
z=30 \frac{\sqrt{30^{2}+50^{2}+2 \cdot 30 \cdot 50 \cdot 0.5}}{50+30 \cdot 0.5}=6 \frac{\sqrt{4900}}{13}=32.3, \text { say } 32 .
$$

For the 50 -tooth gear we have, also,

$$
z_{1}=50 \frac{\sqrt{4900}}{30+50 \cdot 0.5}=64
$$

From these numbers and the given pitch the auxiliary circles can be laid off and the teeth drawn.

Low tooth numbers are not available for bevel gears, since the errors which are involved in the method of auxiliary circles become disproportionately great. By using not fewer than 24 teeth for the bevel gear a minimum of 28 for the auxiliary circle is obtained, and the evolute system can be used to advantage. This form of tooth is best adapted for this purpose, on account of its simplicity of form, notwithstanding the minor defects which have already been noticed.

Owing to the fact that the form and shape of teeth on bevel gears vary along the face of the tooth, such gears cannot be cut theoretically correct by rotating cutters. When such cutters are used an approximate form is obtained, and filing must be resorted to in order to correct the shape of the teeth. At the present time, large bevel gears are usually made by planing the teeth, the tool being guided by a former, while small gears are cut on machines in which the tooth outlines are generated by the movement of the gear blank under the cutter, according to the method first devised by Professor Hermann, of Aix-la-Chapelle, in 1877. Bevel gears are cut theoretically correct on the Bilgram machine by a process of envelopment, the space being generated by the cutter.

The whole subject of the form and action of gear teeth is thoroughly discussed in Grant's "Handbook on the Teeth of Gears," Beale's "Practical Treatise on the Teeth of Gears," Reuleaux's "Constructor," Unwin's " Machine Design," and numerous other standard works.

## Spiral Gears.

When the axes between which motion is to be transmitted are not parallel to each other, and yet do not intersect, gears with spiral teeth are usually employed.


There are a number of useful variations of spiral gears. In the illustration is shown a pair of wheels, $A$ and $B$, koth with left-hand spirals and corresponding tooth profiles. The pitch angles, $\gamma$ and $\gamma_{1}$, are so chosen that at the point of contact the pitch cylinders have a common tangent, so that if $a$ be the angle of inclination of the axes, $\gamma+\gamma_{1}+a=180^{\circ}$. If
we indicate by $v$ and $v_{1}$ the circumferential velocity in the direction of the tangent and normal, respectively, we have

$$
\frac{r_{1}}{v}=\frac{\sin \gamma}{\sin \gamma_{1}}, \text { whence } \frac{n_{1}}{n}=\frac{R \sin \gamma}{R_{1} \sin \gamma_{1}}=\frac{Z}{Z_{1}} .
$$

The normal pitches, $\tau=t \sin \gamma$ and $\tau_{1}=t_{1} \sin \gamma_{1}$, must be equal to each other, whence $\frac{t}{t_{1}}=\frac{\sin \gamma_{1}}{\sin \gamma}$.

As indicated by the components of velocity, $v^{\prime}$ and $v_{1}{ }^{\prime}$, there is an end, long-sliding action of the teeth upon each other, with a velocity

$$
c^{\prime}=v^{\prime}+v_{1}^{\prime}=c\left(\cot \gamma+\cot \gamma_{1}\right) .
$$

This sliding consumes power and causes wear, and will be at a minimum when $v^{\prime}$ and $v_{1}^{\prime}$ are equally great,-that is, when $\gamma=\gamma_{1}$.

With regard to the choice of $\gamma$ and $\gamma_{1}$, the conditions may be so taken that the position of the coinciding tangents of the two spirals shall be slightly before or slightly after the actual line of contact, but as close as may be possible. The position of the line of contact may be stated as follows:
as also

$$
\frac{R}{R_{1}}=\frac{\cot \gamma}{\cot \gamma_{1}}=\frac{\frac{n_{1}}{n}+\cos \alpha}{\frac{n}{n_{1}}+\cos \alpha}
$$

$$
\cot \gamma=\frac{\sin \alpha}{\frac{n}{n_{1}}+\cos \sigma} .
$$

For $\alpha=90^{\circ}$ we have $\cot \gamma=\frac{n_{1}}{n}$. Such spiral wheels, when the teeth are well made, transmit motion very smoothly, but the surface of working contact is very small. One of the most important applications is that of the worm and worm-wheel. In this case $a=90^{\circ}$ and $Z=1$, the teeth of the wheel, $R_{1}$, being inclined at an angle, $\gamma$, with the edge of the wheel; whence $\tan \gamma=\frac{t}{2 \pi R}=0.15916 \frac{t}{R}$. The velocity ratio of transmission is $n_{1}: n=Z: Z_{1}$.

The subject of spiral gears is extensively discussed in Reuleaux's "Constructor" and in Halsey's "Spiral Gearing." See, also, "Transactions of the American Society of Mechanical Engineers," 1886, Vol. VII., p. 273.

## Proportions of Gear=wheels.

Gear-wheels may be divided into two classes :
Hoisting Gears, such as are used in cranes and similar machinery, and
Transmission Gears, used to transmit power cóntinuously at a determinate velocity.
We may include under the term Hoisting Gears all those having a linear velocity at the pitch circle of not more than 100 feet per minute, and under Transmission Gears all those running at a higher velocity.

For a pitch, $t$, face, $b$, length of teeth, $l$, and base thickness of tooth, $h$, we have for a tooth pressure, $P$, corresponding to a stress, $S$, the general formula:

$$
b t=6 \frac{P}{S}\left(\frac{l}{t}\right)\left(\frac{t}{h}\right)^{2}
$$

and for a length of $0.7 t$ and a thickness of $0.5 t$ we have

$$
b t=16.8 \frac{P}{S}
$$

This assumes that the resistance of the teeth is proportional to their cross-section, which is also equally true for those which have the same ratio of $b$ to $t$ to each other, a condition which is often of much service in practice.

For a hoisting gear of cast-iron let

$$
\begin{aligned}
(P R) & =\text { the statical moment of the driving force; } \\
Z & =\text { the number of teeth ; } \\
R & =\text { its previously-determined pitch radius, in inches } \\
t & =\text { the pitch. }
\end{aligned}
$$

We have for the given dimensions

$$
\begin{array}{ll}
t=0.230 \sqrt[3]{\frac{(P R)}{Z}}, & \frac{t}{\pi}=0.0730 \sqrt[3]{\frac{(P R)}{Z}} ; \\
t=0.045 \sqrt{\frac{(P R)}{R}}, & \frac{t}{\pi}=0.0145 \sqrt{\frac{(P R)}{R}} ;
\end{array}
$$

the face, $b$, being made

$$
b=2 t .
$$

These are intended to give a fibre stress, $S$, of about 4200 pounds. The actual stress is properly somewhat less, because the thickness of the tooth at the base is usually more than $1 / 2$.

Since the value of $\frac{P R}{R}$ is the same as the pressure, $P$, we can use the above formulas in cases in which $P$ only is given, as for rack teeth.

In proportioning transmission gears, in which the velocity is greater than 100 feet per minute, the greater liability to shock with increased speed renders it desirable to assume a lower working fibre stress, $S$, as the circumferential velocity, $v$, increases.

For cast-iron we may take

$$
S=\frac{9600000}{v+2164}
$$

in which $v$ is the lineal velocity, in feet, per minute. For steel, $S$ may be taken $31 / 3$ times, and for wood, $\frac{6}{10}$ times the value thus obtained. For

| Material. | $v=100$ | 200 | 400 | 600 | 800 | 1000 | 1500 | 2000 | 2500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cast-iron | $S=4240$ | 4060 | 3744 | 3473 | 3238 | 3034 | 2620 | 2302 | 2068 |
| Steel. | $S=14112$ | 13520 | 12467 | 11565 | 10782 | 10103 | 8725 | 7665 | 6886 |
| Wood | $S=2544$ | 2436 | 2246 | 2083 | 1943 | 1820 | 1572 | 1381 | 1240 |

The velocity, $v$, may be obtained when $n$ and $R$ (the latter in inches) are given, by the following formula :

$$
v=\frac{2 \pi R n}{12}=0.5236 R n
$$

It is also found that the breadth of face, $b$, should increase with the increase of $P$. Tredgold states that the pressure per inch of face, $\frac{P}{b}$, should not exceed 400 pounds. This, however, is not to be followed implicitly, since pressures as high as 1400 pounds have been successfully used in practice. It is better, however, to consider the question of wear from the product of $\frac{P}{b}$ into $n$, which should not exceed a predetermined maximum. It is found that if $\frac{P}{b} \times n$ exceeds 67,000 , the wear becomes excessive. In a
pair of wheels where the teeth of both are made of iron, the greatest wear comes upon the teeth of the smaller wheel. In this case we may make

$$
\frac{P n}{b}=\text { not more than } 28,000,
$$

and, if possible, it should be taken at less than this value. For smaller forces this constant, which we may call the coefficient of wear and designate as $A$, may readily be made as low as 12,000 , and even 6000 , without obtaining inconvenient dimensions. When the teeth are of wood and iron the wear upon the iron may be neglected, as the wear comes almost entirely upon the wooden teeth. For wooden teeth the value of $A$ should not exceed 28,000 , and is better made about 15,000 to 20,000 .

It must be remembered that the different values of $A$ do not appreciably affect the strength, but rather control the rapidity of wear. When sufficient space is available, and a low value can be given to the coefficient of wear, it is advisable to do so ; if this cannot be done, the coefficient which is selected will give an indication of the proportional amount of wear which may be expected.

In cases where a number of wheels gear into one other wheel it is better to take, instead of the number of revolutions of the common wheel, the number of tooth contacts, -that is, the product of the revolutions and number of wheels in the group.

If $R$ is given, as is often the case with water-wheels, fly-wheels, etc., $P$ is also known; and since $A$ can be chosen, we have, taking $N$ to be the horse-power transmitted,

$$
b=\frac{P n}{A}=\frac{63000}{A} \cdot \frac{N}{R}
$$

hence,

$$
t=\frac{16.8 P}{S b}=\frac{16.8 A}{S n}
$$

If, however, as occurs in many cases, $R$ is not previously determined, the choice of the number of teeth, $Z$, is unrestricted. In such cases we have for the width of face, $b$,

$$
b=\frac{396000}{A} \cdot \frac{N}{Z t}
$$

For transmission gears the minimum number of teeth should not be fewer than 20, in order that the unavoidable errors of construction shall not cause excessive wear; for quick-running gears it is desirable to have still more teeth. The gear-wheels on high-speed turbines seldom have fewer than 40 , and often as many as 80 teeth. When wood and iron teeth are used the least wear is produced when the wooden teeth are on the driver, because the action begins at the base of the tooth and passes towards the point, while on the driven gear the action is reversed.

Proportions of Gear=wheel Parts.


The Rim.-The ring of metal upon which the teeth of a gear-wheel are placed is called the rim. For cast-iron spur gears the thickness of the rim is given by the formula

$$
\delta=0.4 t+0.125 \text { inch } .
$$

The rim is thickened in the middle, or at one edge, to ${ }_{5}^{6} \delta$, and also stiffened by a rib, and for gears of fine pitch the section of the rim is curved, which harmonizes well with arms of oval section. Accordingly, a pitch of 1 inch would give a rim thickness $\delta=0.4$ inch +0.125 inch $=0.525$ inch, or a little over $1 / 2$ inch; anil for a pitch of $1 / 2$ inch, $\delta=0.325$ inch.


For bevel gears of cast-iron the rim is made $\frac{\delta_{5}^{5} \delta}{}$ thick at the outer edge, and of the various forms shown in the illustrations.

For wooden teeth it is necessary to have a deeper and stronger rim, the dimensions being dependent somewhat upon the method of inserting the

teeth. The proportions are shown in the illustrations. For very wide iaces the wooden teeth are made in two pieces and a stay bar cast in the mortise.


Small pinions are often cast solid, and when subjected to heavy pressres are strengthened by shrouding, and sometimes this shrouding is urned down to the pitch line.

Wheel Arms.-The arms of gear-wheels are made according to the following forms, dependent upon the kind of rim used.

Ribbed sections are made sometimes as shown in the dotted lines, as may be most convenient in moulding. Oval sections have the thickness,

$\beta$, of the arm generally made one-half the width, $h$. A good proportion for the arms is obtained when their number, $A$, is made as follows:

$$
A=0.55 \sqrt{Z} \sqrt[4]{t}
$$

From these we obtain the following :

| $A$ | $=3$ | 4 | 5 | 6 | 7 | 8 | 10 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $Z \sqrt{t}=30$ | 53 | 83 | 119 | 162 | 211 | 330 | 475 |  |

Example. For a gear-wheel of 50 teeth and 2 -inch pitch we have $Z \sqrt{t}=50 \sqrt{2}=50 \times 1.414=70$, and this lies between 53 and 83 ; being nearer the latter, we give the wheel five arms. If the pitch had been $3 / 4$ inch, and the same number of teeth, $Z \sqrt{t}=50 \sqrt{0.75}=50 \times 0.866=43.3$, or between three and four arms, the latter number being used in practice.

The width of arm, $h$, in the plane of the wheel is somewhat a matter of judgment, but may suitably be made according to the ratio, $h=2$ to $2.5 t$, when the thickness, $\beta$, may be obtained from the following formula:

$$
\frac{\beta}{b}=0.07 \frac{Z}{A}\left(\frac{t}{h}\right)^{2} .
$$

Should this formula give a thickness either too great or too small for convenience in casting, another value for $\frac{h}{t}$ must be taken and the calculation repeated. The following table will assist in this operation.

Table of Gear=wheel Arms.

|  | Value of $\frac{\beta}{b}$, when |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | $\frac{Z}{A}=7$ | 9 | 12 | 16 | 20 | 25 | 30 | 35 | 40 |
| 1.50 | . 20 | . 28 | . 37 | . 50 | . 62 | . 78 | . 93 | 1.08 | 1.24 |
| 1.75 | . 16 | . 21 | . 27 | . 37 | . 46 | . 57 | . 69 | . 80 | . 91 |
| 2.00 | . 12 | . 16 | . 21 | . 28 | . 35 | . 44 | . 53 | . 61 | . 70 |
| 2.25 | . 10 | . 12 | . 17 | . 22 | . 28 | . 35 | . 41 | . 48 | . 55 |
| 2.50 | . 08 | . 10 | . 13 | . 18 | . 22 | . 28 | . 34 | . 39 | . 45 |
| 2.75 | . 06 | . 08 | . 11 | . 15 | . 18 | . 23 | . 28 | . 32 | . 37 |
| 3.00 | . 05 | . 07 | . 09 | . 12 | . 16 | . 19 | . 23 | . 27 | . 31 |

The taper of the arms may be made as follows: the ribs at the rim are made slightly narrower than the breadth of face, $b$, and at the hub equal to, or slightly greater, than $b$. For arms of oval section, $h$ may be made equal $2 t$ at the centre of the wheel, tapering to two-thirds this width at the rim.

Hub. -The thickness, $w$, of the hub may be made

$$
w=0.4 h+0.4 \text { inch }
$$

The above proportions are those recommended by Reuleaux.

## Efficiency of Gearing.

The efficiency of spur gearing depends upon the lineal speed at the pitch line, while for spiral and worm gearing the angle of the teeth must also be taken into account.

Velocity at pitch line in feet per minute.


The accompanying diagram, from experiments by William Sellers \& Co., Incorporated, gives the efficiencies for practical cases.

For all ordinary calculations the following efficiencies may be used:
Cut spur gears ..... 0.96
Cast spur gears ..... 0.94
Cut bevel gears ..... 0.95
Cast bevel gears ..... 0.92
Table of Proportions for Gear=wheels. The Yale \& Towne Manufacturing Company.

|  | $\infty$ | H | $\vdots \vdots \vdots \vdots \vdots \vdots \vdots{ }^{\infty} \vdots \vdots \vdots \vdots \vdots$ |
| :---: | :---: | :---: | :---: |
|  |  | दे |  |
|  | N | 过 |  |
|  |  | 号 |  |
|  | $\bigcirc$ | 4 |  |
|  |  | य |  |
|  | 4 | 4 |  |
|  |  | A |  |
|  | + | 핀 | $\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$, $\vdots \vdots$, |
|  |  | द |  |
|  |  | -qəM |  |

## Proportions of Gear=wheels.

The following proportions are those of the Yale \& Towne Manufac. turing Company :


See table opposite.

## BELTS AND PULLEYS.

Where an exact velocity ratio of transmission is not essential, and when the distance between shafts is too great for a positive means of transmission, belting and pulleys are extensively employed. The question of the transmitting capacity of belting is one upon which many discussions have been held, and the differences of opinion which have been found serve to emphasize the fact that the conditions under which belts are used are too varying to permit absolute rules and formulas to be employed. For a full discussion of the elements which enter into the problems of belt transmission reference must be had to such works as Reuleaux's "Constructor," Unwin's "Machine Design," and especially to the valuable practical paper of Mr. F. W. Taylor in the "Transactions of the American Society of Mechanical Engineers," Vol. XV., p. 204. We shall here give the general working principles, which will serve to guide practical installations.

The power which can be transmitted by a belt is measured by the pull and by the lineal velocity at which the belt travels. The pull is limited by the strength of the belt and by the friction upon the pulleys, while the lineal velocity is dependent upon the revolving speed of the pulleys and upon their diameter. If it is attempted to increase the strength by increasing the thickness, it is possible that the stiffness of the belt will prevent it from wrapping closely about the pulley, and hence the friction
will be reduced. If the speed is made too high the centrifugal force will act to throw the belt out of close contact with the pulley, and the friction will again be reduced. There are, therefore, several practical limits within which satisfactory belt transmissions should be kept.

The tension which can be maintained in actual practice ranges from about 30 to 60 pounds per inch of width. If a high tension is put upon a belt transmission when it is installed it will gradually diminish, owing to stretch, and, unless some tightening device is employed, the belt will, before long, slacken until the stress upon it becomes low enough to check further stretching. If this tension is sufficient to transmit the power the transmission will run well and give but little trouble, while if the load is too heavy the belt will slip, and it must either be tightened or a change made in width or speed.

If the power to be transmitted is given in horse-power, we have 33,000 foot-pounds per minute to consider. If the belt tension is to be 30 pounds per inch of width, we must, therefore, have a speed of 1100 feet per minute. If the speed is one-half as much, the width must be twice as great, and so the given elements must be taken and the others found. Usually, the speed and the power are given and the width required.
$w=$ width, in inches ;
$s=$ speed, in feet, per minute;
$N=$ horse-power ;
$t=$ tension, per inch width of belt;
we have

$$
\begin{aligned}
N & =\frac{t w s}{33000} ; \\
w & =\frac{33000 N}{t s} ; \\
s & =\frac{33000 N}{t w} .
\end{aligned}
$$

Or, if we have given the width, speed, and horse-power, the minimum tension which can be reached before slipping will occur is

$$
t=\frac{33000 N}{w s}
$$

Thus, if a belt 10 inches wide, running at 4000 feet per minute, is transmitting 50 horse-power, the tension is $\frac{33000 \times 50}{10 \times 4000}=41.25$ pounds.

The tension available for transmitting power is really the difference between the tensions of the tight and slack sides, since there must always be tension enough on the slack side to secure sufficient friction on the pulley to keep the belt from slipping.
If we take the formula

$$
N=\frac{t w s}{33000},
$$

- and write it

$$
N=\frac{t \times 12}{33000} \times \frac{w s}{12}
$$

the last term will represent square feet per minute passing a given point. By substituting any value for $t$, and making $N=1$, we can thus find how many square feet per minute will transmit a horse-power. Good, practical belting rules are: For single belts, 60 square feet per minute equals 1 horsepower; and for double belts, 40 square feet per minute equals 1 horsepower. These correspond to 45 pounds and 68 pounds tension per inch of width, respectively,-tensions which are readily maintained in practice.

These values are based on the assumption that the belt embraces $180^{\circ}$ of each pulley. If the arc of contact is less, the power transmitted may be taken in the following proportions:

Percentage of Efficiency for Various Arcs of Contact.

| $90^{\circ}$ | $100^{\circ}$ | $110^{\circ}$ | $120^{\circ}$ | $130^{\circ}$ | $140^{\circ}$ | $150^{\circ}$ | $160^{\circ}$ | $170^{\circ}$ | $180^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.65 | 0.70 | 0.75 | 0.79 | 0.83 | 0.87 | 0.91 | 0.94 | 0.97 | 1.00 |

The power for $180^{\circ}$ is to be multiplied by the percentage coefficient for other ares. Thus, for $130^{\circ}$, only 83 per cent. as much power is transmitted as with $180^{\circ}$.

## Pulleys.

The function of a pulley is to enable the rotary motion of the shaft on which it is mounted to be translated into the lineal motion of the belt, and vice versa. This is accomplished by the frictional contact of the wrapping connection-be it belt, rope, or wire cable-with the perimeter of the pulley. The following general discussion, from Reuleaux, will enable special computations to be made for any given conditions :

When a tension organ, which is loaded at both ends, is passed over a curved surface there is produced between the tension organ and the surface a very considerable sliding friction. The curved surface over which the cord is passed is the pulley, and the motion of the cord takes place in the plane of the pulley. If the tension, $T$, on the driving side of the cord is to overcome the cord friction, $F$, as well as the tension, $t$, of the driven side, we have, for the value of the friction, $F=T-t$. It is dependent upon the magnitude of the angle of contact, $a$, and upon the coefficient of friction, $f$, but is independent of the radius, $R$, of the pulley; it is also dependent upon the influence of centrifugal force. For these conditions we have

$$
\begin{aligned}
& T=t e^{f a(1-z)} \\
& F=t\left(e^{f a(1-z)}-1\right)
\end{aligned}
$$

In these $e$ is the base of the natural system of logarithms $=2.71828$, and $z=12 \frac{\gamma v^{2}}{g S}, v$ being the velocity of the tension organ, in feet, per second; $S$, the stress in its cross-section; $\gamma$, the weight of a cubic inch of the material ; and $g$, the acceleration of gravity $=32.2$.

The influence of centrifugal force becomes important at high speeds and when the tension organ is under small stress. For hemp or cotton rope, or for leather belting, we may take $\gamma=0.035$, and for wire rope about 9 times as great.

The value of $S$ in the formula, $z=12 \frac{\gamma v^{2}}{g S}$, is properly considered a function of $a$, and we may therefore assume a constant value for the arc, $a$, and thus calculate the following table for the values of $1-z$.

| S. | Value of coefficient, $1-z$, for centrifugal force. |  |  |  |  | S. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hempen rope. | Velocity of rope, in feet, per second. |  |  |  |  | Wire rope. |
|  | 20 | 40 | 60 | 80 | 100 |  |
| Lb. <br> 400 | . 987 | . 948 | . 882 | . 791 | . 674 | Lb. <br> 3600 |
| 600 | . 991 | . 965 | . 922 | . 861 | . 783 | 5400 |
| 800 | . 993 | . 974 | . 941 | . 896 | . 837 | 7200 |
| 1000 | . 995 | . 980 | . 953 | . 916 | . 870 | 9000 |
| 1200 | . 996 | . 982 | . 961 | . 930 | . 892 | 10800 |
| 1400 | . 996 | . 985 | . 966 | . 940 | . 907 | 12600 |

This table serves both for hemp and for wire rope by taking the ninefold value of $S$ in the right-hand column for wire rope. It should be observed that the velocities are in feet per second. It will be seen that for high speeds a high stress in the tension organ is necessary, in order to oppose the action of the centrifugal force.

In order to simplify practical calculations we may substitute for the exponent, $f a(1-z)$, in each case the form, $f^{\prime} a,-$ that is, instead of using the actual coefficient of friction, $f$, taking another one, $f^{\prime}$, which is equal to $(1-z) f$. If it is a transmission system which is under consideration, the friction of the cord, belt, chain, etc., must at least equal the transmitted force, $P$; hence, also, must the stress be that of a cord friction $\geqq P$, which gives, for a minimum value of $T$,

$$
\frac{T}{P}=\tau=\frac{e^{f^{\prime} \alpha}}{e^{f^{\prime \alpha}}-1}=\frac{\rho}{\rho-1}
$$

whence

$$
\frac{T}{t}=\rho=e^{f a}
$$

Both of these values are absolute numbers. The ratio, $\frac{T}{P}$, indicates the amount of stress which must be given to the tension organ, and hence may be called the stress modulus, and is designated as $\tau$. The ratio, $\frac{T}{t}$, we may, in like manner, call the modulus of cord friction, this being understood to apply to any wrapping connector, and indicate as $\rho$.

A series of values for $\rho$ and $\tau$ are given in the following table:

Moduli for Cord Friction and Stress.

| $f a$. | $\tau=\frac{T}{P}$. | $\rho=\frac{T}{t}$. | $f a$. | $\tau=\frac{T}{P}$. | $\rho=\frac{T}{t}$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 1 | 10.41 | 1.11 | 1.6 | 1.25 | 4.95 |
| . 2 | 5.52 | 1.22 | 1.7 | 1.22 | 5.47 |
| . 3 | 3.86 | 1.35 | 1.8 | 1.20 | 6.05 |
| . 4 | 3.03 | 1.49 | 1.9 | 1.18 | 6.69 |
| . 5 | 2.54 | 1.65 | 2.0 | 1.16 | 7.39 |
| . 6 | 2.22 | 1.82 | 2.2 | 1.13 | 9.03 |
| . 7 | 1.99 | 2.01 | 2.4 | 1.10 | 11.02 |
| . 8 | 1.86 | 2.23 | 2.6 | 1.08 | 13.46 |
| . 9 | 1.69 | 2.46 | 2.8 | 1.07 | 16.44 |
| 1.0 | 1.58 | 2.72 | 3.0 | 1.05 | 20.09 |
| 1.1 | 1.50 | 3.00 | 3.2 | $1.04{ }^{\prime}$ | 24.53 |
| 1.2 | 1.43 | 3.32 | 3.4 | 1.03 | 29.96 |
| 1.3 | 1.37 | 3.67 | 3.6 | 1.03 | 36.60 |
| 1.4 | 1.33 | 4.06 | 3.8 | 1.02 | 44.70 |
| 1.5 | 1.29 | 4.48 | 4.0 | 1.02 | 54.60 |

The superficial pressure, $p$, of the teusion organ upon the circumference of the pulley increases as the belt or cord passes from the slack to the tight side. It is equal to $\frac{Q d a}{b^{\prime} R d \alpha}$, in which $b^{\prime}$ is the breadth of the surface
of contact of the belt. Now, for any cross-section, $q$, the force $Q=q S$; hence, we have

$$
\frac{p}{S^{\prime}}=\frac{q}{b^{\prime} R}
$$

from which it will be seen that the pressure, $p$, can easily be kept within moderate limits.

Within the limits of injurious action of centrifugal force it is desirable that the lineal speed of belts or cords be kept as high as practicable, since the power transmitted is directly proportioned to the speed. Belt transmissions are therefore best designed with pulleys of large diameter, and small pulleys employed only when the rotative speeds are such as to make their use imperative.


The general dimensions of belt pulleys may be taken as follows:
Let $A=$ the number of arms, and let the other dimensions be as in the figure, then

$$
A=1 / 2\left(5+\frac{R}{b}\right)
$$

which gives, for

| $\frac{R}{b}=1$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| $A=3$ |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | $\cdots$ | 9 |

The width, $h$, of the arm, if prolonged to the middle of the hub, may be obtained from

$$
h=0.25 \text { inch }+\frac{b}{4}+\frac{R}{10} A
$$

The width, $h_{1}$, of the arm at the rim is equal to $0.8 h$, and the corresponding thicknesses are $e=1 / 2 h$ and $e_{1}=1 / 2 h_{1}$.

Pulleys with two or three sets of arms may be considered as two or three separate pulleys combined in one, except that the proportions of the arms should be 0.8 or 0.7 times that of single-arm pulleys, or in the proportion of $\sqrt[3]{1 / 2}$ and $\Gamma^{3} 1 / 3$.

The thickness of the rim may be made $k=\frac{1}{5}$ to $1 / 4 h$, this being frequently turned much thinner. The width of face should be from $\frac{9}{8}$ to $\frac{5}{4}$ the width of the belt.

The thickness of metal in the hub may be made $W=h$ to $3 / 4 h$. The length of hub may $=b$ for single-arm pulleys, and $2 b$ for double-arm pulleys.

In order to cause the belt to run in the middle of the pulley, the face should be made crowning or rounded, the rise being about $\frac{1}{20}$ of the width of the face. Tight and loose pulleys should be made with rounded faces, and the wide face pulley from which they are driven made with straight face.

Three causes of loss exist in belt transmissions,-viz., journal friction, belt stiffness, and belt creeping. For horizontal belting we have for the journal friction expressed at the circumference of the pulley a loss, $E_{z}$, when $T=2.5 P, t=1.5 P$ :

$$
\frac{F^{\prime}}{P}=E_{z}=\frac{T+t}{P} \cdot \frac{4}{\pi} f\left(\frac{d}{2 R}+\frac{d_{1}}{2 R_{1}}\right)=\frac{8}{\pi} f\left(\frac{d}{R}+\frac{d_{1}}{R_{1}}\right),
$$

in which $d$ and $d_{1}$ are the journal diameters and $f$ the coefficient of journal friction. This loss is doubtless the greatest of the three. According to Eytelwein, the coefficient of stiffness, $s$, for force, $S^{\prime}$, which includes both pulleys. is

$$
\frac{S^{\prime}}{P}=E^{s}=s \frac{T+t}{P}\left(\frac{\delta^{2}}{R}+\frac{\delta^{2}}{R_{1}}\right)=4 s\left(\frac{\delta^{2}}{R}+\frac{\delta^{2}}{R_{1}}\right),
$$

in which $s=0.009 \frac{4}{\pi}=0.012$.
The loss from creep is due to the fact that the greater stress on the driving pulley over that on the driven requires for a given volume of belt a longer arc of contact. For the expenditure of force, $G^{\prime}$, for creep on both pulleys, we have for a stress, $S_{1}$, on the leading side of the belt,

$$
\frac{G^{\prime}}{P}=E_{\delta}=\frac{1-\frac{t}{T}}{1+\frac{E}{S_{1}}}=\frac{0.4 S_{1}}{E+S_{1}}
$$

In this $E$ is the modulus of elasticity of the belt, which for leather is 20,000 to 30,000 pounds. The losses from stiffness and creep are small.

Example. Let $d$ and $d_{1}=4$ inches, $R=R_{1}=20$ inches, $\delta=0.2, f=0.08$, $S=0.012, E=28,440, S_{1}=425$, we have
also,

$$
F^{1}=P \frac{8 \times 0.08}{\pi} \times 0.4=0.08 P
$$

and

$$
S^{2}=P(0.048 \times 2) \frac{0.2}{20}=0.0048 P
$$

$$
G^{1}=P \frac{0.4 \times 425}{28440+425}=0.0059 P
$$

The total loss is, therefore, $0.08+0.0048+0.0059=9.1$ per cent.

## Cone Pulleys.

When a number of pulleys are placed side by side in order to enable varied speeds to be obtained with belt transmission, and are united together in one member, we obtain what is called a cone pulley, such pulley being used in pairs. This construction involves the problem of determining the proper radii for the various pulleys, so that the same belt shall serve for all the changes,-i.e., so that the length of the belt shall be the same for each pair of pulleys in the set. The problem may be solved as follows:

Crossed Belts (Fig. a).-The belt makes the angle, $\beta$, with the centre line of the pulleys, $R$ and $R_{1}$; and the half length of the belt, $l=$ $R\left(\frac{\pi}{2}+\beta\right)+R_{1}\left(\frac{\pi}{2}+\beta\right)+a \cos \beta, a$ being the distance from centre to centre of the pulley. We then have

$$
l=\left(R+R_{1}\right)\left(\frac{\pi}{2}+\beta\right)+a \sqrt{1-\frac{\left(R+R_{1}\right)^{2}}{a^{2}}}
$$

This value is constant when $R+R_{1}$ is constant,-that is, when the increase to the radius of one pulley is equal to the decrease in the radius of
the other. Crossed belts are seldom used for this service, however, because of the injurious friction between the rubbing parts of the belt.


Open belts (Fig. b).-In this case we have

$$
l=\left(R+R_{1}\right) \frac{\pi}{2}+\left(R-R_{1}\right) \beta+a \cos \beta
$$

and, also, $a \sin \beta=R-R_{1}$, which gives

$$
\begin{aligned}
R & =\frac{l}{\pi}-\frac{a}{\pi}(\beta \sin \beta+\cos \beta)+\frac{a}{2} \sin \beta \\
R_{1} & =\frac{l}{\pi}-\frac{a}{\pi}(\beta \sin \beta+\cos \beta)-\frac{a}{2} \sin \beta .
\end{aligned}
$$

This function is transcendental, but may be graphically represented in the following manner: in the rectangle, $A B B^{\prime} A^{\prime}$, with a radius, $A B=a$, strike the quadrant, $B M C$, about the centre, $A$. Within this are will fall all the values of $\beta$ which can occur. For any value of $\beta=C A M$, draw

$M N$ perpendicular to $M A$ and make $M N=$ the arc, $M C=a \beta$. Drop the perpendicular, $M P$, to $A C$, and draw NO perpendicular to $M P$. NO will then $=a \beta \sin \beta$. Through $N$ draw $Q N K$ parallel to $A B$, and we have $A Q=$ $P Q+A P=a(\beta \sin \beta+\cos \beta)$. By taking successively all the values of $\beta$ between $0^{\circ}$ and $90^{\circ}$ in this manner, we can determine the path of the point, $N$, which will be the evolute of a circle, $C N D, B D$ being equal to the length of the arc, $B M C=\frac{\pi}{2} a$. If we now draw $D E$ parallel to $B A$, and take its middle point, $F$, we have $D F=E F=\frac{a}{2}$, and hence the proportion :
$D F: D B=\frac{\alpha}{2}: \frac{\pi}{2} a=a: \pi$, and by similar triangles:

$$
T K=\frac{a}{\pi} Q A=\frac{a}{\pi}(\beta \sin \beta+\cos \beta) .
$$

This yalue is dependent upon $\frac{l}{\pi}$. If we prolong $B F$ until it intersects $A C$ prolonged, the resulting length, $A A^{\prime}=B B^{\prime}$, will bear to $A^{\prime} B^{\prime}$ the ratio, $\frac{\pi}{1}$. By then working $B G=l$, and drawing $G H$ parallel to $A^{\prime} B^{\prime}$, we have $G H=\frac{l}{\pi}$. This length being transferred to $I K$ gives $I T=\frac{l}{\pi}-$ $\frac{a}{\pi}(\beta \sin \beta+\cos \beta)$. We then have only to use $\pm \frac{a}{2} \sin \beta$ to solve the problem.

Make $A R=\frac{a}{2}$, and we have the perpendicular, $R S=\frac{a}{2} \sin \beta$. By laying this length off above and below $T$ on $Q K$ we obtain the points, $U$ and $V$, and this finally gives $I U$ for the radius, $R$, of the larger cone pulley, and $I V=R_{1}$, the radius of the corresponding smaller cone pulley.

By solutions for successive values of $\beta$ we obtain the curve, $D U X V E$, which can be used for the determination of the radii of any desired pair of pulleys, each pair of ordinates measured from $H I$ belonging to corresponding pulley on each cone.

In practice it is usual to find one of the cone pulleys given and the dimensions of the other required. In this case $V U$ may be taken as the difference, $R-R_{1}$, between the radii, were the steps uniform. By taking this difference, $R-R_{1}$, in the dividers, and finding the equivalent ordinate, $U V$, on the curve, and then adding $V I=R_{1}$, the axis, $H I$, is found.

In order to use the curve conveniently, it may also be laid off lefthanded, as shown in the dotted lines, $D^{\prime} X E^{\prime}$.

The use of the diagram will be rendered still more convenient if we omit the unnecessary value, $l$. This enables us to distort the curve in the direction of the abscissas to any desired extent. This has been done in the proportional diagram on page 501, due to Professor Reuleaux.

The method of using the diagram is as follows:
The sides, $A B$ and $D E$, of the rectangle represent the distance, $a$, between the centres of the pulleys; all radii are given in proportional parts of $a$, for which reason $A B$ is subdivided, the size of the diagram being selected so that $A B=18$ to 20 inches. If, then, $1 a$ and $1^{\prime} a$ are two given radii for a pair of pulleys on a pair of cones, we take the vertical chord of the curve which $=1^{\prime} a-1 a$, prolong the chord downward until its length $=1 a$, and draw the axis, $a b c d$, parallel to $A E$. Then, for the other pairs of pulleys on the cones, we have $b 2$ and $b 2^{\prime}, c 3$ and $c 3^{\prime}$, etc., which can be taken directly from the diagram with the dividers. If the given pair of radii to which the cones are to be made are equal, the chord $R-R_{1}=0$, and the axis will pass through $X$ at right angles to $C X$.

If it is desired to construct a pair of cone pulleys to any given speed ratio, this can readily be done. If, for example, the given ratio is $1: 1$ we lay off toward $C$ the corresponding radius, $X d$, and prolong the ax ial line, $d d^{\prime}$, to its intersection. $d$, with $B E$. Then lay off the given geometric ratio on $C X$, considering $X \dot{d}$ as 1 (shown in the diagram by the small circles for the ratios $1 / 4,1 / 2,3 / 4, \frac{5}{4}, \frac{6}{4}$ ), and draw rays from $d^{\prime}$ through the points of division, and these rays will intersect the curve at the corresponding points for the pulley radii, $R_{1}$. We then have for the radii,
$a 1$ and $\quad a 1^{\prime}$ for the ratio $1: 4 ;$
$b 2$ and $b y^{\prime}$ for the ratio $: 4: 4 ;$
$c 3$ and $c 3^{\prime}$ for the ratio $3: 4 ;$
$d X$ and $d X^{\prime}$ for the ratio $4: 4 ;$
$\epsilon 5$ and $e 5^{\prime}$ for the ratio $5: 44 ;$
$e 6$ and $e 6^{\prime}$ for the ratio $6: 4 ;$

If the slowest and fastest speeds for any set of cone pulleys be given in revolutions per minute, as $n$ and $n_{x}, x$ being the number of spee! changes, or steps of the cone, we have for $a$, the geometric ratio of the series,

$$
a=\sqrt[x-1]{\frac{n_{x}}{n}}
$$



Thus, for a cone of four steps, with-an entire speed ratio of four-toone, we have $x=4$ and $x-1=3$; hence,

$$
a=\sqrt[3]{\frac{4}{1}}=v^{3} \overline{4}=1.58
$$

Then, if the first speed be 100 revolutions, the succeeding speeds will be $100 \times 1.58=158 ; 158 \times 1.58=249.6 ;$ and $249.6 \times 1.58=394$, or say 400 .

When, as in many lathes, a back-gear system is introduced, it is desira-: ble that the gear ratio should be so arranged that the speeds may proceed
in a geometric ratio throughout all the changes. This is readily done according to the same principle. The introduction of the back gear simply doubles the number of speed changes; in the above case it converts a lathe with a 4 -step cone and four speed changes into one with eight changes. The speed ratio of the back gear, therefore, corresponds to the next term in the series, or at $a^{4}=1.58^{4}=6.25$.

If, to take another example, we have a lathe with a 5 -step cone, with back gear, the whole should give ten changes. If these are to range from 100 to 600 , we have

$$
a=\sqrt[9]{6}=1.22
$$

The series will then be

$$
\begin{aligned}
& 100 \times 1.22^{0}=100 ; \\
& 100 \times 1.22^{1}=122 ; \\
& 100 \times 1.22^{2}=149 ; \\
& 100 \times 1.22^{3}=181 ; \\
& 100 \times 1.22^{4}=221 ;
\end{aligned}
$$

for the cone acting direct.
The back-gear ratio will then give the next term in the series, or $1.22^{5}=2.70$, which, starting with the first step in the cone again, gives

$$
\begin{aligned}
& 100 \times 1.22^{5}=270 ; \\
& 100 \times 1.22^{6}=303 \\
& 100 \times 1.22^{7}=403 ; \\
& 100 \times 1.22^{8}=49 ; \\
& 100 \times 1.22^{9}=600 .
\end{aligned}
$$

When a lathe is not carefully proportioned in this manner it may have what is termed a "lump" in its speed, the change produced by throwing in the back gear not conforming to the regular geometric ratio of the steps of the cone.

The simplest and most usual arrangements of belting are the plain open and the crossed belts. In these, as in all belt transmissions, the velocity ratio is inversely as the diameter of the pulleys.


For these simple arrangements the belts are self-guiding, the only requirements being that the shafts shall be truly parallel to each other and one or both pulleys be made with crowning face.

For inclined and intersecting axes self-guiding belts are not suitable,
except in the case of inclined axes, in which the trace, $S S$, of the intersection of the planes of the two pulleys passes through the points at which the belt leaves the pulleys. The leading line then falls in the middle plane of each pulley, but the following side of the belt does not; hence, such systems can only be run in one direction. The leaving points in the figures are at $a$ and $b_{1}$. The arrangement gives an open belt when the angle, $\beta$, between the planes of the pulleys $=0^{\circ}$, and a crossed belt when $\beta=180^{\circ}$. In the intermediate positions a partial crossing of the belt is produced. If $\beta=90^{\circ}$, the belt is half crossed (or, as commonly called, quarter twist) ; if $\beta=45^{\circ}$, it is quarter crossed.

The leading-off angle may be made as much as $25^{\circ}$, which occurs when the distance between the axes is equal to twice the diameter of the largest

pulley. Another rule for the minimum distance between shafts for quartertwist belts is to make the distance never less than $\sqrt{ } b D$.

In general, the rule to be observed for any such arrangement of belting is that each part of the belt must lie in the plane of the pulley toward which it is moving.

It is evident that if such a system has its motion reversed the belt will leave the pulleys. Under such conditions guide pulleys are introduced, as shown in the illustration.

The introduction of electric driving of machinery is rendering quartertwist belts and similar contrivances of minor importance in connection with the transmission of power, but such belts will probably continue to be used in connection with machines themselves, and hence care must be taken in their application.

In arranging belt transmissions the direction of motion should be made, when possible, so as to bring the slack side of the belt on the upper part for belts in the horizontal or inclined positions. This brings the sag of the belt in such a position as to increase the are of contact about the pulitys and diminishes the probability of slipping. When practicable, machines should be so placed with regard to the line shaft that belts on adjacent

pulleys pull in opposing directions, as in that manner much of the pressure due to belt pull may be taken off of the bearings of the shaft, the pulls of the belts neutralizing each other. If possible, one pulley should never be placed vertically over another, since the weight of the belt acts to diminish the contact with the lower pulley. When such an arrangement must be employed a tightening pulley may be found necessary, placed upon the slack side of the belt.

Belts are usually joined by lacings, but whenever possible they should be scarfed and cemented, this making a much neater joint and rendering the joint as effective as any other portion of the belt.

## Rope Transmission.

The transmission of power over longer distances than are practicable for belting may be accomplished by use of rope running at high velocities, and hence requiring but small diameters. This form of transmission was at one time thought to offer great possibilities for long-distance transmission, but the development of electrical transmission has caused it to be superseded. For many purposes, however, for spans of not less than 70 or more than 400 feet, wire-rope transmission may be used with success. The complete computations for wire-rope transmission are to be found in Reuleaux's "Constructor," but for general purposes the practical rules of Messrs. John A. Roebling's Sons Company may be employed.

The rope used for transmission purposes may be either 6 -strand, of seven wires each, or with nineteen wires to the strand. For the 7 -wire rope the diameter of the sheaves should be not less than 100 times the diameter of the rope, and for a 19 -wire rope the minimum diameter of sheave is 60 times the rope diameter. The wheels are made with a deep $\checkmark$-groove, the bottom of the groove on which the rope runs being provided with a filling composed of alternate blocks of leather and rubber.

The tension upon the rope in a transmission is that due to the weight of the rope itself, and since this is the measure of the power transmitted for a given speed it is entirely practicable to provide such a sag or deflection to the rope as will give the tension desired in practice. According to Messrs. Roebling, the sag of both parts of a horizontal transmission should be $\frac{1}{36}$ part of the span when the rope is stationary. When the rope is running the deflection of the upper part will become about $\frac{1}{25}$ of the span, and that of the lower part about $\frac{1}{50}$ of the span. Under such conditions the difference of tension, $T$, or pull on the tight side of the rope, will be three times the weight of a single portion of rope between the sheaves. If $V$ is the velocity of the rope, in feet, per minute, the horse-power transmitted will be

$$
I P=\frac{T \overleftarrow{v}}{33000} .
$$

The rope diameters used range from $3 / 8$ inch to 1 inch, and the weights will be found in the tables on pages 358-964.

For Manila-rope driving the formulas of Mr. C. W. Hunt may be used to advantage: He recommends ropes of 1 to 2 inches in diameter, and estimates the strength of good Manila ropes for driving as about 7000 pounds per square inch. The working stress, however, should be only about 200 pounds per square inch, this making allowance for wear and for the reduction in strength at the splice.

The power transmitted by ropes depends upon the tension and the speed, the power increasing with the speed until the influence of centrifugal force begins to preponderate.

Let

$$
\begin{aligned}
T & =\text { tension on driving side of rope } ; \\
t & =\text { tension on slack side of rope; } \\
F & =\text { tension due to centrifugal force } ; \\
v & =\text { velocity of rope, in feet, per minute } \\
W & =\text { weight of rope, in pounds, per foot } ; \\
g & =\text { acceleration of gravity. }
\end{aligned}
$$

The value of $W$, the weight per foot for a rope of diameter, $D$, or circumference, $C$, is

$$
W=0.3 D^{2}=0.032 C^{2} .
$$

We have for the tension due to centrifugal force

$$
F=\frac{W v^{2}}{g}
$$

Assuming that the tension on the slack side necessary for giving adhesion is equal to one-half the force doing useful work on the driving side and calling this available tension for useful work $R$, we have

$$
R=2 / 3(T-F)
$$

The tension on the slack side to give the required adhesion will, therefore, be equal to $1 / 3(T-F)$, whence we have

$$
t=1 / 3(T-F)+F
$$

Since $F$ increases with the square of the velocity, there are, with increasing speeds, a decreasing useful force and an increasing tension, $t$, on the slack side. The horse-power may, therefore, be obtained from the following formula:

$$
H P=\frac{2 v(T-F)}{3 \times 33000}
$$

The following table has been computed from this formula.

## Horse=power of Manila=rope Transmission.

C. W. Hunt.

|  | Speed of the rope, in feet, per minute. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | 6000 | 7000 | 8000 |  |
| Inch. | H.-P. | Inch. |
| 1/2 | 1.45 | 1.9 | 2.3 | 2.7 | 3.0 | 3.2 | 3.4 | 3.4 | 3.1 | 2.2 | 0 | 20 |
| 5/8 | 2.3 | 3.2 | 3.6 | 4.2 | 4.6 | 5.0 | 5.3 | 5.3 | 4.9 | 3.4 | 0 | 24 |
| $3 / 4$ | 3.3 | 4.3 | 5.2 | 5.8 | 6.7 | 7.2 | 7.7 | 7.7 | 7.1 | 4.9 | 0 | 30 |
| 7/8 | 4.5 | 5.9 | 7.0 | 8.2 | 9.1 | 9.8 | 10.8 | 10.8 | 9.3 | 6.9 | 0 | 36 |
| 1 | 5.8 | 7.7 | 9.2 | 10.7 | 11.9 | 12.8 | 13.6 | 13.7 | 12.5 | 8.8 | 0 | 42 |
| 11/4 | 9.2 | 12.1 | 14.3 | 16.8 | 18.6 | 20.0 | 21.2 | 21.4 | 19.5 | 13.8 | 0 | 54 |
| 11/2 | 13.1 | 17.4 | 20.7 | 23.1 | 26.8 | 28.8 | 30.6 | 30.8 | 28.2 | 19.8 | 0 | 60 |
| 13/4 | 18.0 | 23.7 | 28.2 | 32.8 | 36.4 | 39.2 | 41.5 | 41.8 | 37.4 | 27.6 | 0 | 72 |
| 2 | 23.2 | 30.8 | 36.8 | 42.8 | 47.6 | 51.2 | 54.4 | 54.8 | 50.0 | 35.2 | 0 | 84 |

Where large amounts of power are to be transmitted a number of ropes are used. In English practice separate ropes are generally employed, but in the United States the rope is made endless, passing around the grooves in the pulleys as many times as may be necessary, and finally over an idler guide pulley supported in a tension carriage, the required initial tension being secured by weighting. In the American system ropes of small diameter are generaliy employed.

The form of grooves employed for rope driving, according to Unwin, are given in the illustration. The unit for the proportional figures is $\gamma$, the

girth of the rope. If the pulley is a guide pulley merely, the rope should rest on the bottom of the groove. The sides of the groove are usually inclined at $45^{\circ}$.

Mr. Spencer Miller has proposed that the angle of the sides of the grooves should be varied to suit the difference in the diameters of the pulleys, the angles being equal only when both pulleys are of the same diameter. This may well be done when the pulleys are made to order, but it is impracticable if pulleys are to be carried in stock.

The following table gives the transmitting power of cotton driving ropes, according to good British practice.

## Horse=power of Cotton=rope Transmission.

| Speed, in feet, per minute. | Diameter of ropes, in inches. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 11/8 | 11/4 | 13/8 | 11/2 | 15/8 | 13/4 | 17/8 | 2 |
|  | H.-P. |
| 2500 | 10.8 | 13.4 | 16.7 | 20.5 | 24.3 | 28.5 | 33.2 | 38.1 | 43.4 |
| 2600 | 11.1 | 13.9 | 17.2 | 20.8 | 25.0 | 29.4 | 34.1 | 39.4 | 44.7 |
| 2700 | 11.4 | 14.3 | 17.7 | 21.7 | 25.7 | 30.2 | 35.3 | 40.6 | 46.0 |
| 2800 | 11.8 | 14.7 | 18.2 | 22.3 | 26.4 | 31.0 | 36.2 | 41.7 | 47.3 |
| 2900 | 12.1 | 15.1 | 18.7 | 22.9 | 27.1 | 31.9 | 37.2 | 42.8 | 48.6 |
| 3000 | 12.3 | 15.4 | 19.1 | 23.4 | 27.8 | 32.6 | 38.1 | 43.8 | 49.5 |
| 3100 | 12.5 | 15.7 | 19.5 | 24.0 | 28.4 | 33.4 | 39.0 | 44.8 | 50.6 |
| 3200 | 12.9 | 16.1 | 19.9 | 24.5 | 29.0 | 34.0 | 39.9 | 45.8 | 52.0 |
| 3300 | 13.2 | 16.5 | 20.3 | 25.0 | 29.6 | 34.8 | 40.8 | 46.8 | 53.2 |
| 3400 | 13.4 | 16.7 | 20.6 | 25.5 | 30.1 | 35.4 | 41.6 | 47.7 | 54.3 |
| 3500 | 13.6 | 16.9 | 20.9 | 26.0 | 30.6 | 36.2 | 42.3 | 48.6 | 55.2 |
| 3600 | 13.9 | 17.1 | 21.2 | 26.4 | 31.1 | 36.5 | 43.0 | 49.5 | 56.0 |
| 3700 | 14.1 | 17.3 | 21.5 | 26.8 | 31.5 | 37.1 | 43.6 | 50.2 | 56.8 |
| 3800 | 14.2 | 17.5 | 21.7 | 27.0 | 31.9 | 37.5 | 44.2 | 50.8 | 57.6 |
| 3900 | 14.4 | 17.7 | 21.9 | 27.3 | 32.2 | 37.9 | 44.8 | 51.4 | 58.2 |
| 4000 | 14.5 | 17.8 | 22.1 | 27.5 | 32.6 | 38.4 | 45.3 | 51.9 | 58.9 |
| 4100 | 14.6 | 17.9 | 22.3 | 27.8 | 32.9 | 38.7 | 45.8 | 52.4 | 59.6 |
| 4200 | 14.7 | 18.0 | 22.5 | 28.0 | 33.1 | 39.0 | 46.3 | 52.8 | 60.3 |
| 4300 | 14.8 | 18.0 | 22.6 | 28.1 | 33.3 | 39.3 | 46.6 | 53.2 | 60.6 |
| 4400 | 14.9 | 18.1 | 22.7 | 28.2 | 33.4 | 39.6 | 46.8 | 53.5 | 60.9 |
| 4500 | 15.0 | 18.1 | 22.7 | 28.3 | 33.5 | 39.7 | 47.0 | 53.8 | 61.2 |
| 4600 | 15.1 | 18.1 | 22.7 | 28.4 | 33.6 | 39.7 | 47.2 | 54.0 | 61.4 |
| 4700 | 15.1 | 18.1 | 22.6 | 28.4 | 33.7 | 39.8 | 47.4 | 54.2 | 61.5 |
| 4800 | 15.1 | 18.0 | 22.6 | 28.5 | 33.7 | 39.8 | 47.5 | 54.2 | 61.5 |
| 4900 | 15.0 | 18.0 | 22.5 | 28.5 | 33.7 | 39.9 | 47.6 | 54.3 | 61.6 |
| 5000 | 15.0 | 17.9 | 22.4 | 28.4 | 33.6 | 39.8 | 47.5 | 54.3 | 61.5 |
| 5100 | 14.9 | 17.8 | 22.3 | 28.3 | 33.4 | 39.6 | 47.4 | 54.0 | 61.3 |
| 5200 | 14.8 | 17.6 | 22.0 | 28.2 | 33.2 | 39.3 | 47.2 | 53.8 | 61.1 |
| 5300 | 14.7 | 17.4 | 21.8 | 28.0 | 33.0 | 39.0 | 47.0 | 53.6 | 60.9 |
| 5400 | 14.6 | 17.2 | 21.6 | 27.7 | 32.7 | 38.6 | 46.8 | 53.3 | 60.4 |
| 5500 | 14.5 | 17.0 | 21.3 | 27.3 | 32.3 | 38.2 | 46.1 | 52.8 | 59.8 |

## HEAT.

Heat is defined as a form of molecular energy which is manifested by the changes which it produces in the form or state of the bodies upon which it acts. The most readily observed effect of heat is that of the expansion of the bodies to which it is applied; and this effect is used both for the measurement of quantities of heat and for its useful application by conversion into mechanical work.

Heat can be transferred from one body to another, the hotter body parting with heat to the body which is less hot. The scale of quantities apon which such transfers are compared is called the scale of temperatures. When there is no tendency for the transfer of heat from one body to mother the two bodies are said to be at the same temperature.

There are, in nature, certain temperatures which can be identified by
positive phenomena which occur with them. Among them are the meltingpoint of ice and the boiling-point of water, these being considered as occurring at the average atmospheric pressure of 14.7 pounds to the square inch, corresponding to 29.922 inches, or 760 millimetres of mercury on the barometer. Having these, or certain other standards of temperature, it is practicable to make scales by which other temperatures may be compared.

The practical method of making instruments for the measurement of temperatures is to use the expansive effect of heat upon certain liquids or upon a gas. For temperatures within the range of its freezing and boiling points mercury is generally used.

There are three forms of mercurial thermometers, or temperatureindicating instruments, in use. These all consist of sealed tubes of fine bore, there being a bulb at one end containing mercury. The expansion or contraction of the mercury in the bulb causes the portion in the tube to move, the extent of this movement indicating the changes in temperature. The three thermometers differ from each other only in the graduation and numbering of the scales upon the tube.

In the Centigrade thermometer the position of the mercury at the melt-ing-point of ice is taken as the zero of the scale, while the boiling-point of water is called 100, the space between being divided into 100 equal parts, called degrees.

The Fahrenheit thermometer was originally designed to range between two altogether different standard points, one of these being the temperature of pounded ice and salt, the other the normal temperature of the human body. The space between these was divided duodecimally, and these large divisions subdivided by repeated bisection into halves, quarters, and eighths, thus making 96 divisions. Owing to the erroneous measurements made by Fahrenheit in constructing his early instruments the temperature of the human body was taken too low, and it is really equal to 98 degrees above the Fahrenheit zero. This scale, if prolonged upward to the boiling-point of water, reaches that temperature at 212 degrees, and it is often erroneously stated that Fahrenheit's scale was originally derived between those points.

The remarkable uniformity of the early thermometers made by Fahrenheit caused his instruments to be used for work involving scientific accuracy, and it is still the scale most extensively used in steam engineering in English-speaking countries.

The Reaumur scale has its zero at the melting-point of ice, as in the centigrade scale, and the graduations were intended to correspond to the expansion of the mercury in the bulb by $\frac{1}{2}$ of of its original volume for each degree. Upon this scale the boiling-point of water is reached at 80 degrees above zero, and the scale is generally so defined. The Reaumur scale is now rarely used; but many old measurements of importance are recorded in it, and hence it is valuable for purposes of comparison.

In converting the several scales from one to the other the following formulas are used :

$$
\text { Zero Fahr. }=-17.77^{\circ} \text { Cent. }=-14.22^{\circ} \text { Reau. }
$$

## Melting=point of Ice.

Zero Cent. $=32$ Fahr. $=$ zero Reau.

## Boiling point of Water.

| $212^{\circ}$ Fahr. | $=100^{\circ}$ Cent. |
| ---: | :--- |
| $9^{\circ}$ Fahr. | $=80^{\circ}$ Reau. |
| $5^{\circ}$ Cent. | $=4^{\circ}$ Reau.. |

## Formulas.

Cent. $=\frac{5}{9}($ Fahr. $\mp 32)=\frac{5}{4}$ Reau. Fahr. $=\frac{9}{5}$ Cent. $\pm 32=\frac{9}{4}$ Reau. $\pm 32$. Reau. $=\frac{4}{5}$ Cent. $=\frac{4}{9}($ Fahr. $\mp 32)$.

In the accompanying tables the corresponding values of Fahrenheit and Centigrade degrees are given for the temperatures generally used in engineering. The main tables give the values for even degrees, and by means of the supplementary tables the values for tenths of a degree may be taken out.

Fahrenheit to Centigrade.

| Fahr. | Cent. | Fahr. | Cent. | Fahr. | Cent. | Fahr. | Cent. | Fahr. | Cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -5 | -20.55 | 57 | 13.88 | 119 | 48.33 | 181 | 82.77 | 243 | 117.22 |
| 4 | -20.00 | 58 | 14.44 | 120 | 48.88 | 182 | 83.33 | 244 | 117.77 |
|  | -19.44 | 59 | 15.00 | 121 | 49.44 | 183 | 83.88 | 245 | 118.33 |
| -2 | -18.88 | 60 | 15.55 | 122 | 50.00 | 184 | 84.44 | 246 | 118.88 |
| -1 | $-18.33$ | 61 | 16.11 | 123 | 50.55 | 185 | 85.00 | 247 | 119.44 |
| Zero. | -17.77 | 62 | 16.66 | 124 | 51.11 | 186 | 85.55 | 248 | 120.00 |
| +1 | -17.22 | 63 | 17.22 | 125 | 51.66 | 187 | 86.11 | 249 | 120.55 |
| 2 | -16.66 | 64 | 17.77 | 126 | 52.22 | 188 | 86.66 | 250 | 121.11 |
| 3 | -16.11 | 65 | 18.33 | 127 | 52.77 | 189 | 87.22 | 251 | 121.66 |
| 4 | -15.55 | 66 | 18.88 | 128 | 53.33 | 190 | 87.77 | 252 | 122.22 |
| 5 | -15.00 | 67 | 19.44 | 129 | 53.88 | 191 | 88.33 | 253 | 122.77 |
| 6 | -14.44 | 68 | 20.00 | 130 | 54.44 | 192 | 88.88 | 254 | 123.33 |
| 8 | -13.88 | 69 | 20.55 | 131 | 55.00 | 193 | 89.44 | 255 | 123.88 |
| 8 | -13.33 | 70 | 21.11 | 132 | 55.55 | 194 | 90.00 | 256 | 124.44 |
| 9 | -12.77 | 71 | 21.66 | 133 | 56.11 | 195 | 90.55 | 257 | 125.00 |
| 10 | -12.22 | 72 | 22.22 | 134 | 56.66 | 196 | 91.11 | 258 | 125.55 |
| 11 | -11.66 | 73 | 22.77 | 135 | 57.22 | 197 | 91.66 | 259 | 126.11 |
| 12 | -11.11 | 74 | 23.33 | 136 | 57.77 | 198 | 92.22 | 260 | 126.66 |
| 13 | -10.55 | 75 | 23.88 | 137 | 58.33 | 199 | 92.77 | 261 | 127.22 |
| 14 | -10.00 | 76 | 24.44 | 138 | 58.88 | 200 | 93.33 | 262 | 127.77 |
| 15 | - 9.44 | 77 | 25.00 | 139 | 59.44 | 201 | 93.88 | 263 | 128.33 |
| 16 | -8.88 | 78 | 25.55 | 140 | 60.00 | 202 | 94.44 | 264 | 128.88 |
| 17 | -8.33 | 79 | 26.11 | 141 | 60.55 | 203 | 95.00 | 265 | 129.44 |
| 18 | - 7.77 | 80 | 26.66 | 142 | 61.11 | 204 | 95.55 | 266 | 130.00 |
| 19 | - 7.22 | 81 | 27.22 | 143 | 61.66 | 205 | 96.11 | 267 | 130.55 |
| 20 | -6.61 | 82 | 27.77 | 144 | 62.22 | 206 | 96.66 | 268 | 131.11 |
| 2. | -6.11 | 83 | 28.33 | 145 | 62.77 | 207 | 97.22 | 269 | 131.66 |
| 22 | - 5.55 | 84 | 28.88 | 146 | 63.33 | 208 | 97.77 | 270 | 132.22 |
| 23 | - 5.00 | 85 | 29.44 | 147 | 63.88 | 209 | 98.33 | 271 | 132.77 |
| 24 | - 4.44 | 86 | 30.00 | 148 | 64.44 | 210 | 98.88 | 272 | 133.33 |
| 2 | - 3.88 | 87 | 30.55 | 149 | 65.00 | 211 | 99.44 | 273 | 133.88 |
| 26 | -3.33 | 88 | 31.11 | 150 | 65.55 | 212 | 100.00 | 274 | 134.44 |
| 27 | - 2.77 | 89 | 31.66 | 151 | 66.11 | 213 | 100.55 | 275 | 135.00 |
| 28 | - 2.22 | 90 | 32.22 | 152 | 66.66 | 214 | 101.11 | 276 | 135.55 |
| 29 | -1.66 | 91 | 32.77 | 153 | 67.22 | 215 | 101.66 | 277 | 136.11 |
| 30 | -1.11 | 92 | 33.33 | 154 | 67.77 | 216 | 102.22 | 278 | 136.66 |
| 31 | -. 55 | 93 | 33.88 | 155 | 68.33 | 217 | 102.77 | 279 | 137.22 |
| 32 | Zero. | 94 | 34.44 | 156 | 68.88 | 218 | 103.33 | 280 | 137.77 |
| 33 | +..55 | 95 | 35.00 | 157 | 69.44 | 219 | 103.88 | 281 | 138.33 |
| 34 | 1.11 | 96 | 35.55 | 158 | 70.00 | 220 | 104.44 | 282 | 138.88 |
| 35 | 1.66 | 97 | 36.11 | 159 | 70.55 | 221 | 105.00 | 283 | 139.44 |
| 36 | 2.22 | 98 | 36.66 | 160 | 71.11 | 222 | 105.55 | 284 | 140.00 |
| 37 | 2.77 | 99 | 37.22 | 161 | 71.66 | 223 | 106.11 | 285 | 140.55 |
| 38 | 3.33 | 100 | 37.77 | 162 | 72.22 | 224 | 106.66 | 286 | 141.11 |
| 39 | 3.88 | 101 | 38.33 | 163 | 72.77 | 225 | 107.22 | 287 | 141.66 |
| 40 | 4.44 | 102 | 38.88 | 164 | 73.33 | 226 | 107.77 | 288 | 142.22 |
| 41 | 5.00 | 103 | 39.44 | 165 | 73.88 | 227 | 108.33 | 289 | 142.77 |
| 42 | 5.55 | 104 | 40.00 | 166 | 74.44 | 228 | 108.88 | 290 | 143.33 |
| 43 | 6.11 | 105 | 40.55 | 167 | 75.00 | 229 | 109.44 | 291 | 143.88 |
| 44 | 6.66 | 106 | 41.11 | 168 | 75.55 | 230 | 110.00 | 292 | 144.44 |
| 45 | 7.22 | 107 | 41.66 | 169 | 76.11 | 231 | 110.55 | 293 | 145.00 |
| 46 | 7.77 | 108 | 42.22 | 170 | 76.66 | 232 | 111.11 | 294 | 145.55 |
| 47 | 8.33 | 109 | 42.77 | 171 | 77.22 | 233 | 111.66 | 295 | 146.11 |
| 48 | 8.88 | 110 | 43.33 | 172 | 77.77 | 234 | 112.22 | 296 | 146.66 |
| 49 | 9.44 | 111 | 43.88 | 173 | 78.33 | 235 | 112.77 | 297 | 147.22 |
| 50 51 | 10.00 | 112 | 44.44 | 174 | 78.88 | 236 | 113.33 | 298 | 147.77 |
| 52 | 11.11 | 114 | 45.55 | 170 | 79.44 80.00 | 238 | 114.44 | 300 | 148.88 |
| 53 | 11.66 | 115 | 46.11 | 177 | 80.55 | 239 | 115.00 | 400 | 204.44 |
| 54 | 12.22 | 116 | 46.66 | 178 | 81.11 | 240 | 115.55 | 600 | 315.55 |
| 55 56 | 12.77 | 117 | 47.22 | 179 | 81.66 | 241 | 116.11 | 800 | 433.33 |
| 56 | 13.33 | 118 | 47.77 | 180 | 82.22 | 242 | 116.66 | 1000 | 537.77 |

For Supplementary Tables, see page 511.

Centigrade to Fahrenheit.

| Cent. | Fahr. | Cent. | Fahr. | Cent. | Fahr. | Cent. | Fahr. | Cent. | Fahr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -273.00 | -460.7 | 16 | 60.8 | 330 | 626 | 950 | 1742 | 1570 | 2858 |
| -260.00 | $-436.0$ | 17 | 62.6 | 340 | 644 | 960 | 1760 | 1580 | 2876 |
| -250.00 | -418.0 | 18 | 64.4 | 350 | 662 | 970 | 1778 | 1590 | 2894 |
| -240.00 | $-400.0$ | 19 | 66.2 | 360 | 680 | 980 | 1796 | 1600 | 2912 |
| -230.00 | -382.0 | 20 | 68.0 | 370 | 698 | 990 | 1814 | 1610 | 2930 |
| -220.00 | -364.0 | 21 | 69.8 | 380 | 716 | 1000 | 1832 | 1620 | 2948 |
| -210.00 | -346.0 | 22 | 71.6 | 390 | 734 | 1010 | 1850 | 1630 | 2966 |
| -200.00 | -328.0 | 23 | 73.4 | 400 | 752 | 1020 | 1868 | 1640 | 2984 |
| -190.00 | -310.0 | 24 | 75.2 | 410 | 770 | 1030 | 1886 | 1650 | 3002 |
| -180.00 | -292.0 | 25 | 77.0 | 420 | 788 | 1040 | 1904 | 1660 | 3020 |
| -170.00 | -274.0 | 26 | 78.8 | 430 | 806 | 1050 | 1922 | 1670 | 3038 |
| -160.00 | -256.0 | 27 | 80.6 | 440 | 824 | 1060 | 1940 | 1680 | 3056 |
| -150.00 | -238.0 | 28 | 82.4 | 450 | 842 | 1070 | 1958 | 1690 | 3074 |
| -140.00 | $-220.0$ | 29 | 84.2 | 460 | 860 | 1080 | 1976 | 1700 | 3092 |
| -130.00 | -202.0 | 30 | 86.0 | 470 | 878 | 1090 | 1994 | 1710 | 3110 |
| -120.00 | -184.0 | 31 | 87.8 | 480 | 896 | 1100 | 2012 | 1720 | 3128 |
| -110.00 | -166.0 | 32 | 89.6 | 490 | 914 | 1110 | 2030 | 1730 | 3146 |
| -100.00 | -148.0 | 33 | 91.4 | 500 | 932 | 1120 | 2048 | 1740 | 3164 |
| - 90.00 | -130.0 | 34 | 93.2 | 510 | 950 | 1130 | 2066 | 1750 | 3182 |
| - 80.00 | -112.0 | 35 | 95.0 | 520 | 968 | 1140 | 2084 | 1760 | 3200 |
| - 70.00 | - 94.0 | 36 | 96.8 | 530 | 986 | 1150 | 2102 | 1770 | $3: 218$ |
| - 60.00 | - 76.0 | 37 | 98.6 | 540 | 1004 | 1160 | 2120 | 1780 | $3 \cdot 236$ |
| - 50.00 | - 58.0 | 38 | 100.4 | 550 | 1022 | 1170 | 2138 | 1790 | 3254 |
| - 40.00 | - 40.0 | 39 | 102.2 | 560 | 1040 | 1180 | 2156 | 1800 | 3272 |
| - 30.00 | - 22.0 | 40 | 104.0 | 570 | 1058 | 1190 | 2174 | 1810 | 3290 |
| - 20.00 | - 4.0 | 41 | 105.8 | 580 | 1076 | 1200 | 2192 | 1820 | 3308 |
| - 19.00 | - 2.2 | 42 | 107.6 | 590 | 1094 | 1210 | 2210 | 1830 | 3326 |
| - 18.00 | - 0.4 | 43 | 109.4 | 600 | 1112 | 1220 | 2228 | 1840 | 3344 |
| - 17.77 | Zero. | 44 | 111.2 | 610 | 1130 | 1230 | 2246 | 1850 | 3362 |
| - 17.00 | + 1.4 | 45 | 113.0 | 620 | 1148 | 1240 | 2264 | 1860 | 3380 |
| - 16.00 | + 3.2 | 46 | 114.8 | 630 | 1166 | 1250 | 2282 | 1870 | 3398 |
| - 15.00 | + 5.0 | 47 | 116.6 | 640 | 1184 | 1260 | 2300 | 1880 | 3416 |
| - 14.00 | + 6.8 | 48 | 118.4 | 650 | 1202 | 1270 | 2318 | 1890 | 3434 |
| - 13.00 | + 8.6 | 49 | 120.2 | 660 | 1220 | 1280 | 2336 | 1900 | 3452 |
| - 12.00 | + 10.4 | 50 | 122.0 | 670 | 1238 | 1290 | 2354 | 1910 | 3470 |
| - 11.00 | + 12.2 | 60 | 140.0 | 680 | 1256 | 1300 | 2372 | 1920 | 3488 |
| - 10.00 | +14.0 | 70 | 158.0 | 690 | 1274 | 1310 | 2390 | 1930 | 3506 |
| - 9.00 | +15.8 | 80 | 176.0 | 700 | 1292 | 1320 | 2408 | 1940 | 3524 |
| - 8.00 | + 17.6 | 90 | 194.0 | 710 | 1310 | 1330 | 2426 | 1950 | 3542 |
| - 7.00 | + 19.4 | 100 | 212.0 | 720 | 1328 | 1340 | 2444 | 1960 | 3560 |
| - 6.00 | +21.2 | 110 | 230.0 | 730 | 1346 | 1350 | 2462 | 1970 | 3578 |
| - 5.00 | + 23.0 | 120 | 248.0 | 740 | 1364 | 1360 | 2480 | 1980 | 3596 |
| - 4.00 | + 24.8 | 130 | 266.0 | 750 | 1332 | 1370 | 2498 | 1990 | 3614 |
| - 3.00 | +26.6 | 140 | 284.0 | 760 | 1400 | 1380 | 2516 | 2000 | 3632 |
| - 2.00 | +28.4 | 150 | 302.0 | 770 | 1418 | 1390 | 2534 | 2010 | 3650 |
| - 1.00 | + 30.2 | 160 | 320.0 | 780 | 1436 | 1400 | 2552 | 2020 | 3668 |
| Zero. | +32.0 +3.8 | 170 | 338.0 | 790 | 1454 | 1410 | 2570 | 2030 | 3686 |
| + 1 | + 33.8 | 180 | 356.0 | 800 | 1472 | 1420 | 2588 | 2040 | 3704 |
| 2 | 35.6 | 190 | 374.0 | 810 | 1490 | 1430 | 2606 | 2050 | 3722 |
| 3 | 37.4 | 200 | 392.0 | 820 | 1508 | 1440 | 2624 | 2060 | 3740 |
| 4 | 39.2 | 210 | 410.0 | 830 | 1526 | 1450 | 2642 | 2070 | 3758 |
| 5 | 41.0 | 220 | 428.0 | 840 | 1544 | 1460 | 2660 | 2080 | 3776 |
| 6 | 42.8 | 230 | 446.0 | 850 | 1562 | 1470 | 2678 | 2090 | 3794 |
| 7 | 44.6 | 240 | 464.0 | 860 | 1580 | 1480 | - 2696 | 2100 | 3812 |
| 8 | 46.4 | 250 | 482.0 | 870 | 1598 | 1490 | - 2714 | 2110 | 3830 |
| 9 | 48.2 | 260 | 500.0 | 880 | 1616 | 1500 | 2732 | 2120 | 3848 |
| 10 | 50.0 | 270 | 518.0 | 890 | 1634 | 1510 | 2750 | 2130 | 3866 |
| 11 | 51.8 | 280 | 536.0 | 900 | 1652 | 1520 | 2768 | 2140 | 3884 |
| 12 | 53.6 | 290 | 554.0 | 910 | 1670 | 1530 | 2786 | 2150 | 3902 |
| 13 | 55.4 | 300 | 572.0 | 920 | 1688 | 1540 | 2804 | 2160 | ${ }_{3} 3920$ |
| 14 | 57.2 | 310 | 590.0 | 930 | 1706 | 1550 | 2822 | 2180 | 3956. |
| 15 | 59.0 | 320 | 608.0 | 940 | 1724 | 1560 | 2840 | 2200 | 3992 |

For Supplementary Tables, see page 511.

## SUPPLEMENTARY TABLES.

Number of Degrees Cent. = Number of Degrees Fahr.

|  | Tenths of a degree-Centigrade scale. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ}$ | . 0 | . 1 | . 2 | . 3 | . 4 | . 5 | . 6 | . 7 | . 8 | . 9 |
|  | Fahr. |
| 0 | . 00 | . 18 | . 36 | . 54 | . 72 | . 90 | 1.08 | 1.26 | 1.44 | 1.62 |
| 1 | 1.80 | 1.98 | 2.16 | 2.34 | 2.52 | 2.70 | 2.88 | 3.06 | 3.24 | 3.42 |
| 2 | 3.60 | 3.78 | 3.96 | 4.14 | 4.32 | 4.50 | 4.68 | 4.86 | 5.04 | 5.22 |
| 3 | 5.40 | 5.58 | 5.76 | 5.94 | 6.12 | 6.30 | 6.48 | 6.66 | 6.84 | 7.02 |
| 4 | 7.20 | 7.38 | 7.56 | 7.74 | 7.92 | 8.10 | 8.28 | 8.46 | 8.64 | 8.82 |
| 5 | 9.00 | 9.18 | 9.36 | 9.54 | 9.72 | 9.90 | 10.08 | 10.26 | 10.44 | 10.62 |
| 6 | 10.80 | 10.98 | 11.16 | 11.34 | 11.52 | 11.70 | 11.88 | 12.06 | 12.24 | 12.42 |
| 7 | 12.60 | 12.78 | 12.96 | 13.14 | 13.32 | 13.50 | 13.68 | 13.86 | 14.04 | 14.22 |
| 8 | 14.40 | 14.58 | 14.76 | 14.94 | 15.12 | 15.30 | 15.48 | 15.66 | 15.84 | 16.02 |
| 9 | 16.20 | 16.38 | 16.56 | 16.74 | 16.92 | 17.10 | 17.28 | 17.46 | 17.64 | 17.82 |
|  |  |  |  |  |  |  |  |  |  |  |

Number of Degrees Fahr. = Number of Degrees Cent.

|  | Tenths of a degree-Fahrenheit scale. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 0 | . 1 | . 2 | . 3 | . 4 | . 5 | . 6 | . 7 | . 8 | . 9 |
|  | Cent. |
| 0 | . 00 | . 06 | . 11 | . 17 | . 22 | . 28 | . 33 | . 39 | . 44 | . 50 |
| 1 | . 56 | . 61 | . 67 | . 72 | . 78 | . 83 | . 89 | . 94 | 1.00 | 1.06 |
| 2 | 1.11 | 1.17 | 1.22 | 1.28 | 1.33 | 1.39 | 1.44 | 1.50 | 1.56 | 1.61 |
| 3 | 1.67 | 1.72 | 1.78 | 1.83 | 1.89 | 1.94 | 2.00 | 2.06 | 2.11 | 2.17 |
| 4 | 2.22 | 2.28 | 2.33 | 2.39 | 2.44 | 2.50 | 2.56 | 2.61 | 2.67 | 2.72 |
| 5 | 2.78 | 2.83 | 2.89 | 2.94 | 3.00 | 3.06 | 3.11 | 3.17 | 3.22 | 3.28 |
| 6 | 3.33 | 3.39 | 3.44 | 3.50 | 3.56 | 3.61 | 3.67 | 3.72 | 3.78 | 3.83 |
| 7 | 3.89 | 3.94 | 4.00 | 4.06 | 4.11 | 4.17 | 4.22 | 4.28 | 4.33 | 4.39 |
| 8 | 4.44 | 4.50 | 4.56 | 4.61 | 4.67 | 4.72 | 4.78 | 4.83 | 4.89 | 4.94 |
| 9 | 5.00 | 5.06 | 5.11 | 5.17 | 5.22 | 5.28 | 5.33 | 5.39 | 5.44 | 5.50 |
|  |  |  |  |  |  |  |  |  |  |  |

By the use of the above tables any value may be obtained in connection with the preceding tables. Thus, to convert $1375.4^{\circ} \mathrm{C}$. to Fahrenheit we have

$$
\begin{array}{rlr}
1370.0^{\circ} \mathrm{C} & =2498.0^{\circ} \mathrm{F} . \\
5.0^{\circ} \mathrm{C} & =9.00^{\circ} \mathrm{F} \\
0.4^{\circ} \mathrm{C} . & =0.72^{\circ} \mathrm{F} \\
\hline 1375.4^{\circ} \mathrm{C} . & =2507.72^{\circ} \mathrm{F}
\end{array}
$$

## Coefficients of Expansion.

Per Degree of Fahrenheit Scale.

| Temperatures. | Solids. | Linear. | Surface. | Volume. |
| :---: | :---: | :---: | :---: | :---: |
| Degrees. |  |  |  |  |
| 32 to 212 |  | . 00000478 | . 00000956 | . 00001434 |
| 212 to 392 | Glass | . 00000546 | . 00001093 | . 00001639 |
| 392 to 572 |  | . 00000660 | . 00001320 | . 00001980 |
| 32 to 212 | Wrought- | . 00000656 | $.00001312$ | $.00001968$ |
| 32 to 572 | $\}_{\text {Soft iron }}^{\text {Wrought-iron....................... }}$ | .000 <br> .00080895 <br> 00680 | $.00001790$ | . 0000202686 |
| 32 to 212 | Soft iro | . 000006880 | . 00001360 | .000 <br> .000 <br> 01854 |
| 32 to 212 | Cast-steel | . 00000600 | . 00001200 | . 00001800 |
| 32 to 212 | Hardened | . 00000689 | . 00001378 | . 00002067 |
| 32 to 212 |  | . 00000955 | . 00001910 | . 00002865 |
| 32 to 572 | copp | . 00001092 | . 00002184 | . 00003276 |
| 32 to 212 | Lead | . 00001580 | . 00003160 | . 00004740 |
| 32 to 212 | Gold, pure | . 00000815 | . 00001630 | . 00002445 |
| 32 to 212 | Gold, hammere | . 00000830 | . 00001660 | . 00002490 |
| 32 to 212 | Silver, pure | . 00001060 | . 00002120 | . 00003180 |
| 32 to 212 | Silver, hammered | . 00001116 | . 00002232 | . 00003348 |
| 32 to 212 | Brass, common ca | . 00001043 | . 00002086 | . 00003129 |
| 32 to 212 | Brass, wire or she | . 00001075 | . 00002150 | . 00003225 |
| 32 to 212 | ) Platinum, pu | . 00000491 | . 00000982 | . 00001473 |
| 32 to 572 | Platinum, ham | . 00000520 | . 00001040 | . 00001560 |
| 32 to 212 | Palladium ....... | . 00000535 | . 00001060 | . 00001590 |
| 32 to 212 | Roman cement | . 00000797 | . 00001594 | . 00001665 |
| 32 to 212 | Zinc, pure or cas | . 00001633 | . 00003266 | . 00004899 |
| 32 to 212 | Zinc, hammered | . 00001722 | . 00003444 | . 00005166 |
| 32 to 212 | Tin, cast | . 00001207 | . 00002414 | . 00003621 |
| 32 to 212 | Tin, hammered | . 00001500 | . 00003000 | . 00004500 |
| 32 to 212 | Fire-brick | . 00000235 | . 00000470 | . 00000705 |
| 32 to 212 | Good red b | . 00000305 | . 00000610 | . 00000915 |
| 32 to 212 | Marble | . 00000613 | . 00001226 | . 00001839 |
| 32 to 212 | Granite. | . 00000438 | . 00000876 | . 00001314 |
| 32 to 212 | Bismuth | . 00000773 | . 00001546 | . 00002319 |
| 32 to 212 | Antimony | . 00000602 | . 00001204 | . 00001806 |
| 32 to 212 212 to 392 |  | . 00003333 | . 00006666 | . 00010000 |
| 212 to 392 392 to 572 |  | . 00003416 | . 00006833 | . 00010250 |
| 392 to 572 32 to 212 |  | . 00003500 | . 00007000 | . 00010500 |
| 32 212 to 212 292 |  | . 00008806 | . 00017612 | . 00026420 |
| 212 to 392 392 to 572 |  | . 00017066 | . 00034133 | . 00051198 |
| 392 to 572 |  | . 00018904 | . 00037808 | . 00056713 |
| 32 to 212 | Salt, dissolved. | . 00009250 | . 00018500 | . 00027750 |
| 32 to 212 | Sulphuric acid | . 00011111 | . 00022222 | . 00033333 |
| 32 to 212 | Turpentine and | . 00012966 | . 00025933 | . 00038900 |
| 32 to 212 | Oil, common. | . 00014814 | . 00029629 | . 00044443 |
| $\begin{aligned} & 32 \text { to } 212 \\ & 32 \text { to } 212 \end{aligned}$ | Alcohol and nitric ac All permanent gases. | . 00015151 | $\begin{aligned} & .00030302 \\ & .00138832 \end{aligned}$ | .00045453 .00208250 |

According to the investigations of M. Guillaume, an alloy of nickelsteel, containing 36 per cent. of nickel, has a coefficient of expansion only is that of platinum, or about 0.0000003 for $1^{\circ} \mathrm{F}$. Wires made of this alloy have been used for the measurement of geodetic base lines, without requiring any temperature correction.

## Coefficients of Expansion.

Per Degree of the Centigrade Scale.

| Substance. | Linear. | Surface. | Volume. |
| :---: | :---: | :---: | :---: |
| Aluminum | . 0000231 | . 0000462 | . 0000693 |
| Brass, cast. | . 0000187 | . 0000374 | . 0000561 |
| Brass wire...... | . 0000193 | . 0000386 | . 0000579 |
| Bronze | . 0000184 | . 0000368 | . 0000552 |
| Carbon, gas | . 0000054 | . 0000108 | . 0000162 |
| Carbon, graphite. | . 0000077 | . 0000154 | . 0000231 |
| Copper | . 0000168 | . 0000336 | . 0000504 |
| German silver | . 0000184 | . 0000368 | . 0000552 |
| Gold | . 0000144 | . 0000288 | . 0000432 |
| Glass, crown | . 0000090 | . 0000180 | . 0000270 |
| Glass, flint | . 0000079 | . 0000158 | . 0000237 |
| Iron, cast. | . 0000106 | . 0000212 | . 0000318 |
| Iron, wrought | . 0000114 | . 0000228 | . 0000342 |
| Steel, hard | . 0000132 | . 0000264 | . 0000396 |
| Steel, soft | . 0000109 | . 0000218 | . 0000327 |
| Lead | . 0000292 | . 0000584 | . 0000876 |
| Nickel. | . 0000128 | . 0000256 | . 0000384 |
| Platinum. | . 0000090 | . 0000180 | . 0000270 |
| Silver | . 0000192 | . 0000384 | . 0000576 |
| Tin | . 0000223 | . 0000446 | . 0000669 |
| Zinc | . 0000292 | . 0000584 | . 0000876 |

Linear Expansion or Contraction, in Inches, of Cast=iron.
Lengths in Feet.

|  | Difference in temperature.-Fahrenheit. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $100^{\circ}$ | $150{ }^{\circ}$ | $200{ }^{\circ}$ | $250{ }^{\circ}$ | $300{ }^{\circ}$ | $400^{\circ}$ | $500^{\circ}$ | $600^{\circ}$ | $800^{\circ}$ |
| Feet. | Inch. |
| 1 | . 0072 | . 0110 | . 0150 | . 0192 | . 0237 | . 0336 | . 0444 | . 0561 | . 0787 |
| 2 | . 0144 | . 02220 | . 0300 | . 0384 | . 0474 | . 0632 | . 0885 | . 1123 | . 1574 |
| 3 | . $0 \cdot 216$ | . 0330 | . 0450 | . 0576 | . 0711 | . 1008 | . 1332 | . 1684 | . 2361 |
| 4 | . 0288 | . 0440 | . 0600 | . 0768 | . 0948 | . 1344 | . 1776 | . 2246 | . 3148 |
| 5 | . 0360 | . 0550 | . 0750 | . 0960 | . 1185 | . 1680 | . 2220 | . 2805 | . 3935 |
| 6 | . 0432 | . 0660 | . 0900 | . 1152 | . 1422 | . 2016 | . 2664 | . 3368 | . 4722 |
| 7 | . 0504 | . 0770 | . 1050 | . 1344 | . 1659 | . 2352 | . 3108 | . 3929 | . 5509 |
| 8 | . 0576 | . 0880 | . 1200 | . 1536 | . 1896 | . 2688 | . 3552 | . 4496 | . 6396 |
| 9 | . 0648 | . 0990 | . 1350 | . 1728 | . 2133 | . 3024 | . 3996 | . 5052 | . 7083 |
| 10 | . 0720 | . 1102 | . 1502 | . 1926 | . 2376 | . 3360 | . 4440 | . 5616 | . 7872 |
| 11 | . 0792 | . 1214 | . 1652 | . 2125 | . 2615 | . 3696 | . 4884 | . 6177 | . 8659 |
| 12 | . 0864 | . 1316 | . 1802 | . 2318 | . 2853 | . 4032 | . 5328 | . 6739 | . 9446 |
| 13 | . 0936 | . 1417 | . 1952 | . 2510 | . 3090 | . 4368 | . 5772 | . 7300 | 1.0233 |
| 14 | . 1008 | . 1519 | . 2102 | . 2703 | . 3328 | . 4704 | . 6216 | . 7862 | 1.1020 |
| 15 | . 1080 | . 1620 | . 2253 | . 2895 | . 3565 | . 5040 | . 6660 | . 8423 | 1.1808 |
| 16 | . 1152 | . 1722 | . 2403 | . 3088 | . 3803 | . 5376 | . 7104 | . 8985 | 1.2595 |
| 17 | . 1224 | . 1823 | . 2553 | . 3280 | . 4040 | . 5712 | . 7548 | . 9546 | 1.3382 |
| 18 | . 1296 | . 1925 | . 2703 | . 3472 | . 4278 | . 6048 | . 7992 | 1.0108 | 1.4169 |
| 19 | . 1368 | . 2026 | . 2853 | . 3665 | . 4515 | . 6384 | . 8436 | 1.0669 | 1.4956 |
| 20 | . 1440 | . 2203 | . 3005 | . 3852 | . 4752 | . 6720 | . 8880 | 1.1232 | 1.5744 |
| 21 | . 1512 | . 2305 | . 3155 | . 4045 | . 4995 | . 7056 | . 9324 | 1.1793 | 1.6531 |
| 22 | . 1584 | . 2407 | . 3305 | . 4238 | . 5228 | . 7392 | . 9768 | 1.2394 | 1.7318 |
| 23 | . 1656 | . 2508 | . 3455 | . 4430 | . 5465 | . 7728 | 1.0212 | 1.2915 | 1.8105 |
| 24 | . 1728 | . 2610 | . 3606 | . 4623 | . 5703 | . 8064 | 1.0656 | 1.3477 | 1.8892 |
| 25 | . 1800 | . 2711 | . 3756 | . 4815 | . 5940 | . 8400 | 1.1100 | 1.4038 | 1.9679 |
| 26 | . 1872 | . 2813 | . 3906 | . 5008 | . 6179 | . 8736 | 1.1544 | 1.4600 | 2.0467 |
| 27 | . 1944 | . 2914 | . 4056 | . 5200 | . 6415 | . 9072 | 1.1988 | 1.5161 | 2.1254 |
| 28 | . 2016 | . 3016 | . 4206 | . 5393 | . 6553 | . 9408 | 1.2432 | 1.5723 | 2.2041 |
| 29 | . 2088 | . 3117 | . 4356 | . 5585 | . 6890 | . 9744 | 1.2876 | 1.6284 | 2.2829 |
| 30 | . 2160 | . 3304 | . 4507 | . 5778 | . 7128 | 1.0080 | 1.3320 | 1.6848 | 2.3616 |
| 31 | . 2232 | . 3405 | . 4657 | . 5970 | . 7365 | 1.0416 | 1.3764 | 1.7409 | 2.4403 |
| 32 | . 2304 | . 3507 | . 4807 | . 6163 | . 7603 | 1.0752 | 1.4208 | 1.7971 | 2.5190 |
| 3 | . 2376 | . 3608 | . 4957 | . 6355 | . 7841 | 1.1088 | 1.4652 | 1.8533 | 2.5977 |
| 34 | . 2448 | . 3710 | . 5107 | . 6548 | . 8078 | 1.1424 | 1.5096 | 1.9094 | 2.6764 |
| 35 | . 2520 | . 3811 | . 5258 | . 6740 | . 8316 | 1.1760 | 1.5540 | 1.9656 | 2.7552 |
| 37 | . 2592 | . 3913 | . 5408 | . 6933 | . 8553 | 1.2096 | 1.5984 | 2.0217 | 2.8339 |
| 37 | . 2664 | . 4014 | . 5558 | . 7125 | . 8791 | 1.2432 | 1.6428 | 2.0779 | 2.9126 |
| 38 | . 2736 | . 4116 | . 5708 | . 7298 | . 9028 | 1.2768 | 1.6872 | 2.1340 | 2.9913 |
| 39 | . 2808 | . 4217 | . 5858 | . 7490 | . 9266 | 1.3104 | 1.7316 | 2.1902 | 3.0701 |
| 40 | . 288 | . 4406 | . 6009 | . 7704 | . 9504 | 1.344 | 1.776 | 2.2464 | 3.1488 |
| 45 | . 324 | . 4957 | . 6760 | . 8667 | 1.0692 | 1.512 | 1.998 | 2.5272 | 3.5424 |
| 50 | . 360 | . 5508 | . 7512 | . 9630 | 1.1880 | 1.680 | 2.220 | 2.8080 | 3.9360 |
| 55 | . 396 | . 6059 | . 8263 | 1.0593 | 1.3068 | 1.848 | 2.442 | 3.0888 | 4.3296 |
| 60 | . 432 | . 6610 | . 9014 | 1.1556 | 1.4256 | 2.016 | 2.664 | 3.3696 | 4.7132 |
| 65 | . 468 | . 7150 | . 9765 | 1.2519 | 1.5444 | 2.184 | 2.886 | 3.6540 | 5.1068 |
| 70 | . 504 | . 7711 | 1.0517 | 1.3482 | 1.6632 | 2.352 | 3.108 | 3.9312 | 5.5104 |
| 75 | . 540 | . 8262 | 1.1268 | 1.4445 | 1.7820 | 2.520 | 3.330 | 4.2120 | 5.9040 |
| 80 | . 576 | . 8813 | 1.2019 | 1.5408 | 1.9008 | 2.688 | 3.552 | 4.4948 | 6.2976 |
| 85 | . 612 | . 9364 | 1.2770 | 1.6371 | 2.0196 | 2.856 | 3.774 | 4.7756 | 6.6912 |
| 90 95 | . 648 | . 9914 | 1.3521 | 1.7334 | 2.1384 | 3.024 | 3.996 | 5.0544 | 7.0848 |
| 95 100 | . 684 | 1.0465 | 1.4272 | 1.8297 | 2.2572 | 3.192 | 4.218 | 5.3352 | 7.4784 |
| 100 | . 720 | 1.1016 | 1.5024 | 1.9260 | 2.3760 | 3.360 | 4.440 | 5.6160 | 7.8720 |
|  | 0006 | 612 | 626 | 642 | 660 | 700 | 740 | 780 | 820 |

Expansion per degree.-Fahrenheit.
Multiply by 1.1, for wrought-irou; 1.5, for copper ; 1.6, for brass ; 2.6, for zinc.

For the determination of temperatures above the boiling-point of mersury various forms of pyrometers are used. The most reliable for practical use is the thermo-electric pyrometer of Le Chatelier, composed of a thermolectric couple, one member of which is of pure platinum and the other of platinum alloyed with 10 per cent. of rhodium. For a full description of this and other methods of measurement of high temperatures reference may be made to the work entitled "High Temperature Measurements," by Le Chatelier and Boudouard, and translated by George K. Burgess.*

The following table gives the melting-points of the elements used in engineering.

Fusing=points.

| Substance. | Fahr. | Cent. | Substance. | Fahr. | Cent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Degrees. | Degrees. |  | Degrees. | Degrees. |
| Aluminum | 1213 | 657 | Glass | 1832 | 1000 |
| Antimony | 815 | 435 | Glass, lead free. | 2192 | 1200 |
| Copper. | 1949 | 1065 | Delta metal. | 1742 | 950 |
| Gold. | 1947 | 1064 |  |  |  |
| Iron, pure | 2975 | 1635 | Fusible Metals. |  |  |
| Iron, white pig | 1967 | 1075 | 3 Tin.............) |  |  |
| Iron, gray pig | 2192 | 1200 | 5 Lead........... $\}$ | 212 | 100 |
| Steel. | 2507 | 1375 | 8 Bismuth .......) |  |  |
| Lead. | 621 | 327 | 4 Tin. |  |  |
| Manganese | 3452 | 1900 | 4 Lead | 263 | 128 |
| Nickel. | 2732 | 1500 | 1 Bismuth ....... |  |  |
| Platinum | 3452 | 1900 | 3 Tin............. |  |  |
| Silver | 1751 | 955 | 2 Lead........... $\}$ | 275 | 135 |
| Tin | 446 | 230 | 1 Tin.............. | 304 | 151 |
| Zinc | 787 | 419 | 1 Lead...........) | 304 | 151 |
| Brass | 1859 | 1015 | 1 Tin.............. | 361 | 183 |
| Bronze. | 1652 | 900 | 2 Lead........... $\}$ | 361 | 183 |

## Expansion of Gases.

All perfect gases, so called, expand and contract alike under the action of heat. That is to say, every substance, when in the gaseous state, and not near its point of liquefaction, has the same coefficient of expansion, this coefficient being $\frac{1}{273}$ of its volume, or 0.003665 for each degree Centigrade, or $\frac{1}{491.4}$ part $=0.002035$ for each degree Fahrenheit.

Since a gas contracts $\frac{1}{273}$ part of its volume when its temperature is lowered $1^{\circ}$ C., such a rate of contraction would theoretically reduce its volume to zero at a temperature of $-273^{\circ} \mathrm{C} .=-459.4^{\circ} \mathrm{F}$. Since all gases reach their liquefying point before this low temperature is attained, however, no such contraction exists. At the same time, it may be said that if heat is considered as a motion of the molecules of a substance, that motion is to be considered as having ceased when the temperature has reached $-273^{\circ} \mathrm{C}$.

This temperature of $-273^{\circ} \mathrm{C} .=-459.4^{\circ} \mathrm{F}$. is, therefore, called the absolutezero, and from it all temperatures should properly be reckoned. When-

[^6]ever a temperature is mentioned as being in degrees absolute, either in the Centigrade or the Fahrenheit scale, it is understood to be counted from the absolute zero, and therefore is equal to the observed temperature plus 273 or 459.4 , as the case may be.

The lowest temperature which has thus far been attained is that produced by the evaporation of liquid hydrogen by Dewar, $=-252^{\circ} \mathrm{C}$.

## Heat Units.

In expressing quantities of heat the temperature alone is not sufficient, since the substance in which the change of temperature is produced must be considered. The substance chosen as a standard is pure water, at or near its point of greatest density.

Two heat units are in general use.
The British Thermal Unit, abbreviated B.T. U., is the quantity of heat required to raise the temperature of 1 pound of water $1^{\circ} \mathrm{F}$., at or near the temperature of $39.1^{\circ}$.

The limitation of the part of the scale, at or near which the measurement should be made, need be considered only for very precise physical work, since the variation in the quantity of heat corresponding to an interval of one degree in a given weight of water varies but slightly for different parts of the scale.

In the metric system the kilogramme of water is taken, and the degree on the Centigrade scale. The unit is the Calorie, being the quantity of heat required to raise 1 kilogramme of water $1^{\circ} \mathrm{C}$., at or near the temperature of $4^{\circ} \mathrm{C}$. In French the calorie is sometimes abbreviated Cal., and in German it is written W.E. (Wärme Einheit).

> 1 B. T. $\mathrm{U}=0.252$ calorie.
> 1 calorie $=3.968 \mathrm{~B}$. T. U.

When the effect of the application of a given number of British thermal units or calories upon a given weight of any substance is under consideration, care must be taken to take into account the relation of the weights in making the conversion, or errors may be made. Thus, 1 calorie per kilogramme is only 1.8 times greater than 1 British thermal unit per pound, since the calorie is considered in connection with a weight equal to 2.2 pounds, and, conversely, 1 British thermal unit per pound is equal to 0.555 calories per kilogramme.

The following tables will be found convenient for transforming quantities in one kind of heat units to another.

Conversion of British Thermal Units into Calories.

| B. T. U. | Calories. | B. T. U. | Calories. | B. T. U. | Calories. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 252 | 34 | 8.568 | 67 | 16.884 |
| 2 | . 504 | 35 | 8.820 | 68 | 17.136 |
| 3 | . 756 | 36 | 9.072 | 69 | 17.388 |
| 4 | 1.008 | 37 | 9.324 | 70 | 17.640 |
| 5 | 1.260 | 38 | 9.576 | 71 | 17.892 |
| $\sigma$ | 1.512 | 39 | 9.828 | 72 | 18.144 |
| 7 | 1.764 | 40 | 10.080 | 73 | 18.396 |
| 8 | 2.016 | 41 | 10.332 | 74 | 18.648 |
| 9 | 2.268 | 42 | 10.584 | 75 | 18.900 |
| 10 | 2.520 | 43 | 10.836 | 76 | 19.152 |
| 11 | 2.772 | 44 | 11.088 | 77 | 19.404 |
| 12 | 3.024 | 45 | 11.340 | 78 | 19.656 |
| 13 | 3.276 | 46 | 11.592 | 79 | 19.908 |
| 14 | 3.528 | 47 | 11.844 | 80 | 20.160 |
| 15 | 3.780 | 48 | 12.096 | 81 | 20.412 |
| 16 | 4.032 | 49 | 12.348 | 82 | 20.664 |
| 17 | 4.284 | 50 | 12.600 | 83 | 20.916 |
| 18 | 4.536 | 51 | 12.852 | 84 | 21.168 |
| 19 | 4.788 | 52 | 13.104 | 85 | 21.420 |
| 20 | 5.040 | 53 | 13.356 | 86 | 21.672 |
| 21 | 5.292 | 54 | 13.608 | 87 | 21.924 |
| 22 | 5.544 | 55 | 13.860 | 88 | 22.176 |
| 23 | 5.796 | 56 | 14.112 | 89 | 22.428 |
| 24 | 6.048 | 57 | 14.364 | 90 | 22.680 |
| 25 | 6.300 | 58 | 14.616 | 91 | 22.932 |
| 26 | 6.552 | 59 | 14.868 | 92 | 23.184 |
| 27 | 6.804 | 60 | 15.120 | 93 | 23.436 |
| 28 | 7.056 | 61 | 15.372 | 94 | 23.688 |
| 29 | 7.308 | 62 | 15.624 | 95 | 23.940 |
| 30 | 7.560 | ө8 | 15.876 | 96 | 24.192 |
| 31 | 7.812 | 64 | 16.128 | 97 | 24.444 |
| 32 | 8.064 | 65 | 16.380 | 98 | 24.696 |
| 33 | 8.316 | 66 | 16.632 | 99 | 24.948 |

Conversion of Calories into British Thermal Units.

| Calories. | B. T. U. | Calories. | B. T. U. | Calories. | B. T. U. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.97 | 34 | 134.92 | 67 | 265.88 |
| 2 | 7.94 | 35 | 138.89 | 68 | 269.85 |
| 3 | 11.90 | 36 | 142.86 | 69 | 273.81 |
| 4 | 15.87 | 37 | 146.83 | 70 | 277.78 |
| 5 | 19.84 | 38 | 150.80 | 71 | 281.75 |
| 6 | 23.81 | 39 | 154.76 | 72 | 285.72 |
| 7 | 27.78 | 40 | 158.73 | 73 | 289.69 |
| 8 | 31.75 | 41 | 162.70 | 74 | 293.66 |
| 9 | 35.71 | 42 | 166.67 | 75 | 297.62 |
| 10 | 39.68 | 43 | 170.64 | 76 | 301.59 |
| 11 | 43.65 | 44 | 174.61 | 77 | 305.56 |
| 12 | 47.62 | 45 | 178.57 | 78 | 309.53 |
| 13 | 51.59 | 46 | 182.54 | 79 | 313.50 |
| 14 | 55.56 | 47 | 186.51 | 80 | 317.47 |
| 15 | 59.52 | 48 | 190.48 | 81 | 321.43 |
| 16 | 63.49 | 49 | 194.45 | 82 | 325.40 |
| 17 | 67.46 | 50 | 198.42 | 83 | 329.37 |
| 18 | 71.43 | 51 | 202.38 | 84 | 333.34 |
| 19 | 75.40 | 52 | 206.35 | 85 | 337.31 |
| 20 | 79.37 | 53 | 210.32 | 86 | 341.28 |
| 21 | 83.33 | 54 | 214.29 | 87 | 345.24 |
| 22 | 87.30 | 55 | 218.26 | 88 | 349.21 |
| 23 | 91.27 | 56 | 222.23 | 89 | 353.18 |
| 24 | 95.24 | 57 | 226.19 | 90 | 357.15 |
| 25 | 99.21 | 58 | 230.16 | 91 | 361.12 |
| 26 | 103.18 | 59 | 234.13 | 92 | 365.09 |
| 27 | 107.14 | 60 | 238.10 | 93. | 369.05 |
| 28 | 111.11 | 61 | 242.07 | 94 | 373.02 |
| 29 | 115.08 | 62 | 246.04 | 95 | 376.99 |
| 30 | 119.05 | 63 | 250.00 | 96 | 380.96 |
| 31 | 123.02 | 64 | 253.97 | 97 | 384.93 |
| 32 | 126.99 | 65 | 257.94 | 98 | 388.90 |
| 33 | 130.95 | 66 | 261.91 | 99 | 392.86 |

Conversion of Calories into Foot=pounds.

| Calories. | Foot-pounds. | Calories. | Foot-pounds. | Calories. | Foot-pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3091 | 34 | 105106 | 67 | 207121 |
| 2 | 6183 | 35 | 108198 | 68 | 210212 |
| 3 | 9274 | 36 | 111289 | 69 | 213304 |
| 4 | 12365 | 37 | 114380 | 70 | 216395 |
| 5 | 15457 | 38 | 117472 | 71 | 219487 |
| 6 | 18548 | 39 | 120563 | 72 | 222578 |
| 7 | 21640 | 40 | 123654 | 73 | 225669 |
| 8 | 24731 | 41 | 126746 | 74 | 228761 |
| 9 | 27822 | 42 | 129837 | 75 | 231852 |
| 10 | 30914 | 43 | 132928 | 76 | 234943 |
| 11 | 34005 | 44 | 136020 | 77 | 238035 |
| 12 | 37096 | 45 | 139111 | 78 | 241126 |
| 13 | 40188 | 46 | 142203 | 79 | 244217 |
| 14 | 43279 | 47 | 145294 | 80 | 247309 |
| 15 | 46370 | 48 | 148387 | 81 | 250400 |
| 16 | 49462 | 49 | 151477 | 82 | 253492 |
| 17 | 52553 | 50 | 154568 | 83 | 256583 |
| 18 | 55644 | 51 | 157659 | 84 | 259674 |
| 19 | 58736 | 52 | 160751 | 85 | 262766 |
| 20 | 61827 | 53 | 163824 | 86 | 265857 |
| 21 | 64919 | 54 | 166933 | 87 | 268948 |
| 22 | 68010 | 55 | 170025 | 88 | 272040 |
| 23 | 71101 | 56 | 173116 | 89 | 275131 |
| 24 | 74193 | 57 | 176208 | 90 | 278222 |
| 25 | 77284 | 58 | 179299 | 91 | 281314 |
| 26 | 80375 | 59 | 182390 | 92 | 284405 |
| 27 | 83467 | 60 | 185482 | 93 | 287496 |
| 28 | 86558 | 61 | 188573 | 94 | 290588 |
| 29 | 89649 | 62 | 191664 | 95 | 293679 |
| 30 | 92741 | 63 | 194756 | 96 | 296771 |
| 31 | 95835 | 64 | 197847 | 97 | 299862 |
| 32 | 98924 | 65 | 200938 | 98 | 302953 |
| 33 | 102015 | 66 | 204030 | 99 | 306045 |

Conversion of Foot=pounds into Calories.

| Footpounds. | Calories. | Footpounds. | Calories. | Footpounds. | Calories. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 000323 | 34 | . 010998 | 67 | . 021676 |
| 2 | . 000647 | 35 | . 011322 | 68 | . 021997 |
| 3 | . 000970 | 36 | . 011645 | 69 | . 022320 |
| 4 | . 001294 | 37 | . 011969 | 70 | . 0222644 |
| 5 | . 001617 | 38 | . 012292 | 71 | . 022967 |
| 6 | . 001941 | 39 | . 012616 | 72 | . 023291 |
| 7 | . 002264 | 40 | . 012939 | 73 | . 023614 |
| 8 | . 002588 | 41 | . 013263 | 74 | . 023938 |
| 9 | . 002911 | 42 | . 013586 | 75 | . 024261 |
| 10 | . 003235 | 43 | . 013910 | 76 | . 024584 |
| 11 | . 003558 | 44 | . 014233 | 77 | . 024908 |
| 12 | . 003882 | 45 | . 014557 | 78 | . 025231 |
| 13 | . 004205 | 46 | . 014880 | 79 | . 025555 |
| 14 | . 004529 | 47 | . 015204 | 80 | . 025878 |
| 15 | . 004852 | 48 | . 015527 | 81 | . 026202 |
| 16 | . 005176 | 49 | . 015851 | 82 | . 026525 |
| 17 | . 005499 | 50 | . 016174 | 83 | . 026849 |
| 18. | . 005823 | 51 | . 016497 | 84 | . 027172 |
| 19 | . 006146 | 52 | . 016821 | 85 | . 027496 |
| 20 | . 006470 | 53 | . 017144 | 86 | . 027819 |
| 21 | . 006793 | 54 | . 017468 | 87 | . 028143 |
| 22 | . 007117 | 55 | . 017791 | 88 | . 028466 |
| 23 | . 007440 | 56 | . 018115 | 89 | . 028790 |
| 24 | . 007764 | 57 | . 018438 | 90 | . 029113 |
| 25 | . 008087 | 58 | . 018762 | 91 | . 029437 |
| 26 | . 008410 | 59 | . 019085 | 92 | . 029760 |
| 27 | . 008734 | 60 | . 019409 | 93 | . 030084 |
| 28 | . 009057 | 61 | . 019732 | 94 | . 030407 |
| 29 | . 009381 | 62 | . 020056 | 95 | . 030731 |
| 30 | . 009704 | 63 | . 020379 | 96 | . 031054 |
| 31 | . 010028 | 64 | . 020703 | 97 | . 031378 |
| 32 | . 010351 | 65 | . 021026 | 98 | . 031701 |
| 33 | . 010675 | 66 | . 021350 | 99 | . 032025 |

## Mechanical Equivalent of Heat.

In the conversion of heat into mechanical energy there is always a definite amount of work produced for a definite quantity of heat. One British thermal unit is equal to 778 foot-pounds, and one calorie is equal to 427 kilogrammetres. The maximum amount of energy which can be obtained for any given number of heat units is, therefore, found by multiplying by 778. Conversely, 1 foot-pound $=\frac{1}{\tau^{\frac{1}{\varepsilon}} \bar{\varepsilon}}=0.001285$ heat unit.

## Specific Heat.

We have seen that heat requires for its determination the production of a determinate change in temperature of a definite weight of a given substance. For the purpose of establishing a unit, water has been chosen as the standard substance. The quantity of heat required to raise the temperature of other substances is different from that required for water. The ratio of the quantity of heat required for any substance by that required for water is called the Specific Heat of the substance. Thus, it is found that it takes only about one-ninth as much heat to raise the temperature of a pound of iron one degree that it does to raise a pound of water; hence, the specific heat of iron is one-ninth, or, more precisely, $=0.1138$.

The methods of measuring specific heats vary according to the character of the substances. For metals the most convenient is the method of mixtures, in which a known weight of the metal is raised to a definite temperature and then plunged into a given weight of water at a known temperature. The rise in temperature of the water gives the number of heat units which have been imparted to it, and these have obviously been derived from the metal which has been cooled. We then have, if
$x=$ specific heat of metal required;
$T=$ fall in temperature of metal ;
$t=$ rise in temperature of water;
$W=$ weight of metal ;
$w=$ weight of water ;

$$
x=\frac{w t}{W T} .
$$

The specific heats of various substances are not constant, but gradually increase with the temperature. The following table gives the mean between $10^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$., the usual working temperatures. Fuller tables for various ranges of temperatures are to be found in the Smithsonian Physical Tables.

## Table of Specific Heats.

Solids (mean specific heat between $10^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.).

| Copper. | . 0951 | Antimony | . 0508 |
| :---: | :---: | :---: | :---: |
| Silver | . 0570 | Brass | . 0939 |
| Iron | . 1138 | Magnesium | . 2499 |
| Zinc | . 0935 | Aluminum | . 2143 |
| Tin | . 0562 | Glass | . 1877 |
| Lead | . 0314 | Ice | . 5040 |
| Gold | . 0324 | Sulphur | . 1777 |
| Platinum | . 0324 | Graphite. | . 2008 |
| Bismuth . | . 0308 | Diamond |  |

## Liquids.

| Merc | . 0333 | Alcohol | . 615 |
| :---: | :---: | :---: | :---: |
| Sulphuric | . 3430 | Oil of turpentine | . 462 |
| Ether. | . 5030 | Acetic acid | . 659 |

> Gases (at constant pressure).


The above specific heats represent the quantity of heat, in British thermal units, required to raise the temperature of 1 pound of the substance $1^{\circ} \mathrm{F}$., or, in calories, required to raise the temperature of 1 kilogramme of the substance $1^{\circ} \mathrm{C}$.

## Latent Heat.

The phenomena of expansion follow the simple rule of direct relation to the temperature only when the substance does not suffer any change of state. Thus, there are determinate coefficients for solids, for liquids, and for gases. When, however, a substance under observation passes from the solid to the liquid state, and from the liquid to the gaseous state, certain amounts of heat are absorbed which do not raise the temperature, this heat being expended in molecular work, separating the molecules of the substance. The heat thus absorbed is said to berendered latent-every substance having a latent heat of fusion, required to convert it from a solid to a liquid, and another latent heat of vaporization.

Thus, a pound of ice may be heated and its temperature will rise until the melting-point, $32^{\circ} \mathrm{F}$. or $0^{\circ} \mathrm{C}$., has been reached, when further application of heat, however intense, will cause no further rise in temperature until the ice has been entirely melted. Experiments have shown that 142.6 British thermal units are required to convert a pound of ice at $32^{\circ}$ into a pound of water at $32^{\circ}$, and hence the latent heat of fusion of water is said to be $142.6^{\circ}$. Further application of heat causes a rise in temperature directly proportional to the quantity of heat supplied, 180 thermal units raising it to the boiling-point, $212^{\circ} \mathrm{F}$. Here, again, the rise in temperature ceases until all the pound of water at $212^{\circ}$ has been converted into steam at $212^{\circ}$. This operation requires 966 heat units, so that the latent heat of vaporization of water is $966^{\circ}$.

The following table gives the latent heats of various substances.

| Substance. | B. T. U. per pound. |  | Calories per kilogramme. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Fusion. | Vaporization. | Fusion. | Vaporization. |
| Water. | 142.60 | 966.6 | 79.24 | 537 |
| Alcohol, ethyl. |  | 371.0 |  | 205 |
| Alcohol, methyl |  | 481.0 |  | 267 |
| Ammonia. . |  | 529.0 |  | 294 |
| Bisulphide of carb |  | 162.0 |  | 90 |
| Sulphur dioxide |  | 164.0 |  | 91 |
| Turpentine |  | 133.0 |  | 74 |
| Iron, gray | 41.40 |  | 23.00 |  |
| Iron, white | 59.40 |  | 33.00 |  |
| Lead | 10.55 |  | 5.86 |  |
| Mercury | 5.08 | ........ ... | 2.82 |  |
| Silver | 37.92 |  | 21.07 |  |
| Zinc | 50.63 |  | 28.13 |  |

## Coefficients for Heat Transmission.

| Substance. | Metric. | British. | Substance. | Metric. | British. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum | . 00036 | . 00203 | Lead | . 00008 | . 00045 |
| Antimony. | . 00004 | . 00022 | Mercury . | . 00002 | . 00011 |
| Brass, yellow... | . 00025 | . 00142 | Steel, hard. | . 00006 | . 00034 |
| Brass, red. | . 00028 | . 00157 | Steel, soft | . 00011 | . 00062 |
| Copper......... | . 00072 | . 00404 | Silver | . 00109 | . 00610 |
| German silver. . | . 00009 | . 00050 | Tin | . 00015 | . 00084 |
| Iron. | . 00016 | . 00089 | Zinc | . 00030 | . 00170 |

In the above table the metric coefficients give the quantity of heat, in calories, transmitted per second through a plate 1 centimetre thick, per square centimetre of surface, for a difference of $1^{\circ} \mathrm{C}$., at a temperature of $100^{\circ} \mathrm{C}$.

The British coefficients give the quantity of heat transmitted, in British thermal units, per second through a plate 1 inch thick, per square inch of surface, for a difference of $1^{\circ} \mathrm{F}$., at a temperature of $212^{\circ} \mathrm{F}$.

The coefficients vary somewhat with the temperature, but the above will serve in practice.

## Radiation.

For moderate differences in temperature the loss of heat by radiation may be taken as dependent upon the character of the surface, the area, and the difference in temperature.

The coefficients of radiation, as determined by Péclet, give the number of heat units emitted per hour, per square foot of surface, for $1^{\circ} \mathrm{F}$., or the number of calories emitted per hour, per square metre, per $1^{\circ} \mathrm{C}$., as below:

Coefficients of Radiation.

| Surface. | B. T. U., per $1^{\circ}$ F., per square foot, per hour. | Calories, per $1^{\circ} \mathrm{C}$., per square metre, per hour. |
| :---: | :---: | :---: |
| Silver, polished | . 02657 | . 13 |
| Copper, polished | . 03270 | . 16 |
| Tin, polished. | . 04395 | . 22 |
| Tinned iron, polished | . 08585 | . 42 |
| Iron, sheet-, polished. | . 0920 | . 45 |
| Iron, ordinary | . 5662 | 2.77 |
| Glass | . 5948 | 2.91 |
| Cast-iron, new | . 6480 | 3.17 |
| Cast-iron, rusted | . 6868 | 3.36 |
| Sawdust. | . 7215 | 3.53 |
| Sand, fine | . 7400 | 3.62 |
| Water | 1.0853 | 5.31 |
| Oil | 1.4800 | 7.24 |

The number of heat units radiated from any surface per hour may, therefore, be computed by multiplying the area by the difference in temperature between the hot surface and the surrounding air, and by the coefficient corresponding to the character of the surface. It will be seen from the table that ordinary cast-iron is about six times as good a radiating
surface as polished sheet-iron, and about twenty-five times as effective as polished silver.

The coefficients in the preceding table are sufficiently correct for use when the difference in temperature is not great. When, however, there is a considerable difference in the temperature of the heated body and the surrounding air, the rate of cooling becomes more rapid. The following tables give the ratio of increase in the rate of cooling for larger differences in temperature.

Ratio of Increase in Radiation for Temperatures from $10^{\circ} \mathrm{F}$. to $450^{\circ} \mathrm{F}$.
Temperatures of Air $=70^{\circ} \mathrm{F}$.

| Difference in <br> temperature, <br> Fahr. | Ratio. | Difference in <br> temperature, <br> Fahr. | Ratio. | Difference in <br> temperature, <br> Fahr. | Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Degrees. |  | Degrees. |  | Degrees. |
| 10 | 1.15 | 160 | 1.61 |  |  |
| 20 | 1.18 | 170 | 1.65 | 310 | 2.34 |
| 30 | 1.20 | 180 | 1.68 | 320 | 2.40 |
| 40 | 1.23 | 190 | 1.73 | 340 | 2.47 |
| 50 | 1.25 | 200 | 1.78 | 350 | 2.54 |
| 60 | 1.27 | 210 | 1.82 | 360 | 2.60 |
| 70 | 1.32 | 220 | 1.86 | 370 | 2.68 |
| 80 | 1.35 | 230 | 1.90 | 380 | 2.77 |
| 90 | 1.38 | 240 | 1.95 | 390 | 2.84 |
| 100 | 1.40 | 250 | 2.00 | 400 | 3.02 |
| 110 | 1.44 | 260 | 2.05 | 410 | 3.10 |
| 120 | 1.47 | 270 | 2.10 | 420 | 3.20 |
| 130 | 1.50 | 280 | 2.16 | 430 | 3.30 |
| 140 | 1.54 | 290 | 2.21 | 440 | 3.40 |
| 150 | 1.57 | 300 | 2.27 | 450 | 3.50 |

Ratio of Increase in Radiation for Temperatures from $10^{\circ} \mathrm{C}$. to $240^{\circ} \mathrm{C}$.
Temperatures of Air $=20^{\circ} \mathrm{C}$.

| Difference in <br> temperature, <br> Cent. | Ratio. | Difference in <br> temperature, <br> Cent. | Ratio. | Difference in <br> temperature, <br> Cent. | Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Degrees. | 1.16 | Degrees. <br> 10 | 90 | 1.60 | Degrees. |
| 20 | 1.21 | 100 | 1.68 | 170 | 2.31 |
| 30 | 1.25 | 110 | 1.75 | 180 | 2.42 |
| 40 | 1.30 | 120 | 1.83 | 190 | 2.54 |
| 50 | 1.36 | 130 | 1.90 | 210 | 2.66 |
| 60 | 1.42 | 140 | 2.00 | 220 | 2.79 |
| 70 | 1.48 | 150 | 2.09 | 230 | 3.93 |
| 80 | 1.54 | 160 | 2.20 | 240 | 3.23 |

In computing the number of heat units radiated from a given area and material the result should first be calculated by the coefficients of radiation, given on page 523, and the value thus obtained, multiplied by the ratio,
corresponding to the difference in temperature, as given in the preceding tables.

Heating Pipes (Iron).

| Mean temperature of pipes, Fahr. | Units of heat (B. T. U.) emitted, per square foot, per hour. Temperature of air $=70^{\circ} \mathbf{F}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | By convection. |  | By radiation alone. | By convection and radiation, combined. |  |
|  | Air, still. | Air, moving. |  | Air, still. | Air, moving. |
| Degrees. |  |  |  |  |  |
| 80 | 5.04 | 8.40 | 7.43 | 12.47 | 15.83 |
| 90 | 11.84 | 19.73 | 15.31 | 27.15 | 35.04 |
| 100 | 19.53 | 32.55 | 23.47 | 43.00 | 56.02 |
| 110 | 27.86 | 46.43 | 31.93 | 57.79 | 78.36 |
| 120 | 36.66 | 61.10 | 40.82 | 77.48 | 101.92 |
| 130 | 45.90 | 76.50 | 50.00 | 95.90 | 126.50 |
| 140 | 55.51 | 92.52 | 59.63 | 115.14 | 152.15 |
| 150 | 65.45 | 109.18 | 69.69 | 135.14 | 178.87 |
| 160 | 75.68 | 126.13 | 80.19 | 155.87 | 206.32 |
| 170 | 86.18 | 143.30 | 91.12 | 177.30 | 234.42 |
| 180 | 96.93 | 161.55 | 102.50 | 199.43 | 264.05 |
| 190 | 107.90 | 179.83 | 114.45 | 222.35 | 294.28 |
| 200 | 119.13 | 198.55 | 127.00 | 246.13 | 325.55 |
| 210 | 130.49 | 217.48 | 139.96 | 270.49 | 357.48 |
| 220 | 142.20 | 237.00 | 155.27 | 297.47 | 392.27 |
| 230 | 153.95 | 256.58 | 169.56 | 323.51 | 426.14 |
| 240 | 165.90 | 279.83 | 184.58 | 350.48 | 464.41 |
| 250 | 178.00 | 296.66 | 200.18 | 378.18 | 496.84 |
| 260 | 189.90 | 316.50 | 214.36 | 404.26 | 530.86 |
| 270 | 202.70 | 337.83 | 233.42 | 436.12 | 571.25 |
| 280 | 215.30 | 358.85 | 251.21 | 466.51 | 610.06 |
| 290 | 228.55 | 380.91 | 267.73 | 496.28 | 648.64 |
| 300 | 240.85 | 401.41 | 279.12 | 519.97 | 680.53 |

## Loss of Heat Through Walls.

Loss, in British Thermal Units, per Square Foot, per Hour, for $1^{\circ}$ F. Difference.

| Thickness, <br> in inches. | Brick. | Stone. | Thickness, <br> in inches. | Brick. | Stone. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | .273 | .330 | 24 | .129 |
| 4 | .223 | .312 | 28 | .116 | .255 |
| 8 | .188 | .295 | 32 | .106 | .244 |
| 12 | .163 | .280 | 36 | .097 | .224 |
| 16 | .144 | .267 | 40 | .090 | .216 |
| 20 |  |  |  |  |  |

The loss of heat from a building may be computed from the following formula:

$$
H=t\left(\frac{n c}{55}+K G+k W\right)
$$

in which:

$$
\begin{aligned}
H & =\text { loss of heat per hour in B. T. U., } \\
c & =\text { contents of building in cubic feet, } \\
n & =\text { number of times the air is changed per hour, } \\
G & =\text { area of exposed glass surface, in square feet, } \\
W & =\text { area of exposed wall surface, in square feet, } \\
t & =\text { difference between internal and external temperature, } \\
K & =\text { coefficient for glass average value }=1 \\
k & =\text { coefficient for walls average value }=1 / 4
\end{aligned}
$$

Using the average values for the coefficients the formula becomes:

$$
H=t\left(\frac{n c}{55}+G+1 / 4 W\right)
$$

in which $t(G+1 / 4 W)$ represents the heat lost by radiation through walls and windows.

This loss would be the same for either a direct steam system or an indirect heating system if the temperature in the room were uniform. To heat a building satisfactorily with direct steam it is necessary to place much of the radiating surface along outside walls. As the air back of and above these coils or radiators will be hotter than air in the body of the room, the loss by conduction is proportionately increased. Obviously, with an indirect system there is a saving, as the hot air pipes are carried on inside walls and the temperature is practically uniform.

The expression $t \frac{n c}{55}$ is an allowance for the heat required to warm air which enters around doors and windows and through the walls. In a building 50 feet high, with an indoor temperature of $70^{\circ}$ in zero weather, there would be a pressure inwards against the wall at the ground level of about one-half pound per square foot. Through openings at top and bottom, air, with a free passage, would flow at a velocity of over 3,000 feet per minute. The friction of the course that such a current of air takes in an ordinary building reduces the above figures, but in any room, if the upper sash of a window is lowered, and the lower sash raised, air will flow in at the bottom and out at the top at a comparatively high velocity. When the sashes are shut air still comes in through crevices, and through the walls, and, unless the construction is exceptionally tight, unpleasant cold drafts will be formed.

The volume of air which thus passes through the building by filtration must be heated to the temperature maintained. An estimate of the volume which is to be heated must be made, and with proper allowance for the nature of the construction the value of $n$ (the number of air changes per hour) is for corridors, 3 ; for churches and assembly rooms, 2 to $2 \frac{1}{2}$; for ground floor rooms, 2 to 3 ; and for second floor rooms, $1 \frac{1}{2}$ to 2 .

With an indirect system of heating the expression $t \frac{n c}{55}$ gives the British thermal units required for ventilation alone. With a direct'steam heating system the infiltration of air might be considered as ventilation, but the amount is uncertain and inadequate, and any advantage of ventilation received is more than offset by the injurious effect of the drafts formed. With an indirect system all entering air is heated before it goes to the rooms, and there is no leakage around doors and windows, for a plenum is formed by the fan, which reverses the natural tendency and causes an outward flow of air. If the fan were to take its supply of air back from the rooms no plenum would be formed, and there would be an infiltration of air as with direct steam heating. If part air is taken from out of doors and part returned there is a proportion at which, if a window is opened on a still day, no perceptible flow of air will take place in either direction. This is the condition when the same amount of air is taken from out of doors as would otherwise enter by filtration. When so operated, although ventilation to the extent of about two air changes per hour is supplied, the cost will be a minimum, and will be the same as for direct steam heating.

## Influence of Heat on Strength of Steel.

According to the experiments of Dr. Julius Koleman, the tensile strength of medium hard steel is reduced by increase of temperature at the rate given in the following table. Up to $200^{\circ} \mathrm{C}$. the strength is practically unaffected; at $400^{\circ} \mathrm{C}$. it is reduced nearly one-half; and at $1400^{\circ} \mathrm{C}$. is gone.
Decrease of the Ultimate Tensile Strength of Steel by Increasing the Temperature.

|  | Tensile strength, kilograms per square millimetre. | Tensile strength, per cent., of original. |
| :---: | :---: | :---: |
| 0 | 59.0 | 100 |
| 50 | 59.0 | 100 |
| 100 | 59.0 | 100 |
| 150 | 58.9 | 100 |
| 200 | 58.9 | 100 |
| 250 | 57.75 | 98 |
| 300 | 55.5 | 94 |
| 350 | 47.5 | 80 |
| 400 | 32.2 | 55 |
| 450 | 24.1 | 41 |
| 500 | 20.0 | 34 |
| 550 | 17.5 | 30 |
| 600 | 15.0 | 26 |
| 650 | 12.5 | 22 |
| 700 | 10.5 | 18 |
| 750 | 9.1 | 15 |
| 800 | 7.9 | 13 |
| 850 | 6.5 | 11 |
| 900 | 5.4 | 9 |
| 950 | 4.75 | 8 |
| 1000 | 4.0 | 7 |
| 1050 | 3.6 | 6 |
| 1100 | 3.2 | 5 |
| 1200 | 2.4 | 4 |
| 1400 | ... | ... |

## AIR.

Air is composed of a mixture of oxygen and nitrogen, in the proportion of 21 of oxygen to 79 of nitrogen, by volume ; or 23 of oxygen to 77 of nitrogen, by weight, with an average of 0.04 per cent. of carbonic acid.

A cubic metre of dry air, at $0^{\circ} \mathrm{C}$. and a pressure of 760 millimetres of mercury, weighs 1.29305 kilogrammes. A cubic foot of dry air, at $32^{\circ} \mathrm{F}$. and a pressure of 29.92 inches of mercury, weighs 0.08072 pound. Above its critical temperature of $-140^{\circ} \mathrm{C}$. air may be considered as a permanent gas, expanding $\frac{1}{2^{\frac{1}{3}}}$ of its volume for each degree Centigrade increase in temperature, and $\operatorname{Ti}_{61}$ of its volume for an increase of $1^{\circ}$ Fahrenheit.

Taking the volume at freezing-point as unity, the weights and volumes at other temperatures are given in the following table.

## Volume and Weight of Dry Air at Different Temperatures.

Under a Constant Atmospheric Pressure of 29.92 Inches of Mercury, the Volume at $32^{\circ} \mathrm{F}$. being 1.

| Temperature, Fahr. | Volume. | Weight of a cubic foot. | Temperature, Fahr. | Volume. | Weight of a cubic foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Degrees. |  | Lb. | Degrees. |  | Lb. |
| 0 | . 935 | . 0864 | 500 | 1.954 | . 0413 |
| 12 | . 960 | . 0842 | 552 | 2.056 | . 0385 |
| 22 | . 980 | . 0824 | 600 | 2.150 | . 0376 |
| 32 | 1.000 | . 0807 | 650 | 2.260 | . 0357 |
| 42 | 1.020 | . 0791 | 700 | 2.362 | . 0338 |
| 52 | 1.041 | . 0776 | 750 | 2.465 | . 0328 |
| 62 | 1.061 | . 0761 | 800 | 2.566 | . 0315 |
| 72 | 1.082 | . 0747 | 850 | 2.668 | . 0303 |
| 82 | 1.102 | . 0733 | 900 | 2.770 | . 0292 |
| 92 | 1.122 | . 0720 | 950 | 2.871 | . 0281 |
| 102 | 1.143 | . 0707 | 1000 | 2.974 | . 0268 |
| 112 | 1.163 | . 0694 | 1100 | 3.177 | . 0254 |
| 122 | 1.184 | . 0682 | 1200 | 3.381 | . 0239 |
| 132 | 1.204 | . 0671 | 1300 | 3.584 | . 0225 |
| 142 | 1.224 | . 0659 | 1400 | 3.788 | . 0213 |
| 152 | 1.245 | . 0649 | 1500 | 3.993 | . 0202 |
| 162 | 1.265 | . 0638 | 1600 | 4.196 | . 0192 |
| 172 | 1.285 | . 0628 | 1700 | 4.402 | . 0183 |
| 182 | 1.306 | . 0618 | 1800 | 4.605 | . 0175 |
| 192 | 1.326 | . 0609 | 1900 | 4.808 | . 0168 |
| 202 | 1.347 | . 0600 | 2000 | 5.012 | . 0161 |
| 212 | 1.367 | . 0591 | 2100 | 5.217 | . 0155 |
| 230 | 1.404 | . 0575 | 2200 | 5.420 | . 0149 |
| 250 | 1.444 | . 0559 | 2300 | 5.625 | . 0142 |
| 275 | 1.495 | . 0540 | 2400 | 5.827 | . 0138 |
| 300 | 1.546 | . 0522 | 2500 | 6.032 | . 0133 |
| 325 | 1.597 | . 0506 | 2600 | 6.236 | . 0130 |
| 350 | 1.648 | . 0490 | 2700 | 6.440 | . 0125 |
| 375 | 1.689 | . 0477 | 2800 | 6.644 | . 0121 |
| 400 | 1.750 | . 0461 | 2900 | 6.847 | . 0118 |
| 450 | 1.852 | . 0436 | 3000 | 7.051 | . 0114 |

## On the Compression and Expansion of a Definite Weight of Air Enclosed in a Vessel.

In this treatment no heat must be lost or gained by radiation from the sides of the vessel in which the air is enclosed. Let $D$ and $d$ represent the degrees of absolute temperatures of volumes, $v$ and $V$, of the air to be experimented upon.

The absolute zero is $461^{\circ}$ below Fahr. zero and $273^{\circ}$ Cent. below the freezing-point of water. $D=461+T, d=461+t$, and $D-d-T-t$, Fahr. scale.

## Volume and Temperature.

$$
\frac{V}{v}=\left(\frac{D}{d}\right)^{2,45}, \quad \text { and } \quad \frac{v}{V}=\left(\frac{d}{D}\right)^{2,45}
$$

Expansion, $\quad V=v\left(\frac{D}{d}\right)^{2.45} ;$ compression, $v=\left(\frac{d}{D}\right)^{2.45}$.
Compression, $\quad D=d^{2.45} \sqrt{\frac{V}{v}} ; \quad$ expansion, $\quad d=D \sqrt[2.45]{\frac{V}{v}}$.
Example. To what fraction must air of $t=65^{\circ}$ be compressed, in order to fire tinder at a temperature of $T=550^{\circ}, d=461+65=526^{\circ}, D=550+$ $461=1011^{\circ}$ ?

Formula. $\quad \frac{v}{V}=\left(\frac{526}{1011}\right)^{2.45}=0.20$, the answer.
Example. How much must air of $T=80^{\circ}$ be expanded to reduce the temperature to $t=32^{\circ}$, or freezing-point of water?

Formula. $\quad \frac{V}{v}=\left(\frac{541}{493}\right)^{2.45}=1.3308$ times, the answer.
Example. $v=360$ cubic inches of air, of temperature, $T=380^{\circ}$ or $D=841^{\circ}$, is to be expanded until the temperature becomes $t=80^{\circ}$ or $d=$ $541^{\circ}$. Required the volume, $V$, corresponding to that temperature?

Formula. $\quad V=360\left(\frac{821}{541}\right)^{2.45}=1025.9$ cubic feet.
Example. $V=20$ cubic feet of air, of $t=32^{\circ}$ or $d=493^{\circ}$, is to be compressed to $v=12$ cubic feet. Required the temperature, $t$, of compression?

Formula.

$$
D=493 \sqrt[2.45]{\frac{20}{12}}=607.29^{\circ} \text { or } T=146.29^{\circ} .
$$

## Pressure and Temperature.

$$
\frac{P}{p}=\left(\frac{D}{d}\right)^{3.42}, \quad \text { and } \quad \frac{p}{P}=\left(\frac{D}{d}\right)^{3.42}
$$

Compression, $P=p\left(\frac{D}{d}\right)^{3.42}$; expansion, $p=P\left(\frac{d}{D}\right)^{3.42}$.

$$
\text { Compression, } D=d \sqrt[3.42]{\frac{P}{p}} ; \quad \text { expansion, } p=D \sqrt[3.42]{\frac{p}{P}}
$$

Example. A volume of air, of pressure, $p=15$ pounds to the square inch, and of temperature, $t=62^{\circ}$, is to be compressed until the temperature becomes $T=120^{\circ}$. Required the pressure, $P$, per square inch, at $T=$ $120^{\circ}$ ?

$$
d=461+62=523, \text { and } D=461+120+581
$$

Formula. $\quad P=15\left(\frac{581}{523}\right)^{3.42}=21.49$ pounds per square inch.

Example. A volume of air, of pressure, $P=45$ pounds to the square inch, and of temperature, $T=250^{\circ}$ or $D=711^{\circ}$, is to be expanded to a pressure of $p=25$ pounds. Required the temperature, $t$, of the expanded air?

Formula.

$$
d=711 \sqrt[3.42]{\frac{25}{45}}=598.72^{\circ}, \text { and }
$$

$t=598.72-461=137.72^{\circ}$, the temperature required.

## Pressure and Volume.

$$
\sqrt[.41]{\frac{V}{v}}=\sqrt[.29]{\frac{p}{P}}, \text { and } \sqrt[.41]{\frac{v}{V}}=\sqrt[.29]{\frac{p}{P}}
$$

Expansion, $\quad V=v \sqrt[1.4]{\frac{P}{p}} ; \quad$ compression, $v=V \sqrt[1.4]{\frac{p}{P}}$.

Compression, $P=p\left(\frac{V}{v}\right)^{1.4} ; \quad$ expansion, $\quad p=P\left(\frac{v}{V}\right)^{1.4}$.

Example. A volume, $v=50$ cubic inches, and of pressure, $P=80$ pounds per square inch, is to be expanded until the pressure becomes $p=$ 15 pounds. Required the expanded volume, $V$ ?

Formula. $\quad V=50 \sqrt[1.4]{\frac{80}{15}}=165$ cubic inches.

Example. What will be the pressure of a volume of air expanded 1.3308 times?

Formula. $\quad p=\left(\frac{1}{1.3308}\right)^{1.4}=0.5324$ of the primitive pressure.

In the compression and expansion of air, as given in the following table, it is supposed that no heat is transmitted to or from the air operated upon. In compression, the temperature of the air rises; and if the heat is allowed to be conducted through the sides of the vessel enclosing the air, the pressure will not correspond with the table. In expanding the air the temperature is lowered, as seen in the table. The primitive volume is assumed to be at $32^{\circ} \mathrm{F}$.

Compression and Expansion of Air.

| Compression of air. |  |  |  | Expansion of air. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volume.$v=1$ | Tempera ture, Fahr. Degrees. | Pressure. |  | Volume.$v=1$ | Temperature, Fahr. Degrees. | Pressure. |  |
|  |  | Atmosphere. | Pounds per square inch. |  |  | Atmosphere. | Pounds per square inch. |
| V | $T$ | $A$ | P | $V$ | $T$ | $A$ | P |
| 1.000 | 32.00 | 1.0000 | 14.700 | 1.00 | $+32.00$ | 1.00000 | 14.7000 |
| . 950 | 42.43 | 1.0297 | 15.137 | 1.10 | $+13.20$ | . 87510 | 12.8640 |
| . 900 | 53.66 | 1.159 | 17.036 | 1.20 | - 3.30 | . 77470 | 11.3930 |
| . 850 | 65.81 | 1.255 | 18.456 | 1.30 | - 18.06 | . 69260 | 10.1810 |
| . 800 | 79.01 | 1.366 | 20.090 | 1.40 | -31.26 | . 62430 | 9.1778 |
| .750 | 93.43 | 1.496 | 21.991 | 1.50 | - 39.65 | . 58354 | 8.5780 |
| . 700 | 109.26 | 1.647 | 24.215 | 1.60 | - 54.06 | . 5179 | 7.6130 |
| . 650 | 126.77 | 1.828 | 26.561 | 1.70 | -64.00 | . 4757 | 6.9934 |
| . 600 | 146.30 | 2.044 | 30.054 | 1.80 | - 73.16 | . 4391 | 6.4556 |
| . 550 | 168.25 | 2.309 | 33.948 | 1.90 | -82.34 | . 4083 | 6.0020 |
| . 500 | 193.20 | 2.639 | 38.792 | 2.00 | -89.47 | . 3789 | 5.5700 |
| . 450 | 221.96 | 3.058 | 44.547 | 2.25 | -106.90 | . 3213 | 4.7235 |
| . 400 | 245.70 | 3.607 | 53.020 | 2.50 | -121.83 | . 2779 | 4.0851 |
| . 350 | 295.73 | 4.348 | 63.917 | 2.75 | -134.77 | . 2426 | 3.5666 |
| . 330 | 314.10 | 4.721 | 69.406 | 3.00 | -146.15 | . 2148 | 3.157 |
| . 300 | 344.87 | 5.396 | 79.313 | 3.25 | -156.27 | . 1920 | 2.82 |
| . 250 | 407.13 | 6.964 | 102.38 | 3.50 | -167.29 | . 1731 | 2.5 . |
| . 200 | 489.91 | 9.518 | 139.92 | 3.75 | -173.57 | . 1572 | 2.3103 |
| . 150 | 606.4 | 14.240 | 209.31 | 4.0 | -181.00 | . 1436 | 2.1111 |
| . 125 | 691.0 | 18.380 | 270.17 | 4.5 | -191.18 | . 1218 | 1.7900 |
| . 10 | 800.9 | 25.120 | 369.24 | 5.0 | -205.40 | . 1051 | 1.5444 |
| . 05 | 1213.5 | 66.289 | 974.45 | 6.0 | -223.74 | . 0813 | 1.1965 |
| . 04 | 1373.2 | 90.60 | 1331.8 | 7.0 | -238.2.0 | . 0656 | . 9642 |
| . 03 | 1601.7 | 135.53 | 1992.3 | 8.0 | -250.03 | . 0544 | . 7998 |
| . 02 | 1973.0 | 239.09 | 3514.6 | 9.0 | -259.92 | . 0461 | . 6782 |
| . 01 | 4469.0 | 794.33 | 11676.0 | 10.0 | -268.39 | . 0355 | . 5216 |

The above table shows the necessity for taking into account the heat produced in air compressors. If the cylinders and valve chests are not sufficiently cooled there is danger of explosion from the air carburetted by the lubricant. High compression in gas engines is limited by the production of a temperature sufficient to cause a premature ignition of the charge. In the Diesel motor the air is compressed to about 30 atmospheres, this giving a temperature of about $875^{\circ} \mathrm{F}$., supposing no cooling to occur. This is ample to ignite the heaviest oil injected into the cylinder.

Table of Volumes of Air Transmitted, in Cubic Feet, per Minute in Pipes of Various Dimensions.

|  | Actual diameter of pipe, in inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 |
| 1 | . 33 | 1.31 | 2.95 | 5.2 | 8.2 | 11.8 | 20.9 | 32.7 | 47.1 | 83.8 | 131 | 188 |
| 2 | . 65 | 2.62 | 5.89 | 10.5 | 16.4 | 23.6 | 41.9 | 65.4 | 94.2 | 167.5 | 262 | 377 |
| 3 | . 98 | 3.93 | 8.84 | 15.7 | 24.5 | 35.3 | 62.8 | 98.2 | 141.4 | 251.3 | 393 | 565 |
| 4 | 1.31 | 5.24 | 11.78 | 20.9 | 32.7 | 47.1 | 83.8 | 131.0 | 188.0 | 335.0 | 523 | 754 |
| 5 | 1.64 | 6.55 | 14.7 | 26.2 | 41.0 | 59.0 | 104.0 | 163.0 | 235.0 | 419.0 | 654 | $9+2$ |
| 6 | 1.96 | 7.85 | 17.7 | 31.4 | 49.1 | 70.7 | 125.0 | 196.0 | 283.0 | 502.0 | 785 | 1131 |
| 7 | 2.29 | 9.16 | 20.6 | 36.6 | 57.2 | 82.4 | 146.0 | 229.0 | 330.0 | 586.0 | 916 | 1319 |
| 8 | 2.62 | 10.50 | 23.5 | 41.9 | 65.4 | 94.0 | 167.0 | 262.0 | 377.0 | 670.0 | 1047 | 1508 |
| 9 | 2.95 | 11.78 | 26.5 | 47.0 | 73.0 | 106.0 | 188.0 | 294.0 | 424.0 | 754.0 | 1178 | 1696 |
| 10 | 3.27 | 13.1 | 29.4 | 52.0 | 82.0 | 118.0 | 209.0 | 327.0 | 471.0 | 838.0 | 1309 | 1885 |
| 12 | 3.93 | 15.7 | 35.3 | 63.0 | 99.0 | 141.0 | 251.0 | 393.0 | 565.0 | 1005.0 | 1571 | 2262 |
| 15 | 4.91 | 19.6 | 44.2 | 78.0 | 122.0 | 177.0 | 314.0 | 491.0 | 707.0 | 1256.0 | 1963 | 2827 |
| 18 | 5.89 | 23.5 | 53.0 | 94.0 | 147.0 | 212.0 | 377.0 | 589.0 | 848.0 | 1508.0 | 2356 | 3393 |
| 20 | 6.55 | 26.2 | 59.0 | 105.0 | 164.0 | 235.0 | 419.0 | 654.0 | 942.0 | 1675.0 | 2618 | 3770 |
| 24 | 7.86 | 31.4 | 71.0 | 125.0 | 196.0 | 283.0 | 502.0 | 785.0 | 1131.0 | 2010.0 | 3141 | 4524 |
| 25 | 8.18 | 32.7 | 73.0 | 131.0 | 204.0 | 294.0 | 523.0 | 818.0 | 1178,0 | 2094.0 | 3272 | 4712 |
| 28 | 9.16 | 36.6 | 82.0 | 146.0 | 229.0 | 330.0 | 586.0 | 916.0 | 1319.0 | 2346.0 | 3665 | 5278 |
| 30 | 9.80 | 39.3 | 88.0 | 157.0 | 245.0 | 353.0 | 628.0 | 982.0 | 1414.0 | 2513.0 | 3927 | 5655 |

Velocity of Escaping Compressed Air.
(Hiscox.)

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 010 | . 30 | . 147 | 94.4 | . 680 | 20.40 | 10.0 | 780 |
| . 066 | 2.10 | 1.00 | 246.0 | . 809 | 24.28 | 12.0 | 855 |
| . 100 | 3.00 | 1.47 | 299.0 | 1.0 | 30.0 | '14.7 | 946 |
| . 136 | 4.08 | 2.00 | 348.0 | 2.0 | 60.0 | 29.4 | 1094 |
| . 204 | 6.12 | 3.00 | 472.0 | 5.0 | 150.0 | 73.5 | 1219 |
| . 272 | 8.16 | 4.00 | 493.0 | 10.0 | 300.0 | 147.0 | 1275 |
| . 340 | 10.20 | 5.00 | 552.0 | 20.0 | 600.0 | 294.0 | 1304 |
| . 408 | 12.24 | 6.00 | 604.0 | 40.0 | 1200.0 | 588.0 | 1323 |
| . 500 | 15.00 | 7.35 | 673.0 | 100.0 | 3000.0 | 1470.0 | 1331 |
| . 544 | 16.32 | 8.0 | 697.0 | 200.0 | 6000.0 | 2940.0 | 1334 |
| . 611 | 18.34 | 9.0 | 741.0 |  |  |  |  |

The theoretical velocities of efflux of compressed air, as given in the above table, are to be reduced by multiplying by the coefficient of actual
discharge, the coefficient varying according tanthe nature of the orifice and the air pressure.

The following coefficients will serve in practice:
Coefficients of Air Discharge.

|  | Pressures, in atmospheres. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 01 | . 1 | . 5 | 1 | 5 | 10 | 100 |
| Orifice in thin plate | . 65 | . 64 | . 57 | . 54 | . 45 | . 436 | . 423 |
| Orifice in short tube | . 834 | . 82 | . 71 | . 67 | . 53 | . 51 | . 487 |

Thus, for a pressure of 5 atmospheres, or 73.5 pounds per square inch, the theoretical effux would be 1219 feet per second. The actual efflux through a hole in a thin plate would be

$$
1219 \times 0.45=548.55 \text { feet per second; }
$$

and through a short tube,

$$
1219 \times 0.53=646.07 \text { feet per second. }
$$

The work required to compress a cubic foot of air to any desired pressure may be obtained as follows:

Let
$P=$ the initial pressure, usually 14.7 pounds; .
$p=$ final pressure required;
$S=$ initial pressure per square foot (for 14.7 pounds per square inch $=2116.8$ pounds per square foot) ;
$W=$ required work of compression, in foot-pounds ;

$$
W=S \text { hyp. } \log \cdot \frac{p}{P}
$$

This is true for isothermal compression only, in which the heat of compression is removed as rapidly as produced, so that a constant temperature is maintained. For adiabatic compression, in which all the heat is retained, the work is much greater. In actual practice the power is about midway between the two.

## Foot=pounds of Work Required to Compress Air.

(Hiscox.)
Initial pressure $=1$ atmosphere .

|  | Foot-pounds per cubic foot. |  |  |  | Foot-pounds per culic foot. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Isothermal. | Adiabatic. | Actual. |  | Isothermal. | Adiabatic. | Actual. |
| 5 | 619.6 | 649.5 | 637.5 | 55 | 3393.7 | 4188.9 | 3870.8 |
| 10 | 1098.2 | 1192.0 | 1154.6 | 60 | 3440.4 | 4422.8 | 4029.8 |
| 15 | 1488.3 | 1661.2 | 1592.0 | 65 | 3577.6 | 4645.4 | 4218.2 . |
| 20 | 1817.7 | 2074.0 | 1971.4 | 70 | 3706.3 | 4859.6 | 4398.1 |
| 25 | 2102.6 | 2451.6 | 2312.0 | 75 | 3828.0 | 5063.9 | 4569.5 |
| 30 | 2353.6 | 2794.0 | 2617.8 | 80 | 3942.9 | 5259.7 | 4732.9 |
| 35 | 2578.0 | 3111.0 | 2897.8 | 85 | 4051.5 | 5450.0 | 4890.1 |
| 40 | 2780.8 | 3405.5 | 3155.6 | 90 | 4155.7 | 5633.1 | 5042.1 |
| 45 | 2966.0 | 3681.7 | 3395.4 | 95 | 4254.3 | 5819.3 | 5187.3 |
| 50 | 3136.2 | 3942.3 | 3619.8 | 100 | 4348.1 | 5981.2 | 5327.9 |

Compressor Efficiencies at Different Altitudes.
70 Pounds Pressure per Square Inch.

| Altitude. Feet. | Barometric pressure. |  | Volumetric efficiency of compressor. Per cent. | Loss of capacity. Per cent. | Decreased power. Per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inches of mercury. | Pounds per square inch. |  |  |  |
| Sea-level. | 30.00 | 14.75 | 100 |  |  |
| 1000 | 28.88 | 14.20 | 97 | 3 | 1.8 |
| 2000 | 27.80 | 13.67 | 93 | 7 | 3.5 |
| 3000 | 26.76 | 13.16 | 90 | 10 | 5.2 |
| 4000 | 25.76 | 12.67 | 87 | 13 | 6.9 |
| 5000 | 24.79 | 12.20 | 84 | 16 | 8.5 |
| 6000 | 23.86 | 11.73 | 81 | 19 | 10.1 |
| 7000 | 22.97 | 11.30 | 78 | 22 | 11.6 |
| 8000 | 22.11 | 10.87 | 76 | 24 | 13.1 |
| 9000 | 21.29 | 10.46 | 73 | 27 | 14.6 |
| 10000 | 20.49 | 10.07 | 70 | 30 | 16.1 |
| 11000 | 19.72 | 9.70 | 68 | 32 | 17.6 |
| 12000 | 18.98 | 9.34 | 65 | 35 | 19.1 |
| 13000 | 18.27 | 8.98 | 63 | 37 | 20.6 |
| 14000 | 17.59 | 8.65 | 60 | 40 | 22.1 |
| 15000 | 16.93 | 8.32 | 58 | 42 | 23.5 |

The above table is computed for a delivery of air compressed to 70 pounds per square inch. For pressures above 70 pounds the volumetric efficiency of the compressor may be decreased 3 per cent. for each 10 pounds, and the power required diminished 10 per cent.

## Cubic Feet of Air Required, per Indicated Horse= power, in Motors.

(Hiscox.)

|  | Gauge pressures. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 125 | 150 |
| 1 | 23.30 | 21.3 | 20.2 | 19.40 | 18.80 | 18.42 | 18.10 | 17.80 | 17.62 | 17.40 | 17.05 |
| $3 / 4$ | 18.70 | 17.1 | 16.1 | 15.47 | 15.00 | 14.60 | 14.35 | 14.15 | 13.98 | 13.78 | 13.50 |
| 2/3 | 17.85 | 16.2 | 15.2 | 14.50 | 14.20 | 13.75 | 13.47 | 13.28 | 13.08 | 12.90 | 12.60 |
| $1 / 2$ | 16.4 | 14.5 | 13.5 | 12.80 | 12.30 | 11.93 | 11.70 | 11.48 | 11.30 | 11.10 | 10.85 |
| 1/3 | 17.5 | 15.2 | 12.9 | 11.85 | 11.26 | 10.80 | 10.50 | 10.21 | 10.02 | 9.78 | 9.5 |
| 1/4 | 20.6 | 15.6 | 13.4 | 13.3 | 11.4 | 10.72 | 10.31 | 10.0 | 75 | 9.42 | 9.1 |

In applying this table the amount must be increased to provide for the clearance of the cylinder, this depending upon the construction of the motor. When the air is reheated the amount required will be diminished. The economy due to reheating will be proportional to the increase in absolute temperature. Thus, if $T$ be the initial temperature of the air, and $T^{\prime \prime}$ the reheated temperature, we have the amount of air required, equal to the tabular amount, multiplied by

$$
\frac{T+461}{T^{\prime}+461}
$$

Thus, if the air be reheated from $60^{\circ}$ to $300^{\circ} \mathrm{F}$., the tabular value should be multiplied by

$$
\frac{60+461}{300+461}=0.684
$$

showing a gain of nearly 32 per cent., due to reheating.
The flow of compressed air in pipes may be computed from the formula:

$$
Q=c \sqrt{\frac{p d^{5}}{w L}}
$$

in which
$Q=$ flow, in cubic feet, per minute;
$p=$ difference in pressure, in pounds, per square inch, by which the flow is caused;
$d=$ the diameter of the pipe, in inches;
$L=$ the length, in feet;
$w=$ the density of the entering air, in pounds, per cubic foot; and $c=a$ constant coefficient. According to Halsey, the value of $c$ may be taken as $=58$.

Table of Head or Additional Pressure Required to Deliver Air at 80 Pounds Gauge Pressure through 1000 Feet of Pipe of Various Sizes．

Pipe Sizes are Inside Diameters．

|  |  |  | ざ ． <br>  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 inch． |  |  | 4 inches， |  |  | 12 inches． |  |
| 3.07 | 6 | ． 337 | 3.07 | 88 | ． 031 | 3.07 | 799 | ． 0067 |
| 6.14 | 12 | 1.348 | 6.14 | 176 | ． 124 | 6.14 | 1598 | ． 0268 |
| 9.20 | 18 | 3.033 | 9.20 | 264 | ． 279 | 9.20 | 2397 | ． 0603 |
| 12.27 | 24 | 5.392 | 12.27 | 352 | ． 495 | 12.27 | 3196 | ． 1072 |
| 15.34 | 30 | 8.425 | 15.34 | 440 | ． 775 | 15.34 | 3995 | ． 1675 |
| 18.41 | 36 | 12.132 | 18.41 | 528 | 1.116 | 18.41 | 4794 | ． 2412 |
| 24.54 | 48 | 21.568 | 24.54 | 704 | 1.984 | 24.54 | 6392 | ． 4288 |
| 30.68 | 60 | 33.700 | 30.68 | 880 | 3.100 | 30.68 | 7990 | ． 6700 |
|  | 11／2 inches． |  |  | 5 inches． |  |  | 14 inches． |  |
| 3.07 | 14 | ． 134 | 3.07 | 141 | ． 022 | 3.07 | 1087 | ． 0055 |
| 6.14 | 29 | ． 536 | 6.14 | 282 | ． 088 | 6.14 | 2174 | ． 0220 |
| 9.20 | 43 | 1.206 | 9.20 | 423 | ． 198 | 9.20 | 3261 | ． 0495 |
| 12.27 | 57 | 2.144 | 12.27 | 564 | ． 352 | 12.27 | 4348 | ． 0880 |
| 15.34 | 72 | 3.350 | 15.34 | 705 | ． 550 | 15.34 | 5435 | ． 1375 |
| 18.41 | 86 | 4.824 | 18.41 | 846 | ． 792 | 18.41 | 6522 | ． 1980 |
| 24.54 | 115 | 8.576 | 24.54 | 1128 | 1.408 | 24.54 | 8696 | ． 3520 |
| 30.68 | 144 | 13.400 | 30.68 | 1410 | 2.200 | 30.68 | 10870 | ． 5500 |
|  | 2 inches． |  |  | 6 inches． |  |  | 16 inches． |  |
| 3.07 | 23 | ． 100 | 3.07 | 204 | ． 018 | 3.07 | 1420 | ． 0047 |
| 6.14 | 47 | ． 400 | 6.14 | 408 | ． 072 | 6.14 | 2840 | ． 0188 |
| 9.20 | 70 | ． 900 | 9.20 | 612 | ． 162 | 9.20 | 4260 | ． 0423 |
| 12.27 | 94 | 1.600 | 12.27 | 816 | ． 288 | 12.27 | 5680 | ． 0752 |
| 15.34 | 118 | 2.500 | 15.34 | 1020 | ． 450 | 15.34 | 7100 | ． 1175 |
| 18.41 | 141 | 3.600 | 18.41 | 1224 | ． 648 | 18.41 | 8520 | ． 1692 |
| 24.54 | 188 | 7.200 | 24.54 | 1632 | 1.152 | 24.54 | 11360 | ． 3009 |
| 30.68 | 235 | 10.000 | 30.68 | 2040 | 1.800 | 30.68 | 14200 | ． 4700 |
|  | 21／2 inches． |  |  | 8 inches． |  |  | 20 inches． |  |
| 3.07 | 33 | ． 058 | 3.07 | 353 | ． 011 | 3.07 | 2219 | ． 0036 |
| 6.14 | 67 | ． 232 | 6.14 | 706 | ． 044 | 6.14 | 4438 | ． 0144 |
| 9.20 | 100 | ． 522 | 9.20 | 1059 | ． 099 | 9.20 | 6657 | ． 0324 |
| 12.27 | 134 | ． 928 | 12.27 | 1412 | ． 176 | 12.27 | 8876 | ． 0576 |
| 15.34 | 168 | 1.450 | 15.34 | 1765 | ． 275 | 15.34 | 11095 | ． 0900 |
| 18.41 | 201 | 2.088 | 18.41 | 2118 | ． 336 | 18.41 | 13314 | ． 1296 |
| 24.54 | 268 | 3.712 | 24.54 | 2824 | ． 704 | 24，54 | 17752 | ． 2304 |
| 30.68 | 335 | 5.800 | 30.68 | 3530 | 1.100 | 30.68 | 22190 | ． 3600 |
|  | 3 inches． |  |  | 10 inches． |  |  | 24 inches． |  |
| 3.07 | 52 | ． 050 | 3.07 | 566 | ． 0087 | 3.07 | 3194 | ． 0029 |
| 6.14 | 104 | ． 200 | 6.14 | 1132 | ． 0348 | 6.14 | 6388 | ． 0116 |
| 9.20 | 156 | ． 450 | 9.20 | 1698 | ． 0783 | 9.20 | 9582 | ． 0261 |
| 12.27 | 208 | ． 800 | 12.27 | 2264 | ． 1392 | 12.27 | 12776 | ． 0464 |
| 15.34 | 260 | 1.250 | 15.34 | 2830 | ． 2175 | 15.34 | 15970 | ． 0725 |
| 18.41 | 312 | 1.800 | 18.41 | 3396 | ． 3132 | 18.41 | 19164 | ． 1044 |
| 24.54 | 416 | 3.200 | 24.54 | 4528 | ． 5568 | 24.54 | 25552 | ． 1856 |
| 30.68 | 520 | 5.000 | 30.68 | 5660 | ． 8700 | 30.68 | 31940 | ． 2900 |

Horse Power Required to Compress Air.

|  |  | Isothermal compression. | Adiabatic compression. |  |  | Two-stage compression. |  |  | Three-stage compression. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 1.34 | . 0188 | . 0197 | . 96 | 106 |  |  |  |  |  |  |
| 10 | 1.68 | . 0333 | . 0361 | . 93 | 145 |  |  |  |  |  |  |
| 15 | 2.02 | . 0481 | . 0505 | . 90 | 178 |  |  |  |  |  |  |
| 20 | 2.36 | . 0551 | . 063 | . 88 | 207 |  |  |  |  |  |  |
| 25 | 2.70 | . 0637 | . 075 | . 85 | 234 |  |  |  |  |  |  |
| 30 | 3.04 | . 0713 | . 085 | . 84 | 252 |  |  |  |  |  |  |
| 35 | 3.38 | . 0781 | . 095 | . 82 | 281 |  |  |  |  |  |  |
| 40 | 3.72 | . 0843 | . 104 | . 81 | 302 |  |  |  |  |  |  |
| 45 | 4.06 | . 0900 | . 112 | . 80 | 321 |  |  |  |  |  |  |
| 50 | 4.40 | . 0945 | . 120 | . 79 | 339 | . 109 | . 87 | 188 |  |  |  |
| 55 | 4.74 | . 0995 | . 128 | . 78 | 357 | . 115 | . 87 | 196 |  |  |  |
| 60 | 5.08 | . 1037 | . 134 | . 77 | 375 | . 121 | . 86 | 203 |  |  |  |
| 70 | 5.42 | . 11280 | . 141 | . 76 | 389 | . 121 | . 86 | 209 |  |  |  |
| 75 | 5.7 6.10 | . 1160 | . 154 | . 75 | 420 | . 136 | . 85 | 214 |  |  |  |
| 80 | 6.44 | . 1196 | . 160 | . 74 | 432 | . 141 | . 85 | 224 |  |  |  |
| 85 | 6.78 | . 1230 | . 166 | . 74 | 441 | . 146 | . 84 | 229 |  |  |  |
| 90 | 7.12 | . 1260 | . 171 | . 74 | 459 | . 150 | . 84 | 234 |  |  |  |
| 95 | 7.46 | . 1290 | . 176 | . 73 | 472 | . 154 | . 84 | 239 |  |  |  |
| 100 | 7.80 | . 1320 | . 182 | . 73 | 485 | . 158 | . 83 | 243 |  |  |  |
| 110 | 8.48 | . 1371 | . 192 | . 72 | 501 | . 165 | . 83 | 250 |  |  |  |
| 120 | 9.16 | . 1422 | . 202 | . 71 | 529 | . 172 | . 83 | 257 |  |  |  |
| 130 | 9.84 | . 1467 | . 210 | . 70 | 560 | . 179 | . 82 | 265 |  |  |  |
| 140 | 10.52 | . 1510 | . 218 | . 69 | 570 | . 186 | . 82 | 272 |  |  |  |
| 150 | 11.20 | . 1547 | . 226 | . 69 | 589 | . 193 | . 81 | 279 | . 182 | . 85 | 200 |
| 160 | 11.88 | . 1583 | . 234 | . 68 | 607 | . 198 | . 81 | 285 | . 187 | . 85 | 204 |
| 170 | 12.56 | . 1622 | . 242 | . 67 | 624 | . 203 | . 80 | 291 | . 192 | . 85 | 207 |
| 180 | 13.24 | . 1656 | . 249 | . 67 | 640 | . 208 | . 80 | 297 | . 197 | . 84 | 211 |
| 190 | 13.92 | . 1687 | . 256 | . 66 | 657 | . 213 | . 79 | 303 | . 202 | . 84 | 214 |
| 200 | 14.6 | . 1720 | . 263 | . 65 | 672 | . 217 | . 79 | 309 | . 206 |  | 218 |
| 225 | 16.4 | . 1790 | . 278 | . 64 | 715 | . 227 | . 79 | 320 | . 215 | . 83 | 224 |
| 250 | 18. | . 1860 | . 292 | . 64 | 749 | . 237 | . 78 | 331 | . 224 |  | 230 |
| 275 | 19.7 | . 1920 | . 306 | . 63 | 780 | . 247 | . 78 | 342 | . 233 | . 82 | 236 |
| 300 | 21.4 | . 1970 | . 317 | . 62 | 815 | . 256 | . 77 | 352 | . 241 |  | 241 |
| 325 | 23.1 | . 2020 | . 328 | . 61 | 837 | . 264 | . 77 | 361 | . 247 |  | 246 |
| 350 | 24.8 | . 2060 | . 342 | . 60 | 867 | . 272 | . 76 | 370 | . 252 | . 82 | 250 |
| 375 | 26.5 | . 2100 | . 354 | . 59 | 892 | . 277 | . 76 | 375 | . 257 | . 82 | 254 |
| 400 | 27.2 | . 2140 | . 364 | . 59 | 915 | . 283 | . 76 | 380 | . 262 | . 82 | 258 |
| 450 | 31.7 | . 2230 | . 381 | . 58 | 960 | . 295 | . 75 | 397 | . 272 | . 82 | 266 |
| 500 | 35. | . 2290 | . 398 | . 57 | 1001 | . 307 | . 75 | 413 | . 282 | . 81 | 274 |

## Delivery of Air through Mains.

Volumes of air, in cubic feet, delivered through mains for given initial pressures and predetermined loss of pressure.
All mains 500 feet long. For other lengths make the loss proportional to the increase in length.
(Ingersoll-Sergeant Company.)
45 Pounds Initial Gauge Pressure.

| Diameter of pipe, in inches. | Reduction of final pressure in 500 feet. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 lb. | 2 lb. | 3 lb . | 5 lb . | 7 lb . | 9 lb . | 12 lb. |
| 1 | 14 | 20 | 24 | 30 | 34 | 37 | 40 |
| $11 / 4$ | 26 | 36 | 44 | 54 | 62 | 68 | 74 |
| 11/2 | 43 | 60 | 72 | 90 | 102 | 112 | 121 |
| 2. | 95 | 132 | 159 | 198 | 226 | 247 | 268 |
| $21 / 2$ | 172 | 239 | 287 | 358 | 409 | 446 | 484 |
| 3 | 281 | 390 | 470 | 585 | 667 | 728 | 791 |
| $31 / 2$ | 419 | 583 | 701 | 874 | 997 | 1080 | 1180 |
| 4 | 595 | 827 | 995 | 1240 | 1410 | 1540 | 1670 |
| $41 / 2$ | 806 | 1120 | 1340 | 1680 | 1910 | 2090 | 2270 |
| $5^{2}$ | 1050 | 1470 | 1770 | 2200 | 2510 | 2740 | 2980 |
| 6 | 1690 | 2350 | 2820 | 3520 | 4020 | 4380 | 4760 |
| 7 | 2500 | 3480 | 4190 | 5220 | 5950 | 6500 | 7060 |
| 8 | 3520 | 4900 | 5890 | 7340 | 8370 | 9140 | 9930 |
| 9 | 4770 | 6630 | 7970 | 9930 | 11300 | 12300 | 13400 |
| 10 | 6240 | 8680 | 10400 | 13000 | 14800 | 16100 | 17600 |

60 Pounds Initial Gauge Pressure.

| Diameter of pipe, in inches. | Reduction of final pressure in 500 feet. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 lb. | 2 lb . | 3 lb . | 5 lb. | 7 lb . | 9 lb . | 12 lb. |
| 1 | 16 | 22 | 27 | 34 | 39 | 43 | 48 |
| 11/4 | 29 | 41 | 49 | 62 | 72 | 79 | 87 |
| 11/2 | 48 | 67 | 81 | 102 | 117 | 129 | 143 |
| 2 | 107 | 149 | 180 | 226 | 259 | 286 | 315 |
| 21/2 | 193 | 269 | 325 | 408 | 469 | 516 | 569 |
| 3 | 315 | 440 | 532 | 667 | 766 | - 844 | 930 |
| $31 / 2$ | 471 | 657 | 794 | 996 | 1140 | 1260 | 1380 |
| 4 | 668 | 932 | 1120 | 1410 | 1620 | 1780 | 1970 |
| 41/2 | 905 | 1260 | 1520 | 1910 | 2190 | 2420 | 2660 |
| 5 | 1180 | 1650 | 2000 | 2510 | 2880 | 3170 | 3500 |
| 6 | 1890 | 2650 | 3200 | 4010 | 4610 | 5080 | 5590 |
| 7 | 2810 | 3920 | 4740 | 5950 | 6840 | 7530 | 8290 |
| 8 | 3960 | 5520 | 6670 | 8370 | 9620 | 10500 | 11600 |
| 9 | 5350 | 7470 | 9020 | 11300 | 13000 | 14300 | 15700 |
| 10 | 7010 | 8710 | 11800 | 14800 | 17000 | 18700 | 20700 |

Delivery of Air through Mains.- Continued.
(See opposite page.)
75 Pounds Initial Gauge Pressure.

| Diameter of pipe, in inches | Reduction of final pressure in 500 feet. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 lb. | 2 lb . | 3 lb . | 5 lb . | 7 lb . | 9 lb. | 12 lb . |
| 1 | 18 | 25 | 30 | 38 | 44 | 48 | 54 |
| 11/4 | 32 | 45 | 55 | 69 | 80 | 89 | 98 |
| 11/2 | 53 | 74 | 90 | 113 | 131 | 145 | 161 |
| 2 | 117 | 164 | 199 | 251 | 289 | 320 | 356 |
| $21 / 2$ | 212 | 296 | 359 | 453 | 523 | 579 | 643 |
| 3 | 346 | 484 | 587 | 740 | 855 | 946 | 1050 |
| $31 / 2$ | 517 | 723 | 876 | 1100 | 1270 | 1410 | 1560 |
| 4 | 734 | 1020 | 1240 | 1560 | 1810 | 2000 | 2220 |
| $41 / 2$ | 994 | 1390 | 1680 | 2120 | 2450 | 2710 | 3010 |
| 5 | 1300 | 1820 | 2210 | 2780 | 3220 | 3560 | 3950 |
| 6 | 2080 | 2910 | 3530 | 4450 | 5140 | 5690 | 6320 |
| 7 | 3090 | 4320 | 5230 | 6600 | 7630 | 8440 | 9370 |
| 8 | 4350 | 6070 | 7360 | 9290 | 10700 | 11800 | 13100 |
| 9 | 5880 | 8220 | 9960 | 12500 | 14500 | 16000 | 17800 |
| 10 | 7710 | 10700 | 13000 | 16400 | 19.000 | 21000 | 23300 |
|  |  |  |  |  |  |  |  |

90 Pounds Initial Gauge Pressure.

| Diameter of pipe, in inches. | Reduction of final pressure in 500 feet. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 lb. | 2 lb. | 3 lb . | 5 lb . | 7 lb . | 9 lb . | 12 lb . |
| 1 | 19 | 27 | 33 | 41 | 48 | 53 | 60 |
| 11/4 | 35 | 49 | 59 | 75 | 87 | 97 | 109 |
| $11 / 2$ | 57 | 80 | 97 | 123 | 143 | 159 | 178 |
| 2 | 127 | 178 | 215 | 273 | 316 | 351 | 394 |
| $21 / 2$ | 229 | 321 | 390 | 493 | 572 | 635 | 712 |
| 3 | 375 | 525 | 636 | 806 | 934 | 1030 | 1160 |
| $31 / 2$ | 560 | 784 | 950 | 1200 | 1390 | 1550 | 1730 |
|  | 794 | 1110 | 1340 | 1700 | 1980 | 2190 | 2460 |
| $41 / 2$ | 1070 | 1500 | 1820 | 2310 | 2680 | 2970 | 3330 |
| 5 | 1410 | 1970 | 2390 | 3030 | 3510 | 3900 | 4370 |
| 6 | 2250 | 3160 | 3830 | 4850 | 5620 | 6240 | 6990 |
| 7 | 3340 | 4680 | 5680 | 7190 | 8340 | 9260 | 10300 |
| 8 | 4700 | 6590 | 7990 | 10100 | 11700 | 13000 | 14500 |
| 9 | 6360 | 8930 | 10800 | 13600 | 15800 | 17600 | 19700 |
| 10 | 8340 | 11600 | 14100 | 17900 | 20700 | 23000 | 25800 |
|  |  |  |  |  |  |  |  |

Example.-It is required to deliver 2000 cubic feet of equivalent free air at the end of a pipe line 1500 feet long, the initial pressure being 60 pounds and the loss of pressure not to exceed 10 pounds. What diameter of pipe nust be used?

By table of 60 pounds initial pressure, under 3 pounds loss and opposite $j$-inch diameter of pipe, we see that the delivery would be 2000 cubic feet, 30 that for a pipe line 1500 feet long the loss of pressure would be about ${ }^{2} \times \frac{1500}{500}=9$ pounds. We say "about" 9 pounds, because the loss is not exactly proportional to the length, but nearly so, when the basis of length s 500 feet.

Flow of Air through Orifices.
Discharge, in cubic feet per minute, through a round hole in a receiver, against atmospheric pressure.

## Receiver Gauge Pressure.

| Diameter of orifice, in inches. | 5 lb . | 10 lb . | 15 lb . | 20 lb . | 25 lb . | 30 lb . | 35 lb . | 40 lb . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{64}$ | . 0597 | . 0842 | . 103 | . 119 | . 133 | . 156 | . 173 | . 19 |
| $\frac{1}{32}$ | . 242 | . 342 | . 418 | . 485 | . 54 | . 632 | . 71 | . 77 |
| $\frac{1}{16}$ | . 965 | 1.36 | 1.67 | 1.93 | 2.16 | 2.52 | 2.8 | 3.07 |
| 1/8 | 3.86 | 5.45 | 6.65 | 7.7 | 8.6 | 10.0 | 11.2 | 12.27 |
| 1/4 | 15.4 | 21.8 | 26.7 | 30.8 | 34.5 | 40.0 | 44.7 | 49.09 |
| $3 / 8$ | 34.6 | 49.0 | 60.0 | 69.0 | 77.0 | 90.0 | 100.0 | 110.45 |
| 1/2 | 61.6 | 87.0 | 107.0 | 123.0 | 138.0 | 161.0 | 179.0 | 196.35 |
| 5/8 | 96.5 | 136.0 | 167.0 | 193.0 | 216.0 | 252.0 | 280.0 | 306.80 |
| $3 / 4$ | 133.0 | 196.0 | 240.0 | 277.0 | 310.0 | 362.0 | 400.0 | 441.79 |
| 7/8 | 189.0 | 267.0 | 326.0 | 378.0 | 422.0 | 493.0 | 550.0 | 601.32 |
| 1 | 247.0 | 350.0 | 427.0 | 494.0 | 550.0 | 645.0 | 715.0 | 785.4 |
| 11/4 | 384.0 | 543.0 | 665.0 | 770.0 | 860.0 | 1000.0 |  |  |
| 11/2 | 550.0 | 780.0 | 960.0 |  |  |  |  |  |
| 2 | 985.0 |  |  |  |  |  |  |  |

Receiver Gauge Pressure.

| Diameter of orifice, in inches. | 45 lb . | 50 lb . | 60 lb. | 70 lb . | 80 lb . | 90 lb . | 100 lb. | 125 lb . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{64}$ | . 208 | . 225 | . 26 | . 295 | . 33 | . 364 | . 40 | . 486 |
| $\frac{1}{32}$ | . 843 | . 914 | 1.05 | 1.19 | 1.33 | 1.47 | 1.61 | 1.97 |
| $\frac{1}{16}$ | 3.36 | 3.64 | 4.2 | 4.76 | 5.32 | 5.87 | 6.45 | 7.85 |
| 1/8 | 13.4 | 14.5 | 16.8 | 19.0 | 21.2 | 23.5 | 25.8 | 31.4 |
| 1/4 | 53.8 | 58.2 | 67.0 | 76.0 | 85.0 | 94.0 | 103.0 | 125.0 |
| 3/8 | 121.0 | 130.0 | 151.0 | 171.0 | 191.0 | 211.0 . | 231.0 | 282.0 |
| 1/2 | 215.0 | 232.0 | 268.0 | 304.0 | 340.0 | 376.0 | 412.0 | 502.0 |
| $5 / 8$ | 336.0 | 364.0 | 420.0 | 476.0 | 532.0 | 587.0 | 645.0 | 785.0 |
| $3 / 4$ | 482.0 | 522.0 | 604.0 | 685.0 | 765.0 | 843.0 | 925.0 |  |
| 7/8 | 658.0 | 710.0 | 822.0 | 930.0 | 1004.0 |  |  |  |
| 1 | 860.0 | 930.0 |  |  |  |  |  |  |
| 11/4 |  |  |  |  |  |  |  |  |
| 11/2 |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |

## Movement of Air.

When large rolumes of air are to be moved at low pressures, as in ventilation, mechanical draft, etc., the following formulas, derived from Weisbach, by Snow, for the B. F. Sturtevant Company, may be used:

Let
$d=$ diameter of pipe, in inches ;
$l=$ length of pipe, in feet;
$v=$ velocity, in feet, per second;
$p=$ loss of pressure, in ounces, per square inch, by friction.
Then

$$
\begin{aligned}
p & =\frac{l v^{2}}{25000 d} \\
l & =\frac{25000 d p}{v^{2}} \\
v & =\frac{\sqrt{25000 d p}}{l}, \\
d & =\frac{l v^{2}}{25000 p} .
\end{aligned}
$$

If we call the area of the pipe $=A$, and take the weight of a cubic foot of air as 0.08 pound, we have, for the loss in horse-power by friction in a length of 100 feet,

$$
H P=\frac{p A v}{8800}
$$

From these formulas the following tables have been computed for pipes of various diameters, all 100 feet long, the losses being directly proportioned for pipes of other lengths. Since the loss in pressure varies as the square of the velocity, the advantage of using large pipes and reducing the velocity is apparent.

The whole subject of the compression, utilization, and movement of air is a most extensive one. For further details of the different departments of the subject reference may be had to the following works:
"Mechanical Draft." By Walter B. Snow.
"Compressed Air and its Applications." By Gardner D. Hiscox.
"Compressed Air Information." By W. L. Saunders.
"Compressed Air." By Frank Richards.
The monthly periodical, "Compressed Air," also contains current information of value and interest.
Pressure and Horse-power Lost by Friction of Air in Pipes 100 Feet Long.


|  | $\begin{aligned} & \dot{\infty} \\ & \stackrel{\rightharpoonup}{0} \\ & \underline{E} \\ & \stackrel{0}{\square} \end{aligned}$ |  |  <br>  |
| :---: | :---: | :---: | :---: |
|  |  | - чэи! әлеnbs дəd 'səəuno u! 'ə..nssaıd jo ssot |  |
|  | $\begin{aligned} & \dot{D} \\ & \dot{E} \\ & \dot{E} \\ & \underline{E} \\ & \dot{\Xi} \end{aligned}$ |  |  B6, 心o |
|  |  | -чэп! ә.деnbs дəd 'səวuno u! 'ә.nsso.d jo ssot |  |
|  | $\begin{aligned} & \dot{\Phi} \\ & \text { © } \\ & \text { U } \\ & \text { N } \\ & \text { N } \end{aligned}$ |  |  రి, |
|  |  | - पәи! әдепbs ләd 'səəuno प! 'əunssə..d jo ssor |  O잉ㅇㅇㅁ.? |
|  |  |  |  <br>  |
|  |  | - you! o.xenbs ләd 'səəuno แ! 'o.nnsso.d jo ssori |  |
|  | $\begin{aligned} & \dot{D} \\ & \dot{E} \\ & \dot{E} \\ & 0 \\ & 0 \end{aligned}$ |  | \% \%ᄋOరం |
|  |  | - पכu! əirnbs ләd 'səวuno u! 'exnssord jo ssot |  |
|  | $\begin{aligned} & \dot{0} \\ & \dot{U} \\ & \underline{E} \\ & a \end{aligned}$ |  | N్N No m on M No <br>  |
|  |  |  дəд 'səวuno प! 'əunsse.d jo ssor |  |
|  | $\begin{aligned} & \dot{0} \\ & \stackrel{E}{U} \\ & . \\ & \dot{D} \\ & \infty \end{aligned}$ |  |  <br>  |
|  |  | - पวแ! әлеnbs dəd 'səəuno u! 'əxnsso.dd j0 ssor |  |
|  <br>  |  |  | 8888888888888888888888888 <br>  |

Pressure and Horse=power Lost by Friction of Air in Pipes 100 Feet Long.-Continued.



## Determination of Difference in Level by Difference in Atmospheric Pressure.

According to the law of Mariotte, also called Boyle's law, the volume of a given quantity of any gas varies inversely as the pressure which it bears, the temperature remaining constant. The average pressure of the atmosphere at the sea-level is 1.033 kilogrammes per square centimetre, corresponding to a column of mercury 760 millimetres in height. This is the same as 14.7 pounds per square inch, or a mercury column of 29.92 inches. In English-speaking countries an atmosphere of pressure is understood to mean 14.7 pounds per square inch, but in countries in which the metric system is used an atmosphere means a pressure of 1 kilogramme per square centimetre $=14.22$ pounds per square inch. This is sometimes called a metric atmosphere, and pressure gauges in France, Germany, and elsewhere on the Continent are generally graduated in metric atmospheres and tenths.

In obedience to the law of Mariotte, the density of the air diminishes as we ascend, and the law of this reduction in pressure has been found to be proportional to the logarithms of the pressures at any two points under consideration. Thus, if $b$ be the height of the barometer at any given point, and $b^{\prime}$ the height of the barometer at another point, and $h$ the difference in altitude between them, we have

$$
h=C \log \cdot \frac{b}{b^{\prime}}
$$

$C$ being a constant.
For a difference of height, in metres, we have

$$
h=18429.1 \log \cdot \frac{b}{b^{\prime}}
$$

and for feet,

$$
h=60463.4 \log \cdot \frac{b}{b^{\prime}} .
$$

It is necessary to correct results obtained by these formulas for the effects of varying temperatures and other atmospheric conditions. If we assume the mean temperature of the air between two stations to be the half sum of the temperatures at these stations, we may take the coefficient of expanision of air, $\frac{1}{273}=0.00366$ per degree centigrade, and hence have for a temperature correction factor,

$$
0.00366 \frac{t+t^{\prime}}{2}=0.00183\left(t+t^{\prime}\right)
$$

in which $t$ and $t^{\prime}$ are the temperatures of the two stations, in degrees centigrade. For the Fahrenheit thermometer, taking the coefficient of expansion at ${ }_{4} \frac{1}{9 I}=0.002036$, and remembering that the freezing-point is $32^{\circ}$ above zero, we have

$$
0.002036 \frac{(t-32)+\left(t^{\prime}-32\right)}{2}=0.00102\left(t+t^{\prime}-64\right)
$$

If we take the sea-level as a base station we may compute the altitudes for various barometric readings, and thus enable altitudes to be readily and accurately measured. With such tables the altitude of each station above sea-level may be computed separately, and their difference taken.

## Barometric Table A.

Metric.
Normal Heights. $0^{\circ} \mathrm{C}$.
$18429.1 \log \cdot \frac{760}{b}$.

| B. mm . | H. metres. | Difference. | B. mm . | H. metres. | Difference. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 400 | 5137.2 | -19.8 | 600 | 1892.0 | -13.2 |
| 410 | 4939.6 | -19.8 | 610 | 1759.8 | -13.2 |
| 420 | 4746.7 | -19.3 | 620 | 1629.6 | -13.0 |
| 430 | 4558.3 | -18.8 | 630 | 1501.5 | -12.6 |
| 440 | 4374.4 | -18.4 | 640 | 1375.5 | -12.6 |
| 450 | 4294.5 | -18.0 | 650 | 1251.4 | -12.6 |
| 460 | 4018.6 | -17.6 | 660 | 1129.1 | -12.0 |
| 470 | 3846.4 | -16.8 | 670 | 1008.8 | -11.9 |
| 480 | 3677.9 | -16.5 | 680 | 890.2 | -11.7 |
| 490 | 3512.8 | -16.2 | 690 | 773.3 | -11.5 |
| 500 | 3351.2 | -15.9 | 700 | 658.2 | -11.5 |
| 510 | 3192.7 | -15.5 | 710 | 544.6 | -11.4 |
| 520 | 3037.3 | -15.5 | 720 | 432.7 | -11.3 |
| 530 | 2884.9 |  | 730 | 322.4 |  |
| 540 | 2735.2 | -14.7 | 740 | 213.4 |  |
| 550 | 2588.4 | -14.7 | 750 | 105.9 |  |
| 560 | 2444.2 |  | 760 | 0.0 |  |
| 570 | 2302.6 | -14.2 | 770 | -104.8 | -10.5 |
| 580 | 2163.3 | -13.9 | 780 | -207.9 | $\begin{aligned} & -10.3 \\ & -10.2 \end{aligned}$ |
| 590 | 2026.5 |  |  |  |  |

In Table A the first column contains the reading of the barometer, in millimetres, for every 10 millimetres, and in the second column the corresponding heights above sea-level. The third column, headed "Difference," zontains the difference for every millimetre, so that the height can be obtained very correctly for barometer readings as close as the hundredth of a millimetre.

Suppose, now, that we have at one station a reading of 765 millimetres, and at another 732 millimetres, the air being at $0^{\circ} \mathrm{C}$. We find in Table A, for a barometric weight of 760 millimetres, an altitude of 0.0 metres and ; $\times-10.5=-52.5$ metres. Also, for 732 millimetres, we have 730 millimetres $=322.4$ metres; and $2 \times-10.9=-21.8$ metres, so that for 732 millimetres we have $322.4-21.8=300.6$ metres; hence, one station is 300.6 metres above sea-level, and the other is 52.5 metres below, and the difference in altitude is 353.1 metres. It will be noticed that the differences are regative, because the altitude diminishes as the height of the barometer ncreases, and hence we multiply the number of millimetres in excess of he reading in the first column by the tabular difference and subtract the product from the tabular altitude.

If the air had been at some other temperature than $0^{\circ}$ a correction would have been necessary, and this may be readily applied by the following table.

## Barometric Table B.

## Temperature Correction Factors.

Centigrade.
$1+0.00183\left(t+t^{\prime}\right)$.

| $t+t^{\prime}$. | Factor. | $t+t^{\prime}$. | Factor. | $t+t^{\prime}$. | Factor. | $t+t^{\prime}$. | Factor. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0018 | 15 | 1.0275 | 29 | 1.0531 | 43 | 1.0787 |
| 2 | 1.0037 | 16 | 1.0293 | 30 | 1.0549 | 44 | 1.0805 |
| 3 | 1.0055 | 17 | 1.0311 | 31 | 1.0567 | 45 | 1.0823 |
| 4 | 1.0073 | 18 | 1.0329 | 32 | 1.0586 | 46 | 1.0842 |
| 5 | 1.0091 | 19 | 1.0348 | 33 | 1.0604 | 47 | 1.0860 |
| 6 | 1.0110 | 20 | 1.0366 | 34 | 1.0622 | 48 | 1.08 \% |
| 7 | 1.0128 | 21 | 1.0384 | 35 | 1.0640 | 49 | 1.0897 |
| 8 | 1.0146 | 22 | 1.0403 | 36 | 1.0659 | 50 | 1.0915 |
| 9 | 1.0164 | 23 | 1.0421 | 37 | 1.0677 | 51 | 1.0933 |
| 10 | 1.0183 | 24 | 1.0439 | 38 | 1.0696 | 52 | 1.0952 |
| 11 | 1.0201 | 25 | 1.0458 | 39 | 1.0714 | 53 | 1.0970 |
| 12 | 1.0220 | 26 | 1.0476 | 40 | 1.0732 | 54 | 1.0988 |
| 13 | 1.0238 | 27 | 1.0495 | 41 | 1.0750 | 55 | 1.1006 |
| 14 | 1.0257 | 28 | 1.0513 | 42 | 1.0769 | 56 | 1.1025 |

In this table $t$ and $t^{\prime}$ are the temperatures of the two stations. By taking the factor opposite their sum and multiplying by it the result obtained from Table A, the corrected difference in altitude between the two stations will be obtained. Thus, in the example just given, suppose that the temperature at the lower station had been $22^{\circ} \mathrm{C}$., and at the upper station $16^{\circ}$ C., we have $22+16=38$; and opposite 38, in Table B, we find 1.0696. The corrected altitude will then be

$$
353 \times 1.0696=377.5 \text { metres } .
$$

Table C is computed for English measures, the barometer readings being given in inches and tenths and the corresponding heights in feet above sea-level, the sea-level reading of the barometer being assumed as 30 inches. The column of differences here gives the differences in altitude for every hundredth of an inch, and so, if the difference be multiplied by the hundredths and thousandths, for any reading, and the product subtracted from the tabular altitude for the inches and tenths, it will give the precise altitude. An example will make this more readily understood.

Suppose one reading to be 29.832 inches, and the other 26.636 inches, we have, from Table. C, for 29.8 inches, 176 feet, and the difference -8.8 multiplied by 32, the hundredths and thousandths, $==-8.8 \times 32=-28.16$, and $176-28.16=147.84$ feet. Likewise, we have for 26.5 inches, from the table, 3257 feet, and the difference - 9.9 multiplied by $36=-35.64$, whence $3257-$ $35.64=3221.36$ feet, and the difference in altitude between the two stations is

$$
3221.36-147.81=3073.36 \text { fect. }
$$

## Barometric Table C．

English．
Normal Heights． $32^{\circ} \mathrm{F}$ ． $60463.4 \log . \frac{30}{6}$ ．

| B． inches． | H．feet． | Differ－ ence． | B． inches． | H．feet． | Differ－ ence． | B． inches． | H．feet． | Differ－ ence． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15.0 | 18201 |  | 20.2 | 10386 |  | 25.4 | 4371 |  |
| 15.1 | 18027 | －17．4 | 20.3 | 10256 | －13．0 | 25.5 | 4268 | －10．3 |
| 15.2 | 17853 | －17．4 | 20.4 | 10127 | －12．9 | 25.6 | 4165 | －10．3 -10.3 |
| 15.3 | 17681 | －17．2 | 20.5 | 9998 | －12．9 | 25.7 | 4062 | -10.3 -10.2 |
| 15.4 | 17510 | －17．1 | 20.6 | 9871 | －12．8 | 25.8 | 3960 | －10．2 |
| 15.5 | 17340 | －17．0 | 20.7 | 9744 | －12．7 | 25.9 | 3859 | －10．1 |
| 15.6 | 17171 | -16.9 -16.8 | 20.8 | 9617 | －12．7 | 26.0 | 3758 | －10．1 |
| 15.7 | 17003 | －16．8 | 20.9 | 9491 | -12.6 -12.6 | 26.1 | 3657 | －10．1 |
| 15.8 | 16836 | －16．7 | 21.0 | 9366 | $-12.6$ | 26.2 | 3556 | －10．1 |
| 15.9 | 16670 | －16．6 | 21.1 | 9241 | －12．0 | 26.3 | 3456 | －10．0 |
| 16.0 | 16506 | -16.4 -16.3 | 21.2 | 9117 | －12．4 | 26.4 | 3356 | －10．0 |
| 16.1 | 16343 | -16.3 -16.3 | 21.3 | 8993 | －12．4 | 26.5 | 3257 |  |
| 16.2 | 16180 | -16.3 -16.2 | 21.4 | 8869 | -12.3 -12.2 | 26.6 | 3158 | $\begin{array}{r}-9.9 \\ \hline 9.9\end{array}$ |
| 16.3 | 16019 | -10.2 -16.1 | 21.5 | 8747 | －12．2 | 26.7 | 3060 | 二9．9 |
| 16.4 | 15858 | -16.1 -16.0 | 21.6 | 8626 | －12．1 | 26.8 | 2962 | －9．8 |
| 16.5 | 15698 | －15．8 | 21.7 | 8505 | －12．1 | 26.9 | 2864 |  |
| 16.6 | 15540 | －15．8 | 21.8 | 8384 | －12．1 | 27.0 | 2767 | －9．7 |
| 16.7 | 15382 | －15．8 | 21.9 | 8264 | －12．0 | 27.1 | 2670 | 二9．7 |
| 16.8 | 15225 | －15．7 | 22.0 | 8144 | －12．0 | 27.2 | 2573 | 二 9.6 |
| 16.9 | 15069 | －15．6 | 22.1 | 8025 | -11.9 -11.9 | 27.3 | 2476 | 二 9.6 |
| 17.0 | 14914 | －15．5 | 22.2 | 7906 | －11．9 | 27.4 | 2380 | － 9.6 |
| 17.1 | 14761 | -15.3 -15.3 | 22.3 | 7788 | －11．8 | 27.5 | 2285 | －9．5 |
| 17.2 | 14607 | －15．3 | 22.4 | 7671 | －11．7 | 27.6 | 2190 | 二9．5 |
| 17.3 | 14455 | －15．2 | 22.5 | 7554 | －11．7 | 27.7 | 2095 | －9．5 |
| 17.4 | 14304 | －15．1 | 22.6 | 7438 | －11．6 | 27.8 | 2000 | －9．4 |
| 17.5 | 14153 | －15．0 | 22.7 | 7322 | －11．6 | 27.9 | 1906 | －9．4 |
| 17.6 | 14004 | －15．9 | 2.8 | 7206 | －11．5 | 28.0 | 1812 | 二 9.4 |
| 17.7 | 13855 | -14.9 -14.8 | 22.9 | 7091 | －11．5 | 28.1 | 1718 | － 9.4 |
| 17.8 | 13707 | －14．7 | 23.0 | 6977 | －11．8 | 28.2 | 1625 | －9．3 |
| 17.9 | 13560 | －14．7 | 23.1 | 6863 6750 | －11．4 | 28.3 | 1532 | －9．2 |
| 18.0 18.1 | 13413 | －14．6 | 23.2 23.3 | 6750 6637 | －11．3 | 28.4 | 1439 1347 | －9．2 |
| 18.2 | 13123 | －14．5 | 23.4 | 6524 | －11．3 | 28.6 | 1255 | －9．2 |
| 18.3 | 12979 | －14．4 | 23.5 | 6412 | －11．2 | 28.7 | 1163 | －9．2 |
| 18.4 | 12836 | －14．3 | 23.6 | 6301 | －11．1 | 28.8 | 1072 | -9.1 -9.1 |
| 18.5 | 12694 | －14．2 | 23.7 | 6190 | －11．1 | 28.9 | 981 | －9．1 |
| 18.6 | 12552 | －14．2 | 23.8 | 6079 | －11．1 | 29.0 | 890 | 二 9.1 |
| 18.7 | 12411 | －14．1 | 23.9 | 5969 | －11．0 | 29.1 | 800 | 二 9.0 |
| 18.8 | 12271 | －14．9 | 24.0 | 5859 | －11．0 | 29.2 | 710 | 二 9.0 |
| 18.9 | 12132 | －13．8 | 24.1 | 5750 | －10．9 | 29.3 | 620 | －9．0 |
| 19.0 | 11994 | －13．8 | 24.2 | 5641 | －10．9 | 29.4 | 530 | －8．9 |
| 19.1 | 11856 | －13．8 | 24.3 | 5533 | －10．8 | 29.5 | 441 | －8．9 |
| 19.2 | 11719 | －13．7 | 24.4 | 5425 5318 | -10.8 -10.8 | 29.6 | 352 | －8．8 |
| 19.3 | 11582 | －13．6 |  |  | －10．7 | 29.7 | 264 | －8．8 |
| 19.4 19.5 | 11446 | －13．4 | 24.6 24.7 | 5211 | －10．6 | 29.8 29.9 | 86 | －8．8 |
| 19.6 | 11177 | －13．4 | 24.8 | 4999 | －10．6 | 30.0 | 8 | －8．8 |
| 19.7 | 11044 | －13．3 | 24.9 | 4893 | －10．6 | 30.1 | －87 | 二8．7 |
| 19.8 | 10911 | －13．3 | 25.0 | 4787 | －10．6 | 30.2 | －174 | －8．7 |
| 19.9 | 10779 |  | 25.1 | 4683 |  | 30.3 | －261 | 二8．7 |
| 20.0 | 10648 | －13．1 | 25.2 | 4578 | －10．4 | 30.4 | －348 | －8．6 |
| 20.1 | 10516 | －13．0 | 25.3 | 4474 | －10．4 | 30.5 | －434 |  |

For the temperature correction the following may be used :

## Barometric Table D.

Temperature Correction Factors.

## Fahrenheit.

$$
1+0.00102\left(t+t^{\prime}-64\right)
$$

| $t+t^{\prime}$. | Factor. | $\boldsymbol{t}+\boldsymbol{t}^{\prime}$. | Factor. | $\boldsymbol{t}+\boldsymbol{t}^{\prime}$. | Factor. | $\boldsymbol{t}+\boldsymbol{t}^{\prime}$. | Factor. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | .9673 | 68 | 1.0041 | 102 | 1.0388 | 136 | 1.0735 |
| 34 | .9697 | 70 | 1.0061 | 104 | 1.0408 | 138 | 1.0755 |
| 36 | .9714 | 72 | 1.0082 | 106 | 1.0429 | 140 | 1.0776 |
| 38 | .9735 | 74 | 1.0102 | 108 | 1.0450 | 142 | 1.0796 |
| 40 | .9755 | 76 | 1.0122 | 110 | 1.0470 | 144 | 1.0817 |
| 42 | .9776 | 78 | 1.0143 | 112 | 1.0490 | 146 | 1.0837 |
| 44 | .9796 | 80 | 1.0163 | 114 | 1.0511 | 148 | 1.0858 |
| 46 | .9816 | 82 | 1.0183 | 116 | 1.0531 | 150 | 1.0878 |
| 48 | .9837 | 84 | 1.0204 | 118 | 1.0552 | 152 | 1.0898 |
| 50 | .9857 | 86 | 1.0224 | 120 | 1.0572 | 154 | 1.0919 |
| 52 | .9878 | 88 | 1.0245 | 122 | 1.0592 | 156 | 1.0939 |
| 54 | 9898 | 90 | 1.0265 | 124 | 1.0612 | 158 | 1.0960 |
| 56 | .9918 | 92 | 1.0286 | 126 | 1.0633 | 160 | 1.0980 |
| 58 | .9938 | 94 | 1.0306 | 128 | 1.0653 | 162 | 1.1000 |
| 60 | .9959 | 96 | 1.0326 | 130 | 1.0674 | 164 | 1.1019 |
| 62 | .9980 | 98 | 1.0347 | 132 | 1.0694 | 166 | 1.1039 |
| 64 | 1.0000 | 100 | 1.0368 | 134 | 1.0714 | 168 | 1.1060 |
| 66 | 1.0021 |  |  |  |  |  |  |

Thus, if in the preceding example the temperatures at the two stations had been $65^{\circ} \mathrm{F}$. and $43^{\circ} \mathrm{F}$., we have $65+43=108$, and opposite 108 , in Table D, we find the correction factor, 1.045.

The corrected altitude will then be

$$
3073.36 \times 1.045=3211.66
$$

an increase of more than 38 feet.
When observations are taken simultaneously, the preceding tables will enable altitudes to be computed with much accuracy. When but single observations are possible, the date and hour of the day should always be noted, as the simultaneous reading of the nearest weather, bureau station may then be subsequently obtained, as well as its altitude, and the desired height thus computed.

For field work the aneroid barometer is undoubtedly the best. It should be carefully compared with the standard at the base station, both on leaving and returning, and the mean of the difference used as a base correction.

Aneroids are often marked "compensated, meaning that they are so constructed as to be unaffected by changes in their own temperature. This is rarely perfectly accomplished, as may be seen by warming or cooling the instrument. The best plan is to set the instrument, by means of the adjusting-screw at the back, so that it agrees with a standard mercurial barometer at $32^{\circ}$, and then warm the aneroid carefully up to about $70^{\circ}$, taking readings at every $10^{\circ}$. A correction table can then be prepared for use on subsequent occasions.

The complete barometric formula of Laplace includes corrections for atmospheric humidity and for the variations in the action of gravity, but these need be considered only in precise work for great differences in altitude. Full details of this work will be found in the Smithsonian Meteorological Tables.

The altitude scales engraved on the dials of some aneroid barometers are of little use, except for rough approximate work, and their use has done much to bring the barometric method into undeserved discredit.

## WATER.

Water is composed of 1 part of hydrogen combined with 8 parts of oxygen, or more nearly, according to the determinations of Morley and of Rayleigh, its composition by weight is

| Hydrogen, 2 atoms. | 2.00 | O | 11.186 |
| :---: | :---: | :---: | :---: |
| Oxygen, 1 atom | 15.88 | Or | 88.814 |
|  | 17.88 |  | 100.000 |

This gives 17.88 for the molecular weight in the gaseous state, but in the liquid state it is probably a multiple of this.

In the production of 1 kilogramme of water by the burning of hydrogen and oxygen 3830 calories are evolved.

Its specific heat is taken as unity, being the basis upon which the specific heats of solids and liquids are computed; but this specific heat is not constant, but varies with the temperature.

According to Dieterici, the specific heat at various temperatures, taking the specific heat at $0^{\circ} \mathrm{C}$. as unity, varies as follows:

## Specific Heat of Water.

| $0^{\circ} \mathrm{C}$. | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ | $100^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.000 | 0.9943 | 0.9893 | 0.9872 | 0.9934 | 0.9995 | 1.0057 | 1.0120 | 1.0182 | 1.0244 | 1.0306 |

In regard to the density of water at various temperatures there has been a material difference of opinion among various authorities. The temperature of maximum density is $4^{\circ} \mathrm{C}$. or $39.1^{\circ} \mathrm{F}$., but the actual weight of a unit of volume at this temperature ranges, according to different authorities, from 62.379 pounds to 62.425 pounds. The tables on pages $552-$ 555 are those computed by Nystrom from the experiments of Kopp, and may be accepted as being as accurate as any. In the metric system the litre is usually made equal to a kilogramme of water by weighing, thus practically determining the volume from the weight.

552 Properties of Water from Freezing- to Boiling-point.

| Temp. Fahr. | $\begin{aligned} & \text { Volume } \\ & 1 \text { at } 39^{\circ} . \end{aligned}$ | Units of heat. |  | Pounds per cubic foot. | Cubic feet per pound. | Temp. Cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Per pound. | Per cubic foot. |  |  |  |
| 32 | 1.000109 | . 000000000 | . 000 | 62.381000 | . 01603046 | . 000 |
| 33 | 1.000077 | 1.000000867 | 62.383 | 62.383000 | . 01602994 | . 555 |
| 34 | 1.000055 | 2.000000545 | 124.77 | 62.384000 | . 01602956 | 1.111 |
| 35 | 1.000035 | 3.000001609 | 187.16 | 62.385871 | . 01602927 | 1.666 |
| 36 | 1.000020 | 4.000034680 | 249.55 | 62.386791 | . 01602904 | 2.222 |
| 37 | 1.000009 | 5.000062910 | 311.99 | 62.387493 | . 01602886 | 2.777 |
| 38 | 1.000002 | 6.000102410 | 374.33 | 62.387930 | . 01602874 | 3.333 |
| 39. | 1.000000 | 7.000154550 | 436.72 | 62.388055 | . 01602871 | 3.888 |
| 40 | 1.000002 | 8.000220760 | 499.12 | 62.387930 | . 01602874 | 4.444 |
| 41 | 1.000009 | 9.000302340 | 561.51 | 62.387493 | . 01602886 | 5.000 |
| 42 | 1.000019 | 10.000400560 | 623.89 | 62.386869 | . 01602902 | 5.555 |
| 43 | 1.000034 | 11.000516630 | 686.28 | 62.385933 | . 01602926 | 6.111 |
| 44 | 1.000053 | 12.000651750 | 748.66 | 62.384748 | . 01602956 | 6.666 |
| 45 | 1.000077 | 13.000807040 | 811.03 | 62.383251 | . 01602994 | 7.222 |
| 46 | 1.000104 | 14.000983620 | 873.40 | 62.381567 | . 01603038 | 7.777 |
| 47 | 1.000136 | 15.001326000 | 935.70 | 62.379571 | . 01603088 | 8.333 |
| 48 | 1.000171 | 16.001405000 | 997.77 | 62.377388 | . 01603146 | 8.888 |
| 49 | 1.000211 | 17.001651800 | 1060.6 | 62.374893 | . 01603210 | 9.444 |
| 50 | 1.000254 | 18.001924200 | 1122.8 | 62.372212 | . 01603278 | 10.000 |
| 51 | 1.000302 | 19.002223000 | 1185.1 | 62.369219 | . 01603355 | 10.555 |
| 52 | 1.000353 | 20.002549300 | 1248.0 | 62.366039 | . 01603437 | 11.111 |
| 53 | 1.000408 | 21.002924100 | 1310.1 | 62.362 611 | . 01603525 | 11.666 |
| 54 | 1.000468 | 22.003288000 | 1372.3 | 62.358871 | . 01603621 | 12.222 |
| 55 | 1.000531 | 23.003702400 | 1434.3 | 62.354944 | . 01603723 | 12.777 |
| 56 | 1.000597 | 24.004147900 | 1496.4 | 62.350831 | . 01603828 | 13.333 |
| 57 | 1.000668 | 25.004625600 | 1558.6 | 62.346407 | . 01603942 | 13.888 |
| 58 | 1.000740 | 26.005136200 | 1620.9 | 62.341921 | . 01604057 | 14.444 |
| 59 | 1.000819 | 27.005680800 | 1683.2 | 62.337000 | . 01604184 | 15.000 |
| 60 | 1.000901 | 28.006260000 | 1745.5 | 62.331893 | . 01604316 | 15.555 |
| 61 | 1.000986 | 29.006874900 | 1807.8 | 62.326620 | . 01604451 | 16.111 |
| 62 | 1.001075 | 30.007526300 | 1870.1 | 62.321059 | . 01604594 | 16.666 |
| 63 | 1.001167 | 31.008214900 | 1932.4 | 62.315333 | . 01604741 | 17.222 |
| 64 | 1.001262 | 32.008941600 | 1994.4 | 62.309420 | . 01604894 | 17.777 |
| 65 | 1.001362 | 33.009707300 | 2056.6 | 62.303198 | . 01605054 | 18.333 |
| 66 | 1.001464 | 34.010513 | 2118.7 | 62.296852 | . 01605218 | 18.888 |
| 67 | 1.001570 | 35.011359 | 2180.8 | 62.290259 | . 01605388 | 19.444 |
| 68 | 1.001680 | 36.012246 | 2242.9 | 62.283418 | . 01605564 | 20.000 |
| 69 | 1.001793 | 37.013175 | 2305.0 | 62.276293 | . 01605748 | 20.555 |
| 70 | 1.001909 | 38.014148 | 2367.1 | 62.269183 | . 01605921 | 21.111 |
| 71 | 1.002028 | 39.015164 | 2429.2 | 62.261788 | . 01606122 | 21.666 |
| 72 | 1.002151 | 40.016224 | 2491.2 | 62.254146 | . 01606318 | 22.222 |
| 73 | 1.002277 | 41.017330 | 2553.2 | 62.246320 | . 01606521 | 22.777 |
| 74 | 1.002406 | 42.018482 | 2615.2 | 62.238309 | . 01606728 | 23.333 |
| 75 | 1.002539 | 43.019680 | 2677.1 | 62.230052 | . 01606941 | 23.888 |
| 76 | 1.002675 | 44.020926 | 2739.2 | 62.221612 | . 01607158 | 24.444 |
| 77 | 1.002814 | 45.022220 | 2801.0 | 62.212987 | . 01607382 | 25.000 |
| 78 | 1.002956 | 46.023563 | 2862.8 | 62.204179 | . 01607610 | 25.555 |
| 79 | 1.003101 | 47.024956 | 2924.6 | 62.195187 | . 01607841 | 26.111 |
| 80 | 1.003249 | 48.026398 | 2985.4 | 62.186012 | . 01608078 | 26.666 |
| 81 | 1.003400 | 49.027893 | 3048.2 | 62.176654 | . 01608321 | 27.222 |
| 82 | 1.003554 | 50.029438 | 3111.0 | 62.167113 | . 01608567 | 27777 |
| 83 | 1.003711 | 51.031039 | 3172.8 | 62.157388 | . 01608820 | 28.333 |
| 84 | 1.003872 | 52.032688 | 3234.4 | 62.147420 | . 01609077 | 28.888 |
| 85 | 1.004035 | 53.034394 | 3296.2 | 62.137330 | . 01609338 | 29.444 |
| 86 | 1.004199 | 54.036154 | 3358.2 | 62.127182 | . 01609601 | 30.000 |
| 87 | 1.004370 | 55.037969 | 3418.7 | 62.116605 | . 01609875 | 30.555 |
| 88 | 1.004542 | 56.039841 | 3480.4 | 62.105969 | . 01610151 | 31.111 |
| 89 | 1.004717 | 57.041769 | 3542.1 | 62.095152 | . 01610432 | 31.666 |
| 90 | 1.004894 | 58.043754 | 3603.8 | 62.084214 | . 01610715 | 32.222 |


| Temp. Fahr. | $\begin{aligned} & \text { Volume } \\ & 1 \text { at } 39^{\circ} . \end{aligned}$ | Units of heat. |  | Pounds per cubic foot. | Cubic feet per pound. | Temp. Cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  | Per pound. | Per cubic foot. |  |  |  |
| 91 | 1.005094 | 59.045797 | 3665.0 | 62.071860 | . 01611036 | 32.777 |
| 92 | 1.005258 | 60.047899 | 3726.6 | 62.061734 | . 01611298 | 33 |
| 93 | 1.005444 | 61.050061 | 3788.2 | 62.050252 | . 01611597 | 33.888 |
| 94 | 1.005633 | 62.052282 | 3819.8 | 62.038591 | . 01611900 | 31.444 |
| 95 | 1.005825 | 63.054564 | 3911.2 | 62.026749 | . 01612208 | 35.000 |
| 96 | 1.006019 | 64.056907 | 3972.6 | 62.014787 | . 01612519 | 35.555 |
| 97 | 1.006216 | 65.059312 | $4 \cup 33.9$ | 62.002646 | . 01612834 | 36.111 |
| 98 | 1.006415 | 66.061780 | 4095.2 | 61.990386 | . 01613153 | $36.66{ }^{\circ}$ |
| 99 | 1.006618 | 67.064311 | 4156.5 | 61.977885 | . 01613478 | 37.222 |
| 100 | 1.006822 | 68.066906 | 4217.7 | 61.965322 | . 01613806 | 37.777 |
| 101 | 1.007030 | 69.069565 | 4278.9 | 61.952528 | . 01614140 | 38.333 |
| 102 | 1.007240 | 70.072290 | 4340.1 | 61.939612 | . 01614475 | 38.888 |
| 103 | 1.007553 | 71.075080 | 4401.3 | 61.920 370 | . 01614944 | 39.444 |
| 104 | 1.007668 | 72.077937 | 4462.5 | 61.913303 | . 01615161 | 40.000 |
| 105 | 1.007905 | 73.080861 | 4523.0 | 61.898745 | . 01615541 | 40.555 |
| 106 | 1.008106 | 74.083852 | 4585.0 | 61.886403 | . 01615863 | 41.111 |
| 107 | 1.008328 | 75.086912 | 4645.9 | 61.872778 | . 01616220 | 41.666 |
| 108 | 1.008554 | 76.090044 | 4706.8 | 61.858913 | . 01616581 | 42.222 |
| 109 | 1.008781 | 77.093239 | 4767.7 | 61.844994 | . 01616946 | 42.777 |
| 110 | 1.009032 | 78.096509 | 4828.6 | 61.829609 | . 01617348 | 43.333 |
| 111 | 1.009244 | 79.099846 | 4889.5 | 61.816622 | . 01617677 | 43.888 |
| 112 | 1.009479 | 80.103255 | 4950.4 | 61.802231 | . 01618064 | 44.444 |
| 113 | 1.009718 | 81.106740 | 5011.3 | 61.787602 | . 01618447 | 45.000 |
| 114 | 1.009956 | 82.110290 | 5072.2 | 61.773042 | . 01618829 | 45.555 |
| 115 | 1.010197 | 83.113920 | 5133.0 | 61.758305 | . 01619216 | 46.111 |
| 116 | 1.010442 | 84.117620 | 5193.7 | 61.743331 | . 01619608 | 46.666 |
| 117 | 1.010688 | 85.121400 | 5254.3 | 61.728302 | . 01620003 | 47.222 |
| 118 | 1.010938 | 86.125250 | 5314.9 | 61.713037 | . 01620403 | 47.777 |
| 119 | 1.011189 | 87.129180 | 5375.5 | 61.697719 | . 01620806 | 48.333 |
| 120 | 1.011442 | 88.133180 | 5436.1 | 61.682286 | . 01621211 | 48.888 |
| 121 | 1.011698 | 89.137260 | 5496.6 | 61.666678 | . 01621621 | 49.444 |
| 122 | 1.011956 | 90.141410 | 5557.1 | 61.650956 | . 01622034 | 50.000 |
| 123 | 1.012216 | 91.145650 | 5617.6 | 61.635123 | . 01622451 | 50.555 |
| 124 | 1.012478 | 92.149960 | 5678.1 | 61.619170 | . 01622871 | 51.111 |
| 125 | 1.012743 | 93.154350 | 5738.6 | 61.603047 | . 01623296 | 51.666 |
| 126 | 1.013010 | 94.158820 | 5798.9 | 61.586810 | . 01623724 | 52.222 |
| 127 | 1.013278 | 95.163380 | 58.59 .2 | 61.570516 | . 01624153 | 52.777 |
| 128 | 1.013550 | 96.168010 | 5919.5 | 61.553998 | . 01624590 | 53.333 |
| 129 | 1.013823 | 97.172720 | 5979.7 | 61.537423 | . 01625027 | 53.888 |
| 130 | 1.014098 | 98.177520 | 6040.0 | 61.520735 | . 01625468 | 54.444 |
| 131 | 1.014358 | 99.182390 | 6100.2 | 61.504966 | . 01625884 | 55.000 |
| 135 | 1.015505 | 103.202740 | 6340.3 | 61.435497 | . 01627724 | 57.222 |
| 110 | 1.016962 | 108.230090 | 6639.6 | 61.347282 | . 01630064 | 60.000 |
| 145 | 1.018468 | 113.259650 | 6937.9 | 61.256765 | . 01632473 | 62.777 |
| 150 | 1.020021 | 118.291470 | 7215.1 | 61.163500 | . 01634961 | 65.555 |
| 155 | 1.021619 | 123.325620 | 7531.2 | 61.067829 | . 01637523 | 68.333 |
| 160 | 1.023262 | 128.362170 | 7826.2 | 60.969776 | . 01640156 | 71.111 |
| 165 | 1.024947 | 133.401190 | 8098.1 | 60.869542 | . 01642857 | 73.888 |
| 170 | 1.026672 | 138.442730 | 8412.8 | 60.767270 | . 01645623 | 76.666 |
| 175 | 1.028438 | 143.486870 | 8704.2 | 60.662047 | . 01648477 | 79.444 |
| 180 | 1.030242 | 148.536660 | 8994.9 | 60.556699 | . 01651345 | 82.222 |
| 185 | 1.032083 | 153.583160 | 9281.9 | 60.448679 | . 01654296 | 85.000 |
| 190 | 1.033960 | $158.63 \overline{5} 450$ | 9571.6 | 60.338944 | . 01657305 | 87.777 |
| 195 | 1.035873 | 163.690570 | 9858.5 | 60.227513 | . 01660370 | 90.555 |
| 200 | 1.037819 | 168.748580 | 10318.0 | 60.114581 | . 01663489 | 93.333 |
| 205 | 1.039798 | 173.809560 | 10428.0 | 60.000168 | . 01666662 | 96.111 |
| 210 | 1.041809 | 178.873550 | 10712.0 | 59.884350 | . 01669885 | 98.888 |
| 212 | 1.042622 | 180.900000 | 10824.0 | 59.837654 | . 01671160 | 100.000 |

Properties of Water.

| Indicated pressure. |  | Temp., Fahr. scale. | Wa |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atmos. excluded Lb. per sq. in. | Atmos. excluded. Inches of mercury. |  | Units of heat. |  | Bulk, cub. ft perlb. | Weight, <br> lbs., per <br> cub. ft. | Volume wat. $=1$ at $39^{\circ}$. | Temp. Cent. scale. |
|  |  |  | $\begin{gathered} \text { Per } \\ \text { cub.ft. } \end{gathered}$ | $\begin{gathered} \text { Per } \\ \text { pound. } \end{gathered}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | 26.48 | 126.2 | 5631 | 94.36 | . 0162 | 61.58 | 1.0130 |  |
| -12 | -24.44 | 141.67 | 6583 | 109.91 | . 01630 | 61.317 | 1.0174 | 48.74 |
|  | -22.41 | 153.27 | 7331 | 121.58 | . 01637 | 61.101 | 1.0210 | 53.90 |
|  | -20.37 | 162.51 | 7974 | 130.89 | . 01638 | 60.920 | 1.0241 | 58.00 |
|  | -18.33 | 170.25 | 8421 | 138.69 | . 01644 | 60.762 | 1.0267 | 61.44 |
|  | -16.29 | 176.97 | 8812 | 145.46 | . 01647 | 60.657 | 1.0288 | 64.43 |
|  | -14.26 | 182.96 | 9203 | 151.52 | . 01652 | 60.514 | 1.0309 | 67.09 |
|  | -12.22 | 188.36 | 9531 | 156.97 | . 01656 | 60.372 | 1.0333 | 69.49 |
|  | -10.18 | 193.20 | 9755 | 161.87 | . 01659 | 60.282 | 1.0359 | 71.64 |
|  | - 8.149 | 197.60 | 9975 | 166.32 | . 01663 | 60.169 | 1.0369 | 73.60 |
|  | - 6.111 | 201.90 | 10183 | 170.67 | . 0166 | 60.072 | 1.0385 | 5.51 |
|  | - 4.074 | 205.77 | 10398 | 174.59 | . 01669 | 59.973 | 1.0401 | 77.23 |
|  | - 2.037 | 209.55 | 10613 | 178.42 | . 01672 | 59.896 | 1.0416 | 78.91 |
|  | . 0000 | 212.00 | 10824 | 180.95 | . 01674 | 59.838 | 1.0426 | 100.00 |
| . 3125 | . 6365 | 213.04 | 10883 | 181.95 | . 01675 | 59.814 | 1.0430 | 100.58 |
| +1 | +2.037 | 216.33 | 11047 | 185.29 | . 01677 | 59.735 | 1.0444 | 102.45 |
|  | + 4.074 | 219.45 | 11225 | 188.45 | . 01679 | 59.659 | 1.0457 | 104.36 |
|  | + 6.111 | 222.40 | 11389 | 191.44 | . 01680 | 59.592 | 1.0469 | 105.78 |
|  | 8.149 | 225.25 | 11550 | 194.33 | . 01681 | 59.523 | 1.0481 | 107.35 |
|  | +10.18 | 227.95 | 11718 | 197.08 | . 01684 | 59.459 | 1.0492 | 108.86 |
|  | +12.22 | 230.60 | 11868 | 199.77 | . 01686 | 59.389 | 1.0503 | 110.33 |
| + 7 | +14.26 | 233.10 | 12012 | 202.40 | . 01688 | 59.329 | 1.0514 | 111.50 |
| 8 | +16.29 | 235.49 | 12150 | 204.73 | . 01690 | 59.270 | 1.0524 | 113.05 |
|  | +18.33 | 237.81 | 12282 | 207.10 | . 01692 | 59.212 | 1.0534 | 114.00 |
| +10 | +20.37 | 240.07 | 12408 | 209.39 | . 01693 | 59.154 | 1.0545 | 115.5 |
| +11 | +22.41 | 242.24 | 12528 | 211.57 | . 01695 | 59.097 | 1.0555 | 116.8 |
| +12 | +24.44 | 244.32 | 12642 | 213.72 | . 01696 | 59.057 | 1.0564 | 117.95 |
| 13 | +26.48 | 246.35 | 12750 | 215.78 | . 01697 | 59.006 | 1.0573 | 119.08 |
| +14 | +28.52 | 248.33 | 12852 | 217.80 | . 01698 | 58.953 | 1.0589 | 120.18 |
| $+15$ | +30.55 | 250.26 | 12946 | 219.76 | . 01699 | 58.901 | 1.0590 | 121.2 |
| +16 | +32.59 | 252.13 | 13053 | 221.67 | . 01700 | 58.851 | 1.0599 | 122.2 |
| +17 | +34.63 | 253.98 | 13157 | 223.55 | . 01701 | 58.803 | 1.0607 | 123.3 |
| +18 | +36.67 | 255.77 | 13258 | 225.38 | .01702 | 58.757 | 1.0615 | 124.3 |
| $+19$ | +38.71 | 257.52 | 13336 | 227.16 | . 01703 | 58.713 | 1.0623 | 125.2 |
| +20 | +40.74 | 259.22 | 13430 | 228.89 | . 01704 | 58.671 | 1.0631 | 126.2 |
| +21 | +42.78 | 260.88 | 13520 | 230.59 | . 01705 | 58.631 | 1.0639 | 127.1 |
| + | +44.82 | 262.50 | 13608 | 232.24 | . 01707 | 58.592 | 1.0646 | 128 |
|  | +46.85 | 264.09 | 13694 | 233.86 | . 01708 | 58.560 | 1.0654 | 128 |
| +2 | +48.89 | 265.65 | 13778 | 235.45 | . 01709 | 58.517 | 1.0661 | 129.8 |
|  | +50.93 | 267.17 | 13860 | 237.00 | . 01710 | 58.481 | 1.0668 | 130.6 |
|  | +52.97 | 268.66 | 13940 | 238.52 | . 01711 | 58.435 | 1.0675 | 131.4 |
| +27 | $+55.00$ | 270.12 | 14018 | 240.02 | . 01712 | 58.400 | 1.0684 | 132.2 |
|  | +57.04 | 271.55 | 14094 | 241.48 | . 01713 | 58.366 | 1.0688 | 133.0 |
| + | +59.08 | 272.96 | 14168 | 242.92 | . 01714 | 58.332 | 1.0695 | 133 |
|  | +61.11 | 274.33 | 14241 | 244.32 | . 01715 | 58.298 | 1.0701 | 134. |
|  | +63.15 | 275.68 | 14314 | 245.70 | . 01716 | 58.264 | 1.0708 | 135.3 |
|  | +65.19 | 277.01 | 14385 | 247.06 | . 01717 | 58.230 | 1.0714 | 136. |
|  | +67.23 | 278.32 | 14454 | 248.40 | . 01718 | 58.197 | 1.0720 | 13. |
|  | +69.20 | 279.62 | 14522 | 249.73 | . 01719 | 58.164 | 1.0726 | 137. |
|  | +71.30 | 280.89 | 14592 | 251.03 | . 01720 | 58.131 | 1.0732 | 138.2 |
| +36 | +73.34 | 282.14 | 14659 | 252.30 | . 01721 | 58.098 | 1.0738 | 138. |
| +37 | +75.38 | 283.39 | 14725 | 253.58 | . 01722 | 58.066 | 1.0744 | 139.6 |
|  | +77.41 | 284.58 | 14789 | 254.80 | . 01723 | 58.035 | 1.0750 | 140.3 |
| $+$ | +79.45 | 285.76 | 14852 | 256.01 | . 01724 | 58.004 | 1.0756 | 140 |
| 1 | +81.49 | 286.96 | 14913 | 257.24 | . 017725 | 57.972 | 1.0761 | 141.6 |
| +41 | +83.52 | 288.06 | 14973 | 258.38 | . 01726 | 57.941 | 1.0767 | 142.2 |
| +42 +43 | +85.56 | 289.24 | 15032 | 259.67 | . 01727 | 57.910 | 1.0773 | 142 |
| 44 | +87.61 | 290.37 | 15091 | 260.71 | . 01728 | 57.879 | 1.0778 | 143.5 |
| +44 +45 | +89.64 | 291.48 | 15149 | 261.87 | . 01729 | 57.848 | 1.0783 | 144.1 |
| +45 | +91.67 | 292.58 | 15208 | 262.99 | . 01730 | 57.817 | 1.0789 |  |

Properties of Water.

| Indicated pressure. |  | Temp., Fahr. scale. | Water. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atmos. excluded. Lb. per sq. in | Atmos. excluded. Inches of mercury. |  | Units of heat. |  | Bulk, cub. ft. per lb. | Weight, lbs., per cub. ft. | Volume wat. $=1$ at $39^{\circ}$. | Temp., Cent. scale. |
|  |  |  | $\begin{gathered} \text { Per } \\ \text { cub.ft. } \end{gathered}$ | Per pound. |  |  |  |  |
| 46 | + 93.71 | 293.66 | 15265 | 264.10 | . 01731 | 57.786 | 1.0794 | 145.37 |
| 47 | + 95.75 | 294.73 | 15321 | 265.20 | . 01732 | 57.769 | 1.0799 | 145.96 |
| 48 | + 97.78 | 295.78 | 15377 | 266.27 | . 01733 | 57.742 | 1.0804 | 146.54 |
| 49 | +99.82 | 296.82 | 15432 | 267.34 | . 01734 | 57.714 | 1.0809 | 147.12 |
| 50 | +101.8 | 297.84 | 15485 | 268.39 | . 01735 | 57.687 | 1.0814 | 147.69 |
| 51 | +103.9 | 298.85 | 15536 | 269.42 | . 01735 | 57.660 | 1.0820 | 148.25 |
| 52 | +105.9 | 299.85 | 15588 | 270.45 | . 01736 | 57.633 | 1.0825 | 148.80 |
| 53 | +108.0 | 300.84 | 15639 | 271.46 | . 01737 | 57.606 | 1.0830 | 149.34 |
| 54 | $+110.0$ | 301.81 | 15690 | 272.46 | . 01737 | 57.580 | 1.0835 | 149.89 |
| 55 | +112.0 | 302.77 | 15739 | 273.44 | . 01738 | 57.554 | 1.0840 | 150.43 |
| 56 | +114.1 | 303.72 | 15789 | 274.42 | . 01739 | 57.529 | 1.0844 | 150.95 |
| 57 | +116.1 | 304.69 | 15839 | 275.40 | . 01739 | 57.504 | 1.0849 | 151.48 |
| 58 | $+118.1$ | 305.60 | 15888 | 276.35 | . 01740 | 57.480 | 1.0854 | 152.00 |
| 59 | +120.2 | 306.52 | 15936 | 277.30 | . 01741 | 57.456 | 1.0859 | 152.51 |
| - 60 | +122.2 | 307.42 | 15983 | 278.22 | . 01741 | 57.432 | 1.0863 | 153.01 |
| - 61 | +124.3 | 308.38 | 16029 | 279.14 | . 01742 | 57.410 | 1.0867 | 153.51 |
| - 62 | +126.3 | 309.22 | 16075 | 280.07 | . 01743 | 57.388 | 1.0871 | 154.01 |
| 63 | +128.3 | 310.11 | 16120 | 280.98 | . 01743 | 57.364 | 1.0875 | 154.50 |
| 64 | +130.4 | 310.99 | 16165 | 281.87 | . 01744 | 57.344 | 1.0880 | 154.99 |
| 65 | +132.4 | 311.86 | 16209 | 282.78 | . 01745 | 57.322 | 1.0884 | 155.48 |
| 66 | +134.4 | 312.72 | 16254 | 283.66 | . 01745 | 57.300 | 1.0888 | 155.95 |
| 67 | +136.5 | 313.57 | 16298 | 284.54 | . 01746 | 57.278 | 1.0892 | 156.42 |
| -68 | +138.5 | 314.42 | 16342 | 285.41 | . 01746 | 57.254 | 1.0897 | 156.90 |
| 69 | $+140.5$ | 315.25 | 16384 | 286.27 | . 01747 | 57.232 | 1.0901 | 157.36 |
| 70 | +142.6 | 316.08 | 16426 | 287.12 | . 01748 | 57.210 | 1.0905 | 157.82 |
| + 71 | +144.6 | 316.90 | 16467 | 287.96 | . 01748 | 57.188 | 1.0909 | 158.28 |
| +72 | +146.7 | 317.71 | 16507 | 288.80 | . 01749 | 57.166 | 1.0913 | 158.73 |
| + 73 | +148.7 | 318.51 | 16547 | 289.62 | . 01750 | 57.144 | 1.0918 | 159.17 |
| 74 | +150.7 | 319.31 | 16587 | 290.44 | . 01751 | 57.122 | 1.0921 | 159.62 |
| + 75 | +152.8 | 320.10 | 16637 | 291.26 | . 01752 | 57.101 | 1.0926 | 160.05 |
| 76 | +154.8 | 320.88 | 16677 | 292.06 | . 01752 | 57.080 | 1.0929 | 160.49 |
| 77 | +156.8 | 321.66 | 16717 | 292.85 | . 01753 | 57.059 | 1.0935 | 160.92 |
| 78 | +158.9 | 322.42 | 16756 | 293.65 | . 01753 | 57.038 | 1.0937 | 161.34 |
| 79 | +160.9 | 323.18 | 16795 | 294.43 | . 01754 | 57.017 | 1.0941 | 161.76 |
| 80 | +163.0 | 323.94 | 16834 | 295.21 | . 01755 | 56.996 | 1.0945 | 162.17 |
| 81 | +165.0 | 324.67 | 16872 | 295.96 | . 01756 | 56.975 | 1.0949 | 162.59 |
| +82 | +167.0 | 325.43 | 16910 | 296.75 | . 01756 | 56.954 | 1.0953 | 163.02 |
| +83 | +169.1 | 326.17 | 16947 | 297.51 | . 01757 | 56.933 | 1.0956 | 163.43 |
| 84 | +171.1 | 326.90 | 16984 | 298.26 | . 01757 | 56.912 | 1.0960 | 163.83 |
| -85 | +173.1 | 327.63 | 17020 | 299.01 | . 01758 | 56.891 | 1.0964 | 164.24 |
| 86 | +175.2 | 328.35 | 17056 | 299.75 | . 01759 | 56.871 | 1.0968 | 164.64 |
| 87 | +177.2 | 329.07 | 17092 | 300.50 | . 01759 | 56.862 | 1.0972 | 165.04 |
| 88 | +179.2 | 329.78 | 17127 | 301.23 | . 01760 | 56.844 | 1.0975 | 165.43 |
| 89 | +181.3 | 330.48 | 17162 | 301.95 | . 01761 | 56.826 | 1.0979 | 165.82 |
| 90 | +183.3 | 331.18 | 17197 | 302.67 | . 01761 | 56.808 | 1.0982 | 166.21 |
| 91 | +185.4 | 331.87 | 17231 | 303.38 | . 01762 | 56.790 | 1.0986 | 166.59 |
| 92 | +187.4 | 332.56 | 17265 | 304.10 | . 01763 | 56.772 | 1.0989 | 166.98 |
| 93 | +189.4 | 333.24 | 17299 | 301.80 | . 01763 | 56.754 | 1.0993 | 167.35 |
| 94 | +191.5 | 333.92 | 17333 | 305.50 | . 01764 | 56.735 | 1.0996 | 167.77 |
| 95 | +193.5 | 334.59 | 17366 | 306.19 | . 01765 | 56.716 | 1.0999 | 168.10 |
| 96 | +195.5 | 335.26 | 17399 | 306.88 | . 01765 | 56.699 | 1.1003 | 168.47 |
| 98 | +199.6 | 336.58 | 17465 | 308.34 | . 01767 | 56.664 | 1.1010 | 169.21 |
|  | +201.6 | 337.23 | 17497 | 308.91 | . 01768 | 56.647 | 1.1013 | 169.57 |
| $+100$ | +203.7 | 337.89 | 17529 | 309.60 | . 01769 | 56.629 | 1.1017 | 169.94 |
| +105 | +213.9 | 341.0 | 17688 | 312.87 | . 01772 | 56.549 | 1.1035 | 171.70 |
| +110 | +224.1 | 344.1 | 17840 | 316.04 | . 01775 | 56.469 | 1.1050 | 173.40 |
| +115 | +234.2 | 347.1 | 17993 | 319.12 | . 01778 | 56.389 | 1.1065 | 175.06 |
| +120 +125 | +244.4 | 350.0 | 18136 | 322.13 | . 01781 | 56.309 | 1.1080 | 176.68 |
| +125 | +254.6 | 352.8 | 18278 | 325.06 | . 01784 | 56.220 | 1.1095 | 178.25 |
| +130 +135 | +264.8 | 355.6 | 18413 | 327.91 | . 01786 | 56.146 | 1.1110 | 179.78 |
| +135 | +275.0 | 358.4 | 18549 | 330.75 | . 01788 | 56.073 | 1.1124 | 181.35 |

## Density and Volume of Water.

## Rossetti.

Centigrade Temperatures.

| Temp. Cent. | Density | Volume. | Temp. Cent. | Density. | Volume. | Temp Cent | Density. | Volume. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -10 | . 99814 | 1.00186 | 14 | . 99930 | 1.00070 | 38 | . 99310 | 1.00694 |
| -9 | . 99843 | 1.00157 | 15 | . 99916 | 1.00084 | 39 | .99?73 | 1.00732 |
| - 8 | . 99868 | 1.00132 | 16 | . 99900 | 1.00100 | 40 | . 99235 | 1.00770 |
| - 7 | . 99891 | 1.00109 | 17 | . 99884 | 1.00116 | 41 | . 99197 | 1.00809 |
| -6 | . 99912 | 1.00088 | 18 | . 99865 | 1.00135 | 42 | . 99158 | 1.00849 |
| - 5 | . 99930 | 1.00070 | 19 | . 99846 | 1.00154 | 43 | . 99118 | 1.00889 |
| -4 | . 99994 | 1.00054 | 20 | . 99826 | 1.00174 | 44 | . 99078 | 1.00929 |
| -3 | . 99959 | 1.00041 | 21 | . 99805 | 1.00196 | 45 | . 99037 | 1.00971 |
| -2 | . 99970 | 1.00030 | 22 | . 99783 | 1.00218 | 46 | . 98996 | 1.01014 |
| -1 | . 99980 | 1.00020 | 23 | . 99760 | 1.00240 | 47 | . 98954 | 1.01057 |
| 0 | . 99987 | 1.00013 | 24 | . 99737 | 1.00264 | 48 | . 98910 | 1.01101 |
| 1 | . 99993 | 1.00007 | 25 | . 99712 | 1.00289 | 49 | . 98865 | 1.01148 |
| 2 | . 99997 | 1.00003 | 26 | . 99687 | 1.00314 | 50 | . 98820 | 1.01195 |
| 3 | . 99999 | 1.00001 | 27 | . 99660 | 1.00341 | 55 | . 98582 | 1.01439 |
| 4 | 1.00000 | 1.00000 | 28 | . 99633 | 1.00368 | 60 | . 98338 | 1.01691 |
| 5 | . 99999 | 1.00001 | 29 | . 99605 | 1.00396 | 65 | . 98074 | 1.01964 |
| 6 | . 99997 | 1.00003 | 30 | . 99577 | 1.00425 | 70 | . 97794 | 1.02256 |
| 7 | . 99993 | 1.00007 | 31 | . 99547 | 1.00455 | 75 | . 97498 | 1.02566 |
| 8 | . 99989 | 1.00011 | 32 | . 99517 | 1.00486 | 80 | . 97194 | 1.02887 |
| 9 | . 99983 | 1.00018 | 33 | . 99485 | 1.00518 | 85 | . 96879 | 1.03221 |
| 10 | . 99975 | 1.00025 | 34 | . 99452 | 1.00551 | 90 | . 96556 | 1.03567 |
| 11 | . 99965 | 1.00034 | 35 | . 99418 | 1.00586 | 95 | . 96219 | 1.03931 |
| 12 | . 99955 | 1.00045 | 36 | . 99383 | 1.00621 | 100 | . 95865 | 1.04312 |
| 13 | . 99943 | 1.00057 | 37 | . 99347 | 1.00657 |  |  |  |

Table of Water=heads, Equivalent Pressures, Work,
and Horse=power.
Pelton Water-wheel Company.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 43 | 834 | . 03 | 500 | 216.50 | 417000 | 12.64 |
| 2 | . 87 | 1668 | . 05 | 525 | 227.33 | 437850 | 13.27 |
| 3 | 1.30 | 2502 | . 08 | 550 | 238.15 | 458700 | 13.90 |
| 4 | 1.73 | 3336 | . 10 | 575 | 248.98 | 479550 | 14.53 |
| 5 | 2.17 | 4170 | . 13 |  |  |  |  |
| 6 | 2.60 | 5004 | .15 | 600 | 259.80 | 500400 | 15.16 |
| 7 | 3.03 | 5838 | . 18 | 625 | 270.63 | 521250 | 15.79 |
| 8 | 3.46 | $\checkmark 6672$ | . 20 | 650 | 281.45 | 512100 | 16.42 |
| 9 | 3.90 | 7506 |  | 675 | 292.28 | 562950 | 17.03 |
| 10 | 4.33 4.76 | 8340 | . 25 | 700 | 303.10 | 583800 | 17.68 |
| 12 | 5.20 | 10008 | . 30 | 750 | 3 | 625500 | 18.95 |
| 13 | 5.63 | 10842 | . 33 | 775 | ${ }^{335.58}$ | 646350 | 19.58 |
| 14 | 6.06 | 11676 | . 35 |  |  |  |  |
| 15 | 6.50 | 12510 | . 38 | 800 | 346.40 | 667200 | 20.20 |
| 16 | 6.93 | 13344 | . 40 | 825 | 357.23 | 688050 | 20.85 |
| 17 | 7.36 | 14178 | . 43 | 8.50 | 368.05 | 708900 | 21.48 |
| 18 | 7.79 | 15012 | . 46 | 875 | 378.88 | 729750 | 22.11 |
| 19 | 8.23 | 15846 | . 48 |  |  |  |  |
| 20 | 8.66 | 16680 | . 50 | 900 925 | 389.70 400.53 | 750600 771450 | 22.74 23.38 |
| 30 | 12.99 | 25020 | . 76 | 950 | 411.35 | 792300 | 24.01 |
| 40 | 17.32 | 33360 | 1.01 | 975 | 422.18 | 813150 | 24.64 |
| 50 | 21.65 | 41700 | 1.26 |  |  |  |  |
| 60 | 25.98 | 50040 | 1.52 | 1000 | 433.00 | 834000 | 25. 27 |
| 70 | 30.31 | 58380 | 1.77 | 1025 | 443.83 | 854850 | 2.5 .90 |
| 80 | 34.64 | 66720 | 2.02 | 1050 | 4.54 .65 | 875700 | 26.53 |
| 90 | 38.97 | 75060 | 2.27 | 1075 | 465.48 | 896550 | 27.17 |
| 100 | 43.30 | 83400 | 2.53 | 1100 | 476.30 | 917400 | 27.80 |
| 125 | 54.13 | 104250 | 3.16 | 1125 | 487.13 | 938250 | 28.43 |
| 150 | 64.95 | 125100 | 3.79 | 1150 | 497.95 | 959100 | 29.06 |
| 175 | 75.78 | 145950 | 4.42 | 1175 | 508.78 | 979950 | 29.69 |
| $200$ | 86.60 | 166800 | 5.05 | 1200 | 519.60 | 1000800 | 30.33 |
| 250 | 108.25 | 1808500 | 6.68 | 1250 | 541.25 | 1042500 | 31.59 |
| 275 | 119.08 | 229350 | 6.94 | 1275 | 552.08 | 1063350 | 32.23 |
| 300 | 129.90 | 250200 | 7.57 | 1300 | 562.90 | 1084200 | 32.86 |
| 325 | 140.73 | 271050 | 8.22 | 1325 | 573.73 | 1105050 | 33.49 |
| 350 | 151.55 | 291900 | 8.85 | 1350 | 584.55 | 1125900 | 34.12 |
| 375 | $162.38$ | 312750 | 9.15 | 1375 | 595.38 | 1146750 | 34.75 |
| 400 | 173.20 | 333600 | 10.11 | 1400 | 606.20 | 1167600 | 35.38 |
| 425 | 184.03 | 354450 | 10.74 | 1425 | 617.03 | 1188450 | 36.01 |
| 450 | 194.85 | 375300 | 11.38 | 1450 | 627.85 | 1209300 | 36.64 |
| 475 | 205.68 | 396150 | 12.01 | 1475 | 638.68 | 1230150 | 37.28 |

Table of Water＝heads，etc．－Continued．

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1500 | 649.50 | 1251000 | 37.91 | 2300 | 995.90 | 1918200 | 58.12 |
| 1525 | 660.33 | 1271850 | 38.54 | 2325 | 1006．73 | 1939050 | 58.75 |
| 1550 | 671.15 | 1292700 | 39.17 | 2350 | 1017.55 | 1959900 | 59.39 |
| 1575 | 681.98 | 1313550 | 39.80 | 2375 | 1028.38 | 1980750 | 60.02 |
| 1600 | 692.80 | 1334400 | 40.44 | 2400 | 1039.20 | 2001600 | 60.65 |
| 1625 | 703.63 | 1355250 | 41.07 | 2425 | 1050.03 | 2022450 | 61.28 |
| 1650 | 714.45 | 1376100 | 41.70 | 2450 | 1060.85 | 2043300 | 61.91 |
| 1675 | 725.28 | 1396950 | 42.33 | 2475 | 1071.68 | 2064150 | 62.55 |
| 1700 | 736.10 | 1417800 | 42.96 | 2500 | 1082.50 | 2085000 | 63.18 |
| 1725 | 746.93 | 1438650 | 43.59 | 2525 | 1093.33 | 2105850 | 63.81 |
| 1750 | 757.75 | 1459500 | 44.22 | 2550 | 1104.15 | 2126700 | 64.44 |
| 1775 | 768.58 | 1480350 | 44.85 | 2575 | 1114.98 | 2147550 | 65.07 |
| 1800 | 779.40 | 1501200 | 45.49 | 2600 | 1125.80 | 2168400 | 65.70 |
| 1825 | 790.23 | 1522050 | 46.13 | 2625 | 1136.63 | 2189250 | 66.34 |
| 1850 | 801.05 | 1542900 | 46.76 | 2650 | 1147.45 | 2210100 | 66.97 |
| 1875 | 811.88 | 1563750 | 47.39 | 2675 | 1158.28 | 2230950 | 67.60 |
| 1900 | 822.70 | 1584600 | 48.02 | 2700 | 1169.10 | 2251800 | 68.23 |
| 1925 | 833.53 | 1605450 | 48.65 | 2725 | 1179.93 | 2272650 | 68.85 |
| 1950 | 844.35 | 1626300 | 49.29 | 2750 | 1190.75 | 2293500 | 69.49 |
| 1975 | 855.18 | 1647150 | 49.92 | 2775 | 1201.58 | 2314350 | 70.12 |
| 2000 | 866.00 | 1668000 | 50.55 | 2800 | 1212.40 | 2335200 | 70.75 |
| 2025 | 876.83 | 1688850 | 51.18 | 2825 | 1223.23 | 2356050 | 71.39 |
| 2050 | 887.65 | 1709700 | 51.81 | 2850 | 1234.05 | 2376900 | 72.02 |
| 2075 | 898.48 | 1730550 | 52.44 | 2875 | 1244.88 | 2397750 | 72.65 |
| 2100 | 909.30 | 1751400 | 53.07 | 2900 | 1255.70 | 2418600 | 73.28 |
| 2125 | 920.13 | 1772250 | 53.70 | 2925 | 1266.53 | 2439450 | 73.92 |
| 2150 | 930.95 | 1793100 | 54.33 | 2950 | 1277.35 | 2460300 | 74.55 |
| 2175 | 941.78 | 1813950 | 54.96 | 2975 | 1288.18 | 2481150 | 75.18 |
| 2200 | 952.60 | 1834800 | 55.60 | 3000 | 1299.00 | 2502000 | 75.82 |
| 2225 | 963.43 | 1855650 | 56.23 |  |  |  |  |
| 2250 | 974.25 | 1876500 | 56.86 |  |  |  |  |
| 2275 | 985.08 | 1897350 | 57.49 |  |  |  |  |

The head，－vertical distance to which water is pumped above level of supply．Constant used for equivalent pressure $=0.433$ ，which is the press－ ure per square inch of 1 foot－head of water at $62^{\circ} \mathrm{F}$ ．

1 gallon of water at $62^{\circ} \mathrm{F}$ ．weighs 8.34 pounds．
1 horse－power $=33,000$ foot－pounds per minute．
If equivalents of heads that are not tabulated are desired，divide the head into heads that are given，and add their equivalents．

E．g．，to find the equivalent pressure for a head of 129 feet， $129=$ $125+4$ ．
$\left.\begin{array}{r}125 \text { feet }=54.13 \text { pounds } \\ 4 \text { feet }=1.74 \text { pounds }\end{array}\right\}$ sum $55.86=$ pounds $=$ equivalent pressure of

The pressure of 1 foot-head of water, taking the density at the average temperature of $62^{\circ} \mathrm{F}$., is 0.433 pound per square inch. The head corresponding to a pressure of 1 pound per square inch is 2.3095 feet.

The pressure within a vessel is the same upon every square inch of its surface, regardless of the shape or size of the vessel, and is that due to the head of water upon it. The horizontal pressure against a wall or dam varies as the square of the height. If $h$ be the height of the dam, and $w$ the weight of a cubic foot of water the pressure per foot-width will be $1 / 2 w h^{2}$, and its point of application will be two-thirds of the distance from the top.

The theoretical velocity of issuing from an orifice is the same as that which would be acquired by a body falling from the height of the head of water above the orifice. This is

$$
V=\sqrt{2 g h},
$$

in which $h$ is the head of water; $g$, the acceleration of gravity $=32.2$; and $V$, the velocity, in feet, per second. In practice, this theoretical velocity is not attained, owing to various resistances, but the principle should always be borne in mind. If the water is under a pressure other than that due to its own weight, the head corresponding to that pressure may be found, taking 2.3095 feet to the pound, and this value used in the formula.

If $a$ be the area of a jet, in square inches; $v$, its velocity, in feet, per second; and $w$, the weight of a cubic foot of water, the energy, in footpounds, per second will be

$$
K=\frac{w a v^{2}}{2 g}
$$

The coefficient of discharge of a jet of water is the proportion of the full theoretical discharge which is realized in practice. As a result of many experiments this coefficient may be given a mean value of 0.61 . If, therefore, the area of an opening be multiplied by the theoretical velocity = $\sqrt{2 g h}$, and 61 per cent. of this taken, the actual discharge will be found. This is true for orifices in the comparatively thin wall or bottom of the vessel containing the water; the area of the orifice being small compared with the size of the reservoir, and the edges having a definite square corner.

When, instead of a mere orifice, a short tube or nozzle is used, having a length of about three times its diameter, the coefficient of discharge is about 80 per cent. of the theoretical. By using smooth conveying nozzles, with the inner edges rounded, the coefficient may be raised to about 97 per cent.

In computing the flow of water through long pipes the principal loss to be provided for is that due to friction between the water and the surface of the pipe. The resistance due to friction may be computed in terms of feet of head,-that is, the number of feet of head necessary to overcome the resistance of friction may be found and deducted from the actual total head available.

## Theoretical Velocity of Water Due to Given Heads.

|  |  | $\begin{aligned} & \text { Z } \\ & \text { E. } \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.205 | 481.5 | 51 | 57.309 | 3438.5 | 105 | 82.231 | 4933.9 |
| 2 | 11.345 | 681.7 | 52 | 57.869 | 3472.1 | 110 | 84.166 | 5050.0 |
| 3 | 13.899 | 833.9 | 53 | 58.422 | 3505.3 | 115 | 86.058 | 5163.5 |
| 4 | 16.050 | 963.0 | 54 | 58.971 | 3538.2 | 120 | 87.909 | 5274.5 |
| 5 | 17.944 | 1076.6 | 55 | 59.515 | 3570.9 | 125 | 89.722 | 5383.3 |
| 6 | 19.657 | 1179.4 | 56 | 60.053 | 3603.2 | 130 | 91.499 | 5489.9 |
| 7 | 21.232 | 1273.6 | 57 | 60.587 | 3635.2 | 135 | 93.242 | 5594.5 |
| 8 | 22.698 | 1361.8 | 58 | 61.116 | 3666.9 | 140 | 94.953 | 5697.2 |
| 9 | 24.075 | 1444.5 | 59 | 61.641 | 3698.4 | 145 | 96.633 | 5798.0 |
| 10 | 25.377 | 1522.6 | 60 | 62.161 | 3729.6 | 150 | 98.285 | 5897.1 |
| 11 | 26.615 | 1596.9 | 61 | 62.677 | 3760.6 | 155 | 99.909 | 5994.5 |
| 12 | 27.799 | 1667.9 | 62 | 63.188 | 3791.3 | 160 | 101.50 | 6090.5 |
| 13 | 28.934 | 1736.0 | 63 | 63.696 | 3821.7 | 165 | 103.08 | 6184.9 |
| 14 | 30.026 | 1801.6 | 64 | 64.200 | 3852.0 | 170 | 104.63 | 6277.9 |
| 15 | 31.080 | 1864.8 | 65 | 64.699 | 3881.9 | 175 | 106.16 | 6369.6 |
| 16 | 32.100 | 1926.0 | 66 | 65.195 | 3911.7 | 180 | 107.66 | 6460.0 |
| 17 | 33.087 | 1985.2 | 67 | 65.687 | 3941.2 | 185 | 109.15 | 6549.1 |
| 18 | 34.047 | 2042.8 | 68 | 66.175 | 3970.3 | 190 | 110.61 | 6637.0 |
| 19 | 34.980 | 2098.8 | 69 | 66.660 | 3999.6 | 195 | 112.06 | 6723.7 |
| 20 | 35.888 | 2153.3 | 70 | 67.141 | 4028.5 | 200 | 113.49 | 6809.4 |
| 21 | 36.775 | 2206.5 | 71 | 67.619 | 4057.1 | 205 | 114.90 | 6894.0 |
| 22 | 37.640 | 2258.4 | 72 | 68.094 | 4085.6 | 210 | 116.29 | 6977.6 |
| 23 | 38.486 | 2309.1 | 73 | 68.565 | 4113.9 | 215 | 117.66 | 7060.1 |
| 24 | 39.314 | 2358.8 | 74 | 69.033 | 4142.0 | 220 | 119.03 | 7141.8 |
| 25 | 40.125 | 2407.5 | 75 | 69.498 | 4169.9 | 225 | 120.00 | 7222.5 |
| 26 | 40.919 | 2455.1 | 76 | 69.960 | 4197.6 | 230 | 121.70 | 7302.3 |
| 27 | 41.699 | 2501.9 | 77 | 70.419 | 4225.1 | 235 | 123.02 | 7381.2 |
| 28 | 42.464 | 2547.8 | 78 | 70.874 | 4252.4 | 240 | 124.32 | 7459.3 |
| 29 | 43.215 | 2592.9 | 79 | 71.327 | 4279.6 | 245 | 125.60 | 7536.6 |
| 30 | 43.954 | 2637.2 | 80 | 71.777 | 4306.6 | 250 | 126.88 | 7613.1 |
| 31 | 44.681 | 2680.8 | 81 | 72.225 | 4333.5 | 255 | 128.15 | 7648.8 |
| 32 | 45.386 | 2723.7 | 82 | 72.673 | 4360.4 | 260 | 129.39 | 7763.9 |
| 33 | 46.100 | 2766.0 | 83 | 73.111 | 4386.6 | 265 | 130.63 | 7837.6 |
| 34 | 46.793 | 2783.0 | 84 | 73.550 | 4413.0 | 270 | 131.86 | 7911.8 |
| 35 | 47.476 | 2848.5 | 85 | 73.986 | 4439.2 | 275 | 133.08 | 7984.8 |
| 36 | 48.150 | 2889.0 | 86 | 74.420 | 4465.2 | 280 | 134.28 | 8057.0 |
| 37 | 48.814 | 2928.8 | 87 | 74.852 | 4491.1 | 285 | 135.48 | 8128.6 |
| 38 | 49.469 | 2968.1 | 88 | 75.281 | 4516.8 | 290 | 136.66 | 8199.6 |
| 39 | 50.116 | 3006.9 | 89 | 75.707 | 4542.4 | 295 | 137.83 | 8270.1 |
| 40 | 50.754 | 3045.2 | 90 | 76.131 | 4567.9 | 300 | 138.99 | 8339.8 |
| 41 | 51.385 | 3083.1 | 91 | 76.553 | 4593.2 | 305 | 140.15 | 8409.0 |
| 42 | 52.007 | 3120.4 | 92 | 76.973 | 4618.3 | 310 | 141.29 | 8477.6 |
| 43 | 52.623 | 3157.4 | 93 | 77.390 | 4643.4 | 315 | 142.42 | 8545.6 |
| 44 | 53.231 | \$193.9 | 94 | 77.805 | 4668.3 | 320 | 143.55 | 8613.3 |
| 45 | 53.833 | 3229.9 | 95 | 78.217 | 4693.0 | 325) | 144.67 | 90 |
| 46 | 54.427 | 3265.6 | 96 | 78.628 | 4717.7 | 330 | 145.78 | 8760.9 |
| 47 | 55.016 | 3301.0 | 97 | 79.037 | 4742.2 | 335 | 146.88 | 8812.9 |
| 48 | 55.598 | 3335.8 | 98 | 79.443 | 4766.6 | 340 | 147.97 | 8878.4 |
| 49 | 56.175 | 3370.5 | 99 | 79.847 | 4790.8 | 345 | 149.06 | 8943.5 |
| 50 | 56.745 | 3404.7 | 100 | 80.250 | 4815.0 | 350 | 150.13 | 9007.9 |

## Flow of Water Through Pipes.

The quantity of water which flows through a pipe is measured by the product of the area of its cross-section and by the velocity of the flow.

The velocity is not uniform over the entire cross-section, but a mean velocity may be computed which will serve for purposes of computation. In order to compute the velocity two elements must be given: the slope and the hydraulic radius. The slope is the sine of the angle of inclination of the pipe, or the head divided by the length; the hydraulic radius is the area divided by the wetted perimeter. The slope is called $s$, and the hydraulic radius $r$. For pipes of circular cross-section running full, $r=$ $\frac{\text { diameter }}{4}$, the same being true when half-full.

The first attempt to express the relations between these elements was that of Chézy, in 17i5, his formula being

$$
v=C \sqrt{r s}
$$

$v$ being the velocity, in feet or metres, per second, and $C$ being a constant coefficient. A vast number of experiments have been made to determine the value of the coefficient, $C$, with the result of showing it to vary with different slopes and diameters of pipes. In 1896 Tutton collected the results of more than 1000 experiments and suggested a modification of the formula, which appears to be the most reliable one available, and which we shall use in preference to any other.

Instead of placing the two quantities, $r$ and $s$, under the radical sign, Tutton gives them independent exponents, writing the formula

$$
v=C r^{x} \mathcal{s}^{y} .
$$

By comparing the results of many experiments it appears that if the exponents are made $x=2 / 3, y=1 / 2$, the coefficient, $C$, remains practically constant for any one kind of pipe, regardless of slope or diameter. The formula then reads,

$$
v=C r^{\frac{2}{3}} s^{\frac{1}{2}}
$$

so that the cube root of the square of the hydraulic radius is taken and the square root of the slope, and the product of these, by a constant depending only upon the character of the pipe, gives the velocity.

The following values for $C$ are given for different surfaces :

## Values of $\boldsymbol{C}$ for Pipe Flow.



In order to facilitate the use of the formula the following tables are appended, giving values of $r^{\frac{2}{3}}$ and $s^{\frac{1}{2}}$. Other values may be taken from the tables of power and roots, the $2 / 3$ power being the square of the cube root, and the $1 / 2$ power being the square root.

Values of $\boldsymbol{r}^{\frac{2}{3}}$ from 0.01 to 1.

| $r$ | $r^{\frac{2}{3}}$ | $r$ | $r^{\frac{2}{3}}$ | $r$ | $r^{\frac{2}{3}}$ | $r$ | $r^{\frac{2}{3}}$ | $r$ | $r^{\frac{2}{3}}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| .01 | .0464 | .21 | .3533 | .41 | .5519 | .61 | .7193 | .81 | .8690 |
| .02 | .0737 | .22 | .3644 | .42 | .5608 | .62 | .7271 | .82 | .8761 |
| .03 | .0965 | .23 | .3754 | .43 | .5697 | .63 | .7349 | .83 | .8832 |
| .04 | .1169 | .24 | .3861 | .44 | .5785 | .64 | .7427 | .84 | .8902 |
| .05 | .1357 | .25 | .3969 | .45 | .5872 | .65 | .7503 | .85 | .8974 |
| .06 | .1533 | .26 | .4073 | .46 | .5958 | .66 | .7581 | .86 | .9044 |
| .07 | .1698 | .27 | .4177 | .47 | .6045 | .67 | .7656 | .87 | .9111 |
| .08 | .1857 | .28 | .4280 | .48 | .6131 | .68 | .7733 | .88 | .9183 |
| .09 | .2008 | .29 | .4381 | .49 | .6216 | .69 | .7809 | .89 | .9252 |
| .10 | .2155 | .30 | .4481 | .50 | .6300 | .70 | .7884 | .90 | .9322 |
| .11 | .2295 | .31 | .4580 | .51 | .6384 | .71 | .7958 | .91 | .9390 |
| .12 | .2432 | .32 | .4679 | .52 | .6465 | .72 | .8033 | .92 | .9459 |
| .13 | .2566 | .33 | .4775 | .53 | .6550 | .73 | .8107 | .93 | .9528 |
| .14 | .2696 | .34 | .4871 | .54 | .6631 | .74 | .8181 | .94 | .9596 |
| .15 | .2823 | .35 | .4966 | .55 | .6712 | .75 | .8255 | .95 | .9663 |
| .16 | .2947 | .36 | .5061 | .56 | .6795 | .76 | .8328 | .96 | .9732 |
| .17 | .3069 | .37 | .5154 | .57 | .6874 | .77 | .8401 | .97 | .9799 |
| .18 | .3188 | .38 | .5246 | .58 | .6955 | .78 | .8473 | .98 | .9866 |
| .19 | .3305 | .39 | .5338 | .59 | .7034 | .79 | .8545 | .99 | .9932 |
| .20 | .3420 | .40 | .5429 | .60 | .7113 | .80 | .8617 | 1.00 | 1.0000 |

Values of $s^{\frac{1}{2}}$ for Slopes from . 000025 to 1.

| $s$ | $S^{\frac{1}{2}}$ | $s$ | $s^{\frac{1}{2}}$ | $s$ | $s^{\frac{1}{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 000025 | . 00500 | . 000275 | . 01658 | . 006 | . 07746 |
| . 000030 | . 00547 | . 000300 | . 01732 | . 007 | . 08366 |
| . 000035 | . 00592 | . 000325 | . 01803 | . 008 | . 08944 |
| . 000040 | . 00632 | . 000350 | . 01871 | . 009 | . 09487 |
| . 000045 | . 00671 | . 000375 | . 01936 | . 01 | . 1000 |
| . 000050 | . 00707 | . 000400 | . 02000 | . 02 | . 1414 |
| . 000055 | . 00742 | . 000450 | . 02121 | . 03 | . 1732 |
| . 000060 | . 00775 | . 000500 | . 02236 | . 04 | . 2000 |
| . 000065 | . 00806 | . 000550 | . 02345 | . 05 | . 2236 |
| . 000070 | . 00837 | . 000600 | . 02449 | . 06 | . 2449 |
| . 000075 | . 00866 | . 000650 | . 02549 | . 07 | . 2646 |
| . 000080 | . 00894 | . 000700 | . 02646 | . 08 | . 2828 |
| . 000085 | . 00921 | . 000750 | . 02739 | .09' | . 3000 |
| . 000090 | . 00949 | . 000800 | . 02828 | . 1 | . 3162 |
| . 000095 | . 00975 | . 000850 | . 02915 | . 2 | . 4472 |
| . 000100 | . 01000 | . 000900 | . 03000 | . 3 | . 5477 |
| . 000125 | . 01118 | . 000950 | . 03082 | . 4 | . 6324 |
| . 000150 | . 01225 | . 001 | . 03162 | . 5 | . 7071 |
| . 000175 | . 01323 | . 002 | . 04472 | . 6 | . 7746 |
| . 000200 | . 01414 | . 003 | . 05477 | . 7 | . 8367 |
| . 000225 | . 01500 | . 004 | . 06324 | . 8 | . 8944 |
| . 000250 | . 01581 | . 005 | . 07071 | . 9 | . 9487 |

Example. A wrought-iron pipe 3 inches diameter, $=0.25$ foot, and 1000 feet long, has a head of water of 20 feet. Required the velocity?

We have

$$
\begin{aligned}
& r=\frac{0.25}{4}=0.06 \\
& s=0.02
\end{aligned}
$$

and the formula

$$
v=C r^{\frac{2}{2}} s^{\frac{1}{2}}
$$

becomes $\quad v=160 \times 0.1533 \times 0.1414=3.47$ feet per second.
Again: A brick conduit is 7.5 feet in diameter, with a slope, $s=0.00058$. Required the velocity?

Here

$$
r=\frac{7.5}{4}=1.875
$$

and we have

$$
\begin{aligned}
v & =C r^{\frac{2}{3} s^{\frac{1}{2}}} \\
& =110 \times 1.52 \times 0.024=4.01 \text { feet per second }
\end{aligned}
$$

The measured velocity in this conduit was 3.929 feet per second.

## Discharge of Water from Smooth Wrought=iron Pipes.

$$
v=160 r^{\frac{2}{s^{\frac{1}{2}}}, \text { times area } . ~}
$$

## Cubic Feet per Second.

For Cast-iron, multiply by 0.81 ; Lap Riveted, 0.72 ; Wood Ṣtave, 0.78 ; Brick, 0.68 .
Diameter, in Inches.

| Slope $=$ head length. | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 001 | . 014 | . 083 | . 249 | . 532 | . 970 | 1.591 | 2.390 |
| . 002 | . 019 | . 119 | . 351 | . 750 | 1.370 | 2.240 | 3.375 |
| . 003 | . 023 | . 145 | . 429 | . 936 | 1.680 | 2.752 | 4.135 |
| . 004 | . 026 | . 167 | . 494 | 1.062 | 1.935 | 3.180 | 4.780 |
| . 005 | . 029 | . 186 | . 549 | 1.179 | 2.175 | 3.555 | 5.341 |
| . 006 | . 032 | . 205 | . 612 | 1.280 | 2.372 | 3.900 | 5.850 |
| . 007 | . 035 | . 222 | . 657 | 1.405 | 2.565 | 4.200 | 6.320 |
| . 008 | . 037 | . 236 | . 700 | 1.500 | 2.740 | 4.500 | 6.755 |
| . 009 | . 040 | . 252 | . 742 | 1.590 | 2.910 | 4.770 | 7.170 |
| . 01 | . 043 | . 265 | . 784 | 1.675 | 3.061 | 5.026 | 7.544 |
| . 02 | . 059 | . 375 | 1.080 | 2.375 | 4.330 | 7.110 | 10.670 |
| . 03 | . 069 | . 458 | 1.357 | 2.812 | 5.310 | 8.720 | 13.100 |
| . 04 | . 081 | . 530 | 1.567 | 3.350 | 6.122 | 10.052 | 15.088 |
| . 05 | . 094 | . 593 | 1.735 | 3.650 | 6.850 | 11.250 | 16.870 |
| . 06 | . 103 | . 648 | 1.920 | 4.110 | 7.490 | 12.310 | 18.500 |
| . 07 | . 111 | . 695 | 2.072 | 4.340 | 8.100 | 13.300 | 20.000 |
| . 08 | . 118 | . 750 | 2.220 | 4.740 | 8.660 | 14.230 | 21.700 |
| . 09 | . 125 | . 795 | 2.350 | 5.022 | 9.183 | 15.078 | 22.632 |
| . 1 | . 133 | . 838 | 2.480 | 5.287 | 9.70 | 15.920 | 23.90 |
| . 2 | . 187 | 1.185 | 3.505 | 7.50 | 13.71 | 22.510 | 33.80 |
| . 3 | . 230 | 1.453 | 4.290 | 8.78 | 16.77 | 27.530 | 41.35 |
| . 4 | . 265 | 1.680 | 4.805 | 10.50 | 19.38 | 31.820 | 47.80 |
| . 5 | . 293 | 1.875 | 5.523 | 11.87 | 21.65 | 35.054 | 53.20 |
| . 6 | . 325 | 2.055 | 6.08 | 13.1 | 23.42 | 38.95 | 58.35 |

Discharge of Water from Smooth Wrought=iron Pipes.
$v=160 r^{\frac{2}{3}} s^{\frac{1}{2}}$, times area.
Cubic Feet per Second.
For Cast-iron multiply by 0.81 ; Lap Riveted, 0.72 ; Wood Stave, 0.78 ; Brick. 0.68.
Diameter, in Inches.

| $\begin{array}{r} \text { Slope }= \\ \frac{\text { head }}{\text { length }} \end{array}$ | 16 | 18 | 20 | 22 | 24 | 26 | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 001 | 3.390 | 4.650 | 6.230 | 7.935 | 10.000 | 12.420 | 15.130 |
| . 002 | 4.790 | 6.575 | 8.800 | 11.240 | 14.075 | 17.550 | 21.390 |
| . 003 | 5.865 | 8.045 | 10.770 | 13.740 | 17.250 | 21.470 | 26.170 |
| . 004 | 6.780 | 9.310 | 12.450 | 15.875 | 20.000 | 24.750 | 30.250 |
| . 005 | 7.580 | 10.400 | 13.920 | 17.760 | 22.700 | 26.300 | 33.750 |
| . 006 | 8.310 | 11.400 | 15.350 | 19.450 | 24.500 | 30.400 | 37.000 |
| . 007 | 8.970 | 12.300 | 16.460 | 21.000 | 26.475 | 32.750 | 39.900 |
| . 008 | 9.590 | 13.150 | 17.600 | 22.450 | 28.60 | 35.050 | 42.700 |
| . 009 | 10.175 | 13.950 | 18.670 | 23.800 | 30.00 | 37.200 | 44.300 |
| . 01 | 10.721 | 14.701 | 19.669 | 25.091 | 31.67 | 39.163 | 47.746 |
| . 02 | 15.150 | 20.770 | 27.80 | 35.450 | 44.70 | 55.400 | 67.40 |
| . 03 | 18.575 | 25.470 | 34.05 | 43.450 | 54.80 | 67.900 | 82.70 |
| . 04 | 21.442 | 29.402 | 39.34 | 50.182 | 63.34 | 78.326 | 95.50 |
| . 05 | 23.950 | 32.870 | 43.95 | 56.100 | 70.50 | 87.50 | 106.75 |
| . 06 | 26.230 | 36.000 | 48.15 | 61.400 | 77.40 | 94.90 | 117.00 |
| . 07 | 28.350 | 38.850 | 52.05 | 66.400 | 83.70 | 103.60 | 126.50 |
| . 08 | 30.300 | 41.500 | 55.60 | 70.950 | 89.40 | 110.75 | 135.00 |
| . 09 | 32.163 | 44.103 | 59.01 | 75.274 | 95.00 | 115.50 | 143.21 |
| . 1 | 33.800 | 46.500 | 62.05 | 79.35 | 100.00 | 124.20 | 151.3 |
| . 2 | 47.950 | 65.750 | 88.10 | 112.40 | 140.75 | 175.50 | 213.9 |
| . 3 | 58.700 | 80.500 | 107.75 | 137.40 | 172.50 | 214.70 | 261.7 |
| . 4 | 67.800 | 93.000 | 124.70 | 158.75 | 200.00 | 247.50 | 302.5 |
| . 5 | 75.800 | 104.000 | 138.25 | 177.60 | 227.00 | 263.00 | 337.5 |
| . 6 | 83.100 | 113.900 | 152.50 | 194.50 | 245.00 | 304.00 | 370.0 |
|  | 30 | 32 | 34 | 36 | 38 | 40 | 42 |
| . 001 | 18.175 | 21.650 | 25.35 | 29.52 | 34.10 | 39.15 | 42.4 |
| . 002 | 25.70 | 30.650 | 35.85 | 41.75 | 48.20 | 55.30 | 60.1 |
| . 003 | 31.45 | 37.475 | 40.80 | 51.11 | 59.00 | 67.75 | 73.5 |
| . 004 | 36.70 | 43.35 | 50.70 | 59.00 | 68.20 | 78.3 | 85.0 |
| . 005 | 40.60 | 48.40 | 57.65 | 66.00 | 76.20 | 87.5 | 95.0 |
| . 006 | 44.30 | 53.00 | 62.10 | 72.30 | 83.50 | 95.9 | 104.1 |
| . 007 | 48.10 | 57.25 | 67.00 | 78.10 | 90.20 | 103.5 | 112.3 |
| . 008 | 51.40 | 61.25 | 71.60 | 83.50 | 96.40 | 110.6 | 120.1 |
| . 009 | 54.50 | 65.00 | 76.00 | 87.60 | 102.25 | 117.5 | 127.4 |
| . 01 | 57.43 | 68.15 | 80.13 | 93.35 | 107.75 | 123.7 | 134.2 |
| . 02 | 81.20 | 96.80 | 113.25 | 132.00 | 152.50 | 175.0 | 190.0 |
| . 03 | 99.50 | 110.86 | 138.75 | 161.75 | 186.75 | 214.5 | 232.5 |
| . 04 | 114.85 | 136.30 | 160.26 | 186.70 | 215.50 | 247.4 | 268.4 |
| . 05 | 128.50 | 153.20 | 178.00 | 208.70 | 241.00 | 276.5 | 300.0 |
| . 06 | 140.75 | 167.50 | 196.25 | 228.50 | 264.00 | 303.0 | 328.5 |
| . 07 | 152.00 | 181.20 | 212.00 | 247.00 | 286.20 | 327.0 | 355.0 |
| . 08 | 162.50 | 193.70 | 220.65 | 263.70 | 304.70 | 349.5 | 379.5 |
| . 09 | 172.28 | 204.45 | 240.4 | 280.05 | 323.25 | 371.0 | 402.6 |
| . 1 | 181.75 | 216.50 | 253.5 | 295.2 | 341.0 | 391.5 | 424.0 |
| . 2 | 257.0 | 306.50 | 358.5 | 417.5 | 482.0 | 553.0 | 601.0 |
| . 3 | 314.5 | 374.75 | 438.0 | 511.1 | 590.0 | 677.5 | 735.0 |
| . 4 | 367.0 | 433.5 | 507.0 | 590.0 | 682.0 | 783.0 | 850.0 |
| . 5 | 406.0 | 484.0 | 576.5 | 660.0 | 762.0 | 875.0 | 950.0 |
| . 6 | 448.0 | 530.0 | 621.0 | 723.0 | 835.0 | 959.0 | 1041.0 |


|  <br>  | Velocity，in feet， per second． |  |
| :---: | :---: | :---: |
|  <br>  | Loss of head， in feet． |  |
|  | Cubic feet per minute． |  |
|  <br>  | Loss of head， in feet． | $N$ |
|  － <br>  | Cubic feet per minute． |  |
|  | Loss of head， in feet． | 6 |
|  <br>  | Cubic feet per minute． |  |
|  Nీ iof | Loss of head， in feet． | － |
|  <br>  | Cubic feet per minute． |  |
|  <br>  <br>  | Loss of head， in feet． | en |
| そた <br>  | Cubic feet per minute． |  |
|  ơo | Loss of head， in feet． | $a$ |
|  <br>  | Cubic feet per minute． |  |
|  | Loss of head， in feet． | v |
|  <br>  | Cubic feet per minute． |  |
|  | Loss of head， in feet． | $\infty$ |
|  <br>  | Cubic feet per minute． |  |
| に『－ <br>  | Loss of head， in feet． | $\bigcirc$ |
|  <br>  | Cubic feet per minute． |  |
|  <br> 出家（ 0 | Loss of head， in feet． | $\cdots$ |
|  －0．00000000000000ivoincio is | Cubic feet per minute． |  |
| YKム它 | Loss of head， in feet． | $\pm$ |
|  00000000000000000000 Hin | Cubic feet per minute． |  |
|  <br>  | Loss of head， in feet． | ｜ 1 |
|  00000000000000000000010 | Cubic feet per minute． |  |


|  | 13 | 14 | 15 | 16 | 18 | 20 | 22 |  | 26 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 1.108 |  | (1325 |  |  |  |  |  |  |  | which is the loss of head. Therefore, the effective head is $200-2.66=197.34$.


| $67^{\circ}$ | $04^{\circ}$ | LI＇I | $60^{\circ} \mathrm{Z}$ | $80^{\circ}$ | $9 \cdot 8$ |  |  |  | ．．．．． | ． | ． | ．．．． |  |  |  | 009I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0\％ | 67＊ | 78 ${ }^{\circ}$ | $95^{\circ} \mathrm{L}$ | $98^{\circ} \mathrm{Z}$ | $0 \cdot 9$ |  |  |  | ．．．．．． | ．．．．． | ．．．．． | ．．．．． | ．．．．． | ．．．．．． | ．．．．． | 0GZI |
| \＆I＇ | \％${ }^{\circ}$ | 89 | $76^{\circ}$ | 08 ${ }^{\circ}$ L | $88^{\circ} \mathrm{E}$ |  |  |  |  |  | ．．．． | ．．．． | ． |  | ．．． | 000I |
| $80^{\circ}$ | 81． | $08^{\circ}$ | EG＊ | $80^{\circ} \mathrm{L}$ | IZ＇\％ |  |  |  |  |  |  |  | ．．．． |  |  | 092 |
| $70^{\circ}$ | $60^{\circ}$ | I ${ }^{\circ}$ | G6＊ | $98^{\circ}$ | $96^{\circ}$ | $\nabla^{\circ} 7$ | $87^{\circ} \frac{1}{4}$ | c．${ }^{\text {IT }}$ | 8.08 |  |  |  |  |  | ．．．．．． | 009 |
| $80^{\circ}$ | $20^{\circ}$ | II＇ | 07＊ | L8＇ | ［8＊ | $0^{\circ} \%$ | 10．9 | L＇II | $0^{\circ} 96$ |  |  |  |  |  | ．．．．．． | 097 |
|  | $90^{\circ}$ | $60^{\circ}$ | $9{ }^{\text {－}}$ | $08^{\circ}$ | 99＊ | L9 ${ }^{\circ}$ L | 82＇b | CG＇6 | G6L |  |  |  |  |  | ．．．．． | 007 |
| $70^{*}$ | C0＇ | $40^{\circ}$ | ZI． | \＆G＊ | $09^{\circ}$ | $96^{\circ} \mathrm{I}$ | $99^{\circ} 8$ | $0 \mathrm{I}^{\circ} \mathrm{L}$ | $7^{\circ} \mathrm{CL}$ |  |  |  | ．．．． | ．．．．．． | ．．．．．．．． | 098 |
|  | $70^{\circ}$ | $90^{\circ}$ | $60^{\circ}$ | LI＇ | L\＆ | $86^{\circ}$ | $99^{\circ} \mathbf{6}$ | $70^{\circ} \mathrm{G}$ | \％＇IL | $90^{\circ} 87$ |  |  |  |  |  | 008 |
| 10＊ | $80^{\circ}$ | $70^{\circ}$ | $10^{\circ}$ | Zİ． | 9\％ | 99 ${ }^{\circ}$ | $68^{\circ} \mathrm{I}$ | $0 L^{\circ} \mathrm{E}$ | $91^{\circ} 4$ | $99^{\circ} 6 \mathrm{~L}$ | － |  |  |  | ．．．．．．${ }^{\text {a }}$ | 097 |
|  |  |  |  | L0 ${ }^{\circ}$ | LI＇ | あ\％ | 6 $6^{\circ} \mathrm{I}$ | $88^{\circ} \boldsymbol{\square}$ | $70^{\circ} 9$ | LT＊${ }^{\circ}$ | c＇L8 |  |  |  |  | 007 |
|  |  |  |  | 90＊ | EL＇． | $78^{\circ}$ | $86^{\circ}$ | $78^{\circ} \mathrm{I}$ | $98^{\circ} \mathrm{E}$ | $95^{\circ} 6$ | ［＇87 |  |  |  | ．．．．．． | GLI |
|  |  |  |  | $70^{\circ}$ | 0I＇ | GG＊ | $69^{\circ}$ | $98^{\circ} \mathrm{L}$ | $98^{\circ} \mathrm{Z}$ | $00^{\circ} \mathrm{L}$ | $7^{\prime}$ IZ |  |  | ．．．．．． | ．．．．． | 09I |
| ．．．． |  |  |  | $80^{\circ}$ | $10^{\circ}$ | LI＇ | $65^{\circ}$ | $96^{\circ}$ | $66^{\circ}$ L | $68^{\circ} \mathrm{\square}$ | $6^{\circ} \mathrm{I}$ | ． 6 |  |  |  | GZI |
| ．．．． |  |  |  | $70^{\circ}$ | $90^{\circ}$ | Zİ． | 88＇ | $79^{\circ}$ | LE＇L | $07^{\circ} 8$ | $98^{\circ} 6$ | $0 \cdot 68$ | －．．． |  |  | OOL |
|  |  |  |  |  | $70^{\circ}$ | $60^{\circ}$ | 97＊＊ | 790． | OL＇L | $89^{\circ} 7$ | $08^{\circ} \mathrm{L}$ | 0.78 | 0.08 |  |  | 06 |
|  |  |  |  |  | 80 | $80^{\circ}$ | \＆\％ | IF＊ | $06^{\circ}$ | $00^{\circ} \mathrm{Z}$ | $08^{\circ} 9$ | $0^{\circ} 96$ | 0＊79 |  |  | 08 |
| ．．．． |  |  |  |  |  |  |  |  | $72^{\circ}$ | 08 ${ }^{\circ}$ L | 7\％${ }^{\circ} 9$ | $\mathbf{F}^{\circ} \mathrm{G} 7$ | I＇99 |  |  | GL |
| ．．． | ． |  | ． |  | $80^{\circ}$ | $\angle 0^{\circ}$ | 6I＇ | 88＊ | $09^{\circ}$ | 09＇L | 08 ${ }^{\circ}$ | $0 \cdot 07$ | $0 \cdot 81$ |  |  | O2 |
|  |  |  |  | ．．． | $70^{\circ}$ | $90^{\circ}$ | 81． | 7 ${ }^{\circ}$ | 09＊＊ | LI＇L | $09^{\circ} 8$ | $0^{\circ} \mathrm{I}$ I | 0.98 |  |  | 09 |
|  |  |  |  |  |  | $70^{\circ}$ | $60^{\circ}$ | $4 L^{\circ}$ | $9^{\circ}{ }^{\circ}$ | L8 ${ }^{\circ}$ | 75＇\％ | $0^{\circ} \mathrm{OL}$ | $6^{\circ} 78$ |  |  | 09 |
|  |  |  |  |  |  | $80^{\circ}$ | $10^{\circ}$ | 吾。 | $86^{\circ}$ | 99＊＊ | $66^{\circ} \mathrm{I}$ | 9I＇8 | $7^{\circ} 07$ |  |  | $9 \pm$ |
|  |  |  |  |  |  | $70^{\circ}$ | $90^{\circ}$ | II＇ | \＆6＊ | 89＊ | $09^{\circ} \mathrm{I}$ | $79^{\bullet} 9$ | ［＇9］ | 0.87 |  | 07 |
|  | ．．．． |  |  |  |  | 70 | $90^{\circ}$ | $60^{\circ}$ | LI＇ | $08^{\circ}$ | Z\％＇I | $90^{\circ} 9$ | $\mathbf{F}^{\circ} \mathrm{ZL}$ | $0^{\circ} \mathrm{LE}$ |  | 98 |
|  | ．．． |  |  |  |  |  | $80^{\circ}$ | $90^{\circ}$ | \＆1． | $08^{\circ}$ | I6 ${ }^{\circ}$ | GL＇8 | GI＇6 | $G^{\circ} \mathrm{LZ}$ |  | 08 |
|  |  |  |  |  |  |  | $70^{\circ}$ | $70^{\circ}$ | 01． | IG＊ | $79^{\circ}$ | 79＊\％ | $07^{\circ} 9$ | $0{ }^{\circ} 6 \mathrm{~L}$ | 0.84 | 97 |
|  |  |  |  |  |  |  |  | $80^{\circ}$ | $90^{\circ}$ | 75． | て5＊ | $99^{\circ} \mathrm{L}$ | $40^{\circ} 7$ | $\varepsilon^{\bullet} \mathbf{Z L}$ | $7^{\circ} 09$ | $0 \%$ |
|  |  |  |  |  |  |  |  | $70^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | G\％＇ | $L 6^{\circ}$ | $88^{\circ} 7$ | $86^{\circ} 9$ | $L^{\circ} 87$ | GI |
|  |  |  |  |  |  |  |  |  | $70^{\circ}$ | 70＊ | ZI＇ | $\angle 5^{\circ}$ | $90^{\circ} \mathrm{L}$ | $9 I^{\circ} \mathrm{E}$ | $0^{\circ} \mathrm{EL}$ | OL |
|  |  |  |  |  |  |  |  |  |  | $70^{\circ}$ | $70^{\circ}$ | ZI＇ | IE＊ | $78^{\circ}$ | $\varepsilon^{\circ} \mathrm{E}$ | G |
| 7L | OL | 6 | 8 | $L$ | 9 | 9 | $V$ | \％／8 | 8 | 6／2 | 7 | \％／LI | 7／IL | I | 7／8 |  |
| －sezis odid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Ied suol［ ${ }^{\text {a }}$ ］ |

Fire Streams.
The following is an extract from a paper read by Mr. John R. Freeman at a meeting of the New England Water Works
Association, entitled "Some Experiments and Practical Tables Relating to Fire Streams." "When unlined linen hose is used the friction or pressure loss is from 8 to 50 per cent., increasing with the pressure. This kind of hose is best for inside use in short lengths. Mill hose is better than unlined linen hose for long lengths, but ordinarily the best quality of smooth rubber-lined hose is superior to the mill hose, having less frictional resistance.
"The ring nozzle is inferior to the smooth nozzle, and actually delivers less water than the smooth nozzle. For instance, the $7 / 8$-inch ring nozzle discharges the same quantity of water as a $3 / 4$-inch smooth, and a 1 -inch ring nozzle the same as a $7 / 8$-inch
"Two hundred and fifty gallons per minute is a good standard fire stream at 80 pounds pressure at the hydrant. One hundred pounds pressure should not be exceeded, except for very high buildings or lengths of hose exceeding 300 feet."
Using 100 feet of $21 / 2$-inch ordinary, best quality rubber-lined hose between nozzle and hydrant, or pump.

| Smooth nozzle. | 3/4-inch. |  |  |  |  |  | 7/8-inch. |  |  |  |  |  | 1-inch. |  |  |  |  |  | 11/8-inch. |  |  |  |  |  | 11/4-inch. |  |  |  |  |  | $13 / 8$-inch. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pressure at hydrant, lbs....... | 32 | 43 | 54 | 65 | 75 | 86 | 34 | 46 | 57 | 69 | 80 | 91 | 37 | 50 | 62 | 75 | 87 | 100 | 42 | 56 | 70 | 84 | 98 | 112 | 49 | 65 | 81 | 97 | 113 | 129 | 58 | 77 | 96 | 116 | 135 | 154 |
| Pressure at nozzle, lbs. $\qquad$ | 30 | 40 | 50 | 60 | 70 | 80 | 30 | $40$ | 50 | 60 | 70 | 80 | 30 | 40 | 50 | 60 | 70 |  |  | 40 | 50 | 60 | 70 | 80 | 30 | 40 40 | 50 | 60 | 70 | 12 80 | 30 | 40 | 50 | 60 | 70 | 15 |
| Pressure <br> lost in 100 feet $2 \frac{1}{2}$-in. hose, lbs.. | 2 | 3 3 | 4 | 5 | 5 | 80 6 | 30 <br> 4 | 6 | 7 7 | 60 9 | 10 | 80 11 | 30 7 | 40 | 50 | 60 15 | 17 | 80 20 |  | 40 | 50 20 | 60 24 | 28 | 80 32 | 30 9 | 40 | 50 31 | 60 37 | 40 | 80 49 | 20 28 | 40 37 | 46 | 60 $\cdot$ 56 | 65 | 80 74 |
| Vertical height, feet | $48$ |  | 67 |  | 76 | 79 | 49 | 62 | 71 | 77 | 81 | 85 | 51 | 64 | 73 | 79 | $\begin{aligned} & 17 \\ & 85 \end{aligned}$ |  | $52$ | 65 |  | 83 |  |  |  | 67 |  | 85 |  | 95 |  |  | 79 | 87 | 92 | 97 |
| Horizontal distance, feet |  | 44 | 50 | 54 | 58 | 62 | 49 42 | 49 | 55 | 61 | 81 66 | $8)$ 70 | 51 47 | 55 | 73 61 | 79 67 | $\begin{aligned} & 85 \\ & 72 \end{aligned}$ |  | 52 50 | 65 59 | 66 | 83 72 | 88 77 | 92 81 | 53 | 67 63 | 70 | 85 76 | 91 81 | 95 85 | 56 | 69 66 | 73 | 87 79 | 84 | 97 88 |
| Gallons discharged per min. | 90 | 104 | $116$ | 127 | 137 | 147 | 123 | $142$ | 159 | 174 | 188 | 201 | 161 | 186 | 208 | 228 | 246 | 263 | 206 | 238 | 266 | 291 | 314 | 336 | 256 | 296 | 381 | 363 | 392 | 419 | 5 | 363 | 406 | 445 | 480 | ${ }_{514}^{88}$ |

## Flow of Water in Open Channels.

In computing the flow of water in channels, canals, rivers, ditches, etc., the form of the Chézy formula is retained, the various working formulas being arranged to permit the value of the coefficient, $C$, in the formula,

$$
v=c \sqrt{r s}
$$

to be determined for the various classes of channels.
In France the formula of Bazin is generally used, as follows :

$$
\begin{aligned}
& v=\frac{157.6}{1+\frac{\gamma}{\sqrt{r}}} / r s, \text { for English measures } \\
& v=\frac{87}{1+\frac{\gamma}{\sqrt{r}}}{ }_{l} \text { r's, for metric measures. }
\end{aligned}
$$

In these formulas $\gamma$ is a coefficient dependent upon the character of the wetted surface; $r$ is the hydraulic radius, or cross-section, divided by the wetted perimeter; and $s$ is the slope, or sine of the angle of inclination. .

Bazin divides channels into six classes, with a value of $\gamma$ for each.

| Class. | Character of wetted surface. | $\gamma$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Feet. | Metres. |
| I. | Smooth cement, planed wood.. | . 109 | . 06 |
| II. | Planks, bricks, cut masonry, etc. | . 290 | . 16 |
| III. | Rubble masonry. | . 833 | . 46 |
| IV. | Earth, dry rubble, etc. | 1.540 | . $8 \overline{5}$ |
| V. | Earthen channels in ordinary condition ........ | 2.355 | 1.30 |
| VI. | Earthen channels or rivers, with stony beds and grassy banks | 3.170 | 1.75 |

Although the formula appears complicated, it is not difficult of application, and its use may be simplified by the use of the diagram on page 570, which is for the metric system, and is due to M. Soreau.

## Diagram for Flow of Water.

Bazin's Formula.
Metric System.

$$
v=\frac{87}{1+\frac{\gamma}{\sqrt{r}}} / \overline{r s}
$$

Join $\gamma$ to $r$. Then draw a line parallel to this through $s$, and it will intersect $v$ at the velocity value. In the diagram, $r=4, \gamma=1.30, s=0.004$, and $v$ is found to be 6.63 metres per second.

In Switzerland, Germany, and to some extent in the United States and in England, Kutter's formula is used. This is also in the Chézy form, and consists of a rather complicated expression for the value of the coefficient, $C$, in the formula,

$$
v=C \sqrt{r s}
$$

$s$ being the slope of the stream, and $r$ the hydraulic radius, or cross-section, divided by the wetted perimeter. In the English measure $r$ is taken in


Diagram for Bazin Formula. (See page 569.)
feet,-i.e., the cross-section in square feet is divided by the wetted perimeter in feet. In the metric system the cross-seotion is taken in square metres and the wetted perimeter in metres. The Kutter formula, then, is

$$
\begin{aligned}
& C=\frac{41.6+\frac{.00281}{s}+\frac{1.811}{n}}{1+\frac{\left(41.6+\frac{.00281}{s}\right) n}{\sqrt{r}}}, \text { English system; } \\
& C=\frac{23+\frac{.00155}{s}+\frac{1}{n}}{1+\frac{\left(23+\frac{.00155}{s}\right) n}{\sqrt{r}}}, \text { metric system. }
\end{aligned}
$$

In this formula the quantity, $n$, is a factor, the value of which depends upon the character of the channel. The value of $n$ to be used in the formula may be taken from the following list:

## Artificial Channels, Uniform Section.



The whole subject of the derivation and use of Kutter's formula, with many examples, are given in the book entitled, "A General Formula for the Uniform Flow of Water," by Ganguillet and Kutter, translated by Hering and Trautwine. In order to avoid the tedious computations with the formula, values of $C$ are computed and tabulated; but sufficient precision may be attained by the use of a diagram, which is appended. This is a modification, by M. Soreau, of the original diagram by Kutter, the change being only to put it in more convenient form for the page. The diagram is for use in the metric system.

The use of the diagram will be best understood by an example. Taking the same data as were used with the Bazin formula, page 569, let $r=4$ and $s=.004$. For a canal in fairly good condition take $n=.025$. We then join 4 , on the horizontal line, $r$, with .025 , on the curve. The intersection of the dotted line with the inclined scale gives the value, $C=49$. We then have

$$
v=49 \sqrt{4 \times .004}=49 \sqrt{.016}=6.17 \text { metres per second. }
$$

## Diagram for Flow of Water.

(See page 572.)
Kutter's Formula.
Metric System.
Join point on line, $r$, corresponding to given hydraulic radius, with point on the curves, corresponding to given values of $s$ and $n$. The intersection with the inclined line gives the value of $C$ in the formula,

$$
v=C \sqrt{r s}
$$

The formula of Tutton, as used for pipes, may be modified for open channels, as follows:

$$
v=\frac{1.54}{n} r^{\frac{2}{3}} s^{\frac{1}{2}}
$$

in which $n$ is the same as in Kutter's formula, English measures being used. This has the advantage of greater simplicity, and gives equally reliable results.

The difficulty with all these formulas lies in the fact that the flow depends to a great extent upon the condition of the channel, and therefore upon the selection of the coefficient of roughness, $n$.

Whenever possible, the actual velocity of the stream should be measured, computations based upon assumptions as to slope and condition of roughness being made only for canals and ditches prior to construction.


Diagram for Kutter's Formula. (See page 571.)
The following details of measurements represent the practice of the Pelton Water-wheel Company, and are based on large experience:

Select a stretch on the stream or ditch which will afford as straight and uniform a course as possible. If the water is at any point carried in a flume, it is better to measure at this point. Lay off a distance of, say, 300 . feet; measure the width of flowing water at about six different places in this distance, and obtain the average width; likewise, at these same points, measure the depth of water at three or four places across the stream, and obtain the average depth. Next, drop a float in the water, noting the number of seconds it takes to travel the given distance. From this can be calculated the velocity of the water, in feet, per second. The quantity is the product obtained by multiplying the average width, in feet, by the average depth, in feet, by the velocity, which (if in feet per second) will give the flow of the stream. in cubic feet, per second. From the figures so obtained it is advisable to deduct about 20 per cent., as surface velocity of the water is in excess of the actual average velocity.

When the stream is of sufficient depth-say 3 feet or over-the average
velocity can be more closely obtained by using a pole, to one end of which is attached a stone or piece of lead of necessary weight to allow the pole to sink nearly to the bottom. In this way the velocities at the surface and bottom of the stream counteract one another, and a closer approximation of the average velocity is obtained.

The most accurate method of measuring the volume of water flowing in a stream is by the use of a weir.

The principle of the weir is that for a notch of given dimensions and determinate head of water the flow through it is constant and uniform. If, therefore, the flow of a stream can all be caused to pass through a notch of a certain shape, the volume can be determined from the size of the notch and the depth of the water.

The general arrangement of a weir will be seen in the illustration, the dimensions being determined by the volume of water flowing in the stream. The width of the notch can be carefully measured before it is set in place, and the depth of water measured afterwards.


General arrangement of Weir.
The instructions of the Pelton Water-wheel Company are as follows:
Place a board or plank in the stream, as shown in the drawing, at some point where a pond will form above. The length of the notch in the dam should be from two to four times its depth for small quantities, and longer for large quantities. The edges of the notch should be bevelled towards the intake side, as shown. The overfall below the notch should not be less than twice its depth,-that is, 12 inches, if the notch is 6 inches deep, and so on.

In the pond, about 6 feet above the dam, drive a stake, and then obstruct the water until it rises precisely to the bottom of the notch, and mark the stake at this level. Then complete the dam so as to cause all the water to flow through the notch, and, after allowing time for the water to
settle, mark the stake again for this new level. If preferred, the stake can be driven with its top precisely level with the bottom of the notch, and the depth of the water be measured with a rule after the water is flowing free; but the marks are preferable, in most cases.

The theoretical quantity of water passing over a weir is given by the formula,

$$
Q=2 / 3 \sqrt{2 g} \cdot b H^{\frac{3}{2}},
$$

in which $b$ is the width of the notch, or the length of the weir ; $H$, the depth of water; $g$, the acceleration of gravity, $=32.2$.

The actual quantity of water has been determined by numerous experiments. According to Francis, we may use

$$
Q=3.33 b H^{\frac{3}{2}}=3.33 b H \sqrt{H},
$$

$H$ and $b$ both being taken in feet.
The following table also may be used.

Table for Weir Measurement.
Pelton Water-wheel Company.
Giving Cubic Feet of Water per Minute that will Flow over arWeir 1 inch wide and from $1 / 8$ to $207 / 8$ inches deep.

| Inches. |  | 1/8 | $1 / 4$ | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 7/8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 00 | . 01 | . 05 | . 09 | . 14 | . 19 | . 26 | . 32 |
| 1 | . 40 | . 47 | . 55 | . 64 | . 73 | . 82 | . 92 | 1.02 |
| 2 | 1.13 | 1.23 | 1.35 | 1.46 | 1.58 | 1.70 | 1.82 | 1.95 |
| 3 | 2.07 | 2.21 | 2.34 | 2.48 | 2.61 | 2.76 | 2.90 | 3.05 |
| 4 | 3.20 | 3.35 | 3.50 | 3.66 | 3.81 | 3.97 | 4.14 | 4.30 |
| 5 | 4.47 | 4.64 | 4.81 | 4.98 | 5.15 | 5.33 | 5.51 | 5.69 |
| 6 | 5.87 | 6.06 | 6.25 | 6.44 | 6.62 | 6.82 | 7.01 | 7.21 |
| 7 | 7.40 | 7.60 | 7.80 | 8.01 | 8.21 | 8.42 | 8.63 | 8.83 |
| 8 | 9.05 | 9.26 | 9.47 | 9.69 | 9.91 | 10.13 | 10.35 | 10.57 |
| 9 | 10.80 | 11.02 | 11.25 | 11.48 | 11.71 | 11.94 | 12.17 | 12.41 |
| 10 | 12.64 | 12.88 | 13.12 | 13.36 | 13.60 | 13.85 | 14.09 | 14.34 |
| 11 | 14.59 | 14.84 | 15.09 | 15.34 | 15.59 | 15.85 | 16.11 | 16.36 |
| 12 | 16.62 | 16.88 | 17.15 | 17.41 | 17.67 | 17.94 | 18.21 | 18.47 |
| 13 | 18.74 | 19.01 | 19.29 | 19.56 | 19.84 | 20.11 | 20.39 | 20.67 |
| 14 | 20.95 | 21.23 | 21.51 | 21.80 | 22.08 | 22.37 | 22.65 | 22.94 |
| 15 | 23.23 | 23.52 | 23.82 | 24.11 | 24.40 | 24.70 | 25.00 | 25.30 |
| 16 | 25.60 | 25.90 | 26.20 | 26.50 | 26.80 | 27.11 | 27.42 | 27.72 |
| 17 | 28.03 | 28.34 | 28.65 | 28.97 | 29.28 | 29.59 | 29.91 | 30.22 |
| 18 | 30.54 | 30.86 | 31.18 | 31.50 | 31.82 | 32.15 | 32.47 | 32.80 |
| 19 | 33.12 | 33.45 | 33.78 | 34.11 | 34.44 | 34.77 | 35.10 | 35.44 |
| 20 | 35.77 | 36.11 | 36.45 | 36.78 | 37.12 | 37.46 | 37.80 | 38.15 |

Example. Suppose the weir to be 66 inches long, and the depth of water on it to be $115 / 8$ inches. Follow down the left-hand column of the figures in the table until you come to 11 inches. Then ruu across the table on a line with the 11 until under $5 / 8$, on top line, and you will find 15.85 . This, multiplied by 66 , the length of weir, gives 1046.10, the number of cubic feet of water passing per minute.

## The Miner's Inch.

The term Miner's Inch is used in a number of Western States, being used in the measurement of water for mining and irrigation. The term is more or less indefinite, for the reason that the water companies do not all use the same head above the centre of the aperture, and the inch varies from 1.36 to 1.73 cubic feet per minute each; but the most common measure-

ment is through an aperture 2 inches high and whatever length is required, and through a plank $11 / 4$ inches thick, as shown in the illustration. The lower edge of the aperture should be 2 inches above the bottom of the measuring box, and the plank 5 inches high above the aperture, thus making a 6 -inch head above the centre of the stream. Each square inch of this opening represents a miner's inch, which is equal to a flow of $11 / 2$ cubic feet per minute.

The use of the miner's inch is to be discouraged, because of its indefinite value. In some States its legal value has been made 1.5 cubic feet per minute.

## Tables for Calculating the Horse=power of Water.

## Miner's Inch Table.

The following table gives the horse-power of 1 miner's inch of water under heads from 1 up to 1100 feet. This inch equals $11 / 2$ cubic feet per minute.

| Heads, in feet. | Horsepower. | Heads, in feet | Horsepower. | Heads, in feet. | Horsepower. | Heads, in feet. | Horsepower. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 0024147 | 320 | . 772704 | 1 | . 0016098 | 320 | . 515136 |
| 20 | . 0482294 | 330 | . 796851 | 20 | . 032196 | 330 | . 531234 |
| 30 | . 072441 | 340 | . 820998 | 30 | . 048294 | 340 | . 547332 |
| 40 | . 096588 | 350 | . 845145 | 40 | . 064392 | 350 | . 563430 |
| 50 | . 120735 | 360 | . 869292 | 50 | . 080490 | 360 | . 579528 |
| 60 | . 144882 | 370 | . 893439 | 60 | . 096588 | 370 | . 595626 |
| 70 | . 169029 | 380 | . 917586 | 70 | . 112686 | 380 | . 611724 |
| 80 | . 193176 | 390 | . 941733 | 80 | . 128784 | 390 | . $6278{ }^{2} 22$ |
| 90 | . 217323 | 400 | . 965880 | 90 | . 144892 | 400 | . 643 9:20 |
| 100 | . 241470 | 410 | . 990027 | 100 | . 160980 | 410 | . 660018 |
| 110 | . 265617 | 420 | 1.014174 | 110 | . 177078 | 420 | . 676116 |
| 120 | . 289764 | 430 | 1.038321 | 120 | . 193176 | 430 | . 692214 |
| 130 | . 313911 | 440 | 1.062468 | 130 | . 209274 | 440 | . 708312 |
| 140 | . 338058 | 450 | 1.086615 | 140 | . 225372 | 450 | . 724410 |
| 150 | . 362205 | 460 | 1.110762 | 150 | . 241470 | 460 | . 740508 |
| 160 | . 386352 | 470 | 1.134909 | 160 | . 257568 | 470 | . 756606 |
| 170 | . 410499 | 480 | 1.159056 | 170 | . 273666 | 480 | . 772704 |
| 180 | . 434646 | 490 | 1.183206 | 180 | . 289764 | 490 | . 788802 |
| 190 | . 458793 | 500 | 1.207350 | 190 | . 305862 | 500 | . 804900 |
| 200 | . 482910 | 520 | 1.255644 | 200 | . 321960 | 520 | . 837096 |
| 210 | . 507087 | 540 | 1.303938 | 210 | . 338058 | 540 | . 869292 |
| 220 | . 531234 | 560 | 1.352232 | 220 | . 354156 | 560 | . 901488 |
| 230 | . 555381 | 580 | 1.400526 | 230 | . 370254 | 580 | . 933684 |
| 240 | . 579528 | 600 | 1.448820 | 240 | . 386352 | 600 | . 965880 |
| 250 | . 603675 | 650 | 1.569555 | 250 | . 402450 | 650 | 1.046370 |
| 260 | . 627822 | 700 | 1.690290 | 260 | . 418548 | 700 | 1.126860 |
| 270 | . 651969 | 750 | 1.811025 | 270 | . 434646 | 750 | 1.207350 |
| 280 | . 676116 | 800 | 1.931760 | 280 | . 450744 | 800 | 1.287840 |
| 290 | . 700263 | 900 | 2.173230 | 290 | . 466842 | 900 | 1.448820 |
| 300 | . 724410 | 1000 | 2.414700 | 300 | . 482940 | 1000 | 1.609800 |
| 310 | . 748557 | 1100 | 2.656170 | 310 | . 499038 | 1100 | 1.770780 |

When the Exact Head is Found in Above Table:
Example. Have 100 -foot head and 50 inches of water. How many horse-power?

By reference to above table the horse-power of 1 inch under 100 -font head is .241470 . This amount, multiplied by the number of inches, 50 , will give 12.07 horse-power.

When Exact Head is Not Found in Table:
Take the horse-power of 1 inch under 1 -foot head and multiply by the number of inches, and then by number of feet head. The product will be the required horse-power.

The above formula will answer for the cubic fect table by substituting the equivalents therein for those of miner's inches.

Note.-The above tables are based upon an efficiency of 85 per cent.

## Contents, in Cubic Feet and United States Gallons, of Pipes and Cylinders of Various Diameters and 1 Foot in Length.

1 gallon $=231$ cubic inches. 1 cubic foot $=7.4805$ gallons.

|  | For 1 foot in length. |  |  |  | For 1 foot in length. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cubic feet; also, area in square feet. | United States gallons 231 cubic inches. |  |  | Cubic feet; also, area in square feet. | United States gallons 231 cubic inches. |  |
| 1/4 | . 0003 | . 0025 |  | 6 | . 1963 | 1.469 | 61.13 |
| - | . 0005 | . 0040 |  | $61 / 8$ | . 2046 | 1.531 | 58.65 |
| $3 / 8$ | . 0008 | . 0057 |  | 61/4 | . 2131 | 1.594 | 56.31 |
| $\frac{7}{16}$ | . 0010 | . 0078 |  | $63 / 8$ | . 2217 | 1.662 | 54.01 |
| 1/2 | . 0014 | . 0102 |  | $61 / 2$ | . 2304 | 1.724 | 52.08 |
| $\frac{9}{16}$ | . 0017 | . 0129 |  | $65 / 8$ | . 2394 | 1.791 | 50.13 |
| $5 / 8$ | . 0021 | . 0159 |  | $63 / 4$ | . 2485 | 1.859 | 48.29 |
| $\frac{11}{1} \frac{1}{6}$ | . 0026 | . 0193 |  | $67 / 8$ | . 2578 | 1.928 | 46.55 |
| $3 / 4$ | . 0031 | . 0230 |  | 7 | . 2673 | 1.999 | 44.89 |
| $\frac{13}{16}$ | . 0036 | . 0269 |  | $71 / 8$ | . 2769 | 2.071 | 43.34 |
| $7 / 8$ | . 0042 | . 0312 |  | $71 / 4$ | . 2867 | 2.145 | 41.86 |
| ${ }_{1}^{15}$ | . 0048 | . 0359 |  | $73 / 8$ | . 2967 | 2.219 | 40.45 |
| 1 | . 0055 | . 0408 | 2181.81 | $71 / 2$ | . 3068 | 2.295 | 39.11 |
| $11 / 8$ | . 0069 | . 0516 | 1739.13 | $75 / 8$ | . 3171 | 2.372 | 37.84 |
| 11/4 | . 0085 | . 0638 | 1411.76 | $73 / 4$ | . 3276 | 2.450 | 36.63 |
| $13 / 8$ | . 0103 | . 0770 | 1165.04 | $77 / 8$ | . 3382 | 2.530 | 35.48 |
| $11 / 2$ | . 0123 | . 0918 | 975.69 | 8 | . 3491 | 2.611 | 34.37 |
| $15 / 8$ | . 0144 | . 1077 | 833.33 | $81 / 8$ | . 3601 | 2.694 | 33.32 |
| $13 / 4$ | . 0167 | . 1249 | 718.56 | $81 / 4$ | . 3712 | 2.777 | 32.33 |
| 17/8 | . 0192 | . 1436 | 625.00 | $83 / 8$ | . 3826 | 2.862 | 31.36 |
| 2 | . 0218 | . 1632 | 550.44 | $81 / 2$ | . 3941 | 2.948 | 30.45 |
| $21 / 8$ | . 0246 | . 1840 | 487.80 | $85 / 8$ | . 4057 | 3.035 | 29.58 |
| $21 / 4$ | . 0276 | . 2066 | 434.76 | $83 / 4$ | . 4176 | 3.125 | 28.74 |
| $23 / 8$ | . 0308 | . 2304 | 389.52 | $87 / 8$ | . 4296 | 3.214 | 27.93 |
| $21 / 2$ | . 0341 | . 2550 | 351.84 | 9 | . 4418 | 3.305 | 27.16 |
| $25 / 8$ | . 0376 | . 2813 | 319.14 | $91 / 8$ | . 4541 | 3.397 | 26.43 |
| $23 / 4$ | . 0412 | . 3085 | 291.26 | 91/4 | . 4667 | 3.491 | 25.71 |
| $27 / 8$ | . 0451 | . 3374 | 266.07 | 938 | . 4794 | 3.586 | 25.03 |
| 3 | . 0491 | . 3672 | 244.39 | $91 / 2$ | . 4922 | 3.682 | 24.38 |
| $31 / 8$ | . 0533 | . 3987 | 225.14 | $95 / 8$ | . 5053 | 3.780 | 23.75 |
| $31 / 4$ | . 0576 | . 4309 | 208.33 | $93 / 4$ | . 5185 | 3.879 | 23.14 |
| $33 / 8$ | . 0621 | . 4645 | 193.23 | 97/8 | . 5319 | 3.979 | 22.56 |
| $31 / 2$ | . 0668 | . 4998 | 178.14 | 10 | . 5454 | 4.080 | 22.00 |
| $35 / 8$ | . 0717 | . 5361 | 167.36 | 101/8 | . 5591 | 4.182 | 21.46 |
| $33 / 4$ | . 0767 | . 5738 | 156.45 | 101/4 | . 5730 | 4.286 | 20.94 |
| $37 / 8$ | . 0819 | . 6127 | 146.52 | $10^{3} 8$ | . 5871 | 4.392 4.498 | 20.44 |
| $41 / 8$ | . 0873 | . 6928 | 129.31 | $101 / 2$ | . 6015 | 4.498 4.606 | 19.96 |
| 41/4 | . 0985 | . 7369 | 121.82 | $103 / 4$ | . 6303 | 4.715 | 19.04 |
| $43 / 8$ | . 1044 | . 7810 | 114.94 | $107 / 8$ | . 6450 | 4.825 | 18.60 |
| 41/2 | . 1104 | . 8263 | 108.69 | 11 | . 6600 | 4.937 | 18.18 |
| $45 / 8$ | . 1167 | . 8727 | 102.82 | 111/8 | . 6751 | 5.050 | 17.78 |
| $43 / 4$ | . 1231 | . 9206 | 97.50 | 111/4 | . 6903 | 5.164 | 17.38 |
| $47 / 8$ | . 1296 | . 9695 | 92.59 | $113 / 8$ | . 7057 | 5.279 | 17.00 |
| 5 | . 1364 | 1.020 | 87.98 | $111 / 2$ | . 7213 | 5.396 | 16.63 |
| 51/8 | . 1433 | 1.072 | 83.74 79.84 | 115 | . 7370 | 5.513 | 16.28 |
| $51 / 4$ 53 | . 1508 | 1.125 1.179 | 79.84 | $113 / 4$ | . 76301 | 5.633 5.753 | 15.94 |
| 51/8 | . 1650 | 1.179 | 72.73 | $12{ }^{118}$ | . 7854 | 5.775 | 15.28 |
| $55 / 8$ | . 1726 | 1.291 | 69.52 | 121/8 | . 8018 | 5.998 | 14.94 |
| $53 / 4$ | . 1803 | 1.349 | 66.56 | 121/4 | . 8184 | 6.122 | 14.66 |
| $51 / 8$ | . 1883 | 1.409 | 63.72 | $123 / 8$ | . 8352 | 6.248 | 14.37 |

Contents, in Cubic Feet and United States Gallons, of Pipes and Cylinders of Various Diameters and

1 Foot in Length.-Continued.
1 gallon $=231$ cubic inches. 1 cubic foot $=7.4805$ gallons.

|  | For 1 foot in length. |  |  |  | For 1 foot in length. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cubic feet; also, area in square feet. | United States gallons 231 cubic inches. |  |  | Cubic feet; also, area in square feet. | United States gallons 231 cubic inches. |  |
| 121/2 | . 8522 | 6.375 | 14.080 | 211/4 | 2.463 | 18.42 | 4.872 |
| $125 / 8$ | . 8693 | 6.503 | 13.800 | $211 / 2$ | 2.521 | 18.86 | 4.760 |
| 123/4 | . 8866 | 6.632 | 13.530 | $213 / 4$ | 2.580 | 19.30 | 4.651 |
| 127/8 | . 9041 | 6.763 | 13.270 | 22 | 2.640 | 19.75 | 4.545 |
| 13 | . 9218 | 6.895 | 13.020 | 221/4 | 2.700 | 20.20 | 4.445 |
| 131/8. | . 9395 | 7.028 | 12.780 | 221/2 | 2.761 | 20.66 | 4.347 |
| $131 / 4$ | . 9575 | 7.163 | 12.530 | $223 / 4$ | 2.823 | 21.12 | 4.251 |
| $133 / 8$ | . 9757 | 7.299 | 12.300 | 23 | 2.885 | 21.58 | 4.160 |
| 131/2 | . 994 | 7.436 | 12.070 | 231/4 | 2.948 | 22.05 | 4.070 |
| 135 | 1.013 | 7.578 | 11.850 | $231 / 2$ | 3.012 | 22.53 | 3.990 |
| $133 / 4$ | 1.031 | 7.712 | 11.640 | $233 / 4$ | 3.076 | 23.01 | 3.901 |
| 137/8 | 1.051 | 7.855 | 11.420 | $24^{4}$ | 3.142 | 23.50 | 3.819 |
| 14. | 1.069 | 7.997 | 11.230 | 25 | 3.409 | 25.50 | 3.520 |
| 141/8 | 1.088 | 8.139 | 11.030 | 26 | 3.678 | 27.58 | 3.263 |
| 141/4 | 1.107 | 8.281 | 10.840 | 27 | 3.976 | 29.74 | 3.018 |
| $143 / 8$ | 1.127 | 8.431 | 10.650 | 28 | 4.276 | 31.99 | 2.806 |
| 141/2 | 1.147 | 8.578 | 10.460 | 29 | 4.587 | 34.31 | 2.616 |
| 145/8 | 1.167 | 8.730 | 10.280 | 30 | 4.909 | 36.72 | 2.444 |
| $143 / 4$ | 1.187 | 8.879 | 10.110 | 31 | 5.241 | 39.21 | 2.290 |
| $147 / 8$ | 1.207 | 9.029 | 9.940 | 32 | 5.585 | 41.78 | 2.149 |
| 15 | 1.227 | 9.180 | 9.780 | 33 | 5.940 | 44.43 | 2.020 |
| 151/8 | 1.248 | 9.336 | 9.620 | 34 | 6.305 | 47.16 | 1.903 |
| $151 / 4$ | 1.268 | 9.485 | 9.460 | 35 | 6.681 | 49.98 | 1.796 |
| $153 / 8$ | 1.289 | 9.642 | 9.310 | 36 | 7.069 | 52.88 | 1.698 |
| 151/2 | 1.310 | 9.801 | 9.160 | 37 | 7.467 | 55.86 | 1.607 |
| 155 | 1.332 | 9.964 | 9.010 | 38 | 7.876 | 58.92 | 1.527 |
| 153/4 | 1.353 | 10.121 | 8.870 | 39 | 8.296 | 62.06 | 1.446 |
| 157\% | 1.374 | 10.278 | 8.730 | 40 | 8.727 | 65.28 | 1.375 |
| 16 | 1.396 | 10.440 | 8.600 | 41 | 9.168 | 68.58 | 1.309 |
| 161/4 | 1.440 | 10.772 | 8.330 | 42 | 9.621 | 71.91 | 1.247 |
| 161/2 | 1.485 | 11.11 | 8.081 | 43 | 10.085 | 75.44 | 1.190 |
| 163/4 | 1.530 | 11.45 | 7.843 | 44 | 10.559 | 78.99 | 1.136 |
| 17 | 1.576 | 11.79 | 7.511 | 45 | 11.045 | 82.62 | 1.087 |
| 171/4 | 1.623 | 12.14 | 7.394 | 46 | 11.541 | 86.33 | 1.040 |
| $171 / 2$ | 1.670 | 12.49 | 7.186 | 47 | 12.048 | 90.13 | . 996 |
| $173 / 4$ | 1.718 | 12.85 | 6.985 | 48 | 12.566 | 94.00 | . 955 |
| 18 | 1.768 | 13.22 | 6.787 | 49 | 13.095 | 97.96 | . 916 |
| 181/4 | 1.817 | 13.59 | 6.604 | 50 | 13.635 | 102.00 | . 880 |
| $181 / 2$ | 1.867 | 13.96 | 6.427 | 51 | 14.186 | 106.12 | . 846 |
| $183 / 4$ | 1.917 | 14.34 | 6.259 | 52 | 14.748 | 110.32 | . 814 |
| 19 | 1.969 | 14.73 | 6.094 | 53 | 15.320 | 114.60 | . 783 |
| 191/4 | 2.021 | 15.12 | 5.938 | 54 | 15.904 | 118.97 | . 755 |
| 191/2 | 2.074 | 15.51 | 5.786 | 55 | 16.499 | 122.82 | . 727 |
| 193/4 | 2.128 | 15.92 | 5.639 | 56 | 17.104 | 127.95 | . 702 |
| 20 | 2.182 | 16.32 | 5.500 | 57 | 17.720 | 132.55 | . 677 |
| 201/4 | 2.237 | 16.73 | 5.365 | 58 | 18.347 | 137.24 | . 654 |
| $201 / 2$ | 2.292 | 17.15 | 5.236 | 59 | 18.985 | 142.02 | . 632 |
| $203 / 4$ | 2.348 | 17.56 | 5.110 | 60 | 19.637 | 146.89 | . 611 |
| 21 | 2.405 | 17.99 | 4.989 |  |  |  |  |

To find the capacity of pipes greater than the largest given in the table, look in the table for a pipe one-half the given size and multiply its capacity by 4 , or one of one-third its size, and multiply its capacity by 9 , etc.

| FZF\％ | 81919 | L9899 | 0002F | 79098 | 0800¢ | 86297． | 09087 | 0¢86I | 7．669］ | 003¢L | 00ıLI | 0676 | 00g 2 | 0929 | 0LT\％ | 0067 | $0 z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＆¢L69 | 16 R .9 | 8L0t9 | 0c9bt | S¢L98 | 920s\％ | 8GFaz | L06Lz | 8F88T | 96091 | 06r8I | clill | 0L06 | 96 LL | ZLFG | 000\％ | ¢¢ 27 | 61 |
| 78099 | 0L609 | ¢LIC | 008z\％ | ¢¢ぇよ¢ | てこ0ころ | 8LLfz | ¢GLOE | 998！ 1 | 8te．ct | 08LŻ | 0ccoi | 9898 | 0¢ 49 | HSIC | 06I8 | 0197 | 81 |
| LLF\％9 | 07020 | ＜ 888 | 0¢668 | \％¢g\％e | 89ccz | 8Lızz | L096L | 7989］ | LOFti | 0207．L | 9f66 | 0808 | ¢L89 | 96Sb | 08：8 | ¢9\％\％ | 41 |
| 0FL89 | T－te | 68 FEb | 00928 | 6上f0 | 590F\％ | 885LZ | 8H18T | 7L89］ | tecer | 098LI | 0986 | 9092 | 0009 | 809F | 0LC： | 07．8\％ | 91 |
| 690cc | 8920 | 9F9\％， | 0¢zeg | 9 9fS8 | 09\％我 | 86003 | ¢6zıL | 088bI | 20L̇L | 0c90］ | ¢ 4 ！ 8 | 08L | ¢ 699 | 0z\＆b | 0918 | ¢ $¢ 1$ LJ | SI |
| 868L¢ | キく゚った | 80868 | 006z8 | 8F99\％ | 990LZ | 89L8L | 76L9［ | 8858L | 098LI | 0766 | 06 I8 | 9999 | 0¢zG | 780¢ | $0 ¢ 67$ | 0¢0z | $\dagger 1$ |
| L2ヶ」p | 0668 | 09698 | 0¢cos | 0ち」った | zect | 8LFった | 686\％［ | 9687． | 8LOLI | $0 ¢ 76$ | C092 | 0859 | 918b | ザっ8 | 0 F 2 Z | CSSL | \＆1 |
| 9 SOF | 90907 | LILF\＆ | 00787， | L8876 | 8F08L | SL09］ | 988\％L | 206IL | 99L0］ | 07．98 |  | $\bigcirc 029$ | 00ç | 9 crs | 0¢cz | 0FこL | 21 |
| 9880F |  | FLELE | 0¢89\％ | 1860\％ | 干¢95 | 88LIT | 8897． | 6，60I | 6 L86 | 0182 | cer9 | 086 | czLt | 8918 | 0z¢ | ¢6¢ | 11 |
| †tL98 | scuse | 1858\％ | 00¢8\％ | L：06T | 0roct | 868\＆L | 0gcil | $0 \bar{\sim} .66$ | 2ı58 | 0012 | 0cs | cest | 0¢ 28 | 0887 | 0LIz | 0 Cr L | 01 |
| 8F0¢8 | FCOE | 889ca | OSLLJ． | 87，L2 | 98cel | 8S0zL | LL80I | 8768 | 9\％9」 | 0689 | caze | 0875 | 9188 | 769z | 0061 | ¢0¢L | 6 |
| T．Le6z | 0ı0ız | 9上L̇， | 0088L | gazeI | ze0z． | 8LLOL | ฤъ | 9864 | 8L」9 | 0899 | 0896 | 9088 | 0008 | F0¢z | 0691 | 0915 | 8 |
| L0L9\％ | 089：\％ | \％066I | 0¢f9L | zesel | 8\％ 901 | 8L86 | LL08 | 7169 | 1869 | 0＜6b | 9605 | 0888 | ¢б9z | 9102 | 08ft | ¢L0L | $L$ |
| 0807\％ | \％0807， | 6e0LI | 00LFL | 6IFLI | キて6 | 8808 | 8569 | \％ 969 | 1809 | $09 \% \square$ | 0Leg | cesz | 0¢ぇて | 8ZLI | 02ZI | 018 | 9 |
| 8ce8t | 82691 | clert | 0¢』LI | 9196 | 07 CL | 8699 | c9\％9 | 096 | L¢\％F | 0cce | ¢ 9.67 | 0886 | cı8I | 0ヶtt | 090L | 9 c | $s$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sz | $\pm z$ | zz | 02 | 81 | 91 | SI | －1 | $\varepsilon 1$ | 21 | II | 01 | 6 | 8 | $\Sigma$ | 9 | $s$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Number of U．S．Gallons in Rectangular Tanks．

| $=$ |  <br>  |
| :---: | :---: |
| ล－ |  |
| $\bigcirc$ |  |
| $\bigcirc$ |  |
| － |  |
| －${ }^{\text {a }}$ |  |
| à |  |
|  |  |
| a |  |
|  |  |
| － |  |
|  |  |
| $\infty$ |  |
|  | त－ |
| त |  |
|  |  |
|  |  |
| N | － |
|  |  |
| $\widehat{6}$ |  |
|  |  |
|  | 下 ন |
|  | இ） |
|  |  |
| is |  |
|  |  |
| 4 | ざ |
|  | 앙잉ㅇㅇㅇㅇㅇ영 |
| － | ¢ ¢ ¢ 8 ¢ |
|  |  |
| ＊ |  |
|  |  |
| － |  |
|  | $\infty$ ®o웅 |
| $\infty$ |  |
| ＊＊ | \％ 9 |
| N | 的 $\%$ |
| $N$ | ¢ |
| N | هI $\vdots \vdots  |
|  |  |

## Discharge of Water through Orifices.

Giving the Number of Cubic Feet of Water Discharged per Minute through an Orifice 1 inch square under any Head of Water from 3 to 72 inches.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.12 | 17 | 2.51 | 31 | 3.36 | 45 | 4.05 | 59 | 4.63 |
| 4 | 1.27 | 18 | 2.58 | 32 | 3.41 | 46 | 4.09 | 60 | 4.65 |
| 5 | 1.40 | 19 | 2.64 | 33 | 3.47 | 47 | 4.12 | 61 | 4.72 |
| 6 | 1.52 | 20 | 2.71 | 34 | 3.52 | 48 | 4.18 | 62 | 4.74 |
| 7 | 1.64 | 21 | 2.78 | 35 | 3.57 | 49 | 4.21 | 63 | 4.78 |
| 8 | 1.75 | 22 | 2.84 | 36 | 3.62 | 50 | 4.27 | 64 | 4.81 |
| 9 | 1.84 | 23 | 2.90 | 37 | 3.67 | 51 | 4.30 | 65 | 4.85 |
| 10 | 1.94 | 24 | 2.97 | 38 | 3.72 | 52 | 4.34 | 66 | 4.89 |
| 11 | 2.03 | 25 | 3.03 | 39 | 3.77 | 53 | 4.39 | 67 | 4.92 |
| 12 | 2.12 | 26 | 3.08 | 40 | 3.81 | 54 | 4.42 | 68 | 4.97 |
| 13 | 2.20 | 27 | 3.14 | 41 | 3.86 | 55 | 4.46 | 69 | 5.00 |
| 14 | 2.28 | 28 | 3.20 | 42 | 3.91 | 56 | 4.52 | 70 | 5.03 |
| 15 | 2.36 | 29 | 3.25 | 43 | 3.95 | 57 | 4.55 | 71 | 5.07 |
| 16 | 2.43 | 30 | 3.31 | 44 | 4.00 | 58 | 4.58 | 72 | 5.09 |

Example. Suppose the opening to be 36 inches long and 2 inches high, and the head of water above the opening 25 inches. Multiply the length, 36, by 2 , the height of the opening, and it gives 72.- Referring to the above table, opposite 25 -inch head will be found 3.03 . This, multiplied by 72 , gives 218.16, the number of cubic feet of water passing through the opening per minute.

## Water $=$ wheels.

Water-wheels may be divided into two classes, vertical and horizontal, according to the position of the plane in which the revolving wheel is placed.

Vertical wheels include Orershot-wheels, Undershot-wheels, Breastwheels, and Impact-wheels of the Pelton type. Horizontal wheels include practically all forms of turbines, although in some cases turbine wheels are placed on horizontal axes and revolve in vertical planes, without, however, suffering any material change in construction or action. In the pages immediately following the data for the various kinds of vertical wheels are :
$Q=$ quantity of water, in cubic feet, per second;
$h=$ head, in feet;
$V=$ velocity of water, in feet, per second;
$v=$ velocity of wheel buckets, in feet, per second;
$u=$ angle of entrance;
$a=$ area of float, in square feet.

Example. The vertical section of the immersed floats of an undershotwheel in a mid-stream is $a=27$ square feet; velocity of the stream, $V=$ 8.6 ; and $v=4$ feet per second. Required the horse-power of the wheel?

$$
E P=\frac{a v}{200}(V-v)^{2}=\frac{27 \times 4}{200}(8.6-4)^{2}=11.4 F P
$$

Example. On a breast-wheel is acting $Q=88$ cubic feet of water per second ; the head, $h=8$ feet; velocity of the wheel at the centre of the buckets, $v=5$ feet per second. The water strikes the buckets at an angle, $u=8^{\circ}$, and velocity, $V=7$ feet per second. Required the horse-power of the wheel?

$$
I P=\frac{88}{11.4}\left(8+\frac{5}{25}\left(7 \times \cos 8^{\circ}-5\right)\right)=65 I P
$$

Example. Required the effect of a Poncelet wheel : the head, $h=4$ feet; and the orifice, $a=5$ square feet; the velocity of the wheel at the centre of the pressure of the floats is $v=6.78$ feet per second?

$$
\begin{aligned}
V & =6.91 \sqrt{4}=13.82 \text { feet per second; } \\
Q & =6.5 \times 5 \times \sqrt{4}=65 \text { cubic feet per second } ; \\
I P & =\frac{65 \times 6.78}{197}(13.82-6.78)=15.8 I P .
\end{aligned}
$$

Example. A saw-mill wheel is to be built under a fall of $h=18$ feet, and to make $n=110$ revolutions per minute. Required the proper diameter of the wheel?

$$
D=\frac{100}{110} \sqrt{18}=3.857 \text { feet }
$$

at the centre of pressure of the buckets.
Velocity,

$$
V=8 \sqrt{18}=33.94 \text { feet per second }
$$

Velocity,

$$
v=\frac{3.14 \times 3.857 \times 110}{60}=22.2 \text { feet per second. }
$$

The fall discharged 30 cubic feet of water per second. Required the horse-power of the wheel?

$$
I P=\frac{30 \times 22.2}{200}(33.94-22.2)=39 I P
$$

In general, the maximum efficiency of such wheels is obtained when $v=1 / 2 V$.

Undershot Stream-wheel.


$$
F P=\frac{a v}{200}(V-v)^{2} .
$$

When $V=2 v$, about, the effect will be

$$
I P=\frac{a V^{3}}{1600} ; \quad a=\text { area of float. }
$$

## Undershotawheel.



$$
\begin{aligned}
& I P=\frac{Q v}{454}(V-v) ; \\
& I P=\frac{m a v}{56.6}(V-v) \sqrt{h} ;
\end{aligned}
$$

When $V=2 v$, about, $I P=\frac{a h \sqrt{h}}{3.9}$.

## Poncelet Wheel.


$I P=\frac{Q v}{228}(V-v)$, when $h>5$ feet;
$I P=\frac{Q v}{200}(V-v)$, when $h<5$ feet;
$Q=8 m a \sqrt{h} ;$
$V=6.91 \sqrt{h}$.

Breast-wheel with Parabolic Drain.


$$
\begin{aligned}
I P & =\frac{Q}{12}\left[h+\frac{v}{28}(V-v)\right] ; \\
Q & =6.5 a \sqrt{h^{\prime}} .
\end{aligned}
$$

Low Breast-wheel.


$$
\begin{aligned}
E P & =\frac{Q}{11.2}\left[h+\frac{v}{32}(V \cos u-\vartheta)\right] \\
Q & =k b \\
V & =\frac{Q}{a} .
\end{aligned}
$$

See table for weirs.

## Breast=wheel.


$I P=\frac{Q}{11.4}\left[h+\frac{v}{25}(V \cos u-v)\right]$.

$E P=\frac{Q}{13.7}\left[h+\frac{v}{21.5}(V \cos u-v)\right]$.
Proper velocity about

$$
n=\frac{35 D+100}{D}
$$

revolutions per minute.

Saw-mill Wheel.


$$
F P=\frac{Q v}{200}(V-v) .
$$

Proper diameter of the wheel :

$$
\begin{aligned}
& D=\frac{100}{n} \sqrt{h}, \text { in feet } ; \\
& n=\text { revolutions per minute } .
\end{aligned}
$$

For high heads of water the most effective form of wheel is the tangential impact type, of which the well-known Pelton wheel is a good example.


The buckets of the Pelton wheel are made double, with centre fin, producing a side discharge, and permitting the maximum transfer of energy from the jet to the wheel, an efficiency of 85 per cent. being obtained.

## Pelton Water=wheel Table.

The calculations for power in this table are based upon the application of one stream to the wheel, as also upon an 85 per cent. efficiency and effective heads, no allowance being made for loss of head, in pipe, by friction. The smaller figures under those denoting the various heads give the equivalent pressure, in pounds, and spouting velocity of the water, in feet, per minute. The cubic feet measurement is also based on the flow per minute.

|  | of wheels. | in. | ch. | ch. | ch. | ch. | ot. | ot. | ot. | foot. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1000 \\ 43 \mathrm{~b} . \\ 4812.00 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 46.58 | 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 279.7 |
|  |  |  |  | 12 |  |  | 255 | 191 | 52 |  |
| $\begin{gathered} 120 \\ 52 \mathrm{lb} . \\ 5271.30 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 16.21 |  | 51.02 |  |  |  |  |
|  |  |  |  | 10.13 |  |  |  |  |  |  |
|  | Rev | 1677 |  | 671 | 559 | 19 | 279 | 209 | 167 |  |
| $\begin{gathered} 140 \\ 60 \mathrm{lb} \\ 5693.65 \end{gathered}$ |  |  | 2.33 |  | 6.99 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 6. | 10.9 | 20.68 | 36.74 | 12 |  | 229.94 |  |
|  | R |  |  |  | 604 | 45 |  |  | 181 |  |
| $\begin{gathered} 160 \\ 69 \mathrm{lb} . \\ 6086.74 \end{gathered}$ |  | 1.22 | 2.8 |  | 8.5 |  | 34.16 |  |  |  |
|  |  |  | 11.05 |  |  |  |  |  |  |  |
|  | Mi |  | 6.90 | 11.7 | 22.11 | 9.28 | 88 | 157.12 | 245 | 3.8 |
|  |  |  |  | 77 | 646 | 484 |  | 242 |  |  |
| $\begin{gathered} 180 \\ 78 \mathrm{lb} . \\ 6455.97 \end{gathered}$ |  |  | 3.3 |  |  |  |  |  | 113.30 |  |
|  |  |  | 11.72 | 19.8 |  | 62.4 | 140 | 249.9 | 391.10 |  |
|  | Mi |  |  | 12.4 | 23.4 | 41.6 |  | 166 | 260.73 | 75.29 |
|  | R |  |  | 82 |  |  |  |  |  |  |
| $\begin{gathered} 200 \\ 87 \mathrm{lb} \\ 6805.17 \end{gathered}$ |  |  | 3.97 |  | 11. | 1.2 | 47. | 84.81 |  |  |
|  |  |  | 12.36 | 20.9 | 37.0 | 5.8 | 148. | 263. | 412. |  |
|  | M |  |  |  |  | , |  |  |  |  |
|  |  |  |  |  | 720 |  |  |  |  |  |
| $\begin{gathered} \mathbf{2 2 0} \\ 95 \mathrm{lb} . \\ 7137.35 \end{gathered}$ |  | 1.96 | 59 | 7.7 |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 155 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 240 \\ & 105 \mathrm{lb} . \\ & 7454.70 \end{aligned}$ |  |  | 5.23 |  | 15.6 |  |  |  |  |  |
|  |  |  | 13. |  |  |  | 162.5 |  |  |  |
|  |  |  |  | 14.33 |  |  | 505 |  |  | 1 |
|  |  |  |  |  | 790 |  |  |  | 237 |  |
| $\begin{gathered} 260 \\ 113 \mathrm{lb} . \\ 7759.10 \end{gathered}$ |  |  | 5.89 |  |  |  |  |  |  |  |
|  |  |  | 14.09 | 23.8 |  | . 1 | 169 |  |  |  |
|  |  |  |  | 14.9 |  |  |  |  | . 3 |  |
|  |  |  |  | 98 | 82 |  | 411 |  |  |  |
| $\begin{gathered} 280 \\ 121 \mathrm{lb} \\ 8052.01 \end{gathered}$ |  |  | 6.59 |  |  |  |  |  |  |  |
|  |  |  |  |  |  | . |  |  |  |  |
|  | Mine | 3.91 | 9.13 | 15.49 | 29.25 | 51.29 | , | . 18 |  |  |
|  | Revo |  | 128 | 102 | 85 | 639 | 42 | 319 | 255 |  |
| $\begin{gathered} 300 \\ 1301 \mathrm{~b} . \\ 8334.62 \end{gathered}$ |  | 3.13 | 7.31 | 12.3 | 21. |  |  |  |  |  |
|  | $\mathrm{Cub}$ | 6.48 | 15.13 | 25.66 | . | 80.6 | 181. | 215.71 | 504.91 |  |
|  | Min |  | 9.4 | 16.0 |  | 53 |  | 5 |  |  |
|  | Re |  |  |  | 88 |  |  | 331 | 26 |  |
| $\begin{gathered} 320 \\ 1391 \mathrm{~b} . \\ 8607.94 \end{gathered}$ |  |  | 8.05 |  |  |  |  |  |  |  |
|  | Cu | 6.70 | 15.63 | 26.5 | 46.91 |  | 187.65 | 2 | 521.46 | 50. |
|  |  |  | 9.7 | 16. |  |  |  |  |  |  |
|  | Re | 2739 |  | 10 | 913 |  | 45 | 342 | 27 | 22 |
| $\begin{gathered} 340 \\ 147 \mathrm{lb} . \\ 8872.89 \end{gathered}$ |  |  | 8.82 |  |  |  |  |  |  |  |
|  |  | 6.90 | 16.12 |  |  |  | 93 |  |  |  |
|  |  |  | 10.07 |  | 32.24 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## Pelton Water=wheel Table.-Continued.

The calculations for power in this table are based upon the application of one stream to the wheel, as also upon an 85 per cent. efficiency and effective heads, no allowance being made for loss of head, in pipe, by friction. The smaller figures under those denoting the various heads give the equivalent pressure, in pounds, and spouting velocity of the water, in feet, per minute. The cubic feet measurement is also based on the flow per minute.

| Iread, in feet. | of wheels. | $\underset{\text { in. }}{6}$ | $\begin{gathered} 12 \\ \text { inch. } \end{gathered}$ | $15$ | $\begin{gathered} 18 \\ \text { inch. } \end{gathered}$ | $\begin{gathered} 24 \\ \text { inch. } \end{gathered}$ | $\begin{gathered} \mathbf{3} \\ \text { foot. } \end{gathered}$ | $\begin{gathered} 4 \\ \text { foot. } \end{gathered}$ | $\underset{\text { foot. }}{5}$ | $\underset{\text { foot. }}{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 360 | Horse-power | 4.10 | 9.61 | 16.28 | 28.83 | 51.21 | 115.34 | 204.86 | 320.52 | 461.36 |
| 156 lb | Cubi | 7.10 | 16.58 | 28.10 | 49.75 | 88.37 | 199.03 | 353.51 | 553.10 | 796.14 |
| 9130.14 | Miner's inc's | 4.43 | 10.36 | 17.56 | 33.17 | 58.91 | 132.68 | 235.64 | 368.73 | 530.75 |
|  | Revolutions. | 2907 | 1453 | 1161 | 969 | 726 | 484 | 3 | 290 | 242 |
| 380 | Horse-power | 4.46 | 10.42 | 17.66 | 31.27 | 55.54 | 125.08 | 222.16 | 347.60 | 500.33 |
| 165 lb | Cubic feet. | 7.30 | 17.04 | 28.88 | 51.12 | 90.80 | 204.48 | 363.20 | 568.25 | 817.95 |
| 9350.32 | Miner's inc's | 4.56 | 10.65 | 18.03 | 34.08 | 60.53 | 136.32 | 242.13 | 378.83 | 545.29 |
|  | Revolutions. | 2985 | 1492 | 1194 | 995 | 746 | 497 | 373 | 298 | 248 |
| 400. | Horse-powe | 4.82 | 11.25 | 19.07 | 33.77 | 59.98 | 135.08 | 239.94 | 375.40 | 540.35 |
| 173 lb . | Cubic feet. | 7.49 | 17.48 | 29.63 | 52.45 | 93.16 | 209.80 | 372.64 | 583.02 | 839.20 |
| 96.24 .00 | Miner'sinc's | 4.68 | 10.92 | 18.51 | 34.96 | 62.10 | 139.84 | 248.40 | 388.68 | 559.35 |
|  | Revolutions. | 3063 | 1531 | 1225 | 1021 | 765 | 510 | 382 | 306 | 255 |
| 420 | Horse- | 5.19 | 12.11 | 20.52 | 36.33 | 64.54 | 145.34 | 258.16 | 403.91 | 581.39 |
| $18: 2 \mathrm{lb}$. | Cubic feet. | 7.67 | 17.91 | 30.36 | 53.74 | 95.46 | 214.98 | 381.84 | 597.41 | 859.93 |
| 9861.66 | Miner'sinc's | 4.79 | 11.19 | 18.93 | 35.83 | 63.64 | 143.32 | 254.5 | 398.28 | 573.28 |
|  | Revolutions. | 3141 | 1570 | 1255 | 1047 | 785 | 523 | 39 | 31 | 261 |
| 440 | Horse-power | 5.56 | 12.98 | 22.01 | 38.96 | 69.20 | 155.85 | 276.82 | 433.11 | 623.40 |
| 191 lb. | Cubic feet. | 7.85 | 18.33 | 31.07 | 55.01 | 97.70 | 220.04 | 390. | 611.47 | 880.16 |
| 10093.74 | Miner's inc's | 4.90 | 11.45 | 19.41 | 36.66 | 65.13 | 146.64 | 260.5 | 407.65 | . 56 |
|  | Revolutions. | 3213 | 1606 | 1285 | 1071 | 803 | 535 | 401 |  | 267 |
| 460 | Horse-power | 5.95 | 13.88 | 23.53 | 41.65 | 73.97 | 166.60 | 295.91 | 462.97 | 666.40 |
| 200 lb. | Cubic feet. | 8.03 | 18.74 | 31.77 | 56.24 | 99.90 | 224.98 | 399.61 | 625.2 | 899.95 |
| 103:20.58 | Miner's inc's | 5.01 | 11.71 | 19.79 | 37.50 | 66.60 | 150.00 | 266.40 | 416.80 | 600.00 |
|  | Revolutions. | 3285 | 1642 | 1315 | 1095 | 821 | 547 | 410 | 827 | 273 |
| 0 | Hor | 6.34 | 14.79 | 25.07 | 44.39 | 78.85 | 177.5 | 315.42 | 493.4 | 710.33 |
| 208 lb . | Cubic feet... | 8.20 | $19.15$ | 32.45 | 57.45 | 102.05 | 229.8 | 408.20 | 638.66 | 919.29 |
| 10542.56 | Miner'sinc's | 5.12 | 11.96 | 20.28 | 38.30 | 68.00 | 153.20 | 272.12 | 425.78 | 612.80 |
|  | Revolutions. | 3357 | 1678 | 1343 | 1119 | 839 | 559 | 419 |  | 279 |
| 500 | Horse-powe | 6.74 | 15.73 | 20.66 | 47.20 | 83.83 | 188.80 | 335.34 | 524.66 | 755.20 |
| 217 lb . | Cubic feet. | 8.37 | 19.54 | 33.12 | 58.64 | 104.15 | 234.56 | 416.6 | 651.83 | 938.25 |
| 10759.96 | Miner'sinc's | 5.23 | 12.21 | 20.72 | 39.09 | 69.41 | 156.36 | 277.64 | 434.5 | 625.44 |
|  | Revolutions. | 3426 | 1713 | 1370 | 1142 | 85 | 571 | , |  | 285 |
| 600 | Horse-power |  |  |  |  |  | 248.16 | 440.77 | 689.63 | 992.65 |
| 260 lb . | Cubic feet. |  |  |  |  |  | 256.95 | 456.3 | 714.05 | 1027.80 |
| 11786.94 | Miner'sinc's Revolutions. |  |  |  |  |  | $\begin{array}{r} 171.30 \\ 625 \end{array}$ | $\begin{array}{\|} 304.24 \\ 469 \end{array}$ | $\begin{array}{r} 476.03 \\ 375 \end{array}$ | $\begin{array}{r} 685.20 \\ 312 \end{array}$ |
| 00 | Horse-power |  |  |  |  |  | 312.73 | 55 | 899.0 | 1250.92 |
| 304 lb . | Cubic feet. |  |  |  |  |  | 277.54 | 492.95 | 771.26 | 1110.16 |
| 12731.34 | Miner's inc's |  |  |  |  |  | 185.02 | 328.63 | 514.18 | 740.09 |
|  | Revolutions. |  |  |  |  |  | 675 | 506 | 405 | 337 |
| 800 | Horse-power |  |  |  |  |  | 382.09 | 678.66 | 1061.81 | 1528.36 |
| 348 lb . | Cubic feet. |  |  |  |  |  | 296.70 | 526.99 | 824.51 | 1186.81 |
| 13610.40 | Miner's inc's |  |  |  |  |  | 197.80 | 351.32 | 549.6 | 791.21 |
|  | Revolutions. |  |  |  |  |  | 722. | 542 | 433 | 361 |
| 900 | Horse-power |  |  |  |  |  | 455.9 | 809.82 | 1267.0 | 1823.76 |
| 391 lb. | Cubic feet... |  |  |  |  |  | 314.70 | 558.96 | 874.53 | 258.81 |
| 14436.00 | Miner's inc's |  |  |  |  |  | 209.80 | 372.64 | 583.02 | 839.20 |
|  | Revolutions. |  |  |  |  |  | 766 | 574 | 459 | 383 |
| $\begin{gathered} 1000 \\ 4341 \mathrm{lb} \\ 15216.89 \end{gathered}$ | Horse-pow |  |  |  |  |  | 4.0 | 948.4 | 1483.9 | 2136. |
|  | Cubic feet. |  |  |  |  |  | 331.72 | 589.19 | 921.83 | 1326.91 |
|  | Miner's inc's |  |  |  |  |  | 221.15 | 392.79 | 614.56 | 884.61 |
|  | Revolutions. |  |  |  |  |  | 807 | 605 | 484 | 403 |

## Turbines.

For moderate and low heads and large volumes of water turbines are now generally used. Various forms of turbines are in use, but they may all be considered as variants of the two original types, the Fourneyron and the Jonval.

In the Fourneyron turbine the water flows down and out through the guides, $L L$, and is delivered into the curved buckets. $A A$, of the wheel, this latter being connected to the vertical shaft by the plate, $B B$. In the illustration the power is transmitted by the gear-wheels, $D E$, but the rotor of a dynamo may be mounted directly on the shaft.

The proportions of the Fourneyron turbine may be determined as follows, according to Weisbach:* The data are given in the accompanying diagram, the dimensions being in feet, and $Q$ being the quantity of water delivered, in cubic feet, per second under a head, $h$, in feet. The inner radius, $r_{1}=C E=0.326 \sqrt{Q}$. The outer radius, $r=C M=\nu r_{1}=$ $\frac{5}{4} r_{1}$ to $\frac{3}{2} r_{1}$. The angle of the guides at the entrance, $E$, may then be made $\alpha=15^{\circ}$ to $30^{\circ}$, and the bucket angle at the same point $=\beta=2 \alpha+$ $20^{\circ}$ to $2 \alpha+30^{\circ}$. The inner velocity of the wheel will then be determined by the formula,


Fourneyron Turbine.

$$
v_{1}=\sqrt{\frac{2 g h}{\frac{2 \sin \beta \cos \alpha}{\sin (\beta-\alpha)}+0.1\left[\left(\frac{\sin \beta}{\sin (\beta-\alpha)}\right)^{2}+\nu^{2}\right]}}
$$



Curves for the Fourneyron Turbine.

The outer velocity will then be given $v=\nu v_{1}=\frac{r}{r_{1}} v_{1}, \nu$ being the ratio of the inner and outer radii of the wheel. From this we obtain the number of revolutions:

$$
u=\frac{30 v}{\pi r}=9.55 \frac{v}{r}=9.55 \frac{v_{1}}{r_{1}} .
$$

The velocity, $c$, with which the water issues through the guides will be

$$
c=\frac{v_{1} \sin \beta}{\sin (\alpha-\beta)},
$$

and the cross-section, $F$, of the sum of all the openings will be
$F=\frac{Q}{c}=\frac{Q \sin (\alpha-\beta)}{v_{1} \sin \beta}$ square
feet. If $e$ be the height of a
bucket, and $d=$ the width, as at $A B_{1}$, we have for their ratio $\lambda=\frac{e}{d}=2$ to 5 , according to the head of water, the larger value being for the lower head. The thickness of metal in the floats may be made

$$
s=0.015 r
$$

We then have for the height, $e$, of the wheel,

$$
e=\frac{F}{2 \pi r_{1} \sin a}\left(1+\frac{2 \pi r \sin a \cdot \lambda s}{F}\right)
$$

The number of guide buckets, $n_{1}=\frac{\lambda F}{e^{2}}$, and the number of wheel buckets,

$$
n=\frac{\sin \beta}{\sin a} n_{1}=\frac{\lambda F \sin \beta}{e^{2} \sin \alpha} .
$$

The exit angle, $\delta$, at the middle point, $M$, of a bucket is found from

$$
\sin \delta=\frac{F_{2}+n s e}{2 \pi r e}
$$

$F_{2}$ being the sum of all the discharge openings of the wheel buckets.
The curvature of the floats is determined as follows:
From $C M=r$ lay off the angle, $C M R=\delta$, and drop the perpendicular, $C R$, to $M R$. From $M$ and from $R$ lay off $M A=M B_{1}=R O=R O_{1}=r \sin \delta$ $\tan \frac{\phi}{2}, \phi$ being $=\frac{360^{\circ}}{n} . A B_{1}$ will then be the width of a bucket mouth, neglecting the thickness of the metal of the floats, and $O$ and $O_{1}$ will be the centres for the arcs, $A B$ and $A_{1} B_{1}$, of the outer portions of the floats.

Lay off the line, $A F=C E=r_{1}$, making the angle, $R A F=180^{\circ}-\beta$, join $C F$, and at the middle point, $H$, of the latter line erect the perpendicular, $H K$. The intersection, $K$, with $R A$ will then be the centre from which the remainder of the bucket curve is struck.

Lay off the angle, $a$, from the ends, $C$ and $E$, of the inner radius, $C E$, making the isosceles triangle, $C E G$, and $G$ will be the centre from which to strike the curve, $D E$, of the guide. Having determined the centres for one pair of guides and bucket foats, the rest of the buckets can be readily drawn.

The inward discharge turbines, such as that of Francis, may be designed in the same manner, simply by changing $r$ to $r_{1}$ and $v$ to $v_{1}$, and vice versa.

The Jonval turbine is constructed as shown in the illustration, the guide blades, $L L$, being arranged in a ring above the turbine buckets, $A A$, the flow of water being parallel to the axis. This form of turbine is especially adapted for use with a draft tube, surrounding the wheel and adding the suction head of the discharge to the head above the wheel. When such a draft tube is used, the effective head, $h$, used in the computations is the sum of the heads above and below Jonval Turbine. the wheel.

In this form of turbine $\alpha=15^{\circ}$ to $25^{\circ}$ and $\beta=100^{\circ}$ to $120^{\circ}$, and the most efficient velocity for the wheel is given by the formula,

$$
v=\sqrt{\frac{2 g h}{\frac{2 \sin \beta \cos a}{\sin (\beta-a)}+0.1 \cdot\left[1+\left(\frac{\sin \beta}{\sin (\beta-a)}\right)^{2}\right]}}
$$

The velocity of entrance of the water is

$$
c=\frac{v \sin \beta}{\sin (\beta-a)}
$$

The total cross-section of the entrance spaces between the guides will then be

$$
F=\frac{Q}{c},
$$

and the total discharge section of the wheel buckets,

$$
F_{2}=\frac{Q}{v}
$$

$Q$ being the quantity of water, in cubic feet, per second.
If $r_{1}$ and $r_{2}$ be the inner and outer radii of the wheel, the mean radius will be

$$
r=\frac{r_{1}+r_{2}}{2}
$$

and the width of the annular operative portion of the wheel, measured radially, will be

$$
e=r_{2}-r_{1} .
$$

Usually, $e$ is made equal to $\rho r=0.4 r$, whence
and

$$
\begin{aligned}
& r_{1}=r(1-1 / 2 \rho)=0.8 r \\
& r_{2}=r(1+1 / 2 \rho)=1.2 r
\end{aligned}
$$

The ratio,

$$
\lambda=\frac{e}{d}
$$

of the length, $e$, of the floats to their width, $d$, may be made from 2 to 4. The radius may be determined from the formula,

$$
r=\sqrt{\frac{F}{2 \pi \rho \sin a}}\left(1+\lambda s \sqrt{\frac{\pi \sin a}{2 \rho F}}\right)
$$

Approximately, we may take

$$
r=\sqrt{\frac{F}{2 \pi \rho \sin a}},
$$

and the thickness of the floats may be made

$$
s=0.02 r
$$

The length of a float will then be

$$
e=\rho r .
$$

The number of guides,

$$
n_{1}=\frac{F}{d e}+\frac{\lambda F}{e_{2}}
$$

while the number of floats in the wheel,

$$
n=\frac{\sin \beta}{\sin \alpha} \cdot n_{1} .
$$

The angle of discharge, $\delta$, is obtained from

$$
\sin \delta=\frac{F_{2}+n s e}{2 \pi r e}
$$

and the number of revolutions,

$$
u=\frac{30 v}{\pi r}=9.55 \frac{v}{r} .
$$

The height, $a$, of the wheel, as well as of the guides, may be made $0.5 r$ to $0.6 r$.

Both guides and floats are formed of warped surfaces, whose generating line is at right angles with the

tersection, $C$, of $E C$ and $B C$ will be the desired centre.

## PUMPS.

Let

## Dimensions.

$D=$ diameter of plunger, in inches;
$Q=$ quantity of water, in cubic feet, per minute;
$v=$ plunger speed, in feet, per minute.

$$
\begin{aligned}
D & =\sqrt{\frac{Q}{0.00545 v}}, \\
Q & =0.00545 v D^{2} .
\end{aligned}
$$

Approximately, the number of United States gallons delivered per minute, with a plunger speed of 100 feet per minute, will be

$$
G=4 D^{2} .
$$

The loss by leakage and slip varies from 10 to 40 per cent. For a new pump, well packed, the delivery should be 90 per cent. of the theoretical.

Ordinarily, the speed of pump plungers should not exceed 100 feet per minute. At higher speeds there are apt to be concussions and waterhammer produced, due mainly to the sudden stoppages in the movement of the column of water. The study of the movement of water in pumps has been greatly facilitated by the use of the indicator, the instrument being attached, not only with the recording drum operated from the pump plunger but also by the life movement of the valves. The result of the latter method of investigation has shown the necessity for proper timing of the valves, especially when pumping against high heads at high speeds. In the designs of Professor Riedler a combination movement is used, the valve being closed mechanically, and opened by the action of the water.

Smooth running may also be improved by judicious use of air chambers to receive the impact of the water. Air chambers on the suction side of the plunger are especially important. The proper arrangement is to have the air chamber in the direct line of the suction; and recent designs of high-speed pumps provide a large air chamber directly beneath the cylinder, each suction valve having its own suction tube extending down nearly to the bottom of the air chamber. This construction is both simple and effective, and should be followed, when practicable.

General practice indicates that the air vessel on the delivery side should be from 3 to 6 times the capacity of the pump, while on the suction side it may be made from 2 to 3 times the capacity of the pump.

| 0.66 CL | $99^{\circ 9}$ | 0.6851 | 86.87 | 0.82 UL | L¢＇LZ | 06 ［IT | $99^{\circ} \mathrm{SI}$ | $9 \cdot 696$ | $66^{\circ} \mathrm{SL}$ | 9＊66 | \％ 8.8 L | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0．8L8I | 16.6 | 00075 L | L9．07 | $0 \cdot 80$ LI | 8\％＇81 | 8． 996 | $80^{\circ} 9$［ | F－278 | $61 \cdot 8 L$ | － 689 | 6F＊LI | $\pi / 19$ |
| $0 \%$ ¢ IL | $89^{\circ} 6 \mathrm{I}$ | 0．990I | L9．2L | 0.076 | $99^{\circ} \mathrm{GL}$ | $\underline{C} \cdot 6 \overline{6}$ | 0L＇EL | $0 \cdot 904$ | ¢L゙LI | 9.289 | 661．6 | 9 |
| 8．986 | 1091 | c．888 | 08． 1 L | 8．68 | 9L＇\＆L | 6.069 | IG．LI | $9 \cdot 669$ | ç8．6 | 9.867 | $2 \mathrm{LC}$. | 7／19 |
| 0.918 | 09 ${ }^{\circ} \mathrm{EL}$ | D． 584 | 76\％L | 8．799 | $88^{\circ} 0 \mathrm{~T}$ | －Lic | $079^{\circ} 6$ | 9.687 | 095．8 | $0 \cdot 807$ | $008^{\circ} 9$ | 9 |
| 6．099 | ［0． 15 | 8．769 | 8L6．6 | 487.9 | 7L8．8 | 9\％97 | 0ヶレ゙ュ | 9.968 | 609＊9 | 8.078 | $\angle E E^{\circ} 9$ | 7／10 |
| \％ 789 | 70： 8 | 0．0LD | 888.2 | 2．25b | 896.9 | ¢＇998 | 760.9 | $\mathcal{E}$ \＆LE | $7 \% \%^{\circ} 9$ | ［＇T9］ | \％9E＇も | $\square$ |
| 6．89\％ | $679{ }^{\circ} \mathrm{L}$ | 0 0 \％It | F88．9 | て．498 | 0ZI＇9 | ¢＇LGE | \＆$¢ 8.9$ | \＆＇GLG | 889 ${ }^{\circ}$ | － 6 \％． | $778^{\circ} \mathrm{E}$ | 7／8¢ |
| 8．668 | 799.9 | 8．698 | $966^{\circ} 9$ | 8．6IE | LEE G | $9 \times 987$ | 091＇も | 6．687 | 866.8 | 8．66I | Le\％${ }^{\circ}$ | 7／18 |
| LFF\％ | ¢Fっ¢ | \％0LE | LITG | 8．9ıZ | 969＇ | $z^{\prime}$ L $7 \%$ | 070\％ | L．90才 | $977^{\circ} 8$ | \＆＇7LI | 7 $18{ }^{\circ} \mathrm{Z}$ | 7／L8 |
| L＇66 | $968^{\circ}$ | \＆ 297 | 906． | $0^{\circ} \mathrm{CJG}$ | 9 ［6．8 | $9^{\circ} \mathrm{C} 07$ | $\angle Z 5^{\circ} 8$ | $7^{\circ} 9 \mathrm{LL}$ | 486.7 | 8.975 | 85Fて | － |
| 8.956 | EIT．＇ | ［＇\％${ }^{\text {c }}$ | 60＇s | F．L6I | L6\％${ }^{\circ} \mathrm{S}$ | －TLI | 618\％ | 0．875 | $49 \nabla^{\circ} \mathrm{Z}$ | £＇\＆ZI | $990{ }^{\circ}$ | $7 / 86$ |
| 0＊ 0 亿 | 007\％ | 9.881 | $690^{\circ} 8$ | \％¢9L | $0 \chi^{\circ} \mathrm{Z}$ | ごでT | 618： | TV\％L | $070{ }^{\circ} \mathrm{Z}$ | 6．${ }^{\text {L0 L }}$ | $669^{\circ} \mathrm{L}$ | $8 / 5$ |
| \％ 995 | £¢って | $\angle .8 \mathrm{TL}$ | 825゙〕 | L＇Z\＆L | $80 \%^{\circ} \mathrm{J}$ | G．9LI | 976．1 | 40.66 | T99＊ | $99^{\circ} 78$ | $9188^{\circ} \mathrm{L}$ | t／20 |
| cost | 9 1－7， | 9．91I | 6F6．L | が现 | 05L L | 68＇L6 | EGC＇L | ¢¢＇SL | ¢0¢＇L | $87^{\circ} 99$ | 880.1 | \％． |
| 86.66 | 999 ${ }^{\circ}$ | 96.68 | $660^{\circ} \mathrm{I}$ | 96．6」 | Z $88^{\prime}$ I | 88.69 | 691＇L | 06.69 | $866^{\circ}$ | 76.67 | $78{ }^{\circ}$ | $7 / 85$ |
| 76． 2 | $76 \cdot 5$ | 70．99 | 00L＇L | cı＇89 | $6 \leq 6^{\circ}$ | $98^{\prime}$ LG | $9 \mathrm{~S} 8^{\circ}$ | $90^{\circ} \mathrm{E}$ | $789^{\circ}$ | L9 98 | ［19＊ | \％／15 |
| L6．09 | $618^{\circ}$ | 88＊${ }^{\circ}$ | F92． | 08＊0才 | 089 ${ }^{\circ}$ | L9 ${ }^{\circ} \mathrm{C}$ | 869 | 69．08 | $80{ }^{\circ}$ | 玮呂 | もで「 | t／II |
| $69 \% 8$ | FFC | $L 866$ | $685^{\circ}$ | LI＇9］ | 98.5 | $80^{\circ} \mathrm{C}$ | $89{ }^{*}$ | 89．6L | $978^{*}$ | $\because \because 9$ | $\vec{G} \overbrace{}^{\circ}$ | I |
| －inoy rod 7әәј ข！̣иด |  | －xnoy．．．． 7өэу э！qnว |  |  ұәәృ ว！qnจ |  | －：Inot dod <br>  |  | ：．1nOT ．10 <br>  |  | $\begin{aligned} & \text { :moy . xor } \\ & \text { forfotqua, } \end{aligned}$ |  |  |
|  | cu ．ıəd ads u07s！d | $\text { भəoנ } 060^{\prime} \text { 'p }$ | u ．．2ォ ads uols！d | ఫӘनझ 08 ＇p． | ux dad ds uols！d | $\text { 甲әәJ 0 0 ' } \mathrm{po}$ | ur xad <br> ads thons！d |  | й ．ıд <br> ods uots！d | quog os 'po | या． m （ <br> ads uols！d | $\stackrel{\rightharpoonup}{3}_{\substack{5}}^{2}$ |

[^7]Delivery of Double=acting Pumps, in Cubic Feet.-Continued.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  <br>  |
|  |  |  |
|  |  |  <br>  |
|  |  |  |
|  |  |  <br>  |
|  |  |  |
|  |  |  <br>  |
|  |  |  <br>  |
|  |  |  <br>  |
|  |  |  |
|  |  |  <br>  |
|  |  |  |














[^8]
## Standard Sizes of Deane Steam Pumps.

For Ordinary Service.

|  |  |  |  |  | Capacity, per minute, at given speed. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Strokes. | United Sta tes gallons. |  |  |  |  |  |  |
| 4 | $31 / 2$ | 5 | . 14 | 1 to 300 | 130 | 18 | 33 | 91/2 | 1/2 | $3 / 4$ | 4 |  |
| 4 | 4 | 5 | . 27 | 1 to 300 | 130 | 35 | 33 | 91/2 | $1 / 2$ | $3 / 4$ | $4{ }_{4} 2$ | $11 / 2$ |
| 5 | 4 | 7 | . 39 | 1 to 300 | 125 | 49 | 451/2 | 15 | $3 / 4$ | 1 | 3 | 21 |
| $51 / 2$ | 5 | 7 | . 51 | 1 to 275 | 125 | 64 | $451 / 2$ | /15 | $3 / 4$ | 1 | 3 | 21 |
| 51/2. | 51/2 | 7 | . 72 | 1 to 275 | 125 | 90 | $451 / 2$ | 15 | $3 / 4$ | 1 | 3 | $21 /$ |
| 7 | 7 | 10 | 1.64 | 1 to 250 | 110 | 180 | 58 | 17 | 1 | 11/2 | 5 | 4 |
| $71 / 2$ | $71 / 2$ | 10 | 1.91 | 1 ¢o 250 | 110 | 210 | 58 | 17 | 1 | 11/2 | 2 5 | 4 |
| $71 / 2$ | 8 | 10 | 2.17 | 1 to 250 | 110 | 239 | 58 | 17 | 1 | 11/2 | 2 5 | 4 |
| 8 | 6 | 12 | 1.47 | 1 to 250 | 100 | 147 | 67 | 201/2 | 1 | 11/2 | $1 / 2$ | 4 |
| 8 | 7 | 12 | 2.00 | 1 to 250 | 100 | 200 | 67 | 201/2 | 1 | 11/2 | 2 5 | 4 |
| 8 | 8 | 12 | 2.61 | 1 to 250 | 100 | 261 | 68 | 30 | 1 | 11/2 | 2 5 | 5 |
| 8 | 10 | 12 | 4.08 | 1 to 250 | 100 | 408 | 68 | 201/2 | 1 | 11/2 | 28 | 8 |
| 10 | 8 | 12 | 2.61 | 1 to 250 | 100 | 261 | $681 / 2$ | 2 30 | 112 | 2 | 5 | 5 |
| 10 | 10 | 12 | 4.08 | 1 to 250 | 100 | 408 | $681 / 2$ | 120 | 11/2 | 2 | 8 | 8 |
| 10 | 12 | 12 | 5.87 | 1 to 250 | 100 | 587 | 681/2 | 230 | 11/2 | 2 | 8 | 8 |
| 12 | 10 | 12 | 4.08 | 1 to 250 | 100 | 408 | 64 | 24 | 2 | $21 / 2$ | 28 | 8 |
| 12 | 10 | 18 | 6.12 | 1 to 200 | 70 | 428 | 681/2 | 30 | 2 | 21/2 |  | 8 |
| 12 | 12 | 12 | 5.87 | 1 to 250 | 100 | 587 | 64 | 281/2 | 2 | 21/2 | 8 | 8 |
| 12 | 12 | 18 | 8.80 | 1 to 175 | 70 | 616 | 88 | 281/2 | 2 | 21/2 |  | 8 |
| 12 | 14 | 18 | 12.00 | 1 to 175 | 70 | 840 | 88 | 281/2 | 2 | 21/2 |  | 8 |
| 14 | 10 | 12 | 4.08 | 1 to 250 | 100 | 408 | 69 | 30 | 2 | $21 / 2$ | 2 8 | 8 |
| 14 | 10 | 18 | 6.12 | 1 to 175 | 70 | 428 | 93 | 25 | 2 | 21/2 |  | 8 |
| 14 | 10 | 24 | 8.16 | 1 to 150 | 50 | 408 | 112 | 26 | 2 | $21 / 2$ |  | 8 |
| 14 | 12 | 12 | 5.87 | 1 to 250 | 100 | 587 | 69 | 30 | 2 | $21 / 2$ |  | 8 |
| 14 | 12 | 18 | 8.80 | 1 to 175 | 70 | 616 | 88 | 281/2 | 2 | 21/2 |  | 8 |
| 14 | 12 | 24 | 11.75 | 1 to 150 | 50 | 587 | 112 | 26 | 2 | 21/2 | 210 | 8 |
| 14 | 14 | 24 | 15.99 | 1 to 150 | 50 | 800 | 112 | 34 | 2 | 21/2 | 212 | 10 |
| 14 | 16 | 16 | 13.92 | 1 to 175 | 80 | 1114 | 84 | 34 | 2 | 21/2 | 212 | 10 |
| 14 | 16 | 24 | 20.88 | 1 to 150 | 50 | 1044 | 112 | 38 | 2 | 21/2 | 212 | 10 |
| 16 | 14 | 18 | 12.00 | 1 to 175 | 70 | 840 | 89 | 27 | 2 | 21/2 | 2 8 | 8 |
| 16 | 14 | 24 | 15.99 | 1 to 150 | 50 | 800 | 109 | 34 | 2. | 21/2 | 12 | 10 |
| 16 | 16 | 16 | 13.92 | 1 to 175 | 80 | 1114 | 85 | 34 | 2 | 21/2 | 212 | 10 |
| 16 | 16 | 24 | 20.88 | 1 to 150 | 50 | 1044 | 115 | 34 | 2 | $21 / 2$ | 212 | 10 |
| 16 | 18 | 24 | 26.43 | 1 to 125 | 50 | 1322 | 115 | 40 | 2 | $21 / 2$ | 214 |  |
| 18 | 16 | 24 | 20.88 | 1 to 125 | 50 | 1044 | 118 | 38 | 3 | $31 / 2$ | 12 |  |
| 18 | 18 | 24 | 26.43 | 1 to 125 | 50 | 1322 | 118 | 10 | 3 | $31 / 2$ | 214 | 12 |
| 18 | 20 | 24 | 32.64 | 1 to 125 | 50 | 1632 | 118 | 40 | 3 | $31 / 2$ | 12 |  |
| 20 | 18 | 24 | 26.43 | 1 to 125 | 50 | 1322 | 118 | 40 | 3 | $31 / 2$ | 114 |  |
| 20 | 20 | 21 | 32.64 | 1 to 125 | 50 | 1632 | 118 | 40 | 3 | $31 / 2$ | 116 |  |
| 20 | 22 | 24 | 39.50 | 1 to 125 | 50 | 1975 | 120 | 40 | 3 | $31 / 2$ | 181 |  |

Sizes of Worthington Standard Duplex Feed Pumps．

| Size of pump． |  |  |  |  | Size of pipes． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \dot{\overrightarrow{y y y y y y}} \\ \stackrel{\rightharpoonup}{\Delta} \end{gathered}$ |  |  | ¢ |
| Inch． | Inch． | Inch． |  | Inch． | Inch． | Inch． | Inch． | Inch． |
| 2 |  | $23 / 4$ | 100 | $21 \times 6$ |  |  | 1 | $3 / 4$ |
| 3 | $188$ | $3_{0}^{-1 / 4}$ | 200 | ${ }_{26}^{26 \times 10}$ | $38$ | $1 / 2$ | $11 / 4$ | $1^{\prime 4}$ |
| 3 3 | ${ }_{2}^{13} 4$ | ${ }_{3}^{3}$ | 300 400 | $26 \times 10$ $26 \times 10$ | $3 / 8$ | $1 / 2$ | $11 / 4$ | 1 |
| $\stackrel{3}{41 / 2}$ | $2{ }_{2}$ | 3 4 | 400 1000 | $26 \times 10$ $33 \times 13$ | 3／8 | $1 / 2$ | ${ }_{2}^{11 / 4}$ | 1 |
| 51／4 | $31 / 2$ | $\stackrel{4}{5}$ | 1800 | $38 \times 15$ | $3 / 4$ | $11 / 4$ | 21／2 | $21 / 2$ |
| 6 | 4 | 6 | 2500 | $44 \times 16$ | 1 | $11 / 2$ | 2 | $3^{2}$ |
| $71 / 2$ | $41 / 2$ | 6 | 3300 | $48 \times 24$ | 11／2 | 2 | 4 | 3 |
| $71 / 2$ | 5 | ${ }^{6}$ | 4000 | $48 \times 24$ | $11 / 2$ | 2 |  | 3 |
| $71 / 2$ | ${ }_{5}^{41 / 2}$ | 10 10 | 4000 5000 | $72 \times 29$ $72 \times 30$ | $11 / 2$ | 2 | 4 | 3 |
| $71 / 2$ | $51 / 4$ | 10 | 5500 | $72 \times 30$ | $11 / 2$ | 2 | 5 | 5 |
| 9 | $51 / 4$ | 10 | 5500 | $72 \times 30$ | $2^{12}$ | $21 / 2$ | 5 | ${ }_{5}$ |
|  | 6 | 10 | 7200 | $72 \times 31$ | 2 | $21 / 2$ | 6 | 5 |
| 10 | 6 | 10 | 7200 | $72 \times 31$ | 2 | $21 / 2$ | 6 | 5 |
| 10 | 7 | 10 | 10000 | $72 \times 33$ | 2 | $21 / 2$ | 6 | 6 |
| 12 | 81／2 | 10 | 15000 | $80 \times 42$ | 21／2 | 3 | 6 | 6 |
| 12 | $91 / 4$ | 10 | 18000 | $80 \times 42$ | $21 / 2$ | 3 | 8 | 7 |
| 14 | $91 / 4$ | 10 | 18000 | $80 \times 42$ | $21 / 2$ | 3 | 8 | 7 |

Sizes of Knowles Standard Duplex Feed Pumps．

|  | $\begin{aligned} & \frac{0}{4} \\ & \frac{y y y y}{3} \\ & \frac{3}{6} \end{aligned}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In．In． | In． |  |  | Gallons． | Inch． | Inch． | Inch． | Inch． | Inch． |
| 2 | 3 | ． 046 | 75 to 200 | 9 to 18 | $3 / 8$ | 1／2 | $11 / 4$ |  | $36 \times 12$ |
| $4{ }^{41 / 2} 22^{3} / 4$ | 4 | ． 10 | 75 to 150 | 15 to 30 | 1／2 | $3 / 4$ |  | 11／2 | $38 \times 13$ |
| $51 / 431 / 2$ | 6 | ． 24 | 75 to 150 | 36 to 72 | $3 / 4$ | $11 / 4$ | $21 / 2$ |  | $52 \times 20$ |
| ${ }_{6}^{6} 4$ | 7 | ． 39 | 75 to 125 | 58 to 97 |  | $11 / 2$ |  | $21 / 2$ | $54 \times 24$ |
| $71 / 241 / 2$ | 10 | ． 69 | 60 to 120 | 82 to 164 | $11 / 2$ | 112 | 4 | 3 | $60 \times 24$ |
| 5 | 12 | 1.02 | 50 to 100 | 102 to 204 | 11／2 | $11 / 2$ | 5 | 4 | $80 \times 31$ |
| 6 | 12 | 1.47 | 50 to 100 | 147 to 294 | $11 / 2$ | $11 / 2$ | 5 | 4 | $80 \times 31$ |
| 10 6 | 12 | 1.47 | 50 to 100 | 147 to 294 | 2 | $21 / 2$ | 5 | 4 | $80 \times 31$ |
| 1.2 | 12 | 2.00 | 50 to 100 | 200 to 400 | 2 | $21 / 2$ | 6 | 5 | $83 \times 35$ |
| 12 | 12 | 3.00 | 50 to 100 | 300 to 600 | 2 | $21 / 2$ | 6 | 5 | $83 \times 37$ |
| 14 | 12 | 3.00 | 50 to 100 | 300 to 600 | 21／2 | 3 | 6 | 5 | $83 \times 37$ |
| 14 101／2 | 12 | 4.50 | 50 to 100 | 450 to 900 | $21 / 2$ | 3 | 8 | 7 | $83 \times 44$ |
| $16 \quad 101 / 2$ | 12 | 4.50 | 50 to 100 | 450 to 900 | 3 | 3 | 8 | 7 | $83 \times 44$ |
| 1612 | 12 | 5.87 | 50 to 100 | 587 to 1174 | 3 | 3 | 10 | 8 | $83 \times 50$ |
| 181／2 101／2 | 12 | 4.50 | 50 to 100 | 450 to 900 | 3 | 3 | 8 | 7 | $83 \times 44$ |
| 181／212 | 12 | 5.87 | 50 to 100 | 587 to 1174 | 3 | 3 | 10 | 8 | $83 \times 50$ |
| $181 / 214$ | 12 | 8.00 | 50 to 100 | 800 to 1600 | 3 | 3 | 12 | 10 | $83 \times 57$ |
| $20 \quad 11$ | 18 | 12.00 | 40 to 70 | 960 to 1680 | 4 | 6 |  |  |  |

## Standard Method of Conducting Duty Trials of Pumping Engines.

## Report of Committee of the American Society of Mechanical Engineers, 1890.

## Abstract.

The basis upon which the duty of a pumping engine is to be determined is $1,000,000$ British thermal units. This is the equivalent of 100 pounds of coal when each pound of coal imparts 10,000 heat units to the water in the boiler, this corresponding to an evaporation of 10.355 pounds of water from and at $212^{\circ} \mathrm{F}$. per pound of fuel.

The duty should be computed from the quantity of heat supplied to the complete plant, including all auxiliaries. The work done by the pump is to be determined by the plunger displacement, the loss by leakage to be subsequently determined.

The necessary data having been obtained, the duty of an engine may be computed by the use of the following formulas:

1. Duty $=\frac{\text { Foot-pounds of work done }}{\text { Total number of heat units consumed }} \times 1000000$,

$$
=\frac{A(P \pm p+s) \times L \times N}{H} \times 1000000 \text { (foot-pounds). }
$$

2. Percentage of leakage $=\frac{C \times 144}{A \times L \times N} \times 100($ per cent. $)$.
3. Capacity $=$ number of gallons of water discharged in 24 hours,

$$
\begin{aligned}
& =\frac{A \times L \times N \times 7.4805 \times 24}{D \times 144} \\
& =\frac{A \times L \times N \times 1.24675}{D} \text { (gallons). }
\end{aligned}
$$

4. Percentage of total frictions

$$
\begin{aligned}
& =\left[\frac{I . H . P .-\frac{A(P \pm p+s) \times L \times N}{D \times 60 \times 33000}}{I . H . P .}\right] \times 100, \\
& =\left[1-\frac{A(P \pm p+s) \times L \times N}{A_{s} \times M . E . P . \times L_{s} \times N_{s}^{-}}\right] \times 100 \text { (per cent.) }
\end{aligned}
$$

or, in the usual case, where the length of the stroke and number of strokes of the plunger are the same as that of the steam piston, this last formula becomes

Percentage of total frictions $=\left[1-\frac{A(P \pm p+s)}{A_{s} \times \text { M.E.P. }}\right] \times 100$ (per cent.).
In these formulas the letters refer to the following quantities:
$A=$ Area, in square inches, of pump plunger or piston, corrected for
area of piston-rod. (When one rod is used at one end only,
the correction is one-half the area of the rod. If there is morc
thau one rod, the correction is multiplied accordingly.)
$P=$ Pressure, in pounds, per square inch, indicated by the gauge on the force main.
$p=$ Pressure, in pounds, per square inch, corresponding to indication of the vacuum gauge on suction main (or pressure gauge, if the suction pipe is under a head). The indication of the vacuum gauge, in inches of mercury, may be converted into pounds by dividing it by 2.035 .
$s=$ Pressure, in pounds, per square inch, corresponding to distance between the centres of the two gauges. The computation for this pressure is made by multiplying the distance, expressed in feet, by the weight of one cubic foot of water at the temperature of the pump well, and dividing the product by 144.
$L=$ Average length of stroke of pump plunger, in feet.
$N=$ Total number of single strokes of pump plunger made during the trial.
$A_{s}=$ Area of steam cylinder, in square inches, corrected for area of piston-rod. The quantity, $A_{s} \times$ M.E.P., in an engine having more than one cylinder is the sum of the various quantities relating to the respective cylinders.
$L_{s}=$ Average length of stroke of steam piston, in feet.
$N_{s}=$ Total number of single strokes of steam piston during trial.
M.E.P. $=$ Average mean effective pressure, in pounds, per square inch, measured from the indicator diagrams taken from the steam cylinder.
I.H.P. = indicated horse-power developed by the steam cylinder.
$C=$ Total number of cubic feet of water which leaked by the pump plunger during the trial, estimated from the results of the leakage test.
$D=$ Duration of trial, in hours.
$H=$ Total number of heat units (B.T.U.) consumed by engine $=$ weight of water supplied to boiler by main feed pump $\times$ total heat of steam of boiler pressure reckoned from temperature of main feed water + weight of water supplied by jacket pump $\times$ total heat of steam of boiler pressure reckoned from temperature of jacket water + weight of any other water supplied $\times$ total heat of steam reckoned from its temperature of supply. The total heat of the steam is corrected for the moisture or superheat which the steam may contain. For moisture the correction is subtracted, and is found by multiplying the latent heat of the steam by the percentage of moisture, and dividing the product by 100 . For superheat the correction is added, and is found by multiplying the number of degrees of super-heating-i.e., the excess of the temperature of the steam above the normal temperature of saturated steam-by 0.48 . No allowance is made for heat added to the feed water, which is derived from any source, except the engine or some accessory of the engine. Heat added to the water by the use of a flue heater at the boiler is not to be deducted. Should heat be abstracted from the flue by means of a steam reheater connected with the intermediate receiver of the engine, this heat must be included in the total quantity supplied by the boiler.
The leakage test of the pump plunger should be made as soon as possible after the completion of the main trial.

The leakage of an inside plunger (the only type which requires testing) is most satisfactorily determined by making the test with the cylinder head removed. A wide board or plank may be temporarily bolted to the lower part of the end of the cylinder, so as to hold back the water in the manner of a dam, and an opening made in the temporary head thus provided for the reception of an overflow pipe. The plunger is blocked at
some intermediate point in the stroke (or, if this position is not practicable, at the end of the stroke) and the water from the force main is admitted at full pressure behind it. The leakage escapes through the overflow pipe, and is collected in barrels and measured.

Should the escape of the water into the engine-room be objectionable, a spout may be constructed to carry it out of the building. Where the leakage is too great to be readily measured in barrels, or where other objections arise, resort may be had to weir or orifice measurement, the weir or orifice taking the place of the overflow pipe in the wooden head. The apparatus may be constructed, if desired, in a somewhat rude manner, and yet be sufficiently accurate for practical requirements. The test should be made, if possible, with the plunger in various positions.

In the case of a pump so planned that it is difficult to remove the cylinder head, it may be desirable to take the leakage from one of the openings which are provided for the inspection of the suction valves, the head being allowed to remain in place.

It is here assumed that there is a practical absence of valve leakage, a condition of things which ought to be attained in all well-constructed pumps. Examination for such leakage should be made first of all, and if it occurs, and it is found to be due to disordered valves, it should be remedied before making the plunger test. Leakage of the discharge valves will be shown by water passing down into the empty cylinder at either end when they are under pressure. Leakage of the suction valves will be shown by the disappearance of water which covers them.

If valve leakage is found which cannot be remedied, the quantity of water thus lost should also be tested. The determination of the quantity which leaks through the suction valves, where there is no gate in the suction pipe, must be made by indirect means. One method is to measure the amount of water required to maintain a certain pressure in the pump cylinder when this is introduced through a pipe temporarily erected, no water being allowed to enter through the discharge valves of the pump.

The exact methods to be followed in any particular case, in determining leakage, must be left to the judgment and ingenuity of the person conducting the test.

## Table of Data and Results.

In order that uniformity may be secured, it is suggested that the data and results, worked out in accordance with the standard method, be tabulated in the manner indicated in the following scheme:

## DUTY TRIAL OF ENGINE.

## Dimensions.

1. Number of steam cylinders

2. Diameter of piston-rods of steam cylinders .......................... ins.
3. Nominal stroke of steam pistons ........................................... ft .
4. Number of water plungers . ................................................... . . .

5. Diameter of piston $\cdot$ rods of water cylinders ............................ ins.
6. Nominal stroke of plungers ............................................ . ft.


7. Average length of stroke of steam pistons during trial ........ ft .
8. Average length of stroke of plungers during trial............. ft.
(Give also complete description of plant.)

## Temperatures.

13. Temperature of water in pump well
degs.
14. Temperature of water supplied to boiler by main feed pump. degs.
15. Temperature of water supplied to boiler from various other sources
degs.

## Feed Water.

16. Weight of water supplied to boiler by main feed pump ..... lbs.
17. Weight of water supplied to boiler from various other sources. ..... lbs.
18. Total weight of feed water supplied from all sources. ..... lbs.
Pressures.
19. Boiler pressure indicated by gauge ..... lbs.
20. Pressure indicated by gauge on force main ..... lbs.
21. Vacuum indicated by gauge on suction main ..... ins.
22. Pressure corresponding to vacuum given in preceding line... ..... lbs.
23. Vertical distance between the centres of the two gauges ..... ins.
24. Pressure equivalent to distance between the two gauges ..... lbs.
Miscellaneous Data.
25. Duration of trial ..... hrs.
26. Total number of single strokes during trial
27. Percentage of moisture in steam supplied to engine, or $\{$ per cent number of degrees of superheating........................ $\{$ or deg.
28. Total leakage of pump during trial, determined from results of leakage test ..... lbs.
29. Mean effective pressure, measured from diagrams taken from steam cylinders M.E. P.
Principal Results.
30. Duty ft.-lbs.
31. Percentage of leakage ..... per cent.
32. Capacity
per cent.
Additional Results.*
33. Number of double strokes of steam piston per minute
34. Indicated horse-power developed by the various steam cylin- ders ..... I. H. P.
35. Feed water consumed by the plant per hour ..... lbs.
36. Feed water consumed by the plant, per indicated horse-power, per hour, corrected for moisture in steam ..... lbs.
37. Number of heat units consumed, per indicated horse-power, per hour B.T.U.
38. Number of heat units consumed, per indicated horse-power,per minuteB.T.U.40. Steam accounted for by indicator at cut-off and release in thevarious steam cylinderslbs.
39. Proportion which steam accounted for by indicator bears tothe feed water consumption
Sample Diagrams taken from Steam Cylinders.
(Also, if possible, full measurements of the diagrams, embracing pressures at the initial point, cut-off, release, and compression; also, backpressure and the proportions of the stroke completed at the various points noted.)
40. Number of double strokes of pump per minute.
41. Mean effective pressure, measured from pump diagrams ....... M. E.P.
42. Indicated horse-power exerted in pump cylinders.............. I. H. P.
43. Work done (or duty) per 100 pounds of coal ft.-lbs.
(Sample diagrams taken from pump cylinders.)
[^9]
## The Hydraulic Ram.

The hydraulic ram is a device by means of which a large volume of water under a low head may be used to force a smaller quantity of water up against a higher head. Its chief advantages are its simplicity, moderate cost, and freedom from
 care or attendance.

The operation is as follows:

The water working the ram is supplied through the pipe, $S$, and escapes through an opening at o until it has gained a velocity sufficient to raise the valve or ball, $B$, which suddenly stops the current and causes an excessive pressure in the ram, $R$, which opens the valve or ball, $C$; the water is forced into the vessel and air chamber, $A$, and finally through the delivery pipe, $d$, to its destination. When equilibrium of pressure is restored between $S$ and $R$ the valve, $B$, falls and the operation is repeated. The ram can make as many as 200 strokes per minute, depending upon its size.

The length of the supply pipe, $S$, should not be less than 5 times the height of the fall, $F$, because it is the dynamic action of the water in the pipe which works the ram. The delivery pipe may be made 10 or more times the height of the fall.

The useful effect of the ram, like that of water-wheels and turbines, depends much upon its construction. In ordinary cases it returns about 50 per cent. of the natural effect,-that is, the quantity of water, $q$, multiplied by the height. $h$, of the delivery above the ram will be about 50 per cent. of the quantity of water, $Q$, working the ram, multiplied by the head of fall, $F$, in the same unit of time.

$$
q h=0.5 Q F . \quad q=\frac{0.5 Q F}{h} . \quad Q=\frac{2 q h}{F} .
$$

$Q$ and $q$ can be expressed in any unit of volume or weight.
$F$ and $h$ can be expressed in any unit of length.
But let us assume $Q$ and $q$ to be cubic feet per minute;
$F$ and $h=$ fall and height, in feet;
$L=$ length, in feet, and $D=$ diameter, in inches, of the supply pipe, $S$;
$l=$ length, and $d=$ diameter of the delivery pipe, $d$;
then

$$
D=\sqrt[5]{\frac{2 Q^{2}(L+5 D)}{F}}, \text { and } d=\sqrt[5]{\frac{4 q^{2}(l+5 d)}{h}}
$$

## Hydrometer.

A body wholly immersed in a liquid will lose as much of its weight as the weight of the liquid it displaces.

A floating body will displace its own weight of the liquid in which it floats.

A cylindrical rod of wood or some light materials, being set down in two liquids, $A$ and $B$, of different specific gravities, when in equilibrium will sink to the mark $a$ in the liquid $A$, and to $b$ in the liquid $B$;
 then the specific gravity of $A: B=b, c: a, c$, or inversely as the immersed parts of the rod. This is the principle upon which a hydrometer is constructed.

Table Showing the Comparative Scales of Gay Lussac and Baumé, with the Specific Gravity and Proof, at the Temperature of $60^{\circ}$ Fahr.


## Hydrostatics.

## Notation.

A and $\mathbf{a}=$ areas of the pressed surfaces, in square feet;
$I$ and $p=$ hydrostatic pressure, in pounds;
$d=$ depth of the centre of gravity of $\mathbf{A}$ or a under the surface of the liquids, in feet;
$S=$ specitic gravity of the liquid.
Example. Case I.-The plane $\mathbf{A}=3.3$ square feet at a depth of $d=6$ feet under the surface of fresh water. Required the pressure, $P=$ ? Specific gravity of fresh water, $S=1$.

$$
P=62.3 \mathbf{A} d=62.3 \times 3.3 \times 6=1237.5 \text { pounds. }
$$

Example. Case IV.-The area of the pistons, $\mathbf{A}=8.5$ square feet, $\mathbf{a}=$ 0.02 square feet, $l=4$ feet, $e=9$ inches, and $F=18$ pounds. Required the pressure, $P=$

$$
P=\frac{F l \mathbf{A}}{e \mathbf{a}}=\frac{18 \times 4 \times 8.5}{0.75 \times 0.02}=40800 \text { pounds. }
$$

It must be distinguished that the centre of pressure and centre of gravity of the planes are two different points; the centre of pressure is below the centre of gravity when the plane is inclined or vertical.


The Hydrostatic Paradox.
The pressure, $P$, is independent of the width of column, $C$.
$P=62.3 S a h$. (Same as above.) III.


$$
\begin{aligned}
& P=A\left(62.3 S h+\frac{p}{a}\right), \\
& p=a\left(\frac{P}{A}-62.3 S h\right), \\
& h=\frac{P a-p A}{62.3 S A a} .
\end{aligned}
$$

IV.


Bramali's Hydraulic Press.
$P=\frac{F l A}{e l}$,
$F=\frac{P e a}{A}$,
$A=\frac{P \epsilon a}{F l}$,
$a=\frac{F A l}{P e}$.
VII.


Centre of Pressure of a Triangle, the vertex being at the surface of the liquid, $d=3 / 4 h$.
VIII.


$$
d=2 / 3 \cdot \frac{3 h^{2}-3 h h_{1}+h_{1}{ }^{2}}{2 h-h_{1}}
$$

## Resistance Caused by Obstructions.

In nearly all hydraulic work numerous bends, valves, etc., must be inserted in the connections, and these produce frictional resistance to the flow. Such resistances are conveniently computed in terms of additional head, representing the number of feet-head to be added to that for a smooth pipe in order that the final discharge or pressure may be realized.

Resistance in Angles and Bends.-The resistance due to an angle is important, and is dependent upon what Weisbach calls the semi-angle of deviation, $\beta$, according to the following formula:

$$
h_{2}=\zeta_{2} \frac{r^{2}}{2 g}=\left(0.9457 \sin ^{2} \beta+2.047 \sin ^{4} \beta\right) \frac{x^{2}}{2 g},
$$

from which we get:

$$
\begin{array}{lccccccc}
\beta=10 & 20 & 30 & 40 & 45 & 50 & 60 & 70 \\
\zeta=0.046 & 0.139 & 0.364 & 0.74 & 0.985 & 1.26 & 1.861 & 2.431
\end{array}
$$

Example. In a right-angle bend $\beta=45^{\circ}$, and the loss is practically equal to $\frac{v^{2}}{2 g}$.


In the case of bends the resistance is not so great, but is too large to be neglected, since we have

$$
h_{2}=\zeta_{2} \frac{\beta}{90} \cdot \frac{\tau^{2}}{2 g} .
$$

The ratio of the radius of the tube to the radius of the curvature of the bend affects the coefficient, as below :

$$
\begin{array}{rlcccc}
\frac{0.5 D}{r} & =0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\zeta_{2} & =0.131 & 0.138 & 0.158 & 0.206 & 0.294 \\
\frac{0.5 D}{r} & =0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\zeta_{2} & =0.440 & 0.661 & 0.977 & 1.408 & 1.978
\end{array}
$$

Example. For a right-angle bend in which $r=D$, we have

$$
h_{2}=0.29 \frac{45}{90} \cdot \frac{v^{2}}{2 g}=0.147 \frac{v^{2}}{2 g},
$$

or only about $\frac{1}{7}$ the resistance of a sharp bend with any curvature.
Resistances due to Sudden Changes of Cross=section. - When water which is moving at a velocity, $v_{1}$, suddenly changes to another velocity, $v$, as at $a$, it experiences a loss of pressure which, according to Weisbach, is equivalent to a height:

$$
h_{3}=\frac{v_{1}^{2}-v^{2}}{2 g}=\left(\frac{F}{F_{1}}-1\right)^{2} \frac{v^{2}}{2 g}=\zeta_{3} \frac{v^{2}}{2 g},
$$

$F$ and $F_{1}$ being the respective cross-sections; also, $F v=F_{1} v_{1}$. Doubling the rross-section causes a loss of head equal to $\frac{v^{2}}{2 g}$.

For gate valves, as at $b$, or cocks, as at $c$, there is a loss due to the amount of contraction. For gate valves we have from Weisbach:


From the above tables it will be seen how important an influence is exerted by valve chests, mud traps, and the like upon the flow of water. In all such cases it is important to modify the suddenness of the change of velocity by rounding and curving all angles in the passages, and in this way a large part of the loss may be obviated. For gaseous fluids the resistance is less, but is at the same time sufficiently important to be carefully considered. For a fuller discussion of the resistances offered to water in canals and streams the reader must be referred to special treatises on the subject.

## Centrifugal Pumps.

Let
$v=$ velocity of rim of wheel, in feet, per second ;
$h=$ height of delivery, in feet, including suction;
$D=$ diameter of wheel, in feet;
$Q=$ cubic feet of water per minute;
$d=$ diameter of discharge pipe, in feet.
Then

$$
\begin{aligned}
& v=10+8 \sqrt{h} \\
& d=0.36 \sqrt{\frac{Q}{\sqrt{29 h}}} \\
& D=\sqrt{\frac{Q}{\sqrt{h}}} \times 0.18
\end{aligned}
$$

The inlet opening in the side of the wheel is made equal to 0.5 D . The blades are sometimes made in the form of an Archimedean spiral, but a better efficiency is obtained with the reversed curve, designed according to the method of Rittinger, as follows:

Let
$r=$ the radius of the propeller wheel;
$r_{1}=$ the radius of the inlet opening;
$a=$ the angle between radius and initial line of blade;
$l=$ radius of curvature of blade ;
$n=$ number of revolutions per minute;
$c=$ velocity of inflowing water per minute;

$$
=\frac{Q}{\pi r_{1}{ }^{2}} .
$$

We have

$$
\begin{aligned}
\tan a & =0.1047 \frac{n r_{1}}{c} \\
l & =\frac{r^{2}-r_{1}^{2}}{2 r_{1} \sin a}
\end{aligned}
$$

The case is made in the form of an Archimedean spiral.


Centrifugal Pump.

## Hydraulic Transmission of Power.

For many purposes where power has to be distributed over a limited area for working machinery, such as presses, lifts, cranes, riveting and flanging machinery, and the like, it has been found advantageous to use water under high pressure, the system being piped to accumulators and pumps, so that a supply of stored energy is available for the varied and irregular demands.

The accumulator is simply a vertical cylinder fitted with a weighted plunger, the area of the plunger and its load being proportioned to equal the pressure, in pounds, per square inch to be maintained in the system. The pumps deliver water under the plunger, and the pipe system is also connected to the cylinder. Unless the demand upon the pumps is equal to their full capacity, the plunger of the accumulator will be forced upward, the excess energy being thus stored in the lifted weights. When the plunger reaches its upper limit it shuts off the steam to the pumps and checks their action ; as it falls, the steam is turned on, and the pumps are again started. When any machine connected with the system, as a riveter or a press, is put in motion the accumulator plunger falls as the water is drawn from the pipes, but the pressure is maintained by the weights upon the plunger. The pumps promptly respond to the fall of the plunger, so that the latter is kept oscillating up and down in response to the demand from the machines and the supply from the pumps.

The amount of energy stored in an accumulator will be

$$
\text { Foot-pounds }=2240 \mathrm{Ws}=\frac{\pi d^{2}}{4} s p,
$$

in which
$W=$ weight on plunger, in tons;
$d=$ diameter of plunger, in inches ;
$p=$ pressure, in pounds, per square inch;
$\mathcal{s}=$ vertical travel of plunger.

The efficiency of an accumulator may be as high as 98 per cent., 1 per cent. being lost in charging and as much in discharging. While the total amount of energy which can be stored is not great, it can be discharged at a high rate for a short time, and by care in proportioning the capacity of the pumps to the probable


Schmid Hydraulic Motor. demand a very satisfactory service may be maintained.

The pressures in such systems range from 600 to 800 pounds per square inch. At Hull, England, a pressure of 610 pounds per square inch is maintained. In London the pressure is 800 pounds, and at Birmingham it is 730 pounds. For lifts the water is used in cylinders, usually having a stroke equal to but a fraction of the entire hoist, the travel of the cage being multiplied by a reduplication of the hoisting cable over a system of sheaves. Plunger elevators are now coming into use, however, the valves used permitting speeds of 600 feet per minute, when required.
The high-pressure water is used in various forms of motors. On the Continent the Schmid oscillating engine is much used, while in England the 3 -cylinder engine of Brotherhood and the 4 -cylinder engine of Rigg are found.

The principal feature of such engines is the regulation. Throttling is unsatisfactory, and the rigidity of the water column must be contended with. The most satisfactory principle is that of a variable stroke, the pressure of the water being left unchanged.

An example of such a regulator is that of Helfenberger. This is made with a hydraulic ratchet mechanism arranged in the crank disk in such a manner as to move the crank pin to or from the centre, the ratchet being operated by tappets, which strike each time the crank passes the dead centres. The throw of the crank is thus varied to correct for variations of speed, the mechanism being controlled by a governor.

The Pelton water-wheel has also been employed with success as a small. motor for use with high-pressure water, and is both simple and convenient.


Professor Reuleaux has suggested a very effective method for power distribution by hydraulic pressure, using the water in a circuit or "ring," not unlike methods of electrical distribution.

Taking into consideration high-pressure hydraulic systems, we find two distinct kinds of "ring" systems which may he used.

In the first method, shown above, the flow of water under pressure starts from the power station, $T_{0}$, with a pressure, $p_{0}$, and proceeds to the
first station, $T_{1}$, where it operates a water-pressure engine, and passes on with a reduced pressure, $p_{1}$. It has, therefore, operated at the station, $T_{1}$, with a pressure, $p_{0}-p_{1}$. With the pressure, $p_{1}$, it passes on to the second, third, fourth, - - nth station, $T_{n}$, each time losing pressure until it returns to the power station with a final pressure, $p_{n}$, where it is again raised to the initial pressure of $p_{0}$. It is apparent that the water-pressure engines (escapements) at $T_{1}, T_{2}, T_{3}$ - —— $T_{n}$, should all be of equal size, in order to utilize the entire flow without excessive resistance. Automatic regulation, such as Helfenberger's, is also desirable.


The second system is shown above. It will be seen that at each station there is a branch or shunt tube leading through the motor (or escapement), $T_{2}$, and then reuniting with the main pipe. The main pipe, $A$, forks at the station into the two branches, $B$ and $C$, of which the first diverts any required fraction of the power of the main flow, as $\frac{1}{10}, \frac{1}{9}, \frac{1}{3}$, as the case may be. At the fork is a swing valve, $C^{\prime}$, operated by a speed governor, $R$, driven by the motor. This governor requires the assistance of some form of power reinforcement. The discharge pipe, $D$, of the motor unites with the by-pass, $C$, to form again the main conductor, $E$. At the entrance in the main pipe, $A$, we have the pressure, $p_{1}$, of the original flow. The motor, $T_{2}$, is now supposed to be stationary, the stop valve at $B^{\prime}$ having been closed by hand. The flap valve, $C^{\prime}$, which has been disconnected from the regulator before stopping the motor, is also closed. The flow of water then passes through $C$ to $E$ with the pressure, $p_{1}$.

When the motor, $T_{2}$, is to be started, the valve, $B^{\prime}$, is opened and the flap valve, $C^{\prime}$, gradually opened until the motor begins to move, when it is connected to the governor, which regulates it thereafter so as to keep the motor at its normal speed. When a heavy load is thrown on the valve is opened so that the pressure, $p_{2}$, in $B$ becomes a greater fraction of $p_{1}$, and when the work is less it is reduced. The pressure of discharge, $p_{3}$, acts as a back pressure, so that the motor works with an effective pressure, $p_{2}-p_{3}$. The flow of water in the by-pass pipe, $C$, also passes the valve, $C^{\prime}$, with a pressure, $p_{3}$, and unites with the discharge at $E$, to be further utilized at subsequent stations until it returns to the power station, where, if it has reached the minimum pressure, it is permitted to flow into a tank, from which it is again drawn by the pressure pumps. If the return water is delivered under pressure it may be allowed to enter the suction pipe of the pressure pumps direct, and so form a closed ring system to start anew on the circuit.

The ring system of hydraulic power transmission is to be recommended when the various stations are distributed over a wide area and are readily connected by a continuous line of pipe. The pipe can be kept from freezing in winter by occasional gas flames, as has already been demonstrated by experience with Armstrong's hydraulic cranes. The ring system should be carefully distinguished from those forms in which the flow of water passes through the motor and is allowed to flow off at lowest pressure of discharge.

Full detailed descriptions of a variety of hydraulic machinery will be found in Professor Henry Robinson's treatise on "Hydraulic Power and Hydraulic Machinery," and reference should also be made to Reuleaux's "Constructor."

## FUEL.

The fuels used in engineering consist of compounds of carbon and of hydrogen, which when uniting with oxygen produce heat.

Fuels may be classified as solid, liquid, and gaseous.
The solid fuels are coal in its various grades from anthracite, bituminous, lignite, and peat; charcoal, coke, and wood. Liquid fuels include the mineral, vegetable, and animal oils. The gaseous fuels are natural gas and the various artificial gases, as coal gas produces gas, etc.

The calorific power of solid and liquid fuels, or, as it is sometimes called, the thermal value, is measured by the number of thermal units or calories developed during the combustion of a unit weight. Usually, the calorific power is expressed in the number of British thermal units evolved by the combustion of a pound of the fuel, or the number of calories produced by the combustion of a kilogramme of fuel. To convert B.T. U. per pound to calories per kilogramme multiply by 0.555 , to convert calories per kilogramme to B.T. U. per pound multiply by 1.8, this being the ratio of the Centigrade to the Fahrenheit degree. The calorie involves the raising of the temperature of a kilogramme of water, and the B.T.U. involves the raising of the temperature of only a pound of water, but this corresponds exactly to the different weights of fuels respectively consumed, so that the ratio is simply that due to the thermometer scales.

The calorific power of gaseous fuels is generally determined in B.T. U. per cubic foot or in calories per cubic metre. To convert calories per cubic metre to B.T. U. per cubic foot multiply by 0.11235 , to convert B. T.U. per cubic foot to calories per cubic metre multiply by 8.9.

When the calorific powers of solids and gases are compared, the gas should be taken by weight, in order to have the data in comparable form, other wise it is more convenient to consider gases separately by volume, as they are measured.

Since the fuels used in engineering are carbon, hydrogen, and their compounds, the calorific value of these elements form the foundations upon which other values are computed.

One pound of pure carbon, completely burned to carbonic acid, $\mathrm{CO}_{2}$, evolves $14,500 \mathrm{~B} . \mathrm{T}$. U. One kilogramme of carbon, burned in like manner, evolves 8080 calories.

One pound of pure hydrogen, burned to water, evolves 62,100 B.T. U., and one kilogramme of hydrogen evolves 34,500 calories.

Having these facts we may determine the calorific value of any combination of carbon and hydrogen when we know the ultimate chemical composition, -i.e., the percentage of carbon and hydrogen contained. When there is only carbon and hydrogen present, the calorific value of the combination is expressed by the sum of the calorific value of the constituents. Thus, if $h$ be the number of heat units evolved by the complete combustion of a combination of carbon and hydrogen, we have
or

$$
h=8080 C+34500 H \text { calories, }
$$

$$
h=14500 C+62100 H \text { В.Т. U. }
$$

When, however, as is usually the case, there is oxygen present in the fuel it will unite with a portion of the hydrogen, and in, such case a deduction should be made. We therefore have, for the computation of the calorific value of a fuel from its chemical composition,

$$
h=8080 C+34500\left(H-\frac{O}{8}\right), \text { for calories per kilogramme }
$$

and

$$
h=14500 C+62100\left(H-\frac{O}{8}\right), \text { for B.T. U. per pound. }
$$

Whenever practicable, it is desirable that the calorific power of a fuel be determined directly by experiment. Various devices have been made for
this purpose, depending for their action upon the complete combustion of a determinate weight of the fuel in a closed chamber immersed in a known weight of water. The rise in the temperature of the water then gives the information from which the heat evolved may be determined. The most reliable apparatus of this kind is the so-called calorimetric "bomb" of Bethelot, Vielle, and Mahler, in which the fuel is enclosed in a steel vessel, lined with platinum or enamel, together with sufficient compressed oxygen to complete the combustion. The ignition is effected by means of an electric current, and the heat evolved is measured by the rise in temperature of the bath of water in which the bomb is immersed.

For full details of calorimetric apparatus and work reference may be made to Poole's work on the "Calorific Power of Fuels."

In important investigations the fuel used should be carefully sampled, and its calorific power determined, either by computation-using Dulong's formula-from a chemical analysis or by the use of the bomb, such work being performed in the testing laboratory. For general purposes, however, the calorific value of a fuel may well be taken by selecting from existing tests that of a fuel corresponding most nearly with the one under consideration.

Calorific Values of Fuels.

| Substance. | Approximate total heat of combustion of 1 pound of fuel. | Equivalent evaporation from and at $212^{\circ}$ Fahr. per pound of fuel. |
| :---: | :---: | :---: |
| drog | Thermal units. 62000 | Lb. water. |
| Petroleum, crude | 20400 | 21.13 |
| Petroleum refuse. | 20000 | 20.70 |
| Joal gas.. | 17800 | 18.43 |
| Joal gas, per cubic foot, at $62^{\circ}$ Fahr. | 630 | 0.70 |
| ooal, good average quality. | 14700 | 15.22 |
| Jarbon, pure | 14500 | 15.07 |
| 'oke | 13500 | 13.87 |
| Vood charcoal, dessicated | 13000 | 13.46 |
| Vood, dessicated. | 11000 | 11.39 |
| 'eat, dessicated. | 10000 | 10.35 |
| Yood, air dried | 8000 | 8.28 |
| traw | 8000 | 8.40 |
| 'eat, 25 per cent. moisture . . . . . . . . . | 7000 | 7.25 |
| ulphur .............................. | 4000 | 7.14 |

## Theoretical Heating Value of Coals.

> (Babcock and Wilcox.)
> Heating Power of Coals of Great Britain, United States, Germany, France, Belgium, and Austria-Hungary.


## Theoretical Heating Value of Coals.-Continued.

| Coals. <br> Locality of beds. | B. T. U. | Calories. | Nature. |
| :---: | :---: | :---: | :---: |
| Germany.-Continued. Hanover. |  |  |  |
| Osnabrück | 10789 | 5994 | Semi-anthracite, low grade. |
| Obernkirchen | 12718 | 7066 | Bituminous. |
| Silesia (Prussia). |  |  |  |
| Carlssegen. | 10422 | 5790 | , |
| Myslowitz | 10758 | 5977 |  |
| Waterloa | 11412 | 6340 |  |
| Königshülle | 12247 | 6804 |  |
| Paulusgrube | 12425 | 6903 | Long-flaming, semi-bitumi- |
| Waldenburg | 12637 | 7021 |  |
| Brandenburg | 12193 | 6774 |  |
| Neurode... | 13393 | 7441 |  |
| Freienstein | 9651 | 5366 |  |
| Maxgrube . | 10087 | 5604 |  |
| Bavaria. |  |  |  |
| Hanshamer coal. | 9821 | 5456 |  |
| Peipenberg | 8186 | 4548 | Lignite or brown, low grade. |
| Penzberg.. | 8921 | 4956 |  |
| France. |  |  |  |
| Anthracite de la Mayenne . | 15566 | 8646 | Anthracite. |
| Anthracite de Lamure (Isère) | 13782 | 7657 \} | Anthracite. |
| Bassin du Bas-de-Calais. |  |  |  |
| Marles. | 14175 | 7875 |  |
| Bully. | 15120 | 8400 \} |  |
| Hessin. | 15352 | 8529 8477 | Bituminous coking. <br> Bituminous hard coal. |
| Naux. | 15256 | 8476 \} | Bituminous coking. |
| l'Escarpelle | 15400 | $8556\}$ | Bituminous coking. |
| Les Courrières. | 14265 | 7925 | Semi-bituminous coal. |
| Bassin de la Saône. |  |  |  |
| Blanzy ... ............... | 13127 | 7293 | Semi-bituminous coal, long |
| Epinac | 14086 | 7826 | Bituminous coal, long flame. |
| Bassin de la Loire. |  |  |  |
| Rire-de-Gier, puits Henry... | 15481 | 8601 | Bituminous hard coal. |
| Rive-de-Gier, No. 1.......... | 15472 | 8596 |  |
| Rive-de-Gier, Cimetière 1.... Rive-de-Gier, Cimetière 2.... | 14493 15309 | 8052 8505 |  |
| Rive-de-Gier, Couson........ | 14770 | 8206 | Bituminous hard coal, long |
| Bassin de l'Aveyron. |  |  | flame. |
| Lavaysse | 14530 | 8128 |  |
| Céral | 13203 | 7335 | Semi-bituminous coal. |
| Bassin d'Alais Rochbelle.... | 15643 | 8691 | Bituminous coking. |

Fuel.

## Theoretical Heating Value of Coals.-Continued.

| Coals. <br> Locality of beds. | B. T. U. | Calories. | Nature. |
| :---: | :---: | :---: | :---: |
| France.-Continued. Bassin de Valenciennes. |  |  |  |
| Denain, Fosse Renard. | 15244 | 8469) |  |
| Denain, Fosse Lelvet 1 | 15100 | 8389 | Bituminous coal, long flame. |
| Denain, Fosse Lelvet 2 | 15316 | 8509 |  |
| St. Wast, Fosse de la Réussite | 15105 | 88923 |  |
| St. Wast, Grande Fosse . ..... <br> St. Wast, Fosse Tinchon | 15188 | $\left.\begin{array}{l}8438 \\ 8379\end{array}\right\}$ | flame. |
| Anzin, Fosse Chauffour | 14353 | 7974 |  |
| Anzin, Fosse la Cave | 14549 | 8083 | Bituminous coking. |
| Anzin, Fosse St. Louis. | 15397 | 8554 |  |
| Fresne, Fosse Bonnepart | 15228 | 8460 | Semi-bituminous coal. |
| Belgium. <br> Bassin de Mons. |  |  |  |
| Haut-flenu | 14576 | 8098 |  |
| Belle et Bonne, Fosse No. 21. | 14326 | 7959 |  |
| Levant de flenu | 14508 | 8060 |  |
| Couchant | 14446 | 8037 |  |
| Midi..... | 14553 | 8085 | Semi-bituminous hard coal. |
| Grand-Hornu. .......... Nord du bois de Bossu | 14943 | 8302 8004 |  |
| Grand-Buisson | 14877 | 8265 |  |
| Escouffiaux | 15217 | 8454 |  |
| St. Hortense, bonne veine | 15107 | 8393 |  |
| Bassin du Centre. |  |  |  |
| Haine St. Pierre. | 14702 | 81687 |  |
| Bois du Luc | 14358 | 7977 |  |
| La Louvière. | 15127 | 8104 | Semi-bituminous coking. |
| Bracquegnie Mariemont | 15363 | 8535 |  |
| Mariemont | 1.5168 | 8427 |  |
| Bascoup <br> Sars-Longchamps | 14911 | 8284 |  |
| Sars-Longchamps <br> Houssu | 14895 14945 | $\left.\begin{array}{l} 8275 \\ 8303 \end{array}\right\}$ | Bituminous hard coal. |
| Bassin de Charleroi. |  |  |  |
| St. Martin, Fosse No. $3 . .$. | 14954 | $8308)$ |  |
| Trieukaisin.................. | 15069 | $\left.\begin{array}{l}8372 \\ 8012\end{array}\right\}$ | Semi-bituminous coking. |
| Bayemont, Fosse St. Charles. | 13806 | 7670 |  |
| Sacré-Madame .............. | 15204 | 8447 |  |
| Sars-les-Moulins, Fosse No. 7 | 15125 | 8403 | Semi-bituminous hard coal. |
| Carabinier-française No. 7.. <br> Roton, veine Greffier | 14911 | 8284 7951 |  |
| Pont-du-Loup . . . . . . . . . . . . . . | 14947 | 8304 |  |
| Austria-Hungary. <br> Lower Austria. |  |  |  |
| Grünbach | 11458 | 6366 | Semi-bituminous coal. |
| Thallern | 70.57 | 3921 |  |
| Upper Austria. <br> Wolfsegg-Trannthal | 6006 | 3337 | Lignite or brown coal. |

## Theoretical Heating Value of Coals.-Continued.

| Coals. <br> Locality of beds. | B.T. U. | Calories. | Nature. |
| :---: | :---: | :---: | :---: |
| Austria=Hungary.-Continued. Styria. |  |  |  |
| Leoben . . | 9666 | 5370 |  |
| Fohnsdorf | 9187 | 5104 |  |
| Göriagh | 6222 | 3457 | Lignite or brown coal. |
| Wies. | 7997 | 4443 |  |
| Trifail. | 7556 | 4198 J |  |
| Bohemia. |  |  |  |
| Klarno.... | 10675 | 5931 |  |
| Buschtehrad | 8865 | 4925 |  |
| Libuschin | 9900 | 5500 |  |
| Schlan ......... | 7979 | 4433 | Semi-bituminous coal. |
| Rakonitz-Lubna. | 7257 9318 | 4032 5177 |  |
| Schatziar | 6.538 | 5317 |  |
| Aussig. | 6408 | 3560 |  |
| Dux.. | 7808 | 4338 |  |
| $\underset{\text { Brïx }}{\text { Bilin }}$ | 8182 8274 | $\left.\begin{array}{l}4546 \\ 4597\end{array}\right\}$ | Lignite or brown coal. |
| Moravia. |  |  |  |
| Rossitz | 12553 | 6974 |  |
| M. Ostran | 12623 | 7013 |  |
| Gaya . | 4858 | 2699 ) |  |
| Göding | 5056 | $2809\}$ | Lignite or brown coal. |
| Silesia. |  |  |  |
| P. Ostran . | 12564 | 69807 |  |
| Orlan-Lazy | 12389 | 6883 |  |
| Poremba | 11057 | 6143 | Bituminous coal. |
| Karwin.. | 13021 | 7234 |  |
| Taklowetz | 11932 | 6632 |  |
| Hungary. |  |  |  |
| Fünfkirchen | 10276 | $5709\}$ | Cannel coal. |
| - Anina ${ }^{\text {Neufeld... }}$ | 11356 | 6309 \} | Cannel coal. |
| Breneld ...................... | 5200 8325 | 2889 |  |
| Aika. | 6913 | 3841 |  |
| Salgo-Tarjan | 7966 | 4426 |  |
|  |  |  |  |
| Dalmatia. |  |  |  |
| Siveric | 8087 | 4493 |  |
| Istria. |  |  | Lignite or brown coal. |
| Arsa | 10182 | 5657 |  |
| Transylrania. |  |  |  |
| Petrozsény .................. | 11286 | 6270 |  |
| Egeres. . | 8692 | 4829 |  |
| Bosnia. |  |  |  |
| Zenica. | 7911 | 4359 |  |

## American Coals.

| State. <br> Kind of coal. | Per cent. of ash. | Theoretical value. |  |
| :---: | :---: | :---: | :---: |
|  |  | In heat units. | Pounds of water evaporated. |
| Pennsylvania anthracite. | $\left\{\begin{array}{l}3.49 \\ 6.13 \\ 2.90\end{array}\right.$ | 14199 | $\begin{aligned} & 14.70 \\ & 14.01 \end{aligned}$ |
|  |  | 13535 |  |
|  |  | $14221{ }^{\text {- }}$ | 14.72 |
| Pennsylvania cannel | 15.02 | 13143 | 13.60 |
| Pennsylvania, Connellsville | 6.50 | 13368 | 13.84 |
| Pennsylvania semi-bituminous | 10.70 | 13155 | 13.62 |
| Pennsylvania, Stone's gas... | 5.00 | 14021 | 14.51 |
| Pennsylvania, Youghiogheny.. | 5.60 | 14265 | 14.76 |
| Pennsylvania brown ........... | 9.50 | 12324 | 12.75 |
| Kentucky caking | 2.75 | 14391 | 14.89 |
| Kentucky cannel | $\left\{\begin{array}{r}2.00 \\ 14.80\end{array}\right.$ | $15198$$13360$ | $\begin{aligned} & 16.76 \\ & 13.84 \end{aligned}$ |
|  |  |  |  |
| Kentucky lignite. | 7.00 | 9326 | $\begin{array}{r} 13.84 \\ 9.65 \end{array}$ |
| Illinois, Bureau County | 5.20 | 13025 | 13.48 |
| Illinois, Mercer County | 5.60 | 13123 | 13.58 |
| Illinois, Montauk | 5.50 | 12659 | 13.10 |
| Indiana block. | 2.50 | 13588 | 14.38 |
| Indiana caking. | 5.66 | 14146 | 14.64 |
| Indiana cannel.......... | 6.00 | 13097 | 13.56 |
| Maryland, Cumberland | 13.88 | 12226 | 12.65 |
|  | 5.00 | 9215 | 9.54 |
|  | $\{9.25$ | $\begin{aligned} & 13562 \\ & 13866 \end{aligned}$ | 14.04 |
| Colorado lignite | $\{4.50$ |  | 14.35 |
| Texas lignite . . . . . . . . . . . . . . . . Washington Territory lignite | 4.50 | $\begin{aligned} & 12962 \\ & 11551 \end{aligned}$ | $\begin{aligned} & 13.41 \\ & 11.96 \end{aligned}$ |
|  | 3.40 |  |  |

## Wood

as fuel is estimated to have about 0.4 times the calorific value as the same weight of coal. The relative calorific values of various woods are therefore proportional to their weights. The following table gives the weight, in pounds, per cord.

| Kind of wood. | Weight. | Kind of wood.' | Weight. |
| :---: | :---: | :---: | :---: |
| Hickory, shell-bark | 4469 | Beech. | 3126 |
| Hickory, red heart. | 3705 | Hard maple | 2878 |
| White oak. | 3821 | Southern pine | 3375 |
| Red oak | 3254 | Virginia pine | 2680 |
| Spruce | 2325 | Yellow pine | 1904 |
| New Jersey pine.. | 2137 | White pine | 1868 |

## Calorific Values of Fuels.

The presence of water influences the computed calorific value of a fuel according as the water is taken as condensed or as vapor, this giving the so-called "higher" and "lower", calorific values.

Experimental researches by Mahler, as published in Engineering, Jan. 20,1905 , give the values in the following table, showing the extent to which these two values differ, together with the flame temperatures for the different fuels.

Calorific Values of Solid and Gaseous Fuels.

| Substance. | Origin. | Calorific power. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  | $\begin{aligned} & \dot{\Xi} \\ & 0 \\ & 0 \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$ |  |
| Oak wood | Lorraine | 4690 | 4370 | 320 | 6.82 | 65 |
| Peat | Bohemia | 5900 | 5590 | 310 | 5.25 | 2020 |
| Lignite | .Trifail (Styria). | 6650 | 6370 | 280 | 4.21 | 1960 |
| Flaming coal | ..... Blanzy ..... | 8350 | 8060 | 290 | 3.47 | 1990 |
| Flaming coal | .... Decazeville. | 7840 | 7530 | 310 | 3.95 | 1960 |
| Coal, oxidized by weathering. | ...Commentry. | 6380 | 6200 | 180 | 2.82 | 1960 |
| Coal, gas....................... | ...Commentry | 8410 | 8110 | 300 | 3.57 | 1950 |
| Coal, gas. | Bethune | 8670 | 8380 | 290 | 3.34 | 1990 |
| Coal, gas | Lens | 8740 | 8450 | 290 | 3.32 | 2010 |
| Coal, coking | ...St. Etienne. | 8860 | 8580 | 280 | 3.16 | 2010 |
| Coal, smithy | Roche la Moliere | 8860 | 8600 | 260 | 2.93 | 2030 |
| Coal, semi-bituminous | ..... Anzin. | 8660 | 8430 | 230 | 2.65 | 1980 |
| Coal, anthracite | . Commentry... | 8460 | 8290 |  |  | 2030 |
| Coal, anthracite | .Kebao, Tonkin. | 8530 | 8370 | 160 | 1.87 | 2020 |
| Coal, anthracite | .....Creusot.... | 8690 | 8480 | 210 | 2.41 | 2010 |
| Coal, anthracite | . Pennsylvania. | 8266 | 8140 | 126 | 1.52 | 2000 |
| Alcohol, ethylic and methylic, or wood spirit | $\ldots \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{HO}) \ldots$ | 7054 5307 |  |  |  | 1700 |
| Alcohol, amylic ................ | $\cdots \dot{\mathrm{C}}_{5} \mathrm{H}_{11}(\mathrm{HO})$ | 9018 |  |  |  | 1850 |
| Petroleum, crude | ..American.. |  | 10400 |  |  | 2000 |
| Petroleum, spirit | American. |  | 10270 |  |  | 1920 |
| Petroleum, refined | American |  | 10280 |  |  | 1660 |
| Hydrogen | . $\mathrm{H}_{2}$ | 34180 | 28780 | 5400 | 15.8 | 1960 |
| Carbon monoxide | . CO | 2442 |  |  |  | 2100 |
| Methane | $\ldots . . . \mathrm{CH}_{4}$ | 13345 | 11995 | 1350 |  | 1850 |
| Acetylene | $\cdots \cdots . \mathrm{C}_{2} \mathrm{H}_{2}$ | 11945 | 11529 | 416 | 3.5 | 2350 |

In the interpretation of these results it must be remembered that they are for the minimum quantity of air proportioned to each combustible-a condition which will not be realized in practice-and that calorific power (gross or net) may in many cases be of more value than the intensity, although for special cases, such as welding, the latter may be the prime factor. Those fuels giving a high calorific power yield a larger flame or volume of hot products than others which possess a high flame temperature with low calorific power. The fuels containing oxygen, such as peat and carbon monoxide, do not require as much air for combustion, and, as a result of the smaller proportion of nitrogen to be heated, give a higher flame temperature. For example, 100 grammes of the peat (as per table) give rise to 28 volumes of gas at 2000 deg., while the St. Etienne coal gave 44 volumes at the same temperature.

## Tests of American Coals at St. Louis, 1904.

List of Car Samples of Coal Tested During the Season of 1904 at the U. S. Geological Survey Fuel-Testing Plant at the Louisiana Purchase Exposition.

## Alabama.

No. 1. Lump and nut coal from mine No. 8 of the Ivy Coal \& Iron Co., located at Horse Creek, Ala. No. 2. Lump nut, and pea coal from mine No. 5 of the Galloway Coal Co., located at Carbon Hill, Ala.

## Arkansas.

No. 1. Lump and nut coal from mine No. 3 of the Central Coal \& Coke Co., Located at Huntington, Ark.
No. 2. Lump coal from mine No. 12 of the Central Coal \& Coke Co., located at Bonanza, Ark.
No. 3. Lump and slack coal from mine No. 18 of the Western Coal \& Mining Co., located at Jenny Lind, Ark.
No. 4. Slack coal from several Arkansas mines furnished by the Union Fuel Co., St. Louis, Mo.
No. 5. Lump and slack coal from mine No. 4 of the Western Coal \& Mining Co., located at Coal Hill, Ark.
No. 6. Slack coal from mine No. 18 of the Western Coal \& Mining Co., located at Jenny Lind, Ark.

## Colorado.

No. 1. Run-of-mine black lignite from Simpson mine of the Northern Coal \& Coke Co., located at Lafayette, Colo.

## Illinois.

No. 1. Lump and nut coal from mine No. 1 of the Western Anthracite Coal \& Coke Co., located near O'Fallon, Ill.
No. 2. Slack coal from same as Illinois No. 1
No. 3. Run-of-mine coal from mine No. 3 of the Southern Coal Mining \& Washing Co., located near Marion, Ill .
No. 4. Lump coal from mine No. 3 of the Donk Bros. Coal \& Coke Co., located at Troy.
No. 5. Washed slack from mine No. 1 of Donk Bros. Coal \& Coke Co., located near Collinsville, Ill. No. 6. Run-of-mine coal from shaft No. 1 of Clover Leaf Coal Co., located at Coffeen, Ill.

## Indian Territory.

No. 1. Lump and slack coal from mine No. 1 of the Whitehead Coal \& Mining Co., located at Henryetta, I. T.
No. 2. Run-of-mine coal from mine No. 8 of the Rock Island Coal Co , located at Hartshorne, I. T.

No. 3. Run-of-mine coal from mine No. 1 of D. Edwards \& Son, located at Edwards, I. T.
No. 4. Lump coal from mine No. 5 of the Western Coal \& Mining Co., located at Lehigh, I. T. No. 5. Slack and pea coal from mine No. 7 of the Western Coal \& Mining Co., located at Lehigh, I. T.

No. 6. Slack coal from Southwestern Development Company's mines at Coalgate, I. T.
Indiana.
No. 1. Run-of-mine coal from Mildred mine of the J. Wooley Coal Co., located at Mildred, Ind. No. 2. Run-of-mine coal from Electric mine of the T. D. Scales Coal Co., located at Boonville, Ind.

## Iowa.

No. 1. Lump and fine coal from mine No. 2 of the Anchor Coal Co., located at Laddsdale, Ia.
No. 2. Run-of-mine coal from mine No. 6 of the Mammoth Vein Coal Co., located at Hamilton, Ia.
No. 3. Lump coal from mine No. 4 of the Gibson Coal Mining Co., located near Altina, Ia.
No. 4. Lump coal from mine No. 3 of the Centerville Block Coal Co., located at Centerville, Ia.
No. 5. Run-of-mine coal from Inland mine No. 1 of the Inland Fuel Co., located at Chariton, Ia.

## Kansas.

No. 1. Coal from mine No. 10 of the Western Coal \& Mining Co., located at Fleming, Kans.
No. 2. Lump, nut, and slack from mine No. 11 of the Western Coal \& Mining Co., located at Yale, Kans.

## Tests of American Coals.-Continued.

Kansas.
No. 3. Run-of-mine coal from mine No. 9 of the Southern Coal \& Mercantile Co., located at Scammon, Kans.
No. 4. Lump coal from mine of the Atchison Coal Mining Co., located at Atchison, Kans.
No. 5. Lump and nut coal from mine No. 11 of the Southwestern Development Co., located at West Mineral, Kans.

## Kentucky.

No. 1. Run-of-mine coal from Straight Creek mine No. 2 of the National Coal \& Iron Co., located at Straight Creek, Ky.
No. 2. Lump, nut, pea, and slack coal from mine No. 1 of the St. Bernard Mining Co., located at Earlington, Ky.
No. 3. Run-of-mine coal from Bramsley mine of the St. Bernard Mining Co., located near Earlington, Ky.
No. 4. Run-of-mine coal from mine of the Wheatcroft Coal \& Mining Co., located at Wheatcroft, Ky.

## Missouri.

No. 1. Run-of-mine coal from New Home mine No. 1 of the New Home Coal Co., located at Sprague. Mo.
No. 2. Run-of-mine coal from mine No. 8 of the Northwestern Coal \& Mining Co., located near Bevier, Mo.
No. 3. Slack coal from mine of the Mendota Coal \& Mining Co., located near Mendota, Mo.

## Montana.

No. 1. Washed nut coal from mine near Red Lodge, Mon.

## New Mexico.

No. 1. Lump and slack coal from Weaver mine of the American Fuel Co., located three miles north of Gallup, N. M.
No. 2. Slack coal from Otero mine of the Caledonian Coal Co., located two miles east of Gallup, N. M.

## North Dakota.

No. 1. Run-of-mine brown lignite from Lehigh, N. D.
No. 2. Run-of-mine brown lignite from mine of the Cedar Coulee Coal Co., located four miles southeast of Williston, N.D.

## Texas.

N ). 1. Brown lignite from mine of the Houston County Coal \& Mfg. Co., located eleven miles south of Crockett, Tex.
No, 2. Brown lignite from Consumers ${ }^{\circ}$ Lignite Co., located at Hoyt, Tex.

## West Virginia.

No. 1. Run-of-mine coal from mine of the Virginia \& Pittsbu.g Coal Co., located at Kingmont, W. Va.
No. 2. Run-of-mine coal from Piteairn Mine of the Pitcairn Coal Co., located at Clarksburg, W. Va.

No. 3. Run-of-mine coal from mine of West Virginia Coal Co., located at Richard, W. Va.
No. 4. Run-of-mine coal from mine of the West Virginia Coal Co., located at Bretz, W. Va.
No. 5. Lump and nut coal from mine of the Davis Colliery Co., located at Coalton, W. Va.
No. 6. Run-of-mine coal from mine of the New River Smokeless Coal Co., located at Rush Run, W. Va.
No. 7. Run-of-mine coal from mine of the New River Smokeless Coal Co., located at Sun Switch, W. Va.
No. 8. Run-of-mine coal from mine of the Gauley Mountain Coal Co., located at Ansted, W. Va.

No. 9. Run-of-mine coal from Vulcan mine of the Mt. Carbon Company, Limited, located at Yowellton, W. Va.
No. 10. Lump and run-of-mine coal from mine of the Sagamore Colliery Co., located at Mora, W. Va.

No, 11. Run-of-mine coal from mines Nos. 1 and 2 of the W. H. Coffman Coal \& Coke Co., located at Zenith, W. Va.
No. 12. Run-of-mine coal from mine of the Big Sandy Coal \& Coke Co, located at Big Sandy, W. Va.

## Wyoming

No. 1. Black lignite from mine of the Wyoming Coal \& Mining Co., located at Monarch, Wyo.
No. 2. Black lignite from mine of the Cambria Fuel Co.

Fuel Tests.
Fuel Tests at Louisiana Purchase Exposition, 1904.

|  | Analysis of boiler-room sample. |  |  |  |  |  | Results. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of sample. |  |  |  | 立 |  |  |  |  |  |  | $\begin{aligned} & \text { Dry coal per indicated } \\ & \text { horse power hour. } \end{aligned}$ |  |
| 1 | Per cent. | $\begin{array}{\|c} \text { Per cent. } \\ 3 \end{array}$ | $\begin{gathered} \text { Per cent. } \\ 4 \end{gathered}$ | $\begin{gathered} \text { Per cent. } \\ 5 \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Per cent. } \\ 6 \end{gathered}\right.$ | Hours. 7 | Lbs. | $\begin{gathered} \text { H. F. } \\ 9 \end{gathered}$ | Lbs. | Lbs. <br> 11 | $\begin{gathered} \text { Lbs. } \\ 12 \end{gathered}$ | Lhs. $13$ |
| Alabama, 1. | 52.52 | 31.00 | 2.56 | 13.92 | . 78 | 10.03 | 8,656 | 205.8 | 20.72 | 8.44 | 3.35 | 4.14 |
| Alabama, briquetted. | 50.96 | 33.00 | 2.63 | 13.41 | . 94 | 8.25 | 6,521 | 196.6 | 18.97 | 8.81 | 3.21 | 3.96 |
| Alabama, 2. | 48.65 | 32.98 | 4.83 | 13.54 | 1.17 | 10.02 | 9,198 | 216.4 | 21.54 | 8.55 | 3.31 | 4.08 |
| Arkansas, 1. | 66.36 | 18.61 | 1.99 | 13.04 | 1.21 | 10.07 | 7,071 | 180.5 | 16.90 | 9.05 | 3.12 | 3.86 |
| Arkansas, briquetted. | 67.65 | 21.21 | . 94 | 10.20 | 1.73 | 10.03 | 7,700 | 206.4 | 18.74 | 9.37 | 3.02 | 3.73 |
| Arkansas, 2. | 73.65 | 16.86 | 1.07 | 8.42 | 1.95 | 10.07 | 6,517 | 180.6 | 15.70 | 9.73 | 2.91 | 3.59 |
| Arkansas, briquetted. | 60.30 | 22.49 | 4.88 | 12.33 | 1.32 | 9.98 | 7,370 | 190.3 | 17.31 | 9.31 | 3.00 | 3.71 |
| Arkansas, 3. | 72.74 | 16.04 | 1.97 | 9.25 | 1.29 | 10.02 | 8,158 | 219.7 | 19.68 | 9.50 | 2.98 | 3.68 |

















Arkansas, briquetted. .

U, S. Geological Survey.
(For details of coals see pages 615-616)
Table of Results of Coal Tests Under Boilers.

| Name of sample. | Analysis of boiler-room sample. |  |  |  |  |  | Results. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 范 | $\dot{3}$ |  |  |  | $\begin{aligned} & \text { Horse power developed } \\ & \text { by boiler. } \end{aligned}$ |  |  |  |  |
| 1 | Per cent. <br> 2 | Per cent. <br> 3 | Per cent. <br> 4 | Percent. <br> 5 | Per cent. <br> 6 | Hours. 7 | $\begin{gathered} \text { Llis. } \\ 8 \end{gathered}$ | $\begin{gathered} \text { H. P. } \\ 9 \end{gathered}$ | $\begin{gathered} \text { Lbs. } \\ 10 \end{gathered}$ | $\begin{aligned} & \text { Lhs. } \\ & 11 \end{aligned}$ | Lbs. <br> 12 | Lbs. $13$ |
| Kansas, 4 | 43.59 | 36.32 | 5.51 | 14.58 | 8.46 | 10.05 | 7,835 | 165.5 | 18.18 | 7.75 | 3.65 | 4.51 |
| Kentucky, 1 | 55.59 | 35.61 | 2.89 | 5.91 | 1.19 | 10.03 | 8,355 | 212.3 | 19.25 | 9.06 | 3.12 | 3.86 |
| Kentucky, 2 | - 45.75 | 37.91 | 7.76 | 8.58 | 3.37 | 10.00 | 9,557 | 208.5 | 21.75 | 8.16 | 3.47 | 4.28 |
| Kentucky, briq. | 44.32 | 37.07 | 7.11 | 11.50 | 3.71 | 9.82 | 9,371 | 207.1 | 21.87 | 8.06 | 3.51 | 4.33 |
| Kentuckv, 3... | 44.84 | 37.32 | . 7.92 | 9.92 | 3.91 | 10.07 | 9,645 | 211.5 | 21.75 | 8.27 | 3.42 | 4.22 |
| Kentuckr, 4 | 45.74 | 35.65 | 5.89 | 12.72 | 3.72 | 9.93 | 9,386 | 211.7 | 21.90 | 8.21 | 3.44 | 4.25 |
| Missouri, 1. | 40.64 | 34.88 | 7.28 | 17.20 | 4.37 | 10.00 | 9,737 | 207.4 | 22.30 | 7.92 | 3.57 | 4.41 |
| Missouri, briq. | 41.85 | 37.60 | 6.38 | 14.17 | 4.56 | 5.10 | 4,500 | 191.2 | 20.37 | 7.99 | 3.54 | 4.37 |




















## Comparative Evaporation of Coal and Oil.

Taken from the United States Geological Report on Petroleum for 1900.

| 1 pound of combustible. | Pounds of water evaporated at $212^{\circ}$ per pound of combustible. | Barrels of petroleum required to do same amount of evaporation as 1 ton of coal. |
| :---: | :---: | :---: |
| Petroleum, $18^{\circ}$ to $40^{\circ}$ Baumé. |  |  |
| Pittsburg lump and nut, Pennsylvania | 10.0 | 4.0 |
| Pittsburg nut and slack, Pennsyl vania | 8.0 | 3.2 |
| Anthracite, Pennsylvania. | 9.8 | 3.9 |
| Indiana block. | 9.5 | 3.8 |
| Georges Creek lump, Maryland | 10.0 | 4.0 |
| New River, West Virginia. | 9.7 | 3.8 |
| Pocahontas lump, West Virginia | 10.5 | 4.2 |
| Cardiff lump, Wales. | 10.0 | 4.0 |
| Cape Breton, Canada. | 9.2 | 3.7 |
| Nanaimo, British Columbia. | 7.3 | 2.9 |
| Co-operative, British Columbia | 8.9 | 3.6 |
| Greta, Washington | 7.6 | 3.0 |
| Carbon Hill, Washington | 7.6 | 3.0 |

Under favorable conditions 1 pound of oil will evaporate from 14 to 16 pounds of water from and at $212^{\circ} ; 1$ pound of coal will evaporate from 7 to 10 pounds of water from and at $212^{\circ} ; 1$ pound of natural gas will evaporate from 18 to 20 pounds of water from and at $212^{\circ}$.

## Relative Values in Coal and Oil.



## Gaseous Fuels.

The most valuable gaseous fuel is the natural gas of Pennsylvania and Ohio, the calorific power being about 1100 B . T. U. per cubic foot, or 10,000 calories per cubic metre. In comparison, 57.25 pounds of coal or 63 pounds of coke are about equal to 1000 cubic feet of natural gas.

Producer gas, made by the partial combustion of coal to carbonic oxide, is a lean gas composed of about 25 per cent. of CO and about 60 per cent. of nitrogen, with small quantities of $\mathrm{CO}_{2}$ and hydrogen. The calorific value is about 150 B.T. U. per cubic foot.

Blast-furnace gas is almost identical with producer gas in composition, except that there is usually more $\mathrm{CO}_{2}$ present, the calorific power falling to about $120 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. per cubic foot.

These lean gases can be used to advantage in properly designed gas engines with a high thermal efficiency, and engines of 1000 horse-power and more are in successful operation, using the waste gases from blast furnaces.

Calorific Power of Gas Fuels.

| Authority. | Gas. | B. T. U. |
| :---: | :---: | :---: |
| A. G. Glasgow, M.E. . | Plain water gas. | 327,268 per 1000 cubic feet. |
| A. C. Humphreys | Plain water gas (theoretical). | 323,003 per 1000 cubic feet. |
| F. E. Taylor, | Plain water gas. | 8,335 per pound. |
| Dr. Greene | Plain water gas. | 6,223 per pound. |
| Newbigging | Plain water gas. Plain water gas. | 290,000 per 1000 cubic feet. <br> 6,649 per pound. |
| Dr. Gideon Moore | Carburetted water gas, 22 candle-power. | 650,000 per 1000 cubic feet. |
| Newbigging | Coal gas, 18 candle-power. | 642,000 per 1000 cubic feet. |
|  | Coal gas, 17 candle-power. Coal gas, 17 candle-power. | 673,224 per 1000 cubic feet. 21,696 per pound. |
| R. D. Wood \& Co. . | Coal gas. <br> Water gas | 735,000 per 1000 cubic feet. |
|  | Producer gas (anthracite). | 137,000 per 1000 cubic feet. |
|  | Producer gas (bituminous). | 156,000 per 1000 cubic feet. |

## STEAM.

Steam is the common name for water which has been converted into the gaseous state by heat. When heat is applied to water in an open vessel at or near the level of the sea the temperature of the water will rise until it reaches $212^{\circ} \mathrm{F}$. or $100^{\circ} \mathrm{C}$., after which it will remain constant until all the water is vaporized.

If we consider one pound of water at atmospheric pressure, it will require the expenditure of $180.9 \mathrm{~B} . \mathrm{T}^{2} \mathrm{U}$. to raise the temperature from the freezing-point, $32^{\circ} \mathrm{F}$., to the boiling-point, $212^{\circ} \mathrm{F}$. If heat is further supplied until the pound of water at $212^{\circ}$ is converted into a pound of steam at $212^{\circ}$, it will be found to require 965.7 additional thermal units, so that a pound of steam at atmospheric pressure will have a sensible temperature of $212^{\circ} \mathrm{F}$., and will contain energy equal to $180.9+965.7=1146.6 \mathrm{~B}$. T. U.

Furthermore, its volume will have increased to 1641.5 times that of the original pound of water at its greatest density ( $39^{\circ} \mathrm{F}$.).

If the steam is confined, and heat further applied, its temperature will rise,- the temperature, pressure, volume, and heat absorbed bearing certain relations to each other. These relations, of continual importance in steam engineering, have been the subject of much study and investigation, and have been tabulated in various ways by numerous authors.

The data upon which all steam tables at present in use are founded are the result of experiments made by the French physicist, Regnault, in 1847. Regnault's observations covered only temperatures from $40^{\circ} \mathrm{C}$. ( $104^{\circ} \mathrm{F}$.) to $230^{\circ} \mathrm{C}$. ( $446^{\circ} \mathrm{F}$.), advancing by $10^{\circ} \mathrm{C}$., there being thus 20 observations in all; and upon these 20 observations all the existing steam tables have been built by various computers who have devised formulas representing more
or less accurately the results of the experiments, and therefore available for interpolating the intermediate values.

Since modern steam engineering is beginning to demand the use of pressures higher than the maximum examined by Regnault, some of the tables have been extended to higher pressures; but it must be understood that such figures are based upon the assumption that the relations developed within the range of Regnault's experiments continue beyond the limit of his work. A study of this feature of the subject will be found in the important paper of Macfarlane Gray, presented before the British Institution of Mechanical Engineers in 1889.

The tables here given in British units are those computed from the experiments of Regnault by the late John W. Nystrom, and may be accepted as being as reliable as any. The figures for temperatures above i46 ${ }^{\circ}$ F. agree fairly well with those deduced by Macfarlane Gray, and, until experimental researches at these higher pressures and temperatures are made, they may be used.

The metric steam tables given have been compiled from those of Zeuner and Fliegner.

## Introduction to Steam Tables.

(Nystrom.)

## Properties of Steam.

Column $P$ contains the total steam pressure, in pounds, per square inch, including the pressure of the atmosphere.

Column $I$ is the same pressure, in inches, of mercury. The specific gravity of mercury at $32^{\circ} \mathrm{F}$. is 13.5959 , compared with water of maximum density at $39^{\circ} .1$ cubic inch of mercury weighs 0.49086 pound, of which a column of 29.9218 inches is a mean balance of the atmosphere, or 14.68757 pounds per square inch.

Column T'contains the temperature of the steam on Fahrenheit's scale, deduced from Regnault's experiments.

Column $V$ contains the volume of steam of the corresponding temperature, $T$, compared with that of water of maximum density at $39^{\circ} \mathrm{F}$. This column is calculated from the formula of Fairbairn and Tate, namely, -

$$
V=25.62+\frac{49513}{I+0.72}
$$

Column $W$ contains the weight per cubic foot in fractions of a pound; and

Column $C$ the cubic feet per pound of saturated steam under the pressure, $P$, and temperature, $T$.

Column $H$ contains the heat units per pound of steam from $32^{\circ}$ to temperature, $T$, and pressure, $P$, calculated from the formula,

$$
H=1081.91+0.305 T
$$

Column $H^{\prime}$ contains the heat units per cubic foot of steam from $32^{\circ}$ to temperature, $T$.

The columns $H$ and $H^{\prime}$ give the heat units required to heat the water from $32^{\circ}$ to the boiling-point, and evaporate the same to steam under the pressure, $P$, and of temperature, $T$.

Column' $L$ contains the latent units of heat per pound in steam of temperature, $T$, and pressure, $P$. The latent heat expresses the work done in the evaporation, or the difference between the number of heat units per pound in the steam and in the water of the same temperature.

Column $L^{\prime}$ contains the latent heat per cubic foot of steam.
Latent heat, $L=H-h$, the heat units required to evaporate each pound of water from the boiling-point into steam.

In the metric tables the pressures are given in kilogrammes per square centimetre, or so-called metric atmospheres ( 1 kilogramme per square centimetre $=14.22$ pounds per square inch), the temperatures in degrees Centigrade, and the total and latent heats in calories per kilogramme and calories per cubic metre.

Steam Table. British System.

| Absolute press. |  | Temp. Fahr. scale. | Volume water $=$ 1 at $39^{\circ}$. | Wt. <br> lb. per cubic foot. <br> foot. | Bulk, cubic feet per pound. | Units of heat, from $32^{\circ}$ to $\mathrm{T}^{\circ}$. |  |  |  | Press. <br> Ab. at. <br> lb. per <br> sq. in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Lb. } \\ \text { per } \\ \text { sq. in. } \end{gathered}$ |  |  |  |  |  | Total per lb. | Total per ubic ft | $\begin{array}{\|c} \text { Lat'nt } \\ \text { per } \\ \text { lb. } \end{array}$ | $\left\|\begin{array}{c} \text { Latent } \\ \text { per } \\ \text { cubic } \mathrm{ft} . \end{array}\right\|$ |  |
| $P$ |  |  |  |  |  |  |  |  |  |  |
| 1 | 2.03 | 101.3 | 17983 | . 00347 | 8.2 | 111 | 3.86 | , | 3.63 | -14 |
| 2 | 4.07 | 126.21 | 10353.0 | . 00602 | 165.94 |  | 6.74 | 1026 | 6.1165 | -13 |
| 3 | 111 | 141.6 | 7283.8 | . 00856 | . |  | 9.63 | 15.20 | 8.6901 |  |
| 4 | 8.149 | 153.2 | 5608.40 | . 01112 | 89.895 | 1128.7 | 12.551 |  | 11.199 | $-11$ |
| 5 | 10.18 | 162.51 | 4565.60 | . 01366 | 73.180 | 1131.5 | 15.456 | 1000.60 | 13.714 | 10 |
| 6 | 12.22 | 170.25 | 3851.00 | . 01619 | 61.742 |  | 18.156 | 995.17 | 16.113 |  |
| 7 | 14.26 | 176.97 | 3330.8 | 01 | 53.38 |  | 20.846 | 990.44 | 18.194 |  |
| 8 | 16.29 | 182.96 | 2935.10 | 02125 | 47.046 | 1137.7 | 24.176 | 986 | 20.957 |  |
| 9 | 18.33 | 188.3 | 2624.0 | 02377 | 42.059 | 1139.4 | 27.083 | 982.41 | 23.352 |  |
| 10 | 20.37 | 193.20 | 2373.0 | 0262 | 38.03 |  | 29.980 | 978.99 | 25.728 |  |
| 11 | 22.41 | 197.6 | 2166.3 | . 02888 | 34.723 | 1142. | 32.895 | 975.8 | 28.099 |  |
| 12 | 24.44 | 201.90 | 1993.00 | 03130 | 31.945 |  | 35.791 | 972.84 |  |  |
| 13 | 26.48 | 205.7 | 1845.70 | . 03380 | 29.58 | 1144. | 38.691 | 970.11 | 32.789 |  |
| 14 | 28.52 | 209.5 | 1718.90 | 0362 | 27.55 |  | 41.581 | 967.43 | 35.435 |  |
| 14.7 | 29.92 | 212.00 | 1641.5 |  | 26.31 |  | 43.571 | 965.7 | 36.706 |  |
| 15 | 30.55 | 213.04 | 1608.60 | 0387 | 25.7840 | 1146.9 | 44.476 | 964.9 | 37.421 | 5 |
| 16 | 32.59 | 216.3 | 1511.70 | . 041 | 24.23 | 1147 | 47.328 | 962. | 39.690 |  |
| 17 | 34.63 | 219.45 | 1426.20 | 0437 | 22.85 | 1148 | 50.248 | 960.49 | 42.012 |  |
| 18 | 36.67 | 222.40 | 1349.80 | 0462 | 21.636 | 1149.7 | 53.138 | 958. | 44.393 |  |
| 19 | 38.71 | 225.2 | 1281.10 | 0486 | 20.539 | 1150.6 | 56.011 | 958.30 | 46.698 |  |
| 20 | 40.74 | 227.9 | 1219.70 | 0511 | 19.55 | 1151.4 | 58.894 | 954.38 | 48.655 |  |
| 21 | 42.78 | 230.6 | 1163.8 |  | 18.65 | 1152.2 | 61.75 | 95:2. | 51.924 |  |
| 22 | 44.82 | 233.10 | 1112.90 | 0560 | 17.838 | 1153.0 | 64.637 | 950.6 | 53.282 |  |
| 23 | 46.85 | 235.49 | 1066.30 | 0585 | 17.092 | 1153.7 | 67.503 | 949.03 | 55.529 |  |
| 24 | 48.89 | 237.81 | 1023.60 | . 0609 | 16.4070 | 1154 | 70.367 | 947.3 | 57.743 |  |
|  | 50.93 | 240.0 | 984. |  | 15.77 | 1155. | 73.410 | 945 | 59.942 |  |
| 26 | 52.97 | 212.24 | 947.86 | 06582 | 15.193 | 1155. | 76.074 | 944.2 | 62.161 |  |
| 27 | 55.00 | 244.3 | 914.1 | 06824 | 14.652 | 1156. | 78.913 | 942. | 64.423 | 12 |
|  | 57.04 | 246.3 | 882.80 | 0706 | 14.1500 | 1157.1 | 81.772 | 941.29 | 66.521 | 13 |
| 29 | 59.08 | 248.3 | 853.6 | , | 13.682 | 1157.7 | 84.604 | 939. | 68.686 |  |
| 30 | 61.11 | 250.26 | 826.32 | 07550 | 13.245 | 1158.2 | 87.444 | 938.50 | 70.857 | 15 |
| 31 | 63.15 | 252.1 | 800.7 | 0779 | 12.835 | 1158.8 | 90.166 | 937.1 | 73.015 | 16 |
|  | 65.19 |  |  |  | 12.451 | 1159.4 | 93.121 | 935 | 75.126 |  |
| 33 | 67.23 | 255.7 | 754.31 | . 08271 | 12.0900 | 1159.9 | 95.861 | 934.5 | 77.298 | 8 |
| $3 \pm$ | 69.26 | 257.5 | 733.09 | . 08510 | 11.750 | 1160.5 | 98.782 | 933.3 | 79.425 | 9 |
| 35 | 71.30 | 259.22 | 713.08 | . 0874 | 11.4290 | 1161.0 | 101.48 | 932.10 | 81.549 |  |
| 36 |  | 260.8 | 694.17 | . 0898 | 11.1270 | 1161 | 104.38 | 930.9 |  |  |
| 37 | 75.38 | 262.50 | 676.27 | . 09225 | 10.8100 | 1162 | 107.19 | 929.76 | 85.770 |  |
| 38 | 77.41 | 264.09 | 659.31 | . 09462 | 10.56 |  | 109.98 | 928. | 87.866 |  |
| 39 |  | 265.6 | 3.21 | . 09700 | 10.310 | 16 | 12.79 | 927. | 89.968 |  |
| 40 | 81.49 | 267.17 | 627.91 | . 09936 | 10.0640 | 1163 | 115.59 | 926. | 92.059 |  |
| 41 | 83.52 | 268.66 | 613.34 | . 10172 | 9.8310 | 1163 | 118.39 | $92 \overline{3}$ | 94.126 |  |
| 42 | 85.5 | 270.1 | 599.4 | 10407 | 9.608 | 1164 | 121.17 | 921. | 96.192 |  |
|  | 87.60 | 271.55 | 86.23 | 10642 | . 39 | 116 | 123.95 | 23.2 | 98.25 Ј |  |
| 44 | 89.64 | 272.96 | 573.58 | . 11117 | 9.193 | 1165 | 126.74 | 922.27 | 100.32 |  |
| 45 | 91.67 | 274.33 | 561.50 | . 11111 | 9.000 | 1165 | 129.51 | 921.29 | 102.36 |  |
| 46 | 93.71 | 275.6 | 549.94 | 1134 | 8.814 | 116 | 132.29 | 920.3 | 104.40 |  |
| 47 | 95.75 | 277.01 | 538.87 | 1157 | 8.63 |  | 35. 07 | 919.3 | 06.43 |  |
| 48 | 97.78 | 278.32 | 528.25 | . 11810 | 8.4673 | 1166. | 137.83 | 918.43 | 108.46 |  |
| 49 | 99.82 | 279.6 | 518.07 | 1204 | 8.30 | 1167 | 140.69 | 917.49 | 110.48 |  |
| 5 | 101.86 | 280.8 | 08.29 | 1227 | 8.147 | 1167 | 143.30 | 916.5 | 112.49 |  |
| 51 | 103.90 | 282.14 | 498.89 | . 12505 | 7.9966 | 1167. | 146.08 | 915.68 | 114.50 |  |
|  | 105.93 | 283.3 | 489.85 | 12736 | 7.8517 | 1168.4 | 148.85 | 914.79 | 116.51 |  |
| 53 | 107.97 | 284.58 | 481.15 | 12966 | 7.7122 | 1168.7 | 151.63 | 913.93 | 118.50 | 38 |
| 54 | 110.01 | 285.76 | 472.77 | 1319 | . 5779 | 1169.0 | 54.48 | 913.08 | 120.49 | 39 |
|  | 112.04 | 286. | 464.69 | 13428 | 7.4468 | 1169.4 | 157.02 | 912.22 | 122.47 | 1 |
|  | 114.0 |  | 456. | . 13652 | 7.32 | 1169.8 | 159.74 | 911. | 124.43 | 1 |
| 57 | 116 | 28 | 449. | 1388 | . |  | d |  |  |  |

Steam Table. British System.

| Absolute press. |  | Temp. Fahr. scale. | Volume water $=$ 1 at $39^{\circ}$. | W゙t. lb. per cubic foot. | Bulk, cubic feet per pound. | Units of heat, from $32^{\circ}$ to $\mathrm{T}^{\circ} . \mid$ |  |  |  | Press. <br> Ab.at <br> lb. per <br> sq. in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Lb. } \\ \text { per } \\ \text { sq. in. } \end{gathered}$ | Inch. of mer. |  |  |  |  | Total per lb. | $\left\|\begin{array}{c} \text { Total } \\ \text { per } \\ \text { cubic } \mathrm{ft} \end{array}\right\|$ | Lat'nt per lb. | Latent per cubic ft . |  |
| $P$ | I | $T$ | V | W | $C$ | $H$ | $H^{\prime}$ | $L$ | $L^{\prime}$ | $p$ |
| 58 | 118.16 | 290.37 | 442.12 | . 14111 | 7.0866 | 1170.5 | 165.15 | 909.78 | 128.38 | 43 |
| 59 | 120.19 | 291.48 | 435.10 | . 14338 | 6.9741 | 1170.8 | 167.84 | 908.97 | 130.33 | 44 |
| 60 | 122.23 | 292.58 | 428.32 | . 14566 | 6.8654 | 1171.2 | 170.58 | 908.18 | 132.28 | 45 |
| 61 | 124.27 | 293.66 | 421.75 | . 14792 | 6.7601 | 1171.5 | 173.27 | 907.40 | 134.22 | 46 |
| 62 | 126.30 | 294.73 | 415.40 | . 15018 | 6.6583 | 1171.8 | 175.96 | 906.63 | 136.16 | 47 |
| 63 | 128.34 | 295.78 | 409.25 | . 15244 | 6.5597 | 1172.1 | 178.65 | 905.87 | 138.09 | 48 |
| 64 | 130.38 | 296.82 | 403.29 | . 15469 | 6.4642 | 1172.5 | 181.34 | 905.13 | 140.01 | 49 |
| 65 | 132.42 | 297.84 | 397.51 | . 15694 | 6.3715 | 1172.8 | 184.03 | 904.39 | 141.93 | 50 |
| 66 | 134.45 | 298.85 | 391.90 | . 15919 | 6.2817 | 1173.1 | 186.72 | 903.66 | 143.85 | 51 |
| 67 | 136.49 | 299.85 | 386.47 | . 16130 | 6.1994 | 1173.4 | 189.40 | 902.94 | 145.64 | 52 |
| 68 | 138.53 | 300.84 | 381.18 | . 16366 | 6.1099 | 1173.7 | 192.07 | 902.23 | 147.66 | 53 |
| 69 | 140.56 | 301.81 | 376.06 | . 16590 | 6.0277 | 1174.0 | 194.74 | 901.53 | 149.56 | 54 |
| 70 | 142.60 | 302.77 | 371.07 | . 16812 | 5.9478 | 1174.3 | 197.42 | 900.84 | 151.45 | 55 |
| 71 | 144.64 | 303.72 | 366.34 | . 17035 | 5.8702 | 1174.6 | 200.08 | 900.15 | 153.34 | 56 |
| 72 | 146.68 | 304.69 | 361.53 | . 17256 | 5.7948 | 1174.9 | 202.74 | 899.46 | 155.21 | 57 |
| 73 | 148.72 | 305.60 | 356.95 | . 17478 | 5.7214 | 1175.1 | 205.40 | 898.79 | 157.09 | 58 |
| 74 | 150.75 | 306.52 | 352.49 | . 17690 | 5.6500 | 1175.4 | 208.04 | 898.13 | 158.88 | 59 |
| 75 | 152.79 | 307.42 | 348.15 | . 17919 | 5.5805 | 1175.8 | 210.67 | 897.57 | 160.83 | 60 |
| 76 | 154.83 | 308.32 | 343.93 | . 18139 | 5.5129 | 1176.0 | 213.30 | 896.83 | 162.67 | 61 |
| 77 | 156.86 | 309.22 | 339.81 | . 18359 | 5.4468 | 1176.2 | 215.93 | 896.18 | 164.56 | 62 |
| 78 | 158.90 | 310.11 | 335.80 | . 18578 | 5.3825 | 1176.5 | 218.56 | 895.54 | 166.37 | 63 |
| 79 | 160.94 | 310.99 | 331.89 | . 18797 | 5.3190 | 1176.8 | 221.19 | 894.92 | 168.22 | 64 |
| 80 | 162.98 | 311.86 | 328.08 | . 19015 | 5.2588 | 1177.0 | 223.82 | 894.27 | 170.04 | 65 |
| 81 | 165.01 | 312.72 | 324.37 | . 19233 | 5.1992 | 1177.3 | 226.44 | 893.65 | 171.87 | 66 |
| 82 | 167.05 | 313.57 | 320.74 | . 19451 | 5.1410 | 1177.6 | 229.06 | 893.03 | 173.70 | 67 |
| 83 | 169.09 | 314.42 | 317.20 | . 19668 | 5.0843 | 1177.9 | 231.68 | 892.51 | 175.52 | 68 |
| 84 | 171.12 | 315.25 | 313.74 | . 19885 | 5.0289 | 1178.1 | 234.28 | 891.82 | 177.33 | 69 |
| 85 | 173.16 | 316.08 | 310.36 | . 20101 | 4.9748 | 1178.3 | 236.89 | 891.22 | 179.14 | 70 |
| 86 | 175.20 | 316.90 | 307.07 | . 20317 | 4.9219 | 1178.6 | 239.50 | 890.63 | 180.95 | 71 |
| 87 | 177.24 | 317.71 | 303.85 | . 20532 | 4.8703 | 1178.8 | 242.10 | 890.04 | 182.75 | 72 |
| 88 | 179.27 | 318.51 | 300.70 | . 20747 | 4.8198 | 1179.1 | 244.69 | 889.46 | 184.53 | 73 |
| 89 | 181.31 | 319.31 | 297.62 | . 20962 | 4.7704 | 1179.3 | 247.29 | 888.88 | 186.33 | 74 |
| 90 | 183.35 | 320.10 | 294.61 | . 21185 | 4.7222 | 1179.6 | 249.88 | 888.31 | 188.12 | 75 |
| 91 | 185.38 | 320.88 | 291.66 | . 21390 | 4.6750 | 1179.8 | 252.45 | 887.74 | 189.88 | 76 |
| 92 | 187.42 | 321.66 | 288.78 | . 21603 | 4.6288 | 1180.0 | 255.02 | 887.19 | 191.66 | 7 |
| 93 | 189.46 | 322.42 | 285.96 | . 21816 | 4.5836 | 1180.3 | 257.58 | 886.63 | 193.43 | 78 |
| 94 | 191.50 | 323.18 | 283.21 | . 22029 | 4.5394 | 1180.5 | 260.14 | 886.08 | 195.19 | 79 |
| 95 | 193.53 | 323.94 | 280.50 | . 22241 | 4.4961 | 1180.7 | 262.69 | 885.53 | 196.94 | 80 |
| 96 | 195.57 | 324.67 | 277.86 | . 22453 | 4.4537 | 1180.9 | 265.23 | 885.00 | 198.71 | 81 |
| 97 | 197.61 | 325.43 | 275.27 | . 22672 | 4.4106 | 1181.2 | 267.77 | 884.45 | 200.49 | 82 |
| 98 | 199.65 | 326.17 | 272.73 | . 22875 | 4.3715 | 1181.4 | 270.30 | 883.91 | 202.18 | 83 |
| 99 | 201.68 | 326.90 | 270.24 | . 23085 | 4.3316 | 1181.6 | 273.10 | 883.38 | 203.92 | 84 |
| 100 | 203.72 | 327.63 | 267.80 | . 23296 | 4.2926 | 1181.9 | 275.52 | 882.85 | 205.67 | 85 |
| 101 | 205.76 | 328.35 | 265.41 | . 23505 | 4.2543 | 1182.1 | 277.85 | 882.33 | 207.39 | 86 |
| 102 | 207.79 | 329.07 | 263.07 | . 23715 | 4.2167 | 1182.3 | 280.38 | 881.81 | 209.12 | 87 |
| 103 | 209.83 | 329.78 | 260.77 | . 23924 | 4.1799 | 1182.5 | 282.90 | 881,29 | 210.84 | 88 |
| 104 | 211.87 | 330.48 | 258.52 | . 24132 | 4.1438 | 1182.7 | 285.42 | 880.78 | 212.55 | 89 |
| 105 | 213.91 | 331.18 | 256.31 | . 24340 | 4.1083 | 1182.9 | 287.93 | 880.27 | 214.26 | 90 |
| 106 | 215.94 | 331.87 | 254.14 | . 24548 | 4.0736 | 1183.2 | 290.45 | 879.77 | 215.96 | 91 |
| 107 | 217.98 | 332.56 | 252.01 | . 24750 | 4.0394 | 1183.4 | 292.94 | 879.27 | 217.66 | 92 |
| 108 | 220.02 | 333.24 | 249.92 | . 24963 | 4.0058 | 1183.6 | 295.41 | 878.79 | 219.36 | 93 |
| 109 | 222.05 | 333.92 | 247.87 | . 25169 | 3.9731 | 1183.8 | 297.91 | 878.28 | 221.05 | 94 |
| 110 | 224.10 | 334.59 | 245.86 | . 25375 | 3.9408 | 1183.9 | 300.44 | 877.80 | 222.74 | 95 |
| 111 | 226.13 | 335.26 | 243.88 | . 25581 | 3.9091 | 1184.2 | 302.93 | 877.31 | 224.42 | 96 |
| 113 | 230.20 | 336.58 | 240.03 | . 25991 | 3.8474 | 1184.6 | 307.90 | 876.25 | 227.74 | 98 |
| 114 | 232.24 | 337.23 | 238.15 | . 26204 | 3.8100 | 1184.8 | 310.36 | 875.88 | 229.51 | 99 |
| 115 | 234.28 | 337.89 | 236.31 | . 26400 | 3.7878 | 1185.0 | 312.86 | 875.40 | 231.10 | 100 |
| 120 | 244.4 | 341.0 | 227.56 | . 27421 | 3.6475 | \|1185.9 | 325.20 | \|873.09| | 239.41 | 105 |

Steam Table. British System.

| Absolute press. |  | Temp. Fahr. scale | Volume water $=$ 1 at $39^{\circ}$. | Wt. lb. per cubicfoot. | Bulk, cubic feet per pound. | Units of heat, from $32^{\circ}$ to $\mathrm{T}^{\circ}$. |  |  |  | Press. <br> Ab, at lh. pe sq. in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lb. | Inch. of mer |  |  |  |  | $\begin{gathered} \text { Total } \\ \text { per } \\ \text { lb. } \end{gathered}$ | $\left\|\begin{array}{c} \text { Total } \\ \text { per } \\ \text { cubic ft. } \end{array}\right\|$ | $\left\|\begin{array}{c} \text { Lat'nt } \\ \text { per } \\ \text { lo } \end{array}\right\|$ | $\begin{array}{\|c\|c} \text { Latent } \\ \text { per } \\ \text { cubic } \mathrm{ft} . \end{array}$ |  |
| $P$ | I | $T$ |  |  |  |  |  |  |  |  |
| 125 | 254.6 | 344 | 219.5 | . 2842 | 3.518 | 1186. | 337.39 | 870.8 | 247 | 10 |
| 130 | 64.8 | 347.1 | 212.07 | . 29419 | 3.3991 | 1187.8 | 349.44 |  | 255.55 |  |
| 55 | 275.0 | 350.0 | 205.18 | . 30406 | 3.2880 | 1188.7 | 361.42 | 866.56 | 263.48 | 20 |
| 140 | 285.2 | 352.8 | 198.78 | . 31385 | 3.1862 | 1189.5 | 373.34 | 864.49 | 271.32 | 125 |
| 145 | 295.4 | 355.6 | 192.83 | . 3235 | 3.0908 | 1190.4 | 385.20 | 862.48 | 278.97 | 130 |
| 150 | 305.6 | 358.4 | 187.26 | . 33315 | 3.0001 | 1191.2 | 396.86 | 860.45 | 286.66 | 135 |
| 155 | 315.8 | 361.6 | 180.00 | . 3466 | 2.8958 | 1191.8 | 413.20 | 858.4 | 297.5 | 40 |
| 160 | 325.9 | 364.5 | 174.20 | . 3601 | 2.7916 | 1192.5 | 429.54 | 856.5 | 308.3 | 145 |
| 165 | 336.0 | 367.3 | 167.90 | . 3736 | 2.6873 | 1193.6 | 445.88 | 854.0 | 319.1 | 150 |
| 170 | 346.3 | 369.8 | 161.10 | . 3871 | 2.5831 | 1194.7 | 462.22 | 852.5 | 329.9 | 55 |
| 175 | 356.5 | 372.0 | 157.00 | . 3973 | 2.5171 | 1195.4 | 475.80 | 851.0 | 338.7 | 160 |
| 180 | 366.7 | 374.2 | 152.80 | . 4075 | 2.4541 | 1196.1 | 488.96 | 849.4 | 347.1 | 165 |
| 185 | 376.9 | 376.4 | 148.80 | . 4182 | 2.3916 | 1196.8 | 502.10 | 847.8 | 355.5 | 70 |
| 190 | 387.1 | 378.5 | 145.00 | . 4292 | 2.3299 | 1197.4 | 515.20 | 846.2 | 363.9 |  |
| 195 | 397.3 | 380.6 | 141.50 | . 4409 | 2.2684 | 1198.1 | 528.27 | 844.8 | 372.4 | 180 |
| 200 | 407.4 | 382.6 | 138.10 | . 4517 | 2.2137 | 1198.7 | 542.07 | 843.3 | 381.0 | 185 |
| 210 | 4.27 .8 | 386.6 | 132.00 | . 4719 | 2.1192 | 1199.8 | 568.40 | 840.3 | 398.0 |  |
| 220 | 448.2 | 390.4 | 126.30 | . 4935 | 2.0265 | 1201.0 | 574.70 | 837.5 | 414.8 | 205 |
| 230 | 468.5 | 394.0 | 120.80 | . 5165 | 1.9360 | 1202.2 | 620.96 | 835.0 | 431.3 | 215 |
| 240 | 488.9 | 397.6 | 116.10 | . 5364 | 1.8646 | 1203.2 | 647.41 | 832.3 | 447.9 | 25 |
| 250 | 509.3 | 401.0 | 111.70 | . 5595 | 1.7874 | 1204.2 | 673.85 | 829.8 | 464.4 | 35 |
| 260 | 529.7 | 404.3 | 107.50 | . 5803 | 1.7230 | 1205.2 | 700.28 | 827.4 | 480.8 | 245 |
| 270 | 550.0 | 407.5 | 103.70 | . 6016 | 1.6621 | 1206.2 | 726.66 | 825.0 | 497.1 | 255 |
| 280 | 570.4 | 410.6 | 100.20 | . 6238 | 1.6031 | 1207.2 | 753.04 | 822.8 | 513.3 | 65 |
| 290 | 5908 | 413.5 | 97.01 | . 6459 | 1.5481 | 1208.1 | 779.40 | 820.7 | 529.4 | 275 |
| 300 | 611.1 | 416.5 | 94.22 | . 6681 | 1.4967 | 1209.0 | 805.74 | 818.6 | 545.4 | 285 |
| 310 | 631.5 | 419.2 | 91.13 | . 6896 | 1.4499 | 1209.8 | 832.96 | 816.5 | 561.4 |  |
| 320 | 651.9 | 422.1 | 88.21 | . 7107 | 1.4071 | 1210.6 | 858.36 | 814.4 | 577.3 | 305 |
| 330 | 672.3 | 424.8 | 85.44 | . 7302 | 1.3695 | 1211.5 | 884.63 | 812.4 | 593.2 | 315 |
| 340 | 692.6 | 427.4 | 83.19 | . 7547 | 1.3250 | 1212.3 | 910.89 | 810.5 | 608.9 |  |
| 350 | 713.0 | 430.0 | 80,99 | . 7745 | 1.2915 | 1213.1 | 937.13 | 808.6 | 624.5 |  |
| 360 | 733.4 | 432.4 | 78.84 | . 7943 | 1.2590 | 1213.9 | 963.34 | 806.9 | 640.2 | 345 |
| 370 | 753.8 | 434.9 | 76.74 | . 8146 | 1.2275 | 1214.7 | 989.51 | 805.1 | 655.8 | 5 |
|  | 774.1 | 437.3 | 74.66 | . 8353 | 1.1968 | 1215.5 | 1015.7 | 803.4 | 671.3 | 5 |
| 390 | 794.5 | 439.6 | 72.90 | . 8626 | 1.1597 | 1216.2 | 1041.8 | 801.7 | 686.7 | 375 |
| 400 | 814.9 | 441.9 | 71.19 | . 8745 | 1.1434 | 1216.8 | 1067.9 | 800.0 | 702.0 | 385 |
| 410 | 835.2 | 444.1 | 69.52 | . 8952 | 1.1170 | 1217.4 | 1094.0 | 799.4 | 717.2 | 395 |
| 420 | 855.6 | 446.4 | 67.90 | . 9142 | 1.0938 | 1218.0 | 1120.2 | 797.7 | 732.4 |  |
| 430 | 876.0 | 448.5 | 66.34 | . 9400 | 1.0634 | 1218.7 | 1146.3 | 795.0 | 747.6 | 415 |
| 440 | 896.4 | 450.6 | 64.91 | . 9599 | 1.0417 | 1219.4 | 1172.3 | 793.5 | 762.8 | 425 |
| 450 | 916.7 | 452.6 | 63.55 | . 9804 | 1.0201 | 1220.1 | 1198.3 | 792.0 | 777.9 | 435 |
| 460 | 937.1 | 454.6 | 62.22 | 1.0007 | . 9993 | 1220.7 | 1224.3 | 790.5 | 792.9 | 445 |
| 470 | 957.5 | 456.7 | 60.94 | 1.0211 | . 9793 | 1221.3 | 1250.4 | 789.0 | 807.8 | 455 |
| 480 | 977.8 | 458.7 | 59.72 | 1.0446 | . 9573 | 1221.9 | 1276.5 | 787.5 | 822.7 | 465 |
| 40 | 8.2 | 460.6 | 58.54 | 1.0652 | . 9388 | 1222.5 | 1302.3 | 786.1 | 837.4 | \% |
| 500 | 1018.6 | 462.5 | 57.45 | 1.0859 | . 9209 | 1223.0 | 1328.1 | 784.7 | 85.1 | 485 |
| 5 | 1069.5 | 466.1 | 54.81 | 1.1381 | . 8786 | 1224.5 | 1392.6 | 782.3 | 881.8 | 510 |
| 5 | 1120.4 | 471.5 | 52.47 | 1.1890 | . 8410 | 1225.8 | 1456.9 | 778.0 | 921.3 | 53 |
| 575 | 1171.4 | 475.7 | 50.32 | 1.2397 | . 8066 | 1227.2 | 1521.0 | 775.0 | 960.4 | 560 |
| 600 | 1222.3 | 479.8 | 48.35 | 1.2901 | . 7751 | 1228.3 | 1584.8 | 771.8 | 1000.0 | 585 |
| 0 | 1324.2 | 487.6 | 44.75 | 1.3943 | . 7172 | 1230.6 | 1709.5 | 766.0 | 1082.0 | 635 |
| 700 | 1426.0 | 494.9 | 41.70 | 1.4961 | . 6684 | 1232.7 | 1933.8 | 760.4 | 1157.0 | 685 |
| 750 | 1527.9 | 501.8 | 39.05 | 1.5977 | . 6259 | 1234.9 | 2057.7 | 755.4 | 1234.0 | 735 |
| 00 | 1629.8 | 508.4 | 36.73 | 1.6986 | . 5887 | 1237.0 | 2101.2 | 750.6 | 1307.0 | 785 |
| 850 | 1731.6 | 514.6 | 34.68 | 1.7989 | . 5554 | 1238.9 | 2228.3 | 745.9 | 1374.0 | 835 |
| 900 | 1833.5 | 521.4 | 32.87 | 1.8979 | . 5269 | 1241.0 | 2355.4 | 740.0 | 1435.0 | 885 |
| 950 | 1935.5 | 526.0 | 31.21 | 1.9992 | . 5002 | 1242.4 | 2482.5 | 737.4 | 1490.0 | 935 |
| 1000 | 2037.2 | 531.6 | 29.73 | 2.0986 | . 4765 | 1243. | 2609.6 | 732.3 | 1538.0 | 985 |

Steam Table. Metric System.

| Absolute pressure. |  | Temp. Centigrade scale. | Volume cubic metres per kilogram. | Weight kilograms. per cubic metre. |  | Calories, from $0^{\circ} \mathrm{C}$. to $\mathrm{T}^{\circ}$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kilograms. per sq. cm | Milli- <br> metres cury. |  |  |  |  | Total per kilogram. | Total per cubic metre | Latent per kram. | Latent per cubic metre |
| . 10 | 73.6 | 45.6 | 15. | . 0665 | 15038 | 620.40 | 41.25 | 574.75 | 50 |
| . 20 | 147.1 | 59.8 | 7.8064 | . 1281 | 7806 | 624.73 | 80.00 | 564.84 | 72.30 |
| . 30 | 220.7 | 68.7 | 5.3305 | . 1876 | 5330 | 627.46 | 116.50 | 558.53 | 104.40 |
| . 40 | 294.2 | 75.5 | 4.0667 | . 2459 | 4067 | 629.52 | 154.70 | 553.81 | 136.20 |
| . 50 | 367.8 | 80.9 | 3.2971 | . 3033 | 3297 | 631.18 | 191.80 | 549.99 | 167.00 |
| . 60 | 441.3 | 85.5 | 2.7777 | . 3600 | 2778 | 632.58 | 228.20 | 546.76 | 197.00 |
| . 70 | 514.9 | 89.5 | 2.4033 | . 4161 | 2403 | 633.95 | 264.10 | 544.11 | 227.00 |
| . 80 | 588.4 | 93.0 | 2.1191 | . 4719 | 2119 | 634.87 | 299.50 | 541.44 | 255.50 |
| . 90 | 662.0 | 96.2 | 1.8964 | . 5273 | 1896 | 635.64 | 335.20 | 539.20 | 284.70 |
| 1.00 | 735.5 | 99.1 | 1.7173 | . 5823 | 1717 | 636.72 | 370.76 | 537.15 | 312.79 |
| 1.10 | 809.1 | 101.8 | 1.5711 | . 6365 | 1571 | 637.54 | 40 a .5 | 535.26 | 341.0 |
| 1.20 | 882.6 | 104.2 | 1.4478 | . 6907 | 1449 | 638.29 | 447.5 | 533.50 | 368.2 |
| 1.30 | 956.2 | 106.5 | 1.3430 | . 7446 | 1343 | 639.00 | 486.2 | 531.86 | 396.0 |
| 1.40 | 1029.7 | 108.7 | 1.2527 | . 7983 | 1253 | 639.66 | 515.0 | 530.32 | 423.5 |
| 1.50 | 1103.3 | 110.8 | 1.1740 | . 8518 | 1174 | 640.29 | 540.0 | 528.27 | 450.0 |
| 1.60 | 1176.8 | 112.7 | 1.1050 | . 9050 | 1105 | 640.87 | 587.5 | 527.49 | 477.5 |
| 1.70 | 1250.4 | 114.5 | 1.0438 | . 9580 | $10 \pm 4$ | 641.43 | 614.1 | 526.18 | 504.3 |
| 1.80 | 1323.9 | 116.3 | . 9891 | 1.0109 | 989 | 641.96 | 649.0 | 524.93 | 531.0 |
| 1.90 | 1397.5 | 118.0 | . 9398 | 1.0637 | 940 | $6 \pm 2.48$ | 683.0 | 523.64 | 556.0 |
| 2.00 | 1471.0 | 119.6 | . 8960 | 1.1161 | 896 | 642.97 | 718.0 | 522.60 | 583.3 |
| 2.10 | 1544.6 | 121.1 | . 8562 | 1.1684 | 856 | 643.44 | 752.0 | 521.51 | 609.0 |
| 2.20 | 1618.1 | 122.6 | . 8190 | 1.2206 | 819 | 643.88 | 785.5 | 520.44 | 635.0 |
| 2.30 | 1691.7 | 124.0 | . 7855 | 1.2726 | 785 | 644.32 | 821.0 | 519.42 | 661.5 |
| 2.40 | 1765.2 | 125.4 | . 7553 | 1.3245 | 755 | 614.74 | 854.1 | 518.44 | 686.5 |
| 2.50 | 1838.8 | 126.7 | . 7267 | 1.3763 | 727 | 645.15 | 888.0 | 517.49 | 712.0 |
| 2.60 | 1912.3 | 128.0 | . 7003 | 1.4280 | 700 | 645.54 | 922.0 | 516.57 | 738.0 |
| 2.70 | 1985.9 | 129.3 | . 6761 | 1.4793 | 676 | 645.94 | 956.0 | 515.68 | 763.0 |
| 2.80 | 2059.4 | 130.5 | . 6531 | 1.5307 | 653 | 646.29 | 990.0 | 514.81 | 788.0 |
| 2.90 | 2133.0 | 131.6 | . 6321 | 1.5820 | 632 | 646.65 | 1024.0 | 513.97 | 813.0 |
| 3.00 | 2206.5 | 132.8 | . 6124 | 1.6332 | 612 | 647.00 | 1057.0 | 513.15 | 838.0 |
| 3.10 | 2280.1 | 133.9 | . 5938 | 1.6843 | 594 | 647.34 | 1091.0 | 512.35 | 864.0 |
| 3.20 | 2353.6 | 135.0 | . 5763 | 1.7352 | 576 | 647.67 | 1123.0 | 511.57 | 888.0 |
| 3.30 | 2427.2 | 136.1 | . 5599 | 1.7864 | 560 | 648.00 | 1158.0 | 510.82 | 914.0 |
| 3.40 | 2500.7 | 137.1 | . 5144 | 1.8369 | 544 | 648.31 | 1195.0 | 510.07 | 938.0 |
| 3.50 | 2574.3 | 138.1 | . 5296 | 1.8879 | 530 | 648.62 | 1227.0 | 509.35 | 962.0 |
| 3.60 | 2647.8 | 139.1 | . 5160 | 1.9384 | 516 | 648.92 | 1258.0 | 508.64 | 987.0 |
| 3.70 | 2721.4 | 140.0 | . 5027 | 1.9889 | 503 | 649.21 | 1292.0 | 507.95 | 1011.0 |
| 3.80 | 2794.9 | 141.0 | . 4904 | 2.0392 | 490 | 649.50 | 1325.0 | 507.27 | 1034.0 |
| 3.90 | 2868.5 | 141.9 | . 4787 | 20894 | 479 | 649.78 | 1357.0 | 506.61 | 1058.0 |
| 4.00 | 2912.0 | 142.8 | . 4673 | 2.1400 | 467 | 650.06 | 1372.0 | 505.96 | 1088.0 |
| 4.10 | 3015.6 | 143.7 | . 4566 | 2.1901 | 457 | 650.33 | 1425.0 | 505.32 | 1107.0 |
| 4.20 | 3089.1 | 144.6 | . 4464 | 2.2401 | 146 | 650.60 | 1457.0 | 504.70 | 1131.0 |
| 4.30 | 3162.7 | 145.4 | . 4367 | 2.2901 | 437 | 650.86 | 1492.0 | 501.09 | 1156.0 |
| 4.40 | 3236.2 | 146.3 | . 4273 | 2.3403 | 427 | 651.10 | 1525.0 | 503.47 | 1177.0 |
| 4.50 | 3309.8 | 147.1 | . 4184 | 2.3901 | 418 | 651.35 | 1558.0 | 502.88 | 1203.0 |
| 4.60 | 3383.3 | 147.9 | . 4098 | 2.4402 | 410 | 651.60 | 1591.0 | 502.30 | 1227.0 |
| 4.70 | 3459.9 | 148.7 | . 4016 | 2.4900 | 402 | 651.85 | 1624.0 | 501.73 | 1250.0 |
| 4.80 | 3530.4 | 149.5 | . 3938 | 2.5394 | 391 | 652.09 | 1658.0 | 501.17 | 1274.0 |
| 4.90 | 3604.0 | 150.2 | . 3862 | 2.5893 | 386 | 652.31 | 1691.0 | 500.61 | 1297.0 |

Steam Table. Metric System.

| Absolute pressure. |  | Temp. Centigrade scale | Volume cubic metres per kilogram. | Weight kilograms. per cubic metre. | $\begin{gathered} \text { Volume } \\ \text { water } \\ =1 \mathrm{at} \\ 4^{\circ} \mathrm{C} . \end{gathered}$ | Calories, from $0^{\circ} \mathrm{C}$. to $\mathrm{T}^{\circ}$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kilo- grams. per sq. cm. | $\underset{\text { metres }}{\text { Milli- }}$ <br> of mercury. |  |  |  |  | Total per kilogram. | Total per cubic metre. |  | Latent per cubic metre. |
| 5.00 | 3677 | 151.0 | . 37 | 2.6412 | 379 | 652.45 | 1723 | 500 |  |
| 5.10 | 3751.1 | 151.7 | 3720 | 2.688 | 372 | 652.7 | 1756 | 499.54 | 1344 |
| 5.20 | 3824.7 | 152.5 | . 3654 | 2.7375 | 365 | 653.00 | 1789 | 499.01 | 1367 |
| 5.30 | 3898.2 | 153.2 | . 3588 | 2.7871 | 359 | $6: 3.21$ | 1821 | 498.48 | 1390 |
| 5.40 | 3971.8 | 153.9 | . 3524 | 2.8369 | 352 | 6.53 .43 | 1854 | 497.97 | 1413 |
| 5.50 | 4015.3 | 154.6 | . 3465 | 2.8860 | 346 | 653.55 | 1887 | 497.47 | 1436 |
| 5.60 | 4118.9 | 15.5 .3 | . 3407 | 2.9351 | 341 | 653.87 | 1920 | 496.98 | 1459 |
| 5.70 | 4192.4 | 156.0 | . 3351 | 2.9842 | 333 | 654.06 | 1943 | 496.48 | 1482 |
| 5.80 | 4266.0 | 156.6 | . 3297 | 3.0331 | 330 | 6.54 .27 | 1985 | 496.00 | 1505 |
| 5.90 | 4339.5 | 157.3 | . 3243 | 3.0826 | 324 | 654.46 | 2018 | 495.52 | 1528 |
| 6.00 | 4413.1 | 157.9 | . 3193 | 3.1319 | 319 | 654.66 | 2051 | 495.04 | 1551 |
| 6.10 | 4486.6 | 158.6 | . 3144 | 3.1807 | 314 | 654.85 | 2083 | 494.60 | 1573 |
| 6.20 | 4560.2 | 159.2 | . 3096 | 3.2300 | 310 | 655.03 | 2116 | 494.16 | 1596 |
| 6.30 | 4633.7 | 159.8 | . 3049 | 3.2787 | 305 | 655.21 | 2148 | 493.72 | 1618 |
| 6.40 | 4707.3 | 1605 | . 3004 | 3.3278 | 300 | 655.40 | 2181 | 493.2 | 1641 |
| 6.50 | 4780.8 | 161.1 | . 2962 | 3.3761 | 296 | 655.59 | 2213 | 492.83 | 1663 |
| 6.60 | 4854.4 | 161.7 | . 2919 | 3.4247 | 292 | 655.78 | 2246 | 492.39 | 1686 |
| 6.70 | 4927.9 | 162.3 | . 2879 | 3.4734 | 288 | 6.5 .96 | 2278 | 491.95 | 1708 |
| 6.80 | 5001.5 | 162.9 | . 2839 | 3.5224 | 284 | 656.15 | 2311 | 491.52 | 1731 |
| 6.90 | 5075.0 | 163.4 | . 2800 | 3.5714 | 280 | 656.33 | 2343 | 491.07 | 1753 |
| 7.00 | 5148.6 | 164.0 | . 2763 | 3.6193 | 276 | 656.52 | 2376 | 490.63 | 1776 |
| 7.25 | 5332.4 | 165.4 | . 2673 | 3.7411 | 267 | 656.93 | 2443 | 489.64 | 1822 |
| 7.50 | 5516.3 | 166.8 | . 2590 | 3.8610 | 259 | 657.35 | 2540 | 488.66 | 1890 |
| 7.75 | 5700.2 | 168.1 | . 2511 | 3.9825 | 251 | 657.76 | 2620 | 487.67 | 1942 |
| 8.00 | 5884.1 | 169.5 | . 2437 | 4.1034 | 244 | 658.18 | 2700 | 486.69 | 1998 |
| 8.25 | 6068.0 | 170.7 | . 2368 | 4.2230 | 237 | 658.55 | 2782 | 485.79 | 2052 |
| 8.50 | 6251.8 | 172.0 | . 2302 | 4.3440 | 230 | 658.93 | 2867 | 484.89 | 2109 |
| 8.75 | 6435.7 | 173.2 | . 2241 | 4.4623 | 224 | 659.30 | 2942 | 483.99 | 2161 |
| 9.00 | 6619.6 | 174.4 | . 2182 | 4.5830 | 218 | 659.68 | 3022 | 483.10 | 2216 |
| 9.25 | 6803.5 | 175.5 | . 2127 | 4.7015 | 213 | 660.02 | 3105 | 482.28 | 2270 |
| 9.50 | 6987.4 | 176.7 | . 2074 | 4.8216 | 207 | 660.37 | 3185 | 481.46 | 2321 |
| 9.75 | 7171.2 | 177.8 | . 2024 | 4.9407 | 202 | 660.71 | 3265 | 480.64 | 2375 |
| 10.00 | 7355.1 | 178.9 | . 1975 | 5.0607 | 197 | 661.06 | 3345 | 479.82 | 2432 |
| 10.25 | 7539.0 | 180.0 | . 1931 | 5.1787 | 193 | 661.38 | 3425 | 479.06 | 2483 |
| 10.50 | 7722.9 | 181.0 | . 1888 | 5.2966 | 189 | 661.68 | 3505 | 478.29 | 2535 |
| 10.75 | 7906.7 | 182.0 | . 1847 | 5.4142 | 185 | 662.00 | 3585 | 477.53 | 2586 |
| 11.00 | 8090.6 | 183.0 | . 1807 | 5.5340 | 181 | 662.33 | 3665 | 476.77 | 2638 |
| 11.25 | 8274.5 | 184.0 | . 1769 | 5.6497 | 177 | 662.62 | 3745 | 476.04 | 2690 |
| 11.50 | 8458.4 | 185.0 | . 1733 | 5.7703 | 173 | 662.92 | 3825 | 475.32 | 2742 |
| 11.75 | 8642.2 | 186.0 | . 1698 | 5.8858 | 170 | 663.21 | 3905 | 474.61 | 2794 |
| 12.00 | 8826.1 | 186.9 | . 1665 | 6.0060 | 166 | 663.51 | 3985 | 473.92 | 2846 |
| 12.25 | 9010.0 | 187.9 | . 1634 | 6.1200 | 163 | 663.75 | 4064 | 473.2 | 2897 |
| 12.50 | 9193.9 | 188.8 | . 1603 | 6.2383 | 160 | 664.08 | 4143 | 472.57 | 2948 |
| 12.75 | 9377.8 | 189.7 | . 1573 | 6.3573 | 157 | 664.35 | 4222 | 471.90 | 2998 |
| 13.00 | 9561.6 | 190.6 | . 1545 | 6.4725 | 154 | 664.63 | 4301 | 471.25 | 3049 |
| 13.50 | 9929.4 | 192.3 | . 1491 | 6.7069 | 149 | 665.15 | 4467 | 469.97 | 3155 |
| 14.00 | 10297.1 | 194.0 | . 1441 | 6.9396 | 144 | 665.67 | 4620 | 468.73 | 3254 |
| 14.50 | 10664.9 | 195.6 | . 1394 | 7.1737 | 139 | 666.17 | 4780 | 467.51 | 3353 |
| 15.00 | 11032.7 | 197.2 | . 1351 | 7.4019 | 135 | 666.67 | 4935 | 466.35 | 3452 |

In the preceding tables the temperatures are given which correspond to the respective pressures, it being understood that these are the temperatures at which the steam is formed from the water under those pressures. Such steam is said to be saturated; it contains no moisture; neither is it superheated. If, now, the steam be further supplied with heat, its temperature will rise and it will become superheated. The effect of the additional heat upon the steam is similar to that upon a gas, and the more highly it is superheated the more nearly it resembles a perfect gas. For any given pressure saturated steam can have but one temperature, as given in the tables. Superheated steam may have any higher temperature.

## Flow of Steam.

The flow of steam from one pressure to another increases as the increase in difference in pressure, until the lower pressure becomes 58 per cent. of the higher pressure. If the lower pressure be diminished, or even is made a perfect vacuum, the flow will not be affected. Steam will expand in a nozzle until it reaches the external pressure, provided the latter is not less than 58 per cent. of the internal pressure. The ratio of expansion for all external pressures below 58 per cent. of the internal pressure is 1 to 1.624. The diseharge will then have a constant velocity of 890 feet per second, and the amount discharged will be proportional to the density of the steam, which latter value can be obtained from the steam tables.

The following formulas, by Rankine, may be used in computing the discharge of steam:

Let
$W=$ weight discharged, in pounds, per minute ;
$a=$ area of opening, in square inches;
$p=$ absolute pressure, in pounds, per square inch :
$\boldsymbol{d}=$ difference in pressure, when more than 58 per cent. ;
$k=$ coefficient $=0.93$ for short nozzle $=0.63$ for hole in thin plate.

$$
W=0.85 a p
$$

when discharging into atmosphere.

$$
W=1.9 a k \sqrt{(p-d) d}
$$

when the difference between the two pressures is more than 58 per cent.
The following table, compiled by D. K. Clark from experiments by Brownlee, will be useful in this connection.

## Outflow of Steam from a given Initial Pressure into Various Lower Pressures.

Absolute initial pressure in boiler 75 pounds per square inch.
(D. K. Clark.)

| Absolute pressure in boiler, in pounds, per square inch. | External pressure, in pounds, per square inch. | Ratio of expan. sion in nozzle | Velocity of outflow at constant density, in feet, per second. | Actual velocity of outflow expanded, in feet, per second. | Discharge per square inch of orifice, in pounds, per minute. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 74.00 | 1.012 | 227.5 | 230.0 | 16.68 |
| 75 | 72.00 | 1.037 | 386.7 | 401.0 | 28.35 |
| 75 | 70.00 | 1.063 | 490.0 | 521.0 | 35.93 |
| 75 | 65.00 | 1.136 | 660.0 | 749.0 | 48.38 |
| 75 | 61.62 | 1.198 | 736.0 | 876.0 | 53.97 |
| 75 | 60.00 | 1.219 | 765.0 | 933.0 | 56.12 |
| 75 | 50.00 | 1.434 | 873.0 | 1252.0 | 6400 |
| 75 | 45.00 | 1.575 | 890.0 | 1401.0 | 65.24 |
| 75 | 43.46 (58\%) | 1.624 | 890.6 | 1446.5 | 65.3 |
| 75 | 15 | 1.624 | 890.6 | 1446.5 | 65.3 |
| 75 | 0 | 1.624 | 890.6 | 1446.5 | 65.3 |

Napier's rule, which is a close approximation, is that the absolute pressure, in pounds, per square inch, multiplied by the area in square inches, divided by 70 , equals the discharge, in pounds, per second.

Brownlee's formula for the discharge of steam of varying pressures of the atmosphere is

$$
v=3.5953 \sqrt{ } \bar{h},
$$

in which $v=$ the velocity of outflow, in feet, per second as for steam of the initial density, and $h=$ the height, in feet, of a column of steam of the given absolute initial pressure of uniform density, the weight of which is equal to the pressure on the unit of base.

Example. Boiler pressure, 80 pounds per square inch above the atmosphere. With what velocity will steam flow out of an orifice in the shell,for example, a safety valve?

Here the absolute pressure $=80+14.7=94.7$ pounds per square inch. The volume of one pound of steam at this pressure $=4.56$ cubic feet; consequently, the height of a column of this steam 1 inch square, and weighing 94.7 pounds, will be

$$
4.56 \times 144 \times 94.7=62183.81 \text { feet }=h .
$$

Then by the formula the velocity of outflow will be

$$
v=3.5953 \sqrt{\bar{h}}=3.5953 \sqrt{62183.81}=3.5953 \times 249.37=896 \text { feet per second. }
$$

To find the amount of steam discharged from an orifice of any given size in a given time, we have merely to multiply the area of the orifice by the above velocity, and this product by the time in seconds, to obtain the volume of steam discharged, from which it is easy to calculate its weight by reference to a steam table.

Velocity of Efflux of Steam into the Atmosphere.

| Pressure <br> per <br> gauge. | Velocity of <br> discharge, <br> in feet, per <br> second. | Pounds of steam <br> discharged, per <br> minute, per <br> square inch of <br> opening. | Pressure <br> per <br> gauge. | Velocity of <br> discharge, <br> in feet, per <br> second. | Pounds of steam <br> discharged, per <br> minute, per <br> square inch of <br> opening. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 861 | 22.2 | 70 | 894 |  |
| 15 | 867 | 26.6 | 75 | 895 | 73.5 |
| 20 | 871 | 30.9 | 80 | 896 | 77.6 |
| 25 | 874 | 35.3 | 85 | 898 | 81.9 |
| 30 | 877 | 39.5 | 90 | 899 | 86.0 |
| 35 | 880 | 43.8 | 95 | 900 | 90.3 |
| $\mathbf{4 0}$ | 882 | 48.0 | 100 | 902 | 94.4 |
| 45 | 884 | 52.3 | 110 | 904 | 106.6 |
| 50 | 886 | 56.5 | 120 | 906 | 115.2 |
| 55 | 888 | 60.7 | 130 | 908 | 123.5 |
| 60 | 890 | 65.0 | 140 | 910 | 131.9 |
| 65 | 892 | 69.3 | 150 | 912 | 140.2 |

## Flow of Steam in Pipes.

The quantity of steam flowing through a pipe under a given head increases directly as the square root of the density of the loss of pressure, and inversely as the square root of the length. A formula used for flow of steam in pipes is $V=50 \sqrt{\frac{H}{L} D}$, in which $V=$ velocity, in feet, per
second, $L=$ length, and $D=$ diameter of pipe, in feet, $H=$ height, in feet, of a column of steam of the pressure of the steam at the entrance, which would produce a pressure equal to the difference of pressures at the two ends of the pipe.

If $Q=$ quantity, in cubic feet, per minute, $d=$ diameter, in inches, $L$ and $H$ being in feet, formula reduces to

$$
Q=4.7233 \sqrt{\frac{H}{L} d^{5}}, H=.0448 \frac{Q^{2} L}{d^{5}}, d=.5374 \sqrt[5]{\frac{Q^{2} L}{H}} .
$$

A pipe 1 inch in diameter, 100 feet long, carrying steam of 100 pounds gauge-pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 pounds per square inch, while steam travelling at the same velocity in a pipe 8.8 inches in diameter would lose only 1 pound pressure.

The following generally-accepted formula gives the weight of steam which, with a given vertical pressure, will flow through a given pipe:

$$
\begin{aligned}
W & =\text { weight } \text { in pounds avoirdupois } ; \\
D & =\text { density or weight per cubic foot } ; \\
d & =\text { diameter, in inches } ; \\
p_{1} & =\text { initial pressure } ; \\
p_{\dot{2}} & =\text { pressure at end of pipe } ; \\
\bar{L} & =\text { length, in feet. }
\end{aligned}
$$

$$
W=87 \sqrt{\frac{D\left(p_{1}-p_{2}\right) d^{5}}{L\left(1+\frac{3.6}{d}\right)}} .
$$

## Flow of Steam through Pipes.



For any loss of pressure, multiply by the square root of the proposed loss.

For any other length of pipe, divide 240 by the given length expressed in diameters, and multiply the table figures by the square root of this quotient to get the flow for 1 pound loss of pressure.

The resistance due to steam entering pipe $=60$ diameters additional length; to a globe valve $=60$; to an elbow $=40$, or $2 / 3$ of a globe valve. All these equivalents must be added in getting out total length of pipe, with corresponding losses.

## Moisture in Steam.

Various methods have been devised for determining the percentage of moisture in steam, but the principal difficulty involved in their use lies in the impossibility of obtaining an average sample of the steam.

Professor J. E. Denton has shown that the appearance of an escaping jet of steam will reveal to the eye the presence or absence of moisture up to about 2 per cent. of moisture. If the jet be transparent close to the orifice, the steam may be assumed to be so nearly dry that no portable condensing calorimeter will be capable of measuring the small amount of moisture present. If the jet be strongly white, the amount of water may be roughly judged up to about 2 per cent., but beyond this only a calorimeter can determine the amount of moisture present.

In the appendix to the report of the committee of the American Society of Mechanical Engineers on steam boiler trials, Mr. Kent says: "For scientific research and in all cases in which there is reason to suspect that the moisture may exceed 2 per cent., a steam separator should be placed in the steam pipe as near to the steam outlet of the boiler as convenient, well covered with felting, all the steam made by the boiler passing through it, and all the moisture caught by it carefully weighed after being cooled. A convenient method of obtaining the weight of the drip from the separator is to discharge it through a trap into a barrel of cold water standing on a platform scale. A throttling or a separating calorimeter should be placed in the steam pipe, just beyond the steam separator, for the purpose of determining, by the sampling method, the small percentage of moisture which may still be in the steam after passing through the separator."

The formula for calculating the percentage of moisture whendthe throttling calorimeter is used is the following:

$$
w=100 \times \frac{H-h-k(T-t)}{L}
$$

in which $w=$ percentage of moisture in the steam, $H=$ total heat and $L=$ latent heat per pound of steam at the pressure in the steam pipe, $h=$ total heat per pound of steam at the pressure in the discharge side of the calorimeter, $k=$ specific heat of superheated steam, $T=$ temperature of the throttled and superheated steam in the calorimeter, and $t=$ temperature due to the pressure in the discharge side of the calorimeter, $=212^{\circ} \mathrm{F}$. at atmospheric pressure. Taking $k=0.48$ and $t=212$, the formula reduces to

$$
w=100 \times \frac{I I-1146.6-0.48(T-212)}{L}
$$

For descriptions of the throttling calorimeter of Peabody, see "Transactions of the American Society of Mechanical Engineers,' Vol. X., p. 327 ; for the Barrus calorimeter, Vol. XI., p. 790, and Vol. XVII., p. 617; and for the Carpenter calorimeter, Vol. XII., p. 640, and Vol. XVII., p. 608.

In treating of superheated steam it is customary to give the number of degrees of superheat,-that is, the excess of temperature over that due to the pressure, as shown in the steam tables. It is sometimes desirable to give the so-called "quality" of the steam, this being the percentage of excess heat.

The quality of the superheated steam is determined from the number of degrees of superheating by using the following formula:

$$
Q=\frac{L+0.48(T-t)}{I}
$$

in which $L$ is the latent heat, in British thermal units, in 1 pound of steam of the observed pressure ; $T$, the observed temperature ; and $t$, the normal
temperature due to the pressure. This normal temperature should be determined by obtaining a reading of the thermometer when the fires are in a dead condition and the superheat has disappeared, this temperature being observed when the pressure as shown by the gauge is the average of the readings taken during the trial.

## STEAM BOILERS.

A steam boiler is essentially a device for the conversion of water from the liquid to the gaseous state by the means of heat. Its performance should therefore be based entirely upon thermal considerations : the conversion of the energy in the fuel into energy in the steam, regardless of the use to which the steam is to be put. To speak of the horse-power of a boiler is distinctly unscientific, and is to be as strongly discouraged as the expressions horse-power of a feed-water heater, of a condenser, of a chim ney, or any similar device. The capacity of a boiler is fully indicated by a statement of the quantity of water it is capable of evaporating in a given time, and its economy by the proportion of combustible required to the quantity of water evaporated.

The fact that the number of pounds of water evaporated to equal a boiler horse-power has varied from time to time shows the unsuitability of the application of the term to a steam boiler. At the same time, the commercial requirements of the business demand some definition of a boiler horse-power, and at the present time the evaporation of 30 pounds of water from feed water at a temperature of $100^{\circ} \mathrm{F}$., as established by the judges of the Centennial Exhibition of 1876 , may be used. It is always desirable, however, that the capacity of a boiler should be stated in terms of the number of pounds of water it will evaporate, from and at the boilingpoint.

According to the steam tables, it will be seen that 965.7 B. T. U. are required to convert a pound of water at $212^{\circ}$ to a pound of steam at the same temperature. If we assume a pound of combustible in the fuel to be capable of supplying 14,500 B. T. U., a perfectly efficient steam boiler would be capable of evaporating

$$
\frac{14500}{965.7}=15.015 \text { pounds }
$$

of water for every pound of combustible burned. The actual efficiency of a boiler, therefore, is found by dividing the actual evaporation by 15.015. Thus, if a boiler evaporates 10 pounds of water per pound of combustible, its efficiency is

$$
\frac{10}{15.015}=0.66
$$

or 66 per cent.
In order to compute beforehand the proportions which will give the best efficiency, the formula of Rankine may be used.

Let

$$
\left.\begin{array}{rl}
E & =\text { theoretical evaporative power of fuel used, pounds of water; } \\
E^{\prime} & =\text { actual evaporative power, pounds of water ; } \\
S & =\text { square feet of heating surface in boiler ; } \\
F & =\text { pounds of fuel burned per square foot of grate per hour; } \\
A=\text { a constant } \\
B & =\text { a constant }
\end{array}\right\} \text { tabulated below. }
$$

Then we have

$$
\text { Efficiency }=\frac{E^{\prime}}{E}=\frac{B S}{S+A F},
$$

or

$$
E^{\prime}=E \frac{B S}{S+A F}
$$

The value of $E$ varies with the composition of the coal, and may be computed by Dulong's formula or determined by a calorimeter.

The constants $A$ and $B$ may be taken as follows:
I. Chimney draft, hottest gases meeting hottest water, economizer in flue, $B=1, A=0.5$.
II. Ordinary flow of gases, chimney draft, $B=0.916, A=0.5$.
III. Forced draft, hottest gases meeting hottest water, $B=1, A=0.3$.
IV. Forced draft, ordinary flow of gases, $B=0.95, A=0.3$.

From the above it will be seen that a high efficiency may be obtained by causing the gases to flow in such a manner as to bring the hottest portion into contact with that portion of the boiler containing the hottest water, the flow of water and gases being in the opposite direction; also, that a moderate rate of combustion is conducive to efficiency.

When the feed water is supplied to a boiler at a temperature of $212^{\circ}$, the only heat required to be supplied is that necessary to furnish the latent heat of evaporation and the heat to raise the steam to the working pressure. When, however, the feed water is not at the boiling-point, it is necessary to supply additional heat to raise it to $212^{\circ} \mathrm{F}$. For this reason it is necessary to know the temperature of the feed water in order to correct the observed evaporation to the equivalent evaporation from and at $212^{\circ}$.

The factors for making this correction may be computed from the formula,

$$
F=\frac{H-h}{965.7}
$$

$H$ being the total heat of the steam at the given pressure, and $h$ being the total heat of the feed water.

The table on page 636 gives factors for various temperatures.
The evaporative performance of steam boilers is such an important matter, both from a commercial and technical point of view, that it is desirable for all tests to be conducted in such a manner as to be comparable. The standard method of testing steam boilers, according to the report of the Committee of the American Society oi Mechanical Engineers, enables such uniform methods of testing possible, and an abridgement of this code is here given. The complete code will be found in Volume XXI. of the "Transactions" of the Society, and may be obtained in pamphlet form.

The Committee recommends that, as far as possible, the capacity of a boiler be expressed in terms of the " number of pounds of water evaporated per hour from and at 212 degrees." It does not seem expedient, however, to abandon the widely-recognized measure of capacity of stationary or land boilers expressed in terms of "boiler horse-power."

The unit of commercial boiler horse-power adopted by the Committee of 1885 was the same as that used in the reports of the boiler tests made at the Centennial Exhibition in 1876. The Committee of 1885 reported in favor of this standard in language of which the following is an extract:
"The Committee, after due consideration, has determined to accept the Centennial standard, and to recommend that in all standard trials the commercial horse-power be taken as an evaporation of 30 pounds of water per hour from a feed-water temperature of $100^{\circ} \mathrm{F}$. into steam at 70 pounds gauge pressure, which shall be considered to be equal to $341 / 2$ units of evaporation,-that is, to $341 / 2$ pounds of water evaporated from a feedwater temperature of $212^{\circ} \mathrm{F}$. into steam at the same temperature. This standard is equal to 33,305 thermal units per hour."

The present Committee accepts the same standard, but reverses the order of two clauses in the statement, and slightly modifies them to read as follows:
"The unit of commercial horse-power developed by a boiler shall be taken as $341 / 2$ units of evaporation per hour,-that is, $341 / 2$ pounds of water evaporated per hour from a feed-water temperature of $212^{\circ} \mathrm{F}$. into dry steam of the same temperature. This standard is equivalent to 33,317 British thermal units per hour. It is also practically equivalent to an evaporation of 30 pounds of water from a feed-water temperature of $100^{\circ} \mathrm{F}$. into steam at 70 pounds gauge pressure.


Ұた







| 0 |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |








 स゙N







[^10]
## Rules for Conducting Boiler Trials.

Code of 1899 .

I. Determine at the outset the specific object of the proposed trial, whether it be to ascertain the capacity of the boiler, its efficiency as a steam generator, its efficiency and its defects under usual working conditions, the economy of some particular kind of fuel, or the effect of changes of design, proportion, or operation; and prepare for the trial accordingly.
II. Examine the boiler, both outside and inside ; ascertain the dimensions of grates, heating surfaces, and all important parts; and make a full record, describing the same, and illustrating special features by sketches. The area of heating surface is to be computed from the surfaces of shells, tubes, furnaces, and fire-boxes in contact with the fire or hot gases. The outside diameter of water-tubes and the inside diameter of fire-tubes are to be used in the computation. All surfaces below the mean water-level which have water on one side and products of combustion on the other are to be considered as water-heating surface, and all surfaces above the mean water-level which have steam on one side and products of combustion on the other are to be considered as superheating surface.
III. Notice the general condition of the boiler and its equipment, and record such facts in relation thereto as bear upon the objects in view.

If the object of the trial is to ascertain the maximum economy or capacity of the boiler as a steam generator, the boiler and all its appurtenances should be put in first-class condition. Clean the heating surface inside and outside, remove clinkers from the grates and from the sides of the furnace. Remove all dust, soot, and ashes from the chambers, smoke connections, and flues. Close air-leaks in the masonry and poorly-fitted cleaning doors. See that the damper will open wide and close tight. Test for air-leaks by firing a few shovels of smoky fuel and immediately closing the damper, observing the escape of smoke through the crevices, or by passing the flame of a candle over cracks in the brickwork.
IV. Determine the character of the coal to be used. For tests of the efficiency or capacity of the boiler for comparison with other boilers the coal should, if possible, be of some kind which is commercially regarded as a standard. For New England and that portion of the country east of the Allegheny Mountains, good anthracite egg coal, containing not over 10 per cent. of ash, and semi-bituminous Clearfield (Pennsylvania), Cumberland (Maryland), and Pocahontas (Virginia) coals are thus regarded. West of the Allegheny Mountains, Pocahontas (Virginia) and New River (West Virginia) semi-bituminous and Youghiogheny or Pittsburg bituminous coals are recognized as standards.* There is no special grade of coal mined in the Western States which is widely recognized as of superior quality or considered as a standard coal for boiler testing. Big Muddy lump, an Illinois coal mined in Jackson County, Illinois, is suggested as being of sufficiently high grade to answer these requirements in districts where it is more conveniently obtainable than the other coals mentioned above.

For tests made to determine the performance of a boiler with a particular kind of coal, such as may be specified in a contract for the sale of a boiler, the coal used should not be higher in ash and in moisture than that specified, since increase in ash and moisture above a stated amount is apt to cause a falling off of both capacity and economy in greater proportion than the proportion of such increase.
V. Establish the correctness of all apparatus used in the test for weighing and measuring. These are :

1. Scales for weighing coal, ashes, and water.
2. Tanks or water-meters for measuring water. Water-meters, as a rule,

[^11]should only be used as a check on other measurements. For accurate work, the water should be weighed or measured in a tank.
3. Thermometers and pyrometers for taking temperatures of air, steam, feed water, waste gases, etc.
4. Pressure gauges, draught gauges, etc.

The kind and location of the various pieces of testing apparatus must be left to the judgment of the person conducting the test, always keeping in mind the main object,-i.e., to obtain authentic data.
VI. See that the boiler is thoroughly heated before the trial to its usual working temperature. If the boiler is new and of a form provided with a brick setting, it should be in regular use at least a week before the trial, so as to dry and heat the walls. If it has been laid off and become cold, it should be worked before the trial until the walls are well heated.
VII. The boiler and connections should be proved to be free from leaks before beginning a test, and all water connections, including blow and extra feed pipes, should be disconnected, stopped with blank flanges, or bled through special openings beyond the valves, except the particular pipe through which water is to be fed to the boiler during the trial. During the test the blow-off and feed pipes should remain exposed to view.

If an injector is used, it should receive steam directly through a felted pipe from the boiler being tested.*

If the water is metered after it passes the injector, its temperature should be taken at the point where it leaves the injector. If the quantity is determined before it goes to the injector, the temperature should be determined on the suction side of the injector, and if no change of temperature occurs other than that due to the injector, the temperature thus determined is properly that of the feed water. When the temperature changes between the injector and the boiler, as by the use of a heater or by radiation, the temperature at which the water enters and leaves the injector and that at which it enters the boiler should all be taken. In that case the weight to be used is that of the water leaving the injector, computed from the heat units if not directly measured, and the temperature, that of the water entering the boiler.

Let
$w=$ weight of water entering the injector ;
$x=$ weight of steam entering the injector;
$h_{1}=$ heat units per pound of water entering injector:
$h_{2}=$ heat units per pound of steam entering injector;
$h_{3}=$ heat units per pound of water leaving injector.

Then

$$
w+x=\text { weight of water leaving injector, }
$$

$$
x=w \frac{h_{3}-h_{1}}{h_{2}-h_{3}} .
$$

See that the steam main is so arranged that water of condensation cannot run back into the boiler.
VIII. Duration of the Test.-For tests made to ascertain either the maximum economy or the maximum capacity of a boiler, irrespective of the particular class of service for which it is regularly used, the duration should be at least 10 hours of continuous running. If the rate of combustion exceeds 25 pounds of coal per square foot of grate surface per hour, it may be stopped when a total of 250 pounds of coal has been burned per square foot of grate.

[^12]In cases where the service requires continuous running for the whole 24 hours of the day, with shifts of fireman a number of times during that period, it is well to continue the test for at least 24 hours.

When it is desired to ascertain the performance under the working conditions of practical running, whether the boiler be regularly in use 24 hours a day or only a certain number of hours out of each 24 , the fires being banked the balance of the time, the duration should not be less than 24 hours.
IX. Starting and Stopping a Test.-The conditions of the boiler and furnace in all respects should be, as nearly as possible, the same at the end as at the beginning of the test. The steam pressure should be the same, the water-level the same, the fire upon the grates should be the same in quantity and condition, and the walls, flues, etc., should be of the same temperature. Two methods of obtaining the desired equality of conditions of the fire may be used,-viz., those which were called in the Code of 1885 "the standard method" and "the alternate method," the latter being employed where it is inconvenient to make use of the standard method.*
X. Standard Method of Starting and Stopping a Test.-Steam being raised to the working pressure, remove rapidly all the fire from the grate, close the damper, clean the ash-pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time and the waterlevel, $\dagger$ while the water is in a quiescent state, just before lighting the fire.

At the end of the test remove the whole fire, which has been burned low, clean the grates and ash-pit, and note the water-level when the water is in a quiescent state, and record the time of hauling the fire. The waterlevel should be as nearly as possible the same as at the beginning of the test. If it is not the same, a correction should be made by computation, and not by operating the pump after the test is completed.
XI. Alternate Method of Starting and Stopping a Test.-The boiler being thoroughly heated by a preliminary run, the fires are to be burned low and well cleaned. Note the amount of coal left on the grate as nearly as it can be estimated; note the pressure of steam and the water-level; note the time, and record it as the starting time. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave a bed of coal on the grates of the same depth, and in the same condition, as at the start. When this stage is reached, note the time, and record it as the stopping time. The water-level and steam pressures should previously be brought as nearly as possible to the same point as at the start. If the water-level is not the same as at the start, a correction should be made by computation, and not by operating the pump after the test is completed.
XII. Uniformity of Conditions. - In all trials made to ascertain maximum economy or capacity the conditions should be maintained uniformly constant. Arrangements should be made to dispose of the steam so that the rate of evaporation may be kept the same from beginning to end. This may be accomplished in a single boiler by carrying the steam through a waste steam pipe, the discharge from which can be regulated as desired. In a battery of boilers, in which only one is tested, the draught may be regulated on the remaining boilers, leaving the test boiler to work under a constant rate of production.

Uniformity of conditions should prevail as to the pressure of steam,

[^13]the height of water, the rate of evaporation, the thickness of fire, the times of firing and quantity of coal fired at one time, and as to the intervals between the times of cleaning the fires.

The method of firing to be carried on in such tests should be dictated by the expert or person in responsible charge of the test, and the method adopted should be adhered to by the fireman throughout the test.
XIII. Keeping the Records.-Take note of every event connected with the progress of the trial, however unimportant it may appear. Record the time of every occurrence and the time of taking every weight and every observation.

The coal should be weighed and delivered to the fireman in equal proportions, each sufficient for not more than one hour's run, and a fresh portion should not be delivered until the previous one has all been fired. The time required to consume each portion should be noted, the time being recorded at the instant of firing the last of each portion. It is desirable that at the same time the amount of water fed into the boiler should be accurately noted and recorded, including the height of the water in the boiler and the average pressure of steam and temperature of feed during the time. By thus recording the amount of water evaporated by successive portions of coal, the test may be divided into several periods, if desired, and the degree of uniformity of combustion, evaporation, and economy analyzed for each period. In addition to these records of the coal and the feed water, half-hourly observations should be made of the temperature of the feed water, of the flue gases, of the external air in the boiler-room, of the temperature of the furnace when a furnace pyrometer is used; also, of the pressure of steam and of the readings of the instruments for determining the moisture in the steam. A log should be kept on properlyprepared blanks containing columns for record of the various observations.

When the "standard method" of starting and stopping the test is used the hourly rate of combustion and of evaporation and the horse-power should be computed from the records taken during the time when the fires are in active condition. This time is somewhat less than the actual time which elapses between the beginning and end of the run. The loss of time due to kindling the fire at the beginning and burning it out at the end makes this course necessary.
XIV. Quality of Steam. - The percentage of moisture in the steam should be determined by the use of either a throttling or a separating steam calorimeter. The sampling nozzle should be placed in the vertical steam pipe rising from the boiler. It should be made of $1 / 2$-inch pipe, and should extend across the diameter of the steam pipe to within half an inch of the opposite side, being closed at the end and perforated with not iess than twenty $1 / 8$-inch holes equally distributed along and around its cylindrical surface, but none of these holes should be nearer than $1 / 2$ inch to the inner side of the steam pipe. The calorimeter and the pipe leading to it should be well covered with felting. Whenever the indications of the throttling or separating calorimeter show that the percentage of moisture is irregular, or occasionally in excess of 3 per cent., the results should be checked by a steam separator placed in the steam pipe as close to the boiler as convenient, with a calorimeter in the steam pipe just beyond the outlet from the separator. The drip from the separator should be caught and weighed, and the percentage of moisture computed therefrom added to that shown by the calorimeter.

Superheating should be determined by means of a thermometer placed in a mercury-well inserted in the steam pipe. The degree of superheating should be taken as the difference between the reading of the thermometer for superheated steam and the readings of the same thermometer for saturated steam at the same pressure, as determined by a special experiment, and not by reference to steam tables.
XV. Sampling the Coal and Determining its Moisture.-As each barrow-load or fresh portion of coal is taken from the coal-pile a representative shovelful is selected from it and placed in a barrel or box in a cool place and kept until the end of the trial. The samples are then mixed and broken into pieces not exceeding 1 inch in diameter, and reduced by the process of repeated quartering and crushing until a final sample weighing about 5 pounds is obtained and the size of the larger pieces is such that they will pass through a sieve with $1 / 4$-inch meshes. From this
sample two 1-quart, air-tight glass preserving jars, or other air-tight vessels which will prevent the escape of moisture from the sample, are to be promptly filled, and these samples are to be kept for subsequent determinations of moisture and of heating value and for chemical analyses. During the process of quartering, when the sample has been reduced to about 100 pounds, a quarter to a half of it may be taken for an approximate determination of moisture. This may be made by placing it in a shallow iron pan not over 3 inches deep, carefully weighing it, and setting the pan in the hottest place that can be found on the brickwork of the boiler setting or flues, keeping it there for at least 12 hours, and then weighing it. The determination of moisture thus made is believed to be approximately accurate for anthracite and semi-bituminous coals, and also for Pittsburg or Youghiogheny coal; but it cannot be relied upon for coals mined west of Pittsburg, or for other coals containing inherent moisture. For these latter coals it is important that a more accurate method be adopted. The method recommended by the Committee for all accurate tests, whatever the character of the coal, is described as follows:

Take one of the samples contained in the glass jars and subject it to a thorough air-drying by spreading it in a thin layer and exposing it for several hours to the atmosphere of a warm room, weighing it before and after, thereby determining the quantity of surface moisture it contains. Then crush the whole of it by running it through an ordinary coffee-mill, adjusted so as to produce somewhat coarse grains (less than $\frac{1}{16}$ inch), thoroughly mix the crushed sample, select from it a portion of from 10 to 50 grams, weigh it in a balance which will easily show a variation as small as 1 part in 1000 , and dry it in an air- or sand-bath at a temperature between $240^{\circ}$ and $280^{\circ} \mathrm{F}$. for one hour. Weigh it and record the loss, then heat and weigh it again repeatedly, at intervals of an hour or less, until the minimum weight has been reached and the weight begins to increase by oxidation of a portion of the coal. The difference between the original and the minimum weight is taken as the moisture in the air-dried coal. This moisture test should preferably be made on duplicate samples, and the results should agree within 0.3 to 0.4 of one per cent., the mean of the two determinations being taken as the correct result. The sum of the percentage of moisture thus found and the percentage of surface moisture previously determined is the total moisture.
XVI. Treatment of Ashes and Refuse.-The ashes and refuse are to be weighed in a dry state. If it is found desirable to show the principal characteristics of the ash, a sample should be subjected to a proximate analysis and the actual amount of incombustible material determined. For elaborate trials a complete analysis of the ash and refuse should be made.
XVII. Calorific Tests and Analysis of Coal.-The quality of the fuel should be determined either by heat test or by analysis, or by both.

The rational method of determining the total heat of combustion is to burn the sample of coal in an atmosphere of oxygen gas, the coal to be sampled as directed in Article XV. of this code.

The chemical analysis of the coal should be made only by an expert chemist. The total heat of combustion computed from the results of the ultimate analysis may be obtained by the use of Dulong's formula (with constants modified by recent determinations), - viz., $14600 \mathrm{C}+62000\left(H-\frac{0}{8}\right)$ $+4000 S$, in which $C, H, O$, and $S$ refer to the proportions of carbon, hydrogen, oxygen, and sulphur, respectively, as determined by the ultimate analysis.*

It is desirable that a proximate analysis should be made, thereby determining the relative proportions of volatile matter and fixed carbon. These proportions furnish an indication of the leading characteristics of the fuel, and serve to fix the class to which it belongs. As an additional indication of the characteristics of the fuel the specific gravity should be determined.

[^14]XVIII. Analysis of Flue Gases.-The analysis of the flue gases is an especially valuable method of determining the relative value of different methods of firing or of different kinds of furnaces. In making these analyses great care should be taken to procure arerage samples, since the composition is apt to vary at different points of the flue. The composition is also apt to vary from minute to minute, and for this reason the drawings of gas should last a considerable period of time. Where complete determinations are desired, the analyses should be intrusted to an expert chemist. For approximate determinations the Orsat* or the Hempel $\dagger$ apparatus may be used by the engineer.

For the continuous indication of the amount of carbonic acid present in the flue gases an instrument may be employed which shows the weight of the sample of gas passing through it.
XIX. Smoke Observations.-It is desirable to have a uniform system of determining and recording the quantity of smoke produced where bituminous coal is used. The system commonly employed is to express the degree of smokiness by means of percentages dependent upon the judgment of the observer. The Committee does not place much value upon a percentage method, because it depends so largely upon the personal element, but if this method is used it is desirable that, so far as possible, a definition be given in explicit terms as to the basis and method employed in arriving at the percentage. The actual measurement of a sample of soot and smoke by some form of meter is to be preferred.
XX. Miscellaneous.-In tests for purposes of scientific research, in which the determination of all the variables entering into the test is desired, certain observations should be made which are in general unnecessary for ordinary tests. These are the measurement of the air-supply, the determination of its contained moisture, the determination of the amount of heat lost by radiation, of the amount of infiltration of air through the setting, and (by condensation of all the steam made by the boiler) of the total heat imparted to the water.

As these determinations are rarely undertaken, it is not deemed advisable to give directions for making them.
XXI. Calculations of Efficiency.-Two methods of defining and calculating the efficiency of a boiler are recommended. They are, -

1. Efficiency of the boiler $=\frac{\text { Heat absorbed per pound of combustible }}{\text { Calorific value of } 1 \text { pound of combustible }}$;
2. Efficiency of the boiler and grate $=\frac{\text { Heat absorbed per pound of coal }}{\text { Calorific value of } 1 \text { pound of coal }}$.

The first of these is sometimes called the efficiency based on combustible, and the second the efficiency based on coal. The first is recommended as a standard of comparison for all tests, and this is the one which is understood to be referred to when the word "efficiency" alone is used without qualification. The second, however, should be included in a report of a test, together with the first, whenever the object of the test is to determine the efficiency of the boiler and furnace together with the grate (or mechanical stoker), or to compare different furnaces, grates, fuels, or methods of firing.

The heat absorbed per pound of combustible (or per pound of coal) is to be calculated by multiplying the equivalent evaporation from and at $212^{\circ}$ per pound of combustible (or of coal) by 965.7.
XXII. The Heat Balance.-An approximate "heat balance," or statement of the distribution of the heating value of the coal among the several items of heat utilized and heat lost, may be included in the report of a test when analyses of the fuel and of the chimney gases have been made. It should be reported in the following form :

[^15]
## Heat Balance, or Distribution of the Heating Value of the Combustible.

Total heat value of 1 pound of combustible.................. B. T. U.

|  | B. T. U. | Per cent. |
| :---: | :---: | :---: |
| 1. Heat absorbed by the boiler = evaporation from and at $212^{\circ}$ per pound of combustible $\times 965.7$. |  |  |
| 2. Loss due to moisture in coal $=$ per cent. of moisture referred to combustible $\div 100 \times[(212-t)+966+$ $0.48(T-212)$ ] ( $t=$ temperature of air in the boilerroom, $T=$ that of the flue gases). |  |  |
| 3. Loss due to moisture formed by the burning of hydrogen $=$ per cent. of hydrogen to combustible $\div$ $100 \times 9 \times[(212-t)+966+0.48(T-212)]$. |  |  |
| 4.* Loss due to heat carried away in the dry chimney gases $=$ weight of gas per pound of combustible $\times$ $0.24 \times(T-t)$. |  |  |
| 5. $\dagger$ Loss due to incomplete combustion of carbon $=$ $\frac{\mathrm{CO}}{\mathrm{CO}_{2}+\mathrm{CO}} \times \frac{\text { per cent. C in combustible }}{100} \times 10150$. | - |  |
| 6. Loss due to unconsumed hydrogen and hydrocarbons, to heating the moisture in the air, to radiation, and unaccounted for. (Some of these losses may be separately itemized if data are obtained from which they may be calculated.) |  |  |
| Totals....................................... . |  | 100 |

XXIII. Report of the Trial.-The data and results should be reported in the manner given in either one of the two following tables, omitting lines where the tests have not been made as elaborately as provided for in such tables. Additional lines may be added for data relating to the specific object of the test. The extra lines should be classified under the headings provided in the tables, and numbered as per preceding line, with sub-letters $a, b$, etc. The short form of report, Table No. 2 , is recommended for commercial tests and as a convenient form of abridging the longer form for publication when saving of space is desirable. For elaborate trials it is recommended that the full $\log$ of the trial be shown graphically, by means of a chart.

[^16]Table No. 2.

## Data and Results of Evaporative Test.

Arranged in accordance with the Short Form advised by the Boiler Test Committee of the American Society of Mechanical Engineers.
Code of 1899.
Made by .on. boiler, at ..... to
determine
Kind of fuel
Kind of furnace
Method of starting and stopping the test ("standard". or"alternate," Art. X. and XI., Code)
Grate surface ..... sq. ft.
Water-heating surface ..... sq. ft.
Superheating surface. ..... sq. ft.
Total Quantities.

1. Date of trial
2. Duration of trial ..... hours.
3. Weight of coal as fired ..... lbs.
4. Percentage of moisture in coal per cent.
5. Total weight of dry coal consumed ..... lbs.
6. Total ash and refuse ..... lbs.
7. Percentage of ash and refuse in dry coal ..... per cent.
8. Total weight of water fed to the boiler. ..... Ibs.
9. Water actually evaporated, corrected for moisture or superheat in steam lbs.
10. Equivalent water evaporated into dry steam from and at $212^{\circ}$ ..... lbs.
Hourly Quantities.
11. Dry coal consumed per hour. ..... lbs.
12. Dry coal per square foot of grate surface per hour ..... lbs.
13. Water evaporated per hour, corrected for quality of steam ..... lbs.
14. Equivalent evaporation per hour from and at $212^{\circ}$ ..... lbs.
15. Equivalent evaporation per hour from and at $212^{\circ}$ per square foot of water-heating surface ..... lbs.
A verage Pressures, Temperatures, etc.
16. Steam pressure by gauge ..... lbs. per sq. in.
17. Temperature of feed water entering boiler. ..... deg.
18. Temperature of escaping gases from boiler ..... deg.
19. Force of draft between damper and boiler ins. of water.
20. Percentage of moisture in steam, or number of degrees of superheating per cent. or deg
Horse=power.
21. Horse-power developed (Item $14 \div 341 / 2$ ) ..... H. P.
22. Builders' rated horse-power. ..... H. P.
23. Percentage of builders' rated horse-power developed ..... per cent.
Economic Results.
24. Water apparently evaporated under actual conditionsper pound of coal as fired (Item $8 \div$ Item 3 )........ lbs.
25. Equivalent evaporation from and at $212^{\circ}$ per pound ofcoal as fired (Item $10 \div$ Item 3)lbs.
26. Equivalent evaporation from and at $212^{\circ}$ per pound of dry coal (Item $10 \div$ Item 5 ) ..... lbs.
27. Equivalent evaporation from and at $212^{\circ}$ per pound of combustible [Item $10 \div$ (Item 5 - Item 6)] ..... lbs.(If Items 25,26 , and 27 are not corrected for quality ofsteam, the fact should be stated.)

## Efficiency.

28. Calorific value of the dry coal per pound.............. B. T. U.
29. Calorific value rif the combustible per pound ......... T. U.
30. Efficiency of beiler (based on combustible).......... per cent.
31. Efficiency of boiler, including grate (based ondry coal) per cent.

## Cost of Evaporation.

32. Cost of coal per ton of - pounds, delivered in boiler-
room................................................... \$
33. Cost of coal required for evaporating 1000 pounds of water from and at $212^{\circ}$

Although the capacity of a boiler should be specified by the quantity of water it is capable of evaporating per hour, it is often necessary to state the dimensions and proportions to be furnished. Certain general relations of heating and grate surface have come to be recognized as representing evaporative capacity, and although this practice is to be discouraged, it cannot be ignored.

The area of heating surface allowed for 1 horse-power, or the evaporation of 30 pounds of water from $100^{\circ} \mathrm{F}$. per hour, is usually about 12 square feet for return tubular or water-tube boilers, with about $1 / 3$ of a square foot of grate surface per horse-power. The proportion of heating surface varies, however, for various kinds of boilers, and the following formula may be used for the determination of the heating surface in designing boilers:

Let
$S=$ heating surface, in square feet;
$Q=$ quantity of water evaporated per hour:
$t=$ total heat of steam at the working pressure in the boiler;
$C=$ constant, as per table below.
Then

$$
S=C \frac{Q}{t}
$$

Values of constant $C$ :

| Locomotive boile | $C=90$ |
| :---: | :---: |
| Marine Scotch boilers | $C=180$ |
| Cornish boilers | $C=220$ |
| Plain cylinder boilers | $C=280$ |
| Return tubular boilers | $C=400$ |
| Water-tube boilers | $C=400$ |

Thus, for a return tubular boiler to evaporate 5000 pounds of water per hour into steam at 160 pounds pressure, we have $Q=5000$; $t$, by steam table, $=1195.4 ; C=400$; hence,

$$
S=400 \frac{5000}{1195.4}=1677 \text { square feet. }
$$

Since 5000 pounds of water, at 30 pounds to the horse-power, is 166 horsepower, this corresponds to about 10 square feet per horse-power.

In estimating the heating surface, all parts of a boiler are not equally efficient. Rankine says that, on an average, from $3 / 4$ to $\frac{5}{6}$ of the total heating surface may be taken as effective heating surface. In computing the heating surface of tubes the side next to the heated gases should be taken.

The relative value of different forms of heating surface, compared with flat horizontal surface above the fire, is as follows:

1 square foot of flat horizontal surface above the fire, such
as the crown-plate of the fire-box of the boiler of a loco
motive engine ..... 1.00

1 square foot of circular surface above and concave to the fire, such as the crown-plates of the circular furnace of an internally-fired boiler
1 square foot of circular surface above and convex to the fire, such as the surface plates of an externally-fired plain cylindrical boiler ..... 90
1 square foot of flat surface at right angles to the current of gases, exposed to direct impingement of flame, such as the fire-box tube-plate of a locomotive boiler. ..... 80
1 square foot of water-tube surface at right angles to the current of hot gases ..... 70
1 square foot of sloping surface at the side of and inclined towards the fire, such as the sides of a fire-box when in- clined sufficiently to facilitate evaporation ..... 65
1 square foot of vertical surface at the side of the fire, such as the sides of a fire-box when vertical ..... 50
1 square foot of the surface of the tubes of a locomotive boiler, contained in a length not exceeding 3 feet from the fire-box tube-plate ..... 30
Horizontal surfaces below the fire and the under portions of internallyheated tubes have practically no evaporative value, and cannot be considered as effective heating surface, therefore the lower half of a furnace tube below the grate bars should not be included in calculating the heating surface of a steam boiler.
The draught area through the tubes of a boiler should be proportional to the area of the grate, and also depends upon the intensity of the draught. For natural chimney draught the area is usually made about 0.2 of the grate area ; it may reach 0.25 , or fall as low as 0.125 , but these are extremes.
The ratio of grate surface to heating surface varies according to the type of boilers. Accepted proportions are as follows:

## Ratio of Grate to Heating Surface.

| Type of boiler. | Ratio. |
| :---: | :---: |
| Scotch marine boiler. | 25 to 38 |
| Lancashire | 26 to 33 |
| Cornish. | 25 to 40 |
| Horizontal return tubular. | 30 to 50 |
| Water tube | 35 to 65 |
| Locomotive | 60 to 90 |
| Plain cylinder. | 10 to 15 |

The quantity of water evaporated for a given combustion of fuel, when the proportions of heating and grate surface are given, may be determined by the formulas of D. K. Clark.

Let
$w=$ weight of water, in pounds, per square foot of grate per hour ;
$c=$ pounds of fuel per square foot of grate per hour;
$r=$ ratio of heating to grate surface.
Then we have for

$$
\begin{aligned}
& \text { Stationary boilers } \\
& w=0.0222 r^{2}+9.56 c \\
& \text { Marine boilers................................ } w=0.016 r^{2}+10.25 c \\
& \text { Portable engine boilers..................... } \quad w=0.008 r^{2}+8.6 c \\
& \text { Locomotive boilers......................... } w=0.009 r^{2}+9 . \overline{i c}
\end{aligned}
$$

## CHIMNEYS.

The proportions of chimneys to furnish proper draught for steam boilers depend upon so many variables that it is impracticable to give absolute rational formulas, and hence empirical rules are used.

It is generally assumed that the area should bear a direct proportion to the quantity of fuel burned, and an inverse proportion to the square root of the height. The force of draught, however, has not only to draw the air in to maintain combustion, but must enable it to overcome the resistance of the fuel bed upon the grate, and this is always an indeterminate resistance. Moreover, the force of the draught depends upon the temperature of the discharge gases; but this latter should not be too high, or heat will be lost which should have been absorbed by the boiler. The entire subject will be found very fully discussed in the "Transactions of the American Society of Mechanical Engineers," Vol. XI., pp. 451, 974, and 984.

A common, ready rule for chimney area is to make it equal to one-tenth of the area of the grate. Mr. A. F. Nagle gives the rule to allow 2 square inches of chimney area for every pound of coal burned per hour.

The following formulas are given by their respective authors, as based upon the results of experience, taking into account the investigations of Péclet, Rankine, and others.

Let

$$
\begin{aligned}
A & =\text { area of chimney, in square feet; } \\
h & =\text { height, in feet; } \\
F & =\text { total number of pounds of coal burned per hour } ; \\
t & =\text { temperature of discharge gases } ; \\
G & =\text { grate area, in square feet. }
\end{aligned}
$$

Then

$$
\left.\begin{array}{l}
A=\frac{0.0825 F}{\sqrt{h}} \\
h=\left(\frac{0.0825 F}{A}\right)^{2},
\end{array}\right\} \text { Smith }
$$

or

$$
\left.\begin{array}{l}
A=\frac{0.06 F}{V^{\prime /}} \\
h=\left(\frac{0.06 F}{A}\right)^{2},
\end{array}\right\} \text { Kent }
$$

or

$$
\left.\begin{array}{l}
A=0.07 F^{\frac{2}{3}} \\
h=\frac{180}{t}\left(\frac{F}{G}\right)^{2}, \quad
\end{array}\right\} \text { Gale. }
$$

The last formulas, it will be observed, do not make the height and area interchangeable, and for that reason they are to be preferred. Colonel E. D. Meier suggests the use of Gale's formula for heights, so modified as to read :

$$
h=\frac{120}{t}\left(\frac{F}{G}\right)^{2}
$$

after which any other formula, such as Kent's, may be used to find the area. The following table has been computed by Colonel Meier for heights and areas of boiler chimneys, based on an assumed evaporation of 7 pounds of water per pound of coal, which is equivalent to the combustion of 5 pounds of coal per horse-power per hour. If the coal burned per hour is given, divide by 5, and take the chimney dimensions for the corresponding horse-power.

## Table of Chimney Dimensions.

|  |  | Heights, in feet. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 75 | 80 | 85 | 90 | 95 | 100 | 110 | 120 | 130 | 140 | 150 | 175 | 200 |
|  |  | Commercial horse-power. |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.14 | 24 | 75 | 78 | 81 |  |  |  |  |  |  |  |  |  |  |
| 3.69 | 26 | 90 | 92 | 95 | 98 |  |  |  |  |  | $\ldots$ |  |  |  |
| 4.28 | 28 |  | 106 | 110 | 114 | 117 | 120 |  | .... | .... |  |  |  |  |
| 4.91 | 30 |  | 122 | 127 | 130 | 133 | 137 | .... | $\ldots$ |  |  | .... |  |  |
| 5.59 | 32 |  |  | 144 | 149 | 152 | 156 | 164 | .... | $\ldots$ |  | $\ldots$ |  |  |
| 6.31 | 34 |  |  | 162 | 168 | 171 | 176 | 185 |  |  |  |  |  |  |
| 7.07 | 36 |  |  |  | 188 | 192 | 198 | 208 | 215 | $\ldots$ |  |  |  |  |
| 8.73 | 40 |  |  |  |  | 237 | 244 | 257 | 267 | 279 | .... | $\ldots$ |  |  |
| 10.56 | 44 |  |  |  |  | 287 | 296 | 310 | 322 | 337 | .... |  |  |  |
| 12.57 | 48 |  |  |  |  |  | 352 | 370 | 384 | 400 | 413 | $\ldots$ | .... |  |
| 15.90 | 54 |  |  |  |  |  | 445 | 468 | 484 | 507 | 526 |  |  |  |
| 19.63 | 60 |  |  |  |  |  |  | 577 | 600 | 627 | 650 | 672 |  |  |
| 23.76 | 66 |  |  |  |  |  |  | 697 | 725 | 758 | 784 | 815 |  |  |
| 28.27 | 72 |  |  |  |  |  |  |  | 862 | 902 | 932 | 969 | 1044 |  |
| 38.48 | 84 |  |  |  |  |  |  |  | 1173 | 1229 | 1270 | 1319 | 1422 |  |
| 50.27 | 96 |  |  |  |  |  |  |  |  | 1584 | 1660 | 1725 | 1859 | 1983 |
| 63.62 | 108 |  |  |  |  |  |  |  |  | 2058 | 2102 | 2181 | 2352 | 2511 |
| 78.54 | 120 |  |  |  |  |  |  |  |  |  | 2596 | 2693 | 2904 | 3100 |

The following formulas for chimney dimensions, for use in the metric system, are given in the "Ingenieurs Taschenbuch :"

Let
$d=$ internal diameter, in metres;
$h=$ height, in metres;
$R=$ grate area, in square metres ;
$B=$ coal burned per hour, in kilogrammes.
Then

$$
\begin{aligned}
& d=0.1 B^{0.4} \text { metres } \\
& h=0.00277\left(\frac{B}{R}\right)^{2}+6 d
\end{aligned}
$$

For use in British measures we have
$d=$ internal diameter, in feet;
$h=$ height, in feet;
$R=$ grate area, in square feet $;$
$B=$ coal burned per hour, in pounds.

Then

$$
\begin{aligned}
& d=0.242 B^{0.4} \text { feet } \\
& h=0.216\left(\frac{B}{R}\right)^{2}+6 d .
\end{aligned}
$$

These appear to be the most satisfactory formulas of all. The diameter, and hence the area, is dependent solely upon the quantity of coal burned per hour, and the height is determined mainly by the rate of combustion
per square foot of grate, plus 6 diameters; the latter member providing for the relation of height to diameter. With these formulas no absurd relations of height to diameter are possible, and the range of heights for various rates of combustion accord well with practice.

When the rate of combustion is not known it may be taken according to the character of the boiler and furnace. Taking the grate surface at 0.01 square foot per pound of water evaporated per hour, or about $1 / 3$ square foot per horse-power, and the quantity of water evaporated per pound of coal from 5 to 10 pounds, -that is, 0.20 to 0.1 pound of coal per pound of water,-we have corresponding ratios of 10 to 20 pounds of coal per square foot of grate. It is advisable to make the chimney capable of maintaining a rate of 20 pounds per square foot of grate, so that $\left(\frac{B}{R}\right)^{2}=20^{2}=400$, and this gives a minimum height of chimney for that rate as

$$
h=0.216 \times 400=86.4 \text { feet, }
$$

plus 6 diameters. The diameter is then determined by the total quantity of coal burned per hour; and taking this at 0.2 pound of coal per pound of water, or 6 pounds per horse-power, we have all the data necessary to determine the size of a chimney for any given evaporation of water.

Thus, for 3000 pounds of water per hour, or 100 horse-power, we have

$$
B=3000 \times 0.2=600
$$

and

$$
d=0.242 \times 600^{0.4}=3.13
$$

or, say, 3 feet diameter, and the height will be

$$
86.4+18=104.4 \text { feet. }
$$

The areas given by these formulas are somewhat larger than many rules, and may serve for boilers of at least 25 per cent. greater capacity than close computation will indicate.

Theoretically, about 12 pounds of air are required for the combustion of 1 pound of coal; but, in practice, from 18 to 24 pounds actually pass through the furnace. This excess is found necessary to insure combustion, owing to the imperfect mixture of the air and the gases.

## Draught Pressure Required for Combustion of Different Fuels.

| Kind of fuel. | Total draught, in inches, of water. | Kind of fuel. | Total draught, in inches, of water. |
| :---: | :---: | :---: | :---: |
| Straw | . 20 | Slack, very small. | . 7 to 1.1 |
| Wood | . 30 | Coal-dust. | . 8 to 1.1 |
| Sawdust. | . 35 | Semi-anthracite coal. | . 9 to 1.2 |
| Peat, light | . 4 | Mixture of breeze and |  |
| Peat, heavy. | . 5 | slack. | 1.0 to 1.3 |
| Sawdust mixed with small coal.......... | . 6 | Anthracite, round.... Mixture of brecze and | 1.2 to 1.4 |
| Steam coal, round | . 4 to . 7 | coal-dust. | 1.2 to 1.5 |
| Slack, ordinary. | . 6 to . 9 | Anthracite slack | 1.3 to 1.8 |

## Flue Area, in Square Inches, Required for the Passage of a Given Volume of Air at a Given Velocity.

(B. F. Sturtevant.)

| Volume, in cubic feet, per minute | Velocity, in feet, per minute. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 |
| 100 | 48 | 36 | 29 | 24 | 21 | 18 | 16 | 14 | 13 | 12 | 11 | 10 | 9.6 | 9.0 |
| 125 | 60 | 45 | 36 | 30 | 26 | 23 | 20 | 18 | 16 | 15 | 14 | 13 | 12.0 | 11.3 |
| 150 | 72 | 54 | 43 | 36 | 31 | 27 | 24 | 22 | 20 | 18 | 16 | 15 | 14.4 | 13.5 |
| 175 | 84 | 63 | 50 | 42 | 36 | 32 | 28 | 25 | 23 | 21 | 19 | 18 | 16.8 | 15.8 |
| 200 | 96 | 72 | 58 | 48 | 41 | 36 | 32 | 29 | 26 | 24 | 22 | 21 | 19.2 | 18.0 |
| 225 | 108 | 81 | 65 | 54 | 46 | 41 | 36 | 32 | 29 | 27 | 25 | 23 | 21. | 20.3 |
| 250 | 120 | 90 | 72 | 60 | 51 | 45 | 40 | 36 | 33 | 30 | 28 | 26 | 24.0 | 22.5 |
| 275 | 132 | 99 | 79 | 66 | 57 | 50 | 44 | 40 | 36 | 33 | 30 | 28 | 26. | 24.8 |
| 300 | 144 | 108 | 86 | \%2 | 62 | 54 | 48 | 43 | 39 | 36 | 33 | 31 | 28.8 | 27.0 |
| 325 | 156 | 117 | 94 | 78 | 67 | 59 | 52 | 47 | 43 | 39 | 36 | 33 | 31 | 29.3 |
| 350 | 168 | 126 | 101 | 84 | 72 | 63 | 56 | 50 | 46 | 42 | 39 | 36 | 33.6 | 31.5 |
| 375 | 180 | 135 | 108 | 90 | 77 | 68 | 60 | 54 | 49 | 45 | 42 | 39 | 36.0 | 33.8 |
| 400 | 192 | 144 | 115 | 96 | 82 | 72 | 64 | 58 | 52 | 48 | 44 | 41 | 38.4 | 36.0 |
| 425 | 204 | 153 | 122 | 102 | 87 | 77 | 68 | 61 | 56 | 51 | 47 | 44 | 40.8 | 38.3 |
| 450 | 216 | 162 | 130 | 108 | 93 | 81 | 72 | 65 | 59 | 54 | 50 | 46 | 43.2 | 40.5 |
| 475 | 228 | 171 | 137 | 114 | 98 | 86 | 76 | 68 | 62 | 57 | 53 | 49 | 45.6 | 42.8 |
| 500 | 240 | 180 | 144 | 120 | 103 | 90 | 80 | 72 | 65 | 60 | 55 | 51 | 48.0 | 45.0 |
| 525 | 252 | 189 | 151 | 126 | 108 | 95 | 84 | 76 | 69 | 63 | 58 | 54 | 50.4 | 47.3 |
| 550 | 264 | 198 | 158 | 132 | 113 | 99 | 88 | 79 | 72 | 66 | 61 | 57 | 52 | 49.5 |
| 575 | 276 | 207 | 166 | 138 | 118 | 104 | 92 | 83 | 75 | 69 | 64 | 59 | 55.2 | 51.8 |
| 600 | 288 | 216 | 173 | 144 | 123 | 108 | 96 | 86 | 79 | 72 | 66 | 62 | 57 | 54.0 |
| 625 | 300 | 225 | 180 | 150 | 129 | 113 | 100 | 90 | 82 | 75 | 69 | 64 | 60.0 | 56.3 |
| 650 | 312 | 234 | 187 | 156 | 134 | 117 | 104 | 94 | 85 | 78 | 72 | 67 | 62. | 58.5 |
| 675 | 324 | 243 | 194 | 162 | 139 | 122 | 108 | 97 | 88 | 81 | 75 | 69 | 64. | 60.8 |
| 700 | 336 | 252 | 202 | 168 | 144 | 126 | 112 | 101 | 92 | 84 | 78 | 72 | 67. | 63.0 |
| 725 | 348 | 261 | 209 | 174 | 149 | 131 | 116 | 104 | 95 | 87 | 80 | 75 | 69. | 65.3 |
| 750 | 360 | 270 | 216 | 180 | 154 | 135 | 120 | 108 | 98 | 90 | 83 | 77 | 72.0 | 67.5 |
| 775 | 372 | 279 | 223 | 186 | 159 | 140 | 124 | 112 | 101 | 93 | 86 | 80 | 74. | 69.8 |
| 800 | 384 | 288 | 230 | 192 | 165 | 144 | 128 | 115 | 105 | 96 | 89 | 82 | 76.8 | 72.0 |
| 825 | 396 | 297 | 238 | 198 | 170 | 149 | 132 | 119 | 108 | 99 | 91 | 85 | 79.2 | 74.3 |
| 850 | 408 | 306 | 245 | 204 | 175 | 153 | 136 | 122 | 111 | 102 | 94 | 87 | 81. | 76.5 |
| 875 | 420 | 315 | 252 | 210 | 180 | 158 | 140 | 126 | 115 | 105 | 97 | 90 | 84.0 | 78.8 |
| 900 | 432 | 324 | 259 | 216 | 185 | 162 | 144 | 130 | 118 | 108 | 100 | 93 | 86. | 81.0 |
| 925 | 444 | 333 | 266 | 222 | 190 | 167 | 148 | 133 | 121 | 111 | 103 | 95 | 88.8 | 83.3 |
| 950 | 456 | 342 | 274 | 228 | 195 | 171 | 152 | 137 | 124 | 114 | 105 | 98 | 91. | 85.5 |
| 975 | 468 | 351 | 281 | 234 | 201 | 176 | 156 | 140 | 128 | 117 | 108 | 100 | 93.6 | 87.8 |
| 1000 | 480 | 360 | 288 | 240 | 206 | 180 | 160 | 144 | 131 | 120 | 111 | 103 | 96.0 | 90.0 |

Flue Area, in Square Inches, Required for the Passage of a Given Volume of Air at a Given Velocity.
(B. F. Sturtevant.)

| Velocity, in feet, per minute. |  |  |  |  |  |  |  |  |  |  |  |  |  | Volume, in cubic feet, per minute. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 | 2600 | 2700 | 2800 | 2900 | 3000 | 3100 |  |
| 8.5 | 8 | 7.6 | 7.2 | 6.9 | 6.6 | 6.3 | 6.0 | 5.5 | 5.3 | 5.1 | 5.0 | 4.8 | 4.6 | 100 |
| 10.6 | 10 | 9.5 | 9.0 | 8.6 | 8.2 | 7.8 | 7.5 | 6.9 | 6.7 | 6.4 | 6.2 | 6.0 | 5.8 | 125 |
| 12.7 | 12 | 11.4 | 10.8 | 10.3 | 9.8 | 9.4 | 9.0 | 8.0 | 8.0 | 7.7 | 7.5 | 7.2 | 7.0 | 150 |
| 14.8 | 14 | 13.3 | 12.6 | 12.0 | 11.5 | 11.0 | 10.5 | 9.7 | 9.3 | 9.0 | 8.7 | 8.4 | 8.1 | 175 |
| 16.9 | 16 | 15.2 | 14.4 | 13.7 | 13.1 | 12.5 | 12.0 | 11.1 | 10.7 | 10.3 | 9.9 | 9.6 | 9.3 | 200 |
| 19.1 | 18 | 17.1 | 16.2 | 15.6 | 14.7 | 14.1 | 13.5 | 12.5 | 12.0 | 11.6 | 11.2 | 10.8 | 10.4 | 225 |
| 21.2 | 20 | 19.0 | 18.0 | 17.1 | 16.4 | 15.7 | 15.0 | 13.9 | 13.3 | 12.9 | 12.4 | 12.0 | 11.6 | 250 |
| 23.3 | 22 | 21.8 | 19.8 | 18.9 | 18.0 | 17.2 | 16.5 | 15.2 | 14.7 | 14.1 | 13.7 | 13.2 | 12.8 | 275 |
| 25.4 | 24 | 22.7 | 21.6 | 20.6 | 19.6 | 18.8 | 18.0 | 16.6 | 16.0 | 15.4 | 14.9 | 14.4 | 13.9 | 300 |
| 27.5 | 26 | 24.6 | 23.4 | 22.3 | 21.3 | 20.6 | 19.5 | 18.0 | 17.3 | 16.7 | 16.1 | 15.6 | 15.1 | 325 |
| 29.6 | 28 | 26.5 | 25.2 | 24.0 | 22.9 | 21.9 | 21.0 | 19.4 | 18.7 | 18.0 | 17.4 | 16.8 | 16.3 | 350 |
| 31.8 | 30 | 28.4 | 27.0 | 25.7 | 24.5 | 23.5 | 22.5 | 20.8 | 20.0 | 19.3 | 18.6 | 18.0 | 17.4 | 375 |
| 33.9 | 32 | 30.3 | 28.8 | 27.4 | 26.2 | 25.0 | 24.0 | 22.2 | 21.3 | 20.6 | 19.8 | 19.2 | 18.6 | 400 |
| 36.0 | 34 | 32.2 | 30.6 | 29.1 | 27.8 | 26.6 | 25.5 | 23.5 | 22.7 | 21.9 | 21.1 | 20.4 | 19.7 | 425 |
| 38.1 | 36 | 34.1 | 32.4 | 30.9 | 29.5 | 28.2 | 27.0 | 24.9 | 24.0 | 23.1 | 22.3 | 21.6 | 20.9 | 450 |
| 40.2 | 38 | 36.0 | 34.2 | 32.6 | 31.1 | 29.7 | 28.5 | 26.3 | 25.3 | 24.4 | 23.6 | 22.8 | 22.1 | 475 |
| 42.4 | 40 | 37.9 | 36.0 | 34.3 | 32.7 | 31.3 | 30.0 | 27.7 | 26.7 | 25.7 | 24.8 | 24.0 | 23.2 | 500 |
| 44.5 | 42 | 39.8 | 37.8 | 36.0 | 34.4 | 32.9 | 31.5 | 29.1 | 28.0 | 26.9 | 25.0 | 25. | 24. | 525 |
| 46.6 | 44 | 41.7 | 38.6 | 37.7 | 36.0 | 34.4 | 33.0 | 30.5 | 29.3 | 28.3 | 27.3 | 26.4 | 25.5 | 550 |
| 48.7 | 46 | 43.6 | 41.4 | 39.4 | 37.6 | 36.0 | 34.5 | 31.9 | 30.7 | 29.6 | 28.5 | 27. | 26.7 | 575 |
| 50.8 | 48 | 45.5 | 43.2 | 41.1 | 39.3 | 37.6 | 36.0 | 33.2 | 32.0 | 30.8 | 29.8 | 28.8 | 27.8 | 600 |
| 52.9 | 50 | 47.4 | 45.0 | 42.9 | 40.9 | 39.1 | 37.5 | 34.6 | 33.3 | 32.1 | 31.0 | 30.0 | 29.0 | 625 |
| 55.1 | 52 | 49.3 | 46.8 | 44.6 | 42.5 | 40.7 | 39.0 | 36.0 | 34.7 | 33.4 | 32. | 31.2 | 30.2 | 650 |
| 57.2 | 54 | 51.2 | 48.6 | 46.3 | 44.1 | 42.3 | 40.5 | 37.5 | 36.0 | 34.7 | 33.5 | 32.4 | 31.3 | 675 |
| 59.3 | 56 | 53.1 | 50.4 | 48.0 | 45.8 | 43.8 | 42.0 | 38.8 | 37.3 | 36.0 | 34.7 | 33.6 | 32.5 | 700 |
| 61.4 | 58 | 55.0 | 52.2 | 49.7 | 47.4 | 45.4 | 43.5 | 40.2 | 38.7 | 37.3 | 36.0 | 34.8 | 33.6 | 725 |
| 63.5 | 60 | 56.9 | 54.0 | 51.4 | 49.1 | 47.0 | 45.0 | 41.5 | 40.0 | 38.6 | 37.2 | 36.0 | 34.8 | 750 |
| 65.6 | 62 | 58.8 | 56.3 | 53.1 | 50.7 | 48.5 | 46.5 | 42.9 | 41.3 | 39.9 | 38.5 | 37. | 36.0 | 775 |
| 67.8 | 64 | 60.6 | 57.6 | 54.9 | 52.4 | 50.1 | 48.0 | 44.3 | 42.7 | 41.2 | 39.7 | 38.4 | 37.1 | 800 |
| 69.9 | 66 | 62.5 | 59.4 | 56.6 | 54.0 | 51.7 | 49.5 | 45.7 | 44.0 | 42.4 | 40.9 | 39. | 38.3 | 825 |
| 72.0 | 68 | 64.4 | 61.2 | 58.4 | 55.6 | 53.2 | 51.0 | 47.1 | 45.3 | 43.7 | 42.2 | 40.8 | 39.4 | 850 |
| 74.0 | 70 | 67.3 | 63.0 | 60.0 | 57.3 | 54.8 | 52.5 | 48.5 | 46.7 | 45.0 | 43.4 | 42.0 | 40.6 | 875 |
| 76.2 | 72 | 68.2 | 64.8 | 61.7 | 58.9 | 56.3 | 54.0 | 49.9 | 48.0 | 46.3 | 44.6 | 43.2 | 41.8 | 900 |
| 78.4 | 74 | 70.1 | 66.6 | 63.4 | 60.5 | 57.9 | 55.5 | 51.3 | 49.3 | 47.6 | 46.0 | 44. | 42.9 | 925 |
| 80.5 | 76 | 72.0 | 68.4 | 65.1 | 62.2 | 59.5 | 57.0 | 52.6 | 50.7 | 48.8 | 47.1 | 45.6 | 44.1 | 950 |
| 82.6 | 78 | 73.9 | 70.2 | 66.8 | 63.8 | 61.0 | 58.5 | 54.0 | 52.0 | 50.2 | 48.4 | 46.8 | 45.3 | 975 |
| 84.7 | 80 | 75.8 | 72.0 | 68.7 | 66.0 | 62.6 | 60.0 | 55.4 | 53.3 | 51.4 | 49.6 | 48.0 | 46.4 | 1000 |

Pressure, in Ounces, per Square Inch.
Corresponding to Various Heads of Water, in Inches.

| Head, in inches. | Decimal parts of an inch. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 0 | . 1 | . 2 | . 3 | . 4 | . 5 | . 6 | . 7 | . 8 | . 9 |
| 0 | ... | . 06 | . 12 | . 17 | . 23 | . 29 | . 35 | . 40 | . 46 | . 52 |
| 1 | . 58 | . 63 | . 69 | . 75 | . 81 | . 87 | . 93 | . 98 | 1.04 | 1.09 |
| 2 | 1.16 | 1.21 | 1.27 | 1.33 | 1.39 | 1.44 | 1.50 | 1.56 | 1.62 | 1.67 |
| 3 | 1.73 | 1.79 | 1.85 | 1.91 | 1.96 | 2.0 ${ }^{\circ}$ | 2.08 | 2.14 | 2.19 | 2.25 |
| 4 | 2.31 | 2.37 | 2.42 | 2.48 | 2.54 | 2.60 | 2.66 | 2.72 | 2.77 | 2.83 |
| 5 | 2.89 | 2.94 | 3.00 | 3.06 | 3.12 | 3.18 | 3.24 | 3.29 | 3.35 | 3.41 |
| 6 | 3.47 | 3.52 | 3.58 | 3.64 | 3.70 | 3.75 | 3.81 | 3.87 | 3.92 | 3.98 |
| 7 | 4.04 | 4.10 | 4.16 | 4.22 | 4.28 | 4.33 | 4.39 | 4.45 | 4.50 | 4.56 |
| 8 | 4.62 | 4.67 | 4.73 | 4.79 | 4.85 | 4.91 | 4.97 | 5.03 | 5.08 | 5.14 |
| 9 | 5.20 | 5.26 | 5.31 | 5.37 | 5.42 | 5.48 | 5.54 | 5.60 | 5.66 | 5.72 |

Height of Water Column, in Inches.
Corresponding to Pressures, in Ounces, per Square Inch.

| Pressure, in ounces, per square inch. | Decimal parts of an ounce. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 0 | . 1 | . 2 | . 3 | . 4 | . 5 | . 6 | . 7 | . 8 | . 9 |
| 0 | $\therefore . .$. | . 17 | . 35 | . 52 | . 69 | . 87 | 1.04 | 1.21 | 1.38 | 1.56 |
| 1 | 1.73 | 1.90 | 2.08 | 2.25 | 2.42 | 2.60 | 2.77 | 2.94 | 3.11 | 3.29 |
| 2 | 3.46 | 3.63 | 3.81 | 3.98 | 4.15 | 4.33 | 4.50 | 4.67 | 4.84 | 5.01 |
| 3 | 5.19 | 5.36 | 5.54 | 5.71 | 5.88 | 6.06 | 6.23 | 6.40 | 6.57 | 6.75 |
| 4 | 6.92 | 7.09 | 7.27 | 7.44 | 7.61 | 7.79 | 7.96 | 8.13 | 8.30 | 8.48 |
| 5 | 8.65 | 8.82 | 9.00 | 9.17 | 9.34 | 9.52 | 9.69 | 9.86 | 10.03 | 10.21 |
| 6 | 10.38 | 10.55 | 10.73 | 10.90 | 11.07 | 11.26 | 11.43 | 11.60 | 11.77 | 11.95 |
| 7 | 12.11 | 12.28 | 12.46 | 12.63 | 12.80 | 12.97 | 13.15 | 13.32 | 13.49 | 13.67 |
| 8 | 13.84 | 14.01 | 14.19 | 14.36 | 14.53 | 14.71 | 14.88 | 15.05 | 15.22 | 15.40 |
| 9 | 15.57 | 15.74 | 15.92 | 16.09 | 16.26 | 16.45 | 16.62 | 16.76 | 18.96 | 17.14 |

## STEAM=BOILER DETAILS. Material for Riveting.

Board of Trade.-Tensile strength of rivet bars between 26 and 30 tons; elongation in 10 inches not less than 25 per cent., and contraction of area not less than 50 per cent.

Lloyd's.-Tensile strength, 26 to 30 tons; elongation not less than 20 per cent. in 8 inches. The material must stand bending to a curve, the inner radius of which is not greater than $1 \frac{1}{2}$ times the thickness of the plate, after having been uniformly heated to a low cherry-red, and quenched in water at $82^{\circ} \mathrm{F}$.

United States Statutes.-No special provision.
Bureau Veritas.-Tensile strength, 53,000 pounds.
German Lloyd's.-Tensile strength, 45,000 to 51,000 pounds; elongation, 23.5 per cent. to 26 per cent., depending on thickness of plate.

## Rules Connected with Riveting.

Board of Trade.-The shearing resistance of the rivet steel to be taken at 23 tons per square inch, 5 to be used for the factor of safety independently of any addition to this factor for the plating. Rivets in double shear to have only 1.75 times the single section taken in the calculation, instead of 2. The diameter must not be less than the thickness of the plate, and the pitch never greater than $81 / 2$ inches. The thickness of double butt straps (each) not to be less than $5 / 8$ the thickness of the plate; single butt straps not less than $\frac{9}{8}$.

Distance from centre of rivet to edge of hole $=$ diameter of rivet $\times 1 / 2$.
Distance between rows of rivets
$=2 \times$ diameter of rivet or $=[($ diameter $\times 4)+1] \div 2$, if chain, and

$$
=\frac{\sqrt{[(\text { pitch } \times 11)+(\text { diameter } \times 4)] \times(\text { pitch } \div \text { diameter } \times 4)}}{10} \text {, if zigzag. }
$$

Diagonal pitch $=($ pitch $\times 6+$ diameter $\times 4) \div 10$.
Lloyd's.- Rivets in double shear to have only 1.75 times the single section taken in the calculation, instead of 2 . The shearing strength of rivet steel to be taken at 85 per cent. of the tensile strength of the material of shell plates. In any case where the strength of the longitudinal joint is satisfactorily shown by experiment to be greater than given by the formula, the actual strength may be taken in the calculation.

United States Statutes.-No rules.
Bureau Veritas.-Shearing strength assumed $=0.8$ tensile strength; at working pressure shearing strength to be $\frac{1}{4.4}$ part of full shearing strength. Double shear twice single section. Circular seams to be doubleriveted if plates exceed $1 / 2$ inch.

German Lloyd's.-Shearing assumed $=0.8$ tensile strength of plates,factor of safety $=5$ for lap joints and $1.15 \times 5$ for double butt joints,-total rivet area to be taken. Butt straps at least 0.75 of plate diameter of rivets not over twice, or less than thickness of plate for thin and thick plates, respectively. Pitch of rivets not over 8 times thickness of plate strap.

## Proportions of Rivets.

(Thurston.)

| Thickness of plate | $1 / 4^{\prime \prime}$ | $\frac{5}{16}{ }^{\prime \prime}$ | $3 / 8^{\prime \prime}$ | $\frac{7}{16}{ }^{\prime \prime}$ | $1 / 2^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter of rivet | $5 / 8^{\prime \prime}$ | ${ }^{\frac{11}{16}}{ }^{\prime \prime}$ | $3 / 4{ }^{\prime \prime}$ | $\frac{13}{1 / 17}$ | $7 /{ }^{\prime \prime}$ |
| Diameter of rivet-hole | ${ }^{\frac{1}{1} 6^{\prime \prime}}$ | $3 / 4{ }^{\prime \prime}$ | ${ }^{\frac{13}{16}}{ }^{\prime \prime}$ | $7 / 81$ | $\frac{15}{16}{ }^{\prime \prime}$ |
| Pitch-single riveting | $2^{\prime \prime}$ | $2 \frac{1}{16}{ }^{\prime \prime}$ | $21 / 8^{\prime \prime}$ | $2 \frac{3}{16}$ | 21/4' |
| Pitch-double riveting | $3^{\prime \prime}$ | $31 / 8{ }^{\prime \prime}$ | $31 / 4^{\prime \prime}$ | $33 / 8{ }^{\prime \prime}$ | $31 / 2^{\prime \prime}$ |
| Strength of single-riveted joint. . | 66\% | 64\% | 62\% | 60\% | 58\% |
| Strength of double-riveted joint. | 77\% | 76\% | 75\% | 74\% | 73\% |

## Lloyd's Proportions for Riveted Joints.

Single-riveted Joints.

| Thickness of iron plate. | Diameter of iron rivet. | Pitch. | Lap. | Perceutage. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rivet. | Plate. |
| Inch. | Inch. | Inch. | Inch. |  |  |
| $\frac{5}{16}$ | $\frac{11}{16}$ | $13 / 4$ | $2 \frac{1}{16}$ | 67.9 | 60.7 |
| $3 / 8$ | $\frac{13}{16}$ | $2 \frac{1}{16}$ | $2 \frac{7}{16}$ | 67.0 | 60.0 |
| $\frac{7}{16}$ | $\frac{15}{16}$ | 21/4 and $\frac{3}{32}$ | $2 \frac{13}{16}$ | 67.4 | 60.1 |
| 1/2 | 1 | $2 \frac{7}{16}$ | 3 | 64.9 | 58.9 |
| $\frac{9}{16}$ | $11 / 8$ | $25 / 8$ and $\frac{3}{32}$ | $33 / 8$ | 65.1 | 58.6 |
| 5/8 | $1_{1 \frac{3}{16}}$ | $23 / 4$ and $\frac{1}{32}$ | $3 \frac{9}{16}$ | 63.7 | 57.3 |

Double=riveted Joints.

| Thickness of iron plate. | Diameter of iron rivet. | Pitch. | Lap. | Percentage. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rivet. | Plate. |
| Inch. | Inch. | Inch. | Inch. |  |  |
|  |  | $23 / 8 \text { and } \frac{3}{32}$ | $3{ }_{16}^{7}$ | 80.2 | 72.1 |
| $\frac{7}{16}$ | $3 / 4$ | $21 / 2$ and $\frac{3}{32}$ | $33 / 4$ | 77.7 | 71.1 |
| 1/2 | $\frac{13}{1} \frac{3}{6}$ | $25 / 8$ and $\frac{1}{16}$ | $4 \frac{1}{16}$ | 77.2 | 69.4 |
| $\frac{9}{16}$ | $\frac{15}{16}$ | $31 / 8$ | $4 \frac{11}{16}$ | - 78.5 | 70.0 |
| 5/8 | 1 | 31/4 | 5 | 77.3 | 69.2 |
| $\frac{11}{16}$ | $1_{\frac{1}{16}}$ | $33 / 8$ | $5_{16}^{5}$ | $76.4$ | 68.5 |
| $3 / 4$ | 11/8 | $31 / 2$ and $\frac{1}{32}$ | $55 / 8$ | 75.0 | 68.1 |

Treble-riveted Joints.

| Thickness of iron plate. | Diameter of iron rivet. | Pitch. | Lap. | Percentage. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rivet. | Plate. |
| Inch. | Inch. | Inch. | Inch. |  |  |
| 1/2 | $3 / 4$ | $31 / 8$ and $\frac{1}{32}$ | $41 / 2$ | 83.9 | 76.2 |
| $\frac{9}{16}$ | $\frac{13}{16}$ | $31 / 4$ and $\frac{1}{32}$ | 47/8 | 84.3 | 75.2 |
| 5/8 | 7/8 | $3 \frac{7}{16}$ | $51 / 4$ | 83.9 | 75.4 |
| $\frac{11}{16}$ | 1 | $4 \frac{1}{16}$ | 6 | 84.4 | 75.4 |
| $3 / 4$ | $1_{11}^{1 / 8}$ | 41/4 | $63 / 8$ | 83.4 | 75.0 |
| $1{ }^{13}$ | 11/8 | $43 / 8$ and $\frac{1}{32}$ | $63 / 4$ | 83.3 | 74.5 |
| 7/8 | $1_{1}{ }^{3} 6$ | $41 / 2$ and $\frac{3}{32}$ | $71 / 8$ | 82.5 | 74.1 |
| $\frac{1}{15}$ | 11/4 | $43 / 4$ and $\frac{1}{32}$ | $71 / 2$ | 82.1 | 73.8 |
| 1 | $1 \frac{5}{16}$ | $4 \frac{15}{16}$ | $77 / 8$ | 82.2 | 73.4 |

## Materials for Boiler Shells.

Board of Trade.-Tensile strength between 27 and 32 tons. In the normal condition, elongation not less than 18 per cent. in 10 inches, but should be about 25 per cent. ; if annealed, not less than 20 per cent. Strips 2 inches wide should stand bending until the sides are parallel at a dis tance from each other of not more than 3 times the plate's thickness.

Lloyd's.-Tensile strength between the limits of 26 and 30 tons per square inch. Elongation not less than 20 per cent. in 8 inches. Test strips heated to a low cherry-red and plunged into water at $82^{\circ} \mathrm{F}$. must stand bending to a curve, the inner radius of which is not greater than $11 / 2$ times the plate's thickness.

United States Statutes.-Plates of $1 / 2$ inch thickness and under shall show a contraction of not less than 50 per cent. ; when over $1 / 2$ inch, and up to $3 / 4$ inch, not less than 45 per cent.; when over $3 / 4$ inch, not less than 40 per cent.

Bureau Veritas.-Tensile strength not over 61,000 pounds. Elongation, 20 to 31 per cent. for various tensile strengths. Quench strips must bend $180^{\circ}$ around diameter $=3 t$.

German Lloyd's.-Tensile strength not over 61,000 pounds. Elongation, 20 to 26 per cent. for various tensile strengths. Quench strips must bend $180^{\circ}$ around diameter $=4 t$.

## Proportions of Boiler Shells.

Board of Trade. $-P=\frac{T \times B \times t \times 2}{D \times F}$.
$D=$ diameter of boiler, in inches;
$P=$ working pressure, in pounds, per square inch ;
$t=$ thickness, in inches ;
$B=$ percentage of strength of joint compared to solid plate ;
$T=$ tensile strength allowed for the material, in pounds, per square inch:
$F=$ a factor of safety, being 4.5 , with certain additions depending on method of construction.

Lloyd's. $-P=\frac{C \times(t-2) \times B}{D}$.
$t=$ thickness of plate, in sixteenths of an inch ;
$B$ and $D$ as before;
$C=$ a constant depending on the kind of joint.
When longitudinal seams have double butt straps, $C=20$. When longitudinal seams have double butt straps of unequal width, only corering on one side, the reduced section of plate at the outer line of rivets, $C=19.5$.

When the longitudinal seams are lap-jointed, $C=18.5$.
United States Statutes.-Using same notation as for Board of Trade.
$P=\frac{t \times 2 \times T}{D \times 6}$ for single riveting; add 20 per cent. for double riveting where $T$ is the lowest tensile strength stamped on any plate.

Bureau Veritas. $-P=\frac{T \times B \times(t-0.042)^{2}}{D \times 4.4 \times 100}$.
$B=$ per cent. of plate section at joint.
$P$ also depends on rivet section.
German Lloyd's. $-P=\frac{t \times 2 \times B \times T}{D \times F \times 100}$.
$F$ varies from 4.65 to 5 , depending on thickness of plate.

## Proportions for Flat Plates.

Board of Trade. $-P=\frac{C(t+1)^{2}}{S-6}$.
$P=$ working pressure, in pounds, per square inch;
$S=$ surface supported, in square inches;
$t=$ thickness, in sixteenths of an inch ;
$C=$ a constant, as per following table.
$C=125$ for plates not exposed to heat or flame, the stays fitted with nuts and washers, the latter at least 3 times the diameter of the stay and $2 / 3$ the thickness of the plate.
$C=187.5$ for the same condition, but the washers $2 / 3$ the pitch of stays in diameter, and thickness not less than plate.
$C=200$ for the same condition, but doubling plates in place of washers, the width of which is $2 / 3$ the pitch and thickness the same as the plate.
$C=112.5$ for the same condition, but stays fitted with nuts only.
$C=75$ when exposed to impact of heat or flame and steam in contact with the plates, and the stays fitted with nuts and washers 3 times the diameter of the stay and $2 / 3$ the plate's thickness.
$C=67.5$ for the same condition, but stays fitted with nuts only.
$C=100$ when exposed to heat or flame and water in contact with the plates, and stays screwed into the plates and fitted with nuts.
$C=66$ for the same condition, but stays with riveted heads.
United States Statutes.-Using same notations as for Board of Trade. $P=\frac{C \times t^{2}}{p^{2}}$, where $p=$ greatest pitch, in inches, $P$ and $t$ as above.
$C=112$ for plates $\frac{7}{16}$ of an inch thick and under, fitted with screw stay-bolts and nuts, or plain bolt fitted with single nut and socket or riveted head and socket.
$C=120$ for plates above $\frac{7}{16}$ of an inch, under the same conditions.
$C=140$ for flat surfaces where the stays are fitted with nuts inside and outside.
$C=200$ for flat surfaces under the same condition, but with the addition of a washer riveted to the plate at least half the plate's thickness and of a diameter equal to $\frac{2}{5}$ pitch.
N.B.-Plates fitted with double angle-irons and riveted to plate, with leaf at least $2 / 3$ the thickness of plate and depth at least $1 / 4$ of pitch, would be allowed the same pressure as determined by formula for plate with washer riveted on.
N.B.-No brace or stay-bolt used in marine boilers to have a greater pitch than $10 \frac{1}{2}$ inches on fire-boxes and back connections.

Certain experiments were carried out by the Board of Trade which showed that the resistance to bulging does not vary as the square of the plate's thickness. There seems, also, good reason to believe that it is not inversely as the square of the greatest pitch.

Bureau Veritas. $-P=\frac{(t-1)^{2}}{a^{2}+b^{2}} \times \frac{T}{C}$.
$T=$ tensile strength, in tons, per square inch;
$a=$ pitch in one row, in inches ;
$b=$ distance between rows;
$C=$ factor depending on method of supporting, and varies from 0.055 to 0.084 .
German Lloyd's. $-P=\frac{t^{2}}{C^{2} \times p^{2}}$.
$C$ varies from 0.00425 to 0.00639 , depending on exposure and method of supporting.

## Plates for Flanging.

The Board of Trade gives the following rule for the strength of furnaces stiffened with flanged seams, provided the pitch of the flanges does not exceed $120 T-12$, and the flanging is of suitable design and effected at one heat:

$$
P=\frac{9900 \times T}{3 \times D}\left(5-\frac{L+12}{60 \times T}\right)
$$

$P=$ working pressure per square inch;
$T=$ thickness of plate, in inches;
$L=$ pitch of flanges, in inches;
$D=$ outside diameter of tubes, in inches.
Bureau Veritas.-Tensile strength not over 61,000 pounds. Elongation, 20 to 31 per cent. for various tensile strengths. Quench strips must bend $180^{\circ}$ around diameter $=3 t$.

German Lloyd's. -Tensile strength not over 53,000 pounds. Elongation not under $221 / 2$ per cent. Quench strips must bend $180^{\circ}$ around diameter $=4 t$.

## Furnace Flues.

Board of Trade. Long Furnaces. $-P=\frac{C \times t^{2}}{(L+1) \times D}$, but not where $L$ is shorter than ( $11.5 t-1$ ), at which length the rule for short furnaces comes into use.
$P=$ working pressure, in pounds, per square inch ;
$t=$ thickness, in inches;
$D=$ outside diameter, in inches;
$L=$ length of furnaces, in feet, up to 10 feet; $C=$ a constant, as below, for drilled holes.
$C=99,000$ for welded or butt-jointed, with single straps, double-
riveted.
$C=88,000$ for butts with single straps, single-riveted.
$C=99,000$ for butts with double straps, single-riveted.
Provided, always, that the pressure so found does not exceed that given by the following formulas, which apply also to short furnaces:
$P=\frac{C \times t}{D}$ for all the patent furnaces named.
$C=8800$ for plain furnaces.
$C=14,000$ for Fox. Minimum thickness, $\frac{5}{16}$ inch ; greatest, $5 / 8$ inch; plain part not to exceed 6 inches in length.
$C=15,600$ for Morison. Minimum thickness, $\frac{5}{16}$ inch; greatest, $5 / 8$ inch ; plain part not to exceed 6 inches in length.
$C=14,000$ for Purves-Brown. Limits of thickness, $\frac{7}{16}$ and $5 / 8$ inch; plain part 9 inches in length.

United States Statutes. Long Furnaces.-Same notation.

$$
P=\frac{89,600 \times t^{2}}{L \times D}, \text { but } L \text { not to exceed } 8 \text { feet. }
$$

Short Furnaces, Plain and Patent. $-P$ as before, when not 8 feet long $=\frac{89,600 \times t^{2}}{L \times D}$.

$$
P=\frac{t \times C}{D}, \text { when }
$$

$C=15,000$ for Fox corrugations, where $D=$ mean diameter.
$C=15,000$ for Purves-Brown. where $D=$ diameter of flue.
$C=5677$ for plain flues over 16 inches diameter and less than 40 inches, when not over 3 -foot lengths.

> Lloyd's and Bureau Veritas for Morison Suspension Furnaces.$W P=\frac{1259(T-2)}{D}$.
> $T=$ thickness, in sixteenths of an inch ;
> $D=$ greatest diameter, in inches;
> $W P=$ working pressure.

## Stays.

## MATERIAL.

Board of Trade.-The tensile strength to lie between the limits of 27 and 32 tons per square inch, and to have an elongation of not less than 20 per cent. in 10 inches. Steel stays which have been welded or worked in the fire should not be used.

Lloyd's. -26 to 30 ton steel, with elongation not less than 20 per cent. in 8 inches.

United States Statutes.-Reduction of area must not be less than 40 per cent. if the test bar is more than $3 / 4$ of an inch in diameter.

Bureau Veritas.-Same as for shell plates.
German Lloyd's.-Large stays, tensile strength 45,800 to 61,200 pounds. Elongation same as shell plates. Screwed stays, tensile strength 44,600 to 53,400 pounds, and corresponding elongation.

## Loads on Stays.

Board of Trade. -9000 pounds per square inch is allowed on the net section, provided the tensile strength ranges from 27 to 32 tons. Steel stays are not to be welded or worked in the fire.

Lloyd's.-For screwed and other stays not exceeding $11 / 2$ inches in diameter effective, 8000 pounds per square inch is allowed; for stays above $11 / 2$ inches, 9000 pounds. No stays are to be welded.

United States Statutes.-Braces and stars shall not be subjected to a greater stress than 6000 pounds per square inch.

Bureau Veritas. $\frac{1}{5.75}$ of lower test limit on net section. Then add $1 / 8$ inch to diameter of stay.

German Lloyd's.-Not to exceed $\frac{1}{7}$ of tensile strength, or about 8.500 pounds per square inch.

## Stay Girders.

Board of Trade. $-P=\frac{C \times d^{2} \times t}{(W-p) D \times L}$.
$P=$ working pressure, in pounds, per square inch ;
$W=$ width of flame-box, in inches;
$L=$ length of girder, in inches ;
$p=$ pitch of bolts, in inches ;
$D=$ distance between girders from centre to centre, in inches;
$d=$ depth of girder, in inches ;
$t=$ thickness of sum of same, in inches ;
$C=$ a constant $=6600$ for 1 bolt, 9900 for 2 or 3 bolts, and 11,220 for 4 bolts.
Lloyd's. The same formula and constants, except that $C=11,000$ for 4 or 5 bolts, 11,550 for 6 or 7 bolts, and 11,880 for 8 or more.

## Tube Plates.

Board of Trade. $-P=\frac{t(D-d) \times 20000}{W \times I)}$.
$D=$ least horizontal distance between centres of tubes, in inches;
$d=$ inside diameter of ordinary tubes;
$t=$ thickness of tube plate, in inches;
$W=$ extreme width of combustion-box, in inches, from front of tube plate to back of fire-box, or distance between combustion-box tube plates, when the boiler is double-ended, and the box common to both ends.
The crushing stress on tube plates caused by the pressure on the flamebox top is to be limited to 10,000 pounds per square inch.

## Fox and Purves Furnace Tubes.

Working Pressures allowed by Board of Trade and Lloyds.

|  | Working pressure, in pounds, per square inch. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 8 \mathrm{inch}$thick. |  | $\frac{13}{3} \frac{1 n c h}{}$ thick. |  | $\begin{aligned} & \frac{7}{16} \text { inch } \\ & \text { thick. } \end{aligned}$ |  | $\begin{aligned} & \frac{15}{3} \text { inch } \\ & \text { thick. } \end{aligned}$ |  | $1 / 2$ inch thick. |  | $\frac{17}{3} \frac{\text { inch }}{}$ thick. |  | $\frac{9}{16}$ inch thick. |  | $\begin{aligned} & \frac{19}{3} \text { inch } \\ & \text { thick. } \end{aligned}$ |  | 5/8inch thick. |  |
|  | $\begin{aligned} & i \\ & 0 \\ & 0 \end{aligned}$ | 范 | ${ }_{0}^{5}$ | $\frac{x}{5}$ | $\begin{aligned} & \omega \\ & \dot{\sim} \end{aligned}$ | $\stackrel{x}{5}$ | $\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{y}{3} \end{aligned}$ | $\frac{\dot{x}}{3}$ | $\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$ | $\frac{\dot{n}}{5}$ |  | $\frac{\stackrel{\dot{n}}{5}}{\stackrel{5}{5}}$ | $4$ | $\frac{\dot{x}}{\frac{0}{2}}$ | $$ | 圱 | $\frac{8}{2}$ | - |
| Ft. In. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 26 | 164 | 145 | 177 | 163 | 191 | 181 | 20.5 | 199 | 218 | 217 | 232 | 235 | 246 | 254 | 259 | 272 | 273 | 290 |
| 7 | 159 | 141 | 172 | 158 | 185 | 176 | 198 | 193 | 212 | 211 | 225 | 229 | 238 | 246 | 251 | 264 | 265 | 282 |
| 28 | 154 | 137 | 167 | 154 | 180 | 171 | 193 | 183 | 205 | 20.5 | 218 | 22.2 | 231 | 239 | 244 | 257 | 257 | 274 |
| 29 | 150 | 133 | 162 | 150 | 17.5 | 166 | 187 | 183 | 200 | 200 | 212 | 216 | 225 | 233 | 237 | 250 | 250 | 266 |
| 210 | 145 | 129 | 157 | 146 | 170 | 162 | 182 | 178 | 194 | 194 | 206 | 211 | 218 | 227 | 230 | 243 | 24 | 259 |
| 11 | 141 | 126 | 15.3 | 112 | 16. | 8 | 17 | 174 | 189 | 189 | 201 | 20.5 | 212 | 221 | 224 | 237 | 2.6 | 253 |
| 0 | 138 | 123 | 149 | 138 | 161 | 154 | 172 | 169 | 184 | 18.5 | 19.5 | 200 | 207 | 215 | 218 | 231 | 230 | 246 |
| 31 | 134 | 120 | 145 | 135 | 157 | 1.50 | 168 | 165 | 179 | 180 | 190 | 195 | 201 | 210 | 213 | 225 | 224 | 240 |
| 32 | 131 | 117 | 142 | 132 | 153 | 146 | 164 | 161 | 175 | 176 | 185 | 190 | 196 | 205 | 207 | 220 | 218 | 235 |
| 33 | 128 | 114 | 138 | 129 | 149 | 143 | 160 | 157 | 170 | 172 | 181 | 186 | 192 | 200 | 202 | 215 | 213 | 229 |
| 34 | 125 | 112 | 135 | 126 | 145) | 140 | 156 | 154 | 166 | 168 | 177 | 182 | 187 | 196 | 197 | 210 | 208 | 224 |
| 5 | 122 | 109 | 132 | 123 | 142 | 137 | 152 | 150 | 162 | 164 | 172 | 178 | 183 | 191 | 193 | 205 | 203 | 219 |
| 36 | 119 | 107 | 129 | 120 | 139 | 134 | 149 | 147 | 159 | 160 | 169 | 174 | 178 | 187 | 188 | 201 | 198 | 214 |
| 37 | 116 | 105 | 126 | 118 | 136 | 131 | 145 | 144 | 155 | 157 | 165 | 170 | 175 | 183 | 184 | 196 | 194 | 210 |
| 38 | 114 | 102 | 123 | 115 | 133 | 128 | 142 | 141 | 152 | 154 | 161 | 167 | 171 | 179 | 180 | 192 | 190 | 205 |
| 3 | 111 | 100 | 121 | 113 | 130 | 125 | 139 | 138 | 148 | 151 | 158 | 163 | 167 | 176 | 176 | 188 | 186 | 201 |
| 310 | 109 | 98 | 118 | 111 | 127 | 12:3 | 136 | 135 | 145 | 148 | 154 | 160 | 164 | 172 | 173 | 185 | 182 | 197 |
| 3 | 107 | 96 | 116 | 108 | 125 | 120 | 133 | 133 | 142 | 14.5 | 151 | 157 | 160 | 169 | 169 | 181 | 178 | 193 |
| 0 | 105 | 94 | 113 | 106 | 122 | 118 | 131 | 130 | 140 | 142 | 148 | 154 | 157 | 166 | 166 | 177 | 175 | 189 |
| 41 | 102 | 93 | 111 | 104 | 120 | 116 | 128 | 128 | 137 | 139 | 145 | 151 | 151 | 162 | 162 | 174 | 171 | 186 |
| 2 | 100 | 91 | 109 | 102 | 117 | 114 | 126 | 125 | 134 | 137 | 143 | 148 | 151 | 159 | 159 | 171 | 168 | 182 |
| 3 | 99 | 89 | 107 | 100 | 115 | 112 | 123 | 123 | 132 | 134 | 140 | 145 | 148 | 157 | 156 | 168 | 165 | 179 |
|  | 97 | 88 | 105 | 99 | 113 | 110 | 121 | 121 | 129 | 132 | 137 | 143 | 145 | 154 | 153 | 165 | 162 | 176 |
| 45 | 9.5 | 86 | 103 | 97 | 111 | 108 | 119 | 119 | 127 | 129 | 135 | 140 | 143 | 151 | 151 | 162 | 159 | 173 |
| 6 | 93 | 85 | 101 | 95 | 109 | 106 | 117 | 117 | 125 | 127 | 132 | 138 | 140 | 148 | 148 | 159 | 156 | 170 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Internal flues should be so constructed as to allow for expansion.

Table Showing Working Pressure and Thickness of Morison Suspension Furnaces.

| $\dot{ \pm}$ | Working pressure, in pounds, per square inch. Thickness of furnace. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\underset{\infty}{\underset{\infty}{\underset{\sim}{\circ}}}$ |  | $\begin{aligned} & \stackrel{3}{\square} \\ & \underset{y y y}{*} \end{aligned}$ |  |  |  | $\underset{.}{\vdots}$ |  | $\begin{aligned} & \text { 方 } \\ & . \underset{\infty}{\infty} \end{aligned}$ |  |  |  | $\begin{aligned} & \stackrel{\text { S }}{E} \\ & \text { NH } \end{aligned}$ |
| 28 | 162 | 178 | 195 | 211 | 227 | 243 | 260 | 276 | 292 | 308 | 325 | 341 | 357 | 3 | 390 |
| 29 | 157 | 172 | 188 | 204 | 220 | 235 | 251 | 267 | 283 | 298 | 314 | 330 | 345 | 361 | 377 |
| 30 | 152 | 167 | 182 | 198 | 213 | 228 | 243 | 258 | 274 | 289 | 304 | 319 | 335 | 350 | 365 |
| 31 | 147 | 162 | 177 | 192 | 206 | 221 | 236 | 251 | 265 | 280 | 295 | 310 | 325 | 339 | 354 |
| 32 | 143 | 157 | 172 | 186 | 200 | 215 | 229 | 243 | 258 | 272 | 286 | 301 | 315 | 329 | 344 |
| 33 | 139 | 153 | 167 | 181 | 195 | 208 | 222 | 236 | 250 | 264 | 278 | 292 | 306 | 320 | 334 |
| 34 | 135 | 148 | 162 | 176 | 189 | 203 | 216 | 230 | 243 | 257 | 270 | 284 | 297 | 311 | 325 |
| 35 | 131 | 144 | 158 | 171 | 184 | 197 | 210 | 223 | 237 | 250 | 263 | 276 | 289 | 303 | 315 |
| 36 | 128 | 141 | 153 | 166 | 179 | 192 | 205 | 218 | 230 | 243 | 256 | 269 | 282 | 295 | 307 |
| 37 | 125 | 137 | 150 | 162 | 175 | 187 | 200 | 212 | 225 | 237 | 250 | 26 | 275 | 287 | 300 |
| 38 | 121 | 134 | 146 | 158 | 170 | 182 | 195 | 207 | 219 | 231 | 243 | 255 | 268 | 280 | 292 |
| 39 | 118 | 130 | 142 | 154 | 166 | 178 | 190 | 202 | 214 | 225 | 237 | 249 | 261 | 273 | 285 |
| 40 | 116 | 127 | 139 | 150 | 162 | 174 | 185 | 197 | 208 | 220 | 232 | 243 | 255 | 266 | 278 |
| 41 | 113 | 124 | 136 | 147 | 158 | 170 | 181 | 192 | 204 | 215 | 226 | 238 | 249 | 260 | 272 |
| 42 | 110 | 121 | 132 | 144 | 155 | 166 | 177 | 188 | 199 | 210 | 221 | 232 | 243 | 254 | 265 |
| 43 | 108 | 119 | 130 | 140 | 151 | 162 | 173 | 184 | 195 | 205 | 216 | 227 | 238 | 249 | 26 |
| 44 | 105 | 116 | 127 | 137 | 148 | 158 | 169 | 180 | 190 | 201 | 211 | 22 | 233 | 243 | 254 |
| 45 | 103 | 114 | 124 | 134 | 145 | 155 | 165 | 176 | 186 | 197 | 207 | 217 | 228 | 238 | 248 |
| 46 | 101 | 111 | 121 | 132 | 142 | 152 | 162 | 172 | 182 | 192 | 203 | 213 | 223 | 233 | 243 |
| 47 | 99 | 109 | 119 | 129 | 139 | 149 | 159 | 169 | 179 | 189 | 198 | 208 | 218 | 228 | 238 |
| 48 | 97 | 107 | 117 | 126 | 136 | 146 | 156 | 165 | 175 | 185 | 195 | 204 | 214 | 224 | 234 |
| 49 | 95 | 105 | 114 | 124 | 133 | 143 | 152 | 162 | 172 | 181 | 191 | 200 | 210 | 219 | 229 |
| 50 | 93 | 103 | 112 | 121 | 131 | 140 | 150 | 159 | 168 | 178 | 187 | 196 | 206 | 215 | 225 |
| 51 | 91 | 101 | 110 | 119 | 128 | 137 | 147 | 156 | 165 | 174 | 183 | 193 | 202 | 211 | 220 |
| 52 | 90 | 99 | 108 | 117 | 126 | 135 | 144 | 153 | 162 | 171 | 180 | 189 | 198 | 207 | 21 |
| 53 | 88 | 97 | 106 | 115 | 124 | 132 | 141 | 150 | 159 | 168 | 177 | 186 | 195 | 203 | 212 |
| 54 | 87 | 95 | 104 | 113 | 121 | 130 | 139 | 147 | 156 | 165 | 174 | 182 | 191 | 200 | 208 |
| 55 | 85 | 94 | 102 | 111 | 119 | 128 | 136 | 145 | 153 | 162 | 171 | 179 | 188 | 196 | 205 |
| 56 | 84 | 92 | 100 | 109 | 117 | 126 | 134 | 142 | 151 | 159 | 168 | 176 | 184 | 193 | 201 |
| 57 | 82 | 90 | 99 | 107 | 115 | 123 | 132 | 140 | 148 | 156 | 165 | 173 | 181 | 190 | 198 |
| 58 | 81 | 89 | 97 | 105 | 113 | 121 | 130 | 138 | 146 | 154 | 162 | 170 | 178 | 186 | 195 |
| 59 | 79 | 87 | 95 | 103 | 111 | 119 | 127 | 135 | 143 | 151 | 159 | 167 | 17 | 183 | 191 |
| 60 | 78 | 86 | 94 | 102 | 110 | 117 | 125 | 133 | 141 | 149 | 157 | 165 | 172 | 180 | 188 |

## Dimensions of Standard Boiler Tubes, Lap=welded, Wrought=iron.

| Outside. |  | Thickness, in inches. | Weight per foot, in pounds. | Heating surface 1 foot in length. |  | Area of opening. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter, in inches. | Circumference, in inches. |  |  | Outside, square feet. | Inside, square feet. | $\begin{aligned} & \text { Square } \\ & \text { feet. } \end{aligned}$ | Square inches. |
| 11/2 | 4.71 | . 08 | 1.25 | . 393 | . 349 | . 0097 | 1.40 |
| 13/4 | 5.50 | . 10 | 1.67 | . 458 | . 408 | . 0133 | 1.91 |
| 2 | 6.28 | . 10 | 1.98 | . 524 | . 472 | . 0177 | 2.56 |
| 21/4 | 7.07 | . 10 | 2.34 | . 589 | . 540 | . 0230 | 3.31 |
| $21 / 2$ | 7.85 | . 11 | 2.76 | . 655 | . 598 | . 0284 | 4.09 |
| 23/4 | 8.64 | . 11 | 3.05 | . 720 | . 663 | . 0350 | 5.04 |
| 3 | 9.43 | . 11 | 3.33 | . 785 | . 729 | . 0422 | 6.08 |
| 31/4 | 10.21 | . 12 | 3.96 | . 851 | . 789 | . 0495 | 7.12 |
| $31 / 2$ | 11.00 | . 12 | 4.27 | . 916 | . 854 | . 0580 | 8.36 |
| 33/4 | 11.78 | . 12 | 4.59 | . 982 | . 919 | . 0673 | 9.69 |
| 4 | 12.57 | . 13 | 5.32 | 1.047 | . 979 | . 0763 | 10.99 |
| 41/2 | 14.14 | . 13 | 6.01 | 1.178 | 1.110 | . 0981 | 14.13 |
| 5 | 15.71 | . 14 | 7.23 | 1.309 | 1.234 | . 1215 | 17.50 |
| 6 | 18.85 | . 15 | 9.35 | 1.571 | 1.492 | . 1771 | 25.51 |
| 7 | 21.99 | . 17 | 12.44 | 1.833 | 1.743 | . 2417 | 34.81 |
| 8 | 25.13 | . 18 | 15.11 | 2.094 | 1.998 | . 3180 | 45.80 |
| 9 | 28.27 | . 19 | 18.00 | 2.356 | 2.254 | . 4048 | 58.29 |
| 10 | 31.42 | . 21 | 22.19 | 2.618 | 2.506 | . 4998 | 71.98 |
| 11 | 34.56 | . 22 | 25.49 | 2.880 | 2.764 | . 6075 | 87.48 |
| 12 | 37.70 | . 23 | 28.52 | 3.142 | 3.022 | . 7205 | 103.75 |
| 13 | 40.84 | . 24 | 32.21 | 3.403 | 3.279 | . 8554 | 123.19 |
| 14 | 43.98 | . 25 | 36.27 | 3.665 | 3.534 | . 9943 | 143.19 |
| 15 | 47.12 | . 26 | 40.61 | 3.927 | 3.791 | 1.1438 | 164.72 |
| 16 | 50.27 | . 27 | 45.20 | 4.189 | 4.047 | 1.3032 | 187.67 |
| 17 | 53.41 | . 28 | 49.90 | 4.451 | 4.305 | 1.4738 | 212.23 |
| 18 | 56.55 | . 29 | 54.82 | 4.712 | 4.560 | 1.6543 | 238.22 |
| 19 | 59.69 | . 30 | 59.48 | 4.974 | 4.817 | 1.8465 | 265.90 |
| 20 | 62.83 | . 32 | 66.77 | 5.219 | 5.068 | 2.0443 | 294.37 |
| 21 | 65.97 | . 34 | 73.40 | 5.498 | 5.320 | 2.2522 | 324.31 |

Proportions for Stay Bolts for Flat Surfaces.
(Barr.)

|  | $1 / 4$-inch plate. $3 / 4$-inch stay. | $\frac{5}{116}$-inch plate. $3 / 4$-inch stay. | $3 / 8$-inch plate. $7 / 8$-inch stay. | $\frac{7}{16}$-inch plate. <br> 1-inch stay. | $1 / 2$-inch plate. <br> $11 / 4$-inch stay. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 110 \\ 120 \\ 130 \\ 140 \\ 150 \end{array}$ | $\begin{aligned} & 6 \\ & 53 / 8 \\ & 5 \\ & 45 / 8 \\ & 41 / 2 \\ & 41 / 4 \\ & 4 \\ & 37 \\ & 33 / 8 \\ & 35 \\ & 35 \\ & 31 / 2 \end{aligned}$ |  | $\begin{aligned} & 8 \\ & 71 / 4 \\ & 658 \\ & 61 / 4 \\ & 578 \\ & 51 / 2 \\ & 511 / 4 \\ & 5 \\ & 47 \\ & 45 / 8 \\ & 41 / 2 \end{aligned}$ | $\begin{aligned} & 9 \\ & 818 \\ & 71 / 2 \\ & 618 \\ & 65 / 8 \\ & 614 \\ & 57 / 8 \\ & 53 / 4 \\ & 51 / 2 \\ & 5114 \\ & 5 \end{aligned}$ | 10 9 <br> 9 8 8 $83 / 8$ 77 73 $73 / 8$ $65 / 8$ $6^{3} / 8$ $61 / 8$ 6 5 5 5 |

Working Pressures for Flat Stayed Surfaces.
Pounds per Square Inch.

| ¢ \% | Thickness of plates, in inches. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 苟 ${ }^{\circ}$ | 1/4 | $\frac{5}{16}$ | $3 / 8$ | $\frac{7}{16}$ | 1/2 | $\frac{9}{16}$ | 5/8 | $\frac{11}{17}$ | $3 / 4$ |
| In. | Lb. | Lb. | Lb. | Lb. | Lb. | Lb. | Lb. | Lb. | Lb. |
| 10 | 621/2 | 90 | 122 | 160 | 202 | 250 | 302 | 360 | 422 |
| 11 | 50 | 73 | 99 | 129 | 163 | 202 | 244 | 290 | 341 |
| 12 | 42 | 60 | 82 | 107 | 135 | 167 | 202 | 240 | 282 |
| 13 | 35 | 50 | 69 | 90 | 113 | 140 | 170 | 201 | 237 |
| 14 | 30 | 43 | 59 | 76 | 97 | 120 | 145 | 172 | 202 |
| 15 | 26 | 37 | 51 | 66 | 84 | 103 | 125 | 148 | 174 |
| 16 | 23 | 32 | 44 | 58 | 73 | 90 | 109 | 130 | 152 |
| 17 | 20 | 29 | 39 | 51 | 64 | 80 | 96 | 114 | 134 |
| 18 | 18 | 25 | 35 | 45 | 57 | 71 | 85 | 101 | 119 |
| 19 | 16 | 23 | 31 | 40 | 51 | 63 | 76 | 91 | 107 |
| 20 | 14 | 20 | 28 | 36 | 46 | 57 | 69 | 82 | 96 |
| 21 | 13 | 18 | 25 | 33 | 41 | 51 | 62 | 74 | 87 |
| 22 | 12 | 17 | 23 | 30 | 38 | 47 | 56 | 67 | 79 |
| 23 | 11 | 15 | 21 | 27 | 35 | 43 | 51 | 61 | 72 |
| 24 | 10 | 14 | 19 | 25 | 32 | 39 | 47 | 56 | 66 |
| 25 | 9 | 13 | 18 | 23 | 29 | 36 | 43 | 52 | 61 |
| 26 | 8 | 12 | 161/2 | 21 | 27 | 33 | 40 | 48 | 56 |
| 27 | $71 / 2$ | 11 | 15 | 191/2 | 25 | 31 | 37 | 44 | 52 |
| 28 | 7 | 10 | 14 | 18 | 23 | 29 | $341 / 2$ | 41 | 48 |
| 29 | 61/2 | 91/2 | 13 | 17 | $211 / 2$ | 27 | 32 | 38 | 45 |
| 30 | 6 | 9 | 12 | 16 | $20^{1 / 2}$ | 25 | 30 | $351 / 2$ | 42 |
| 31 |  | $81 / 2$ |  | 15 | 19 | 23 | 28 | 33 | 39 |
| 32 | $51 / 4$ | 8 | 101/2 | 14 | 18 | 21 | 26 | 31 | 36 |
| 33 | 5 | $71 / 2$ | 10 | 13 | 17 | 20 | 25 | 291/2 | 34 |
| 34 | $43 / 4$ | 7 | $91 / 2$ | 12 | 16 | 19 | 23 | 28 | 32 |
| 35 |  | $61 / 2$ | 9 | 11 | 15 | 18 | 22 | 26 | 30 |
| 36 | $41 / 4$ | 6 | $81 / 2$ | 11 | 14 | 17 | 21 | 25 | 29 |
| 37 | 4 | ${ }_{5}^{6}$ | 8 | 10 | 13 | 16 | 20 | 23 | 27 |
| 38 39 | $33 / 4$ $31 / 2$ | $5_{5}^{1 / 2}$ | $71 / 2$ | 10 | $121 / 2$ | 15 | 19 | ${ }_{21}^{22}$ | ${ }_{25}^{26}$ |
| 40 | $31 / 2$ | 5 | $61 / 2$ | $9^{91 / 2}$ | 11 | 14.1 | 17 | 20 | 25 $231 / 2$ |

## Shearing Strength of Rivets.

The following table gives the shearing strengths, in pounds, of rivets of various diameters for various strengths of material, when these are subjected to ordinary single shear, as in common single-riveted and doubleriveted joints.

## Shearing Strengths, in Pounds, of Rivets exposed to Single Shear.

| Diam eter, in inches. | i |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 38000 | 39000 | 40000 | 41000 | 42000 | 43000 | 44000 | 45000 |
| 1/4 | 1 S65 | 1914 | 1963 | 2012 | 2062 | 2111 | 2160 | 2 209 |
| $\frac{5}{16}$ | 2915 | 2992 | 3068 | 3144 | 3221 | 3298 | 3375 | 3452 |
| $3 / 8$ | 4197 | 4308 | 4418 | 4528 | 4639 | 4750 | 4860 | 4971 |
| $\frac{7}{16}$ | 5713 | 5863 | 6013 | 6163 | 6314 | 6464 | 6615 | 6765 |
| 1/2 | 7461 | 7657 | 7854 | 8050 | 8247 | 8443 | 8639 | 8836 |
| $\frac{9}{16}$ | 9443 | 9691 | 9940 | 10188 | 10437 | 10685 | 10934 | 11182 |
| 5/8 | 11658 | 11965 | 12272 | 12578 | 12885 | 13192 | 13499 | 13806 |
| $\frac{1}{17} 1$ | 14107 | 14478 | 14849 | 15220 | 15591 | 15962 | 16334 | 16705 |
| $3 / 4$ | 16788 | 17230 | 17672 | 18113 | 18555 | 18997 | 19439 | 19881 |
| $\frac{13}{16}$ | 19703 | 20221 | 20739 | 21257 | 2176 | 22294 | 22813 | 23331 |
| 7/8 | 22850 | 23452 | 24053 | 24654 | 25255 | 258.56 | 26458 | 27059 |
| $\frac{1}{15}$ | 26231 | 26921 | 27612 | 28302 | 28992 | 29682 | 30373 | 31063 |
| 1 | 29845 | 30630 | 31416 | 32201 | 32987 | 33772 | 34558 | 35343 |
| $1_{116}^{16}$ | 33692 | 34579 | 35466 | 36352 | 37239 | 38125 | 39012 | 39898 |
| 11/8 | 37773 | 38767 | 39 ヶ61 | 40755 | 47749 | 42743 | 43737 | 44731 |
| $1 \frac{3}{16}$ | 42086 | 43194 | 44302 | 45409 | 46516 | 47624 | 48732 | 49839 |
| 11/4 | 46633 | 47860 | 49058 | 50315 | 51542 | 52769 | 53996 | 55223 |
| $1{ }_{1}{ }^{5}$ | 51413 | 52766 | 54119 | 5.5472 | 55825 | 58178 | 59531 | 60884 |
| $13 / 8$ | 56426 | 57911 | 59396 | 66881 | 62366 | 63850 | 65335 | 66820 |
| $1 \frac{7}{16}$ | 61672 | 63295 | 64918 | 66541 | 68164 | 69787 | 71410 | 73033 |
| 11/2 | 67152 | 68919 | 70686 | 72453 | 74220 | 75987 | 77754 | 79521 |

Working Pressures for Cylindrical Shells of Steam Boilers, Lap Joints, Double=riveted.
(Barr.)
Factor of Safety, 5.

| Diameter. | Thickness. | Iron shell, iron rivets. | Steel shell, iron rivets. | Steel shell, steel rivets. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Lb. | Lb. | Lb. |
| 36 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{array}{r} 91 \\ 112 \end{array}$ | $\begin{aligned} & 111 \\ & 128 \end{aligned}$ | $\begin{aligned} & 111 \\ & 137 \end{aligned}$ |
| 38 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{array}{r} 86 \\ 106 \end{array}$ | $\begin{aligned} & 105 \\ & 121 \end{aligned}$ | $\begin{aligned} & 105 \\ & 129 \end{aligned}$ |
| 40 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{array}{r} 82 \\ 101 \end{array}$ | 100 115 | $\begin{aligned} & 100 \\ & 123 \end{aligned}$ |
| 42 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{aligned} & 78 \\ & 96 \end{aligned}$ | $\begin{array}{r} 95 \\ 110 \end{array}$ | $\begin{array}{r} 95 \\ 117 \end{array}$ |
| 44 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{aligned} & 74 \\ & 91 \end{aligned}$ | 91 105 | $\begin{array}{r} 91 \\ 112 \end{array}$ |
| 46 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{aligned} & 71 \\ & 87 \end{aligned}$ | $\begin{array}{r} 87 \\ 100 \end{array}$ | $\begin{array}{r} 87 \\ 107 \end{array}$ |
| 48 | $\left\{\frac{5}{16} 3 / 8\right.$ | $\begin{aligned} & 84 \\ & 99 \end{aligned}$ | $\begin{array}{r} 96 \\ 107 \end{array}$ | $\begin{aligned} & 102 \\ & 121 \end{aligned}$ |
| 50 | $\left\{\begin{array}{l} \frac{5}{16} \\ 3 / 8 \end{array}\right.$ | $\begin{aligned} & 81 \\ & 95 \end{aligned}$ | 92 103 | $\begin{array}{r} 98 \\ 116 \end{array}$ |
| 52 | $\left\{{\frac{5}{1^{5}}}_{3}^{3}\right.$ | $\begin{aligned} & 77 \\ & 92 \end{aligned}$ | $\begin{aligned} & 89 \\ & 99 \end{aligned}$ | $\begin{array}{r} 95 \\ 112 \end{array}$ |
| 54 | $\left\{\frac{5}{16} 3 / 8\right.$ | $\begin{aligned} & 75 \\ & 88 \end{aligned}$ | $\begin{aligned} & 85 \\ & 96 \end{aligned}$ | $\begin{array}{r} 91 \\ 108 \end{array}$ |
| 56 | $\left\{{\frac{5}{\mathrm{IV}_{6}^{6}}}_{3 / 8}\right.$ | $\begin{aligned} & 72 \\ & 85 \end{aligned}$ | $\begin{aligned} & 82 \\ & 92 \end{aligned}$ | $\begin{array}{r} 88 \\ 104 \end{array}$ |
| 58 | $\left\{\begin{array}{l} \frac{5}{16} \\ 3 / 8 \end{array}\right.$ | $\begin{aligned} & 69 \\ & 82 \end{aligned}$ | $\begin{aligned} & 79 \\ & 89 \end{aligned}$ | $\begin{array}{r} 85 \\ 100 \end{array}$ |
| 60 | $\left\{\frac{5}{1 \mathrm{IE}} 3 / 8\right.$ | $\begin{aligned} & 67 \\ & 79 \end{aligned}$ | $\begin{aligned} & 77 \\ & 85 \end{aligned}$ | $\begin{aligned} & 82 \\ & 97 \end{aligned}$ |
| 62 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{16} \end{array}\right.$ | $\begin{aligned} & 77 \\ & 88 \end{aligned}$ | $\begin{aligned} & 83 \\ & 92 \end{aligned}$ | $\begin{array}{r} 94 \\ 108 \end{array}$ |
| 64 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{16} \end{array}\right.$ | $\begin{aligned} & 74 \\ & 86 \end{aligned}$ | $\begin{aligned} & 81 \\ & 89 \end{aligned}$ | $\begin{array}{r} 91 \\ 105 \end{array}$ |
| 66 | $\left\{\begin{array}{c} 3 / 8 \\ \frac{7}{16} \end{array}\right.$ | $\begin{aligned} & 72 \\ & 83 \end{aligned}$ | $\begin{aligned} & 78 \\ & 87 \end{aligned}$ | $\begin{array}{r} 88 \\ 102 \end{array}$ |
| 68 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{18} \end{array}\right.$ | $\begin{aligned} & 70 \\ & 81 \end{aligned}$ | $\begin{aligned} & 76 \\ & 80 \end{aligned}$ | $\begin{aligned} & 86 \\ & 99 \end{aligned}$ |
| 70 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{16} \end{array}\right.$ | $\begin{aligned} & 68 \\ & 78 \end{aligned}$ | $\begin{aligned} & 74 \\ & 82 \end{aligned}$ | $\begin{aligned} & 83 \\ & 96 \end{aligned}$ |
| 72 | $\left\{\begin{array}{l} 3 / 8 \\ 1 / 2^{\frac{7}{16}} \end{array}\right.$ | $\begin{aligned} & 66 \\ & 76 \\ & 85 \end{aligned}$ | $\begin{aligned} & 72 \\ & 79 \\ & 89 \end{aligned}$ | $\begin{array}{r} 81 \\ 93 \\ 104 \end{array}$ |

## Working Pressures for Cylindrical Shells of Steam Boilers, Lap Joints, Tripleariveted.

(Barr.)
Factor of Safety, 5.

| Diameter. | Thickness. | Iron shell, iron rivets. | Steel shell, iron rivets. | Steel shell, steel rivets. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Lb. | Lb. | Lb. |
| 36 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{8}{16} \end{array}\right.$ | $\begin{aligned} & 100 \\ & 124 \end{aligned}$ | $\begin{aligned} & 121 \\ & 139 \end{aligned}$ | $\begin{aligned} & 123 \\ & 151 \end{aligned}$ |
| 38 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | 95 117 | $\begin{aligned} & 115 \\ & 132 \end{aligned}$ | 116 |
| 40 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{8}{16} \end{array}\right.$ | $\begin{array}{r} 90 \\ 112 \end{array}$ | $\begin{aligned} & 109 \\ & 125 \end{aligned}$ | $\begin{aligned} & 110 \\ & 136 \end{aligned}$ |
| 42 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{array}{r} 86 \\ 106 \end{array}$ | $\begin{aligned} & 104 \\ & 119 \end{aligned}$ | $\begin{aligned} & 105 \\ & 130 \end{aligned}$ |
| 44 | $\left\{\begin{array}{l} 1 / 4 \\ \frac{5}{16} \end{array}\right.$ | $\begin{array}{r} 83 \\ 101 \end{array}$ | $\begin{array}{r} 99 \\ 114 \end{array}$ | 100 124 |
| 46 | $\left\{\begin{array}{l} 1 / 4 \\ \$ 8 \end{array}\right.$ | $\begin{aligned} & 79 \\ & 97 \end{aligned}$ | $\begin{array}{r} 95 \\ 109 \end{array}$ | 96 119 |
| 48 | $\left\{\frac{5}{16} 8 / 8\right.$ | $\begin{array}{r} 93 \\ 110 \end{array}$ | 104 | 114 |
| 50 | $\left\{\begin{array}{l} \frac{5}{18} \\ 3 / 8 \end{array}\right.$ | $\begin{array}{r} 89 \\ 106 \end{array}$ | $\begin{aligned} & 100 \\ & 113 \end{aligned}$ | $\begin{aligned} & 109 \\ & 129 \end{aligned}$ |
| 52 | $\left\{\frac{5}{16} 9 / 8\right.$ | 86 102 | $\begin{array}{r} 96 \\ 109 \end{array}$ | 105 124 |
| 54 | $\left\{\frac{5}{16} 3 / 8\right.$ | $\begin{aligned} & 83 \\ & 98 \end{aligned}$ | 93 105 | 101 |
| 56 | $\left\{\frac{5}{16} 9 / 8\right.$ | $\begin{aligned} & 80 \\ & 95 \end{aligned}$ | $\begin{array}{r} 89 \\ 101 \end{array}$ | 97 116 |
| 58 | $\left\{\frac{5}{16} 3 / 8\right.$ | $\begin{aligned} & 77 \\ & 91 \end{aligned}$ | $\begin{aligned} & 86 \\ & 98 \end{aligned}$ | $\begin{array}{r} 94 \\ 112 \end{array}$ |
| 60 | $\left\{\frac{5}{16} 3 / 8\right.$ | $\begin{aligned} & 74 \\ & 88 \end{aligned}$ | $\begin{aligned} & 83 \\ & 95 \end{aligned}$ | $\begin{array}{r} 91 \\ 108 \end{array}$ |
| 62 | $\left\{\begin{array}{l} 3 / 8 \\ { }^{7} \\ \hline \end{array}\right.$ | $\begin{aligned} & 85 \\ & 98 \end{aligned}$ | $\begin{array}{r} 92 \\ 103 \end{array}$ | $\begin{aligned} & 104 \\ & 120 \end{aligned}$ |
| 64 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{10} \end{array}\right.$ | $\begin{aligned} & 83 \\ & 95 \end{aligned}$ | $\begin{array}{r} 89 \\ 100 \end{array}$ | $\begin{aligned} & 101 \\ & 117 \end{aligned}$ |
| 66 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{18} \end{array}\right.$ | $\begin{aligned} & 80 \\ & 93 \end{aligned}$ | $\begin{aligned} & 86 \\ & 97 \end{aligned}$ | $\begin{array}{r} 98 \\ 113 \end{array}$ |
| 68 | $\left\{\begin{array}{l} 3 / 8 \\ \frac{7}{18} \end{array}\right.$ | $\begin{aligned} & 78 \\ & 90 \end{aligned}$ | $\begin{aligned} & 84 \\ & 94 \end{aligned}$ | $\begin{array}{r} 95 \\ 110 \end{array}$ |
| 70 | $\left\{\begin{array}{l} 3 / 8 \\ { }^{7} \\ \hline \end{array}\right.$ | $\begin{aligned} & 76 \\ & 87 \end{aligned}$ | $\begin{aligned} & 81 \\ & 91 \end{aligned}$ | $\begin{array}{r} 92 \\ 107 \end{array}$ |
| 72 | $\left\{\begin{array}{l} 9 / 8 \\ 1 / 8^{\frac{7}{18}} \end{array}\right.$ | $\begin{aligned} & 74 \\ & 85 \\ & 97 \end{aligned}$ | $\begin{aligned} & 79 \\ & 89 \\ & 98 \end{aligned}$ | $\begin{array}{r} 90 \\ 104 \\ 117 \end{array}$ |

## Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.

(Barr.)
Factor of Safety, 5.

| Diameter. | Thickness. | Iron shell, iron rivets. | Steel shell, iron rivets. | Steel shell, steel rivets. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Lb. | Lb. | Lb. |
| 36 | $\left\{\begin{array}{l} 1 / 4{ }^{5} \\ 3 / 8^{16} \end{array}\right.$ | $\begin{aligned} & 108 \\ & 1: 35 \\ & 161 \end{aligned}$ | $\begin{aligned} & 134 \\ & 165 \\ & 197 \end{aligned}$ | $\begin{aligned} & 134 \\ & 165 \\ & 197 \end{aligned}$ |
| 38 | $\left\{\begin{array}{l} 1 / 4 \\ 3 / 8^{\frac{5}{16}} \end{array}\right.$ | $\begin{aligned} & 102 \\ & 128 \\ & 152 \end{aligned}$ | $\begin{aligned} & 127 \\ & 156 \\ & 187 \end{aligned}$ | $\begin{aligned} & 127 \\ & 156 \\ & 187 \end{aligned}$ |
| 40 | $\left\{\begin{array}{l} 1 / 4 \\ 3 / 8^{\frac{5}{16}} \end{array}\right.$ | $\begin{array}{r} 97 \\ 121 \\ 145 \end{array}$ | 120 148 178 | $\begin{aligned} & 120 \\ & 148 \\ & 178 \end{aligned}$ |
| 42 | $\left\{\begin{array}{l} 1 / 4 \\ 3 /{ }^{5} \end{array}\right.$ | 93 116 138 | 115 <br> 141 <br> 169 <br> 10 | $\begin{aligned} & 115 \\ & 141 \\ & 169 \end{aligned}$ |
| 44 | $\left\{\begin{array}{l} 1 / 4 \\ 3 / 8^{\frac{5}{16}} \end{array}\right.$ | 89 110 132 | 109 135 161 | $\begin{aligned} & 109 \\ & 135 \\ & 161 \end{aligned}$ |
| 46 | $\left\{\begin{array}{l} 1 / 4 \frac{5}{\frac{5}{16}} \\ 3 / 8 \end{array}\right.$ | $\begin{array}{r} 85 \\ 106 \\ 126 \end{array}$ | 105 129 154 | $\begin{aligned} & 105 \\ & 129 \\ & 154 \end{aligned}$ |
| 48 | $\left\{\begin{array}{l} \frac{5}{16} 638 \\ \frac{7}{16} \end{array}\right.$ | 101 121 141 | $\begin{aligned} & 124 \\ & 148 \\ & 172 \end{aligned}$ | $\begin{aligned} & 124 \\ & 148 \\ & 172 \end{aligned}$ |
| 50 | $\left\{\begin{array}{l} { }^{5} 6 \\ \frac{7}{16} 3 / 8 \end{array}\right.$ | 97 116 135 | $\begin{aligned} & 119 \\ & 142 \\ & 165 \end{aligned}$ | $\begin{aligned} & 119 \\ & 142 \\ & 165 \end{aligned}$ |
| 52 | $\left\{\begin{array}{l} \frac{5}{16} 6_{3} \\ \frac{7}{16} \end{array}\right.$ | $\begin{array}{r} 93 \\ 111 \\ 130 \end{array}$ | $\begin{aligned} & 114 \\ & 337 \\ & 159 \end{aligned}$ | $\begin{aligned} & 114 \\ & 137 \\ & 159 \end{aligned}$ |
| 54 | $\left\{\begin{array}{l} \frac{5}{16} \\ { }_{\frac{7}{7}}{ }^{76} \end{array}\right.$ | 90 107 122 | $\begin{array}{r} 110 \\ -132 \\ 153 \end{array}$ | $\begin{aligned} & 110 \\ & 132 \\ & 153 \end{aligned}$ |
| 56 | $\left\{\begin{array}{l} \frac{5}{16}{ }_{3} \\ \frac{7}{16} \end{array}\right.$ | $\begin{array}{r} 87 \\ 103 \\ 121 \end{array}$ | $\begin{aligned} & 106 \\ & 127 \\ & 148 \end{aligned}$ | $\begin{aligned} & 106 \\ & 127 \\ & 148 \end{aligned}$ |
| 58 | $\left\{\begin{array}{l} \frac{5}{16} 3 / 8 \\ \frac{7}{16} \end{array}\right.$ | 84 100 117 | $\begin{aligned} & 102 \\ & 123 \\ & 142 \end{aligned}$ | $\begin{aligned} & 102 \\ & 123 \\ & 142 \end{aligned}$ |
| 60 | $\left\{\begin{array}{l} 3 / 8 \\ 1 / 2^{16} \end{array}\right.$ | 97 111 128 | $\begin{aligned} & 118 \\ & 138 \\ & 157 \end{aligned}$ | $\begin{aligned} & 118 \\ & 138 \\ & 157 \end{aligned}$ |
| 62 | $\left\{\begin{array}{l} 3 / 8 \\ 1 /{ }^{7} \end{array}\right.$ | 93 109 124 | $\begin{aligned} & 115 \\ & 133 \\ & 152 \end{aligned}$ | $\begin{aligned} & 115 \\ & 133 \\ & 152 \end{aligned}$ |

Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.
(Barr.)
Factor of Safety, 5.

| Diameter. | Thickness. | Iron shell, irou rivets. | Steel shell, iron rivets. | Steel shell, steel rivets. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Ll. | Lb. | Lb. |
| 64 | $\left\{\begin{array}{c} 3 / 8 \\ 71 / \frac{7}{26} \\ \frac{10}{16} \end{array}\right.$ | $\begin{gathered} 99 \\ 106 \\ 120 \\ 135 \end{gathered}$ | $\begin{aligned} & 111 \\ & 129 \\ & 147 \end{aligned}$ |  |
|  |  |  |  | $\begin{aligned} & 111 \\ & 129 \\ & 147 \end{aligned}$ |
|  |  |  |  |  |
| 66 | $\left\{\begin{array}{l} 3 / 87 \\ 11 \frac{1}{1 / 26} \\ \frac{9}{16} \end{array}\right.$ | 88 | 108 | $\begin{aligned} & 108 \\ & 125 \\ & 143 \end{aligned}$ |
|  |  | $\begin{aligned} & 102 \\ & 117 \end{aligned}$ | $\begin{aligned} & 125 \\ & 143 \end{aligned}$ |  |
|  |  |  |  |  |
| 68 | $\left\{\begin{array}{c} 3 / 8 \\ \frac{7}{16} \\ 1 / 2{ }_{9}^{16} \\ 16 \end{array}\right.$ | $\begin{gathered} 85 \\ 99 \\ 113 \end{gathered}$ | $\begin{aligned} & 105 \\ & 121 \\ & 121 \end{aligned}$ | $\begin{aligned} & 105 \\ & 131 \\ & 138 \\ & 1 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
| 70 |  | 83 | 102 | 118 |
|  |  | 110123 | 118154151 |  |
|  |  |  |  | $\begin{aligned} & 134 \\ & 151 \end{aligned}$ |
| 72 | $\left\{\begin{array}{l} 3 / 8 \\ 1 / 26 \\ 1 / 29 \\ 5 / 8 \end{array}\right.$ | 80 | 99 | 99115 |
|  |  | 94107120 | 1151311 |  |
|  |  |  |  | 131 147 189 |
|  |  |  | 163 | 163 |
| 75 | $\left\{\begin{array}{l} \frac{7}{15} 1 / 2 \\ \frac{9}{16}{ }^{\frac{1}{5} 5 / 8} \end{array}\right.$ | $\begin{array}{r} 90 \\ 102 \\ 115 \end{array}$ | $\begin{aligned} & 110 \\ & 125 \\ & 141 \end{aligned}$ | $\begin{aligned} & 110 \\ & 125 \\ & 141 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
| 78 |  | 87 | 106 | 106121135151 |
|  |  | 111 | ${ }_{135}^{121}$ |  |
|  |  | 123 | 151 |  |
| 81 | $\left\{\begin{array}{l} \frac{7}{16} 1 / 2 \\ 1{ }^{16} / 2 \\ 9_{5} 5 / 8 \end{array}\right.$ | $\begin{array}{r} 83 \\ 95 \\ 107 \\ 119 \end{array}$ | $\begin{aligned} & 109 \\ & 116 \\ & 130 \\ & 145 \end{aligned}$ | $\begin{aligned} & 102 \\ & 116 \\ & 130 \\ & 145 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
| 84 |  | $\begin{aligned} & 92 \\ & 103 \\ & 115 \\ & 126 \\ & 137 \end{aligned}$ | $\begin{aligned} & 112 \\ & 126 \\ & 110 \\ & 158 \\ & 157 \end{aligned}$ | $\begin{aligned} & 112 \\ & 126 \\ & 110 \\ & 158 \\ & 167 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| 87 |  | $\begin{gathered} 89 \\ 99 \\ 911 \\ 1121 \\ 132 \end{gathered}$ | $\begin{aligned} & 108 \\ & 121 \\ & 135 \\ & 118 \\ & 162 \end{aligned}$ | $\begin{aligned} & 108 \\ & 111 \\ & 135 \\ & 148 \\ & 162 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| 90 | $\left\{\begin{array}{l} 1 / 2{ }_{2}{ }^{\frac{16}{16}} \\ 5 / 8^{12} \\ 3 / 4 \\ \hline{ }^{16} \end{array}\right.$ | $\begin{gathered} 86 \\ 96 \\ 107 \\ 117 \\ 128 \end{gathered}$ | $\begin{aligned} & 105 \\ & 117 \\ & 131 \\ & 143 \\ & 156 \end{aligned}$ | $\begin{aligned} & 105 \\ & 117 \\ & 113 \\ & 143 \\ & 156 \end{aligned}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.
(Barr.)
Factor of Safety, 5.

| Diameter. | Thickness. | Iron shell, iron rivets. | Steel shell, iron rivets. | Steel shell, steel rivets. |
| :---: | :---: | :---: | :---: | :---: |
| Inch. | Inch. | Lb. | Lb. | Lb. |
| 93 | $\left\{\begin{array}{l} \frac{9}{16} 5 / 8 \\ \frac{11}{16} \end{array}\right.$ | $\begin{array}{r} 93 \\ 103 \\ 114 \end{array}$ | $\begin{aligned} & 114 \\ & 126 \\ & 139 \end{aligned}$ | $\begin{aligned} & 114 \\ & 126 \\ & 139 \end{aligned}$ |
| 96 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4{ }^{\frac{1}{2} \frac{1}{6}} \end{array}\right.$ | $\begin{aligned} & 100 \\ & 110 \\ & 120 \end{aligned}$ | $\begin{aligned} & 123 \\ & 134 \\ & 146 \end{aligned}$ | $\begin{aligned} & 123 \\ & 134 \\ & 146 \end{aligned}$ |
| 99 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4{ }^{\frac{1}{1} 1} 1 \end{array}\right.$ | $\begin{array}{r} 97 \\ 107 \\ 116 \end{array}$ | $\begin{aligned} & 119 \\ & 130 \\ & 142 \end{aligned}$ | $\begin{aligned} & 119 \\ & 130 . \\ & 142 \end{aligned}$ |
| 102 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4{ }^{\frac{11}{16}} \end{array}\right.$ | $\begin{array}{r} 94 \\ 104 \\ 113 \end{array}$ | $\begin{aligned} & 115 \\ & 127 \\ & 138 \end{aligned}$ | $\begin{aligned} & 115 \\ & 127 \\ & 138 \end{aligned}$ |
| 105 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4{ }^{\frac{11}{16}} \end{array}\right.$ | $\begin{array}{r} 92 \\ 101 \\ 110 \end{array}$ | $\begin{aligned} & 112 \\ & 123 \\ & 134 \end{aligned}$ | $\begin{aligned} & 112 \\ & 123 \\ & 134 \end{aligned}$ |
| 108 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4 \end{array}\right.$ | $\begin{array}{r} 89 \\ 98 \\ 107 \end{array}$ | $\begin{aligned} & 109 \\ & 120 \\ & 130 \end{aligned}$ | $\begin{aligned} & 109 \\ & 120 \\ & 130 \end{aligned}$ |
| 111 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4 \end{array}\right.$ | $\begin{array}{r} 87 \\ 95 \\ 104 \end{array}$ | $\begin{aligned} & 106 \\ & 116 \\ & 127 \end{aligned}$ | $\begin{aligned} & 106 \\ & 116 \\ & 127 \end{aligned}$ |
| 114 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4 \frac{11}{16} \end{array}\right.$ | $\begin{array}{r} 84 \\ 93 \\ 101 \end{array}$ | $\begin{aligned} & 103 \\ & 113 \\ & 123 \end{aligned}$ | $\begin{aligned} & 103 \\ & 113 \\ & 123 \end{aligned}$ |
| 117 | $\left\{\begin{array}{l} 5 / 8^{\frac{1}{16}} \\ 3 / 4{ }^{16} \end{array}\right.$ | $\begin{aligned} & 82 \\ & 90 \\ & 99 \end{aligned}$ | $\begin{aligned} & 100 \\ & 110 \\ & 120 \end{aligned}$ | $\begin{aligned} & 100 \\ & 110 \\ & 120 \end{aligned}$ |
| 120 | $\left\{\begin{array}{l} 5 / 8 \\ 3 / 4 \end{array}\right.$ | $\begin{aligned} & 80 \\ & 88 \\ & 96 \end{aligned}$ | $\begin{array}{r} 98 \\ 108 \\ 117 \end{array}$ | $\begin{array}{r} 98 \\ 108 \\ 117 \end{array}$ |

The formulas for boilers given by Reuleaux in the "Constructor" are as follows:

Let
$D=$ diameter, in metres:
$a=$ pressure, in atmospheres :
$\delta=$ thickness of shell, in millimetres ;
$S=$ fibre stress on material, in kilogrammes, per square millimetre.

$$
\delta=1.54 a D+2.6
$$

The stress in the longitudinal seams will be

$$
S=\frac{a}{200} \cdot \frac{D}{\delta}
$$

$D$ being taken in millimetres.
From these we have

| $a=$ | 4 atmospheres. |  | 7 atmospheres. |  | 10 atmospheres. |  | 13 atmospheres. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { metres. }}{D}$ | $\begin{gathered} \delta \\ \mathrm{mm} \end{gathered}$ | $\begin{gathered} S \\ \text { kg. per } \\ \text { sq. mm. } \end{gathered}$ | $\begin{gathered} \delta \\ \mathbf{m m} . \end{gathered}$ | $\left\lvert\, \begin{gathered} S \\ \text { kg. per } \\ \text { sq. mm. } \end{gathered}\right.$ | $\begin{gathered} \delta \\ \mathrm{mm} . \end{gathered}$ | $\begin{aligned} & S \\ & \text { kg. per } \\ & \text { sq. mm. } \end{aligned}$ | $\begin{gathered} \delta \\ \mathrm{mm} . \end{gathered}$ | $\begin{gathered} S \\ \text { kg. per } \\ \text { sq. mm. } \end{gathered}$ |
| . 6 | 6.3 | 1.90 | 9.1 | 2.31 | 11.8 | 2.54 | 14.6 | 2.67 |
| . 8 | 7.5 | 2.13 | 11.2 | 2.50 | 14.9 | 2.70 | 18.6 | 2.80 |
| 1.0 | 8.8 | 2.27 | 13.4 | 2.61 | 18.0 | 2.78 | 22.6 | 2.87 |
| 1.5 | 11.8 | 2.54 | 18.8 | 2.79 | 25.7 | 2.92 | 32.6 | 2.99 |
| 2.0 | 14.9 | 2.68 | 24.2 | 2.89 | 33.4 | 2.99 | 42.6 | 3.06 |

The stresses in the circumferential seams are one-half those in the longitudinal seams; hence, single riveting may be used when the longitudinal seams are double-riveted.

For spherical ends, or boiler heads which are formed in the shape of a segment of a sphere, if $R$ is the radius of curvature, we have for the thickness, $\delta_{1}$.

$$
\delta_{1}=R_{1} \frac{a}{200 S}
$$

The above formulas, when adapted for English measures, are as follows:
Let
$D=$ diameter, in inches;
$a=$ pressure, in atmospheres ;
$p=$ pressure, in pounds, per square inch ;
$\delta=$ thickness of shell, in inches;
$S=$ fibre stress, in pounds, per square inch.
We then have

$$
\begin{aligned}
& \delta=0.0015 a D+0.1, \\
& S=\frac{p}{2} \cdot \frac{D}{2} \\
& \delta_{1}=\frac{R_{1}}{2} \cdot \frac{p}{S} .
\end{aligned}
$$

For the usual diameters we have the following results :

| $a=$ | $4=60$ pounds. |  | $7=105$ pounds. |  | $10=150$ pounds |  | $13=175$ pounds |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | $\delta$ | $S$ | $\delta$ | $S$ | $\delta$ | $S$ | $\delta$ | $S$ |
| 24 | . 24 | 3000 | . 35 | 3600 | . 48 | 3750 | . 58 | 3700 |
| 36 | . 31 | 3500 | . 48 | 3900 | . 64 | 4000 | . 80 | 4000 |
| 42 | .35 | 3600 | . 54 | 4000 | . 73 | 4300 | . 92 | 4000 |
| 72 | . 43 | 5000 | . 85 | 4400 | 1.18 | 4600 | 1.50 | 4200 |

The general character of the material entering into boiler work is well described in the specifications of the American Boiler Manufacturers' Association, given herewith :

## Uniform American Boiler Specifications

Adopted by the American Boiler Manufacturers' Association.
(See Proceedings 1889, pages 49, 50, 66-81, 84-88.)
(See Proceedings 1897, pages 42-54, 61-77, 207-208.)
(See Proceedings 1898, pages 49-100.)

## MATERIALS.

1. Cast-iron. - Should be of soft, gray texture and high degree of ductility. To be used only for hand-hole plates, crabs, yokes, etc., and manheads. It is a dangerous metal to be used in mud drums, legs, necks, headers, man-hole rings, or any part of a boiler subject to tensile strains; its use is prohibited for such parts.
2. Steel.-Homogeneous steel made by the open-hearth or crucible processes, and having the following qualities, is to be used in all boilers.

Tensile Strength, Elongation, Chemical Tests.-Shell plates not exposed to the direct heat of the fire or gases of combustion, as in the external shells of internally-fired boilers, may have from 65,000 to 70.000 pounds tensile strength; elongation not less than 24 per cent. in 8 inches; phosphorus not over 0.035 per cent. ; sulphur not over 0.035 per cent.

Shell plates in any way exposed to the direct heat of the fire or the gases of combustion, as in the external shells or heads of externally-fired boilers, or plates on which any flanging is to be done, to have from 60,000 to 65,000 pounds tensile strength; elongation not less than 27 per cent. in 8 inches; phosphorus not over 0.03 per cent.; sulphur not over 0.025 per cent.

Fire-box plates, or such as are exposed to the direct heat of the fire or flanged on the greater portion of their periphery, to have 55,000 to 62,000 pounds tensile strength; elongation, 30 per cent. in 8 inches; phosphorus not over 0.03 per cent. ; sulphur not over 0.025 cent.

For all plates the elastic limit to be at least one-half the ultimate strength; percentage of manganese and carbon left to the judgment of the steel maker.

Test Section to be 8 inches long, planed or milled edges: its cross-sectional area not less than one-half of 1 square inch, nor width less than the thickness of the plate.

Bending Test.-Steel up to $1 / 2$-inch thickness must stand bending double and being hammered down on itself; above that thickness it must bend round a mandrel of diameter of $11 / 2$ times the thickness of plate down to 180 degrees. All without showing signs of distress.

Bending test piece to be in length not less than 16 times the thickness of plate, and rough, shear edges milled or filed off. Such pieces to be cut both lengthwise and crosswise of the plate.

All tests to be made at the steel mill. Three pulling tests and three bending tests to be made from each heat. If one fails the manufacturer may furnish and test a fourth piece, but if two fail the entire heat to be rejected.

Certified copies of tests to be furnished each member of A.B. M. A. from heats from which his plates are made.
3. Rivets to be of good charcoal iron or a soft, mild steel, having the same physical and chemical properties as the fire-box plates, and must test hot and cold by driving down on an anvil with the head in a die, by nicking and bending, by bending back on themselves cold, without developing cracks or flaws.
4. Boiler Tubes of charcoal iron or mild steel specially made for the purpose, and lap-welded or drawn. They should be round, straight, free from scales, blisters, and mechanical defects, each tested to 500 pounds internal hydrostatic pressure.

This fact and manufacturer's name to be plainly stencilled on each tube.
Standard Thicknesses by Birmingham wire gauge to be
No. 13 for tubes 1 inch, $11 / 4$ inches, $11 / 2$ inches, and $13 / 4$ inches diameter ;
No. 12 for tubes 2 inches, $21 / 4$ inches, and $21 / 2$ inches diameter;
No. 11 for tubes $23 / 4$ inches, 3 inches, $31 / 4$ inches, and $31 / 2$ inches diameter ;
No. 10 for tubes $33 / 4$ inches and 4 inches diameter ;
No. 9 for tubes $4 \frac{1}{2}$ inches and 5 inches diameter.
Tests.-A section cut from 1 tube taken at random from a lot of 150 or less must stand hammering down cold vertically without cracking or splitting when down solid.

Length of test pieces:
$3 / 4$ inch for tubes from 1 inch to $13 / 4$ inches diameter;
1 inch for tubes from 2 inches to $21 / 2$ inches diameter;
$11 / 4$ inches for tubes from $23 / 4$ inches to $31 / 4$ inches diameter;
$11 /$ inches for tubes from $31 / 2$ inches to 4 inches diameter;
$13 / 4$ inches for tubes from $41 / 2$ inches to 5 inches diameter.

All tubes must stand expanding flange over on tube plate and bending without flaw, crack, or opening of the weld.
5. Stay Bolts to be made of iron or mild steel specially manufactured for the purpose, and must show on

Test Section 8 inches long, net:
For Iron, tensile strength not less than 46,000 pounds ; clastic limit not less than 26,000 pounds; elongation not less than 22 per cent. for bolts of less than one (1) square inch area, nor less than 20 per cent. for bolts one (1) square inch and more in net area.

For Steel, tensile strength not less than 55,000 pounds; elastic limit not less than 33.000 pounds ; elongation not less than 25 per cent. for bolts of less than one (1) square inch area, nor less than 22 per cent. for bolts one (1) square inch and more in net area.

Tests.-A bar taken from a lot of 1000 pounds or less at random, threaderl with a sharp die " $V$ " thread with rounded edges, must bend cold $180^{\circ}$ around a bar of same diameter without showing any crack or flaws.

Another piece, similarly chosen and threaded, to be screwed into wellfitting nuts formed of pieces of the plates to be stayed, and riveted over so as to form an exact counterpart of the bolt in the finished structure; to be pulled in testing machine and breaking stress noted; if it fails by pulling apart the tensile stress per square inch of net section is its measure of strength; if it fails by shearing the shear stress per square inch of mean section in shear is this measure. The mean section in shear is the product of half the thickness of the plate by the circumference at half height of thread.
6. Braces and Stays.-Material to be fully equal to stay-bolt stock, and tensile strength to be determined by testing a bar not less than ten (10) inches long from each lot of 1000 pounds or less.

## II. WORKMANSHIP AND DIMENSIONS.

7. Flanging, Bending, and Forming to be done at a heat suited to the material, but no bending must be done or blow struck on any plate
which no longer shows red by daylight at the working point and at least 4 inches beyond it.
8. Rolling must be done cold by gradual and regular increments from the straight plate to the exact circle required, and the whole circumference, including the lap, rolled to a true circle.
9. Bumped Head uniformly dished to a segment of a sphere should have a thickness equal to that of a cylindrical shell of solid plate of same material, whose diameter is equal to the radius of curvature of the dished head.

Riret-holes, man-holes, etc., to be allowed for by proportionate increase in the thickness.
10. Riveting.-Holes made perfectly true and fair by clean-cutting punches or drills. Sharp edges and burrs removed by slight countersinking and burr-reaming before and after sheets are joined together.

Under side of original rivet head must be flat, square, and smooth. For rivets $5 / 8$ inch to $\frac{13}{16}$ inch diameter allow $11 / 2$ diameters for length of stock to form the head, and less for larger rivets. Allow 5 per cent. more stock for driven head for button set or snap rivets. Use light regulation riveting hammers until rivet is well upset in the hole; after that, snap and heavy mauls. For machine riveting more stock to be left for driven head to make it equal to original head, as fixed by experiment.

Total pressure on the die about 80 tons for $11 / 8$-inch to $11 / 4$-inch rivets; 65 tons for 1 -inch rivets; 57 tons for $\frac{1}{1} \frac{5}{6}$-inch rivets; 35 tons for $3 / 4$-inch rivets.

Make heads of rivets equal in strength to shanks by making head at periphery of shank of a height equal to one-third the diameter of shank and giving a slight fillet at this point.

Approximately, make rivet-holes double thickness of thinnest plate; pitch, 3 times rivet-hole; pitch lines of staggered rows $1 / 2$ pitch apart; lap for single riveting equal to pitch, for double riveting $11 / 3$ pitch, and $1 / 2$ pitch more for each additional row of rivets; exact dimensions determined by making resistance to shear of aggregate rivet section at least 10 per cent. greater than tensile strength of net or standing metal.
11. Rivet=holes punched with good, sharp punches and well-fitting dies in A. B. M. A. steel up to $5 / 8$-inch thickness; in thicker plates punch and ream with a fluted reamer or drill the holes.
12. Drift Pin to be used only with light hammers to pull plates into place and round up the hole, but never to enlarge or gouge holes with heavy hammers.
13. Calking to be done by hand or pneumatic hammer and Conery or round-nosed tool. Avoid excessive calking ; the fit must be made in the laying of the plates. The square-nosed tool may be used for finishing, with great care to avoid nicking lower plate. Calking edges must be prepared by bevel planing, shearing, or chipping.
14. Flat Surfaces.-State the thickness of the plate, $t$, in sixteenths of an inch; the pitch, $p$, in inches, and use a constant:
$C=112$ for plates $\frac{7}{16}$ inch and under, with screw stays with riveted ends.
$C=120$ for plates over $\frac{7}{16}$ inch, with screw stays with riveted ends.
$C=140$ for all plates when, in addition to screw threads in the plates, a nut is used inside and outside of each plate.
When salt, acids, or alkali are contained in the feed water, this latter construction is imperative.

Rule.-Multiply this constant, $C$, by the square of the thickness of the plate expressed in sixteenths of an inch, and divide by the square of the pitch expressed in inches; the quotient is the safe working pressure, $P$.

$$
P=\frac{C X t^{2}}{p^{2}}
$$

15. Tube-holes, either punched $1 / 8$ inch less than required diameter and reamed to full size, or drilled, then slightly countersunk on both sides, should be $\frac{1}{64}$ inch to $\frac{1}{16}$ inch larger than diameter of tube, according to
size of tube; if copper ferrules are used, the hole to be a neat fit for the ferrule. Tube sheet to be annealed after punching and before reaming.
16. Tube Setting.-Ends of tubes to be annealed (in the tube mill) before setting. The tube to extend through the sheet $\frac{1}{16}$ inch for erery inch of diameter. Expand until tight in hole and no more. On end exposed to direct flame, flange the tube partly over on sheet, finishing by beading tool, which must not come in contact with the plate; expand slightly after beading.

Copper ferrules. No. 18 to 14 wire gauge, should be used in fire-tube boilers on ends subject to direct heat.
17. Riveted and Lap=welded Flues, as prescribed in Rule II., Sections $8,9,10,11,12$, and 13 of Regulations of Board of Supervising Inspectors of Steam Vessels, approved February, 1895.
18. Corrugated Furnace Flues, as prescribed in Sections 14 and 15 of the same Rule.
19. Stay Bolts to be carefully threaded with sharp, clean dies, "V" thread, with rounded edges; threading machine equipped with a lead screw; holes tapped with tap extending through both sheets to neat, smooth fit, so that bolts can be put in by hand-lever or wrench with a steady pull; $\frac{1}{5}$ diameter to project for riveting over; with hollow stay bolts use slender drift pin in the bore while riveting, and drive it home to expand the bolt after riveting.

Height of nuts used on screw stays to be at least 50 per cent. of diameter of stay. Largest permissible pitch for screw stays is 10 inches.
20. Braces and Stays shall be subjected to careful inspection and tests, as per Sections 6 and 2. Welding to be aroided where possible, but good, clean welds to be allowed a value of 80 per cent. of the solid bar. Rirets by which braces are attached, when the pull on them is other than at right aingles, to be allowed only half the stress permitted for rivets in the seams.
21. Man=holes should be flanged in, out of the solid plate, on a radius not less than 3 times the metal thickness to a straight flange; when the plate is $1 / 2$ inch or less in thickness a reinforce ring to be shrunk around it. Cast-iron reinforce flanges never to be used.
22. Domes to be aroided when possible; cylindrical portion to be flanged down to the shell of the boiler, and this shell flanged up inside the dome or reinforced by a collar flanged at the joint, the flanges doubleriveted.
23. Drums should be put on with collar flanges of A. B. M. A. steel not less than $3 / 8$ inch thick, double-riveted to shell and drum and single-riveted to the neck or leg, or the flanges may be formed on these legs.
24. Saddles or Nozzles to be of flanged steel plate or of soft cast-steel, never of cast-iron.

## III. FACTORS OF SAFETY.

25. Rivet Seams, when proportioned as prescribed in Section 10 with materials tested as per Sections 2 and 3 , shall have $41 / 2$ as factor of safety ; when not so tested, but inspection of materials indicates good quality, a factor of safety of 5 is to be taken, and at most 55,000 pounds tensile strength assumed for the steel plate and 40,000 pounds shear strength for the.rivets, all figured on the actual net standing metal.
26. Flat Surfaces, proportioned as per Section 14, have, in the constants there given, a factor of safety of 5 or a little orer.
27. Bumped Heads, proportioned as per Section 9, to be subject to a factor of safety of 5 .
28. Stay Bolts, proportioned and tested as per Sections 19 and 5, to hare a factor of safety of 5 applied to the lowest stress found.
29. Braces and Stays, when tested as per Sections 6 and 2, to be allowed a factor of safety of 5 ; when not so tested, but careful inspection
shows good stock, they may be used up to 6500 pounds actual direct pull for wrought-iron, and 8000 pounds for mild steel, all per square inch of actual net metal.

## IV. HYDROSTATIC PRESSURE.

30. The hydrostatic test to be made on completed boilers built strictly to these specifications is never to exceed working pressure by more than one-third of itself, and this excess limited to 100 pounds per square inch. The water used for testing to have a temperature of at least $125^{\circ} \mathrm{F}$.

## V. HANGING OR SUPPORTING THE BOILER.

31. The boiler should be supported on points where there is the greatest excess of stress. Excessive local stresses from weight of boiler and contents must be avoided, and distortion of parts prevented, by using long lugs or brackets; and only half the stress which they may carry in the seams to be allowed on rivets.

The supports must permit rebuilding the furnace without disturbing the proper suspension of the boiler. The boiler should be slightly inclined, so that a little less water shows at the gauge cocks than at the opposite end.

## SAFETY VALVES. <br> Weighted Valves.

Let
$A=$ area of valve, in square inches;
$F=$ distance from centre of valve to fulcrum, in inches;
$L=$ length of lever, in inches, from fulcrum to weight;
$W=$ weight of ball, in pounds;
$P=$ blowing-off pressure, in pounds, per square inch.
Then we have

$$
P=\frac{W L}{A F}, \quad L=\frac{A F P}{W}, \quad W=\frac{A F P}{L} .
$$

If lever is not balanced, its effect, and the effect of valve and spindle, must be added to pressure and be taken into account in calculating $L$ and W. If $w=$ weight of lever and $v=$ weight of valve and spindle, in pounds; $c=$ distance of centre of gravity of lever from fulcrum; then, if $p=$ pressure per square inch on valve due to weight of lever and valve alone,

$$
p=\frac{w \times c}{A F}+\frac{v}{A} .
$$

In most cases effect of valve and spindle may be neglected. With long, heavy levers $p$ will require adding to $P$ to ascertain the blowing-off pressure.

Various rules are given for the area of safety valves, these usually being based on a certain number of square inches of valve area per square foot of grate surface, although sometimes the area of the valve is based on the heating surface of the boiler.

The United States Treasury Department, through its Board of Supervising Inspectors of Steam Vessels, has established the following rules:
"The areas of all safety valves on boilers contracted for or the construction of which commenced on or after July 1, 1904, shall be determined in accordance with the following formula:

$$
a=.0274 \times \frac{W}{P}
$$

Where $a=$ area of safety valve, in square inches, per square foot of grate surface;
$W=$ pounds of water evaporated per square foot of grate surface per hour;
$P=$ absolute pressure per square inch $=$ working pressure +15
"Any spring-loaded safety valve constructed so as to give an increased lift by the operation of steam, after being raised from its seat, or any spring-loaded safety valve constructed in any other manner so as to give an effective area equal to that of the aforementioned spring-loaded safety valve, may be used in lieu of the common lever-weighted valve on all boilers on steam vessels, and each spring-loaded valve shall be supplied with a lever that will raise the valve from its seat a distance not less than that equal to one-eighth of the diameter of the valve opening. But in no case shall any spring-loaded safety valve be used in lieu of the leverweighted safety valve without first having been approved by the Board of Supervising Inspectors.
"The valves shall be so arranged that each boiler shall have at least one separate safety valve, unless the arrangement is such as to preclude the possibility of shutting off the communication of any boiler with the safety: valve or valves employed. This arrangement shall also apply to lock-up safety valves when they are employed.
"The use of two safety valves may be allowed on any boiler, provided the combined area of such valves is equal to that required by rule for one such valve.
"The seats of all safety valves shall have an angle of inclination of 45 degrees to the centre line of their axes."

The Boiler Inspection Department of the city of Philadelphia gives the following formula for boilers with natural draft:

$$
A=\frac{22.5 G}{P+8.62}
$$

in which $A$ is the area of combined safety valves, in inches; $G$ is area of grate, in square feet; $P$ is pressure of steam, in pounds, per square inch to be carried in the boiler above the atmosphere.

The following table gives the results of the formula for 1 square foot of grate, as applied to boilers used at different pressures.

Pressure per Square Inch.

| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 150 | 175 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.21 | 0.79 | 0.58 | 0.46 | 0.38 | 0.33 | 0.29 | 0.25 | 0.23 | 0.21 | 0.19 | 0.17 | 0.142 | 0.123 |

Valve area in square inches, corresponding to 1 square foot of grate.
When forced draft is used, the area of grate for purposes of safety valve computation is to be estimated at 1 square foot for each 16 pounds of fuel burned per hour.

Hutton's rule is

$$
A=\frac{4 G}{\sqrt{P}}
$$

$A=$ area of valve, in square inches;
$G=$ area of grate, in square feet;
$P=$ pressure, in pounds, per square inch.

The area of a safety ralve may be determined from the evaporative power of the boiler.

Let
$A=$ area of safety valve, in square inches ;
$P=$ steam pressure, in pounds, per square inch;
$E=$ evaporative capacity of the boiler, in pounds of water, per hour.
Then we have

$$
A=\frac{E}{40 \sqrt{P}}
$$

## Minimum Size of Safety Valve Areas Allowed by Board of Trade.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 1.250 | 52 | .559 | 89 | . 360 | 126 | . 265 | 163 | . 210 |
| 16 | 1.209 | 53 | . 551 | 90 | . 357 | 127 | . 264 | 161 | . 209 |
| 17 | 1.171 | 54 | . 543 | 91 | . 353 | 128 | . 262 | 165 | . 208 |
| 18 | 1.136 | 55 | . 535 | 92 | . 350 | 129 | . 260 | 166 | . 207 |
| 19 | 1.102 | 56 | . 528 | 93 | . 347 | 130 | . 258 | 167 | . 206 |
| 20 | 1.071 | 57 | . 520 | 94 | . 344 | 131 | . 256 | 168 | . 204 |
| 21 | 1.041 | 58 | . 513 | 95 | . 340 | 132 | . 255 | 169 | . 203 |
| 22 | 1.013 | 59 | . 506 | 96 | . 837 | 133 | . 253 | 170 | . 202 |
| 23 | . 986 | 60 | . 500 | 97 | . 334 | 134 | . 251 | 171 | . 201 |
| 24 | . 961 | 61 | . 493 | 98 | . 331 | 135 | . 250 | 172 | . 200 |
| 25 | . 937 | 62 | . 487 | 99 | . 328 | 136 | . 248 | 173 | . 199 |
| 26 | . 914 | 63 | . 480 | 100 | . 3.6 | 137 | . 246 | 174 | . 198 |
| 27 | . 892 | 64 | . 474 | 101 | . 323 | 138 | . 245 | 175 | . 197 |
| 28 | . 872 | 65 | . 468 | 102 | . 320 | 139 | . 243 | 176 | . 196 |
| 29 | . 852 | 66 | . 462 | 103 | . 317 | 140 | . 241 | 177 | .195 |
| 30 | . 833 | 67 | . 457 | 104 | . 315 | 141 | . 240 | 178 | . 194 |
| 31 | . 815 | 68 | . 451 | $10 \overline{5}$ | . 312 | 142 | . 238 | 179 | . 193 |
| 32 | . 797 | 69 | . 446 | 106 | . 309 | 143 | . 237 | 180 | . 192 |
| 33 | . 781 | 70 | . 441 | 107 | . 307 | 144 | . 235 | 181 | . 191 |
| 34 | . 765 | 71 | . 436 | 108 | . 304 | 145 | . 234 | 182 | . 190 |
| 35 | . 750 | 72 | . 431 | 109 | . 302 | 146 | . 232 | 183 | . 189 |
| 36 | . 785 | 73 | . 426 | 110 | . 300 | 147 | . 231 | 184 | . 188 |
| 37 | . 721 | 74 | . 421 | 111 | . 297 | 148 | . 230 | 185 | . 187 |
| 38 | . 707 | 75 | . 416 | 112 | . 295 | 149 | . 228 | 186 | . 186 |
| 39 | . 694 | 76 | . 412 | 113 | . 292 | 150 | . 227 | 187 | .185 |
| 40 | . 681 | 77 | . 407 | 114 | . 290 | 151 | . 225 | 188 | . 181 |
| 41 | . 669 | 78 | . 403 | 115 | . 288 | 152 | . 224 | 189 | . 183 |
| 42 | . 6.57 | 79 | . 398 | 116 | . 286 | 153 | .223 | 190 | . 182 |
| 43 | . 646 | 80 | . 394 | 117 | . 284 | $15 \pm$ | . 221 | 191 | . 181 |
| 44 | . 635 | 81 | . 390 | 118 | . 281 | 159 | . 220 | 192 | . 181 |
| 45 | . 625 | 82 | . 386 | 119 | . 279 | 156 | . 219 | 193 | . 180 |
| 46 | . 614 | 83 | . 382 | 120 | . 277 | 157 | . 218 | 191 | .179 |
| 47 | . 604 | 84 | . 378 | 121 | . 275 | 158 | . 216 | 195 | .178 |
| 48 | . 595 | 85 | . 37. | 122 | . 273 | 159 | . 215 | 196 | . 17 |
| 49 | . 585 | 86 | . 371 | 123 | . 271 | 160 | . 211 | 197 | . 176 |
| 50 | . 576 | 87 | . 367 | 124 | . 269 | 161 | . 213 | 198 | . 176 |
| 51 | . 568 | 88 | . 364 | 125 | . 267 | 162 | . 211 | 200 | . 174 |

## Lloyd's Rules for Safety Valves.

Two safety valves to be fitted to each boiler and loaded to the working pressure in the presence of the surveyor. In the case of boilers of greater working pressure than 60 pounds per square inch, the safety valves may be loaded to 5 pounds above the working pressure. If common valves are used, their combined areas to be at least half a square inch to each square foot of grate surface. If improved valves are used, they are to be tested under steam in the presence of the surveyor; the accumulation in no case to excced 10 per cent. of the working pressure.

An approved safety valve also to be fitted to the superheater.
In winch boilers one safety valve will be allowed, provided its area be not less than half a square inch per square foot of grate surface.

Each valve to be arranged so that no extra load can be added when steam is up, and to be fitted with easing gear, which must lift the valve itself. All safety valve spindles to extend through the covers and to be fitted with sockets and cross handles, allowing them to be lifted and turned round in their seats, and their efficiency tested at any time.

The German rule for safety valves, as given in the "Ingenieurs Taschenbuch Hütte," is

$$
f=15 \sqrt{\frac{v}{p}}
$$

in which $f$ is the area of valve, in square millimetres, per square metre of heating surface in the boiler; $p$ is the maximum boiler pressure, in atmospheres; and $v$ is the volume of steam, in litres, per kilogramme at the pressure, $p$, as given in the steam tables.

We have from this formula

## Areas of Safety Valves,

in Square Millimetres, per Square Metre of Heating Surface.


## INCRUSTATION IN BOILERS.

Whenever possible, pure water should be used for feeding boilers. When the water is impure the result is the formation of scale, producing diminished efficiency and possible injury to the boiler from overheating.

The principal impurities in water are calcium carbonate and calcium sulphate, together with suspended earth and organic matter. Water of condensation from steam engines contains more or less oil from the lubricant used in the steam, and this may produce a very injurious coating in the boiler.

By far the best plan is to remove or neutralize the impurities of the water before it is fed into the boiler, since the scale, when it is once formed, is difficult to remove.

No general rules can be given for the purification of water, since different waters require different treatment. The best plan is to have the water analyzed and adopt the course indicated by the nature of the salts found in it.

The following extracts from a paper by Messrs. Hunt and Clapp, in the "Transactions of the American Institute of Mining Engineers for 1888," is an authoritative statement of the subject:
"By far the most common commercial analysis of water is made to determine its fitness for making steam. Water containing more than 5 parts per 100,000 of free sulphuric or nitric acid is liable to cause serious corrosion, not only of the metal of the boiler itself, but of the pipes, cylinders, pistons, and valves with which the steam comes in contact. Sulphuric acid is the only one of these acids liable to be present in the water
from natural sources, it being often produced in the water of the coal and iron districts by the oxidation of iron pyrites to sulphate of iron, which, being soluble, is lixiviated from the earth strata and carried into the stream, the presence of organic matter taken up by the water in its aftercourse reducing the iron and lining the bottom of the stream with red oxide of iron, leaving a considerable proportion of the sulphuric acid free in the water. This is a troublesome feature with the water necessarily used in many of the iron districts of this country. The sulphuric acid may come from other natural chemical reactions than the one described above. Muriatic and nitric acids, as well as sulphuric acid, may be conveyed into water through the refuse of various kinds of manufacturing establishments being discharged into it.
"The large total residue in water used for making steam causes the interior linings of the boilers to become coated, clogs their action, and often produces a dangerous hard scale, which prevents the cooling action of the water from protecting the metal against burning.
"Lime and magnesia bicarbonates in water lose their excess of carbonic acid on boiling, and often, especially when the water contains sulphuric acid, produce, with the other solid residues constantly being formed by the evaporation, a very hard and insoluble scale.
"A larger amount than 100 parts per 100,000 of total solid residue will ordinarily cause troublesome scale, and should condemn the water for use in steam boilers, unless a better supply cannot be obtained.
"The following is a tabulated form of the causes of trouble with water for steam purposes, and the proposed remedies, given by Professor L. M. Norton in his lecture on 'Industrial Chemistry.'

## " Causes of Incrustation.

"1. Deposition of suspended matter.
"2. Deposition of dissolved salts from concentration.
" 3 . Deposition of carbonates of lime and magnesia by boiling off carbonic acid, which holds them in solution.
"4. Deposition of sulphates of lime, because sulphate of lime is but slightly soluble in cold water, less soluble in hot water, insoluble above $140^{\circ} \mathrm{C}$. ( $284^{\circ} \mathrm{F}$.).
" 5 . Deposition of magnesia, because magnesium salts decompose at high temperature.
"6. Deposition of lime soap, iron soap, etc., formed by saponification of grease.

## 6 Various Means of Preventing Incrustation.

"1. Filtration.
" 2 . Blowing off.
"3. Use of internal collecting apparatus or devices for directing the circulation.
"4. Heating feed water.
" 5 . Chemical or other treatment of water in boiler.
" 6 . Introduction of zinc into boiler.
"7. Chemical treatment of water outside of boiler."

## Prevention and Cure of Boiler Troubles Due to Water.

Incrustation.

| Sediment, mud, clay, , Filtration. |  |
| :---: | :---: |
|  | Blowing off. |
| Readily soluble salts | Blowing off. |
| Bicarbonate of magne- | Heating feed and precipitating. Caustic soda. |
| sia, lime, | Lime. |
|  | Magnesia. |
|  | Carbonate of soda. |
| Sulphate of li | Barium chloride. |



The following table shows the solubility of various scale-making materials in steam boilers, showing in the last column the temperatures at which they become insoluble. Although sulphate of lime does not become entirely insoluble until a temperature of nearly $400^{\circ} \mathrm{F}$., corresponding to a pressure of about 225 pounds, a large proportion of it is precipitated at about $310^{\circ} \mathrm{F}$., or about 65 pounds pressure. It will be seen, therefore, that most of these impurities may be precipitated by using a feed-water heater of sufficient size to permit the precipitated impurities to settle and be blown off before passing into the boiler.

Solubilities of Scale=making Minerals.

| Substance. | Soluble in parts of pure water at $30^{\circ} \mathrm{F}$. | Soluble in parts of carbonic acid, water cold. | Soluble in parts of pure water at $212^{\circ} \mathrm{F}$. | $\begin{aligned} & \text { Insoluble } \\ & \text { in water } \\ & \text { at } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Carbonate of lime. | 62500 | 150 | 62500 | $302^{\circ} \mathrm{F}$. |
| Sulphate of lime | 500 |  | 460 | $392^{\circ} \mathrm{F}$. |
| Carbonate of magnesia. | 5500 | 150 | 9600 |  |
| Phosphate of lime...... |  | 1333 |  | $212^{\circ} \mathrm{F}$. |
| Oxide of iron. |  |  |  | $212^{\circ} \mathrm{F}$. |
| Silica |  | Undetermined. |  | $212^{\circ} \mathrm{F}$. |

Analyses of Boiler Scale.
(Chandler.)

| Sulphate of lime. | Magnesia. | Silica. | Peroxide of iron. | Water. | Carbonate of lime. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 74.07 | 9.19 | . 65 | . 08 | 1.14 | 14.78 |
| 71.37 |  | 1.76 |  |  |  |
| 62.86 | 18.95 | 2.60 | . 92 | 1.28 | 12.62 |
| 53.05 |  | 4.79 |  |  |  |
| 46.83 |  | 5.32 |  |  |  |
| 30.80 | 31.17 | 7.75 | 1.08 | 2.44 | 26.93 |
| 4.95 | 2.61 | 2.07 | 1.03 | . 63 | 86.25 |
| . 88 | 2.84 | . 65 | . 36 | . 15 | 93.19 |
| 4.81 |  | 2.92 |  |  |  |
| 30.07 |  | 8.24 |  |  |  |

## Analysis, in Parts per 100,000 , of Water Giving Bad Results in Steam Boilers.

(A. E. Hunt.)

| Waters. |  |  |  |  |  | $\begin{aligned} & \text { g. } \\ & \text { g } \\ & \text { gig } \\ & \hline \end{aligned}$ | ¢ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coal-mine water | 110 | 25 | 119.0 | 39.00 | 890 | 590.0 | 780 | 30 | 640 |  |
| Salt well | 151 | 38 | 1.9 | 48.00 | 360 | 990.0 | 38 | 21 | 30 | 13.1 |
| Spring | 75 | 89 | 95.0 | 120.00 | 310 | 21.0 | 75 | 10 | 80 | 36.0 |
| Monongahela River | 130 | 21 | 161.0 | 33.00 | 210 | 38.0 | 70 |  |  |  |
| Monongahela River | 80 | 70 | 94.0 | 81.00 | 219 | 210.0 | 90 |  |  |  |
| Monongahela River | 32 | 82 | 61.0 | 1.04 | 28 | 1.9 | 38 |  |  |  |
| Allegheny River, near oil-works. . | 30 | 50 | 41.0 | 68.00 | 890 | 42.0 | 23 |  |  |  |

## THE STEAM ENGINE.

## Horse=power.

The measure of the power of steam engines is the Horse=power, originally selected by Watt as a basis on which to sell his engines. Tests of a number of powerful draught horses showed an effort corresponding to 22,000 foot-pounds per minute, and Watt increased this by 50 per cent., in order to assure his customers that he was furnishing ample power; this being the origin of the well-known value of 33,000 foot-pounds per minute, or 550 foot-pounds per second, as a commercial horse-power.

In the metric system the cheval-vapeur is taken as 75 kilogrammetres per second, this corresponding to 32,548 foot-pounds per minute, the metric horse-power thus being 0.9863 times the British horse-power. The latter will always be understood, unless otherwise stated.

In France it has been suggested to use a new unit, equal to 100 kilogrammetres per second, this being called the Poncelet, and being practically equivalent to the kilowatt.

Since 1 B. T. U. $=778$ foot-pounds, it requires the expenditure of 42.416 B. T. U. per minute to produce 1 horse-power, if all the heat is converted into mechanical energy.

In the steam engine the power is usually developed by the pressure of the expansive force of the steam upon the piston in the cylinder. Since the speed of the piston is not uniform, varying from zero to a maximum twice for every revolution of the crank, it is necessary to take the total distance travelled in one minute as the average or mean speed.

The pressure of the steam upon the piston is also variable, and hence it is necessary to determine the mean effective pressure, in order that the horse-power may be computed. For a completed engine the mean effective pressure may be determined by use of the indicator, but for a proposed design it is computed in accordance with the laws of the expansion of steam.

According to the law of Mariotte, considering steam as a gas, the product of the pressure and the volume is constant, or

$$
p v=C .
$$

When the steam in a cylinder be permitted to follow a portion of the stroke at full boiler pressure, and is then cut off and allowed to expand for the remainder of the stroke, the expansion curve may be considered as an equilateral hyperbola, the pressure at any point being inversely as the volume. When the volume has been doubled, the pressure will fall to one-half the initial; when it becomes three times what it was at the point of cut-off, the pressure will be one-third the initial pressure, and so on.
In this way it is quite possible to construct a theoretical diagram for any degree of cut-off or any expansion ratio, and measure the mean pressure throughout the stroke.

Instead of performing this work. however, the mean effective pressure may be computed immediately by means of a table of hyperbolic logarithims.

Let $\quad P=$ initial pressure, absolute,-i.e., above vacuum;
$p=$ mean effective pressure, incluling vacuum;
$r=$ expansion ratio $=$ total stroke divided by length up to point of cut-off.
Then

$$
p=P \cdot \frac{1+\text { hyp. } \log . r}{r}
$$

Hence, by taking the hyperbolic logarithm of the expansion ratio and adding 1 , and dividing by the expansion ratio, we have a number which, multiplied by the initial pressure, will give the mean effective pressure.

Thus, if the steam is admitted at 100 pounds gauge pressure, or 11.7 pounds absolute pressure, and cut off at $1 / 4$ the stroke, we have

$$
r=4,
$$

and

$$
p=114.7 \frac{1+\text { hyp. } \log .4}{4}
$$

The hyperbolic logarithm of 4 is 1.3863 , and hence we have

$$
\begin{aligned}
p & =114.7 \frac{1+1.3863}{4} \\
& =114.7 \times 0.5966 \\
& =68.43 \text { pounds absolute } \\
& =53.73 \text { pounds above atmosphere. }
\end{aligned}
$$

There is always a loss of pressure in practice due to cylinder consideration, etc., and in practice about 70 per cent. of the theoretical mean effective pressure is attained.

In the above computations care must be taken always to use the absolute pressure,-i.e., the pressure above vacuum,-the resulting mean effective pressure being that existing above vacuum. For a high-pressure engine, therefore, atmospheric pressure must be deducted.

| N. | Logarithm. | N. | Logarithm. | N. | Logarithm. | N. | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | . 0099503 | 1.65 | . 5007752 | 2.29 | . 8285518 | 2.93 | 1.0750024 |
| 1.02 | . 0198026 | 1.66 | . 5068175 | 2.30 | .8329091 | 2.94 | 1.0784095 |
| 1.03 . | . 0295588 | 1.67 | . 5128236 | 2.31 | . 8372475 | 2.95 | 1.0818051 |
| 1.04 | . 0392207 | 1.68 | . 5187937 | 2.32 | . 8415671 | 2.96 | 1.0851892 |
| 1.05 | . 0487902 | 1.69 | . 5247285 | 2.33 | . 8458682 | 2.97 | 1.0885619 |
| 1.06 | . 0582689 | 1.70 | . 5306282 | 2.34 | .8501509 | 2.98 | 1.0919233 |
| 1.07 | . 0676586 | 1.71 | . 5364933 | 2.35 | . 8544153 | 2.99 | 1.0952733 |
| 1.08 | . 0769610 | 1.72 | . 5423242 | 2.36 | . 8586616 | 3.00 | 1.0986123 |
| 1.09 | . 0861777 | 1.73 | . 5481214 | 2.37 | . 8628899 | 3.01 | 1.1019400 |
| 1.10 | . 0953102 | 1.74 | . 5538851 | 2.38 | .8671004 | 3.02 | 1.1052568 |
| 1.11 | . 1043600 | 1.75 | . 5596157 | 2.39 | . 8712933 | 3.03 | 1.1085626 |
| 1.12 | . 1133287 | 1.76 | . 5653138 | 2.40 | . 8754687 | 3.04 | 1.1118575 |
| 1.13 | . 1222176 | 1.77 | . 5709795 | 2.41 | . 8796267 | 3.05 | 1.1151415 |
| 1.14 | . 1310283 | 1.78 | . 5766133 | 2.42 | . 8837675 | 3.06 | 1.1184149 |
| 1.15 | . 1397619 | 1.79 | . 5822156 | 2.43 | . 8878912 | 3.07 | 1.1216775 |
| 1.16 | . 1484200 | 1.80 | . 5877866 | 2.44 | . 8919980 | 3.08 | 1.1249295 |
| 1.17 | . 1570037 | 1.81 | . 5933268 | 2.45 | . 8960880 | 3.09 | 1.1281710 |
| 1.18 | . 1655144 | 1.82 | . 5988365 | 2.46 | . 9001613 | 3.10 | 1.1314021 |
| 1.19 | . 1739533 | 1.83 | . 6043159 | 2.47 | . 9042181 | 3.11 | 1.1346227 |
| 1.20 | . 1823215 | 1.84 | . 6097655 | 2.48 | . 9082585 | 3.12 | 1.1378330 |
| 1.21 | . 1906203 | 1.85 | . 6151856 | 2.49 | . 9122826 | 3.13 | 1.1410330 |
| 1.22 | . 1988508 | 1.86 | . 6205764 | 2.50 | . 9162907 | 3.14 | 1.1442227 |
| 1.23 | . 2070141 | 1.87 | . 6259384 | 2.51 | . 9202827 | 3.15 | 1.1474024 |
| 1.24 | . 2151113 | 1.88 | . 6312717 | 2.52 | . 9242589 | 3.16 | 1.1505720 |
| 1.25 | . 2231435 | 1.89 | . 6365768 | 2.53 | . 9282193 | 3.17 | 1.1537315 |
| 1.26 | . 2311117 | 1.90 | . 6418538 | 2.54 | . 9321640 | 3.18 | 1.1568811 |
| 1.27 | . 2390169 | 1.91 | . 6471032 | 2.55 | . 9360933 | 3.19 | 1.1600209 |
| 1.28 | . 2468600 | 1.92 | . 6523251 | 2.56 | . 9400072 | 3.20 | 1.1631508 |
| 1.29 | . 2546422 | 1.93 | . 6575200 | 2.57 | . 9439058 | 3.21 | 1.1662709 |
| 1.30 | . 2623642 | 1.94 | . 6626879 | 2.58 | . 9477893 | 3.22 | 1.1693813 |
| 1.31 | . 2700271 | 1.95 | . 6678293 | 2.59 | . 9516578 | 3.23 | 1.1724821 |
| 1.32 | . 2776317 | 1.96 | . 6729444 | 2.60 | . 9555114 | 3.24 | 1.1755733 |
| 1.33 | . 2851789 | 1.97 | . 6780335 | 2.61 | . 9593502 | 3.25 | 1.1786549 |
| 1.34 | . 2926696 | 1.98 | . 6830968 | 2.62 | . 9631743 | 3.26 | 1.1817271 |
| 1.35 | . 3001045 | 1.99 | . 6881346 | 2.63 | . 9669838 | 3.27 | 1.1847899 |
| 1.36 | . 3074846 | 2.00 | . 6931472 | 2.64 | . 9707789 | 3.28 | 1.1878434 |
| 1.37 | . 3148107 | 2.01 | . 6981347 | 2.65 | . 9745596 | 3.29 | 1.1908875 |
| 1.38 | . 3220834 | 2.02 | . 7030974 | 2.66 | . 9783261 | 3.30 | 1.1939224 |
| 1.39 | .3293037 | 2.03 | . 7080357 | 2.67 | . 9820784 | 3.31 | 1.1969481 |
| 1.40 | . 3364722 | 2.04 | . 7129497 | 2.68 | . 9858167 | 3.32 | 1.1999647 |
| 1.41 | . 3435897 | 2.05 | . 7178397 | 2.69 | . 9895411 | 3.33 | 1.2029722 |
| 1.42 | . 3506568 | 2.06 | . 7227059 | 2.70 | . 9932517 | 3.34 | 1.2059707 |
| 1.43 | . 3576744 | 2.07 | . 7275485 | 2.71 | . 9969486 | 3.35 | 1.2089603 |
| 1.44 | . 3646431 | 2.08 | . 7323678 | 2.72 | 1.0006318 | 3.36 | 1.2119409 |
| 1.45 | . 3715635 | 2.09 | .7371640 | 2.73 | 1.0043015 | 3.37 | 1.2149127 |
| 1.46 | . 3784364 | 2.10 | . 7419373 | 2.74 | 1.0079579 | 3.38 | 1.2178757 |
| 1.47 | . 3852624 | 2.11 | . 7466879 | 2.75 | 1.0116008 | 3.39 | 1.2208299 |
| 1.48 | . 3920420 | 2.12 | . 7514160 | 2.76 | 1.0152306 | 3.40 | 1.2237754 |
| 1.49 | . 3987761 | 2.13 | . 7561219 | 2.77 | 1.0188473 | 3.41 | 1.2267122 |
| 1.50 | . 4054651 | 2.14 | . 7608058 | 2.78 | 1.0224509 | 3.42 | 1.2296405 |
| 1.51 | . 4121096 | 2.15 | . 7654678 | 2.79 | 1.0260415 | 3.43 | 1.2325605 |
| 1.52 | .4187103 | 2.16 | . 7701082 | 2.80 | 1.0296194 | 3.44 | 1.2354714 |
| 1.53 | . 4252677 | 2.17 | .7747271 | 2.81 | 1.0331844 | 3.45 . | 1.2383742 |
| 1.54 | . 4317824 | 2.18 | . 7793248 | 2.82 | 1.0367368 | 3.46 | 1.2412685 |
| 1.55 | .4382549 | 2.19 | . 7839015 | 2.83 | 1.0402766 | 3.47 | 1.2441545 |
| 1.56 | . 4446858 | 2.20 | . 7884573 | 2.84 | 1.0438040 | 3.48 | 1.2470322 |
| 1.57 | . 4510756 | 2.21 | . 7929925 | 2.85 | 1.0473189 | 3.49 | 1.2499017 |
| 1.58 | . 4574248 | 2.22 | . 7975071 | 2.86 | 1.0508216 | 3.50 | 1.2527629 |
| 1.59 | . 4637340 | 2.23 | . 8020015 | 2.87 | 1.0543120 | 3.51 | 1.2556160 |
| 1.60 | . 4700036 | 2.24 | . 8064758 | 2.88 | 1.0577902 | 3.52 | 1.2584609 |
| 1.61 | . 4762341 | 2.25 | . 8109302 | 2.89 | 1.0612564 | 3.53 | 1.2612978 |
| 1.62 | . 4824261 | 2.26 | . 8153648 | 2.90 | 1.0647107 | 3.54 | 1.2641266 |
| 1.63 | . 4885800 | 2.27 | . 8197798 | 2.91 | 1.0681530 | 3.55 | 1.2669475 |
| 1.64 | . 4946962 | 2.28 | . 8241754 | 2.92 | 1.0715836 | 3.56 | 1.2697605 |

Hyperbolic Logarithms.

| N. | Logarithm. | N. | Logarithm. | N. | Logarithm. | N. | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.57 | 1.2725655 | 4.21 | 1.4374626 | 4.85 | 1.5789787 | 5.49 | 1.7029282 |
| 3.58 | 1.2753627 | 4.22 | 1.4398351 | 4.86 | 1.5810384 | 5.50 | 1.7047481 |
| 3.59 | 1.2781521 | 4.23 | 1.4422020 | 4.87 | 1.5830939 | 5.51 | 1.7065646 |
| 3.60 | 1.2809338 | 4.24 | 1.4445632 | 4.88 | 1.5851452 | 5.52 | 1.7083778 |
| 3.61 | 1.2837077 | 4.25 | 1.4469189 | 4.89 | 1.5871923 | 5.53 | 1.7101878 |
| 3.62 | 1.2864740 | 4.26 | 1.4492691 | 4.90 | 1.5892352 | 5.54 | 1.7119944 |
| 3.63 | 1.2892326 | 4.27 | 1.4516138 | 4.91 | 1.5912739 | 5.55 | 1.7137979 |
| 3.64 | 1.2919836 | 4.28 | 1.4539530 | 4.92 | 1.5933085 | 5.56 | 1.7155981 |
| 3.65 | 1.2947271 | 4.29 | 1.4562867 | 4.93 | 1.5953389 | 5.57 | 1.7173950 |
| 3.66 | 1.2974631 | 4.30 | 1.4586149 | 4.94 | 1.5973653 | 5.58 | 1.7191887 |
| 3.67 | 1.3001916 | 4.31 | 1.4609379 | 4.95 | 1.5993875 | 5.59 | 1.7209792 |
| 3.68 | 1.3029127 | 4.32 | 1.4632553 | 4.96 | 1.6014057 | 5.60 | 1.7227666 |
| 3.69 | 1.3056264 | 4.33 | 1.4655675 | 4.97 | 1.6034198 | 5.61 | 1.7245507 |
| 3.70 | 1.3083328 | 4.34 | 1.4678743 | 4.98 | 1.6054298 | 5.62 | 1.7263316 |
| 3.71 | 1.3110318 | 4.35 | 1.4701758 | 4.99 | 1.6074358 | 5.63 | 1.7281094 |
| 3.72 | 1.3137236 | 4.36 | 1.4724720 | 5.00 | 1.6094379 | 5.64 | 1.7298840 |
| 3.73 | 1.3164082 | 4.37 | 1.4747630 | 5.01 | 1.6114359 | 5.65 | 1.7316555 |
| 3.74 | 1.3190856 | 4.38 | 1.4770487 | 5.02 | 1.6134300 | 5.66 | 1.7334238 |
| 3.75 | 1.3217558 | 4.39 | 1.4793292 | 5.03 | 1.6154200 | 5.67 | 1.7351891 |
| 3.76 | 1.3244189 | 4.40 | 1.4816045 | 5.04 | 1.6174060 | 5.68 | 1.7369512 |
| 3.77 | 1.3270749 | 4.41 | 1.4838746 | 5.05 | 1.6193882 | 5.69 | 1.7387102 |
| 3.78 | 1.3297240 | 4.42 | 1.4861396 | 5.06 | 1.6213664 | 5.70 | 1.7404661 |
| 3.79 | 1.3323660 | 4.43 | 1.4883995 | 5.07 | 1.6233408 | 5.71 | 1.7422189 |
| 3.80 | 1.3350010 | 4.44 | 1.4906543 | 5.08 | 1.6253112 | 5.72 | 1.7439687 |
| 3.81 | 1.3376291 | 4.45 | 1.4929040 | 5.09 | 1.6272778 | 5.73 | 1.7457155 |
| 3.82 | 1.3402504 | 4.46 | 1.4951487 | 5.10 | 1.6292405 | 5.74 | 1.7474591 |
| 3.83 | 1.3428648 | 4.47 | 1.4973883 | 5.11 | 1.6311994 | 5.75 | 1.7491998 |
| 3.84 | 1.3454723 | 4.48 | 1.4996230 | 5.12 | 1.6331544 | 5.76 | 1.7509374 |
| 3.85 | 1.3480731 | 4.49 | 1.5018527 | 5.13 | 1.6351056 | 5.77 | 1.7526720 |
| 3.86 | 1.3506671 | 4.50 | 1.5040774 | 5.14 | 1.6370530 | 5.78 | 1.7544036 |
| 3.87 | 1.3532544 | 4.51 | 1.5062971 | 5.15 | 1.6389967 | 5.79 | 1.7561323 |
| 3.88 | 1.3558351 | 4.52 | 1.5085119 | 5.16 | 1.6409365 | 5.80 | 1.7578579 |
| 3.89 | 1.3584091 | 4.53 | 1.5107219 | 5.17 | 1.6428726 | 5.81 | 1.7595805 |
| 3.90 | 1.3609765 | 4.54 | 1.5129269 | 5.18 | 1.6448050 | 5.82 | 1.7613002 |
| 3.91 | 1.3635373 | 4.55 | 1.5151272 | 5.19 | 1.6467336 | 5.83 | 1.7630170 |
| 3.92 | 1.3660916 | 4.56 | 1.5173226 | 5.20 | 1.6486586 | 5.84 | 1.7647308 |
| 3.93 | 1.3686394 | 4.57 | 1.5195132 | 5.21 | 1.6505798 | 5.85 | 1.7664416 |
| 3.94 | 1.3711807 | 4.58 | 1.5216990 | 5.22 | 1.6524974 | 5.86 | 1.7681496 |
| 3.95 | 1.3737156 | 4.59 | 1.5238800 | 5.23 | 1.6544112 | 5.87 | 1.7698546 |
| 3.96 | 1.3762440 | 4.60 | 1.5260563 | 5.24 | 1.6563214 | 5.88 | 1.7715567 |
| 3.97 | 1.3787661 | 4.61 | 1.5282278 | 5.25 | 1.6582280 | 5.89 | 1.7732559 |
| 3.98 | 1.3812818 | 4.62 | 1.5303947 | 5.26 | 1.6601310 | 5.90 | 1.7749523 |
| 3.99 | 1.3837912 | 4.63 | 1.5325568 | 5.27 | 1.6620303 | 5.91 | 1.7766458 |
| 4.00 | 1.3862943 | 4.64 | 1.5347143 | 5.28 | 1.6639260 | 5.92 | 1.7783364 |
| 4.01 | 1.3887912 | 4.65 | 1.5368672 | 5.29 | 1.6658182 | 5.93 | 1.7800242 |
| 4.02 | 1.3912818 | 4.66 | 1.5390154 | 5.30 | 1.6677068 | 5.94 | 1.7817091 |
| 4.03 | 1.3937663 | 4.67 | 1.5411590 | 5.31 | 1.6695918 | 5.95 | 1.7833912 |
| 4.04 | 1.3962446 | 4.68 | 1.5432981 | 5.32 | 1.6714733 | 5.96 | 1.7850704 |
| 4.05 | 1.3987168 | 4.69 | 1.5454325 | 5.33 | 1.6733512 | 5.97 | 1.7867469 |
| 4.06 | 1.4011829 | 4.70 | 1.5475625 | 5.34 | 1.6752256 | 5.98 | 1.7884205 |
| 4.07 | 1.4036429 | 4.71 | 1.5496879 | 5.35 | 1.6770965 | 5.99 | 1.7900914 |
| 4.08 | 1.4060969 | 4.72 | 1.5518087 | 5.36 | 1.6789639 | 6.00 | 1.7917594 |
| 4.09 | 1.4085449 | 4.73 | 1.5539252 | 5.37 | 1.6808278 | 6.01 | 1.7934247 |
| 4.10 | 1.4109869 | 4.74 | 1.5560371 | 5.38 | 1.6826882 | 6.02 | 1.7950872 |
| 4.11 | 1.4134230 | 4.75 | 1.5581446 | 5.39 | 1.6845453 | 6.03 | 1.7967470 |
| 4.12 | 1.4158531 | 4.76 | 1.5602476 | 5.40 | 1.6863989 | 6.04 | 1.7984040 |
| 4.13 | 1.4182774 | 4.77 | 1.5623462 | 5.41 | 1.6882491 | 6.05 | 1.8000582 |
| 4.14 | 1.4206957 | 4.78 | 1.5644405 | 5.42 | 1.6900958 | 6.06 | 1.8017098 |
| 4.15 | 1.4231083 | 4.79 | 1.5665304 | 5.43 | 1.6919391 | 6.07 | 1.8033586 |
| 4.16 | 1.4255150 | 4.80 | 1.5686159 | 5.44 | 1.6937790 | 6.08 | 1.8050047 |
| 4.17 | 1.4279160 | 4.81 | 1.5706971 | 5.45 | 1.6956155 | 6.09 | 1.8066481 |
| 4.18 | 1.4303112 | 4.82 | 1.5727739 | 5.46 | 1.6974487 | 6.10 | 1.8082887 |
| 4.19 | 1.4327007 | 4.83 | 1.5748464 | 5.47 | 1.6992786 | 6.11 | 1.8099267 |
| 4.20 | 1.4350845 | 4.84 | 1.5769147 | 5.48 | 1.7011051 | 6.12 | 1.8115621 |


| N. | Logarithm. | N | Logarithm. | N. | Logarithm. | N | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.13 | 1.8131947 | 6.77 | 1.9125011 | 7.41 | 2.0028305 | 8.05 | 2.0856720 |
| 6.14 | 1.8148247 | 6.78 | 1.9139771 | 7.42 | $2.00 \pm 1790$ | 8.06 | 2.0569135 |
| 6.15 | 1.8164520 | 6.79 | 1.9154509 | 7.43 | 2.005 5258 | 8.07 | 2.0881534 |
| 6.16 | 1.8180767 | 6.80 | 1.9169226 | 7.44 | 2.0068708 | 8.08 | 2.0893918 |
| 6.17 | 1.8196988 | 6.81 | 1.9183921 | 7.45 | 2.0082140 | 8.09 | 2.0906287 |
| 6.18 | 1.8213182 | 6.82 | 1.9198594 | 7.46 | 2.0095553 | 8.10 | 2.0918640 |
| 6.19 | 1.8229351 | 6.83 | 1.9213247 | 7.47 | 2.0108949 | 8.11 | 2.0930984 |
| 6.20 | 1.8245193 | 6.81 | 1.9227877 | 7.48 | 2.0122327 | 8.12 | 2.0943306 |
| 6.21 | 1.8261608 | 6.85 | 1.924 2486 | 7.49 | 2.0135687 | 8.13 | 2.0955613 |
| 6.22 | 1.8277699 | 6.85 | 1.9257074 | 7.50 | 2.0149030 | 8.14 | 2.0967905 |
| 6.23 | 1.8293763 | 6.87 | 1.9271641 | 7.51 | 2.0162354 | 8.15 | 2.0980182 |
| $6.2 \pm$ | 1.8309801 | 6.88 | 1.9286186 | 7.52 | 2.0175661 | 8.16 | 2.0992444 |
| 6.25 | 1.8325814 | 6.89 | 1.9300710 | 7.53 | 2.0188950 | 8.17 | 2.1004691 |
| 6.26 | 1.8341801 | 6.90 | 1.9315214 | 7.54 | 2.0202221 | 8.18 | 2.1016923 |
| 6.27 | 1.8357763 | 6.91 | 1.9329696 | 7.55 | 2.0215475 | 8.19 | 2.1029140 |
| 6.28 | 1.8373699 | 6.92 | 1.9344157 | 7.56 | 2.0228711 | 8.20 | 2.1041341 |
| 6.29 | 1.8389610 | 6.93 | 1.9358598 | 7.57 | 2.0241929 | 8.21 | 2.1053529 |
| 6.30 | 1.8105496 | 6.94 | 1.9373017 | 7.58 | 2.0255131 | 8.22 | 2.1065702 |
| 6.31 | 1.8421356 | 6.95 | 1.9387416 | 7.59 | 2.0268315 | 8.23 | 2.1077861 |
| 6.32 | 1.813 7191 | 6.96 | 1.9401794 | 7.60 | 2.0281482 | 8.24 | 2.1089998 |
| 6.33 | 1.8453002 | 6.97 | 1.9416152 | 7.61 | 2.0294631 | 8.25 | 2.1102128 |
| 6.34 | 1.8468787 | 6.98 | 1.9430489 | 7.6. | 2.0307763 | 8.26 | 2.1114243 |
| 6.35 | 1.8484547 | 6.99 | 1.9444805 | 7.63 | 2.0320878 | 8.27 | 2.1126343 |
| 6.36 | 1.8500283 | 7.00 | 1.9459101 | 7.64 | 2.0333976 | 8.28 | 2.1138428 |
| 6.37 | 1.8515994 | 7.01 | 1.9173376 | 7.65 | 2.0347056 | 8.29 | 2.1150499 |
| 6.38 | 1.8531680 | 7.02 | 1.9487632 | 7.66 | 2.0360119 | 8.30 | 2.1162555 |
| 6.39 | 1.8547342 | 7.03 | 1.9501866 | 7.67 | 2.0373166 | 8.31 | 2.1174596 |
| 6.40 | 1.8562979 | 7.04 | 1.9516080 | 7.68 | 2.0386195 | 8.32 | 2.1186622 |
| 6.41 | 1.8578592 | 7.05 | 1.9530275 | 7.69 | 2.0399207 | 8.33 | 2.1198634 |
| 6.42 | 1.8594181 | 7.06 | 1.9544449 | 7.70 | 2.0412203 | 8.34 | 2.1210632 |
| 6.43 | 1.8609745 | 7.07 | 1.9558604 | 7.71 | 2.0425181 | 8.35 | 2.1222615 |
| 6.44 | 1.8625285 | 7.08 | 1.9572739 | 7.72 | 2.0438143 | 8.36 | 2.1234584 |
| 6.45 | 1.8640801 | 7.09 | 1.9586853 | 7.73 | 2.0451088 | 8.37 | 2.1246539 |
| 6.46 | 1.8656293 | 7.10 | 1.9600947 | 7.74 | 2.0464016 | 8.38 | 2.1258479 |
| 6.47 | 1.8671761 | 7.11 | 1.9615022 | 7.75 | 2.0476928 | 8.39 | 2.1270405 |
| 6.48 | 1.8687205 | 7.12 | 1.9629077 | 7.76 | 2.0489823 | 8.40 | 2.1282317 |
| 6.49 | 1.8702625 | 7.13 | 1.9643112 | 7.77 | 2.0502701 | 8.41 | 2.1294214 |
| 6.50 | 1.8718021 | 7.14 | 1.9657127 | 7.78 | 2.0515563 | 8.42 | 2.1306098 |
| 6.51 | 1.8733394 | 7.15 | 1.9671123 | 7.79 | 2.0528408 | 8.43 | 2.1317967 |
| 6.52 | 1.8748743 | 7.16 | 1.9685099 | 7.80 | 2.0541237 | 8.44 | 2.1329822 |
| 6.53 | 1.8764069 | 7.17 | 1.9699056 | 7.81 | 2.0554049 | 8.45 | 2.1341664 |
| 6.54 | 1.8779371 | 7.18 | 1.9712993 | 7.82 | 2.0566845 | 8.46 | 2.1353491 |
| 6.55 | 1.8794650 | 7.19 | 1.9726911 | 7.83 | 2.0579624 | 8.47 | 2.1365304 |
| 6.56 | 1.8809906 | 7.20 | 1.9740810 | 7.84 | 2.0592388 | 8.48 | 2.1377101 |
| 6.57 | 1.8825138 | 7.21 | 1.9754689 | 7.85 | 2.0605135 | 8.49 | 2.1388889 |
| 6.58 | 1.8840347 | 7.22 | 1.9768549 | 7.86 | 2.0617866 | 8.50 | 2.1400661 |
| 6.59 | 1.8855533 | 7.23 | 1.9782390 | 7.87 | 2.0630580 | 8.51 | 2.1412419 |
| 6.60 | 1.8870696 | 7.24 | 1.9796212 | 7.88 | 2.0643 .278 | 8.52 | 2.1424163 |
| 6.61 | 1.8885837 | 7.25 | 1.9810014 | 7.89 | 2.0655961 | 8.53 | 2.1435393 |
| 6.62 | 1.8900954 | 7.26 | 1.9823798 | 7.90 | 2.0668627 | 8.54 | 2.1447609 |
| 6.63 | 1.8916048 | 7.27 | 1.9837562 | 7.91 | 2.0681277 | 8.55 | 2.1459312 |
| 6.64 | 1.8931119 | 7.28 | 1.9851308 | 7.92 | 2.0693911 | 8.56 | 2.1471001 |
| 6.65 | 1.8946168 | 7.29 | 1.9865035 | 7.93 | 2.0706530 | 8.57 | 2.1482676 |
| 6.66 | 1.8961194 | 7.30 | 1.9878743 | 7.94 | 2.0719132 | 8.58 | 2.1494339 |
| 6.67 | 1.8976198 | 7.31 | 1.9892432 | 7.95 | 2.0731719 | 8.59 | 2.1505987 |
| 6.68 | 1.8991179 | 7.32 | 1.9906103 | 7.96 | 2.0744290 | 8.60 | 2.1517622 |
| 6.69 | 1.9006138 | 7.33 | 1.9919754 | 7.97 | 2.0756845 | 8.61 | 2.1529343 |
| 6.70 | 1.9021075 | 7.34 | 1.9933387 | 7.98 | 2.0769384 | 8.62 | 2.1540851 |
| 6.71 | 1.9035989 | 7.35 | 1.9947002 | 7.99 | 2.0781907 | 8.63 | 2.1552445 |
| 6.72 | 1.9050881 | 7.36 | 1.9960599 | 8.00 | 2.0794415 | 8.64 | 2.1564026 . |
| 6.73 | 1.9065751 | 7.37 | 1.9974177 | 8.01 | 2.0806907 | 8.65 | 2.1575593 |
| 6.74 | 1.9080600 | 7.38 | 1.9987736 | 8.02 | 2.0819384 | 8.66 | 2.1587147 |
| 6.75 | 1.9095425 | 7.39 | 2.0001278 | 8.03 | 2.0831845 | 8.67 | 2.1598687 |
| 6.76 | 1.9110228 | 7.40 | 2.0014800 | 8.04 | 2.0844290 | 8.68 | 2.1610215 |

Hyperbolic Logarithms.

| N. | Logarithm. | N | Logarithm. | N. | Logarithm. | N | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.69 | 2.1621729 | 9.33 | 2.2332350 | 9.97 | 2.2995806 | 71 | 4.2626799 |
| 8.70 | 2.1633230 | 9.34 | 2.2343062 | 9.98 | 2.3005831 | 72 | 4.2766661 |
| 8.71 | 2.1644718 | 9.35 | 2.2353763 | 9.99 | 2.3015846 | 73 | 4.2904594 |
| 8.72 | 2.1656192 | 9.36 | 2.2364452 | 10.0 | 2.3025851 | 74 | 4.3040651 |
| 8.73 | 2.1667653 | 9.37 | 2.2375130 | 11.0 | 2.3978953 | 75 | 4.3174881 |
| 8.74 | 2.1679101 | 9.38 | 2.2385797 | 12.0 | 2.4849067 | 76 | 4.3307333 |
| 8.75 | 2.1690 .536 | 9.39 | 2.2396452 | 13.0 | 2.5649494 | 77 | 4.3438054 |
| 8.76 | 2.1701959 | 9.40 | 2.2407096 | 14.0 | 2.6390573 | 78 | 4.3567088 |
| 8.77 | 2.1713367 | 9.41 | 2.2417729 | 15.0 | 2.7080502 | 79 | 4.3694479 |
| 8.78 | 2.1724763 | 9.42 | 2.2428350 | 16.0 | 2.7725887 | 80 | 4.3820266 |
| 8.79 | 2.1736146 | 9.43 | 2.2438960 | 17.0 | 2.8332133 | 81 | 4.3944492 |
| 8.80 | 2.1747517 | 9.44 | 2.2449559 | 180 | 2.8903718 | 82 | 4.4067193 |
| 8.81 | 2.1758874 | 9.45 | 2.2160147 | 19.0 | 2.9444390 | 83 | 4.4188106 |
| 8.82 | 2.1770218 | 9.46 | 2.2470723 | 20.0 | 2.9957323 | 84 | 4.4308168 |
| 8.83 | 2.1781550 | 9.47 | 2.2481288 | 21.0 | 3.0445224 | 85 | 4.4426513 |
| 8.84 | 2.1792868 | 9.48 | 2.2191843 | 22.0 | 3.0910425 | 86 | 4.4543473 |
| 8.8 | 2.1804174 | 9.49 | 2.2502386 | 23.0 | 3.1354942 | 87 | 4.4659081 |
| 8.8 | 2.1815467 | 9.50 | 2.2512917 | 24.0 | 3.1780538 | 88 | 4.4773368 |
| 8.87 | 2.182 6747 | 9.51 | 2.2523438 | 25.0 | 3.21887 .58 | 89 | 4.4886364 |
| 8.88 | 2.1838015 | 9.52 | 2.2533948 | 26.0 | 3.2580965 | 90 | 4.4998097 |
| 8.89 | 2.1849270 | 9.53 | 2.2544446 | 27.0 | 3.2958369 | 91 | 4.5108595 |
| 8.90 | 2.1860512 | 9.54 | 2.2554934 | 28.0 | 3.3322045 | 92 | 4.5217886 |
| 8.91 | 2.1871742 | 9.55 | 2.2565411 | 29.0 | 3.3672958 | 93 | 4.5325995 |
| 8.92 | 2.1882959 | 9.56 | 2.2575877 | 30.0 | 3.4011974 | 94 | 4.5432948 |
| 8.93 | 2.1894163 | 9.57 | 2.2586332 | 31.0 | 3.4339872 | 95 | 4.5538769 |
| 8.94 | 2.1905355 | 9.58 | 2.2596776 | 32.0 | 3.4657359 | 96 | 4.5643482 |
| 8.95 | 2.1916535 | 9.59 | 2.2607209 | 33.0 | 3.4965076 | 97 | 4.574710 |
| 8.96 | 2.1927702 | 9.60 | 2.2617631 | 34.0 | 3.5263605 | 98 | 4.5849675 |
| 8.97 | 2.1938856 | 9.61 | 2.2628042 | 35.0 | 3.5553481 | 99 | 4.5951199 |
| 8.98 | 2.1949998 | 9.62 | 2.2638442 | 36.0 | 3.5835189 | 100 | 4.6051702 |
| 8.99 | 2.1961128 | 9.63 | 2.2648832 | 37.0 | 3.6109179 | 101 | 4.6151205 |
| 9.00 | 2.1972245 | 9.64 | 2.2659211 | 38.0 | 3.6375862 | 102 | 4.6249728 |
| 9.01 | 2.1983350 | 9.65 | 2.2669579 | 39.0 | 3.6635617 | 103 | 4.6347290 |
| 9.02 | 2.1994443 | 9.66 | 2.2679936 | 40.0 | 3.6888795 | 104 | 4.6443909 |
| 9.03 | 2.2005523 | 9.67 | 2.2690282 | 41.0 | 3.7135721 | 105 | 4.6539604 |
| 9.04 | 2.2016591 | 9.68 | 2.2700618 | 42.0 | 3.737 6696 | 106 | 4.6634391 |
| 9.05 | 2.2027647 | 9.69 | 2.27109 .44 | 43.0 | 3.7612001 | 107 | 4.6728288 |
| 9.06 | 2.2038691 | 9.70 | 2.2721258 | 44.0 | 3.7841896 | 108 | 4.6821312 |
| 9.07 | 2.2049722 | 9.71 | 2.2731562 | 45.0 | 3.8066525 | 109 | 4.6913479 |
| 9.08 | 2.2060741 | 9.72 | 2.2741856 | 46.0 | 3.8286414 | 110 | 4.7004804 |
| 9.09 | 2.2071748 | 9.73 | 2.2752138 | 47.0 | 3.8501476 | 111 | 4.7095302 |
| 9.10 | 2.2082744 | 9.74 | 2.2762411 | 48.0 | 3.8712010 | 112 | 4.7184989 |
| 9.11 | 2.2093727 | 9.75 | 2.2772673 | 49.0 | 3.8918203 | 113 | 4.7273878 |
| 9.12 | 2.2104697 | 9.76 | 2.2782924 | 50.0 | 3.9120230 | 114 | 4.7361985 |
| 9.13 | 2.2115656 | 9.77 | 2.2793165 | 51.0 | 3.9318256 | 115 | 4.7449321 |
| 9.14 | 2.2126603 | 9.78 | 2.2803395 | 52.0 | 3.9512437 | 116 | 4.7535902 |
| 9.15 | 2.2137538 | 9.79 | 2.2813614 | 53.0 | 3.9702919 | 117 | 4.7621739 |
| 9.16 | 2.2148461 | 9.80 | 2.2823823 | 54.0 | 3.9889841 | 118 | 4.7706846 |
| 9.17 | 2.2159372 | 9.81 | 2.2834022 | 55.0 | 4.0073332 | 119 | 4.7791235 |
| 9.18 | 2.2170272 | 9.82 | 2.2844211 | 56.0 | 4.0253517 | 120 | 4.7874917 |
| 9.19 | 2.2181160 | 9.83 | 2.2854389 | 57.0 | 4.0430513 | 121 | 4.7957906 |
| 9.20 | 2.2192034 | 9.84 | 2.2864556 | 58.0 | 4.0604430 | 122 | 4.8040210 |
| 9.21 | 2.2202898 | 9.85 | 2.2874714 | 59.0 | 4.0775374 | 123 | 4.8121844 |
| 9.22 | 2.2213750 | 9.86 | 2.2884861 | 60.0 | 4.0943446 | 124 | 4.8202816 |
| 9.23 | 2.2224590 | 9.87 | 2.2894998 | 61.0 | 4.1108739 | 125 | 4.8283137 |
| 9.24 | 2.2235418 | 9.88 | 2.2905124 | 62.0 | 4.1271344 | 126 | 4.8352819 |
| 9.25 | 2.2246235 | 9.89 | 2.2915241 | 63.0 | 4.1431347 | 127 | 4.8441871 |
| 9.26 | 2.225 7040 | 9.90 | 2.2925347 | 64.0 | 4.1588839 | 128 | 4.8520303 |
| 9.27 | 2.2267833 | 9.91 | 2.2935443 | 65.0 | 4.1743873 | 129 | 4.8598124 |
| 9.28 | 2.2278615 | 9.92 | 2.2945529 | 66.0 | 4.1896547 | 130 | 4.8675345 |
| 9.29 | 2.2289385 | 9.93 | 2.2955604 | 67.0 | 4.2046926 | 131 | 4.8751973 |
| 9.30 | 2.2300144 | 9.94 | 2.2965670 | 68.0 | 4.2195077 | 132 | 4.8828019 |
| 9.31 | 2.2310890 | 9.95 | 2.2975725 | 69.0 | 4.2341065 | 133 | 4.8903491 |
| 9.32 | 2.2321626 | 9.96 | 2.2985770 | 70.0 | 4.2484952 | 134 | 4.8978398 |

## Mean Pressure Above Vacuum of Expanding Steam.

Expansion ratio.

## Absolute

 steam pressure, $P$.Steam cut-off, fraction of stroke.

|  | $3 / 4$ | 2/3 | 5/8 | 1/2 | 3/8 | 1/3 | 1/4 | 1/8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 24.130 | 23.481 | 22.938 | 21.164 | 18.567 | 17.488 | 19.913 | 9.6232 |
| 30 | 28.956 | 28.100 | 27.524 | 25.396 | 22.280 | 20.986 | 17.897 | 11.548 |
| 35 | 33.782 | 32.874 | 32.110 | 29.630 | 25.992 | 24.484 | 20.880 | 13.472 |
| 40 | 38.608 | 37.468 | 36.700 | 33.862 | 28.964 | 27.982 | 23.862 | 15.396 |
| 45 | 43.474 | 42.151 | 41.287 | 38.095 | 32.677 | 31.479. | 26.845 | 17.320 |
| 50 | 48.262 | 46.835 | 45.875 | 42.328 | 37.133 | 34.977 | 29.828 | 19.246 |
| 55 | 53.088 | 51.518 | 50.462 | 46.561 | 40.846 | 38.474 | 32.811 | 21.170 |
| 60 | 57.914 | 56.202 | 55.050 | 50.794 | 44.559 | 41.972 | 35.794 | 23.095 |
| 65 | 62.740 | 60.885 | 59.637 | 55.027 | 48.273 | 45.470 | 38.777 | 25.020 |
| 70 | 67.566 | 65.569 | 64.225 | 59.260 | 51.986 | 48.967 | 41.760 | 26.944 |
| 75 | 72.393 | 70.252 | 68.812 | 63.493 | 55.700 | 52.465 | 44.743 | 28.869 |
| 80 | 77.216 | 74.936 | 73.400 | 67.726 | 59.413 | 55.963 | 47.726 | 30.794 |
| 85 | 82.042 | 79.619 | 77.987 | 71.959 | 63.126 | 59.461 | 50.709 | 32.718 |
| 90 | 86.866 | 85.303 | 82.574 | 76.192 | 66.840 | 62.958 | 53.692 | 34.643 |
| 95 | 91.699 | 89.986 | 87.163 | 80.425 | 70.553 | 66.456 | 56.675 | 36.568 |
| 100 | 96.524 | 93.670 | 91.750 | 84.657 | 74.267 | 69.954 | 59.657 | 38.493 |
| 105 | 101.35 | 98.353 | 96.337 | 88.890 | 77.981 | 73.451 | 62.640 | 40.417 |
| 110 | 106.17 | 103.04 | 100.92 | 93.123 | 81.694 | 76.949 | 65.622 | 42.342 |
| 115 | 111.00 | 107.72 | 105.51 | 97.356 | 85.407 | 80.447 | 68.606 | 44.267 |
| 120 | 115.83 | 112.40 | 110.10 | 101.59 | 89.121 | 83.944 | 71.589 | 46.191 |
| 125 | 120.65 | 117.08 | 114.68 | 105.82 | 92.834 | 87.442 | 74.572 | 48.116 |
| 130 | 125.48 | 121.77 | 119.27 | 110.05 | 96.548 | 90.940 | 77.555 | 50.041 |
| 135 | 130.30 | 126.45 | 123.86 | 114.28 | 100.26 | 94.437 | 80.538 | 51.966 |
| 140 | 135.13 | 131.13 | 128.45 | 118.52 | 103.97 | 97.935 | 83.520 | 53.890 |
| 145 | 139.96 | 135.82 | 133.03 | 122.75 | 107.68 | 101.43 | 86.502 | 55.815 |
| 150 | 144.78 | 140.50 | 137.62 | 126.98 | 111.40 | 104.93 | 89.485 | 57.739 |
| 155 | 149.60 | 145.18 | 142.20 | 131.22 | 115.11 | 108.42 | 92.468 | 59.663 |
| 160 | 154.43 | 149.87 | 146.79 | 135.45 | 118.82 | 111.92 | 95.451 | 61.588 |
| 165 | 159.26 | 154.55 | 151.38 | 139.68 | 122.54 | 115.42 | 98.434 | 63.513 |
| 170 | 164.08 | 159.23 | 155.97 | 143.92 | 126.25 | 118.92 | 101.41 | 65.437 |
| 175 | 168.91 | 163.92 | 160.55 | 148.15 | 129.96 | 122.42 | 104.40 | 67.362 |
| 180 | 173.73 | 168.60 | 165.14 | 152.38 | 133.68 | 125.91 | 107.38 | 69.287 |
| 185 | 178.56 | 173.28 | 169.73 | 156.61 | 137.39 | 129.41 | 110.36 | 71.212 |
| 190 | 183.39 | 177.97 | 174.32 | 160.85 | 141.10 | 13291 | 113.35 | 73.136 |
| 195 | 188.21 | 182.65 | 178.90 | 165.08 | 144.82 | 136.41 | 116.33 | 75.061 |
| 200 | 193.04 | 187.34 | 183.50 | 169.31 | 148.53 | 139.91 | 119.31 | 76.986 |
| 210 | 202.69 | 196.71 | 192.68 | 177.78 | 155.96 | 146.90 | 125.27 | 80.835 |
| 220 | 212.34 | 205.08 | 201.85 | 186.25 | 163.39 | 153.90 | 131.24 | 84.684 |
| 230 | 221.99 | 215.45 | 211.03 | 194.71 | 170.82 | 160.89 | 137.20 | 88.534 |
| 240 | 231.65 | 224.81 | 220.20 | 203.18 | 178.23 | 167.89 | 143.17 | 92.383 |
| 250 | 241.30 | 234.18 | 229.38 | 211.64 | 185.67 | 174.88 | 149.13 | 96.232 |
| 260 | 250.96 | 243.55 | 238.55 | 220.11 | 193.18 | 181.88 | 155.11 | 100.08 |
| 270 | 260.61 | 252.91 | 247.73 | 228.57 | 200.52 | 188.87 | 161.07 | 103.93 |
| 280 | 270.26 | 262.28 | 256.90 | 237.04 | 207.95 | 195.87 | 167.04 | 107.78 |
| 300 | 289.56 | 281.00 | 275.24 | 253.96 | 222.80 | 209.86 | 178.97 | 115.48 |

## Mean Pressure for High=pressure Engines Above Atmosphere.

|  | Expansion ratio. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.333 | 1.5 | 1.6 | 2 | 2.666 | 3 | 4 | 8 |
|  | Steam cut-off, fraction of stroke. |  |  |  |  |  |  |  |
|  | $3 / 4$ | 2/3 | 5/8 | 1/2 | 3/8 | 1/3 | 1/4 | 1/8 |
| 25 | 23.908 | 22.768 | 22.000 | 19.162 | 14.264 | 13.282 | 9.162 | . 696 |
| 35 | 33.562 | 32.135 | 31.175 | 27.628 | 22.433 | 20.277 | 15.128 | 4.546 |
| 40 | 38.388 | 36.818 | 35.762 | 31.861 | 26.146 | 23.774 | 18.111 | 6.470 |
| 45 | 43.214 | 41.502 | 40.350 | 36.094 | 29.859 | 27.272 | 21.094 | 8.395 |
| 50 | 48.040 | 46.185 | 44.937 | 40.327 | 33.573 | 30.770 | 24.077 | 10.320 |
| 55 | 52.866 | 50.869 | 49.625 | 44.560 | 37.286 | 34.267 | 27.060 | 12.244 |
| 60 | 57.693 | 55.552 | 54.112 | 48.793 | 41.000 | 37.765 | 30.043 | 14.169 |
| 65 | 62.516 | 60.236 | 58.700 | 53.026 | 44.713 | 41.263 | 33.026 | 16.094 |
| 70 | 67.342 | 64.919 | 63.287 | 57.259 | 48.426 | 44.761 | 36.009 | 18.018 |
| 75 | 72.166 | 70.603 | 67.874 | 61.492 | 52.140 | 48.258 | 38.992 | 19.943 |
| 80 | 76.999 | 75.286 | 72.463 | 65.725 | 55.853 | 51.756 | 41.975 | 21.868 |
| 85 | 81.824 | 78.970 | 77.050 | 69.957 | 59.567 | 55.254 | 44.957 | 23.793 |
| 90 | 86.65 | 83.653 | 81.637 | 74.190 | 63.281 | 58.751 | 47.940 | 25.717 |
| 95 | 91.47 | 88.34 | 86.22 | 78.423 | 66.994 | 62.249 | 50.922 | 27.642 |
| 100 | 96.30 | 93.02 | 90.81 | 82.656 | 70.707 | 65.747 | 53.906 | 29.567 |
| 105 | 101.13 | 97.70 | 95.40 | 86.89 | 74.421 | 69.244 | 56.889 | 31.491 |
| 110 | 105.95 | 102.38 | 99.98 | 91.12 | 78.134 | 72.742 | 59.872 | 33.416 |
| 115 | 110.78 | 107.07 | 104.57 | 95.35 | 81.848 | 76.240 | 62.855 | 35.341 |
| 120 | 115.60 | 111.75 | 109.16 | 99.58 | 85.56 | 79.737 | 65.838 | 37.266 |
| 125 | 120.43 | 116.43 | 113.75 | 103.82 | 89.27 | 83.235 | 68.820 | 39.190 |
| 130 | 125.26 | 121.12 | 118.33 | 108.05 | 92.98 | 86.73 | 71.802 | 41.115 |
| 135 | 130.08 | 125.80 | 122.92 | 112.28 | 96.70 | 90.23 | 74.785 | 43.039 |
| 140 | 134.90 | 130.48 | 127.50 | 116.52 | 100.41 | 93.72 | 77.768 | 44.963 |
| 145 | 139.73 | 135.17 | 132.09 | 120.75 | 104.12 | 97.22 | 80.751 | 46.888 |
| 150 | 144.56 | 139.85 | 136.68 | 124.98 | 107.84 | 100.72 | 83.734 | 48.813 |
| 155 | 149.38 | 144.83 | 141.27 | 129.22 | 111.85 | 104.22 | 86.71 | 50.737 |
| 160 | 154.21 | 149.22 | 145.85 | 133.45 | 115.26 | 107.72 | 89.70 | 52.662 |
| 165 | 159.03 | 153.90 | 150.44 | 137.68 | 118.98 | 111.21 | 92.68 | 54.587 |
| 170 | 163.86 | 158.58 | 155.03 | 141.91 | 122.69 | 114.71 | 95.66 | 56.812 |
| 175 | 168.69 | 163.27 | 159.62 | 146.15 | 126.40 | 118.21 | 98.65 | 58.436 |
| 180 | 173.51 | 167.95 | 164.20 | 150.38 | 130.12 | 121.71 | 101.63 | 60.361 |
| 185 | 178.34 | 172.64 | 168.80 | 154.81 | 133.83 | 125.21 | 104.61 | 62.286 |
| 190 | 183.16 | 177.32 | 173.39 | 158.81 | 137.54 | 128.71 | 107.59 | 64.210 |
| 195 | 187.99 | 182.01 | 177.98 | 163.08 | 141.26 | 132.20 | 110.57 | 66.135 |
| 200 | 192.81 | 186.69 | 182.58 | 167.31 | 144.97 | 135.70 | 113.55 | 68.060 |
| 210 | 202.46 | 195.06 | 191.74 | 175.78 | 152.40 | 142.70 | 119.52 | 71.908 |
| 220 | 212.11 | 205.43 | 200.93 | 184.24 | 159.83 | 149.69 | 125.48 | 75.758 |
| 230 | 221.77 | 214.79 | 210.10 | 192.71 | 167.24 | 156.69 | 131.39 | 79.603 |
| 240 | 231.42 | 224.16 | 219.27 | 201.17 | 174.68 | 163.68 | 137.41 | 83.456 |
| 250 |  |  |  |  |  |  | 143.39 | 87.30 |
| 260 | 250.73 | 242.89 | 237.62 | 218.10 | 189.53 | 177.67 | 149.35 | 91.15 |
| 270 | 260.38 | 252.26 | 246.79 | 226.57 | 196.96 | 184.67 | 155.32 | 95.00 |
| 280 | 270.04 | 261.62 | 255.94 | 235.03 | 204.39 | 191.66 | 161.29 | 98.86 |
| 300 | 289.34 | 280.35 | 264.30 | 251.95 | 219.24 | 205.56 | 173.22 | 106.55 |

In the preceding computations and tables it has been assumed that there was no clearance or waste space between the piston and the crlinder head at the end of the stroke. In practice, the clearance amounts to from 2 to 7 per cent. of the cylinder volume. This may be taken into account by adding the clearance to both the length of the stroke and the length of the admission portion in determining the expansion ratio, $r$. Thus, if the stroke is 24 inches and the steam is cut off at 6 inches, the expansion ratio will be $\frac{24}{6}=4$, if clearance is neglected. If, however, there is a space of $1 / 2$ inch between the piston and the cylinder head at the end of the stroke, we have

$$
r=\frac{24.5}{6.5}=3.77
$$

and this is the ratio to be used in computation.

## Most Economical Point of Cut=off.

(W. D. Marks.)

To find the most economical point of cut-off,-that is, its inverse, that number of crpansions which will result in the greatest economy of steam from the boiler, per horse-power, per hour.

## Notation.

$c=$ the true point of cut-off $=$ the reciprocal of the true number of expansions;
$B=$ the absolute back pressure during exhaust, in pounds, per square inch;
$P_{b}=$ the absolute pressure at cut-off ;
$s=$ the stroke of piston, in feet;
$d=$ the diameter of cylinder, in feet;
$\Lambda=\frac{62.5}{S}$;
$S=$ the specific volume of steam at cut-off ;
$D=2 \frac{T_{b}-T_{e}}{N} C ;$
$T_{b}=$ the temperature of the steam at cut-off (Fahr.) ;
$T_{e}=$ the temperature of the steam during exhaust ;
$N=$ the number of strokes per minute $=$ twice the revolutions of crank:
$C=$ the constant of condensation $=0.018$ pounds of steam for about 82 pounds gauge pressure.

$$
c=\frac{B}{P_{b}}+\left(\frac{1}{s}+\frac{0.194}{d}\right) \frac{D d}{A d+D} \text { nat. log. } \frac{1}{e} .
$$

Example. Let

We have

$$
\begin{aligned}
P_{b} & =100 \text { pounds absolute } ; \\
B & =15 \text { pounds absolute } ; \\
s & =4 \text { feet } ; \\
d & =1.5 \text { feet } \\
N & =150 \text { per minute } .
\end{aligned}
$$

$$
\begin{aligned}
A & =0.233 \\
D & =0.0274 \\
c & =0.15+\left(\frac{1}{4}+\frac{0.194}{1.5}\right) \frac{0.0274 \times 1.5 \times 2.3026}{0.233 \times 1.5+0.0274} \operatorname{com} . \log \cdot \frac{1}{e}, \\
e & =0.15+0.3793 \frac{0.0944}{0.3764} \log \cdot \frac{1}{e}, \\
e & =0.15+0.0952 \log \cdot \frac{1}{e} .
\end{aligned}
$$

We must solve this transcendental equation tentatively, trying values until the two members balance.

Assume $e=\frac{1}{5}$ of stroke plus clearance. We have

$$
0.20=0.15+0.066=0.216
$$

This error of 0.016 is closer work than can be realized in practice, and we can take 5 expansions as the best number.

Between $\frac{1}{5}$ and $1 / 4$ would have been near enough for all practical purposes.

To find the proper ratio of stroke to diameter under the given conditions, assuming 5 expansions and diameter $=11 / 2$ feet.

Inverting the above equation, we have

$$
\begin{aligned}
s & =\frac{d}{\left(\frac{A}{D} d+1\right)\left(\frac{e-\frac{B}{P_{b}}}{\text { nat. log. } \frac{1}{e}}\right)-0.194} \\
\frac{A}{D} & =8.56, \\
s & =\frac{1.5}{(8.56 \times 1.5+1)\left(\frac{0.20-0.15}{1.61}\right)-0.194}=6.4 \text { feet, nearly. }
\end{aligned}
$$

With slow-moving engines it will be found that long stroke is most economical, while on the other hand high-speed engines require short stroke for greatest economy. If we double the speed of this engine, making $N=300$, the stroke $s=2.4$ feet, for greatest economy.

In order to construct the curve representing the expansion of steam in a cylinder, under the assumption that the expansion is isothermal,-i.e., that $p v=$ constant,--the following method may be used:


Draw the line, $A C$, to represent the position of zero pressure, or perfect vacuum, making the length, $A C$, represent the stroke of the piston. Make $A X$ equal to the clearance, expressed in terms of the stroke,--that is,

$$
A X=A C \frac{\text { clearance volume }}{\text { volume swept through by piston }}
$$

Erect the perpendicular, $D F$, to represent the admission pressure on any convenient scale, and draw the horizontal line, YDF. Mark the point, $E$, so that $D E$ represents the length of the stroke during which steam is ad-mitted.- $i . e$. . if the expansion ratio is $6, D E$ will be one-sixth of $A C$,-and draw $\dot{B} E$. Take any points, $1,2,3,4$, and join them to $X$, and also drop
perpendiculars from 1, 2, 3, 4. Draw horizontal lines from the intersections, $X_{1}, X_{2}, X_{3}, X_{4}$, on $E B$, and where these horizontal lines intersect the corresponding verticals will be points on the curve, as at $Y_{1}, Y_{2}, Y_{3}, Y_{4}$.

The hyperbolic curve represents isothermal expansion, it being assumed that the temperature is kept constant. Other curves have been considered in connection with the expansion of steam, and according to the investigations of Rankine, Zeuner, and others, these may be expressed by the general equation:

$$
p v^{m}=\text { constant },
$$

the exponent, $m$, being varied according to the curve under consideration.
For dry saturated steam, according to Rankine, $m=\frac{17}{16}=1.0625$; while, according to Zeuner, $m=1.0646$. For adiabatic expansion, in which the expanding steam neither receives nor gives out heat, Rankine gives $m=$ $102=1.111$.

Any of these curves may be constructed by the computation of any desired number of ordinates, using logarithms, or more conveniently by


Polytropic Curve. the so-called "polytropic" diagram.

Draw the rectangular axes, $Y O X$, and make $v_{0}$ equal the portion of the stroke during which the initial pressure, $p_{0}$, is maintained. Draw OA, making the angle, $a$, any convenient value, and also draw $O B$, making the angle, $\beta$, so that

$$
1+\tan \beta=(1+\tan a)^{m}
$$

choosing $m$ according to the curve to be drawn, as above. Then, starting from $C$, draw $C c$ at $45^{\circ}$ from $0 C$ and back at right angles to CO, zigzagging back and forth, as shown; also drop the vertical, $E D$, prolonged to $e$, and construct a similar zigzag between $O A$ and $O X$, making alternate angles of $45^{\circ}$ and $90^{\circ}$ with $O X$. The intersections of the normals to $O Y$ and $O X$, when prolonged, will then give points in the curve, as at 1, 2, 3, etc.

In practice, it has been found that the isothermal curve represents practical working conditions as closely as any which can be drawn.

The principal source of loss in steam engines is the initial condensation of the steam, which takes place when it first enters the cylinder. The difference in temperature between steam at 100 pounds and steam at atmospheric pressure is about $125^{\circ} \mathrm{F}$., and as the cylinder walls absorb and part with heat readily the incoming steam meets the walls which have just been cooled to the temperature of the previous exhaust. For this reason it has been found wasteful to attempt to realize the high economy due to large expansion ratios in a single cylinder. For high-pressure engines the best results are obtained with 4 or 5 expansions,-i.e., cutting off the steam at $1 / 4$ to $\frac{1}{5}$ of the stroke,-while for condensing engines from 8 to 10 expansions is about the highest that can be used to advantage.

In order to use higher expansion ratios successfully; the expansion is performed in two or more cylinders, giving compound or multipleexpansion engines. A number of rules and methods have been given for determining the best relative areas of cylinders for compound and multiple-expansion engines, depending upon the desire of the designer. In many cases, it is wished to make the work performed in the various cylinders approximately equal; in others, it is desired to equalize the initial stresses; and in others, to equalize the drop in temperature.

For compound engines various empirical rules have been given, generally based upon the initial pressure or upon the expansion ratio.

Thus, if $r$ be the expansion ratio, the cylinder ratio is often made equal to $1 / \bar{r}$. In marine practice, the cylinder ratio usually ranges from 1 to 4 for 100 pounds pressure to 1 to 5 for 120 pounds pressure.

For triple-expansion engines the ratios found in practice, according to Whitham, are about as follows:

## Cylinder Ratios for Triple=expansion Engines.

| Initial pressure. | High pressure. | Intermediate. | Low pressure. |
| :---: | :---: | :---: | :---: |
| 130 | 1 | 2.25 | 5.00 |
| 140 | 1 | 2.40 | 5.85 |
| 150 | 1 | 2.55 | 6.90 |
| 160 | 1 | 2.70 | 7.25 |

For quadruple-expansion engines, operating at pressures of 160 pounds and over, the following proportions are found:

Cylinder Ratios for Quadruple=expansion Engines.

| Initial <br> pressure. | High <br> pressure. | First <br> intermediate. | Second <br> intermediate. | Low <br> pressure. |
| :---: | :---: | :---: | :---: | :---: |
| 160 | 1 | 2.00 | 4.00 | 8 |
| 180 | 1 | 2.10 | 4.20 | 9 |
| 200 | 1 | 2.15 | 4.60 | 10 |
| 220 | 1 | 2.20 | 4.80 | 11 |

The subject is best studied by drawing a single diagram for the initial pressure and expansion ratio given, this being then divided up according to the distribution of power desired among two, three, or four cylinders, as the proposed design may be for a compound, triple, or quadruple engine.

For this purpose the isothermal curve will be sufficiently accurate.
Thus, the diagram may be drawn as for a single engine, as shown herewith, and divided into three portions of equal area, $D, D^{\prime}$, and $D^{\prime \prime}$; this being best done tentatively, the areas being measured by the planimeter. If the total area is first measured and divided by three, the portion $D$ can be laid off very closely after one or two trials, and the same for $D^{\prime}$ and $D^{\prime \prime}$. The areas of the several parts will then be proportional to the volumes of the various cylinders, and, since they are all made of the same stroke in practice, the cylinder ratios will be proportional to the lengths, $s, s^{\prime}$, and $s^{\prime \prime}$. Any


Triple-expansion Diagram. other subdivision of the total expansion may be considered in the same manner.

The thermal efficiency of any heat motor is limited by the range of temperature through which the impelling fluid acts. This efficiency is the
ratio obtained by dividing the heat converted into work by the total heat taken in. This ratio must always be less than unity, and its maximum value for any range of temperature is found from the ratio

$$
\frac{T_{1}-T_{2}}{T_{1}}
$$

in which $T_{1}$ is the absolute temperature of reception, $=$ temperature $\mathrm{F}_{.}+$ $461,=$ temperature $\mathrm{C}_{\mathrm{i}}+273$; while $T_{2}$ is the absolute temperature of rejection. Considering all temperatures as absolute,--that is, as measured from the absolute zero, we have

Maximum efficiency $=\frac{\text { temperature of reception-temperature of rejection }}{\text { temperature of reception }}$.
Thus, in the case of an engine in which the steam enters at a temperature of $341^{\circ} \mathrm{F}$., or $802^{\circ}$ absolute, corresponding to an absolute pressure of 120 pounds per square inch, and is rejected in the condenser at a temperature of $60^{\circ} \mathrm{F}$., or $521^{\circ}$ absolute, we have

$$
\frac{T_{1}-T_{2}}{T_{1}}=\frac{802^{\circ}-521^{\circ}}{802^{\circ}}=0.35
$$

so that, if all the heat in the steam were converted into mechanical energy, the efficiency could not exceed 35 per cent.

In actual practice the thermal efficiency rarely attains 12 per cent., the highest recorded efficiency being that of the Reynolds pumping engine at Boston, Massachusetts. This engine has the record of a performance of 187.8 B. T. U. per indicated horse-power, corresponding to a thermal efficiency of $225 / 8$ per cent.

## Indicator Diagrams.

The steam-engine indicator is a form of recording pressure gauge, arranged to be attached to the cylinder of a steam engine so as to draw a curve representing the pressure within the cylinder at every point in the stroke. Originally invented by Watt, and greatly improved by McNaught, Richards, Thompson, and others, it is now a standard instrument of the engineer. The details of construction of the various styles of instruments on the market are fully given in the hand-books issued by the manufacturer, and hence the diagrams themselves will only be discussed here.


Atmospheric line
Typical Indicator Diagram.
In the typical diagram, given herewith, the general form obtained from a single-cjlinder engine in good condition is shown. If the area of the diagram (best measured by a planimeter) is divided by the length and this multiplied by the scale of the spring, the mean effective pressure in the cylinder is obtained. This mean effective pressure multiplied by the area of the piston, in square inches, gives the total force acting upon the piston. in pounds, and by multiplying this force by the number of feet of piston
travel per minute, the power, in foot-pounds, per minute is obtained. From this the horse-power is found by dividing by 33,000 .

Thus, if
$p=$ mean effective pressure, in pounds, per square inch ;
$a=$ area of piston, in square inches;
$s=$ piston speed, in feet, per minute.

$$
H P=\frac{a \times p \times s}{33000}
$$

If a number of computations are to be made upon a given engine, the area of the piston may conveniently be divided by 33,000 to obtain a constant factor, corresponding to the horse-power developed by 1 pound mean effective pressure at 1 foot piston speed. This constant need then only be multiplied by the actual speed and pressure to give the power in each case.

It must be remembered that the indicator is only a recording pressure gauge, and that it merely shows the pressure at every point in the stroke. The interpretation given to the record is a matter in which the judgment of the observer must in great measure supply.

In general, the indicator diagram shows the action of the valve gear, including the points of cut-off, release, and compression; also, the freedom of the exhaust and the equality of action in both the forward and backward strokes. To this extent the indicator is of great assistance in adjusting the valves and in maintaining a correct adjustment.

The indicator diagram may also be used to determine the steam consumption of the engine,-at least the theoretical consumption may thus be determined, and by comparison with actual measurements the proportion of steam accounted for by the indicator may be computed.

The steam consumption is usually stated in terms of the equivalent weight of water. Several methods may be used in computing the rate of water consumption. The following, due to Mr. Jesse Warrington, is convenient in that it does not require any data concerning the dimensions or speed of the engine, being determined solely from the indicator diagram.

Divide the constant number 859,375 by the volume of steam at the terminal pressure and by the mean effective pressure. The quotient will be the desired rate.

This constant is the number of pounds of water that would be used in 1 hour by an engine developing 1 horse-power, if run by water (instead of steam), at 1 pound pressure per square inch. Then, with pressure of more than 1 pound, the amount required would be as many times less as the pressure was greater than 1 pound, and when steam is used the amount would be as much less as the volume of the steam at the pressure at which it is released is greater than that of an equal weight of water; hence, the above rule. The constant is found as follows: The standard horse-power being 33,000 foot-pounds, or 33,000 pounds lifted 1 foot per minute, would be equivalent to $33,000 \times 12=396,000$ pounds lifted 1 inch per minute; hence, an engine whose piston displacement was 396,000 cubic inches per minute would develop 1 horse-power with 1 pound mean effective pressure on the piston. This for 1 hour would be $396,000 \times 60$ minutes $=23,760,000$ cubic inches per hour. Then suppose the engine to be run by water at 1 pound pressure per square inch, instead of steam, and taking 27.648 as the number of cubic inches of water per pound, $23,760,000 \div 27.648=859,375$. which is the desired constant.

The water consumption thus determined is not corrected for clearance or for compression, but this may be done from the diagram, as follows: Prolong the expansion curve beyond the point of release until it reaches the end of the diagram, this giving the terminal point of the curve as it would have been had the exhaust valve not been opened. Draw a horizontal line from this terminal point through the compression curve to the other end of the diagram. The ratio of the length from terminal to compression curve, divided by the total length of the diagram, will give a factor which, when multiplied by the previously-computed water consumption, will give the result corrected for clearance and compression. These methods are naturally dependent upon the tightness of the valves for their accuracy.

In order to simplify the work of computation, the following table has been made.

## Water Consumption Table.

| $P$ | W | $P$ | W | $P$ | W | $P$ | W | $P$ | W | $P$ | W | $P$ | W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 39.10 | 20 | 34.99 | 37 | 33.72 | 54 | 32.98 | 71 | 32.46 | 88 | 32.07 | 105 | 31.73 |
| 4 | 38. | 21 | 34.89 | 38 | 33.67 | 55 | 32.94 | 72 | 32.43 | 89 | 32.05 | 06 | 31.71 |
| 5 | 37.95 | 22 | 34.79 | 39 | 33.62 | 56 | 32.91 | 73 | 32.40 | 90 | 32.03 | 107 | 1.69 |
| 6 | 37. | 23 | 34.70 | 40 | 33.57 | 57 | 32.88 | 74 | 32.38 | 91 | 32.00 | 08 | 31.67 |
| 7 | 37.22 | 24 | 34.61 | 41 | 33.52 | 58 | 32.85 | 75 | 32.36 | 92 | 31.98 | 09 | 31.65 |
| 8 | 36.93 | 25 | 34.53 | 42 | 33.4 | 59 | 32.82 | 76 | 32.34 | 93 | 31.96 | 0 | 1.63 |
| 9 | 36.67 | 26 | 34.45 | 43 | 33.42 | 60 | 32.79 | 77 | 32.32 | 94 | 31.9 | 1 | 1.61 |
| 10 | 36.44 | 27 | 34.37 | 44 | 33.38 | 61 | 32.76 | 78 | 32.30 | 95 | 31.92 | 12 | 31.59 |
| 11 | 36.2 | 28 | 34.29 | 45 | 33. | 62 | 32.73 | 79 | 32.27 | 96 | 31.90 | 13 | 31.57 |
| 12 | 36.06 | 29 | 34.22 | 46 | 33.30 | 63 | 32.70 | 80 | 32.25 | 97 | 31.88 | 14 | 31.55 |
| 13 | 35.89 | 30 | 34.15 | 47 | 33.26 | 64 | 32 | 81 | 32.2 | 98 | 31.86 | 15 | 1.54 |
| 4 | 35.73 | 31 | 34.08 | 48 | 33.22 | 65 | 32.64 | 82 | 32.20 | 99 | 31.84 | 16 | 31.53 |
| 15 | 35.59 | 32 | 34.01 | 49 | 33.18 | 66 | 32.61 | 83 | 32.1 | 100 | 31.82 | 7 | 31.52 |
| 16 | . 35. | 33 | 33.95 | 50 | 33.14 | 67 | 32.58 | 84 | 32 | 101 | 31.80 | 18 | 1.51 |
| 17 | 35.34 | 34 | 33.89 | 51 | 33.10 | 68 | 32.55 | 85 | 32.1 | 102 | 31.78 | 1 | 31.50 |
| 18 | 35.22 | 35 | 33.83 | 52 | 33.06 | 69 | 32.52 | 86 | 32.12 | 03 | 31.77 | 120 | 31.49 |
| 19 | 35.10 | 36 | 33.77 | 53 | 33.02 | 70 | 32.49 | 87 | 32.09 | 104 | 31.75 | 21 | 31.48 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Under $P$ is found the absolute terminal pressure. Under $W$, opposite the terminal pressure, is found a factor which, when multiplied by the absolute terminal pressure and divided by the mean effective pressure, will give the theoretical water consumption. From this it will be seen that the best economy is attained by a low terminal pressure combined with a high mean effective pressure, conditions which are incompatible either with underloading or overloading.

The relation between the actual and the computed water consumption of simple engines, both condensing and non-condensing, for various points of cut-off is given in the following table from the practice of the Buckeye Engine Company.

Table of Standard Engine Performance.

|  | $\frac{1}{10}$ cut-off. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean effective pressure, in pounds. |  |  | Rates, in pounds of water per indicated horse-power per hour. |  |  |  |  |
|  | $\begin{gathered} \text { Non- } \\ \text { con- } \\ \text { densing. } \end{gathered}$ | Condensing. |  | Actual. |  | Theoretical. |  | $\begin{aligned} & \text { Oi } \\ & \text { B } \end{aligned}$ |
|  |  |  |  |  | Condensing. |  | Condensing. |  |
| 40 | 3.65 | 13.65 | 6.41 | 72.0 | 38.0 | 51.4 | 16.4 | 146 |
| 45 | 5.42 | 15.42 | 7.00 | 58.5 | 35.0 | 38.5 | 16.0 | 120 |
| 50 | 7.19 | 17.19 | 7.59 | 49.0 | 33.0 | 31.9 | 15.6 | 93 |
| 55 | 8.96 | 18.96 | 8.17 | 43.5 | 31.5 | 28.1 | 15.2 | 80 |
| 60 | 10.73 | 20.73 | 8.76 | 39.0 | 30.0 | 25.3 | 14.9 | 70 |
| 65 | 12.50 | 22.50 | 9.35 | 35.7 | 28.6 | 23.3 | 14.6 | 62 |
| 70 | 14.27 | 24.27 | 9.93 | 33.0 | 27.7 | 21.8 | 14.4 | 55 |
| 75 | 16.04 | 26.04 | 10.52 | 31.0 | 26.7 | 20.6 | 14.2 | 50 |
| 80 | 17.81 | 27.81 | 11.11 | 29.0 | 26.0 | 19.7 | 14.0 | 46 |
| 85 | 19.58 | 29.58 | 11.70 | 27.5 | 25.3 | 19.0 | 13.8 | 43 |
| 90 | 21.36 | 31.36 | 12.28 | 26.0 | 24.5 | 18.4 | 13.6 | 40 |
| 95 | 23.13 | 33.13 | 12.87 | 25.0 | 23.7 | 17.9 | 13.5 | 37 |
| 100 | 24.9 | 34.9 | 13.46 | 24.0 | 23.0 | 17.5 | 13.4 | 35 |
|  | $\frac{15}{100}$ cut-off. |  |  |  |  |  |  |  |
| 40 | 9.05 | 19.05 | 9.07 | 54.0 | 30.0 | 31.3 | 16.8 | 64 |
| 45 | 11.32 | 21.32 | 9.87 | 47.0 | 28.5 | 27.7 | 16.4 | 56 |
| 50 | 13.59 | 23.59 | 10.72 | 42.0 | 27.0 | 25.3 | 16.1 | 51 |
| 55 | 15.86 | 25.86 | 11.55 | 38.0 | 26.0 | 23.4 | 15.8 | 47 |
| 60 | 18.12 | 28.12 | 12.38 | 34.5 | 25.0 | 22.1 | 15.6 | 43 |
| 65 | 20.39 | 30.39 | 13.20 | 32.0 | 24.0 | 21.1 | 15.4 | 40 |
| 70 | 22.66 | 32.66 | 14.03 | 30.0 | 23.0 | 20.3 | 15.2 | 38 |
| 75 | 24.92 | 34.92 | 14.86 | 28.0 | 22.2 | 19.5 | 15.0 | 36 |
| 80 | 27.19 | 37.19 | 15.69 | 26.0 | 21.3 | 18.8 | 14.8 | 35 |
| 85 | 29.46 | 39.46 | 16.51 | 24.5 | 20.4 | 18.4 | 14.6 | 34 |
| 90 | 31.72 | 41.72 | 17.34 | 23.0 | 19.5 | 18.0 | 14.5 | 33 |
| 95 | 33.93 | 43.93 | 18.17 | 22.0 | 18.7 | 17.6 | 14.4 | 32 |
| 100 | 36.26 | 46.26 | 19.0 | 21.0 | 18.0 | 17.3 | 14.3 | 32 |
|  | $\frac{1}{5}$ cut=off. |  |  |  |  |  |  |  |
| 40 | 13.46 | 23.46 | 11.79 | 45.0 | 24.0 | 27.9 | 17.7 | 51 |
| 45 | 16.15 | 26.15 | 12.87 | 41.5 | 23.3 | 25.7 | 17.3 | 45 |
| 50 | 18.85 | 28.85 | 13.94 | 37.0 | 22.5 | 24.0 | 16.9 | 40 |
| 55 | 21.54 | 31.54 | 15.00 | 33.6 | 21.7 | 22.7 | 16.6 | 38 |
| 60 | 24.24 | 34.24 | 16.08 | 31.0 | 21.0 | 21.7 | 16.4 | 36 |
| 65 | 26.93 | 36.93 | 17.15 | 29.0 | 20.3 | 20.9 | 16.2 | 35 |
| 70 | 29.63 | 39.63 | 18.23 | 27.5 | 19.6 | 20.2 | 16.0 | 34 |
| 75 | 32.32 | 42.32 | 19.31 | 26.0 | 19.0 | 19.6 | 15.8 | 33 |
| 80 | 35.02 | 45.02 | 20.39 | 24.5 | 18.4 | 19.1 | 15.7 | 33 |
| 85 | 37.71 | 47.71 | 21.46 | 23.3 | 18.0 | 18.7 | 15.6 | 32 |
| 90 | 40.41 | 50.41 | 22.54 | 22.0 | 17.4 | 18.4 | 15.5 | 32 |
| 95 | 43.1 | 53.1 | 23.62 | 21.0 | 16.9 | 18.1 | 15.4 | 31 |
| 100 | 45.8 | 55.8 | 24.7 | 20.0 | 16.4 | 17.8 | 15.3 | 31 |

Table of Standard Engine Performance.-Continued.

|  | $\frac{25}{100}$ or $\frac{1}{4}$ cut=off. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean effective pressure, in pounds. |  |  | Rates, in pounds of water per indicated horse-power per hour. |  |  |  |  |
|  | $\begin{aligned} & \text { Non- } \\ & \text { con- } \\ & \text { densing. } \end{aligned}$ | Condensing. |  | Actual. |  | Theoretical. |  | $\begin{aligned} & \text { 苟 } \\ & \text { 品 } \end{aligned}$ |
|  |  |  |  |  | Condensing. |  | $\begin{gathered} \text { Con- } \\ \text { densing. } \end{gathered}$ |  |
| 40 | 17.34 | 27.34 | 14.49 | 39.0 | 22.0 | 27.2 | 18.5 | 46 |
| 45 | 20.39 | 30.39 | 15.81 | 36.0 | 21.5 | 25.3 | 18.2 | 44 |
| 50 | 23.45 | 33.45 | 17.13 | 33.5 | 21.0 | 24.0 | 17.9 | 42 |
| 55 | 26.50 | 36.50 | 18.45 | 31.2 | 20.5 | 22.9 | 17.6 | 40 |
| 60 | 29.56 | 39.56 | 19.77 | 29.0 | 20.0 | 22.0 | 17.4 | 39 |
| 65 | 32.61 | 42.61 | 21.09 | 27.6 | 19.5 | 21.3 | 17.2 | 38 |
| 70 | 35.67 | 45.67 | 22.41 | 26.4 | 19.0 | 20.8 | 17.0 | 37 |
| 75 | 38.72 | 48.72 | 23.73 | 25.3 | 18.5 | 20.4 | 16.8 | 36 |
| 80 | 41.78 | 51.78 | 25.05 | 24.0 | 18.0 | 20.0 | 16.6 | 35 |
| 85 | 44.83 | 54.83 | 26.37 | 23.0 | 17.7 | 19.6 | 16.5 | 34 |
| 90 | 47.89 | 57.89 | 27.69 | 22.0 | 17.4 | 19.3 | 16.4 | 33 |
| 95 | 50.94 | 60.94 | 29.01 | 21.2 | 17.2 | 19.0 | 16.3 | 32 |
| 100 | 54.0 | 64.0 | 30.33 | 20.4 | 17.0 | 18.7 | 16.2 | 31 |
|  | $\frac{3}{10} \mathrm{cut}=\mathrm{off}$. |  |  |  |  |  |  |  |
| 40 | 20.75 | 30.75 | 17.11 | 38.0 | 22.5 | 27.0 | 19.4 | 43 |
| 45 | 24.13 | 34.13 | 18.67 | 35.0 | 22.0 | 25.5 | 19.1 | 41 |
| 50 | 27.50 | 37.50 | 20.24 | 33.0 | 21.6 | 24.3 | 18.8 | 40 |
| 55 | 30.87 | 40.87 | 21.80 | 31.2 | 21.2 | 23.3 | 18.5 | 39 |
| 60 | 34.24 | 44.24 | 23.37 | 29.5 | 20.7 | 22.5 | 18.3 | 38 |
| 65 | 37.61 | 47.61 | 24.94 | 28.2 | 20.3 | 21.9 | 18.1 | 37 |
| 70 | 40.98 | 50.98 | 26.51 | 27.0 | 19.9 | 21.4 | 17.9 | 36 |
| 75 | 44.35 | 54.35 | 28.07 | 26.0 | 19.5 | 21.0 | 17.7 | 35 |
| 80 | 47.72 | 57.72 | 29.64 | 25.0 | 19.0 | 20.6 | 17.5 | 34 |
| 85 | 51.09 | 61.09 | 31.20 | 24.0 | 18.8 | 20.2 | 17.3 | 33 |
| 90 | 54.46 | 64.46 | 32.77 | 23.0 | 18.5 | 19.9 | 17.2 | 32 |
| 95 | 57.83 | 67.83 | 34.33 | 22.2 | 18.3 | 19.6 | 17.1 | 31 |
| 100 | 61.2 | 71.2 | 35.9 | 21.5 | 18.0 | 19.4 | 17.0 | 30 |
|  | $\frac{35}{100}$ cut=off. |  |  |  |  |  |  |  |
| 40 | 23.70 | 33.70 | 19.80 | 37.0 | 24.0 | 27.5 | 20.4 | 41 |
| 45 | 27.32 | 37.32 | 21.61 | 35.2 | 23.5 | 26.3 | 20.0 | 40 |
| 50 | 30.94 | 40.94 | 23.42 | 33.7 | 23.0 | 25.3 | 19.7 | 39 |
| 55 | 34.56 | 44.56 | 25.23 | 32.0 | 22.5 | 24.4 | 19.5 | 38 |
| 60 | 38.18 | 48.18 | 27.04 | 30.4 | 22.0 | 23.6 | 19.3 | 37 |
| 60 | 41.80 | 51.80 | 28.85 | 29.3 | 21.7 | 22.9 | 19.1 | 36 |
| 70 | 45.42 | 55.42 | 30.66 | 28.0 | 21.2 | 22.3 | 18.9 | 35 |
| 75 | 49.05 | 59.05 | 32.47 | 27.0 | 20.8 | 21.8 | 18.7 | 34 |
| 80 | 52.68 | 62.68 | 34.28 | 26.0 | 20.5 | 21.4 | 18.5 | 33 |
| 85 | 56.31 | 66.31 | 36.09 | 25.4 | 20.2 | 21.1 | 18.4 | 32 |
| 90 | 59.94 | 69.94 | 37.90 | 24.0 | 20.0 | 20.8 | 18.3 | 31 |
| 95 | 63.57 | 73.57 | 39.71 | 23.2 | 19.7 | 20.6 | 18.2 | 30 |
| 100 | 67.20 | 77.20 | 41.52 | 22.3 | 19.4 | 20.4 | 18.1 | 30 |

Table of Standard Engine Performance.-Continued.

|  | $\frac{4}{10}$ cut off. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean effective pressure, in pounds. |  |  | Rates, in pounds of water per indicated horse-power per hour. |  |  |  |  |
|  | $\begin{aligned} & \text { Non- } \\ & \text { con- } \\ & \text { densing. } \end{aligned}$ | Condensing. |  | Actual. |  | Theoretical. |  | $\begin{gathered} \stackrel{0}{\vec{H}} \\ \text { H } \end{gathered}$ |
|  |  |  |  | $\begin{gathered} \text { Non- } \\ \text { con- } \\ \text { densing. } \end{gathered}$ | Condensing. |  | Condensing. |  |
| 40 | 26.22 | 36.22 | 22.44 | 38.0 | 25.0 | 28.3 | 21.4 | 40 |
| 45 | 30.08 | 40.08 | 24.49 | 36.3 | 24.6 | 26.9 | 21.1 | 39 |
| 50 | 33.95 | 43.95 | 26.55 | 34.5 | 24.3 | 25.8 | 20.8 | 38 |
| 55 | 37.81 | 47.81 | 28.60 | 33.0 | 23.8 | 25.0 | 20.5 | 37 |
| 60 | 41.68 | 51.68 | 30.66 | 31.5 | 23.5 | 24.4 | 20.2 | 36 |
| 65 | 45.54 | 55.54 | 32.71 | 30.0 | 23.0 | 23.9 | 20.0 | 35 |
| 70 | 49.41 | 59.41 | 34.77 | 29.0 | 22.7 | 23.4 | 19.8 | 34 |
| 75 | 53.27 | 63.27 | 36.82 | 28.0 | 22.3 | 23.0 | 19.6 | 33 |
| 80 | 57.14 | 67.14 | 38.88 | 27.0 | 22.0 | 22.6 | 19.4 | 32 |
| 85 | 61.00 | 71.00 | 40.93 | 26.0 | 21.7 | 22.2 | 19.3 | 31 |
| 90 | 64.87 | 74.87 | 42.99 | 25.0 | 21.5 | 21.9 | 19.2 | 30 |
| 95 | 68.73 | 78.73 | 45.04 | 24.2 | 21.2 | 21.6 | 19.1 | 29 |
| 100 | 72.6 | 82.6 | 47.1 | 23.4 | 21.0 | 21.4 | 19.0 | 29 |
|  | $\frac{1}{2}$ cut=off. |  |  |  |  |  |  |  |
| 40 | 30.50 | 40.50 | 27.78 | 41.0 | 29.5 | 28.5 | 23.4 | 39 |
| 45 | 34.75 | 44.75 | 30.33 | 39.0 | 28.8 | 27.6 | 23.1 | 38 |
| 50 | 39.00 | 49.00 | 32.88 | 37.0 | 28.3 | 26.9 | 22.8 | 37 |
| 55 | 43.25 | 53.25 | 35.43 | 35.5 | 27.9 | 26.3 | 22.5 | 36 |
| 60 | 47.50 | 57.50 | 37.98 | 34.0 | 27.5 | 25.8 | 22.2 | 35 |
| 65 | 51.75 | 61.75 | 40.52 | 32.5 | 27.1 | 25.3 | 22.0 | 34 |
| 70 | 56.00 | 66.00 | 43.07 | 31.0 | 26.7 | 24.9 | 21.8 | 33 |
| 75 | 60.25 | 70.25 | 45.61 | 30.0 | 26.3 | 24.5 | 21.6 | 32 |
| 80 | 64.50 | 74.50 | 48.16 | 29.0 | 25.8 | 24.2 | 21.5 | 31 |
| 85 | 68.75 | 78.75 | 50.70 | 28.0 | 25.4 | 23.9 | 21.4 | 30 |
| 90 | 73.00 | 83.00 | 53.25 | 27.0 | 24.9 | 23.7 | 21.3 | 30 |
| 95 | 77.25 | 87.25 | 55.79 | 26.0 | 24.5 | 23.5 | 21.2 | 29 |
| 100 | S1.5 | 91.5 | 58.34 | 25.0 | 24.0 | 23.3 | 21.1 | 29 |

The water rates given under the heading "Throt." in the tables show the number of pounds of water per indicated horse-power per hour used by throttling engines, at same (non-condensing) mean effective pressure and initial pressure as on same line.

## Standard Engine Tests.

The final report of the Committee of the American Society of Mechanical Engineers upon the standardizing of steam-engine tests (1902) contains a large amount of valuable information upon the whole subject of engine performance, and an abridgement of it is here given.

The committee recommends the heat-unit basis, believing it to be the only fundamental basis for the determination of engine performance.

The expressions of engine economy which meet all the requirements noted are the number of heat units consumed per hour, both per indicated and per brake horse-power, and these are recommended as the desired
standards of comparison. The heat-unit standard does not interfere in any way with the common terms of expressing economy of engines. The hourly weights of coal, gas, oil, or other fuel, or weight of steam consumed per horse-power, heretofore commonly employed, are additional forms of stating economy, and are none the less useful within their limitations. They should by no means be abandoned. In the scheme now presented these additional or subsidiary forms of stating economy, as applied to particular classes of engines, are suitably provided for.

The heat consumption of a steam-engine plant required for the standard test is ascertained by measuring the quantity of steam consumed by the plant, calculating the total heat of the entire quantity, and crediting this total with that portion of the heat rejected by the plant, which is utilized and returned to the boiler. The term "engine plant," as here used, should include the entire equipment of the steam plant which is concerned in the production of the power, embracing the main cylinder or cylinders; the jackets and reheaters; the air, circulating, and boiler feed pumps, if steam driven ; and any other steam-driven mechanism or auxiliaries necessary to the working of the engine.

The indicated horse-power for the proposed standard is that determined by the use of steam-engine indicators. It should be confined to the power developed in the main cylinder or cylinders, and should not include that developed in the cylinders of auxiliaries.

One of the important subsidiary forms of expressing efficiency is that based on a so-called "standard coal" unit. The assumption is made that the heat consumed by the engine is generated from coal of a fixed heat value, as implied by the term "standard coal."

The term "standard coal" refers to a coal which imparts to the steam $10,000 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. for each pound of the dry coal consumed. It is coal having a calorific value of $12,500 \mathrm{~B}$. T. U., used in what may be termed a "standard boiler," which gives an efficiency of 80 per cent. (referred to the coal). Although chosen arbitrarily, these figures, as a matter of fact, apply closely to the average coals of the United States.

In treating of the subject of engine testing as relating primarily to the determination of matters of economy, it must not be forgotten that capacity is often of even greater importance than economy: In that large class of steam engines which are required to run at a certain limited and constant speed there should be a considerable reserve of capacity beyond the rated power. It is recommended that when a steam engine is operating at its rated power at a given pressure there should be a sufficient reserve to allow a drop of at least 15 per cent. in the gauge pressure without sensible reduction in the working speed of the engine, and allow an overload at the stated pressure amounting to at least 25 per cent.

## Rules for Conducting Steam=engine Tests.

Code of 1902.

## American Society of Mechanical Engineers.

I. Object of Test.-Ascertain at the outset the specific object of the test, whether it be to determine the fulfilment of a contract guarantee, to ascertain the highest economy obtainable, to find the working economy and defects under conditions as they exist, to ascertain the performance under special conditions, to determine the effect of changes in the conditions, or to find the performance of the entire boiler and engine plant, and prepare for the test accordingly.
II. General Condition of the Plant.-Examine the engine and the entire plant concerned in the test; note its general condition and any points of design, construction, or operation which bear on the objects in view. Make a special examination of the valves and pistons for leakage by applying the working pressures with the engine at rest, and observe the quantity of steam, if any, blowing through per hour.

If the trial has for an object the determination of the highest efficiency obtainable, the valves and pistons must first be made tight, and all parts of the engine and its auxiliaries, and all other parts of the plant concerned, should be put in the best possible working condition.
III. Dimensions, etc.-Measure or check the dimensions of the cylinders in any case, this being done when they are hot. If they are much worn the average diameter should be determined. Measure also the clearance, which should be done, if possible, by filling the spaces with water previously measured, the piston being placed at the end of the stroke. If the clearance cannot be measured directly, it can be determined approximately from the working drawings of the cylinder.

Measure also the dimensions of auxiliaries and accessories; also those of the boilers, so far as concerned in attaining the objects. It is well to supplement these determinations with a sketch or sketches showing the general features and arrangement of the different parts of the plant.
IV. Coal.-When the trial involves the complete plant, embracing boilers as well as engine, determine the character of coal to be used. The class, name of the mine, size, moisture, and quality of the coal should be stated in the report. It is desirable, for purposes of comparison, that the coal should be of some recognized standard quality for the locality where the plant is situated.
V. Calibration of Instruments. - All instruments and apparatus should be calibrated and their reliability and accuracy verified by comparison with recognized standards. Such apparatus as is liable to change or become broken during a test, as gauges, indicator springs, and thermometers, should be calibrated before and after the test. The accuracy of scales should be verified by standard weights. When a water-meter is used, special attention should be given to its calibration, verifying it both before and after the trial, and, if possible, during its progress, the conditions in regard to water pressure and rate of flow being made the same in the calibrations as exist throughout the trial.
VI. Leakages of Steam, Water, etc.-In all tests except those of a complete plant made under conditions as they exist, the boiler and its connections, both steam and feed, as also the steam piping leading to the engine and its connections, should, so far as possible, be made tight. If absolute tightness cannot be obtained (in point of fact it rarely can be), proper allowance should be made for such leakage in determining the steam actually consumed by the engine. This, however, is not required where a surface condenser is used and the water consumption is determined by measuring the discharge of the air pump. In such cases it is necessary to make sure that the condenser is tight, both before and after the test, against the entrance of circulating water, or, if such occurs, to make proper correction for it, determining it under the working difference of pressure. When the steam consumption is determined by measuring the discharge of the air pump, any leakage about the valve or piston-rods of the engine should be carefully guarded against.

Make sure that there is no leakage at any of the connections with the apparatus provided for measuring and supplying the feed water which could affect the results. All connections should, so far as possible, be visible and be blanked off, and where this cannot be done satisfactory assurance should be obtained that there is no leakage either in or out.
VII. Duration of Test.-The duration of a test should depend largely upon its character and the objects in view. The standard heat test of an engine, and, likewise, a test for the simple determination of the feed-water consumption, should be continued for at least five hours, unless the class of service precludes a continuous run of so long duration. It is desirable to prolong the test the number of hours stated to obtain a number of consecutive hourly records as a guide in analyzing the reliability of the whole.

Where the water discharged from a surface condenser is measured for successive short intervals of time, and the rate is found to be uniform, the test may be of a much shorter duration than where the feed water is measured to the boiler. The longer the test with a given set of conditions the more accurate the work, and no test should be so short that it cannot be divided into several intervals which will give results agreeing substantially with each other.

The commercial test of a complete plant, embracing boilers as well as engine, should continue at least one full day of twenty-four hours, whether the engine is in motion during the entire time or not. A continuous coal
test of a boiler and engine should be of at least ten hours' duration, or the nearest multiple of the interval between times of cleaning fires.
VIII. Starting and Stopping a Test. - (a) Standard Heat Test and Feed-water Test of Engine: The engine having been brought to the normal condition of running, and operated a sufficient length of time to be thoroughly heated in all its parts, and the measuring apparatus having been adjusted and set to work, the height of water in the gauge glasses of the boilers is observed, the depth of water in the reservoir from which the feed water is supplied is noted, the exact time of day is observed, and the test held to commence. Thereafter the measurements determined upon for the test are begun and carried forward until its close. If practicable, the test may be commenced at some even hour or minute, but it is of the first importance to begin at such time as reliable observations of the water heights are obtained, whatever the exact time happens to be when these are satisfactorily determined. When the time for the close of the test arrives, the water should, if possible, be brought to the same height in the glasses and to the same depth in the feed-wat $r$ reservoir as at the beginning, delaying the conclusion of the test, if necessary, to bring about this similarity of conditions. If differences occur, the proper corrections must be made.
(b) Complete Engine and Boiler Test: For a continuous running test of combined engine or engines, and boiler or boilers, the same directions apply for beginning and ending the feed-water measurements as that just referred to under Section $a$. The time of beginning and ending such a test should be the regular time of cleaning the fires and the exact time of beginning and ending should be the time when the fires are fully cleaned, just preparatory to putting on fresh coal. In cases where there are a number of boilers, and it is inconvenient or undesirable to clean all fires at once, the time of beginning the test should be deferred until they are all cleaned and in a satisfactory state, all the fires being then burned down to a uniformly thin condition, the thickness and condition being estimated and the test begun just before firing the new coal previously weighed. The ending of the test is likewise deferred until the fires are all satisfactorily cleaned, being again burned down to the same uniformly thin condition as before, and the time of closing being taken just before replenishing the fires with new coal.

For a commercial test of a combined engine and boiler, whether the engine runs continuously for the full twenty-four hours of the day or only a portion of the time, the fires in the boilers being banked during the time when the engine is not in motion, the beginning and ending of the test should occur at the regular time of cleaning the fires, the method followed being that already given. In cases where the engine is not in continuous motion, as, for example, in textile mills, where the working time is ten or eleven hours out of the twenty-four, and the fires are cleaned and banked at the close of the day's work, the best time for starting and stopping a test is the time just before banking, when the fires are well burned down and the thickness and condition can be most satisfactorily judged. In these, as in all other cases noted, the test should be begun by observing the exact time, the thickness and condition of the fires on the grates, the height of water in the gauge glasses of the boilers, the depth of the water in the reservoir from which the feed water is supplied, and other conditions relating to the trial, the same observations being again taken at the end of the test, and the conditions in all respects being made as nearly as possible the same as at the beginning.
IX. Measurement of Heat Units Consumed by the Engine.-The measurement of the heat consumption requires the measurement of each supply of feed water to the boiler,-that is, the water supplied by the main feed pump, that supplied by auxiliary pumps, such as jacket water, water from separators, drips, etc., and water supplied by gravity or other means; also, the determination of the temperature of the water supplied from each source, together with the pressure and quality of the steam.

The temperatures at the various points should be those applying to the working conditions. The temperature of the feed water should be taken near the boiler. This causes the engine to suffer a disadvantage from the heat lost by radiation from the pipes which carry the water to the boiler, but it is, nevertheless, advisable on the score of simplicity. Such pipes
would, therefore, be considered a portion of the engine plant. This conforms with the rule already recommended for the tests of pumping engines where the duty per million heat units is computed from the temperature of the feed water taken near the boiler. It frequently happens that the measurement of the water requires a change in the usual temperature of supply. For example, where the main supply is ordinarily drawn from a hot-well in which the temperature is, say, $100^{\circ} \mathrm{F}$., it may be necessary, owing to the low level of the well, to take the supply from some source under a pressure or head sufficient to fill the weighing tanks used, and this supply may have a temperature much below that of the hot-well; possibly as low as $40^{\circ} \mathrm{F}$. The temperature to be used is not the temperature of the water as weighed in this case, but that of the working temperature of the hot-well. The working temperature in cases like this must be determined by a special test and included in the log sheets.

The heat to be determined is that used by the entire engine equipment, embracing the main cylinders and all auxiliary cylinders and mechanism concerned in the operation of the engine, including the air pump, circulating pump, and feed pumps, also the jacket and reheater, when these are used. No deduction is to be made for steam used by auxiliaries, unless these are shown by test to be unduly wasteful. In this matter an exception should be made in cases of guarantee tests where the engine contractor furnishes all the auxiliaries referred to. He should, in that case, be responsible for the whole, and no allowance should be made for inferior economy, if such exists. Should a deduction be made on account of the auxiliaries being unduly wasteful, the method of waste and its extent, as compared with the wastes of the main engine or other standard of known value, shall be reported definitely.

The steam pressure and the quality of the steam are to be taken at some point conveniently near the throttle valve. The quantity of steam used by the calorimeter must be determined and properly allowed for. (See Article XVI., on "Quality of Steam.")
X. Measurement of Feed Water or Steam Consumption of Engine, etc.-The method of determining the steam consumption applicable to all plants is to measure all the feed water supplied to the boilers, and deduct therefrom the water discharged by separators and drips, as also the water and steam which escapes on account of leakage of the boiler and its pipe connections and leakage of the steam main and branches connecting the boiler and the engine. In plants where the engine exhausts into a surface condenser, the steam consumption can be measured by determining the quantity of water discharged by the air pump, corrected for any leakage of the condenser, and adding thereto the steam used by jackets, reheaters, and auxiliaries, as determined independently. If the leakage of the condenser is too large to satisfactorily allow for it, the condenser should, of course, be repaired and the leakage again determined before making the test.

In measuring the water it is best to carry it through a tank or tanks resting on platform weighing scales suitably arranged for the purpose, the water being afterwards emptied into a reservoir beneath, from which the pump is supplied.

Where extremely large quantities of water must be measured, or in some places relatively small quantities, the orifice method of measuring is one that can be applied with satisfactory results. In this case the average head of water on the orifice must be determined, and, furthermore, it is important that means should be at hand for calibrating the discharge of the orifice under the conditions of use.

The corrections or deductions to be made for leakage above referred to should be applied only to the standard heat-unit test and tests for determining simply the steam or feed-water consumption, and not to coal tests of combined engine and boiler equipment. In the latter, no correction should be made except for leakage of valves connecting to other engines and boilers, or for steam used for purposes other than the operation of the plant under test. Losses of heat due to imperfections of the plant should be charged to the plant, and only such losses as are concerned in the working of the engine alone should be charged to the engine.

In measuring jacket water or any supply under pressure which has a temperature exceeding $212^{\circ} \mathrm{F}$., the water should first be cooled, as may be done by discharging it into a tank of cold water previously weighed, or by
passing it through a coil of pipe submerged in running and colder water, preventing thereby the loss of evaporation which occurs when such hot water is discharged into the open air.
XI. Measurement of Steam Used by Auxiliaries.-Although the steam used by the auxiliaries-embracing the air pump, circulating pump, feed pump, and any other apparatus of this nature, supposing them to be steam-driven, also the steam jackets, reheaters, etc., which consume steam required for the operation of the engine-is all included in the measurement of the steam consumption, as pointed out in Article X., yet it is highly desirable that the quantity of steam used by the auxiliaries, and in many cases that used by each auxiliary, should be determined exactly, so that the net consumption of the main engine cylinders may be ascertained and a complete analysis made of the entire work of the engine plant. Where the auxiliary cylinders are non-condensing, the steam consumption can often be measured by carrying the exhaust for the purpose into a tank of cold water resting on scales or through a coil of pipe surrounded by cold running water. Another method is to run the auxiliaries as a whole, or one by one, from a spare boiler (preferably a small vertical one), and measure the feed water supplied to this boiler. The steam used by the air and circulating pumps may be measured by running them under, as near as possible, the working conditions and speed, the main engine and other auxiliaries being stopped, and testing the consumption by the measuring apparatus used on the main trial. For a short trial, to obtain approximate results, measurement can be made by the water gauge-glass method, the feed supply being shut off. When the engine has a surface condenser, the quantity of steam used by the auxiliaries may be ascertained by allowing the engine alone to exhaust into the condenser, measuring the feed water supplied to the boiler and the water discharged by the air pump, and subtracting one from the other, after allowing for losses by leakage.
XII. Coal Measurement.-(a) Commercial Tests: In commercial tests of the combined engine and boiler equipment, or those made under ordinary conditions of commercial service, the test should, as pointed out in Article VII., extend over the entire period of the day, -that is, twenty-four hours,-or a number of days of that duration. Consequently, the coal consumption should be determined for the entire time. If the engine runs but a part of the time, and during the remaining portion the fires are banked, the measurement of coal should include that used for banking. It is well, however, in such cases, to determine separately the amount consumed during the time the engine is in operation and that consumed during the period while the fires are banked, so as to have complete data for purposes of analysis and comparison, using suitable precautions to obtain reliable measurements. The measurement of coal begins with the first firing, after cleaning the furnaces and burning down at the beginning of the test, as pointed out in Article VIII., and ends with the last firing, at the expiration of the allotted time.
(b) Continuous Running Tests: In continuous running tests which, as pointed out in Article VII., cover one or more periods which elapse between the cleaning of the fires, the same principle applies as that mentioned under the above heading ( $a$ ),-viz., the coal measurement begins with the first firing, after cleaning and burning down, and the measurement ends with the last firing, before cleaning and burning down at the close of the trial.
(c) Coal Tests in General: When not otherwise specially understood, a coal test of a combined engine and boiler plant is held to refer to the commercial test above noted, and the measurement of coal should conform thereto.

In connection with coal measurements, whatever the class of tests, it is important to ascertain the percentage of moisture in the coal, the weight of ashes and refuse, and, where possible, the approximate and ultimate analysis of the coal, following all the methods and details advocated in the latest report of the Boiler Test Committee of the Society. (See "Transactions of the American Society of Mechanical Engineers," Volume XXI., page 34.)
(d) Other Fucls than Coal: For all other solid fuels than coal the same directions in regard to measurement should be followed as those given for coal. If the boilers are run with oil or gas, the measurements relating to
stopping and starting are much simplified, because the fuel is burned as fast as supplied and there is no body of fuel constantly in the furnace, as in the case of using solid fuel. When oil is used it should be weighed, and when gas is used it should be measured in a calibrated gas-meter or a gasometer.
XIII. Indicated Horse=power. - The indicated horse-power should be determined from the average mean effective pressure of diagrams taken at intervals of twenty minutes, and at more frequent intervals if the nature of the test makes this necessary, for each end of each cylinder. With variable loads, such as those of engines driving generators for electric railroad work, and of rubber-grinding and rolling-mill engines, the diagrams cannot be taken too often. In cases like the latter, one method of obtaining suitable averages is to take a series of diagrams on the same blank card without unhooking the driving cord, and apply the pencil at successive intervals of ten seconds until two minutes' time or more has elapsed, thereby obtaining a dozen or more indications in the time covered. This tends to insure the determination of a fair average for that period. In taking diagrams for variable loads, as, indeed, for any load, the pencil should be applied long enough to cover several successive revolụtions, so that the variations produced by the action of the governor may be properly recorded. To determine whether the governor is subject to what is called "racing" or "hunting," a "rariation diagram" should be obtained, -that is, one in which the pencil is applied a sufficient time to cover a complete cycle of variations. When the governor is found to be working in this manner the defect should be remedied before proceeding with the test.

It is seldom necessary, as far as average power measurements are concerned, to obtain diagrams at precisely the same instant ac the two ends of the cylinder, or at the same instant on all the cylinders, when there are more than one. All that is required is to take the diagrams at regular intervals. Should the diagrams vary so much among themselves that the average may not be a fair one, it signifies that they should be taken more frequently, and not that special care should be employed to obtain the diagrams of each set at precisely the same time. When diagrams are taken during the time when the engine is working up to speed at the start, or when a study of valve setting and steam distribution is being made, they should be taken at as nearly the same time as practicable. In cases where the diagrams are to be taken simultaneously, the best plan is to have an operator stationed at each indicator. This is desirable, even where an electric or other device is employed to operate all the instruments at once, for, unless there are enough operators, it is necessary to open the indicatorcocks some time before taking the diagrams and run the risk of clogging the pistons and heating the high-pressure springs above the ordinary working temperature.

The most satisfactory driving rig for indicating seems to be some form of well-made pantagraph, with driving cord of fine annealed wire leading to the indicator. The reducing motion, whatever it may be, and the connections to the indicator should be so perfect as to produce diagrams of equal lengths when the same indicator is attached to either end of the cylinder, and produce a proportionate reduction of the motion of the piston at every point of the stroke, as proved by test.

The use of a three-way cock and a single indicator connected to the two ends of the cylinder is not advised, except in cases where it is impracticable to use an indicator close to each end. If a three-way cock is used the error produced should be determined and allowed for.

To determine the average power developed in cases where the engine starts from rest during the progress of the trial, as in a commercial test of a plant where the engine runs only a portion of the twenty-four hours, a number of diagrams should be taken during the period of getting up speed and applying the working load, the corresponding speed for each set of diagrams being counted. The power shown by these diagrams for the proportionate time should be included in the average for the whole run, and the duration should be the time the throttle valve is open.
XIV. Testing Indicator Springs.-To make a perfectly satisfactory comparison of indicator springs with standards, the calibration should be made, if this were practical, under the same conditions as those pertaining
to their ordinary use. Owing to the fact that the pressure of the steam in the indicator cylinder and the corresponding temperature are undergoing continual changes, it becomes almost impossible to compare the springs with any standard under such conditions. There must be a constant pressure during the time that the comparison is being made. Although the best that can be done is not altogether satisfactory, it seems that we must be content with it. To bring the conditions as nearly as possible to those of the working indicator, the steam should be admitted to the indicator as short a time as practicable for each of the pressures tried, and then the indicator cock should be closed and the steam exhausted therefrom before another pressure is tried. By this means the parts are heated and cooled somewhat the same as under the working conditions. We recommend, therefore, that for each required pressure the first step be to open and close the indicator cock a number of times in quick succession, then to quickly draw the line on the paper for the desired record, observing the gauge or other standard at the instant when the line is drawn. A corresponding atmospheric line is taken immediately after obtaining the line at the given pressure, so as to eliminate any difference in the temperature of the parts of the indicator. This appears to be a better method (although less readily carried on and requiring more care) than the one heretofore more commonly used, where the indicator cock is kept continually open and the pressure is gradually rising or falling through the range of comparison.

The calibration should be made for at least five points, two of these being for the pressures corresponding as near as may be to the initial and back pressures, and three for intermediate points equally distant.

For pressures above the atmosphere the proper standard recommended is the dead-weight testing apparatus or a reliable mercury column, or an accurate steam gauge proved correct, or of known error, by either of these standards. For pressures below the atmosphere the best standard to use is a mercury column.

The correct scale of spring to be used for working out the mean effective pressure of the diagrams should be the average based on the calibration.
XV. Brake Horse=power.-This term applies to the power delivered from the fly-wheel shaft of the engine. It is the power absorbed by a friction brake applied to the rim of the wheel or to the shaft. A form of brake is preferred that is self-adjusting to a certain extent, so that it will, of itself, tend to maintain a constant resistance at the rim of the wheel. One of the simplest brakes for comparatively small engines which may be made to embody this principle consists of a cotton or hemp rope, or a number of ropes, encircling the wheel, arranged with weighing scales or other means for showing the strain. An ordinary band brake may also be constructed so as to embody the principle. The wheel should be provided with interior flanges for holding water used for keeping the rim cool.

The water-friction brake is considered most satisfactory, not only for small powers but for large powers. It is especially adapted for high speeds, and has the advantage of being self-cooling.
XVI. Quality of Steam.-When ordinary saturated steam is used its quality should be obtained by the use of a throttling calorimeter attached to the main steam pipe near the throttle valve. When the steam is superheated the amount of superheating should be found by the use of a thermometer placed in a thermometer-well filled with mercury, inserted in the pipe. The sampling pipe for the calorimeter should, if possible, be attached to a section of the main pipe having a vertical direction, with the steam preferably passing upward, and the sampling nozzle should be made of a half-inch pipe having at least twenty $1 / 8$-inch holes in its perforated surface. The readings of the calorimeter should be corrected for radiation of the instrument, or they should be referred to a normal reading. If the steam is superheated, the amount of superheating should be obtained by referring the reading of the thermometer to that of the same thermometer when the steam within the pipe is saturated, and not by taking the difference between the reading of the thermometer and the temperature of saturated steam at the observed pressure as given in a steam table.
XVII. Speed.-There are several reliable methods of ascertaining the speed, or the number of revolutions of the cngine crank-shaft per minute. The simplest is the familiar method of counting the number of turns for a
period of one minute, with the eye fixed on the second-hand of a timepiece. Another is the use of a counter held for a minute or a number of minutes against the end of the main shaft. Another is the use of a reliable calibrated tachometer held likewise against the end of the shaft. The most reliable method, and the one we recommend, is the use of a continuous recording engine register or counter, taking the total reading each time that the general test data are recorded, and computing the revolutions per minute corresponding to the difference in the readings of the instrument. When the speed is above 250 revolutions per minute it is almost impossible to make a satisfactory counting of the revolutions without the use of some form of mechanical counter.

The determination of variation of speed during a single revolution, or the effect of the fluctuation due to sudden changes of the load, is also desirable, especially in engines driving electric generators used for lighting purposes. There is at present no recognized standard method of making such determinations, and, if such are desired, the method employed may be devised by the person making the test and described in detail in the report.
XVIII. Recording the Data.-Take note of every event connected with the progress of the trial, whether it seems at the time to be important or unimportant. Record the time of every event and time of taking every weight and every observation. Observe the pressures, temperatures, water heights, speeds, etc., every twenty or thirty minutes when the conditions are practically uniform, and at much more frequent intervals if the conditions vary. Observations which concern the feed-water measurement should be made with special care at the expiration of each hour of the trial, so as to divide the tests into hourly periods and show the uniformity of the conditions and results as the test goes forward. Where the water discharged from a surface condenser is weighed, it may be advisable to divide the test by this means into periods of less than one hour.

The data and observations of the test should be kept on properly-prepared blanks or in note-books containing columns suitably arranged for a clear record. As different observers have their own individual ideas as to how such records should be kept, no special form of log sheet is given as a necessary part of the code.
XIX. Uniformity of Conditions.-In a test having for an object the determination of the maximum economy obtainable from an engine, or where it is desired to ascertain with special accuracy the effect of predetermined conditions of operation, it is important that all the conditions under which the engine is operated should be maintained uniformly constant. This requirement applies especially to the pressure, the speed, the load, the rate of feeding the various supplies of water, the height of water in the gauge glasses, and the depth of water in the feed-water reservoir.
XX. Analysis of Indicator Diagrams.-(a) Steam Accounted for by the Indicator: The simplest method of computing the steam accounted for by the indicator is the use of the formula,

$$
M=\frac{13750}{\mathrm{M.E.P.}}[(C+E) \times W c-(H+E) \times W h]
$$

which gives the weight, in pounds, per indicated horse-power per hour. In this formula the symbol "M. E. P." refers to the mean effective pressure. In multiple-expansion engines this is the combined mean effective pressure referred to the cylinder in question. The symbol $C$ refers to the proportion of the stroke completed at points on the expansion line of the diagram near the actual cut-off or release, the symbol $H$ to the proportion of compression, and the symbol $E$ to the proportion of clearance, all of which are determined from the indicator diagram. The symbol Wc refers to the weight of 1 cubic foot of steam at the cut-off or release pressure, and the symbol Wh to the weight of 1 cubic foot of steam at the compression pressure, these weights being taken from steam tables of recognized accuracy. The points near the cut-off and release on the expansion line, and the point on the compression line, are located as shown on the sample diagram. They are the points in the case of the expansion and compression lines of the diagram which mark the complete closure of the valve. The
point near the cut-off, for example, lies where the curve of expansion begins after the rounding of the diagram due to the wire-drawing, which occurs while the valve is closing. This cut-off may be located by finding the point where the curve is tangent to a hyperbolic curve.


Atmospheric line Standard Engine Tests Showing Points where "Steam Accounted for by Indicator"' is Computed.

Should the point in the compression curve be at the same height as the point in the expansion curve, then $W c=W h$, and the formula becomes

$$
\frac{13750}{\text { M. E. P. }} \times(C-H) \times W c
$$

in which $(C-H)$ represents the distance between the two points divided by the length of the diagram.

When the load and all other conditions are substantially uniform, it is unnecessary to work up the steam accounted for by the indicator from all the diagrams taken. Five or more sample diagrams may be selected and the computations based on the samples instead of on the whole.
(b) Sample Indicator Diagrams: In order that the report of a test may afford complete information regarding the conditions of the test, sample indicator diagrams should be selected from those taken and copies appended to the tables of results. In cases where the engine is of the multi-ple-expansion type, these sample diagrams may also be arranged in the form of a "combined" diagram.
(c) The Point of Cut-off: The term "cut-off," as applied to steam engines, although somewhat indefinite, is usually considered to be at an earlier point in the stroke than the beginning of the real expansion line. That the cut-off point may be defined in exact terms for commercial purposes, as used in steam-engine specifications and contracts, the Committee recommends that, unless otherwise specified, the commercial cut-off, which seems

to be an appropriate expression for this term, be ascertained as follows: through a point showing the maximum pressure during admission draw a line parallel to the atmospheric line. Through the point on the expansion line, near the actual cut-off, referred to in Section XX. (a), draw a hyperbolic curve. The point where these two lines intersect is to be considered the commercial cut-off point. The percentage is then found by dividing the
length of the diagram measured to this point by the total length of the diagram, and multiplying the result by 100.

The principle involved in locating the commercial cut-off is shown in the preceding diagrams, the first of which represents a diagram from a slow-speed Corliss engine, and the second a diagram from a single-valve, high-speed engine. In the latter case, where, owing to the fling of the pencil, the steam line vibrates, the maximum pressure is found by taking a mean of the vibrations at the highest point.

The commercial cut-off, as thus determined, is situated at an earlier point of the stroke than the actual cut-off used in computing the "steam accounted for"' by the indicator and referred to in Section XX. (a).
(d) Ratio of Expansion: The "commercial" ratio of expansion is the quotient obtained by dividing the volume corresponding to the piston displacement, including clearance, by the volume of the steam at the commercial cut-off, including clearance. In a multiple-expansion engine the volumes are those pertaining to the low-pressure cylinder and high-pressure cylinder, respectively.

The "ideal" ratio of expansion is the quotient obtained by dividing the volume of the piston displacement by the volume of the steam at the cut-off (the latter being referred to the throttle-valve pressure), less the volume equivalent to that re-
 tained at compression. In a multiple-expansion engine the volumes to be used are those pertaining to the low-pressure cylinder and high-pressure cylinder, respectively.
(e) Diagram Factor: The diagram factor is the proportion borne by the actual mean effective pressure measured from the indicator diagram to that of a diagram in which the various operations of admission, expansion, release, and compression are carried on under assumed conditions. The factor recommended refers to an ideal diagram which represents the maximum power obtainable from the steam accounted for by the indicator diagrams at the point of cut-off, assuming, first, that the engine has no clearance; second, that there are no losses through wire-drawing the steam either during the admission or the release; third, that the expansion line is a hyperbolic curve; and fourth, that the initial pressure is that of the boiler and the back pressure that of the atmosphere for a noncondensing engine, and of the condenser for a condensing engine.

The diagram factor is useful for comparing the steam distribution losses in different engines, and is of special use to the engine designer, for by multiplying the mean effective pressure obtained from the assumed theoretical diagrams by it he will obtain the actual mean effective pressure that should be developed in an engine of the type considered. The expansion and compression curves are taken as hyperbolas, because such curves are ordinarily used by engine builders in their work, and a diagram based on such curves will be more useful to them than one where the curves are constructed according to a more exact law.

In cases where there is a considerable loss of pressure between the boiler and the engine, as where steam is transmitted from a central plant to a number of consumers, the pressure of the steam in the supply main should be used in place of the boiler pressure in constructing the diagrams.
XXI. Standards of Economy and Efficiency.-The hourly consumption of heat, determined by employing the actual temperature of the feed water to the boiler, as pointed out in Article IX. of the Code, divided by the indicated and brake horse-power,-that is, the number of heat units consumed per indicated and per'brake horse-power per hour are the standards of engine efficiency recommended by the Committec. The consumption per hour is chosen rather than the consumption per minute, so as to conform with the designation of time applied to the more familiar units of coal and water measurement, which have heretofore been used. The British standard, where the temperature of the feed water is taken as that corresponding to the temperature of the back-pressure stcam, allowance
being made for any drips from jackets or reheaters, is also included in the tables.

It is useful in this connection to express the efficiency in its more scientific form, or what is called the "thermal efficiency ratio." The thermal efficiency ratio is the proportion which the heat equivalent of the power developed bears to the total amount of heat actually consumed, as determined by test. The heat converted into work, represented by 1 horsepower, is $1,980,000$ foot-pounds per hour, and this, divided by 778 , equals 2545 B.T. U. Consequently, the thermal efficiency ratio is expressed by the fraction

2545
B. T. U. per horse-power per hour .
XXII. Heat Analysis.-For certain scientific investigations it is useful to make a heat analysis of the diagram to show the interchange of heat from steam to cylinder walls, etc., which is going on within the cylinder. This is unnecessary for commercial tests.
XXIII. Temperature= entropy Diagram. - The study of the heat analysis is facilitated by the use of the temperature-entropy diagram, in which areas represent quantities of heat, the coördinates being the absolute temperature and entropy. Such a diagram is here given. When the quantity given in the steam tables is plotted, two curves, $A A$ and $B B$, are obtained which may be termed the water line and the steam line, $A A$ being the logarithmic curve if the specific heat of the water is taken as constant. The diagram refers to a unit weight of the agent, and the heat necessary to raise a pound of water from the temperature, ma, to the temperature, $p a^{\prime}$, and evaporate it at that temperature, is represented by the area, $a a^{\prime} b^{\prime} q m$. If the steam be now expanded adiabatically, the temperature will fall to $q s$, and $x$ per cent. $=\frac{a s}{a b}$ will remain as steam, the rest being liquefied. If the steam is now rejected, it carries away with it the heat, sqma, the work area being $a^{\prime} b^{\prime} s a$, from which must be deducted the work, $w$ (expressed in heat units), to pump a pound of water into the boiler. The efficiency of this cycle is evidently

$$
\frac{h+L_{1}-x L_{2}-w}{h+L_{1}}
$$

in which

$$
x=\frac{a r+a^{\prime} b^{\prime}}{a b}=\frac{\log \cdot \frac{T_{1}}{T_{2}}+\frac{L_{1}}{T_{1}}}{\frac{L_{2}}{T_{2}}}
$$

By the action of the walls a portion of the steam is liquefied prior to the expansion, which, therefore, begins at $e$; and since the cooling action of the walls continues, the expansion line falls off to ef, from which point a reverse action takes place and the expansion line bends over to $g$. Finally, since the release takes place before the condenser temperature is reached, the heat rejection starts at $g$, following a line of equal volume until the exhaust-port temperature is reached at $j$. If enough heat is added during expansion to keep the steam theoretically saturated,-as, for example, by a water jacket,-such additional heat is represented by the area, $b^{\prime} b n q$, and the additional work obtained by the triangle, $b^{\prime} b s$. If the steam is superheated sufficiently to give by expansion theoretically dry steam at the end, such additional heat is represented by the area, $b^{\prime} v n q$, and the additional work by $b^{\prime} \imath b s$. Neither of these extra amounts of work are realized in practice, and it is evident from the diagram that the heat thus applied is in both cases less efficient than in the principal cycle. Nevertheless, the action in each case is to bring the point, $e$, nearer the point, $b^{\prime}$, and to effect a notable net economy.

The Carnot cycle would be obtained if in the Rankine cycle the rejection of heat were stopped at $r$ and the temperature of the mixture raised to $a^{\prime}$ by compression. This cannot be practically accomplished, but a system of feed-water heaters has been suggested and exemplified in the Nordberg engine, which is theoretically a close equivalent to it. Where steam is expanded in, say, three cylinders, the feed water may be successively heated from the receiver intermediate between each pair, the


Temperature-entropy Diagram. effect of which is illustrated in the above diagram. The expansion line follows the heavy line, being carried over to $y$ by the first feed-water heater and to $y^{\prime}$ by the second feed-water heater. With an infinite number of such feed-water heaters the line, $y y^{\prime}$, would be parallel to $a a^{\prime}$, and the cycle equivalent to that of Carnot.

## XXIV. Ratio of Economy of an Engine to that of an Ideal

 Engine.-The ideal engine recommended for obtaining this ratio is that which was adopted by the Committee appointed by the Civil Engineers of London to consider and report a standard thermal efficiency for steam engines. This engine is one which follows the Rankine cycle, where steam at a constant pressure is admitted into the cylinder with no clearance, and, after the point of cut-off, is expanded adiabatically to the back pressure. In obtaining the economy of this engine the feed water is assumed to bereturned to the boiler at the exhaust temperature. Such a cycle is preferable to the Carnot for the purpose at hand, because the Carnot cycle is theoretically impossible for an engine using superheated steam produced


Curves showing British Thermal Units Expended per Minute per Indicated Horse-power by the Ideal Steam Engine, forming part of the Rankine Cycle. (From the Minutes of Proceedings of the Civil Engineers of London.) Temperatures are expressed in degrees Fahrenheit. The upper and lower portions of the upper diagram are to different scales. This is in order that the lower and more important part may be read more easily, and accounts for the cusps in the curves.
at a constant pressure, and the gain in efficiency for superheated steam corresponding to the Carnot efficiency will be much greater than that possible for the actual cycle.

The economy of the ideal engine recommended can be readily obtained from the accompanying chart, which has been copied from the report already mentioned of the Committee appointed by the Civil Engineers of London.

In the chart, $t_{\alpha}$ represents the temperature of saturated steam at the boiler pressure, in degrees Fahrenheit; tas, that of the steam furnished to the engine, should there be superheating; $t_{e}$, that of the exhaust. The British thermal units consumed per minute per indicated horse-power by the ideal engine can be read off directly from the curves given in the upper portion of the diagram. Thus, if the temperature of the exhaust, $t_{e}$, is $212^{\circ} \mathrm{F}$., and the temperature of the steam at boiler pressure is $350^{\circ} \mathrm{F}$., the heat consumption is 265 B. T. U. per indicated horse-power per minute. If the steam is superheated, the figure obtained as just described is corrected by employing the factor obtained from the lower part of the diagram. Opposite the temperature of saturation, corresponding to the pressure in the boiler. and on the curve corresponding to the temperature of superheated steam, $t_{a s}$, is found a coefficient. This coefficient, multiplied by the exhaust temperature and by the heat consumption per minute obtained,-should there be no superheating,-gives the deduction to be made on account of the superheating. Thus, if the temperature of the superheated steam is $500^{\circ} \mathrm{F}$. in the case already considered for saturated steam, we find, opposite 350 degrees for $t_{a}$ and on the curve for $t_{a s}=500$ degrees, the coefficient, 0.00015 . This gives the correction, $0.00015 \times 265=$ $8.5 \mathrm{~B} . \mathrm{T} . \mathrm{U}$; and the heat consumption of the engine, when furnished with superheated steam, will be $265-8.5=256.5 \mathrm{~B}$. T. U. per indicated horsepower per minute.

The ratio of the economy of an engine to that of the ideal engine is obtained by dividing the heat consumption per indicated horse-power per minute for the ideal engine by that of the actual engine.
XXV. Miscellaneous. - In the case of tests of combined engine and boiler plants, where the full data of the boiler performance is to be determined, reference should be made to the directions given by the Boiler-test Committee of the Society, Code of 1899. (See "Transactions of the American Society of Mechanical Engineers," Volume XXI., page 34.)

In tests made for scientific research, and in those made on special forms of engines, the line of procedure must be varied according to the special objects in view; and it has been deemed unnecessary to go into particulars applying to such tests.

In testing steam pumping engines and locomotives, in accordance with the standard methods of conducting such tests recommended by the committees of the Society, reference should be made to the reports of those committees in the "Transactions," Volume XII., page 530, and in Volume XIV., page 1312.
XXVI. Report of Test.-The data and results of the test should be reported in the manner and in the order outlined in one of the following tables, the first of which gives, it is hoped, a complete summary of all the data and results as applied not only to the standard heat-unit test, but also to tests of combined engine and boiler for determining all questions of performance, whatever the class of service; the second refers to a short form of report giving the necessary data and results for the standard heat test; and the third to a short form of report for a feed-water test. It is the intention that the tables should be full enough to apply to any type of engine, but where not so, or where special data and results are determined, additional results may be inserted under the appropriate headings. Although these forms are arranged so as to be used for expressing the principal data and results of tests of pumping engines and locomotives, as well as for all other classes of steam engines, it is not the intention that they shall supplant the forms recommended by the committees on Duty Trials and Locomotives in cases where the full report of a test of such engines is desired.

## Data and Results of Standard Heat Test of Steam Engine.

Arranged according to the Short Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902.

1. Made by of.
on engine located at to determine
2. Date of trial
3. Type and class of engine ; also of condenser
1st Cyl. 2d Cyl. 3d Cyl.
4. Dimensions of main engine:
(a) Diameter of cylinder, in inches.
(b) Stroke of piston, in feet.
(c) Diameter of piston-rod, in inches.
(d) Average clearance, in per cent ...
(e) Ratio of volume of cylinder to high-pressure cylinder
( $f$ ) Horse-power constant for 1 pound mean effective pressure and 1 revolution per minute.
5. Dimensions and type of auxiliaries

## Total Quantities, Time, Etc.

6. Duration of test........................................................
7. Total water fed to boilers from main source of supply. lbs.
8. Total water fed from auxiliary supplies :

9. Total water fed to boilers from all sources............... lbs.
10. Moisture in steam or superheating near throttle ....... per cent. or deg.
11. Factor of correction for quality of steam.
12. Total dry steam consumed for all purposes
lbs.

## Hourly Quantities.

13. Water fed from main source of supply.................. . lbs.
14. Water fed from auxiliary supplies:
(a)........................................................... 1 lbs.

15. Total water fed to boilers per hour .......................... lbs.
16. Total dry steam consumed per hour ....................................
17. Loss of steam and water per hour due to drips from main steam pipes and to leakage of plant.... lbs.
18. Net dry steam consumed per hour by engine and auxiliaries.
lbs.

## Pressures and Temperatures (Corrected).

19. Pressure in steam pipe near throttle, by gauge lbs. per sq. in.
20. Barometric pressure of atmosphere, in inches of mer-curyins.
21. Pressure in receivers, by gauge ..... lbs. per sq. in.
22. Vacuum in condenser, in inches of mercury ..... ins.
23. Pressure in jackets and reheaters, by gauge ..... lbs. per sq. in.
24. Temperature of main supply of feed water. ..... deg. Fahr.
25. Temperature of auxiliary supplies of feed water :
(a) deg. Fahr.
(b) ..... deg. Fahr.
(c) ..... deg. Fahr.
26. Ideal feed-water temperature, corresponding to pressure of steam in the exhaust pipe, allowance being made for heat derived from jacket or reheater drips

deg. Fahr.

## Data Relating to Heat Measurement.

27. Heat units per pound of feed water, main supply ..... B. T. U.
28. Heat units per pound of feed water, auxiliary supplies:
(a)
B.T.U.
(b)
B.T.U.
B. T. U.
29. Heat units consumed per hour, main supply .......................
30. Heat units consumed per hour, auxiliary supplies :

31. Total heat units consumed per hour for all purposes.. B.T. U.
32. Loss of heat per hour due to leakage of plant, drips, etc.
B.T.U.
33. Net heat units consumed per hour :

34. Heat units consumed per hour by engine alone, reckoned from temperature given in line 26
B.T.U.

## -Indicator Diagrams.

35. Commercial cut-off, in per cent. of stroke.
36. Initial pressure, in pounds, per square inch above atmosphere.
37. Back pressure at mid-stroke, above or below atmosphere, in pounds, per square inch
38. Mean effective pressure, in pounds, per square inch
39. Equivalent mean effective pressure, in pounds, per square inch :
(a) Referred to first cylinder.
(b) Referred to second cylinder.
(c) Referred to third cylinder.
40. Pressures and percentages used in computing the steam accounted for by the indicator diagrams, measured to points on the expansion and compression curves.
Pressure above zero, in pounds, per square inch :
(a) Near cut-off
(b) Near release
(c) Near beginning of compression

Percentage of stroke at points where pressures are measured:
(a) Near cut-off
(b) Near release
(c) Near beginning of compression
41. Steam accounted for by indicator, in pounds, per indicated horsepower per hour :
(a) Near cut-off
(b) Near release
42. Ratio of expansion:
(a) Commercial
(b) Ideal

Speed.
43. Revolutions per minute

## Power.

44. Indicated horse-power developed by main enginc cylinders :
First cylinder H. P.
Second cylinder ..... H. P.
Third cylinder ..... H. P.
H. P
45. Brake horse-power developed by engine ..... H. P.
Standard Efficiency and other Results.*
46. Heat units consumed by engine and auxiliaries per hour :
(a) Per indicated horse-power ..... B.T. U.
(b) Per brake horse-power
(b) Per brake horse-power ..... B. T. U. ..... B. T. U.
47. Equivalent standard coal, in pornds, per hour:(a) Per indicated horse-powerlbs.
(b) Per brake horse-power ..... lbs.
48. Heat units consumed by main engine per hour, corresponding to ideal maximum temperature of feed water given in line 26:
(a) Per indicated horse-power ..... B.T.U.
(b) Per brake horse-power
lbs.
(a) Main cylinders, including jackets
lbs.
lbs.
(b) Auxiliary cylinders ..... lbs.
49. Dry steam consumed per brake horse-power per hour :
(a) Main cylinders, including jackets ..... lbs.
(b) Auxiliary cylinders ..... lbs.
(c) Engine and auxiliaries. ..... lbs.
50. Percentage of steam used by main engine cylinders accounted for by indicator diagrams, near cut-off of high- pressure cylinder ..... per cent.

## Additional Data.

Add any additional data bearing on the particular objects of the test or relating to the special class of service for which the engine is used. Also give copies of indicator diagrams nearest the mean and the corresponding scales.

## Data and Results of Feed=water Test of Steam Engine.

Arranged according to the Short Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902.

1. Made by on engine located at to determine
2. Date of trial
3. Type of engine (simple, compound, or other multiple-expansion ; condensing or non-condensing)
4. Class of engine (mill, marine, locomotive, pumping, ele..................................................... or other).
5. Rated power of engine

6. Number and arrangement of cylinders of engine ; how lagged; type of valves and of condensers

[^17]8. Dimensions of engine(a) Single or double acting(b) Cylinder dimensions:
Bore, in inches
Stroke, in feet.Diameter of piston-rod, in inches.Diameter of tail-rod, in inches.
(c) Clearance, in per cent. of volume,displaced by piston per stroke:Head endCrank endAverage
(d) Ratio of volume of each cylinder to volume of high-pressure cylinder
(e) Horse-power constant for 1 pound mean effective pressure and 1 revolution per minute

## Total Quantities, Time, Etc.

9. Duration of test
hours.


## 11. Water fed from auxiliary supplies:


(c)
lbs.


15. Total dry steam consumed for all purposes ................ lbs.

## Hourly Quantities.

16. Water fed from main source of supply................... liss.
17. Water fed from auxiliary supplies:


18. Total water fed to boilers per hour ......................... . lbs.
19. Total dry steam eonsumed per hour ........................ lbs.
20. Loss of steam and water per hour due to leakage of $\begin{aligned} & \text { plant, drips, etc.......................................... }\end{aligned}$

21. Dry steam consumed per hour:
(a) Main cylinders..................................... lbs.
(b) Jackets and reheaters
lbs.
Pressures and Temperatures (Corrected).
22. Steam-pipe pressure near throttle, by gauge........... lbs. per sq. in.
23. Barometric pressure of atmosphere, in inches of mer-
cury.$\ldots \ldots \ldots$. .................................... ins.
24. Pressure in first receiver, by gauge ......................... lbs. per sq. in.
25. Pressure in second receiver, by gauge ..................... lbs. per sq. in.
26. Vacuum in condenser:
(a) In inches of mercury .................................. ins.
(b) Corresponding total pressure
lbs. per sq. in.
27. Pressure in steam jackets, by gauge
lbs. per sq. in.
28. Pressure in reheater, by gauge............................. lbs. per sq. in.
29. Superheating of steam in first receiver.................... deg. Fahr.
30. Superheating of steam in second receiver ................. deg. Fahr.
[^18]
## Indicator Diagrams.

1st Cyl. 2d Cyl. 3d Cyl.
32. Commercial cut-off, in per cent., of stroke.
33. Initial pressure, in pounds, per square inch above atmosphere
34. Back pressure at mid-stroke above or below atmosphere, in pounds, per square inch
35. Mean effective pressure, in pounds, per square inch
36. Equivalent mean effective pressure, in pounds, per square inch per indicated horse-power
(a) Referred to first cylinder.
(b) Referred to second cylinder.
(c) Referred to third cylinder.
37. Pressures and percentages used in computing the steam accounted for by the indicator diagrams, measured to points on the expansion and compression curves
Pressures above zero, in pounds, per square inch:
(a) Near cut-off
(b) Near release
(c) Near beginning of compression....

Percentage of stroke at points where pressures are measured :
(a) Near cut-off
(b) Near release
(c) Near beginnin.........................
38. Aggregate mean effective pressure, in pounds, per square inch referred to each cylinder given in heading
39. Mean back pressure above zero
40. Steam accounted for, in pounds, per indicated horse-power per hour :
(a) Near cut-off
(b) Near release
41. Ratio of expansion:
(a) Commercial
(b) Ideal

## Speed.

42. Revolutions per minute rev.
43. Piston speed per minute ft.

## Power.

44. Indicated horse-power developed by main engine cylinders :
First cylinder
H. P.
Second cylinder
H. $P$.
Third cylinder
H. P .
Total
H. P.

## Efficiency Results.

45. Dry steam consumed per indicated horse-power per hour :
(a) Main cylinder, including jackets lbs.
(b) Auxiliary cylinders, etc lbs.
(c) Engine and auxiliaries
lbs.
46. Percentage of steam used by main engine cylinders accounted for by indicator diagrams:
1st Cyl. 2d Cyl. 3d Cyl.
(a) Near cut-off
(b) Near release

## Sample Diagrams.

Copies of indicator diagrams nearest the mean, with corresponding scales, should be given in connection with table.



|  | $\begin{aligned} & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: |
|  |  |
|  중 <br>  <br>  <br> ๔® $\mathcal{O} \%$ |  |



Pressure.

Revolutions per minute.



Cut-off.

Proportion of feed-water accounted for at cut-off
Indicated
horse-power.

Cint-of

左
 ONO

Feed-water per I. H. P. per hour.

| -.moq .ad <br>  .təlen-рәәд |  <br>  |
| :---: | :---: |
|  рәұипоәэе ләұвм-рәәј ј0 uo! | N上 <br>  |
| * |  <br>  |
| :.təMOd-as.iot рәдеэ!риц |  |
|  <br>  |  <br>  |
| 'ә.tusse.x ${ }_{\text {d }}$ |  <br>  |
|  |  |
|  |  |
|  |  |
|  |  |

Steam Engine Tests.-Continued.
Compound Engines.

| Kind of engine. | Condensing or non-condensing. | Quality of steam. | Leakage conditions. |  |  |  | $\begin{aligned} & \text { 4i } \\ & \dot{J} \\ & \text { B } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Four-valve | Condensing | Ordinary | Fairly tight | 94.8 | 52.3 | 606.5 | . 305 | . 774 | 16.28 |
| Single valve | Condensing | Ordinary | Tight | 129.3 | 300. | 228.2 | . 38 | . 804 | 18.92 |
| Single valve | Non-Condensing | Ordinary | Tight | 128. | 296.1 | 230.5 | . 532 | . 894 | 22.53 |
| Four-valve | Condensing | Ordinary | Some leakage | 116.1 | 68.1 | 636.5 | - . 26 | . 789 | 13.28 |
| Single valve | Condensing | Ordinary | Considerable leak. | 105.2 | 197.1 | 148.5 | . 382 | . 623 | 22.05 |
| Four-valve. | Condensing | Ordinary | Practically tight | 126.8 | 74.9 | 382.5 | . 295 | . 767 | 14.05 |
| Four-valve | Condensing | Ordinary | Fairly tight | 108. | 59. | 280.1 |  | . 732 | 13.37 |
| Four-valve | Condensing | Ordinary | Excessive leakage. | 108.9 | 62.1 | 716. | . 377 | . 675 | 19.36 |
| Single valve | Condensing | Ordinary | Considerable leak. | 120.6 | 195.3 | 220.6 | . 396 | . 629 | 18.01 |
| Single valve | Condensing | Ordinary | Practically tight.. | 126. | 228. | 347.6 | . 595 | . 911 | 18.2 |
| Single valve. | Condensing | Ordinary | Considerable leak. | 129.7 | 306. | 90.5 |  |  | 22.7 t |
| Single valve | Condensing | Ordinary | Considerable leak. | 130.1 | 298.5 | 196.8 | . 382 | 6.29 | 19.1 |
| Single valve | Non-Condensing . | Ordinary | Considerable leak. | 126.5 | 300.2 | 45.6 | . 107 | . 228 | 44.89 |
| Single valve | Non-Condensing . | Ordinary | Considerable leak. | 128. | 292.7 | 152.5 | . 389 | . 617 | 85.2 |
| Four-valve | Condensing | Superh'd 44.5 ${ }^{\circ}$ |  | 119.8 | ${ }_{296.3}^{70 .}$ | 1017.1 |  | . 863 |  |
| Single valve. | Non-Condensing . | Ordinary.... | Practically tight | 135.9 119.9 | 296.3 161.7 | 109.7 295.7 | . 605 | . 803 | 16.07 |
| Double valve | Condensing . | Ordinary | Considerable leak. | 119.9 120.4 | 161.7 162.7 | 295.7 | . 336 | . 751 | 16.07 |
| Double valve | Condensing | Ordinary | Considerable leak. | 120.4 117.6 | 162.7 170.1 | 124.5 | . 044 | . 361 | 17.22 |
| Double valve | Condensing | Ordinary | Considerable leak. | 118.9 | 164.8 | 276.9 | . 3 | . 691 | 16.07 |
| Double valve | Non-Condensing . | Ordinary | Considerable leak. | 118. | 165.7 | 267.1 | . 487 | . 794 | 23.24 |
| Four-valve | Non-Condensing . | Ordinary | Practically tight.. | 128.7 | 101. | 346.9 | . 309 | . 806 | 22.11 |
| Four-valve | Non-Condensing . | Ordinary | Practically tight.. | 135.5 | 99. | 486.7 | . 419 | . 816 | 21.59 |
| Four-valve | Condensing | Ordinary | Considerable leak. | 150.7 | 60.3 | 689.3 | . 281 | . 784 | 12.69 |
| Four-valve | Condensing | Ordinary | Considerable leak. | 151.1 | 60.5 | 708.3 | . 263 |  | 12.45 |

Steam Engine Tests.-Contimued.
Compound Engines.

| Kind of engine. | Condensing or ncn-condensing. | Quality of steam. | Leakage conditions. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Four-valve | Condensing | Superhea'd $12^{\circ}$ | Fairly tight | 125.9 | 77. | 1106.7 | . 294 | . 792 | 14.12 |
| Four-valve | Condensing | Superhea'd $13^{\circ}$ | Fairly tight | 121.5 | 76.7 | 1073.2 | . 31 | . 856 | 14.01 |
| Four-valve | Condensing | Superhea'd $20^{\circ}$ | Fairly tight | 100.2 | 76.7 | 1098.6 | . 432 | . 823 | 15.08 |
| Four-valve | Condensing | Ordinary ${ }^{\text {a }}$. $\ldots$ | Some leakage | 115.4 | 71.3 | 872.9 | . 33 | . 866 | 14.18 |
| Four-valve | Condensing | Superhea'd 30 ${ }^{\circ}$ | Some leakage | 108.1 | 61.4 | 798.4 | . 274 | . 889 | 13.28 |
| Four-valve | Condensing | Superh'd 15.7${ }^{\circ}$ | Some leakage. | 149.7 | 80. | 670.5 | . 285 | . 77 | 12.29 |
| Four-valve | Condensing | Superh'd 16.40. | Some leakage. | 150.4 | 80.1 | 658.1 |  |  | 12.03 |
| Four-valve | Condensing | Superh'd 12.2 ${ }^{\circ}$ | Some leakage. | 150.2 | 80. | 659.1 | . 285 | .769 | 11.89 |
| Four-valve | Condensing | Ordinary..... | Some leakage. | 144.2 | 77.4 | 718.9 | . . . |  | 13.09 |
| Four-valve | Condensing | Ordinary. | Some leakage. | 144.1 | 76.6 | 741.3 |  |  | 13.23 |
| Four-valve | Condensing | Ordinary. | Some leakage | 143.8 | 76.9 | 738.8 | . 268 | . 651 | 13.01 |
| Four-valve | Condensing | Ordinary. | Some leakage. | 144.1 | 78.9 | 725.2 | . 293 | . 734 | 13.27 |
| Four-valve | Condensing .. | Ordinary | Fairly tight.. | 114.9 | 65.5 | 299.7 | . 238 | . 717 | 15.78 |
| Single valve. | Non-Condensing | Ordinary. | Some leakage | 166.9 | 275.7 | 103.4 |  |  | 24.99 |
| Single valve. | Non-Condensing | Ordinary. | Some leakage | 166.8 | 271.2 | 187.5 | . 479 | . 744 | 21.14 |
| Single valve. | Non-Condensing | Ordinary. | Someleakage | 164.6 | 273.4 | 242.9 |  |  | 21.25 |
| Four-valve | Condensing. . . . | Ordinary | Practically tight | 151.4 | 75.2 | 1713.8 | . 326 | . 817 | 13.27 |
| Four-valve | Condensing | Ordinary | Some leakage . | 107.8 | 120.2 | 676.2 | . 331 | . 813 | 14.6 |
| Four-value | Condensing | Ordinary | Some leakage . | 133. | 66. | 1539.9 | . 294 | . 696 | 14.1 |
| Four-valve | Condensing | Ordinary. | Practically tight | 136.2 | 78. | 1030.1 | . 293 | 8. | 13.21. |
| Four-valve ...... | Condensing ..... | Ordinary.... | Practically tight | 128.9 | 78. | 843.4 | . 293 | S. | 13.53 |

## Practical Engine Performances.

> (J. B. Stanwood.)

## NON=CONDENSING ENGINES.

Slide=valve Engine. -75 to 80 pounds boiler pressure; stroke, long; mean effective pressure, 33 to 38 pounds per square inch ; 25 to 100 horsepower; cut-off, $5 / 8$ stroke ; performance, about 40 pounds of steam per indicated horse-power per hour. When valves and piston are tight this has been reduced to 33 pounds of dry steam per indicated horse-power per hour by careful test.

Automatic High=speed Engines with Single Valves. -75 to 80 pounds boiler pressure; stroke, about equal to piston diameter; mean effective pressure, 40 pounds per square inch ; 50 to 150 horse-power ; cutoff, $1 / 4$ stroke ; performance, about 40 pounds of steam per horse-power per hour. When valves and piston are tight this has been reduced to 32 pounds of dry steam per indicated horse-power per hour. Valves difficult to keep tight.

Automatic High=speed Engines with Double Valves.-75 to 80 pounds boiler pressure; stroke, $1 \frac{1}{2}$ to 2 times piston diameter ; mean effective pressure, 40 pounds per square inch ; 50 to 150 horse-power ; cut-off, $1 / 4$ stroke; performance, about 35 pounds of steam per indicated horse-power per hour. When valves and piston are tight this has been reduced to 30 pounds of dry steam per indicated horse-power per hour by careful test.

Automatic Cut=off Engines of the Corliss Type.-Stroke, 2 to 3 times diameter of piston; 75 to 90 pounds boiler pressure; mean effective pressure, 40 pounds per square inch; cut-off, $\frac{1}{5}$ to $1 / 4$ stroke; performance, under 200 horse-power, 29 to 30 pounds of steam per indicated horse-power per hour, over 200 horse-power, 27 pounds of steam per indicated horsepower per hour. When valves and piston are tight this has been reduced to $231 / 8$ pounds of dry steam per indicated horse-power per hour.

Compound Engines.-High speed; automatic cut-off ; short stroke; 110 to 120 pounds boiler pressure; mean effective pressure, 25 to 27 pounds per square inch; 6 expansions; 100 to 250 horse-power; performance, 27 pounds of steam per indicated horse-power per hour.

## CONDENSING ENGINES.

Automatic Cut=off Engines of the Corliss Type.-Stroke, 2 to 3 times piston diameter; 70 to 80 pounds boiler pressure; mean effective pressure, 40 pounds per square inch; over 200 horse-power; cut-off, $\frac{1}{5}$ stroke; about 19 to 20 pounds of steam per indicated horse-power per hour.

Compound Engines.-High speed; automatic cut-off; short stroke; 110 to 120 pounds boiler pressure ; mean effective pressure, 27 to 30 pounds per square inch; 9 expansions; 200 to 500 horse-power; 17 to 19 pounds of steam per indicated horse-power per hour.

Compound Automatic Cut-off Engines of the Corliss Type.Stroke, on high-pressure cylinder, 2 to 3 times piston diameter; 110 to 135 pounds boiler pressure ; mean effective pressure, 14 to 24 pounds per square inch; over 400 horse-power ; 16 to 20 expansions; 14 to 17 pounds of steam per indicated horse-power per hour. In one or two special cases, $131 / 2$ pounds of steam per indicated horse-power per hour has been obtained.

## Steam-engine Proportions.

The dimensions of many of the parts of a steam engine may be determined according to the general methods given in the section on Machine Design, pages $416-481$, but some additional data will be given here.

The following proportions are those recommended by James B. Stanwood, M.E., and are based on an extensive practical experience.

## ENGINE PROPORTIONS.

Pressures on Wearing Surfaces.
Main bearings: 140 to 160 pounds per square inch of area, obtained by multiplying length by diameter of journal.
Crank pins: 1000 to 1200 pounds per square inch of area, obtained by multiplying length by diameter of pin.

Cross-head pins: 1200 to 1600 pounds per square inch of area, obtained by multiplying length by diameter of pin.
Cross-head surface : 35 to 40 pounds per square inch of area.
Non-condensing engines are usually designed for 100 pounds pressure
per square inch of piston.

## Sizes of Engine Parts, in Relation to Piston.

Diameter of piston.
Main shaft, diameter 0.42 to 0.50

Main bearing, length 0.85 to 1.00

Crank pin, diameter. 0.22 to 0.27

Crank pin, length 0.25 to 0.30

Cross-head pin, diameter 0.18 to 0.20

Cross-head pin, length 0.25 to 0.30

Piston-rod, diameter. 0.14 to 0.17

Area of steam ports: Area of piston.
Slide-valve engine 0.08 to 0.09

High-speed automatic engine 0.10 to 0.12

Corliss engine 0.07 to 0.08

Area of exhaust ports :
Slide-valve engine.................................................. . . 0.15 to 0.20
High-speed automatic engine.................................... 0.18 to 0.22
Corliss engine
0.10 to 0.12

Diameter of steam pipes:
Slide-valve engine, $1 / 4$ diameter of piston to $1 / 4$ diameter of piston $+1 / 2$ inch.
Automatic high-speed engine, $1 / 3$ diameter of piston.
Corliss engine, $\frac{3}{10}$ diameter of piston.
Diameter of exhaust pipes:
Slide-valve engine, $1 / 3$ diameter of piston.
Automatic high-speed engine, $3 / 8$ diameter of piston.
Corliss engine, $1 / 3$ to $3 / 8$ diameter of piston.

| Clearance spaces: |  |
| :---: | :---: |
| Slide-valve eng | 0.06 to 0.08 |
| Automatic high-speed | 0.08 to 0.15 |
| Automatic high-speed engine, double | 0.03 to 0.05 |
| Automatic cut-off engine, Corliss type, long | 0.02 to 0.04 |
| Weights of engines per rated horse-power : |  |
| Slide-valve engine | 125 to 135 pounds |
| Automatic high-spe | 90 to 120 pounds |
| Corliss engine | 220 to 250 pounds |
| Fly-wheels, weight per rated horse-power: |  |
| Slide-valve engine | 33 poun |
| Automatic high-speed engine (according to size and speed) | 25 to 33 pounds |
| Corliss engine (accordin | 80 to 120 pounds |

## Rules for Flyowheel Weights, Single=cylinder Engines.

Let
$d=$ diameter of cylinder, in inches;
$S=$ stroke of cylinder, in inches;
$D=$ diameter of fly-wheel, in feet;
$R=$ revolutions per minute ;
$W=$ weight of fly-wheel, in pounds.
For slide-valve engines, ordinary duty, $\quad W=350000 \frac{d^{2} S}{D^{2} R^{2}}$;
For slide-valve engines, electric lighting, $W=700000 \frac{d^{2} S}{D^{2} R^{2}}$;
For automatic high-speed engines, $\quad W=1000000 \frac{d^{2} S}{D^{2} R^{2}}$;
For Corliss engines, ordinary duty,

$$
W=700000 \frac{d^{2} S}{D^{2} R^{2}} ;
$$

For Corliss engines, electric lighting,

$$
W=1000000 \frac{d^{2} S}{D^{2} R^{2}} ;
$$

## Steam Passages.

The dimensions of steam passages should be proportioned, when possible, so that the velocity of flow is not greater than 6000 feet per minute, but this is not always practicable. The following table will enable the diameters of steam pipes and the areas of steam ports to be computed for various velocities.

Steam=pipe Diameters and Port Areas.

|  | Velocity of steam, in feet, per minute. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4000 |  | 6000 |  | 8000 |  | 10000 |  | 12000 |  |
|  |  |  |  |  |  | $\begin{array}{r} i \\ 4 \\ 4 \\ 0 \end{array}$ |  |  |  |  |
| 100 | . 158 | . 025 | . 129 | . 017 | . 112 | . 013 | . 100 | . 010 | . 091 | . 008 |
| 125 | . 177 | . 031 | . 144 | . 021 | . 125 | . 016 | . 112 | . 013 | . 102 | . 010 |
| 150 | . 194 | . 037 | . 158 | . 025 | . 137 | . 019 | . 123 | . 015 | . 112 | . 013 |
| 175 | . 209 | . 044 | . 171 | . 029 | . 148 | . 022 | . 132 | . 018 | . 121 | . 015 |
| 200 | . 224 | . 050 | . 183 | . 033 | . 158 | . 025 | . 141 | . 020 | . 129 | . 017 |
| 225 | . 237 | . 056 | . 194 | . 038 | . 168 | . 028 | . 150 | . 023 | . 137 | . 019 |
| 2.5 | . 250 | . 063 | . 204 | . 042 | . 177 | . 031 | . 158 | . 025 | . 144 | . 021 |
| 275 | . 262 | . 069 | . 214 | . 046 | . 185 | . 034 | . 166 | . 028 | . 151 | . 023 |
| 300 | . 274 | . 075 | . 224 | . 050 | . 193 | . 038 | . 173 | . 030 | . 157 | . 025 |
| 32.5 | . 285 | . 081 | .233 | . 054 | . 201 | . 041 | . 180 | . 033 | . 164 | . 027 |
| 350 | . 296 | . 088 | . 242 | . 058 | . 209 | . 044 | . 187 | . 035 | . 171 | . 029 |
| 375 | . 306 | . 094 | . 250 | . 063 | . 217 | . 047 | . 194 | . 038 | . 177 | . 031 |
| 400 | . 316 | . 100 | . 258 | . 067 | . 224 | . 050 | . 200 | . 040 | . 183 | . 033 |
| 425 | . 326 | . 106 | . 266 | . 071 | . 231 | . 053 | . 206 | . 043 | . 188 | . 035 |
| 450 | . 335 | . 113 | . 274 | . 075 | . 238 | . 056 | . 212 | . 045 | . 193 | . 038 |
| 475 | . 344 | . 119 | . 281 | . 079 | . 244 | . 059 | . 218 | . 048 | . 199 | . 040 |
| 500 | . 35.3 | . 125 | . 288 | . 083 | . 250 | . 063 | . 224 | . 050 | . 204 | . 042 |
| 525 | . 362 | . 131 | . 295 | . 088 | . 256 | . 066 | . 229 | . 053 | . 209 | . 044 |
| 550 | . 371 | . 138 | . 302 | . 092 | . 262 | . 069 | . 235 | . 05.5 | . 214 | . 046 |
| 575 | . 380 | . 144 | . 309 | . 096 | . 268 | . 072 | . 240 | . 058 | . 219 | . 048 |
| 600 | . 388 | . 150 | . 316 | . 100 | . 274 | . 075 | . 245 | . 060 | . 224 | . 050 |
| 625 | . 395 | . 156 | . 323 | . 104 | . 279 | . 078 | . 250 | . 063 | . 228 | . 052 |
| 650 | . 403 | . 163 | . 329 | . 108 | . 285 | . 081 | . 255 | . 065 | . 232 | . 054 |
| 675 | . 411 | . 169 | . 335 | . 113 | . 290 | . 084 | . 260 | . 068 | . 237 | . 056 |
| 700 | . 418 | . 175 | . 341 | . 117 | . 296 | . 088 | . 265 | . 070 | . 241 | . 058 |
| 725 | . 426 | . 181 | . 347 | . 121 | . 301 | . 091 | . 269 | . 073 | . 246 | . 060 |
| 750 | . 433 | . 188 | . 353 | . 125 | . 306 | . 094 | . 274 | . 075 | . 250 | . 063 |
| 775 | . 440 | . 194 | . 359 | . 129 | . 311 | . 097 | . 278 | . 078 | . 254 | . 065 |
| 800 | . 447 | . 200 | . 365 | . 133 | . 316 | . 100 | . 283 | . 080 | . 259 | . 067 |
| 825 | . 454 | . 206 | . 371 | . 137 | . 321 | . 103 | . 287 | . 083 | . 262 | . 069 |
| 850 | . 461 | . 213 | . 376 | . 141 | . 326 | . 106 | . 292 | . 085 | . 266 | . 071 |
| 875 | . 468 | . 219 | . 382 | . 145 | . 331 | . 109 | . 296 | . 088 | . 270 | . 073 |
| 900 | . 474 | . 225 | . 388 | . 150 | . 336 | . 113 | . 300 | . 090 | . 274 | . 075 |
| 925 | . 481 | . 231 | . 393 | . 154 | . 340 | . 116 | . 304 | . 093 | . 277 | . 077 |
| 950 | . 487 | . 238 | . 398 | . 158 | . 344 | . 119 | . 308 | . 095 | . 281 | . 079 |
| 975 | . 494 | . 244 | . 403 | . 162 | . 349 | . 122 | . 312 | . 098 | . 285 | . 081 |
| 1000 | . 500 | . 250 | . 408 | . 166 | . 353 | . 125 | . 316 | . 100 | . 289 | . 083 |
| 1025 | . 506 | . 256 | . 413 | . 170 | . 357 | . 128 | . 320 | . 103 | . 292 | . 085 |
| 1050 | . 512 | . 263 | . 418 | . 175 | . 361 | . 131 | . 324 | . 105 | . 295 | . 088 |
| 1075 | . 518 | . 269 | . 423 | . 179 | . 36.5 | . 134 | . 328 | . 108 | . 299 | . 090 |
| 1100 | . 524 | .275 | . 128 | . 183 | . 37 | . 138 | . 332 | . 11 | . 303 | . 092 |

## Valve Gears.

The admission of the steam at the proper time to the cylinder may be effected by various forms of valve gear.

The plain slide valve, operated by a single eccentric, is shown diagrammatically in the accompanying illustration.


When the valve is so made that it just covers both ports when in the mid position, and the eccentric travel is just equal to twice the width of the port, there will be no expansion, the eccentric being placed exactly at right angles with the crank. It was soon found, however, that by making the valve with increased lap and by giving the eccentric more throw a certain degree of expansion could be obtained, together with an earlier release and compression, this resulting in better steam economy and smoother running.

In order to accomplish this result without impeding the exhaust of the steam, the eccentric, $r_{1}$, must be given the so-called angle of advance, $2^{\circ} 1.2^{\prime}$, beyond the mid position. The direction of rotation of the crank is then governed by this angle, the arrangement above giving rotation to the left, and the position, $1.2^{\prime \prime}$ for $r_{1}$, giving right-hand rotation.

The action of the slide valve may readily be represented graphically by use of Reuleaux's diagram. The angle of advance and lap being given, the point of cut-off can be determined by the following method:


The circle, $1 C^{0}$, represents the circle of the eccentric, and may also be taken as the crank circle on a reduced scale. $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ are two sym-metrically-placed positions of the piston at which it is desired that the cut-off shall take place. Through these points, with a radius $1.3=l$,
describe arcs from centres, $3^{\prime \prime}$ and $3^{\prime \prime \prime}$. Their intersections, $E_{2}$ and $E_{3}$, with the circle give the angles at which the expansion, $C^{0} C^{\prime \prime}$ and $C^{\prime \prime} C^{\prime \prime \prime \prime}$, occurs, -in this instance $\frac{7}{10}$ of the stroke. We now select the point, $v_{2}$, of the crank circle at which the admission shall begin, join $V_{2} E_{2}$, and draw the equator, 2.1. $2^{\prime}$, parallel to it, and the angle, $2.1 . C^{\prime}$, will be the angle of advance, $S$, and the distance of 2.1 from $E_{2} V_{2}$, the outside lap, $e_{2}$, for the port $I I$. The width of port, $a$, must also be chosen, and must be so taken that it is less than $r_{1}-e_{2}$, and is represented by the parallel, $A_{2}$. When the crank reaches $I_{2}$,-in this instance at $\frac{98}{100}$ of the stroke,- the exhaust begins, and the distance, $i_{2} i_{2}$, of the parallel, $I_{2} I_{2}$, from the equator is the inside lap.

The construction is similar for the other half of the stroke. The angle, $\delta$, is already known, and hence the parallel, $E_{3} V_{3}$ from $E_{3}$, can be at once drawn and the admission point, $V_{3}$, determined. The outside lap, $e_{3}$, is somewhat less than $e_{2}$, thus giving a correspondingly wider port opening. The inside lap, $i_{3}$, is made equal to $i_{2}$, and the bridges, $b_{3}$ and $b_{2}$, are made equal, thus giving a symmetrical valve seat. A certain amount of discretion is permissible in the selection of $b_{2}=b_{3}$, care being taken that there is sufficient bearing at the extreme valve stroke to insure tightness. The points, $I_{2}{ }^{\prime}$ and $I_{3}{ }^{\prime}$, are also of importance, as they determine the closing of the exhaust. The corresponding piston positions, $C^{I V}$ and $C^{V}$, are not symmetrical, because $i_{3}=i_{2}$; but. the inequality in the compression is not serious.

The above method of considering the influence of the ratio $\frac{l}{r}$ is very simple. It is easy to substitute any desired ratio $\frac{l_{1}}{r_{1}}$, but the variation is slight. It must be noted that the distance, 1.3 , must be laid out to the actual scale of construction.

The application of Zeuner's diagram to the same case is made in the following manner: The circle, $1 C_{0}$, represents, as before, the eccentric circle and the crankpin path. The angle $C_{0} \cdot 1 \cdot 2=$ $C^{\prime} .1 .2=90-\delta$. With 1 as a centre describe circles with radii $e$ and $i$, here made alike for both
 ends of the valve; also, one of radius $e+a$. Upon 1.2 and 1.2 as diameters describe circles, called the valve circles.

The intersection of radii from 1 with these circles gives the distance of the valve from its middle position for various crank positions. For the position $1 V_{2}$, for instance, the admission for the left stroke begins, at $1 E_{2}$ the expansion, at $1 I$ the exhaust, etc.

The Zeuner diagram gives the valve position by means of polar coördinates, while Reuleaux's diagram is based on parallel coördinates. To be strictly correct, the valve circles, 1.2 and $1.2^{\prime}$, of the Zeuner diagram should fall upon each other. The arrangement shown has been adopted by Zeuner as more convenient in practice.

It will be seen from the preceding that the rate of expansion can be varied by altering the eccentricity and the angle of advance. This may be carried so far that the direction of rotation is changed, giving what is termed a reversing motion. A variety of reversing motions have been devised, which accomplish the desired relation of parts by shifting a reversing lever. Of these the most practical are the so-called link motions, of which a number will here be briefly shown.

No. 1 is an outline diagram of Stephenson's link motion. The link, $3^{\prime} 3^{\prime \prime}$, of convex curvature towards the valve, is given an oscillating motion by means of the two equal eccentrics, $1.2^{\prime}$ and $1.2^{\prime \prime}$, and is suspended from its middle point, 7 , from the bell crank lever, $S 7^{\prime}$ ' 'The motion of the link is transmitted to the valve by means of the sliding block, 5 , and rod, 6 . No. 2 is Gooch's link motion. The link, 4 , is driven by two eccentrics, as
before, but is curved in the opposite direction with a radius, 5.6 , and is suspended from its middle point, 8 , to a fixed pivot, $8^{\prime}$, while the rod, 5.6 , is shifted by means of the lever connection, $S 10.10^{\prime}$.


No. 1.


Nu. 2.

No. 3 is the link motion of Pius Fink. In this form the link is operated by a single eccentric instead of two, as in the previous forms. This simple mechanism is not as widely used as its merits deserve.


No. 4 is the link motion of Allen. In this design the link, 4, is straight, and both the link and the radius rod are suspended and shifted by the lever connections, $8^{\prime} .8$ and $9^{\prime} .9$.


No. 5 is Walschaert's link motion. The link, 4, vibrates upon a fixed centre, 9 , and is operated by an eccentric, 1.2 . The valve rod is moved from the main cross-head by the connections, 10.11.6.7, and also by the radius rod, 5.6 , which latter is suspended from the bell crank, $S .12^{\prime}$.

No. 6 is Marshall's valve gear. The curved link, 4, is rigidly secured and does not move. The eccentric, 1.2, moves the valve connection, 6.7 by means of the lever, 2.3.6, which vibrates about the point, 3 , on the end of the radius rod, the other end of the rod being held by the link block, 5 . Instead of the link, 4 , a radius arm, $4_{0} .5$, is often used, the centre, $4_{0}$, corresponding to the centre of curvature of the link, the action being the same in both cases.

No. 7 is Brown's valve gear, which differs from the preceding by the substitution of a straight link of adjustable angle for the curved guide link.

No. 8 is Angström's valve gear. The point, 3 , of the preceding gear is guided by a parallel motion, and the point, 6 , is between 2 and 3 , instead of beyond.

The eight preceding valve gears operate the valve approximately in the same manner as if a single eccentric of variable eccentricity and angular


No. 7.


No. 8.
advance were used, the eccentric rod being assumed of infinite length as compared with $r$. The path of the successive positions of the middle point of this imaginary eccentric is called the central curve of the valve gear.


The general forms of the central curve are shown above. Form $a$ is that for cases 1,4 , and 5 ; form $b$, for case 1 , when the eccentric rods are crossed; and form $c$, in which the curve becomes a straight line, is for cases $2,3,6$, 7 , and 8 . In the latter instance the lead is constant.

The use of the central curve is involved in the mechanism of the valve gear of the single-valve automatic cut-off engines, in which the eccentric is shifted across the shaft by the action of a centrifugal or inertia governor.

## Slide Valves.

The two principal forms of slide valves in use are the plan $D$ valve and the Allen valve, the latter being designed to give a more rapid and full port opening.

The action of the slide valre has already been discussed, and the amount of inside and outside lap may be determined for the desired steam

distribution by the use of Reuleaux's or Zeuner's diagrams. The other dimensions are determined as follows:

The width, $a$, of the steam ports is kept as small as is practicable, while the length at right angles to the plane of the drawing is made quite large. When $a$ is given, the dimensions to be determined are the outside and
inside lap, $e$ and $i$; the bridges, $b$; the width of face, $b_{0}$, beyond the ports; the width, $a_{0}$, of the exhaust port, $I V$; the travel, $r$; the length of the valve, $l$; and of the valve seat, $l_{0}$. The laps, $e$ and $i$, are determined from the valve diagrams.

In the same manner, also, is found the greatest distance, $s$, in which the edge of the valves passes the edge of the port. This gives the width of bearing, $t$, of the valve upon the bridge, since $b=s+t$. The value of $t$ varies greatly ; the least permissible value is $t=\frac{3}{16}{ }^{\prime \prime}$, and it is more frequently made $3 / 8^{\prime \prime}$ to $12^{\prime \prime}$. Approximately, we have, after assuming $t$ as just given, $a_{0}+t-(e+a+i)=a$. We then have
whence
and

$$
\begin{aligned}
a_{0} & =2 a+l+i-t \\
r & =a+e+s, \\
l & =4 a+3 l+i+2 s+t
\end{aligned}
$$

The valve face must have an inner width of bearing, $t_{0}$ (Fig. b), at least equal to $t$, whence for the total width of the valve face we have the value

$$
\begin{gathered}
a_{0}+2 b+2 a+2 b_{0}, \text { or } \\
l_{0}=4 a+3 e-i+4 s+t+2 t_{0} .
\end{gathered}
$$

The thickness of metal in the valve itself, when made of cast-iron, should be about $=\frac{D}{200}+0.4^{\prime \prime}$.


## The Allen Valve.

This is a double valve, and consists of one $D$ valve over another, with a steam passage between. As before, we have $r=a+e+s$, and also make $b_{0}=2 e-t$,-i.e., the inner edge of the outer valve, when the valve is in mid position, is at a distance $=e$ from the edge of the valve seat. The consequence is that when the valve is moved a distance equal to $e$, say to the right, the passage through the valve opens to admit steam at the same instant as does the edge of the valve on the left. This gives a steam admission twice as quickly, and an opening twice as great, as would otherwise be the case.

The following positions, from $a$ to $f$, will show the successive actions, the exhaust ports being omitted for simplicity.
a. The admission is just about to take place both from the edge of the valve on the left and through the passage in the valve. If we apply Zeuner's diagram, we must, from the point $A$, which indicates the port opening, double the width given by the Zeuner circle until the entrance to the passage in the valve is wide open, as at $b$. By thus doubling the opening in the diagram we obtain the curve, $A B_{1}$.
$b$. From this position on, the opening at the left continues to grow wider, but that through the valve on the right does not; hence, on the Zeuner diagram, from this point we return to the opening which the regular valve circle gives, to which is added the constant opening, $c=$ $B B_{1}=C C_{1}$, indicated by the curve, $B_{1} C_{1}$. This continues until the inner edge of the opening of the valve passage on the left reaches the edge of the bridge, as at $c$.
c. As the valve continues to move, the passage through it is gradually closed, but the steam port is opened to the same amount, and hence the actual port opening remains constant. This continues until the position, $d$, is reached, when the passage through the valve is entirely shut off. This is indicated in the diagram by the arc, $C_{1} D$, struck from the centre at 1.

$d$. The valve continues to move to the right until it is entirely upon the bridge, the corresponding portion of the diagram being the arc, $D E$, of the valve circle.
$e$. The valve from this position moves on the bridge beyond the port until it has travelled a distance equal to $s$, as shown at $f$, during which time the port opening remains constant, as indicated in the diagram by the arc, $E E^{\prime}$, struck from the centre, 1. From this point the same actions take place successively in the reversed order.

It will be seen that Allen's valve gives a much quicker opening and also a much longer duration of the full opening than does the plain slide valve. It remains to be seen how these features can be used to the best

advantage. This is best done by making the value of $s$ negative, and also $\geqq t$. This makes the port opening from $C_{1}$ to $C_{1}^{\prime}$ in the diagram constant, as shown in the diagram.

In order that the apparent contraction of the ports by the change in the sign of $s$ shall not occur, the value of $a$ is made greater than would other-
wise be the case. Under these conditions we have for the exhaust port, $a_{0}$, the equation:

$$
a_{0}+t-e_{1}-a-i=a-s
$$

in which $s$ is given the magnitude equal to the distance which the edge of the valve is moved beyond the edge of the bridges, as in Fig. $f$. We then have

For the exhaust port, $\quad a_{0}=2 a+e_{1}+i-s-t$;
For the bridge,
$b=e-e_{1}+s-t ;$
For the passage through valve, $c=e-t-e_{1}$;
For the total valve, $\quad l=4 a+4 e-e_{1}+i-3 s+t$.
For a complete discussion of valves and valve gears see Zeuner's "Treatise on Valve Gears" and Auchincloss's "Link and Valve Motions;" also, compare Reuleaux's "Constructor" and Unwin's " Machine Design."

## CONDENSERS.

The gain in power by use of a condenser may be estimated upon the basis of an increase of 12 pounds per square inch to the mean effective pressure in the cylinder. Upon this basis the following table shows the gain in horse-power for cylinders of various diameters for every 100 feet piston speed. For any other speed, multiply by the speed, in feet, per minute and divide by 100 to obtain the gain in horse-power.

| Diameter of <br> piston. | Horse-power gained for <br> every 100 feet of piston <br> speed per minute. | Diameter of <br> piston. | Horse-power gained for <br> every 100 feet of piston <br> speed per minute. |
| :---: | :---: | :---: | :---: |
| 5 | .71 | 32 | 29.24 |
| 6 | 1.03 | 34 | 33.01 |
| 7 | 1.40 | 36 | 37.01 |
| 8 | 1.83 | 38 | 41.24 |
| 9 | 2.31 | 40 | 45.70 |
| 10 | 2.86 | 42 | 50.38 |
| 12 | 4.11 | 44 | 55.29 |
| 14 | 5.60 | 46 | 60.43 |
| 16 | 7.31 | 48 | 65.80 |
| 18 | 9.25 | 50 | 71.40 |
| 20 | 11.42 | 52 | 77.23 |
| 22 | 13.82 | 54 | 83.28 |
| 24 | 16.45 | 56 | 89.56 |
| 26 | 19.30 | 58 | 96.08 |
| 28 | 22.39 | 60 | 102.81 |
| 30 | 25.70 |  |  |

The size of a jet condenser varies somewhat according to the speed of the engine, but is usually made from $1 / 3$ to $1 / 2$ the volume of the steam cylinder. The quantity of injection water required is from 25 to 30 times the weight of steam to be condensed, according to the pressure of the exhaust and the temperature of the water. Too much water is poor economy, since the increased burden on the air pump neutralizes the gain of the better vacuum. It is best to provide for an ample supply, in case of emergency, and cut the injection down in actual use until the minimum amount to maintain a fair vacuum is ascertained.

The temperature of the hot well is best kept at about $100^{\circ} \mathrm{F}$., although it sometimes may rise to $120^{\circ} \mathrm{F}$. without materially impairing the vacuum.

## Surface Condensers.

## C. H. Wheeler Manufacturing Company.

For stationary practice this type of condenser is now built independent of the main engine, with steam or electrically driven air and circulating pumps, these being either the combined direct acting type, or the crank and fly wheel engine type.

The introduction of the steam turbine has greatly developed the surface condenser and particularly the air pump required to meet high vacuum conditions.

In order to compete with the reciprocating engine in economy, it is essential that the steam turbine shall run condensing with the highest vacuum possible, 28 inches with a 30 -inch barometer being the vacuum generally required by the turbine builders.

In order to carry this high vacuum, a very large condensing plant is required and an abundant supply of cold water is necessary. This water should not be above $70^{\circ}$; $75^{\circ}$ being the limit, since pumping the enormous quantity of water used at $75^{\circ}$ or higher, off-sets the economy of the turbine, as well as increasing the first cost to prohibitive figures.

Centrifugal pumps, either motor or engine driven, are mostly used for the circulating water.

The air pump is a very important feature and must be of special design, such as the suction valveless type, which can handle both the condensed steam and vapors or may be used as a "dry pump" to handle vapors only.

The amount of surface required depends on the vacuum carried and the initial temperature of the circulating water, the formula for this being,

$$
S=\frac{L \times W}{300\left(T v-\frac{(T v-15+T i)}{2}\right)}
$$

where $S$ equals square feet of cooling surface; $L$ equals latent heat of steam at condenser pressure : $W$ equals pound steam condensed per hour; $T v$ equals temperature at condenser pressure and $T i$ equals initial temperature of circulating water.

The ratio " $R$ " of circulating water per pound of steam condensed is given by the formula

$$
R=\frac{L}{(T \tau-15)-T i}
$$

and for any given number of pounds of steam per hour, the water required in G. P. M. is equal to

$$
R=\frac{W}{500}
$$

For a vacuum of 28 inches, the air pump should have a volumetric displacement equal to 45 times the volume of the condensed steam. The following table of condensing apparatus is usual in connection with turbine installations having a vacuum of 28 inches with circulating water at $70^{\circ}$, the cooling surface being 4 square feet per K. W., which allows for overloads.
C. H. Wheeler Manufacturing Company, Philadelphia; Surface Con= denser with "Mullan" Crank and Fly Wheel Suction Valveless Air Pump.

| K. W. | Square feet <br> cooling surface. | Size of air pump. | G. P. M. of <br> circulating water. |
| :---: | :---: | :---: | :---: |
|  | 1200 | $6 \times 12 \times 10$ | 975 |
| 500 | 2000 | $6 \times 14 \times 10$ | 1600 |
| 800 | 3200 | $8 \times 16 \times 12$ | 2400 |
| 1000 | 4000 | $8 \times 18 \times 12$ | 3000 |
| 1500 | 6000 | $9 \times 20 \times 12$ | 4500 |
| 2000 | 8000 | $10 \times 24 \times 14$ | 6000 |
| 3000 | 12000 | $12 \times 30 \times 14$ | 9000 |

For regular engine practice and to produce a 26 -inch vacuum with circulating water available at $70^{\circ} \mathrm{F}$., the usual practice is to allow one square foot of cooling surface in the condenser for every 10 pounds of exhaust steam per hour to be condensed. This rating, however, must be varied for different temperatures of circulating water, or for a higher vacuum than the above. The quantity of circulating water required under the above conditions is 30 pounds of water for each pound of steam to be condensed and the necessary volumetric displacement for the vacuum pump is 20 times the volume of the condensed steam discharged from the condenser, this ratio making a fair allowance for air leaks.

The following is a list of surface condensers with combined air and circulating pumps, the condenser being directly mounted upon the pumps, the latter being driven by means of one steam cylinder located between the pump cylinders.
C. H. Wheeler Manufacturing Company, Philadelphia; Surface Con= densers with Air and Circulating Pumps.

| Exhanst steam per hour. | Cooling surface in condenser. |  |  |  |  | Weight of outfit. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lb. | Sq. ft. | In. | In. | In. | In. | Lb. |
| 600 | 64 | 4 | 5 | 5 | 5 | 1600 |
| 800 | 84 | 4 | 5 | 5 | 5 | 1750 |
| 900 | 92 | $41 / 2$ | $51 / 2$ | $51 / 2$ | 6 | 2000 |
| 1200 | 120 | $41 / 2$ | $51 / 2$ | $51 / 2$ | 6 | 2400 |
| 1500 | 152 | 5 | $61 / 2$ | 6112 | 6 | 2800 |
| 2000 | 200 | 6 | 8 | 8 | 7 | 3600 |
| 2500 3000 | 250 300 | 6 6 | 88 | 8 | 7 | 4000 4200 |
| 3500 | 350 | 71/2 | 10 | 10 | 10 | 5600 |
| 4000 | 400 | $71 / 2$ | 10 | 10 | 10 | 6600 |
| 5000 | 500 | $71 / 2$ | 10 | 10 | 10 | 7800 |
| 6000 | 600 | $10^{2}$ | 12 | 12 | 12 | 8600 |
| 7000 | 700 | 10 | 12 | 12 | 12 | 9000 |
| 8000 | 800 | 10 | 12 | 12 | 12 | 10500 |
| 9000 | 900 | 10 | 14 | 14 | 12 | 11500 |
| 10250 | 1025 | 10 | 14 | 14 | 12 | 12000 |
| 13000 | 1300 | 12 | 16 | 16 | 16 | 14900 |
| 16000 | 1600 | 12 | 16 | 16 | 16 | 16500 |
| 19000 | 1900 | 12 | 18 | 18 | 16 | 18000 |
| 22000 | 2200 | 12 | 18 | 18 | 16 | 20000 |

## Weights of Fly-wheels.

While the weights of fly-wheels should be computed for all cases requiring close regulation, the following examples, selected from accepted practice, will be found useful for purposes of comparison.

Corliss Engines.

| Engine data. |  |  | Fly-wheels. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bore. | Stroke. | Revolu- <br> tions. | Diameter, <br> in feet. | Face, in <br> inches. | Weight, in <br> pounds. |
| 18 | 36 | 80 | 12 | 24 | 12000 |
| 20 | 42 | 75 | 15 | 29 | 17000 |
| 24 | 48 | 70 | 18 | 36 | 25000 |
| 26 | 54 | 67 | 20 | 42 | 30000 |
| 28 | 60 | 65 | 22 | 50 | 35000 |
| 36 | 72 | 58 | 26 | 72 | 70000 |

Plain Slide=valve Engines.

Engine data.

| Bore. | Stroke. | Revolu- <br> tions. | Diameter, <br> in inches. | Face, in <br> inches. | Weight, in <br> pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 14 | 200 | 60 | 9 | 1000 |
| 10 | 16 | 180 | 72 | 12 | 1500 |
| 12 | 18 | 166 | 84 | 16 | 2500 |
| 14 | 20 | 150 | 96 | 18 | 3300 |
| 16 | 22 | 130 | 108 | 20 | 4500 |
| 18 | 26 | 120 | 120 | 24 | 7000 |
| 20 | 28 | 110 | 144 | 24 | 9000 |
| 22 | 30 | 110 | 144 | 30 | 11000 |

## Strength of Fly=wheels.

The speed at which the material in the rim of a fly-wheel will be subjected to a bursting stress is given by the following formula:

$$
V=1.6 \sqrt{\frac{\varsigma}{W}},
$$

in which
$V=$ velocity of rim, in feet per second;
$W=$ weight of a cubic inch of the material ;
$S=$ tensile strength of material per square inch.
For cast-iron, taking 10,000 pounds as the tensile strength and a factor of safety of 10 , this gives about 100 feet per second, or 6000 feet per minute. Taking 5280 feet or one mile per minute as reaching the danger limit, the following table has been computed:

## Speeds for Cast=iron Wheels.

Table giving the number of revolutions per minute at which the rim speed for cast-iron wheels reaches the danger limit of one mile per minute.

| Diameter of wheel, in feet. | Danger <br> limit, revolutions perminute. | Diameter of wheel, in feet. | Danger limit, revolutions per minute. | Diameter of wheel, in feet. | Danger limit, revolutions per minute. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1680 | 101/2 | 160 | 201/2 | 82 |
| 11/4 | 134 | 11 | 153 | 21 | S0 |
| 11/2 | 1120 | 111/2 | 146 | $211 / 2$ | 78 |
| 2 | 810 | 12 | 140 | 22 | 76 |
| 21/2 | 672 | $121 / 2$ | 134 | $221 / 2$ | 74 |
| 3 | 560 | 13 | 129 | 23 | 73 |
| $31 / 2$ | 480 | $131 / 2$ | 124 | $231 / 2$ | 72 |
| 4 | 420 | 14 | 120 | 24 | 70 |
| $41 / 2$ | 373 | $141 / 2$ | 116 | $241 / 2$ | 68 |
| 5 | 336 | 15 | 112 | 25 | 67 |
| $51 / 2$ | 305 | $151 / 2$ | 108 | $251 / 2$ | 66 |
| 6 | 280 | 16 | 105 | 26 | 65 |
| $61 / 2$ | 258 | $161 / 2$ | 102 | 261/2 | 63 |
| 7 | 240 | 17 | 99 | 27 | 62 |
| $71 / 2$ | 224 | $171 / 2$ | 96 | $271 / 2$ | 61 |
| 8 | 210 | 18 | 93 | 28 | 60 |
| $81 / 2$ | 198 | 181/2 | 91 | 281/2 | 59 |
| 9 | 1.87 | 19 | 89 | 29 | 58 |
| 91/2 | 177 | 191/2 | S6 | 291/2 | 57 |
| 10 | 16.5 | 20 | 84 | 30 | 56 |

## Classification of Locomotives.

Whyte's System, as used by the American Locomotive Company.

| 040 | AOO | $\triangle$ WHEEL SWITCHER |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 060 | $\triangle 000$ | 6 .. | . |  |
| 0660 ¢ $0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc_{\text {articulateo }}$ |  |  |  |  |
| 080 | \$0000 | 8 WHEEL SWITCHER |  |  |
| 240 | $\triangle 000$ | 4 COUPLED |  |  |
| 260 | A0000 | MOGUL |  |  |
| 280 | 400000 | consolidation |  |  |
| 2100 | 4000000 | decapoo |  |  |
| 440 | 40000 | \% WHEEL |  |  |
| 460 | 400000 | 10 |  |  |
| 480 | \$000000 | - |  |  |
| 042 | $\triangle 000$ | 4 COUPLED A TRALINE |  |  |
| 062 | $\triangle 0000$ |  | . |  |
| 082 | 400000 |  | * |  |
| 044 | 40000 | FORNEY 4 COUPLEO |  |  |
| 064 | \$00000 |  |  |  |
| 046 | 400000 | $\cdots$ |  |  |
| 066 | \$000000 | $\cdots$ |  |  |
| 242 | 1 OOOO | Columbia |  |  |
| 262 | 100000 | PRARIRIE |  |  |
| 282 | $\triangle 000000$ | - COUPLEO DOUBLE ENOER |  |  |
| 2102 | A000000010 |  | . | . |
| 244 | A00000 |  | * |  |
| 264 | $4000000 \cdot$ |  | * | . |
| 284 | 10000000: |  | $\cdots$ |  |
| 246 | 4000000. | - | . | * |
| 266 | 40000000 |  | . | . |
| 442 | A00000 A | atlantic |  |  |
| 462 | \$000000 p | PACiFIC |  |  |
| 444 | 4000000. | $\triangle$ COUPLED DOUQLE ENOER |  |  |
| 464 | \$0000000. |  | $\cdots$ | .. |
| 446 | \$0000000. | - | $\because$ | - |
| 466 | 400000000 | - | . | . |

The locomotive classification adopted by the American Locomotive Company is based on the representation by numerals of the number and arrangement of the wheels, commencing at the front. Thus, 260 means a Mogul and 460 a ten-wheel engine, the cipher denoting that no trailing truck is used.

The total weight is expressed in 1000 of pounds. Thus, an Atlantic locomotive weighing 176,000 pounds would be classified as a 442-176 type. If the engine is Compound, the letter C should be substituted for the dash, -thus, 442 C 176. If tanks are used in place of a separate tender, the letter T should be used in place of the dash. Thus, a double-end suburban locomotive with two-wheeled leading truck, six drivers, and six-wheeled rear truck, weighing 214,000 pounds, would be a 266 T 214 type.

## LOCOMOTIVE DATA.

The following formulas are those of the Baldwin Locomotive Works, Philadelphia, and have shown themselves reliable in the practice of that well-known establishment.

## Speed Resistance, Locomotive and Train.

$$
R=3+\frac{V}{6} .
$$

$R=$ resistance, in pounds, per ton of 2000 pounds;
$V=$ speed, in miles, per hour.
This formula represents the resistance for sustained speed, and the element of acceleration is not taken into consideration. It is deduced from the results obtained by comparison of a large number of indicator cards taken at various speeds.

## Grade Resistance.

The resistance for a straight grade of 1 foot per mile is 0.3788 pound per ton.

If
$G=$ grade, in feet, per mile ;
$T=$ weight of train, in tons ( 2000 pounds) ;
$R=$ resistance, in pounds.

$$
R=0.3788 G T
$$

## Curve Resistance.

Taking the curve as expressed in degrees of deflection from a tangent measured from stations 100 feet apart, the resistance of curves may be expressed as in proportion to the number of degrees in the curve. The resistance naturally varies with the construction of the road-bed, speed of train, and other conditions of service, so that no general rule can be expected to apply to all cases. Approximately, with moderate speed and under ordinary conditions, the resistance may be computed on the basis that each degree of curvature is equal to a straight grade of $11 / 2$ feet per mile.

The following formula corresponds to this allowance:
Let
$A=$ angle of curve, in degrees;
$T=$ weight of train, in tons;
$R=$ resistance, in pounds.

$$
R=0.5682 A T
$$

## Acceleration Resistance.

The resistance opposed to the acceleration of a train from any speed to any higher speed may be computed by the following formula:

Let

$$
R=\text { the resistance, in pounds }
$$

$T=$ weight of train, in tons ( 2000 pounds) ;
$V=$ initial speed, in miles, per hour ;
$V^{\prime}=$ accelerated speed.

$$
R=0.0132\left(V^{\prime 2}-V^{2}\right) T
$$

Thus, for a weight of 1 ton and an acceleration from 30 miles per hour to 50 miles, we have

$$
\begin{array}{ll}
0.0132\left(50^{2}-30^{2}\right) & = \\
0.0132(2500-900) & = \\
0.0132 \times 1600 & =21 \text { pounds }
\end{array}
$$

and this, multiplied by the weight of the train, in tons, will give the total resistance due to the acceleration.

## Tractive Power.

Let
$d=$ diameter of cylinder ;
$l=$ length of stroke ;
$D=$ diameter of driving-wheels, in inches ;
$T=$ tractive power, in pounds, per pound of mean effective pressure in cylinder.

$$
T=\frac{d^{2} l}{D} .
$$

The mean effective pressure may be taken as equal to 85 per cent. of the boiler pressure.

The tractive power of a locomotive multiplied by the speed, in miles, per hour, divided by 375 , gives the horse-power.

## THE POWERING OF STEAMSHIPS.

The most reliable method of determining the power required to propel a vessel at a given speed is to use a model of the hull in a testing tank, and this should be done in all important designs.

The following tables (pages 738-743), originally prepared by Nystrom, will be found to agree closely with the results attained by modern steamships in actual service, and may be used when experimental data are lacking.

The average powering of modern steamships is about 1 horse-power per ton of displacement, while for the fast liners it reaches 2 horse-power per ton and over.

Steamship Performance.

| Displacement, in tons. | Knots, or nautical miles per hour. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $T$ | H | H | H | H | H | H | , | ${ }_{H}$ | H | $H$ |
| I | . 004 | . 035 | . 118 | . 280 | . 55 | . 949 | 1.50 | 2.24 |  | 4.38 6.96 |
| 2 | . 007 | . 055 | . 190 | . 444 | . 87 | 1.51 | 2.40 | 3.55 4.79 | 6.91 | 6.96 9.12 |
| 3 | . 009 | . 075 | . 248 | . 598 | 1.14 | 1.98 2.40 | 3.12 <br> 3.80 | 5.39 | 8.06 | 11.1 |
| 4 | . 010 | . 084 | . 300 | . 673 | 1.50 | 2.78 | 4.40 | 6.55 | 9.36 | 12.2 |
| 5 | . 012 | . 115 | . 348 | . 818 | 1.81 | 3.12 | 4.96 | 7.39 | 10.6 | 14.5 |
| 7 | . 014 | . 128 | . 435 | 1.025 | 2.01 | 3.48 | 5.50 | 8.20 | 11.7 | 16.1 |
| 8 | . 017 | . 138 | . 479 | 1.125 | 2.20 | 3.80 | 6.01 | 8.96 | 12.8 | 17.5 |
| 9 | . 019 | . 151 | . 501 | 1.211 | 2.38 | 4.12 | 6.51 | 9.69 | 13.8 | 19.0 |
| 10 | . 022 | . 161 | . 552 | 1.30 | 2.54 | 4.42 | 6.98 | 10.4 | 14.9 15.9 | ${ }_{21.8}$ |
| 11 | . 022 | . 175 | . 590 | 1.40 | 2.72 | 4.70 | 7.90 | 11.8 | 16.8 | 23.0 |
| 12 | . 023 | . 185 | . 624 | 1.48 | 3.88 | 4.95 | 8.33 | 12.5 | 17.7 | 24.3 |
| 13 | . 024 | . 195 | . 694 | 1.62 | 3.18 | 5.52 | 8.75 | 13.0 | 18.6 | 25.4 |
| 14 | . 024 | . 213 | . 725 | 1.70 | 3.32 | 5.80 | 9.20 | 13.6 | 19.5 | 26.6 |
| 15 | . 028 | . 223 | . 780 | 1.78 | 3.49 | 6.04 | 9.55 | 14.2 | 20.4 | 27.9 |
| 17 | . 029 | . 236 | . 785 | 1.89 | 3.64 | 6.28 | 9.95 | 15.0 | 21.2 | 29.1 |
| 18 | . 030 | . 242 | . 815 | 1.94 | 3.78 | 6.52 | 10.3 | 15.5 | 22.0 | 30.2 |
| 19 | . 031 | . 250 | . 850 | 2.00 | 3.90 4.02 | 7 | 11.1 | 16.5 | 23.0 | 31.2 32.2 |
| 25 | . 038 | . 300 | 1.015 | 2.40 | 4.14 | 8.12 | 12.9 | 19.2 | 24.2 | 33.1 |
| 30 | . 042 | . 338 | 1.14 | 2.70 | 5.30 | 9.18 | 14.6 | 21.6 | 31.0 | 42.4 |
| 35 | . 047 | . 375 | 1.26 | 3.00 | 5.89 | 10.1 | 16.2 | 24.0 | 34.2 | 51.3 |
| 40 | . 050 | . 409 | 1.39 | 3.27 | 6.41 | 11.1 | 17.6 | 28.5 | 40.5 | 55.6 |
| 45 | . 056 | . 445 | 1.50 | 3.56 | 6.95 | 12.9 | 20.5 | 30.3 | 43.2 | 59.5 |
| 50 | . 056 | . 474 | 1.61 | 3.79 4.06 | 7.44 | 13.8 | 21.8 | 32.5 | 46.2 | 63.6 |
| 55 | . 062 | . 501 | 1.82 | 4.06 4.30 | 8.91 | 14.4 | 23.1 | 34.4 | 49.1 | 67.3 |
| 60 | . 067 | . 538 | 1.80 | 4.56 | 88.88 | 15.1 | 24.4 | 36.5 | 51.8 | 71.0 |
| 65 | . 071 | . 597 | 2.02 | 4.77 | 9.36 | 16.2 | 25.5 | 38.2 | 51.4 | 74.9 |
| 70 75 | . 078 | . 625 | 2.12 | 5.00 | 9.77 | 16.9 | 26.8 | 40.0 | 56.8 | 78.0 |
| 75 80 | . 081 | . 650 | 2.20 | 5.20 | 10.2 | 17.6 | 28.0 | 41.6 | 58.1 | 81.6 |
| 85 | . 085 | . 680 | 2.30 | 5.44 | 10.6 | 18.4 | 29.2 | 43.5 | 62.0 | 85.0 88.4 |
| 90 | . 088 | . 705 | 2.38 | 5.64 | 11.0 | 19.1 | 30.5 | 45.2 47.0 | 64.5 66.6 | 88.4 91.5 |
| 95 | . 088 | . 710 | 2.49 | 5.68 | 11.4 | 19.9 | 31.3 32.4 | 48.4 | 68.5 | 94.5 |
| 100 | . 094 | . 755 | 2.56 | 6.04 | 11.8 | 21.9 | 34.6 | 51.8 | 73.2 | 101.0 |
| 110 | . 101 | . 810 | 2.73 2.98 | 6.48 | 12.7 | 23.8 | 37.5 | 56.2 | 80.0 | 110.0 |
| 125 | . 129 | . 877 | 2.98 3.38 | 7.02 | 15.5 | 27.0 | 42.8 | 61.7 | 90.5 | 124.0 |
| 150 | . 124 | 1.10 | 3.38 3.72 | 7.72 | 17.2 | 29.8 | 47.2 | 70.5 | 100.0 | 138.0 |
| 175 | . 130 | 1.20 | 3.06 4 | ${ }_{9.6}$ | 18.8 | 32.5 | 51.5 | 76.9 | 110.0 | 150.0 |
| 225 | . 162 | 1.30 | 4.39 | 10.4 | 20.2 | 35.1 | 56.0 | 83.3 | 118.0 | 162.0 |
| 250 | . 175 | 1.40 | 4.70 | 11.2 | 21.9 | 37.6 | 59.8 | 89.2 | 136.0 | 186.0 |
| 275 | . 188 | 1.50 | 5.04 | 11.9 | 23.2 | 4 | 63.8 67.5 | 100.0 | 142.0 | 196.0 |
| 300 | . 196 | 1.57 | 5.31 | ${ }_{13.6}^{12.6}$ | 24.5 | 42.5 | 67.5 71.2 | 106.0 | 152.0 | 208.0 |
| 325 | . 201 | 1.66 | 5.63 | 13.3 14.0 | 27.4 | 47.3 | 75.0 | 111.0 | 159.0 | 219.0 |
| 350 | .220 | 1.75 | 5.91 | 14.0 | 28.6 | 49.0 | 78.4 | 117.0 | 166.0 | 229.0 |
| 375 400 | . 2240 | 1.82 | 6.12 | 15.6 | 29.8 | 51.4 | 81.7 | 122.0 | 172.0 | 238.0 |
| 400 450 | . 250 | ${ }_{2} 2.06$ | 6.98 | 16.5 | 32.2 | 55.8 | 88.5 | 132.0 | 188.0 | 258.0 |
| 500 | . 276 | 2.21 | 7.45 | 17.7 | 34.6 | 59.6 | 94.3 | 141.0 | 20.0 | 276.0 |
| 550 | . 295 | 2.36 | 7.98 | 18.9 | 36.9 | 63.8 | 101.0 | 151.0 | ${ }_{226.0}^{215.0}$ | 295.0 313.0 |
| 600 | . 312 | 2.50 | 8.40 | 20.0 | 39.0 | 67.2 | 107.0 | 160.0 169.0 | 240.0 | 313.0 329.0 |
| 650 | . 330 | 2.64 | 8.90 | ${ }_{22}^{21.1}$ | 41.2 | 71.2 | 119.0 | 177.0 | 250.0 | 337.0 |
| 700 | . 348 | 2.78 | 9.32 | 22.2 23.2 | 43.2 | 78.6 | 124.0 | 186.0 | 264.0 | 352.0 |
| 750 | . 362 |  | 9.80 10.2 | 24.2 | 47.3 | 81.5 | 130.0 | 194.0 | 274.0 | 378.0 |
| 800 850 | . 380 | 3.08 3.15 | 10.6 | 25.2 | 49.2 | 85.0 | 135.0 | 202.0 | 288.0 | 394.0 |
| 800 900 | . 410 | 3.28 3.28 | 11.0 | 26.2 | 51.1 | 88.1 | 140.0 | 210.0 | 296.0 | 409.0 |
| 950 | . 422 | 3.41 | 11.4 | 27.3 | 53.1 | 91.8 | 146.0 | 218.0 | 310.0 | 445 |

Steamship Performance.

| Knots, or nautical miles per hour. |  |  |  |  |  |  |  |  |  | Displacement, in tons. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| H | II | H | H | II | H | H | H | H | H | $T$ |
| 5.85 | 7.59 | 9.63 | 12.0 | 14.8 | 17.9 | 21.6 | 25.6 | 30.1 | 35.1 | 1 |
| 9.28 | 12.0 | 15.3 | 19.1 | 23.5 | 28.4 | 34.2 | 40.6 | 47.8 | 54.7 | 2 |
| 12.2 | 15.8 | 20.0 | 25.0 | 30.8 | 38.3 | 44.8 | 53.3 | 62.6 | 73.0 | 3 |
| 14.8 | 19.2 | 24.4 | 30.2 | 37.4 | 43.1 | 54.3 | 64.5 | 75.9 | 88.4 | 4 |
| 17.2 | 22.2 | 28.3 | 35.2 | 43.4 | 52.4 | 63.0 | 74.9 | 88.0 | 97.8 | 5 |
| 19.4 | 25.1 | 31.9 | 39.7 | 49.0 | 59.1 | 71.1 | 84.5 | 99.2 | 116.0 | 6 |
| 21.4 | 27.8 | 35.3 | 41.0 | 54.0 | 65.5 | 79.0 | 93.7 | 110.0 | 128.0 | 7 |
| 23.4 | 30.4 | 38.6 | 48.1 | 59.3 | 68.7 | 86.2 | 102.0 | 121.0 | 140.0 | 8 |
| 25.3 | 32.9 | 41.8 | 52.1 | 64.0 | 77.5 | 93.2 | 110.0 | 130.0 | 152.0 | 9 |
| 27.2 | 35.3 | 44.8 | 55.8 | 68.8 | 83.2 | 100.0 | 119.0 | 140.0 | 163.0 | 10 |
| 29.0 | 37.6 | 47.8 | 59.7 | 73.5 | 89.0 | 107.0 | 127.0 | 150.0 | 174.0 | 11 |
| 30.7 | 39.9 | 50.6 | 63.2 | 77.7 | 94.4 | 113.0 | 134.0 | 158.0 | 184.0 | 12 |
| 32.4 | 42.0 | 53.3 | 66.6 | 82.0 | 99.6 | 120.0 | 142.0 | 167.0 | 194.0 | 13 |
| 34.0 | 44.2 | 56.0 | 70.0 | 86.0 | 105.0 | 126.0 | 149.0 | 176.0 | 203.0 | 14 |
| 35.6 | 46.3 | 58.7 | 73.5 | 90.0 | 109.0 | 131.0 | 156.0 | 183.0 | 213.0 | 15 |
| 37.2 | 48.3 | 61.3 | 76.5 | 94.0 | 114.0 | 137.0 | 163.0 | 192.0 | 223.0 | 16 |
| 38.7 | 50.2 | 63.8 | 79.6 | 98.0 | 120.0 | 143.0 | 170.0 | 200.0 | 233.0 | 17 |
| 40.2 | 52.2 | 66.2 | 82.7 | 102.0 | 124.0 | 148.0 | 176.0 | 207.0 | 242.0 | 18 |
| 41.7 | 54.0 | 68.7 | 85.8 | 106.0 | 128.0 | 154.0 | 182.0 | 215.0 | 250.0 | 19 |
| 43.2 | 56.0 | 71.0 | 88.9 | 111.0 | 132.0 | 159.0 | 189.0 | 222.0 | 258.0 | 20 |
| 50.0 | 65.0 | 82.5 | 103.0 | 127.0 | 154.0 | 184.0 | 194.0 | 258.0 | 265.0 | 25 |
| 56.5 | 73.4 | 93.2 | 117.0 | 143.0 | 173.0 | 208.0 | 248.0 | 291.0 | 339.0 | 30 |
| 62.6 | 81.3 | 103.0 | 130.0 | 159.0 | 192.0 | 230.0 | 274.0 | 322.0 | 377.0 | 35 |
| 68.4 | 88.8 | 113.0 | 141.0 | 173.0 | 209.0 | 252.0 | 300.0 | 350.0 | 410.0 | 40 |
| 74.0 | 96.2 | 122.0 | 152.0 | 188.0 | 228.0 | 273.0 | 324.0 | 382.0 | 445.0 | 45 |
| 79.4 | 103.0 | 131.0 | 164.0 | 201.0 | 242.0 | 293.0 | 346.0 | 410.0 | 476.0 | 50 |
| 84.6 | 110.0 | 140.0 | 174.0 | 215.0 | 260.0 | 312.0 | 370.0 | 437.0 | 509.0 | 55 |
| 90.0 | 117.0 | 149.0 | 185.0 | 226.0 | 285.0 | 330.0 | 393.0 | 464.0 | 538.0 | 60 |
| 94.7 | 123.0 | 156.0 | 195.0 | 240.0 | 292.0 | 349.0 | 414.0 | 488.0 | 568.0 | 65 |
| 99.6 | 130.0 | 164.0 | 206.0 | 252.0 | 306.0 | 367.0 | 437.0 | 512.0 | 599.0 | 70 |
| 104.0 | 135.0 | 171.0 | 214.0 | 264.0 | 320.0 | 383.0 | 455.0 | 536.0 | 624.0 | 75 |
| 109.0 | 141.0 | 180.0 | 224.0 | 276.0 | 333.0 | 400.0 | 467.0 | 561.0 | 653.0 | 80 |
| 113.0 | 147.0 | 187.0 | 234.0 | 287.0 | 348.0 | 417.0 | 496.0 | 584.0 | 680.0 | 85 |
| 118.0 | 153.0 | 194.0 | 243.0 | 298.0 | 362.0 | 433.0 | 516.0 | 607.0 | 707.0 | 90 |
| 122.0 | 158.0 | 201.0 | 251.0 | 309.0 | 376.0 | 448.0 | 533.0 | 629.0 | 732.0 | 95 |
| 126.0 | 164.0 | 207.0 | 259.0 | 318.0 | 387.0 | 464.0 | 551.0 | 648.0 | 756.0 | 100 |
| 135.0 | 175.0 | 222.0 | 277.0 | 340.0 | 414.0 | 495.0 | 588.0 | 693.0 | 807.0 | 110 |
| 146.0 | 190.0 | 241.0 | 300.0 | 370.0 | 450.0 | 539.0 | 640.0 | 753.0 | 878.0 | 125 |
| 165.0 | 215.0 | 273.0 | 342.0 | 420.0 | 494.0 | 609.0 | 724.0 | 852.0 | 992.0 | 150 |
| 183.0 | 238.0 | 302.0 | 378.0 | 464.0 | 564.0 | 675.0 | 802.0 | 946.0 | 1100.0 | 175 |
| 200.0 | 260.0 | 330.0 | 412.0 | 506.0 | 615.0 | 737.0 | 875.0 | 1027.0 | 1201.0 | 200 |
| 217.0 | 281.0 | 358.0 | 447.0 | 548.0 | 666.0 | 800.0 | 947.0 | 1118.0 | 1300.0 | 225 |
| 232.0 | 301.0 | 384.0 | 478.0 | 588.0 | 714.0 | 855.0 | 1016.0 | 1200.0 | 1400.0 | 250 |
| 248.0 | 322.0 | 409.0 | 510.0 | 627.0 | 762.0 | 912.0 | 1087.0 | 1286.0 | 1490.0 | 275 |
| 262.0 | 340.0 | 432.0 | 540.0 | 662.0 | 806.0 | 966.0 | 1146.0 | 1347.0 | 1573.0 | 300 |
| 277.0 | 360.0 | 457.0 | 570.0 | 700.0 | 852.0 | 1010.0 | 1213.0 | 1428.0 | 1665.0 | 325 |
| 290.0 | 378.0 | 480.0 | 600.0 | 737.0 | 896.0 | 1073.0 | 1276.0 | 1500.0 | 1750.0 | 350 |
| 305.0 | 395.0 | 502.0 | 627.0 | 770.0 | 936.0 | 1122.0 | 1332.0 | 1570.0 | 1830.0 | 375 |
| 317.0 | 412.0 | 522.0 | 654.0 | 803.0 | 976.0 | 1170.0 | 1402.0 | 1632.0 | 1907.0 | 400 |
| 343.0 | 146.0 | 567.0 | 708.0 | 870.0 | 1060.0 | 1265.0 | 1500.0 | 1770.0 | 2065.0 | 450 |
| 368.0 | 478.0 | 607.0 | 759.0 | 932.0 | 1131.0 | 1358.0 | 1611.0 | 1896.0 | 2213.0 | 500 |
| 393.0 | 510.0 | 648.0 | 810.0 | 995.0 | 1210.0 | 1450.0 | 1720.0 | 2025.0 | 2362.0 | 550 |
| 415.0 | 540.0 | 681.0 | 856.0 | 1036.0 | 1280.0 | 1532.0 | 1820.0 | 2140.0 | 2500.0 | 600 |
| 440.0 | 570.0 | 724.0 | 905.0 | 1111.0 | 1350.0 | 1618.0 | 1923.0 | 2265.0 | 2636.0 | 650 |
| 460.0 | 599.0 | 759.0 | 938.0 | 1166.0 | 1417.0 | 1700.0 | 2016.0 | 2373.0 | 2770.0 | 700 |
| 483.0 | 627.0 | 797.0 | 995.0 | 1220.0 | 1485.0 | 1780.0 | 2113.0 | 2490.0 | 2900.0 | 750 |
| 503.0 | 654.0 | 830.0 | 1038.0 | 1274.0 | 1548.0 | 1857.0 | 2206.0 | 2593.0 | 3026.0 | 800 |
| 525.0 | 680.0 | 866.0 | 1080.0 | 1330.0 | 1620.0 | 1935.0 | 2300.0 | 2710.0 | 3152.0 | 850 |
| 545.0 | 708.0 | 898.0 | 1123.0 | 1380.0 | 1675.0 | 2009.0 | 2385.0 | 2803.0 | 3274.0 | 900 |
| 565.0 | 734.0 | 933.0 | 1170.0 | 1430.0 | 1740.0 | 2080.0 | 2478.0 | 2920.0 | 3400.0 | 950 |

Steamship Performance.

| Displacement, in tons. | Knots, or nautical miles per hour. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $T$ | H | H | H | H | H | H | H | H | H | H |
| 1000 | . 438 | 3.50 | 11.8 | 28.0 | 54.9 | 94.6 | 150 | 225 | 318 | 439 |
| 1100 | . 456 | 3.75 | 12.5 | 30.0 | 58.4 | 100 | 160 | 239 | 338 | 467 |
| 1200 | . 500 | 4.00 | 13.4 | 32.0 | 62.0 | 107 | 170 | 254 | 359 | 495 |
| 1300 | . 515 | 4.12 | 14.0 | 33.0 | 65.3 | 112 | 179 | 267 | 378 | 523 |
| 1400 | . 548 | 4.38 | 14.9 | 35.0 | 68.7 | 119 | 189 | 281 | 398 | 549 |
| 1500 | . 562 | 4.50 | 15.5 | 36.0 | 71.9 | 124 | 197 | 295 | 417 | 575 |
| 1600 | . 578 | 4.62 | 16.2 | 37.0 | 75.0 | 130 | 206 | 307 | 435 | 600 |
| 1700 | . 594 | 4.75 | 16.9 | 38.0 | 78.1 | 135 | 215 | 320 | 453 | 625 |
| 1800 | . 625 | 5.00 | 17.5 | 40.0 | 81.2 | 140 | 224 | 332 | 470 | 649 |
| 1900 | . 634 | 5.25 | 18.1 | 42.0 | 84.2 | 145 | 231 | 345 | 488 | 673 |
| 2000 | . 700 | 5.60 | 18.8 | 44.0 | 87.0 | 150 | 239 | 356 | 504 | 696 |
| 2100 | . 719 | 5.75 | 19.4 | 46.0 | 90.0 | 155 | 247 | 369 | 521 | 720 |
| 2200 | . 735 | 5.88 | 20.0 | 47.0 | 92.7 | 160 | 255 | 380 | 537 | 741 |
| 2300 | . 765 | 6.12 | 20.6 | 49.0 | 95.6 | 165 | 262 | 391 | 554 | 764 |
| 2400 | . 788 | 6.28 | 21.1 | 50.2 | 98.4 | 170 | 270 | 402 | 569 | 786 |
| 2500 | . 805 | 6.44 | 21.8 | 51.5 | 101.0 | 174 | 277 | 414 | 585 | 808 |
| 2600 | . 828 | 6.62 | 22.4 | 53.0 | 104.0 | 179 | 285 | 424 | 600 | 826 |
| 2700 | . 851 | 6.81 | 23.0 | 54.5 | 106.0 | 184 | 292 | 436 | 616 | 850 |
| 2800 | . 872 | 6.98 | 23.5 | 55.8 | 109.0 | 188 | 299 | 446 | 631 | 871 |
| 2900 | . 876 | 7.12 | 24.0 | 57.1 | 111.0 | 192 | 306 | 457 | 646 | 893 |
| 3000 | . 909 | 7.35 | 24.6 | 58.8 | 114.0 | 197 | 313 | 467 | 660 | 913 |
| 3100 | . 931 | 7.45 | 25.1 | 59.8 | 117.0 | 201 | 320 | 478 | 676 | 933 |
| 3200 | . 952 | 7.62 | 25.6 | 61.0 | 119.0 | 205 | 327 | 488 | 690 | 952 |
| 3300 | . 972 | 7.78 | 26.1 | 62.2 | 121.0 | 209 | 334 | 498 | 704 | 972 |
| 3400 | . 992 | 7.94 | 26.8 | 63.5 | 124.0 | 214 | 340 | 508 | 718 | 992 |
| 3500 | 1.01 | 8.10 | 27.2 | 64.8 | 127.0 | 218 | 347 | 518 | 733 | 1010 |
| 3600 | 1.03 | 8.25 | 27.8 | 66.0 | 129.0 | 222 | 354 | 528 | 746 | 1025 |
| 3700 | 1.05 | 8.39 | 28.2 | 67.1 | 131.0 | 226 | 360 | 538 | 759 | 1049 |
| 3800 | 1.08 | 8.60 | 28.7 | 68.5 | 133.0 | 230 | 367 | 548 | 774 | 1070 |
| 3900 | 1.09 | 8.70 | 28.9 | 69.6 | 135.0 | 234 | 373 | 558 | 787 | 1087 |
| 4000 | 1.11 | 8.85 | 29.9 | 70.8 | 138.0 | 238 | 380 | 567 | 801 | 1105 |
| 4100 | 1.13 | 9.01 | 30.4 | 71.1 | 140.0 | 242 | 386 | 577 | 814 | 1122 |
| 4200 | 1.14 | 9.14 | 30.9 | 73.1 | 142.0 | 246 | 392 | 586 | 827 | 1141 |
| 4300 | 1.16 | 9.30 | 31.4 | 74.4 | 145.0 | 250 | 398 | 595 | 840 | 1160 |
| 4400 | 1.18 | 9.42 | 31.9 | 75.5 | 147.0 | 254 | 404 | 604 | 853 | 1179 |
| 4500 | 1.19 | 9.56 | 32.4 | 76.5 | 150.0 | 258 | 410 | 613 | 866 | 1198 |
| 4600 | 1.22 | 9.72 | 32.8 | 77.7 | 152.0 | 261 | 416 | 622 | 879 | 1216 |
| 4700 | 1.23 | 9.86 | 33.4 | 78.9 | 154.0 | 266 | 422 | 631 | 891 | 1232 |
| 4800 | 1.25 | 10.0 | 33.9 | 80.0 | 156.0 | 270 | 428 | 640 | 904 | 1248 |
| 4900 | 1.28 | 10.1 | 34.4 | 81.1 | 158.0 | 274 | 434 | 649 | 916 | 1265 |
| 5000 | 1.30 | 10.3 | 34.8 | 82.7 | 160.0 | 277 | 440 | 658 | 929 | 1282 |
| 5250 | 1.32 | 10.6 | 35.6 | 85.0 | 165.0 | 283 | 455 | 670 | 959 | 1324 |
| 5500 | 1.36 | 10.9 | 36.4 | 87.5 | 171.0 | 290 | 469 | 700 | 990 | 1367 |
| 5750 | 1.40 | 11.2 | 37.5 | 90.0 | 176.0 | 298 | 483 | 721 | 1024 | 1408 |
| 6000 | 1.42 | 11.4 | 38.0 | 92.8 | 181.0 | 303 | 497 | 742 | 1050 | 1448 |
| 6250 | 1.47 | 11.9 | 40.2 | 95.2 | 188.0 | 322 | 512 | 762 | 1065 | 1488 |
| 6500 | 1.52 | 12.2 | 41.2 | 97.8 | 191.0 | 330 | 526 | 782 | 1078 | 1526 |
| 6750 | 1.56 | 12.5 | 42.4 | 100.0 | 196.0 | 339 | 540 | 802 | 1123 | 1567 |
| 7700 | 1.60 | 12.9 | 43.2 | 103.0 | 202.0 | 346 | 554 | 822 | 1174 | 1616 |
| 7250 | 1.64 | 13.1 | 44.4 | 105.0 | 205.0 | 355 | 566 | 842 | 1198 | 1644 |
| 7500 | 1.68 | 13.5 | 45.5 | 108.0 | 210.0 | 364 | 579 | 861 | 1226 | 1682 |
| 7750 | 1.72 | 13.8 | 46.5 | 110.0 | 215.0 | 372 | 599 | 879 | 1253 | 1719 |
| 8000 | 1.75 | 14.0 | 47.4 | 112.0 | 220.0 | 379 | 603 | 899 | 1280 | 1757 |
| 8250 | 1.78 | 14.2 | 48.4 | 115.0 | 224.0 | 387 | 615 | 918 | 1306 | 1793 |
| 8500 | 1.81 | 14.5 | 49.4 | 116.0 | 229.0 | 395 | 628 | 929 | 1333 | 1829 |
| 8750 | 1.84 | 14.9 | 50.0 | 119.0 | 233.0 | 403 | 640 | 955 | 1354 | 1865 |
| 9000 | 1.88 | 15.2 | 51.1 | 122.0 | 238.0 | 411 | 653 | 973 | 1385 | 1902 |
| 9250 | 1.92 | 15.4 | 52.2 | 124.0 | 242.0 | 418 | 668 | 991 | 1411 | 1937 |
| 9500 | 1.95 | 15.6 | 53.2 | 126.0 | 246.0 | 426 | 683 | 1008 | 1437 | 1972 |
| 10000 | 2.05 | 16.4 | 55.1 | 131.0 | 255.0 | 441 | 714 | 1044 | 1488 | 2042 |

Steamship Performance.

| Knots, or nautical miles per hour. |  |  |  |  |  |  |  |  |  | Displacement, in tons. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| H | H | H | H | H | H | H | H | H | H | $T$ |
| 585 | 759 | 963 | 1206 | 1480 | 1798 | 2157 | 2560 | 3008 | 3514 | 1000 |
| 622 | 806 | 1024 | 1284 | 1574 | 1913 | 2295 | 2723 | 3203 | 3736 | 1100 |
| 660 | 858 | 1090 | 1360 | 1670 | 2030 | 2435 | 2890 | 3400 | 3907 | 1200 |
| 696 | 903 | 1147 | 1432 | 1758 | 2136 | 2564 | 3043 | 3576 | 4178 | 1300 |
| 732 | 950 | 1204 | 1508 | 1850 | 2248 | 2697 | 3200 | 3762 | 4394 | 1400 |
| 766 | 995 | 1264 | 1580 | 1938 | 2355 | 2825 | 3252 | 3943 | 4605 | 1500 |
| 800 | 1038 | 1317 | 1648 | 2020 | 2458 | 2948 | 3500 | 4113 | 4803 | 1600 |
| 833 | 1083 | 1374 | 1718 | 2107 | 2561 | 3072 | 3646 | 4286 | 5006 | 1700 |
| 864 | 1123 | 1422 | 1784 | 2188 | 2660 | 3140 | 3785 | 4448 | 5195 | 1800 |
| 897 | 1166 | 1479 | 1850 | 2270 | 2760 | 3310 | 3928 | 4615 | 5390 | 1900 |
| 927 | 1205 | 1527 | 1913 | 2345 | 2854 | 3420 | 4060 | 4770 | 5570 | 2000 |
| 958 | 1247 | 1582 | 1979 | 2382 | 2948 | 3535 | 4195 | 4935 | 5762 | 2100 |
| 988 | 1284 | 1628 | 2037 | 2500 | 3038 | 3642 | 4325 | 5084 | 5935 | 2200 |
| 1017 | 1324 | 1680 | 2102 | 2578 | 3134 | 3755 | 4460 | 5241 | 6120 | 2300 |
| 1047 | 1360 | 1723 | 2160 | 2646 | 3220 | 3860 | 4580 | 5386 | 6290 | 2400 |
| 1077 | 1400 | 1777 | 2222 | 2725 | 3313 | 3970 | 4715 | 5542 | 6470 | 2500 |
| 1102 | 1435 | 1820 | 2280 | 2796 | 3400 | 4075 | 4835 | 5655 | 6637 | 2600 |
| 1131 | 1473 | 1870 | 2338 | 2868 | 3486 | 4180 | 4960 | 5832 | 6813 | 2700 |
| 1160 | 1508 | 1911 | 2395 | 2935 | 3568 | 4280 | 5076 | 5970 | 6970 | 2800 |
| 1189 | 1545 | 1960 | 2452 | 3010 | 3655 | 4385 | 5200 | 6115 | 7142 | 2900 |
| 1215 | 1582 | 2000 | 2508 | 3075 | 3740 | 4485 | 5318 | 6255 | 7300 | 3000 |
| 1242 | 1614 | 2048 | 2565 | 3145 | 3822 | 4585 | 5440 | 6394 | 7470 | 3100 |
| 1268 | 1648 | 2092 | 2616 | 3210 | 3905 | 4680 | 5550 | 6525 | 7622 | 3200 |
| 1296 | 1683 | 2134 | 2671 | 3280 | 3985 | 4775 | 5670 | 6666 | 7781 | 3300 |
| 1320 | 1717 | 2178 | 2725 | 3343 | 4063 | 4870 | 5784 | 6784 | 7936 | 3400 |
| 1347 | 1750 | 2220 | 2779 | 3408 | 4143 | 4965 | 5893 | 6936 | 8090 | 3500 |
| 1373 | 1783 | 2264 | 2830 | 3475 | 4222 | 5060 | 6010 | 7061 | 8250 | 3600 |
| 1398 | 1815 | 2303 | 2881 | 3534 | 4300 | 5155 | 6115 | 7184 | 8400 | 3700 |
| 1422 | 1848 | 2348 | 2941 | 3606 | 4385 | 5250 | 6238 | 7333 | 8563 | 3800 |
| 1446 | 1880 | 2385 | 2986 | 3660 | 4453 | 5340 | 6336 | 7444 | 8696 | 3900 |
| 1473 | 1912 | 2427 | 3038 | 3725 | 4530 | 5430 | 6444 | 7580 | 8847 | 4000 |
| 1497 | 1944 | 2468 | 3086 | 3785 | 4610 | 5520 | 6550 | 7700 | 8988 | 4100 |
| 1520 | 1975 | 2507 | 3137 | 3850 | 4680 | 5610 | 6655 | 7830 | 9141 | 4200 |
| 1545 | 2008 | 2546 | 3186 | 3910 | 4750 | 5700 | 6761 | 7950 | 9285 | 4300 |
| 1568 | 2037 | 2585 | 3238 | 3970 | 4825 | 5790 | 6865 | 8072 | 9432 | 4400 |
| 1593 | 2070 | 2624 | 3286 | 4025 | 4900 | 5875 | 6970 | 8195 | 9572 | 4500 |
| 1614 | 2100 | 2664 | 3333 | 4087 | 4975 | 5960 | 7070 | 8320 | 9710 | 4600 |
| 1639 | 2130 | 2702 | 3382 | 4145 | 5040 | 6045 | 7172 | 8437 | 9850 | 4700 |
| 1663 | 2160 | 2740 | 3431 | 4202 | 5112 | 6130 | 7275 | 8555 | 9990 | 4800 |
| 1686 | 2190 | 2779 | 3478 | 4260 | 5193 | 6215 | 7375 | 8673 | 10120 | 4900 |
| 1708 | 2220 | 2817 | 3525 | 4321 | 5253 | 6300 | 7475 | 8792 | 10250 | 5000 |
| 1760 | 2293 | 2909 | 3640 | 4414 | 5426 | 6507 | 7723 | 9081 | 10601 | 5250 |
| 1822 | 2365 | 3000 | 3755 | 4608 | 5600 | 6715 | 7972 | 9370 | 10953 | 5500 |
| 1876 | 2436 | 3090 | 3868 | 4744 | 5767 | 6917 | 8204 | 9652 | 11269 | 5750 |
| 1930 | 2507 | 3180 | 3981 | 4880 | 5935 | 7120 | 8436 | 9935 | 11586 | 6000 |
| 1982 | 2574 | 3261 | 4094 | 5013 | 6096 | 7313 | 8519 | 10203 | 11902 | 6250 |
| 2035 | 2642 | 3352 | 4207 | 5146 | 6258 | 7505 | 8603 | 10472 | 12218 | 6500 |
| 2088 | 2710 | 3438 | 4320 | 5281 | 6419 | 7698 | 8986 | 10741 | 12534 | 6750 |
| 2141 | 2778 | 3524 | 4434 | 5417 | 6580 | 7892 | 9370 | 11010 | 12851 | 7000 |
| 2191 | 2842 | 3606 | 4531 | 5542 | 6733 | 8076 | 9587 | 11265 | 13152 | 7250 |
| 2241 | 2907 | 3688 | 4629 | 5668 | 6886 | 8260 | 9805 | 11521 | 13453 | 7500 |
| 2290 | 2971 | 3770 | 4726 | 5794 | 7039 | 8445 | 10022 | 11776 | 13754 | 7750 |
| 2340 | 3036 | 3852 | 4824 | 5920 | 7192 | 86:28 | 10240 | 12032 | 14056 | 8000 |
| 2488 | 3098 | 3931 | 4923 | 6042 | 7340 | 8806 | 10451 | 12280 | 14345 | 8250 |
| 2636 | 3161 | 4011 | 5023 | 6164 | 7488 | 8984 | 10662 | 12528 | 14634 | 8500 |
| 2784 | 3223 | 4095 | 5123 | 61286 | 7637 | 9162 | 10823 | 12776 | 14922 | 8750 |
| 2933 | 3286 | 4170 | 5222 | 6408 | 7785 | 9340 | 11084 | 13024 | 15211 | 9000 |
| 3080 | 3346 | 4247 | 5343 | 6516 | 7926 | 9512 | 11289 | 13364 | 15493 | 9250 |
| 3222 | 3407 | 4324 | 5465 | 6645 | 8068 | 9685 | 11494 | 13505 | 15775 | 9500 |
| 3370 | 3529 | 4478 | 5708 | 6882 | 8351 | 10030 | 11904 | 13987 | 16340 | 10000 |

Steamship Performance.

|  | Knots, or nautical miles per hour. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in tons. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| $T$ |  |  |  |  | H | H | H | H | H |  |
| 10500 | 3480 | 3683 | 4550 | 5780 | 6970 | 8450 | 10150 | 12080 | 14180 | 16660 |
| 11000 | 3552 | 3770 | 4600 | 5840 | 7060 | 8560 | 10280 | 12250 | 14360 | 16980 |
| 11500 | 3623 | 3860 | 4660 | 5910 | 7150 | 8770 | 10410 | 12410 | 14530 | 16980 |
| 12000 | 3695 | 3950 | 4710 | 5980 | 7240 | 8880 | 10550 | 12670 | 14700 | 17200 |
| 12500 | 3766 | 4015 | 4780 | 6050 | 7330 | 8900 | 10670 | 12730 | 14880 | 17400 |
| 13000 | 3838 | 4110 | 4840 | 6110 | 7425 | 9000 | 10810 | 12900 | 15050 | 17620 |
| 13500 | 3910 | 4210 | 4900 | 6190 | 7520 | 9110 | 10950 | 13060 | 15230 | 17840 |
| 14000 | 3980 | 4300 | 4975 | 6260 | 7610 | 9230 | 11080 | 13230 | 15410 | 18070 |
| 14500 | 4052 | 4390 | 5020 | 6340 | 7710 | 9350 | 11220 | 13390 | 15600 | 18300 |
| 15000 | 4124 | 4480 | 5090 | 6410 | 7810 | 9470 | 11370 | 13580 | 15780 | 18550 |
| 15500 | 4196 | 4560 | 5160 | 6490 | 7910 | 9600 | 11510 | 13730 | 15970 | 18780 |
| 16000 | 4267 | 4650 | 5210 | 6560 | 8010 | 9720 | 11650 | 13900 | 16160 | 19000 |
| 16500 | 4339 | 4745 | 5290 | 6610 | 8110 | 9840 | 11800 | 14070 | 16350 | 19250 |
| 17000 | 4410 | 4835 | 5350 | 6720 | 8210 | 9970 | 11960 | 14250 | 16540 | 19500 |
| 17500 | 4182 | 4920 | 5410 | 6800 | 8320 | 10100 | 12110 | 14430 | 16730 | 19740 |
| 18000 | 4553 | 5010 | 5500 | 6890 | 8430 | 10230 | 12270 | 14600 | 16830 | 20000 |
| 18500 | 4625 | 5100 | 5575 | 6970 | 8540 | 10360 | 12420 | 14800 | 17140 | 20240 |
| 19000 | 4697 | 5190 | 5630 | 7050 | 8650 | 10490 | 12600 | 15000 | 17350 | 20400 |
| 19500 | 4768 | 5280 | 5710 | 7140 | 8760 | 10530 | 12760 | 15170 | 17580 | 20670 |
| 20000 | 4840 | 5370 | 5780 | 7230 | 8890 | 10800 | 12940 | 15360 | 17815 | 21070 |
| 20500 | 4911 | 5460 | 5860 | 7320 | 9010 | 10910 | 13100 | 15470 | 18030 | 21330 |
| 21000 | 4983 | 5550 | 5950 | 7410 | 9130 | 11050 | 13280 | 15660 | 18260 | 21620 |
| 21500 | 5055 | 5645 | 6010 | 7500 | 9250 | 11200 | 13450 | 15960 | 18500 | 21910 |
| 22000 | 5126 | 5730 | 6100 | 7600 | 9370 | 11350 | 13620 | 16160 | 18730 | 22200 |
| 22500 | 5198 | 5820 | 6180 | 7700 | 9500 | 11510 | 13810 | 16360 | 18980 | 22490 |
| 23000 | 5269 | 5910 | 6260 | 7800 | 9630 | 11660 | 14000 | 16570 | 19210 | 22800 |
| 23500 | 5340 | 6000 | 6340 | 7900 | 9760 | 11810 | 14180 | 16780 | 19460 | 23080 |
| 24000 | 5412 | 6080 | 6430 | 8000 | 9880 | 11970 | 14370 | 17000 | 19700 | 23380 |
| 24500 | 5484 | 6175 | 6510 | 8100 | 10010 | 12130 | 14460 | 17210 | 19960 | 23700 |
| 25000 | 5555 | 6260 | 6600 | 8210 | 10150 | 12300 | 14750 | 17450 | 20200 | 24000 |
| 25500 | 5627 | 6355 | 6690 | 8320 | 10290 | 12460 | 14950 | 17700 | 20470 | 24310 |
| 26000 | 5698 | 6450 | 6780 | 8430 | 10420 | 12630 | 15150 | 17920 | 20750 | 24620 |
| 26500 |  | 6545 | 6875 | 8540 | 10560 | 12800 | 15350 | 18160 | 21000 |  |
| 27000 | 5842 | 6630 | 6960 | 8660 | 10700 | 12980 | 15550 | 18400 | 21300 | 25360 |
| 27500 | 5913 | 6720 | 7050 | 8780 | 10850 | 13150 | 15760 | 18660 | 21600 | 25720 |
| 28000 | 5985 | 6810 | 7150 | 8900 | 11000 | 13320 | 15970 | 18900 | 21900 | 26080 |
| 28500 | 6056 | 6900 | 7250 | 9020 | 11130 | 13500 | 16180 | 19200 | 22200 | 26440 |
| 29000 | 6128 | 6995 | 7340 | 9140 | 11270 | 13670 | 16400 | 19450 | 22500 | 26800 |
| 29500 | 6199 | 7080 | 7430 | 9260 | 11420 | 13850 | 16610 | 19720 | 22820 | 27100 |
| 30000 | $6 \cdot 271$ | 7170 | 7530 | 9400 | 11570 | 14040 | 16840 | 20000 | 23190 | 27420 |
| 30500 | 6343 | 7260 | 7620 | 9510 | 11720 | 14200 | 17050 | 20260 | 23500 | 27400 |
| 31000 | 6413 | 7355 | 7720 | 9630 | 11860 | 14390 | 17260 | 20500 | 23800 | 27780 |
| 31500 | 6485 | 7445 | 7810 | 9750 | 12000 | 14550 | 17490 | 20750 | 24060 | 28140 |
| 32000 | 6556 | 7540 | 7900 | 9870 | 12160 | 14760 | 17700 | 21000 | 24320 | 28500 |
| 32500 | 6628 | 7635 | 8000 | 9990 | 12300 | 14940 | 17910 | 21260 | 24600 | 28870 |
| 33000 | 6700 | 7730 | 8100 | 10110 | 12450 | 15110 | 18120 | 21510 |  | 29230 |
| 33500 | 6770 | 7820 | 8200 | 10:230 | 12600 | 15300 | 18340 | 21800 | 25190 | 29590 |
| 34000 | 6842 | 7900 | 8290 | 10360 | 12750 | 15480 | 18550 | 22040 | 25480 | 29950 |
| 34500 | 6914 | 7990 | 8390 | 10490 | 12900 | 15560 | 18760 | 22300 | 25860 | 30310 |
| 35000 | 6986 | 8080 | 8490 | 10610 | 13050 | 15850 | 18990 | 22590 | 26060 | 30670 |
| 35500 | 7059 | 8170 | 8590 | 10750 | 13200 | 16040 | 19200 | 22850 | 26400 | 31040 |
| 36000 | 7128 | 8260 | 8700 | 10870 | 13360 | 16220 | 19420 | 23120 | 26700 | 31450 |
| 36500 | 7200 | 8350 | 8800 | 11000 | 13500 | 16410 | 19640 | 23400 | 27000 | 31750 |
| 37000 | 7272 | 8440 | 8900 | 11120 | 13660 | 16600 | 19890 | 23660 | 27320 | 32120 |
| 37500 | 7344 | 8530 | 9000 | 11250 | 13820 | 16790 | 20120 | 23940 | 27550 | 32480 |
| 38000 | 7415 | 8615 | 9100 | 11370 | 13980 | 16990 | 20350 | 24200 | 28000 | 32840 |
| 38500 | 7487 | 8710 | 9210 | 11500 | 14140 | 17170 | 20600 | 24500 | 28300 | 33200 |
| 39000 | 7556 | 8800 | 9320 | 11630 | 14300 | 17360 | 20830 | 24770 | 28600 | 33560 |
| 39500 | 7630 | 8890 | 9420 | 11770 | 14460 | 17550 | 21050 | 25010 | 28940 | 33930 |
| 40000 | 7700 | 8983 | 9520 | 11900 | 14620 | 17750 | 21280 | 25260 | 2930 | 34650 |

## Steamship Performance.

Knots, or nautical miles per hour.

| 20.5 | 21.0 | 21.5 | 22.0 | 22.5 | 23.0 | 23.5 | 24.0 | 24.5 | 25.0 | in tons. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | H | H | $H$ | $H$ | $H$ | H | $H$ | H | H | $T$ |
| 18293 | 19650 | 21090 | 22630 | 24220 | 25830 | 27500 | 29340 | 31190 | 33160 | 500 |
| 18816 | 20200 | 21700 | 23320 | 24930 | 26560 | 28300 | 30170 | 32050 | 34100 | 11000 |
| $19: 340$ | 20800 | 22300 | 24000 | 25610 | 27300 | 29080 | 31000 | 32940 | 35020 | 11500 |
| 19860 | 21320 | 22900 | 24700 | 26300 | 28000 | 29860 | 31830 | 33820 | 35960 | 12000 |
| 20385 | 21900 | 23510 | 25400 | 26990 | 28730 | 30630 | 32670 | 34700 | 36900 | 12500 |
| 20900 | 22450 | 24120 | 26100 | 27680 | 29460 | 31400 | 33530 | 35600 | 37890 | 13000 |
| 21440 | 23000 | 24720 | 26800 | 28400 | 30210 | 32200 | 34490 | 36520 | 38830 | 13500 |
| 21954 | 23560 | $25: 330$ | 27500 | 29100 | 30960 | 33000 | 35240 | 37430 | 39800 | 14000 |
| 22477 | 24120 | 25920 | $28: 200$ | 29800 | 31700 | 33800 | 36090 | 38320 | 40750 | 14500 |
| 23000 | $2+700$ | 26550 | 28980 | 30500 | 32450 | 34600 | 36930 | 39230 | 41700 | 15000 |
| 23520 | 25250 | 27180 | 29650 | 31200 | 33:200 | 35400 | 37800 | 40120 | 42650 | 15500 |
| 24046 | 25840 | 27800 | 30340 | 31900 | 33940 | 36180 | 38630 | 41000 | 43650 | 16000 |
| 24550 | 26100 | 28410 | 31020 | 32600 | 31680 | 37000 | 39500 | 41900 | 44680 | 16500 |
| 25090 | 26980 | 29030 | 31700 | 33280 | 35400 | 37800 | 40300 | 42800 | 45500 | 17000 |
| 25615 | 27520 | 29610 | 32300 | 31000 | 36200 | 38580 | 41140 | 43680 | 46450 | 17500 |
| 26138 | 23080 | 30230 | 32800 | 34780 | 36930 | 39370 | 41960 | 44590 | 47400 | 18000 |
| 26660 | 28620 | 30830 | 33300 | 35330 | 37660 | 40150 | 42800 | 45480 | 48360 | 18500 |
| 27184 | 29200 | 31420 | 33830 | 36000 | 38400 | 40920 | 43600 | 46400 | 49300 | 19000 |
| 27710 | 29720 | 32000 | 34350 | 36760 | 39120 | 41700 | 44480 | 47300 | 50220 | 19500 |
| 282:30 | 30250 | 32560 | 34890 | 37330 | 39875 | 42530 | 45300 | 48200 | 51210 | 20000 |
| 28670 | 30740 | 33030 | 35420 | 37950 | 40500 | 43190 | 46000 | 48950 | 52000 | 20500 |
| 29104 | 31200 | 33520 | 35980 | 38500 | 41100 | 43800 | 46700 | 49790 | 52800 | 21000 |
| 29541 | 31680 | 34020 | 36520 | 39070 | 41720 | 44450 | 47300 | 50410 | 53560 | 21500 |
| 29978 | 32130 | 34510 | 37030 | 39640 | 42310 | 45120 | 48100 | 51150 | 54340 | 22000 |
| 30415 | 32600 | 35020 | 37590 | 40220 | 429:0 | 45800 | 48800 | 51900 | 55120 | 22500 |
| 30852 | 3:3080 | 37500 | 38120 | 40800 | 43530 | 46330 | 49520 | 52730 | 55910 | 23000 |
| 31289 | 33560 | 36000 | 38660 | 41380 | 44140 | 47100 | 50230 | 53390 | 56720 | 23500 |
| 31730 | 31030 | 36500 | 39200 | 41960 | 44750 | 47750 | 50950 | 54120 | 57520 | 24000 |
| 32160 | 34500 | 37000 | 39730 | 42540 | 45360 | 48400 | 51750 | 54880 | 58300 | 24500 |
| 32610 | 37000 | 37520 | 40300 | 43120 | 45980 | 49060 | 52380 | 55620 | 59120 | 25000 |
| 33050 | 3.5.56 | 38030 | 40820 | 43700 | 46600 | 49720 | 53100 | 56380 | 59900 | 25500 |
| 3:348.5 | 35950 | 38530 | 41380 | 44300 | 47220 | 50100 | 53800 | 57100 | 60720 | 26000 |
| 33920 | 36420 | 39040 | 41930 | 44900 | 47860 | 51080 | 54500 | 57860 | 61530 | 26500 |
| 34538 | 36900 | 39530 | 42480 | 45480 | 48450 | 51720 | 55220 | 58600 | 62300 | 27000 |
| 34795 | 37380 | 40030 | 43000 | 46050 | 49090 | 52400 | 56000 | 59380 | 63100 | 27500 |
| 35230 | 37850 | 40510 | 43550 | 46630 | 49700 | 53020 | 56650 | 60100 | 63880 | 28000 |
| 35670 | 38300 | 41020 | 44100 | 47200 | 50320 | 53700 | 57300 | 60830 | 64650 |  |
| 36110 | 38800 | 41500 | 44600 | 47780 | 50950 | 54380 | 57980 | 61600 | 65420 | 29000 |
| 36545 | 39250 | 42000 | 45140 | 48350 | 51550 | 55030 | 58740 | 62320 | 66210 | 29500 |
| 36970 | 39740 | 42500 | 45690 | 48875 | 52210 | 55690 | 59320 | 63105 | 67050 | 30000 |
| 37360 | 40130 | 42940 | 46150 | 49400 | 52740 | 56310 | 59910 | 63760 | 67780 | 30500 |
| 37750 | 40550 | 43400 | 46620 | 49900 | 53300 | 56920 | 60530 | 64410 | 68490 | 31000 |
| 38140 | 40980 | 43850 | 47100 | 50400 | 53850 | 57500 | 61180 | 65080 | 69170 | 31500 |
| 38530 | 41400 | 44300 | 47580 | 50910 | 54400 | 58100 | 61800 | 65750 | 69880 | 32000 |
| 38922 | 41810 | 44760 | 48060 | 51420 | $5-1950$ | 58700 | 62400 | 66400 | 70560 | 32500 |
| 39315 | 42220 | 45220 | 48550 | 51960 | 55500 | 59290 | 63040 | 67080 | 71280 | 33000 |
| 39700 | 42750 | 45700 | 49030 | 52470 | 56040 | 59870 | 63650 | 67730 | 71990 | 33500 |
| 40100 | 43060 | 46140 | 49510 | 52980 | 56590 | 60450 | 64280 | 68400 | 72680 | 34000 |
| 40185 | 43480 | 46600 | 50000 | 53500 | 57130 | 61040 | 64900 | 69070 | 73400 | 34500 |
| 40875 | 43900 | 47060 | 50500 | 54000 | 57700 | 61630 | 65520 | 69750 | 74100 | 35000 |
| 41265 | 44320 | 47520 | 51000 | 54.520 | 58250 | 62230 | 66170 | 70420 | 74820 | 35500 |
| 41655 | 44760 | 48000 | 51480 | 55050 | 58810 | 62820 | 66810 | 71100 | 75620 | 36000 |
| 42045 | 45180 | 48150 | 51970 | 55590 | 59390 | 63440 | 67450 | 71760 | 76230 | 36500 |
| 42440 | 45600 | 48920 | 52460 | 56100 | 59940 | 64050 | 68080 | 72430 | 76950 | 37000 |
| 42830 | 46030 | 49380 | 52940 | 56600 | 60500 | 64650 | 68700 | 73100 | 77670 | 37500 |
| 43220 | 46460 | 49830 | 53410 | 57130 | 61050 | 65240 | 69350 | 73800 | 78380 | 38000 |
| 43610 | 46890 | 50300 | 53900 | 57640 | 61600 | 65850 | 70000 | 74390 | 79100 | 38500 |
| 44000 | 47300 | 50760 | 54400 | 58160 | 62180 | 66420 | 70580 | 75050 | 79800 | 39000 |
| 44390 | 47820 | 51200 | 54860 | 58670 | 62700 | 67020 | 71180 | 75720 | 80520 | 39500 |
| 44780 | 48140 | 51660 | 55350 | 59210 | 63250 | 67565 | 71860 | 76450 | 81230 | 40000 |

## THE STEAM TURBINE.

In the reciprocating engine the fluid acts by its pressure directly upon the piston. In the steam turbine the potential energy of the steam is converted into the kinetic energy of motion acting directly upon a revolving wheel or wheels.

When the steam expands in stationary nozzles the machine is an impulse turbine, and when the expansion nozzles form a portion of the revolving wheel it is a reactio a turbine. In some instances both principles are combined in one machine.

When a jet of steam from a stationary nozzle impinges upon the buckets of a revolving wheel of proper design, the jet rebounds with the same relative velocity with which it strikes. The relative velocity with which the jet strikes the bucket depends upon the velocity of the bucket itself, being the difference between the jet velocity and the bucket velocity.

If $v$ is the velocity of the jet, and $v_{1}$ the velocity of the bucket of the wheel, the velocity with which the jet strikes the bucket will be: $v$ - $\boldsymbol{v}_{1}$, and this will also be the relative velocity of the rebounding jet. Since the

Fig. 1.

jet is rebounding with a velocity $v$ - $v_{1}$, and the bucket is moving in the other direction with a velocity $v_{1}$, the difference will be: $\left(v-v_{1}\right)-v_{1}$, which is equal to $v-2 v_{1}$. That is, the rebounding jet loses twice the velocity of the moving buckets of the wheel.

If all the velocity of the jet has been giren to the wheel, its residual velocity will be zero, or : $v-2 v_{1}=0$, which corresponds to a value: $v_{1}=\frac{1}{v} v$. For an impulse turbine, therefore, the efficiency is a maximum when the speed of the perimeter of the wheel is one-half that of the jet.

In the case of the reaction turbine, of which the simplest example is the original oelipile of Hero of Alexandria, or the hydraulic machine known as Barker's Mill, the nozzles themselves move, their backward velocity being the same as that of the issuing jets. In this case therefore we have, if $v$ is the velocity of the jet and $v_{1}$ the velocity of the nozzle, the relative velocity will be $v-v_{1}$, and if the residual velocity of the jet be made zero the two velocities must be equal. For the reaction turbine, therefore, the maximum efficiency is attained when the speed of the perimeter of the wheel is equal to that of the jet, that is, double the velocity of maximum efficiency for the impluse turbine. The velocity of the steam discharged through a diverging nozzle of the De Laval type may be computed from the formula of Rateau, using the initial and terminal temperatures of the steam.

Let $V$ be the velocity of the steam in feet per second

$$
\begin{aligned}
& T_{1}=\text { the absolute initial temperature } F \text {. } \\
& T_{2}=\text { the absolute terminal temperature } F \text {. } \\
& r=\text { the latent heat of vaporization at the temperature } T \text {, } \\
& \text { as given in the steam table. } \\
& \text { have: } \\
& \qquad V=224 \sqrt{\left(T_{1}-T_{2}\right)\left(\frac{r}{T_{1}}+\frac{T_{1}-T_{2}}{T_{2}+T_{2}}\right)}
\end{aligned}
$$

Then we have:

Fig. 2.


The coefficient 224 is derived from $\sqrt{2 g \times 778}$
Thus, if we have an initial pressure of 175 pounds above racuum, and the exhaust is against atmospheric pressure, 15 pounds, we have:

$$
\begin{aligned}
T_{1} & =372+459.4 \\
T_{2} & =212+451.4 \\
r & =851
\end{aligned}
$$

and these values, substituted in the formula give :
$V=224 \sqrt{(831.4-671.4)\left(\frac{851}{831.4}+\frac{831.4-671.4}{831.4+671.4}\right)}=3,012$ feet per second.
If we exhaust into a vacuum, instead of against the atmosphere, and have a back pressure of 1 pound absolute, we have $T_{2}=101.4+459.4=560.8$, and using this value in the formula we get:

$$
V=4,050 \text { feet per second. }
$$

The De Laval turbine, an impulse turbine with a single wheel, is operated at speeds of 800 to 1,000 feet per second, reaching 10,000 to $30,000 \mathrm{rev}$ olutions per minute, and although this gises excellent results it is still much below the velocity of maximum efficiency.

Fig. 3.


By the use of a number of wheels, dividing the transformation of energy of the jet into a succession of steps it has been found practicable to reduce the rotative speed, and thus diminish the operative difficulties.

If we let the number of steps or stages be called $n$, each step represents $\frac{1}{n}$ conversion of the energy of the steam into velocity.

As the energy is proportional to the square of the velocity, the velocity is reduced in proportion to the square foot of the number of steps and $v=\frac{1}{\sqrt{n}}$; four steps reducing the velocity one-half; nine steps reducing it one-third, and so on.

Figure 1 shows the arrangement of a multiple impulse turbine, the exhaust from the wheel $A$ passing through the nozzles $B$ in the partition $C$ to act upon the second wheel $D$, and so on. Since each compartment is complete and inclosed the pressure is alike on both sides of each wheel, and there is no longitudinal pressure on the shaft in this type of turbine. Another construction of this type of wheel is shown in Figure 2, the rings of stationary nozzles being formed as wheels on the inside of the casing. A modification of this type leads to the' form shown in Figure 3, in which the

Fig. 5.
 stationary wheels are nozzles, and the revolving ones are also nozzles, or reaction wheels, this being the principle of the Parsons turbine. In this form there is an endlong pressure
 on the shaft, which must be taken up by balance pistons and cylinders. When such a turbine is used for the propulsion of screw vessels this endlong thrust may be used to counteract the thrust of the screw propellers to advantage.

Another type, represented by the Curtis turbine, introduces velocity steps in addition to the pressure steps. The principals is shown in Figure 4, assuming two sets of wheels revolving in opposite direction. Here the velocity from the nozzles $A$ is much greater than double the wheel velocity, the steam acting first on the wheel $B$, and then passing to a second wheel $C$, and to a third wheel $D$, etc., losing twice the velocity of the wheel each time, until all is consumed. In practice stationary intermediates are used, so that the direction is reversed, and the wheels all revolve in the same direction, as shown in Figure 5.

The following data of Steam Turbine Performance, given by Mr. A. H. Gibson in Cassier's Magazine, November 1906, may be taken as representing the comparative performance of turbines of the different types:

Trial Figures for Steam Turbines of Different Makes.-1906.

| Type. | Power. | Load. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| De Laval | 300 BHP. | 357 BHP. | 208. | 81 | 27.2 | 750 | 13.55 |
| De Laval | 300 BHP. | 342 BHP. | 151. | 20 | 0. | 755 | 15.4 |
| Parsons | $3,060 \mathrm{KW}$. | 2,993 KW. | 138.5 | 235 | 27.0 | 1,350 | 11.0 |
| Parsons | 1,000 KW. | 1,173 KW. | 130. | 92 | 28.4 | 1,493 | 13.6 |
| Westinghouse Parsons . | 2,500 KW. | 3,669 BHP. | 150. | 0 | 26. | 1,480 | 12.6* |
| Westinghouse Parsons . | 1,500 KW. | 1,500 KW. | 150. | 140 | 28.0 |  | 12.4* |
| Westinghouse Parsons. . | 1,000 KW. | 1,346 BHP. | 150. | 152 | 27.47 | 1,808 | 11.43* |
| Westinghouse Parsons.. | 500 KW . | 763 ВНР. | 150.2 | 182 | 28.08 | 3,478 | 11.17* |
| Riedler Stumpf | 1,500 KW. | 1,430 KW. | 128. | 307 | 27.7 | 3,800 | 12.97 |
| Curtis | 2,000 KW. | 2,000 KW. | 180. | 200 | 28. | 900 | 11.41 |
| Curtis | 2,000 KW. | 2,000 KW. | 180. | 125 | 28. | 900 | 12.08 |

*In these four cases the steam consumption is figured per B. H. P.
For a general theoretical account of the thermodynamic principles involved in steam-turbine design, reference must be had to the various treatises upon the subject, among which may be noted the invaluable work, "Die Dampfturbinen" by Dr. A. Stodola, Zürich, of which an excellent English translation has been made by Dr. Löwenstein, also "The Steam Turbine," by R. M. Neilson, and "Steam Turbines," by Lester G. French ; besides numerous important articles in the technical press.

## Comparative Steam Consumption.

In recording the consumption of steam for various kinds of engines, steam turbines, etc., the results are sometimes given in pounds per hour per kilowatt, at other times in pounds per electrical horse-power of 746 watts, or again per indicated horse-power, and these values must be reduced to a common standard in order to be made comparable. This reduction may be conveniently made by use of the following table, due to Mr. R. M. Neilson :

Table of Steam Consumption.
Pounds of steam per hour per kilowatt compared with the same per electrical horse-power and the same per indicated horse-power.

| Per K. W. | Per E.H.P. (of 746 watts). | $\begin{gathered} \text { Per I.H.P. } \\ \text { if } \frac{\text { E.H.P. }}{\text { I.H.P. }}=0.81 \end{gathered}$ | $\begin{gathered} \text { Per I.H.P. } \\ \text { if } \frac{\text { E.H.P. }}{\text { I.H.P. }}=0.85 \end{gathered}$ | $\begin{gathered} \text { Per I.H.P. } \\ \text { if E.H.P. } \\ \text { I.H.P. } \end{gathered}=0.90$ |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 10.44 | 8.36 | 8.88 | 9.40 |
| 15 | 11.19 | 8.95 | 9.51 | 10.07 |
| 16 | 11.94 | 9.55 | 10.15 | 10.74 |
| 16.5 | 12.31 | 9.85 | 10.46 | 11.08 |
| 17 | 12.68 | 10.15 | 10.78 | 11.41 |
| 17.5 | 13.05 | 10.44 | 11.10 | 11.75 |
| 18 | 13.43 | 10.74 | 11.41 | 12.09 |
| 18.5 | 13.80 | 11.04 | 11.73 | 12.42 |
| 19 | 14.17 | 11.34 | 12.05 | 12.76 |
| 19.5 | 14.55 | 11.64 | 12.36 | 13.09 |
| 20 | 14.92 | 11.94 | 12.68 | 13.43 |
| 21 | 15.67 | 12.53 | 13.32 | 14.10 |
| 22 | 16.41 | 13.13 | 13.95 | 14.77 |
| 23 | 17.16 | 13.73 | 14.58 | 15.44 |
| 24 | 17.90 | 14.32 | 15.22 | 16.11 |
| 25 | 18.65 | 14.92 | 15.85 | 16.78 |

## INTERNAL=COMBUSTION MOTORS.

The greater part of the internal-combustion motors now in active use are operated on the Beau de Rochas cycle, with a power impulse every fourth stroke. The sequence of operations is shown in the cuts, the corresponding portion of the indicator diagram being given in each stroke.


In the first outward stroke the mixed charge of air and gas is drawn in, and on the return stroke this is compressed. It is then ignited by an electric spark, hot tube, or similar device, and the expansion due to the explosion and combustion makes the second outward stroke,-this being the power stroke. The fourth phase in the cycle, the second inward stroke, is the exhaust.

It is advantageous to use as high a compression pressure as possible, but the limit to this is found in the heat generated by compression. If the compression is too high the charge will be ignited by this heat and an
injurious premature explosion occur. Various attempts have been made to obviate this difficulty. In the Banki engine a fine spray of water is injected into the inlet pipe with the charge, and this absorbs much of the heat of - compression. The vapor of water thus produced expands with the explosion, and there is thus a combined gas and steam action. In the Diesel motor the charge drawn in is pure air, and this is compressed to about 500 pounds per square inch. A high temperature is thus produced, but there is no fuel in the cylinder to be ignited. At the end of the stroke the liquid fuel is injected and is ignited by the heat of the compressed air.

In ordinary gas engines the compression is carried from 80 to 90 pounds per square inch. The maximum pressure in such engines is about 3.5 times the compression pressure. For compressions of 100 pounds per square inch or less the mean effective pressure may be obtained from the following formula:

$$
\text { M. Е. P. }=2 C-0.01 C^{2},
$$

in which $C$ is the compression pressure. Thus, for 50 pounds compression, this would give

$$
\text { M. E. P. }=100-25=75 \text { pounds. }
$$

Piston speed should not cxceed 700 feet per minute,-more generally 500 feet per minute is used. Maximum pressure should not be reached later than at one-tenth the stroke. The time of rise in pressure in a gas engine is : first, time taken for flame to strike back into the mixture; second, time during which pressure rises after ignition. Cylinders of large dimensions have much larger ratio of volume to surface than small ones, and are therefore more economical. The size of valves should be such that the velocity of gases calculated upon mean piston speed does not exceed 100 feet per minute.

Internal-combustion motors have a much higher thermal efficiency than steam engines, on account of the greater temperature range and, also, because of the absence of losses from cylinder condensation, owing to the fact that the working fluid is a perfect gas.

Gas engines frequently show on test thermal efficiencies of 22 to 25 per cent., while the Diesel motor has given a thermal efficiency of 38 per cent.

The general proportions of gas-engine parts may be determined according to the general principles of machine design. There are, however,


Gas-engine Diagram.
certain parts which may be given special consideration. Since gas engines may be used with fuels of various calorific values, it is necessary to assume some standard upon which proportions may be based, and in the United States it is often assumed that natural gas is the standard fuel, its calorific value being about 1000 B.T.U. per cubic foot. For gas of any other calorific value, a general rule is to make the compression ratio inversely as the calorific value of the gas. Thus for a lean gas a higher degree of compression will be required, and, although less power will be developed than with a richer gas, the thermal efficiency may be as high or even higher.

For natural gas the compression space is made about 30 per cent. of the piston displacement, so that the total volume of cylinder and clearance is
1.30 of the piston displacement, and the ratio of the clearance to the total volume is $\frac{0.30}{1.30}=0.2308$.

Upon this assumption a typical gas-engine indicator diagram may be constructed, from which the action in the cylinder may be seen.

The following discussion is condensed from Roberts's "Gas-engine Hand-book."

The compression curve has been found experimentally to be represented by the relation

$$
P V^{1.3}=K,
$$

in which $P$ is the absolute pressure at any point; $V$, the corresponding volume; and $K$, a constant. If the volume of the cylinder is taken as unity, $K$ is the absolute pressure of the atmosphere, or 14.7 pounds per square inch.

With natural gas the pressure of explosion is about 4 times the compression pressure, both compression and explosion pressures being considered above atmospheric.

For the expansion curve the relation of pressure to volume is

$$
P V^{1.35}=C,
$$

in which $C$ is a constant depending upon the maximum pressure of explosion.

To find the compression pressure with a clearance ratio of 0.2308 , as determined above, we have

$$
\begin{aligned}
P V^{1.3} & =K=14.7, \\
P & =\frac{14.7}{V^{1.3}}=\frac{14.7}{(0.2308)^{1.3}}=98.88 \text { pounds } .
\end{aligned}
$$

This is absolute pressure, and the pressure above atmospheric will be

$$
98.88-14.7=84.2 \text { pounds per square inch. }
$$

The explosion pressure will then be $84.2 \times 4=336.8$ pounds above atmosphere, or 351.5 pounds absolute. Other points in the compression curve may then be computed by the formula.

To apply the formula for the expansion curve,

$$
P V^{1.35}=C,
$$

the value of $C$ must be found. This is the pressure at the end of the stroke when the volume is equal to 1 ; hence, we have

$$
\begin{aligned}
P V^{1.35} & =351.5 \times(0.2308)^{1.35}=C, \\
& =48.56 \text { pounds absolute },
\end{aligned}
$$

as the terminal pressure.
Intermediate points in the expansion curve may then be found, as shown in the diagram, from

$$
P V^{1.35}=48.56
$$

The mean effective pressure may then be measured from the diagram,preferably by the use of the planimeter.

The power of the gas engine is generally determined by means of the brake, and the dimensions of parts are based on brake horse-power (B. H. P.).

The brake horse-power may be expressed in general by the formula

$$
\text { В. Н. Р. }=\frac{D^{2} \times L \times R}{C},
$$

in which

$$
\begin{aligned}
& D=\text { diameter of cylinder, in inches; } \\
& L=\text { stroke, in inches ; } \\
& R=\text { revolutions per minute } ; \\
& C=\text { constant, depending upon the fuel. }
\end{aligned}
$$

For a four-cycle engine $C$ may be taken as 19.000 for natural gas and 18,000 for gasoline. The value of $C$ may be determined from any engine in
which the brake horse-power has been found, and then this value can be used for subsequent computations with the same fuel.

The stroke is usually made equal to $1.5 D$, and the piston speed about 600 feet per minute.

For the inlet and the exhaust passages we have
$S=$ piston speed, in feet, per minute;
$A=$ piston area, in square inches;
$a=$ inlet area;
$a^{\prime}=$ exhaust area.

$$
\begin{aligned}
a & =\frac{A S}{6000} \\
a^{\prime} & =\frac{A S}{5100}
\end{aligned}
$$

The flow of water through the cylinder jacket is made 4 to 5 gallons per horse-power per hour.

The 1902 Code of the American Society of Mechanical Engineers includes the following :

## Rules for Conducting Tests of Gas and Oil Engines.

Code of 1901.
I. Objects of the Tests.-At the outset the specific object of the test should be ascertained, whether it be to determine the fulfilment of a contract guarantee, to ascertain the highest economy obtainable, to find the working economy and the defects as they exist, to ascertain the performance under special conditions, or to determine the effect of changes in the conditions; and the test should be arranged accordingly.
II. General Condition of the Engine.-Examine the engine, and make notes of its general condition and any points of design, construction, or operation which bear on the objects in view. Make a special examination of all the valves by inspecting the seats and bearing surfaces, and note their condition, and see if the piston rings are gas-tight.

If the trial is made to determine the highest efficiency, and the examination shows evidence of leakage, the valves and piston rings, etc., should be made tight and all parts of the engine put in the best possible working condition before starting on the test.
III. Dimensions, etc.-Take the dimensions of the cylinder, or cylinders, whether already known or not. This should be done when they are hot, and in working order. If they are slightly worn, the average diameter should be determined. Measure, also, the compression space or clearance volume, which should be done, if practicable, by filling the spaces with water previously measured, the proper correction being made for the temperature. (See Section III., Steam-engine Code.)
IV. Fuel.-Decide upon the gas or oil to be used, and, if the trial is to be made for maximum efficiency, the fuel should be the best of its class that can readily be obtained, or one that shows the highest calorific power. (See Section IV., Steam-engine Code.)
V. Calibration of Instruments Used in the Tests.-All instruments and apparatus should be calibrated and their reliability and accuracy verified by comparison with recognized standards. Apparatus liable to change or to become broken during the tests, such as gauges, indicator springs, and thermometers, should be calibrated both before and after the experiments. The accuracy of all scales should be verified by standard weights. In the case of gas- or water-meters, special attention should be given to their calibration, both before and after the trial, and at the same rate of flow and pressure as exists during the trial.
VI. Duration of Test.-The duration of a test should depend largely upon its character and the objects in view, and in any case the test should be continued until the successive readings of the rates at which oil or gas
is consumed, taken at, say, half-hourly intervals, become uniform and thus verify each other. If the object is to determine the working economy, and the period of time during which the engine is usually in motion is some part of twenty-four hours, the duration of the test should be fixed for this number of hours. If the engine is one using coal for generating gas, the test should cover a long enough period to determine with accuracy the coal used in the gas producer; such a test should be of at least twentyfour hours' duration, and in most cases it should extend over several days.
VII. Starting and Stopping a Test. - In a test for determining the maximum economy of an engine, it should first be run a sufficient time to bring all the conditions to a normal and constant state. Then the regular observations of the test should begin, and continue for the allotted time.

If a test is made to determine the performance under working conditions, the test should begin as soon as the regular preparations have been made for starting the engine in practical work, and the measurements should then commence and be continued until the close of the period covered by the day's work.
VIII. Measurement of Fuel. - If the fuel used is coal furnished to a gas producer, the same methods apply for determining the consumption as are used in steam-boiler tests. (See Code of Rules for Conducting Boiler Tests, "Transactions of the American Society of Mechanical Engineers," Volume XXI., page 34.)

If the fuel used be gas, the only practical method of measurement is the use of a meter through which the gas is passed. Gas bags should be placed between the meter and the engine to diminish the variations of pressure, and these should be of a size proportionate to the quantity used. Where a meter is employed to measure the air used by an engine, a receiver with a flexible diaphragm should be placed between the engine and the meter. The temperature and pressure of the gas should be measured, as also the barometric pressure and temperature of the atmosphere, and the quantity of gas should be determined by reference to the calibration of the meter, taking into account the temperature and pressure of the gas.

If the fuel is oil, this can be drawn from a tank which is filled to the original level at the end of the test, the amount of oil required for so doing being weighed; or, for a small engine, the oil may be drawn from a calibrated vertical pipe.

In an engine using an igniting flame the gas or oil required for it should be included in that of the main supply, but the amount so used should be stated separately, if possible.
IX. Measurement of Heat Units Consumed by the Engine.-The number of heat units used is found by multiplying the number of pounds of coal or oil or the cubic feet of gas consumed by the total heat of combustion of the fuel, as determined by a calorimeter test. In determining the total heat of combustion no deduction is made for the latent heat of the water vapor in the products of combustion. There is a difference of opinion on the propriety of using this higher heating value, and for purposes of comparison care must be taken to note whether this or the lower value has been used. The calorimeter recommended for determining the heat of combustion is the Mahler, for solid fuels or oil, or the Junker, for gases, or some form of calorimeter known to be equally reliable. (See Poole on "The Calorific Power of Fuels.")

It is sometimes desirable, also, to have a complete chemical analysis of the oil or gas. The total heat of combustion may be computed, if desired, from the results of the analysis, and should agree well with the calorimeter values. (See Section XVII., Boiler-test Code.)

For the purpose of making the calorimeter test, if the fuel used is coal or generating gas in a producer, or oil, samples should be taken at the ime of the engine trial and carefully preserved for subsequent determinavion. If gas is used, it is better to have a gas calorimeter on the spot, ;amples taken, and the calorimeter test made while the trial is going on.
X. Measurement of Jacket Water to Cylinder or Cylinders.-The acket water may be measured by passing it through a water-meter or tllowing it to flow from a measuring tank before entering the jacket, or by ollecting it in tanks on its discharge. If measuring tanks are used, the
same system of arrangement is recommended as that employed for feedwater measurements in boiler and steam-engine tests. (See Section XI., Steam-engine Code.)
XI. Indicated Horse=power.-The directions given for determining the indicated horse-power for steam engines apply in all respects to inter-nal-combustion engines. (See Section XIII., Steam-engine Code.)
XII. Brake Horse=power. - The determination of the brake horsepower, which is very desirable, is the same for internal combustion as for steam engines. (See directions given in Section XV., Steam-engine Code.)
XIII. Speed.-The same directions apply to internal-combustion engines as to steam engines for the determination of speed, and reference is made to Section XVII., Steam-engine Code, for suggestions on this subject.

In an engine which is governed by varying the number of explosions or working cycles, a record should be kept of the number of explosions per minute; or if the engine is running at nearly maximum load, by counting the number of times the governor causes a miss in the explosions.
XIV. Recording the Data.-The time of taking weights and every observation should be recorded, and note made of every event, however unimportant it may seem to be. The pressures, temperatures, meter readings, speeds, and other measurements should be observed every 20 or 30 minutes when the conditions are practically uniform, and at more frequent intervals if they are variable. Observations of the gas or oil measurements should be taken with special care at the expiration of each hour, so as to divide the test into hourly periods and reveal the uniformity, or otherwise, of the conditions and results as the test goes forward.

All data and observations should be kept on suitably-prepared blank sheets or in note-books.
XV. Uniformity of Conditions. - When the object of the test is to determine the maximum economy, all the conditions relating to the operation of the engine should be maintained as constant as possible during the trial.
XVI. Indicator Diagrams and Their Analysis.-(a) Sample Diagrams: Sample diagrams nearest to the mean should be selected from those taken during the trial and appended to the tables of the results. If there are separate compression or feed cylinders, the indicator diagrams from these should be taken and the power deducted from that of the main cylinder.
XVII. Standards of Economy and Efficiency. -The hourly consumption of heat, determined as pointed out in Article IX., divided by the indicated or the brake horse-power, is the standard expression of engine economy recommended.

In making comparisons between the standard for internal-combustion engines and that for steam engines, it must be borne in mind that the former relates to energy concerned in the generation of the force employed, whereas in the steam engine it does not relate to the entire energy expended during the process of combustion in the steam boiler. The steam engine standard does not cover the losses due to combustion, while the internal-combustion engine standard, in cases where a crude fuel such as oil is burned in the cylinder, does cover these losses. To make a direct comparison between the two classes of engines considered as complete plants for the production of power, the losses in generating the working agent must be taken into account in both cases, and the comparison must be on the basis of the fuel used; and not only this, but on the basis of the same or equivalent fuel used in each case. In such a comparison, where producer gas is used and the producer is included in the plant, the fuel consumption, which will be the weight of coal in both cases, may be directly compared.

The thermal efficiency ratio per indicated horse-power or per brake horse-power for internal-combustion engines is obtained in the same
manner as for steam engines referred to in Section XXI., Steam-engine Code, and is expressed by the fraction

## 2545

## B. T. U. per horse-power per hour

XVIII. Heat Balance.-For purposes of scientific research, a heat balance should be drawn which shows the manner in which the total heat of combustion is expended in the various processes concerned in the working of the engine. It may be divided into three parts: first, the heat which is converted into the indicated or brake work; second, the heat rejected in the cooling water of the jackets; and third, the heat rejected in the exhaust gases, together with that lost through incomplete combustion and radiation.

To determine the first item, the number of foot-pounds of work performed by, say, 1 pound or 1 cubic foot of the fuel is determined; and this quantity, divided by 778, which is the mechanical equivalent of 1 B. T. U., gives the number of heat units desired. The second item is determined by measuring the amount of cooling water passed through the jackets, equivalent to 1 pound or 1 cubic foot of fuel consumed, and calculating the amount of heat rejected, by multiplying this quantity by the difference in the sensible heat of the water leaving the jacket and that entering. The third item is obtained by the method of differences, -that is, by subtracting the sum of the first two items from the total heat supplied. The third item can be subdivided by computing the heat rejected in the exhaust gases as a separate quantity. The data for this computation are found by analyzing the fuel and the exhaust gases, or by measuring the quantity of air admitted to the cylinder in addition to that of the gas or oil.
XIX. Report of Test.-The data and results of a test should be reported in the manner outlined in one of the following tables, the first of which gives a complete summary when all the data are determined, and the second is a shorter form of report, in which some of the minor items are omitted.
XX. Temperatures Computed at Various Points of the Indicator Diagram. -The computation of temperatures corresponding to various points in the indicator diagram is, at best, approximate. It is possible only where the temperature of one point is known or assumed, or where the amount of air entering the cylinder along with the charge of gas or oil and the temperature of the exhaust gases is determined.

## Data and Results of Test of Gas or Oil Engine.

Arranged according to the Complete Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902 .

1. Made by of on engine located at. to determine.
2. Date of trial
3. Type of engine (whether oil or gas)
4. Class of engine (mili, marine, motor for vehicle...................................................................... or other)
5. Number of revolutions for one cycle, and class of cycle.
6. Method of ignition
7. Name of builders.
8. Gas or oil used

9. Dimensions of engine:
(a) Class of cylinder (working or for compress-
ing the charge)2d Cyl.
(b) Vertical or horizontal
(c) Single- or double-acting
(d) Cylinder dimensions
Bore, in inches
Stroke, in feet.
Diameter of piston-rod, in inches
Diameter of tail-rod, in inches
(e) Compression space or clearance, in percent., of volume displaced by pistonper stroke
Head end
Crank end
Average
( $f$ ) Surface, in square feet (average)
Barrel of cylinders
Cylinder heads
Clearance and ports
Ends of piston
Piston-rod
(g) Jacket surfaces or internal surfaces of cyl-inder heated by jackets, in square feet.
Barrel of cylinder
Cylinder heads
Clearance and ports
(h) Horse-power constant for 1 pound meaneffective pressure and 1 revolution perminute
10. Give description of main features of engine and plant, and illustrate with drawings of same given on an appended sheet. De- scribe method of governing. State whether the conditions were constant throughout the test.
Total Quantities.
11. Duration of test hours.
12. Gas or oil consumed.13. Air supplied, in cubic feetcu. ft.14. Cooling water supplied to jacketscu. ft.
13. Calorific value of gas or oil by calorimeter test, determined by .calorimeter B. T. U.
Hourly Quantities.
14. Gas or oil consumed per hour ..... lbs.
15. Cooling water supplied per hour ..... lbs.
Pressures and Temperatures.
16. Pressure at meter (forr gas engine), in inches, of water ..... ins.
17. Barometric pressure of atmosphere:
(a) Reading of height of barometer ..... ins.
(b) Reading of temperature of barometer ..... deg. Fahr.
(c) Reading of barometer corrected to $32^{\circ} \not{\mathbf{F}} . . . . . . . . .$. . ins.
18. Temperature of cooling water:
(a) Inlet ..... deg. Fahr.deg. Fahr.
19. Temperature of gas at meter (for gas engine) ..... deg. Fahr.
20. Temperature of atmosphere :
deg. Fahr.(a) Dry-bulb thermometer
(b) Wet-bulb thermometer ..... deg. Fahr.(c) Degree of humidity
per cent.
21. Temperature of exhaust gases ..... deg. Fahr.
How determined

## Data Relating to Heat Measurement.

24. Heat units consumed per hour (pounds of oil or cubic feet of gas per hour multiplied by the total heat of combustion)
B. T. U.
25. Heat rejected in cooling water:
(a) Total per hour
B. T. U.
(b) In per cent. of heat of combustion of the gas or oil consumed
per cent.
26. Sensible heat rejected in exhaust gases above temperature of inlet air :
(a) Total per hour
B. T. U.
(b) In per cent. of heat of combustion of the gas or oil consumed
per cent.
27. Heat lost through incomplete combustion and radiation per hour:
(a) Total per hour
B. T. U.
(b) In per cent. of heat of combustion of the gas or oil consumed
per cent.

## Speed, Etc.

28. Revolutions per minute
rev.
29. Average number of explosions per minute

How determined
30. Variation of speed between no load and full load
rev.
31. Fluctuation of speed on changing from no load to fuli load, measured by the increase in the revolutions due to the change

## Indicator Diagrams.

32. Pressure, in pounds, per square inch above atmos1st Cyl. 2d Cyl phere:
(a) Maximum pressure
(b) Pressure just before ignition
(c) Pressure at end of expansion
(d) Exhaust pressure
33. Temperatures, in degrees Fahr., computed from diagrams:
(a) Maximum temperature (not necessarily at
maximum pressure)
(b) Just before ignition.
(c) At end of expansion
(d) During exhaust.
34. Mean effective pressure, in pounds, per square inch
35. Power, as rated by builders Power.
36. Power, as rated by builders:
(a) Indicated horse-power
H. P.
(b) Brake horse-power
H. P.
37. Indicated horse-power actualiy developed :
First cylinder
H. P .
Second cylinder
H. P.
H. P.
38. Brake horse-power, electric horse-power, or pump horse-

38 power, according to the class of engine........ H. P.
38. Friction indicated horse-power from diagrams, with no
load on engine and computed for average speed H. P.
39. Percentage of indicated horse-power lost in friction ...... per cent.

## Standard Efficiency Results.

40. Heat units consumed by the engine per hour :
(a) Per indicated horse-power
B.T.U.
(b) Per brake horse-power
B. T. U.
41. Heat units consumed by the engine per minute :
(a) Per indicated horse-power ..... B. T. U.
(b) Per brake horse-power ..... B. T. U.
42. Thermal efficiency ratio:
(a) Per indicated horse-power per cent.
(b) Per brake horse-power
(b) Per brake horse-power ..... per cent. ..... per cent.
Miscellaneous Efficiency Results.
43. Cubic feet of gas or pounds of oil consumed per horse-power per hour :
(a) Per indicated horse-power
(b) Per brake horse-power

## Heat Balance.

44. Quantities given, in per cents., of the total heat of combustion of the fuel:
(a) Heat equivalent of indicated horse-power.......... per cent.
(b) Heat rejected in cooling water.
(c) Heat rejected in exhaust gases and lost through radiation and incomplete combustion.......... per cent. Sum $=100$ per cent. Subdivisions of Item (c):
(c1) Heat rejected in exhaust gases ..................... per cent.
(c2) Lost through incomplete combustion per cent.
(c3) Lost through radiation, and unaccounted for...... per cent.
Sum $=$ Item (c)

## Additional Data.

Add any additional data bearing on the particular objects of the test or relating to the special class of service for which the engine is to be used. Also give copies of indicator diagrams nearest the mean and the corresponding scales. Where analyses are made of the gas or oil used as fuel, or of the exhaust gases, the results may be given in a separate table.

## Data and Results of Standard Heat Test of Gas or Oil Engine.

Arranged according to the Short Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902.

1. Made by
of
on engine located at
to determine
2. Date of trial
3. Type and class of engine
4. Kind of fuel used

| (a) Specific gravity | deg. Fahr. |  |
| :---: | :---: | :---: |
| (b) Burning-point. | . | Fahr. |
| (c) Flashing-point | ... | Fahr. |
| mensions of engine | 1st Cyl. | 2d Cyl. |

5. Dimensions of engine :
(a) Class of cylinder (working or for compressing the charge)
(b) Single- or double-acting
(c) Cylinder dimensions:

> Bore, in inches

Stroke, in feet
Diameter of piston-rod, in inches
(d) Average compression space or clearance, in per cent.
(e) Horse-power constant for 1 pound mean effective pressure and 1 revolution per minute

## Total Quantities.

6. Duration of test. hours.
7. Gas or oil consumed cu. ft. or lbs.
8. Cooling water supplied to jackets cu.ft. or lbs.9. Calorific value of fuel by calorimeter test, determined bycalorimeterB. T. U.
Pressures and Temperatures.
9. Pressure at meter (for gas engine), in inches, of water ..... ins.
10. Barometric pressure of atmosphere:
(a) Reading of barometer ..... ins.
(b) Reading corrected to $32^{\circ} \mathrm{F}$. ..... ins.
11. Temperature of cooling water:
(a) Inlet
(a) Inlet ..... deg. Fahr. ..... deg. Fahr.
(b) Outlet ..... deg. Fahr.
deg. Fahr.
12. Temperature of gas at meter (for gas engine) ..... deg. Fahr.
13. Temperature of atmosphere:
(a) Dry-bulb thermometer deg. Fahr.
(b) Wet-bulb thermometer ..... deg. Fahr.
14. Temperature of exhaust gases ..... deg. Fahr.
Data Relating to Heat Measurement.
15. Heat units consumed per hour (pounds of oil or cubic feet of gas per hour multiplied by the total heat of combustion) B. T. U.
16. Heat rejected in cooling water per hour B. T. U.
Speed, Etc.
17. Revolutions per minute ..... rev.19. Average number of explosions per minute
Indicator Diagrams.
1st Cyl. ..... 2d Cyl.20. Pressure, in pounds, per square inch above atmos-phere:(a) Maximum pressure.(b) Pressure just before ignition(c) Pressure at end of expansion(d) Exhaust pressure(e) Mean effective pressure
Power.
18. Indicated horse-power :
First cylinder
First cylinder ..... H. P. ..... H. P.
Total
Total ..... H. Р. ..... H. Р.
19. Brake horse-power
20. Brake horse-power .....
H. P. .....
H. P.
21. Percentage of indicated horse-power lost in friction
22. Percentage of indicated horse-power lost in friction ..... per cent. ..... per cent.
Standard Efficiency and Other Results.
23. Heat units consumed by the engine per hour :
(a) Per indicated horse-power ..... B. T. U.
(b) Per brake horse-power
lbs. or cu. ft.
(a) Per indicated horse-power ..... lbs. or cu. ft

## Additional Data.

Add any additional data bearing on the particular objects of the test or relating to the special class of service for which the engine is to be used. Also give copies of indicator diagrams nearest the mean, and the corresponding scales.

Note.-The volume of gas measured at any temperature should be reduced to the equivalent at a standard temperature and atmospheric pressure, corrected for the effect of moisture in the gas, which is ordinarily at the saturation-point or nearly so. It is recommended that a standard be adopted for gas-engine work, the same as that used in photometry,namely, the equivalent volume of the gas when saturated with moisture at the normal atmospheric pressure at a temperature of $60^{\circ} \mathrm{F}$. In order to reduce the reading of the volume containing moist gas at any other temperature to this standard, multiply by the factor

$$
\frac{459.4+60}{459.4+t} \times \frac{b-(29.92-s)}{29.4}
$$

in which $b$ is the height of the barometer, in inches, at $32^{\circ} \mathrm{F} ; ; t$, the temperature of the gas at the meter, in degrees Fahrenheit; and $s$, the vacuum, in inches, of mercury corresponding to the temperature of $t$ obtained from steam tables.

## ELECTRIC POWER TRANSMISSION.

The principal applications of electricity in mechanical engineering are in the transmission of power and the independent driving of machines by electric motors. It is yet a question for debate as to whether the actual transmission losses are materially reduced by the substitution of electric driving for shafting, belting, and pulleys, but there is no doubt as to the great advantages of electricity so far as the convenient arrangement of machinery and the utilization of floor-space are concerned.

Some general data concerning electricity will here be given, and for special and fuller treatment the reader is referred to Foster's "Electrical Engineer's Pocket-book," Bell's "Electric Power Transmission," and the standard works of reference on electrical engineering.



## Analogies Between the Flow of Water and Electricity.

## Water.

Head, difference of level, in feet.
Difference of pressure per square inch, in pounds.

Resistance of pipes, apertures, etc., increases with length of pipe, with contractions, roughness, etc.; decreases with increase of sectional area. The law of increase and decrease is expressed by complex formulæ.

## Electricity.

Volts; electro-motive force ; difference of potential or of pressure; E. or E. M. F.

Ohms, resistance, $R$. The resistance increases directly as the length or the conductor or wire, and inversely as its sectional area. It varies with the nature or quality of the conductor.
Conductivity is the reciprocal of specific resistance.

Rate of flow, as cubic feet per second, gallons per minute, etc., or volume divided by the time. In the mining regions sometimes expressed in "miner's inches."

Amperes; current; currentstrength; intensity of current ; rate of flow; 1 ampere $=1$ coulomb per second.
Amperes $=\frac{\text { volts }}{\text { ohms }} ; C=\frac{E}{R} ; E=C R$.
Quantity, usually measured in cubic feet or gallons, but is also equivalent to rate of flow $\times$ time, as cubic feet per second for so many hours.

Work, or energy, measured in footpounds: product of weight of falling water into height of fall; in pumping, product of quantity, in cubic feet, into the pressure, in pounds, per square foot against which the water is pumped.

Coulomb, unit of quantity, $Q=$ rate of flow $\times$ time, as ampere seconds; 1 ampere hour $=3600$ coulombs.

Joule, volt-coulomb, $W$, the unit of work = product of quantity by the electro-motive force $=$ voltampere.
If $C$ (amperes) $=$ rate of flow, and $E$ (yolts) $=$ difference of pressure between two points in a circuit, energy expended $=C E t,=C^{2} R t$, since $E=C R$.

Power, rate of work. Horse-power, foot-pounds of work done in 1 minute $\div 33,000$.
In falling water, pounds falling in 1 second $\div 150$. In water flowing in pipes, rate of flow, in cubic feet, per second $\times$ pressure resisting the flow, in pounds; per square foot $\div 550$.

In the mechanical applications of electricity it must always be remembered that the volt corresponds to pressure and the ampere to flow, and the product-the volt-ampere-is the watt, the unit of power, 746 of which are equal to a horse-power. The kilowatt $=1000$ watts is equal to

$$
\frac{1000}{746}=1.34 \text { horse-power. }
$$

The British Board of Trade Unit is equal to 1 kilowatt hour

## Strands of Copper Wire.

## (Roeblings.)

Copper wires are twisted into concentric strands or into ropes of 7 strands. A rope of 7 strands, each composed of 7 wires, is called a seven-by-seven rope, and is usually written $7 \times 7$. The number of wires that can be made into a strand is limited by the capacity of the stranding machinery, -200 wires is the usual limit of a concentric strand, and 133 wires of a rope.

In a strand of circular milage, $C M$, composed of $n$ wires of diameter, $d$, with a weight per 1000 feet, $w$, we have

$$
\begin{aligned}
C M & =d^{2} \times n, \\
n & =\frac{C M}{d^{2}}, \\
d & =\sqrt{\frac{C M}{n}}, \\
w & =0.00305 \times C M .
\end{aligned}
$$

The weights of strands are calculated about 1 per cent. heavier than a solid wire of the same circular milage, while the resistance is calculated for the solid wire.

The diameter of a strand may be calculated by multiplying the diameter of one wire by the factors given in the table, according to the number of wires composing the strand.

## Number of Wires and Diameter in Strand Required to Equal a Given Circular Milage.

Diameter of Wires in Decimal Parts of an Inch.

| ${ }_{0}^{\text {¢ }}$ | Area, in circular mils. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{7}^{7}$ | 50000 | 100000 | 150000 | 200000 | 250000 | 300000 | 350000 |
| 7 | . 0845 | . 1203 | . 1463 | . 1690 | . 1890 | . 2070 | . 2236 |
| 19 | . 0513 | . 0725 | . 0889 | . 1025 | . 1147 | . 1256 | . 1357 |
| 37 | . 0367 | . 0519 | . 0636 | . 0735 | . 0821 | . 0900 | . 0972 |
| 61 | . 0286 | . 0405 | . 0496 | . 0572 | . 0640 | . 0701 | . 0757 |
| 127 | . 0199 | . 0280 | . 0343 | . 0396 | . 0443 | . 0486 | . 0526 |
| 169 | . 0172 | . 0243 | . 0297 | . 0344 | . 0384 | . 0421 | . 0455 |
| 217 | . 0151 | . 0214 | . 0262 | . 0304 | . 0339 | . 0371 | . 0401 |
|  | 400000 | 450000 | 500000 | 550000 | 600000 | 650000 | 700000 |
| 7 | . 2390 | . 2535 | . 2672 | . 2803 | . 2927 | . 3047 | . 3163 |
| 19 | . 1450 | . 1538 | . 1622 | . 1701 | . 1776 | . 1849 | . 1919 |
| 37 | . 1039 | . 1103 | . 1162 | . 1219 | . 1273 | . 1325 | . 1375 |
| 61 | . 0809 | . 0858 | . 0905 | . 0949 | . 0991 | . 1032 | . 1071 |
| 127 | . 0561 | . 0595 | . 0627 | . 0658 | . 0687 | . 0715 | . 0742 |
| 169 | . 0486 | . 0516 | . 0543 | . 0571 | . 0595 | . 0620 | . 0643 |
| 217 | . 0429 | . 0455 | . 0480 | . 0503 | . 0525 | . 0547 | . 0567 |
|  | 750000 | 800000 | 850000 | 900000 | 950000 | 1000 |  |
| 7 | . 3273 | . 3380 | . 3484 | . 3585 | . 3684 | . 37 |  |
| 19 | . 1986 | . 2050 | . 2115 | . 2176 | . 2236 | . 22 |  |
| 37 | . 1423 | . 1470 | . 1515 | . 1559 | . 1602 | . 16 |  |
| 61 | . 1108 | . 1145 | . 1180 | . 1214 | . 1247 | . 12 |  |
| 127 | . 0768 | . 0793 | . 0818 | . 0841 | . 0864 | . 08 |  |
| 169 | . 0666 | . 0687 | . 0709 | . 0729 | . 0749 | . 07 |  |
| 217 | . 0588 | . 0607 | . 0625 | . 0644 | . 0661 | . 06 |  |

## Copper Wire Table of American Institute of Electrical Engineers.

Giving Weights and Lengths of Cool, Warm, and Hot Wires, of Matthiessen's Standard of Conductivity, for Brown \& Sharpe

| Gauges to the nearest fourth significant digit. |  |  |  | Weight. |  |  |  | Length. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢ั่ | Diameter, in inches. | Area. |  | Pounds per foot. | Pounds per ohm. |  |  | Feet per pound. | Feet per ohm. |  |  |
| $\dot{\sim} \dot{d}$ |  | Circular mils. | Sq. inch. sq. mils. |  | At $20^{\circ} \mathrm{C}$. | At $50^{\circ} \mathrm{C}$. | At $80^{\circ} \mathrm{C}$. |  | At $20^{\circ} \mathrm{C}$. | At $50^{\circ} \mathrm{C}$. | At $80^{\circ} \mathrm{C}$. |
| 0000 | . 460000 | 211600.0 | 166190.0 | . 640500 | 13090.000 | 11720.000 | 10570.000 | 1.561 | 20440.0 | 18290.0 | 16510.0 |
| 000 | . 409600 | 167800.0 | 131790.0 | . 508000 | 8232.000 | 7369.000 | 6647.000 | 1.969 | 16210.0 | 14510.0 | 13090.0 |
| 00 | . 364800 | 133100.0 | 104518.0 | . 402800 | 5177.000 | 4634.000 | 4182.000 | 2.482 | 12850.0 | 11500.0 | 10380.0 |
| , | . 324900 | 105500.0 | 82887.0 | . 319500 | 3256.000 | 2914.000 | 2630.000 | 3.130 | 10190.0 | 9123.0 | 8232.0 |
| 1 | . 289300 | 83690.0 | 65732.0 | . 253300 | 2048.000 | 1833.000 | 1654.000 | 3.947 | 8083.0 | 7235.0 | 6528.0 |
| $\stackrel{2}{2}$ | . 257600 | 66370.0 | 52128.0 | . 200900 | 1288.000 | 1153.000 | 1040.000 | 4.977 | 6410.0 | 5738.0 | 5177.0 |
| 3 | . 229400 | 52630.0 | 41339.0 | . 159300 | 810.000 | 725.000 | 654.200 | 6.276 | 5084.0 | 4550.0 | 4106.0 |
| 5 | . 204300 | 41740.0 | 32784.0 | . 126400 | 509.400 | 455.900 | 411.400 | 7.914 | 4031.0 | 3608.0 | 3256.0 |
| 5 | . 181900 | 33100.0 | 25999.0 | . 100200 | 320.400 | 286.700 | 258.700 | 9.98 | 3197.0 | 2862.0 | 2582.0 |
| 6 | . 162000 | 26250.0 | 20618.0 | . 079460 | 201.500 | 180.300 | 162.700 | 12.58 | 2535.0 | 2269.0 | 2048.0 |
| 7 | . 144300 | 20820.0 | 16351.0 | . 063020 | 126.700 | 113.400 | 102.300 | 15.87 | 2011.0 | 1800.0 | 1624.0 |
| 8 | . 128500 | 16510.0 | 12967.0 | . 049980 | 79.690 | 71.330 | 64.360 | 20.01 | 1595.0 | 1427.0 | 1288.0 |
|  | . 114400 | 13090.0 | 10283.0 | . 039630 | 50.120 | 44.860 | 40.480 | 25.23 | 1265.0 | 1132.0 | 1021.0 |
| 10 | . 101900 | 10380.0 | 8155.0 | . 031430 | 31.520 | 28.210 | 25.460 | 31.82 | 1003.0 | 897.6 | 809.9 |
| 11 | . 090740 | 8234.0 | 6467.0 | . 024930 | 19.820 | 17.740 | 16.010 | 40.12 | 795.3 | 711.8 | 642.3 |
| 12 | . 080810 | 6530.0 | 5129.0 | . 019770 | 12.470 | 11.160 | 10.070 | 50.59 | 630.7 | 564.5 | 509.4 |
| 13 | . 071960 | 5178.0 | 4067.0 | . 015680 | 7.840 | 7.017 | 6.332 | 63.79 | 500.1 | 447.7 | 404.0 |
| 14 | . 064080 | 4107.0 | 3225.0 | . 012430 | 4.931 | 4.413 | 3.982 | 80.44 | 396.6 | 355.0 | 320.3 |
| 15 | . 057070 | 3257.0 | 2558.0 | . 009858 | 3.101 | 2.776 | 2.504 | 101.4 | 314.5 | 281.5 | 254.0 |
| 16 | . 050820 | 2583.0 | 2029.0 | . 007818 | 1.950 | 1.746 | 1.575 | 127.9 | 249.4 | 223.3 | 201.5 |
| 17 | . 045260 | 2048.0 | 1609.0 | . 006200 | 1.226 | 1.098 | . 990600 | 161.3 | 197.8 | 177.1 | 159.8 |
| 18 | . 040300 | 1624.0 | 1276.0 | . 004917 | . 771300 | . 690400 | . 623000 | 203.4 | 156.9 | 140.4 | 126.7 |
| 19 | . 035890 | 1288.0 | 1012.0 | . 003899 | . 485100 | . 434200 | . 391800 | 256.5 | 124.4 | 111.4 | 100.5 |


 స్ర

 めミ1م ザ




H00 N न 0．0000000000000000 ※iom



 새갱ㅇ어앵ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 ๗





రిరి， No －




The data from which this table has been computed are as follows：Matthiessen＇s standard resistivity，Matthiessen＇s temperature coefficient，specific gravity of copper $=8.89$ ．Resistance in terms of the international ohm．

Matthiessen＇s standard 1 metre－gramme of hard drawn copper $=0.1469 \mathrm{~B} . \mathrm{A} . \mathrm{U}$ ．at $0^{\circ} \mathrm{C}$ ．Ratio of resistivity，hard or soft copper， 1.0226 ． $20^{\circ} \mathrm{C} ., 50^{\circ} \mathrm{C}$ ．，and $80^{\circ} \mathrm{C} ., 1.07968,1.20625$ ，and 1.33681 ，respectively

Although the entries in the table are carried to the fourth significant digit，the computations have been carried to at least five figures．The last digit is therefore correct to within half a unit，representing an arithmetical degree of accuracy of at least one $000=0.46$ inch and No． 36 ． $000=0.46$ inch and $\mathcal{A} .36=0.005$ inch，the nearest fourd of resistivity may be permanently recognized，the temperature coefficient of its variation which he introduced，and which is here used，may in future undergo slight revision．

A．E．KENNELLY，Chairman，
Committee on＂Units and Standards．＂ ＇NOLTINVH＇V • $\dagger$

F．B．CROCKER，W．E．GEYER，

Table for the Conversion of Mils. ( $\frac{1}{1000}$ inch) into Centimetres.

| Mils. | Centimetres. | Mils. | Centimetres. | Mils. | Centimetres. | Mils. | Centimetres. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 00254 | 26 | . 06602 | 51 | . 1295 | 76 | . 1931 |
| 2 | . 00508 | 27 | . 06856 | 52 | . 1321 | 77 | . 1956 |
| 3 | . 00762 | 28 | . 07110 | 53 | . 1346 | 78 | . 1981 |
| 4 | . 01016 | 29 | . 07364 | 54 | . 1372 | 79 | . 2006 |
| 5 | . 01270 | 30 | . 07618 | 55 | . 1397 | 80 | . 2032 |
| 6 | . 01524 | 31 | . 07872 | 56 | . 1422 | 81 | . 2057 |
| 7 | . 01778 | 32 | . 08126 | 57 | . 1448 | 82 | . 2083 |
| 8 | . 02032 | 33 | . 08380 | 58 | . 1473 | 83 | . 2108 |
| 9 | . 02286 | 34 | . 08634 | 59 | . 1499 | 84 | . 2133 |
| 10 | . 02540 | 35 | . 08888 | 60 | . 1524 | 85 | . 2159 |
| 11 | . 02793 | 36 | . 09142 | 61 | . 1549 | 86 | . 2184 |
| 12 | . 03047 | 37 | . 09396 | 62 | . 1575 | 87 | . 2209 |
| 13 | . 03301 | 38 | . 09650 | 63 | . 1600 | 88 | . 2235 |
| 14 | . 03555 | 39 | . 09904 | 64 | . 1626 | 89 | . 2260 |
| 15 | . 03809 | 40 | . 1016 | 65 | . 1651 | 90 | . 2286 |
| 16 | . 04063 | 41 | . 1041 | 66 | . 1676 | 91 | . 2311 |
| 17 | . 04317 | 42 | . 1067 | 67 | . 1702 | 92 | . 2336 |
| 18 | . 04571 | 43 | . 1092 | 68 | . 1727 | 93 | . 2362 |
| 19 | . 04825 | 44 | . 1118 | 69 | . 1752 | 94 | . 2387 |
| 20 | . 05079 | 45 | . 1143 | 70 | . 1778 | 95 | . 2413 |
| 21 | . 05333 | 46 | . 1168 | 71 | . 1803 | 96 | . 2438 |
| 22 | . 05587 | 47 | . 1194 | 72 | . 1829 | 97 | . 2465 |
| 23 | . 05841 | 48 | . 1219 | 73 | . 1854 | 98 | . 2489 |
| 24 | . 06095 | 49 | . 1245 | 74 | . 1879 | 99 | . 2514 |
| 25 | . 06348 | 50 | . 1270 | 75 | . 1905 | 100 | . 2540 |

## "National Electrical Code."

Rules and Requirements of the National Board of Fire Underwriters for the Installation of Electric Wiring and Apparatus as recommended by the Underwriters' National Electric Association.

## Edition of 1905.

The National Electrical Code was originally drawn in 1897 as the result of the united efforts of the various Iusurance, Electrical, Architectural, and allied interests which through the National Conference on Standard Electrical Rules, composed of delegates from various National Associations, unanimously roted to recommend it to their respective associations for approval or adoption ; and is here presented by the National Board of Fire Underwriters with the various amendments and add:tions which have been made since that time by them.

The following is a list of the Associations composing the National Conference on Standard Electrical Rules:

> American Institute of Architects.
> American Institute of Electrical Engineers.
> American Society of Mechanical Engineers.
> American Institute of Mining Engineers.
> American Street Railway Association.
> Associated Factory Mutual Fire Ins. Co's.
> Association of Edison Illuminating Companies.
> International Association of Fire Engineers.
> International Association of Municipal Electricians.
> National Board of Fire Underwriters.
> National Electric Light Association.
> National Electrical Contractors' Association.
> Underwriters' National Electric Association.

GENERAL PLAN GOVERNING THE ARRANGEMENT OF RULES.
Class A.-Stations and Dynamo Rooms. Includes Central Stations; Dynamo, Motor, and Storage=Battery Rooms; Transformer Sub= stations, etc. Rules 1 to 11.
Class B.-Outside Work, all systems and voltages. Rules 12 to 13 A .
Class C.-Inside Work.
General Rules, all systems and voltages. Rules 14 to 17.
Constant=current Systems. Rules 18 to 20.
Constant=potential Systems.
General Rules, all voltages. Rules 21 and 23.
Low=potential Systems, 550 volts or less. Rules 24 to 34.
High=potential Systems, 550 to 3500 volts. Rules 35 to 37.
Extra=high=potential Systems, over 3500 volts. Rules 38 and 39.
Class D.-Fittings, Materials, and Details of Construction, all systems and voltages. Rules 40 to 63 .
Class E.-Miscellaneous. Rules 64 to 67.
Class F.-Marine Work. Rules 68 to 83.

## GENERAL SUGGESTIONS.

In all electric work, conductors, however well insulated, should alwars be treated as bare, to the end that under no conditions, existing or likely to exist, can a ground or short circuit occur, and so that all leakage from conductor to conductor, or between conductur and ground, may be reduced to the minimum.

In all wiring special attention must be paid to the mechanical execution of the work. Careful and neat running, connecting, soldering, taping of conductors, and securing and attaching of fittings, are especially conducive to security and efficiency, and will be strongly insisted on.

In laying out an installation, except for constant-current systems, every reasonable effort should be made to secure distribution centres
located in easily accessible places, at which points the cutouts and switches controling the several branch circuits can be grouped for convenience and safety of operation. The load should be divided as evenly as possible among the branches, and all complicated and unnecessary wiring avoided.

The use of wire-ways for rendering concealed wiring permanently accessible is most heartily indorsed and recommended; and this method of accessible concealed construction is advised for general use.

Architects are urged, when drawing plans and specifications, to make provision for the channeling and pocketing of buildings for electric light or power wires.

## CLASS A.-STATIONS AND DYNAMO ROOMS.

Includes Central Stations, Dynamo, Motor, and Storage-Battery Rooms, Transformer Sub-stations, etc.

## 1. Generators.

(a) Must be located in a dry place.
(b) Must never be placed in a room where any hazardous process is carried on, nor in places where they would be exposed to inflammable gases or flyings of combustible materials.
(c) Must be thoroughly insulated from the ground wherever feasible. Wooden base-frames used for this purpose, and wooden floors which are depended upon for insulation where, for any reason, it is necessary to omit the base-frames, must be kept filled to prevent absorption of moisture, and must be kept clean and dry.

Where frame insulation is impracticable, the Inspection Department having jurisdiction may, in writing, permit its omission, in which case the frame must be permanently and effectively grounded.

A high-potential machine, which, on account of great weight or for other reasons, cannot have its frame insulated from the ground. should be surrounded with an insulated platform. This may be made of wood, mounted on insulating supports, and so arranged that a man'must always stand upon it in order to touch any part of the machine.

In case of a machine having an insulated frame, if there is trouble from static electricity due to belt friction, it should be overcome by placing near the belt a metallic comb connected with the earth, or by grounding the frame through a resistance of not less than $300,000 \mathrm{ohms}$.
(d) Constant-potential generators, except alternating current machines and their exciters, must be protected from excessive current by safety fuses or equivalent devices of approved design.

For 2-wire, direct-current generators, single-pole protection will be considered as satisfying the above rule, provided the safety device is located in the lead not connected to the series winding. When supplying 3 -wire systems, the generators should be so arranged that these protective devices will come in the outside leads.

For 3-wire, direct-current generators, a safety device must be placed in each armature, direct-current lead, or a double-pole, double-trip circuitbreaker in each outside generator lead and corresponding equalizer connection.

In general, generators should preferably have no exposed live parts and the leads should be well insulated and thoroughly protected against mechanical injury. This protection of bare live parts against accidental contact would apply also to any exposed, uninsulated conductors outside of the generator and not on the switchboard, unless their potential is practically that of the gromnd.

Where the needs of the service make the above requirements impracticable, the Inspection Department having jurisdiction may, in writing, modify them.
(e) Must each be provided with a water-proof cover.
(f) Must each be provided with a name-plate, giving the maker's name, the capacity in volts and amperes, and the normal speed in revolutions per minute.
(g) Terminal blocks when used on generators must be made of approved non-combustible, non-absorptive insulating material, such as slate, marble, or porcelain.

## 2. Conductors.

From generators to switchboards, rheostats, or other instruments, and thence to outside lines.
(a) Must be in plain sight or readily accessible.

Wires from generator to switchboard may, however, be placed in a conduit in the brick or cement pier on which the generator stands, provided that proper precautions are taken to protect them against moisture and to thoroughly insulate them from the pier. If lead-covered cable is used, no further protection will be required, but it should not be allowed 10 rest upon sharp edges which in time might cut into the lead sheath, especially if the cables were liable to vibration. A smooth runway is desired. If iron conduit is provided, double-braided rubber-covered wire (see No. 47) will be satisfactory.
(b) Must have an approved insulating covering as called for by rules in Class " C" for similar work, except that in central stations, on exposed circuits, the wire which is used must have a heavy-braided, non-combustible outer covering.

Bus bars may be made of bare metal.
Rubber insulations ignite easily and burn freely. Where a number of wires are brought close tngether, as is generally the case in dynamo rooms, especially about the switchboard, it is therefore necessary to surround this inflammable material with a tight, non-combustible outer cover. If this is not done, a fire once started at this point would spread rapidly along the wires, producing intense heat and a dense smoke. Where the wires have such a covering and are well insulated and supported, using only non-combustible materials, it is believed that no appreciable fire hazard exists, even with a large group of wires.
(c) Must be kept so rigidly in place that they cannot come in contact.
(d) Must in all other respects be installed with the same precautions as required by rules in Class "C" for wires carrying a current of the same volume and potential.
(e) In wiring switchboards, the ground detector, voltmeter, pilot lights, and potential transformers must be connected to a circuit of not less than No. 14 B. \& S. gauge wire that is protected by an approved fuse. This circuit is not to carry over 660 watts.

Voltmeter switches having concealed connections must be plainly marked, showing connections made.

## 3. Switchboards.

(a) Must be so placed as to reduce to a minimum the danger of communicating fire to adjacent combustible material.

Special attention is called to the fact that switchboards should not be built down to the floor, nor up to the ceiling. A space of at least 10 or 12 inches should be left between the floor and the board, except when the floor about the switchboard is of concrete or other fire-proof construction, and 3 feet, if possible, between the ceiling and the board, in order to prevent fire from communicating from the switchboard to the floor or ceiling, and also to prevent the forming of a partially concealed space very liable to be used for storage of rubbish and oily waste.
(b) Must be made of non-combustible material or of hard wood in skeleton form, filled to prevent absorption of moisture.

If wond is used all wires and all current-carrying parts of the apparatus on the switchboard must be separated therefrom by non-combustible, nonabsorptive insulating material.
(c) Must be accessible from all sides when the connections are on the back, but may be placed against a brick or stone wall when the wiring is entirely on the face.

If the wiring is on the back, there should be a clear space of at least 18 inches between the wall and the apparatus on the board, and even if the wiring is entirely on the face, it is much better to have the board set out from the wall. The space back of the board should not be closed in, except by grating or netting either at the sides, top, or bottom, as such an enclosure is almost sure to be used as a closet for clothing or for the storage of oil-cans, rubbish, etc. An open space is much more likely to be kept clean, and is more convenient for making repairs, examinations, etc.
(d) Must be kept free from moisture.
(e) On switchboards the distances between bare live parts of opposite polarity must be made as great as practicable, and must not be less than those given for tablet-boards (see No. 53 A ).

## 4. Resistance Boxes and Equalizers.

(For Construction Rules, see No. 60.)
(a) Must be placed on a switchboard or, if not thereon, at a distance of at least a foot from combustible material, or separated therefrom by a noncombustible non-absorptive, insulating material such as slate or marble.

The attachments of the separating material to its support and to the device must be independent of each other, and the separating material must be continuous between the device and the support; that is, the use of porcelain knobs will not be accepted.
(b) Where protective resistances are necessary in connection with automatic rheostats, incandescent lamps may be used, provided that they do not carry or control the main current nor constitute the regulating resistance of the device.

When so used, lamps must be mounted in porcelain receptacles upon non-combustible supports, and must be so arranged that they cannot have impressed upon them a voltage greater than that for which they are rated. They must in all cases be provided with a name-plate, which shall be permanently attached beside the porcelain receptacle or receptacles and stamped with the candle-power and voltage of the lamp or lamps to be used in each receptacle.
(c) Wherever insulated wire is used for connections between a rheostat and its contact plate, the insulation must be slow burning (see No. 43). For large field rheostats and similar resistances, where the contact plates are not mounted upon them, the connecting wires may be run together in groups so arranged that the maximum difference of potential between any two wires in a group shall not exceed 75 volts. Each group of wires miving at least mounted on non-combustible, non-absorptive insulators giving at least $1 / 2$ inch separation from surface wired over, or, where it is in approved lin the wires from mechanical injury or moisture, be run in approved lined conduit or equivalent.

## 5. Lightning Arresters.

(For Construction Rules, see No. 63.)
(a) Must be attached to each wire of every overhead circuit connected with the station.

It is recommended to all electric light and power companies that arresters be connected at intervals over systems in such numbers and so located as to prevent ordinary discharges entering (over the wires) buildings connected to the lines.
(b) Must be located
(b) Must be located in readily accessible places away from combustible materials, and as near as practicable to the point where the wires enter the building.

In all cases, kinks, coils and sharp bends in the wires between the arresters and the outdoor lines must be avoided as far as possible.

The switchboard does not necessarily afford the only location meeting these requirements. In fact, if the arresters can be located in a safe and accessible place away from the board, this should be done, for, in case the arrester should fail or be seriously damaged there would then be less chance of starting arcs on the board.
(c) Must be connected with a thoroughly good and permanent ground connection by metallic strips or wires having a conductivity not less than that of a No. 6 B. \& S. gauge copper wire, which must be run as nearly in a straight line as possible from the arresters to the ground connection.

Ground wires for lightning arresters must not be attached to gas-pipes within the buildings.

It is often desirable to introduce a choke coil in circuit between the arresters and the dynamo. In no case should the ground wires from lightning arresters be put into iron pipes, as these would tend to impede the discharge.
(d) All choke coils or other attachments, inherent to the lightning protection equipment, shall have an insulation from the ground or other conductors equal at least to the insulation demanded at other points of the circuit in the station.

## 6. Care and Attendance.

(a) A competent man must be kept on duty where generators are operating.
(b) Oily waste must be kept in approred metal cans and removed daily.

Approved waste cans shall be made of metal, with legs raising can 3 inches from the floor, and with self-closing covers.

## 7. Testing of Insulation Resistance.

(a) All circuits except such as are permanently grounded in accordance with No. 13 A must be provided with reliable ground detectors. Detectors which indicate continuously and give an instant and permanent indication of a ground are preferable. Ground wires from detectors must not be attached to gas-pipes within the building.
(b) Where continuously indicating detectors are not feasible, the circuits should be tested at least once per day, and preferably oftener.
(c) Data obtained from all tests must be preserved for examination by the Inspection Department having jurisdiction.

These rules on testing to be applied at such places as may be designated by the Inspection Department having jurisdiction.

## 8. Motors.

(a) Must be thoroughly insulated from the ground wherever feasible. Wooden base-frames used for this purpose, and wooden floors which are depended upon for insulation, where, for any reason, it is necessary to omit the base-frames, must be kept filled to prevent absorption of moisture, and must be kept clean and dry.

Where frame insulation is impracticable, the Inspection Department having jurisdiction may, in writing, permit its omission, in which case the frame must be permanently and effectively grounded.

A high-potential machine which, on account of great weight or for other reasons, cannot have its frame insulated, should be surrounded with an insulated platform. This may be made of wood, mounted on insulating supports, and so arranged that a man must stand upon it in order to touch any part of the machine.

In case of a machine having an insulated frame, if there is trouble from static electricity due to belt friction, it should be overcome by placing near the belt a metallic comb connected to the earth, or by grounding the frame through a resistance of not less than 300,000 ohms.
(b) Must be wired with the same precautions as required by rules in Class "C" for wires carrying a current of the same volume and potential.

The motor leads or branch circuits must be designed to carry a current at least 25 per-cent. greater than that for which the motor is rated, in order to provide for the inevitable occasional overloading of the motor, and the increased current required in starting, without over-fusing the wires, but where the wires under this rule would be over-fused, in order to provide for the starting current, as in the case of many of the alternating current motors, the wires must be of such size as to be properly protected by these larger fuses.

The use of voltages above 550 is rarely advisable or necessary, and will only be approved when every possible safeguard has been provided. Plans for such installations shouJd be submitted to the Inspection Department having jurisdiction before any work on them is begun.
(c) Each motor and resistance box must be protected by a cutout and controlled by a switch (see No. 17 a), said switch plainly indicating whether "on" or "off." With motors of one-fourth horse power or less, on circuits where the voltage does not exceed 300 , No. $21 d$ must be complied with, and single pole switches may be used as allowed in No. $22 c$. The switch and rheostat must be located within sight of the motor, except in cases where special permission to locate them elsewhere is given, in writing, by the Inspection Department having jurisdiction.

Where the circuit-breaking devise on the motor-starting rheostat disconnects all wires of the circuit, the switch called for in this section may be omitted.

Overload-release devices on motor-starting rheostats will not be considered to take the place of the cutout required by this section if they are inoperative during the starting of the motor.

The switch is necessary for entirely disconnecting the motor when not in use, and the cutout to protect the motor from excessive currents due to accidents or careless handling when starting. An automatic circuitbreaker disconnecting all wires of the circuit may, however, serve as both switch and cutout.

In general, motors should preferably have no exposed live parts.
(d) Must have theirm to the requirements of No. 4.

The use of circuit-breakers with motors is recommended, and may be required by the Inspection Department having jurisdiction.
To be safe a rheostat should have as great a carrying capacity as the motor itself, or else the arm should have a strong spring-throw attachment, so arranged that it cannot remain at any intermediate position unless purposely held there. Specifications governing the construction of rheostats are given in No. 60.

Starting rheostats and auto-starters should be treated about the same as knife-switches, and in all wet, dusty, or linty places should be enclosed in dust-tight, fire-proof cabinets. If a special motor room is provided, the starting apparatus and safety devices should be included within it. Where there is any liability of short circuits across their exposed live parts being caused by accidental contacts, they should either be enclosed in cabinets, or else a railing should be erected around them to keep unauthorized persons a way from their immediate vicinity.
(e) Must not be run in series-multiple or multiple-series, except on con-stant-potential systems, and then only by special permission of the Inspection Department having jurisdiction.
( $f$ ) Must be covered with a water-proof cover when not in use, and, if deemed necessary by the Inspection Department having jurisdiction, must be enclosed in an approved case.

From the nature of the question the decision as to what is an approved case must be left to the Inspection Department having jurisdiction to determine in each instance.

When it is necessary to locate a motor in the vicinity of combustibles or in wet or very dusty or dirty places, it is generally advisable to surround it with a suitable enclosure.

The sides of such enclosures should preferably be made largely of glass, so that the motor may be always plainly visible. This lessens the chance of its being neglected, and allows any derangement to be at once noticed.
( $g$ ) Must, when combined with ceiling fans, be hung from insulated hooks, or else there must be an insulator interposed between the motor and its support.
(h) Must each be provided with a name-plate, giving the maker's name, the capacity in volts and amperes, and the normal speed in revolutions per minute.
(i) Terminal blocks when used on motors must be made of approved non-combustible, non-absorptive, insulating material, such as slate, marble or porcelain.

## 9. Railway Power Plants.

(a) Each feed wire before it leaves the station must be equipped with an approved automatic circuit-breaker (see No. 52) or other device, which will immediately cut off the current in case of an accidental ground. This device must be mounted on a fire-proof base, and in full view and reach of the attendant.

## 10. Storage or Primary Batteries.

(a) When current for light and power is taken from primary or secondary batteries, the same general regulations must be observed as apply to similar apparatus fed from dynamo generators developing the same differ ence of potential.
(b) Storage-battery rooms must be thoroughly ventilated.
(c) Special attention is directed to the rules for wiring in rooms where acid fumes exist (see No. 24, $i$ to $k$ ).
(d) All secondar: batteries must be mounted on non-absorptive, noncombustible insulators, such as glass or thoroughly vitrified and glazed porcelain.
(e) The use of any metal liable to corrosion must be avoided in cell connections of secondary batteries.

## 11. Transformers.

(For Construction Rules, see No. 62.)
(See also, Nos. 13, 13 a, 36.)
(a) In central or sub-stations the transformers must be so placed that smoke from the burning out of the coils or the boiling over of the oil (where oil-filled cases are used) could do no harm.

If the insulation in a transformer breaks down, considerable heat is likely to be developed. This would cause a dense smoke, which might be mistaken for a fire and result in water being thrown into the building, and a heavy loss thereby entailed. Moreover, with oil-cooled transformers, especially if the cases are filled too full, the oil may become ignited and boil over, producing a very stubborn fire.

## CLASS B.-OUTSIDE WORK.

## (Light, Power and Heat. For Signaling Systems, see Class E.)

All Systems and Voltages.

## 12. Wires.

(a) Service wires must have an approved rubber insulating covering (see No. 41). Line wires, other than services, must have an approvect weather-proof or rubber insulating covering (see Nos. 41 and 44). All tie wires must have an insulation equal to that of the conductors they confine.

In risks having private generating plants, the yard wires running from building to building are not generally considered as service wires, so that rubber insulation would not be required.
(b) Must be so rlaced that moisture cannot form a cross connection between them, not less than a foot apart, and not in contact with any substance other than their insulating supports. Wooden blocks to which insulators are attached must be covered over their entire surface with at least two coats of water-proof paint.
(c) Must be at least 7 feet above the highest point of flat roofs, and at least 1 foot above the ridge of pitched roofs over which they pass or to which they are attached.

Roof structures are frequently found which are too low or much too light for the work, or which have been carelessly put up. A structure which is to hold the wires a proper distance above the roof in all kinds of weather must not only be of sufficient height, but must he substantially constructed of strong material.
(d) Must be protected by dead insulated guard irons or wires from possibility of contact with other conducting wires or substances to which current may leak. Special precautions of this kind must be taken where sharp angles occur, or where any wires might possibly come in contact with electric light or power wires.

Crosses, when unavoidable, should be made as nearly at right angles as possible.
(e) Must be provided with petticoat insulators of glass or porcelain. Porcelain knohs or cleats and rubber hooks will not be approved.
( $f$ ) Must be so spliced or joined as to be both mechanically and electrically secure without solder. The joints must then be soldered, to insure preservation, and covered with an insulation equal to that on the conductors.

All joints must be soldered, even if made with some form of patent splicing device. This ruling applies to joints and splices in all classes of wiring covered by these rules.
(g) Must, where they enter buildings, have drip loops outside, and the holes through which the conductors pass must be bushed with non-combustible, non-absorptive insulating tubes slanting upward tuward the inside.

For low-potential systems the service wires may be brought into buildings through a single iron conduit. The conduit to be curved downward at its outer end and carefully sealed to prevent the entrance of moisture. The outer end must be at least 1 foot from any wood work and the inner end must enter a main cutout cabinet in a manner similar to that described in fine print note under No. 25, Section $b$.
( $h$ ) Electric light and power wires must not be placed on the same cross-arm with telegraph, telephone or similar wires, and when placed on the same pole with such wires the distance between the two inside pins of each cross-arm must not be less than 26 inches.
(i) The metallic sheaths to cables must be permanently and effectively connected to "earth."

## Trolley Wires.

(j) Must not be smaller than No. 0 B. \& S. gauge copper or No. 4 B. \& S. gauge silicon bronze, and must readily stand the strain put upon them when in use.
( $k$ ) Must have a double insulation from the ground. In wooden pole construction the pole will be considered as one insulation.
(l) Must be capable of being disconnected at the power plant, or of being divided into sections, so that, in case of fire on the railway route, the current may be shut off from the particular section and not interfere with the work of the firemen. This rule also applies to feeders.
$(m)$ Must be safely protected against accidental contact where crossed by other conductors.

Guard wires should be insulated from the ground and should be electrically disconnected in sections of not more than 300 feet in length.

## Ground Return Wires.

(n) For the diminution of electrolytic corrosion of underground metal work, ground return wires must be so arranged that the difference of potential between the grounded dynamo terminal and any point on the return circuit will not exceed 25 volts.

It is suggested that the positive pole of the dynamo be connected to the trolley line, and that whenever pipes or other underground metal work are found to be electrically positive to the rails or surrounding earth, that they be connected by conductors arranged so as to prevent as far as possible current flow from the pipes into the ground.

## 12A. Constant=potential Pole Lines, Over 5,000 Volts.

(Overhead lines of this class unless properly arranged may increase the fire loss from the following causes:

Accidental crosses between such lines and low-potential lines may allow the high-voltage current to enter buildings over a large section of adjoining country. Moreover, such high-voltage lines, if carried close to buildings, hamper the work of firemen in case of fire in the building. The object of these rules is so to direct this class of construction that no increase in fire hazard will result, while at the same time care has been taken to avoid restrictions which would unreasonably impede progress in electrical development.

It is fully understood that it is impossible to frame rules which will cover all conceivable cases that may arise in construction work of such an extended and varied nature, and it is advised that the Inspection Department having jurisdiction be freely consulted as to any modification of the rules in particular cases.)
(a) Every reasonable precaution must be taken in arranging routes so as to avoid exposure to contacts with other electric circuits. On existing lines, where there is a liability to contact, the route should be changed by mutual agreement between the parties in interest wherever possible.
(b) Such lines should not approach other pole lines nearer than a distance equal to the height of the taller pole line, and such lines should not be on the same poles with other wires, except that signaling wires used by the Company operating the high-pressure system, and which do not enter property other than that owned or occupied by such Company, may be carried over the same poles.
(c) Where such lines must necessarily be carried nearer to other pole lines than is specified in Section $b$ above, or where they must necessarily be carried on the same poles with other wires, extra precautions to reduce the liability of a breakdown to a minimum must be taken, such as the use of wires of ample mechanical strength, widely spaced cross-arms, short spans, double or extra heary cross-arms, extra heavy pins. insulators, and poles thoroughly supported. If carried on the same poles with other wires, the high-pressure wires must be carried at least 3 feet above the other wires.
( $d^{*}$ ) Where such lines cross other lines, the poles of both lines must be of heavy and substantial construction.

Whenever it is feasible, end-insulator guards should be placed on the cross-arms of the upper line. If the high-pressure wires cross below the other lines, the wires of the upper line should be dead-ended at each end of the span to double-grooved, or to standard transposition insulators, and the line completed by loops.

One of the following forms of construction must then be adopted :

1. The height and length of the cross-over span may be made such that the shortest distance between the lower cross-arms of the upper line and any wire of the lower line will be greater than the length of the crossover span, so that a wire breaking near one of the upper pins would not be long enough to reach any wire of the lower line. The high-pressure wires should preferably be above the other wires.
2. A joint pole may be erected at the crossing point, the high-pressure wires being supported on this pole at least 3 feet above the other wires. Mechanical guards or supports must then be provided, so that in case of the breaking of any upper wire, it will be impossible for it to come into contact with any of the lower wires.

Such liability of contact may be prevented by the use of suspension wires, similar to those employed for suspending aerial telephone cables, which will prevent the high-pressure wires from falling, in case they break. The suspension wires should be supported on high-potential insulators, should have ample mechanical strength, and should be carried over the high-pressure wires for one span on each side of the joint pole, or where suspension wires are not desired guard wires may be carried above and below the lower wires for one span on each side of the joint pole, and so spread that a falling high-pressure wire would be held out of contact with the lower wires.

Such guard wires should be supported on high-potential insulators or should be grounded. When grounded, they must be of such size, and so connected and earthed, that they can surely carry to ground any current which may be delivered by any of the high-pressure wires. Further, the construction must be such that the guard wires will not be destroyed by any arcing at the point of contact likely to occur under the conditions existing.
3. Whenever neither of the abore methods is feasible, a screen of wires should be interposed between the lines at the cross-over. This screen should be supported on high tension insulators or grounded and should be of such construction and strength as to prevent the upper wires from coming into contact with the lower ones.

If the screen is grounded each wire of the screen must be of such size and so connected and earthed that it can surely carry to ground any current which may be delivered by any of the high-pressure wires. Further, the construction must be such that the wires of screen will not be destroyed by any arcing at the point of contact likely to occur under the conditions existing.
(e) When it is necessary to carry such lines near buildings, they must be at such height and distance from the building as not to interfere with
firemen in event of fire ; therefore, if within 25 feet of a building, they must be carried at a height not less than that of the front cornice, and the height must be greater than that of the cornice, as the wires come nearer to the building in accordance with the following table:
 Feet.

| 25 | 0 |
| :---: | :---: |
| 20 | 2 |
| 15 | 4 |
| 10 | 6 |
| 5 | 8 |
| $21 / 2$ | 9 |

Elevation of wire above cornice of building.

Feet.
0
2
4
8
9

It is evident that where the roof of the building continues nearly in line with the walls, as in Mansard roofs, the height and distance of the line must be reckoned from some part of the roof instead of from the cornice.

## 13. Transformers.

(For Construction Rules, see No. 62.)
(See also, Nos. 11, 13 A and 36.)
Where transformers are to be connected to high-voltage circuits, it is necessary in many cases, for best protection to life and property, that the secondary system be permanently grounded, and provision should be made for it when the transiormers are built.
(a) Must not be placed inside of any building, excepting central stations and sub-stations, unless by special permission of the Inspection Department having jurisdiction.

An outside location is always preferable ; first, because it keeps the high-voltage primary wires entirely out of the building, and second, for the reasons given in the note to No. $11 a$.
(b) Must not be attached to the outside walls of buildings, unless separated therefrom by substantial supports.

It is recommended that transformers be not attached to frame buildings when any other location is practicable.

## 13A. Grounding Low=potential Circuits.

The grounding of low-potential circuits under the following regulations is only allowed when such circuits are so arranged that under normal conditions of service there will be no passage of current over the ground wire.

## Direct=current 3=Wire Systems.

(a) Neutral wire may be grounded, and when grounded the following rules must be complied with:

1. Must be grounded at the central station on metal plate buried in coke beneath permanent moisture level, and also through all available underground water- and gas-pipe systems.
2. In underground systems the neutral wire must also be grounded at each distributing box through the box.
3. In overhead systems the neutral wire must be grounded every 500 feet, as provided in Sections $c, e, f$ and $g$.

Inspection Departments having jurisdiction may require grounding if they deem it necessary.

Two-wire direct-current systems having no accessible neutral point are not to be grounded.

## Alternating=current Secondary Systems.

(b) Transformer secondaries of distributing systems should preferably be grounded, and when grounded, the following rules must be complied with:

1. The grounding must be made at the neutral point or wire, whenever a neutral point or wire is accessible.
2. When no neutral point or wire is accessible, one side of the secondary circuit may be grounded, provided the maximum difference of potential between the grounded point and any other point in the circuit does not exceed 250 volts.
3. The ground connection must be at the transformer as provided in Sections $d, e, f, g$, and when transformers feed systems with a neutral wire, the neutral wire must also be grounded at least every 250 feet for overhead systems, and every 500 feet for underground systems.

Inspection Departments having jurisdiction may require grounding if they deem it necessary.

## Ground Connections.

(c) The ground wire in direct-current 3 -wire systems must not at central stations be smaller than the neutral wire and not smaller than No. 6 B. \& S. gauge elsewhere.
(d) The ground wire in alternating-current systems must never be less than No. 6 B. \& S. gauge, and must always have equal carrying capacity to the secondary lead of the transformer, or the combined leads where transformers are connected in parallel.

On three-phase systems, the ground wire must have a carrying capacity equal to that of any one of the 3 mains.
(e) The ground wire must be kept outside of buildings, but may be directly attached to the building or polc. The wire must be carried in as nearily a straight line as possible, and kinks, coils and sharp bends must be avoided.
(f) The ground connection for central stations, transformer sub-stations, and banks of transformers must be made through metal plates buried in coke below permanent moisture level, and connection should also be made to all available underground piping systems including the lead sheath of underground cables.
(g) For individual transformers and building services the ground connection may be made as in Section $f$, or may be made to water or other piping systems running into the buildings. This connection may be made by carrying the ground wire into the cellar and connecting on the st cet side of meters, main cocks, etc., but connection must never be made to any lead pipes which form part of gas services.

In connecting a ground wire to a piping system, the wire should, if possible, be soldered into a brass plug and the plug forcibly screwed into a pipe-fitting, or, where the pipes are cast iron, into a hole tapped into the pipe itself. For large stations, where connecting to underground pipes with bell and spigot joints, it is well to conneet to several lengths, as the pipe joints may be of rather high resistance. Where plugs cannot be used, the surface of the pipe may be filed or scraped bright, the wire wound around it, and a strong clamp put over the wire and firmly bolted together.

Where ground plates are used, a No. 16 Stubb's gauge copper plate, about $3 \times 6$ feet in size, with about 2 feet of crushed coke or charcoal, about pea size, both under and over it, would make a ground of sufficient capacity for a moderate-sized station, and would probably answer for the ordinary sub-station or bank of transformers. For a large central station, a plate with considerably more area might be necessary, depending upon the other underground connections a vailable. The ground wire should be iveted to the plate in a number of places, and soldered for its whole length. Perhaps even better than a copper plate is a cast-iron plate with projecting iorks, the idea of the fork being to distribute the connection to the ground over a fairly broad area, and to give a large surface contact. The ground wire can probably best be connected to such a cast-iron plate by soldering it into brass plugs screwed into holes tapped in the plate. In all cases, the joint between the plate and the ground wire should be thoroughly protected against corrosion by painting it with water-proof paint or some squivalent.

## CLASS C.-INSIDE WORK.

(Light, Power nd Heat.)
(For Signaling Systems, see Class E.)

## GENERAL RULES.-ALL SYSTEMS AND VOLTAGES.

## 14. Wires.

(For Special Rules, see Nos. 18, 24, 35, 38 and 39.)
(a) Must not be of smaller size than No. 14 B. \& S. gauge, except as allowed under No. $24 v$ and $45 b$.
(b) Tie wires must have an insulation equal to that of the conductors they confine,

The use of some form of confining knob or insulator which will dispense with tie wires is recommended.
(c) Must be so spliced or joined as to be both mechanically and electrically secure without solder. The joints must then be soldered to insure preservation, and covered with an insulation equal to that on the conductors.

Stranded wires must be soldered before being fastened under clamps or binding screws, and whether stranded or solid, when they have a conductivity greater than that of No. $8 \mathrm{~B} . \& \mathrm{~S}$. gauge they must be soldered into lugs for all terminal connections.

All joints must be soldered, even if made with some form of patent splicing device. This ruling applies to joints and splices in all classes of wiring covered by these rules.
(d) Must be separated from contact with walls, floors, timbers or partitions through which they may pass by non-combustible, non-absorptive insulating tubes, such as glass or porcelain, except as provided in No. $24 u$.

Bushings must be long enough to bush the entire length of the hole in one continuous piece, or else the hole must first be bushed by a continuous water-proof tube. This tube may be a conductor, such as iron pipe, but in that case an insulating bushing must be pushed into each end of it, extending far enough to keep the wire absolutely out of contact with the pipe.
(e) Must be kept free from contact with gas, water or other metallic piping, or any other conductors or conducting material which they may cross, by some continuous and firmly fixed non-conductor, creating a permanent separation. Deviations from this rule may sometimes be allowed by special permission.

When one wire crosses another wire, the best and usual means of separating them is by means of a porcelain tube on one of them. The tube should be prevented from moving out of place, either by a cleat at each end, or by taping it securely to the wire.

The same method may be adopted where wires pass close to iron pipes, beams, etc., or, where the wires are above the pipes, as is generally the case, ample protection can frequently be secured by supporting the wires with a porcelain cleat placed as nearly above the pipe as possible.

This rule must not be construed as in any way modifying No. 24, Sections $h$ and $j$.
( $f$ ) Must be so placed in wet places that an air space will be left between conductors and pipes in crossing, and the former must be run in such a way that they cannot come in contact with the pipe accidentally. Wires should be run over, rather than under, pipes upon which moisture is likely to gather or which, by leaking, might cause trouble on a circuit.
$(g)$ The installation of electrical conductors in wooden moulding or where supported on insulators in elevator shafts will not be approved, but conductors may be installed in such shafts if encased in approved metal conduits.

## 15. Underground Conductors.

(a) Must be protected against moisture and mechanical injury where brought into a building, and all combustible material must be kept from the immediate vicinity.
(b) Must not be so arranged as to shunt the current through a building around any catch-box.
(c) Where underground service enter binilding through tubes, the tubes shall be tightly closed at outlets with asphaltum or other non-conductor, to prevent gases from entering the building through such channels.
(d) No underground service from a subway to a building shall supply more than one building except by written permission from the Inspection Department having jurisdiction.

## 16. Table of Carrying Capacity of Wires.

(a) The following table, showing the allowable carrying capacity of copper wires and cables of 98 per cent. conductivity, according to the standard adopted by the American Institute of Electrical Engineers, must be followed in placing interior conductors.

For insulated aluminum wire the safe carrying capacity is 84 per cent. of that given in the following tables for copper wire with the same kind of insulation.

| $\begin{aligned} & \dot{0} \\ & \dot{x} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$ | Table A, rubbercovered wires. (See No. 41.) Amperes. | Table B, weatherproof wires. (See Nos. 42-44.) Amperes. | Circular mils. | Circular mils. | Table A, rubleercovered wires. (See No. 41.) Amperes. | Table B, weatherproof wires. (See Nos. 42-44.) Amperes. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 3 | 5 | 1624 | 200000 | 200 | 300 |
| 16 | 6 | 8 | 2583 | 300000 | 270 | 400 |
| 14 | 12 | 16 | 4107 | 400000 | 330 | 500 |
| 12 | 17 | 23 | 6530 | 500000 | 390 | 590 |
| 10 | 24 | 32 | 10380 | 600000 | 450 | 680 |
| 8 | 33 | 46 | 16510 | 700000 | 500 | 760 |
| 6 | 46 | 65 | 26250 | 800000 | 550 | 840 |
| 5 | 54 | 77 | 33100 | 900000 | 600 | 920 |
| 4 | 65 | 92 | 41740 | 1000000 | 650 | 1000 |
| 3 | 76 | 110 | 52630 | 1100000 | 690 | 1080 |
| 2 | 90 | 131 | 66370 | 1200000 | 730 | 1150 |
| 1 | 107 | 156 | 83690 | 1300000 | 770 | 1220 |
| 0 | 127 | 185 | 105500 | 1400000 | 810 | 1290 |
| 00 | 150 | 220 | 133100 | 1500000 | 850 | 1360 |
| 000 | 177 | 262 | 167800 | 1600000 | 890 | 1430 |
| 0000 | 210 | 312 | 211600 | 1700000 | 930 | 1490 |
|  |  |  |  | 1800000 | 970 | 1550 |
|  |  |  |  | 1900000 | 1010 | 1610 |
|  |  |  |  | 2000000 | 1050 | 1670 |

The lower limit is specified for rubber-covered wires to prevent gradual eterioration of the high insulations by the heat of the wires, but not rom fear of igniting the insulation. The question of drop is not taken to consideration in the above tables.

The carrying capacity of Nos. 16 and 18, B. \& S. gauge wire is given, but 0 smaller than No. 14 is to be used, except as allowed under Nos. $24 v$ ind 45 b .

## 17. Switches, Cutouts, Circuit=breakers, etc.

(For Construction Rules, see Nos. 51, 52 and 53.)
(a) Must, for constant potential circuits, unless otherwise provided (for xceptions, see No. $8 c$ and No. $22 c$ ), be so arranged that the cutouts will rotect, and the opening of a switch or circuit-breaker will disconnect, all
of the wires; that is, in a 2 -wire system the 2 wires, and in a 3 -wire system the 3 wires, must be protected by the cutout and disconnected by the operation of the switch or circuit-breaker.
(b) Must not be placed in the immediate vicinity of easily ignitible stuff or where exposed to inflammable gases or dust or to flyings of combustible material.

In starch and candy factories, grain elevators, flouring mills and buildings used for woodworking or other purposes which would cause the fittings to be exposed to dust and flyings of inflammable material, the cutouts and switches should be placed in approved cabinets outside of the dust-rooms. If, however, it is necessary to locate them in the dust-rooms, the cabinets must be dust-proof and must be provided with self-closing doors.
(c) Must, when exposed to dampness, either be enclosed in a water-proof box or mounted on porcelain knobs.
(d) Time switches must be enclosed in an iron box or cabinet lined with fire-resisting material.

If an iron box is used, the minimum thickness of the iron must be 0.128 inch (No. 8 B. \& S. gauge).

If a cabinet is used, it must be lined with marble or slate at least $3 / 8$ inch thick, or with iron not less than 0.128 inch thick. Box or cabinet must be so constructed that when switch operates blade shall clear the door by at least 1 inch.

## CONSTANT=CURRENT SYSTEMS.

## Principally Series Arc Lighting.

## 18. Wires.

(See also Nos. 14, 15 and 16.)
(a) Must have an approved rubber insulating covering. (See No. 41.)
(b) Must be arranged to enter and leave the building through an approved double-contact service switch (see No. 51 b), mounted in a noncombustible case, kept free frow moisture, and easy of access to police or firemen.
(c) Must always be in plain sight, and never encased, except when required by the Inspection Department having jurisdiction.
(d) Must be supported on glass or porcelain insulators, which separate the wire at least 1 inch from the surface wired over, and must be kept rigidly at least 8 inches from each other, except within the structure of lamps, on hanger-boards, or in cutout boxes, or like places, where a less distance is necessary.
(e) Must, on side walls, be protected from mechanical injury by a substantial boxing, retaining an air space of 1 inch around the conductors, closed at the top (the wires passing through bushed holes), and extending not less than 7 feet from the floor. When crossing fioor timbers in cellars, or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than $1 / 2$-inch in thickness. Instead of the running-boards, guard strips on each side of and close to the wires will be accepted. These strips to be not less than $7 / 8$-inch in thickness and at least as high as the insulators.

Except on joisted ceilings, a strip $1 / 2$-inch thick is not considered sufficiently stiff and strong. For spans of say 8 or 10 feet, where there is but little vibration, 1 inch stock is generally sufficiently stiff; but where the span is longer than this or there is considerable vibration, still heavier stock should be used.

For general suggestions as to protecting wires on side walls, see notes under No. $24 e$.

## 19. Series Arc Lamps.

(For Construction Rules, see No. 57.)
(a) Must be carefully isolated from inflammable material
(b) Must be provided at all times with a glass globe surrounding the arc, and securely fastened upon a closed base. Broken or cracked globes must not be used.
(c) Must be provided with a wire netting (having a mesh not exceeding $11 / 4$ inches) around the globe, and an approved spark arrester (see No. 58), when readily inflammable material is in the vicinity of the lamps, to prevent escape of sparks of carbon or melted copper. It is recommended that plain carbons, not copper-plated, be used for lamps in such places.

Outside arc lamps must be suspended at least 8 feet above sidewalks. Inside arc lamps must be placed out of reach or suitably protected.

Arc lamps, when used in places where they are exposed to flyings of easily inflammable material, should have the carbons enclosed completely in a tight globe in such manner as to avoid the necessity for spark arresters.
"Enclosed arc" lamps, having tight inner globes, may be used, and the requirements of Sections $b$ and $c$ above would, of course, not apply to them, except that a wire netting around the inner globe may in some cases be required if the outer globe is omitted.
(d) Where hanger-boards (see No. 56) are not used, lamps must be hung from insulating supports other than their conductors.
(e) Lamps when arrranged to be raised and lowered, either for carboning or other purposes, shall be connected up with stranded conductors from the last point of support to the lamp, when such conductor is larger than No. 14 B. \& S. gauge.

## 20. Incandescent Lamps in Series Circuits.

(a) Must have the conductors installed as required in No. 18, and each lamp must be provided with an autnmatic cutout.
(b) Must have each lamp suspended from a hanger-board by means of rigid tube.
(c) No electro-magnetic device for switches and no multiple-serics or series-multiple system of lighting will be approved.
(d) Must not under any circumstances be attached to gas fixtures.

## CONSTANT=POTENTIAL SYSTEMS.

General Rules, all Voltages.
21. Automatic Cutouts (Fuses and Circuit-breakers).
(See No. 17, and for Construction, Nos. 52 and 53.)
Excepting on main switchboards, or where otherwise subject to expert supervision, circuit-breakers will not be accepted unless fuses are also provided.
(a) Must be placed on all service wires, either overhead or underground, as near as possible to the point where they enter the building and inside the walls, and arranged to cut off the entire current from the building.

Where the switch required by No. 22 is inside the building, the cutout required by this section must be placed so as to protect it.

In risks having private plants, the yard wires runing from building to building are not generally considered as service wires, so that cutouts would not be required where the wires enter buildings, provided that the next fuse bark is small enough to properly protect the wires inside the building in question.
(b) Nust be placed at every point where a change is made in the size of wire [unless the cutout in the larger wire will protect the smaller (see No. 16)].
(c) Must be in plain sight, or enclosed in an approved cabinet (see No. 54), and readily accessible. They must not be placed in the canopies or shells of fixtures.

The ordinary porcelain link fuse cutout will not be approved. Link fuses may be used only when mounted on slate or marble bases conforming to No. 52 and must be enclosed in dust-tight, fire-proofed cabinets, except on switchboards located well away from combustible material, as in the ordinary engine and dynamo room and where these conditions will be maintained.
(d) Must be so placeu that no set of incandescent lamps requiring more than 660 watts, whether grouped on one fixture or on several fixtures or
pendants, will be dependent upon one cutout. Special permission may be given in writing by the Inspection Department having jurisdiction for departure from this rule in the case of large chandeliers, stage borders, and illuminated signs.

The above rule shall also apply to motors when more than one is dependent on a single cutout.

The fuses in the branch cutouts should not have a rated capacity greater than 6 amperes on 110 volt systems, and 3 amperes on 220 volt systems.

The idea is to have a small fuse to protect the lamp socket and the small wire used for fixtures, pendants, etc. It also lessens the chances of extinguishing a large number of lights if a short circuit occurs.

On open work in large mills approved link fused rosettes may be used at a voltage of not over 125 and approved enclosed fused rosettes at a voltage of not over 250 , the fuse in the rosettes not to exceed 3 amperes, and a fuse of over 25 amperes must not be used in the branch circuit.

All branches or taps from any 3 -wire system, which are directly connected to lamp sockets, must be run as 2 -wire circuits, when the difference of potential between the 2 outside wires is over 250 volts.
(e) The rated capacity of fuses must not exceed the allowable carrying capacity of the wire as given in No. 16. Circuit-breakers must not be set more than 30 per cent. above the allowable carrying capacity of the wire, unless a fusible cutout is also installed in the circuit.

In the arms of fixtures carrying a single socket a No. 18 B. \& S. gauge wire supplying only one socket will be considered as properly protected by a 6 ampere fuse.

## 22. Switches.

(See No. 17, and for Construction, No. 51.)
(a) Must be placed on all service wires, either overhead or underground, in a readily accessible place, as near as possible to the point where the wires enter the building, and arranged to cut ( ff the entire current.

Service cutout and switch must be arranged to cut off current from all devices including meters.

In risks having private plants the yard wires running from building tn building are not generally considered as service wires, so that switches would not be required in each building if there are other switches conveniently located on the mains or if the generators are near at hand.
(b) Must always be placed in dry, accessible places, and be grouped as far as possible. Single-throw knife switches must be so placed that gravity will tend to open rather than close them. Double-throw knife switches may be mounted so that the throw will be either vertical or horizontal as preferred.

When possible, switches should be so wired that blades will be "dead" when switch is open.

If knife switches are used in rooms where combustible flyings would be likely to accumulate around them, they should be enclosed in dust-tight cabinets. (See note under No. 17 b.) Even in rooms where there are no combustible materials it is better to put all knife switches in cabinets, in order to lessen the danger of accidental short circuits being made across their exposed metal parts by careless workmen.

Up to 250 volts and 30 amperes, approved indicating snap switches are advised in preference to knife switches on lighting circuits about the workrooms.
(c) Must not be single pole when the circuits which they control supply devices which require over 660 watts of energy, or when the difference of potential is over 300 volts.

This of course does not apply to the grounded circuits of Street Railway systems. Three way switches are considered as single pole switches and must be wired so that only one pole of the circuit is carried to either switch.
(d) Where flush switches or receptacles are used, whether with conduit systems or not, they must be enclosed in boxes constructed of iron or steel. No push buttons for bells, gas-lighting circuits, or the like shall be placed in the same wall plate with switches controlling electric light or power wiring.

This requires an approved box in addition to the porcelain enclosure of the switch or receptacle.
(e) Where possible, at all switch or fixture outlets, a $7 / 8^{-i n c h}$ block must be fastened between studs or floor timbers flush with the back of lathing to hold tubes, and to support switches or fixtures. When this cannot be done, wooden base blocks, not less than $3 / 4$-inch in thickness, securely screwed to lathing, must be provided for switches, and also for fixtures which are not attached to gas-pipes or conduit.

## 23. Electric Heaters.

It is often desirable to connect in multiple with the heaters and between the heater and the switch controlling same, an incandescent lamp of low candle power, as it shows at a glance whether or not the switch is open, and tends to prevent its being left closed through oversight. Inspection Departments having jurisdiction may require this provision to be carried out if they deem it necessary.
(a) Must be protected by a cutout and controlled by indicating switches arranged as required for electric power devices employing the same current and potential.
(b) Must never be concealed, but must at all times be in plain sight.

Special permission may be given in writing by the Inspection Department having jurisdiction for departure from this rule in certain cases.
(c) Flexible conductors for smoothing irons and sad irons, and for all devices requiring over 250 watts, must comply with Rule 45, Section $g$.
(d) For portable heating devices the Hexable conductors must be connected to an approved plug device, so arranged that the plug will pull out and open the circuit in case any abnormal strain is put on the flexable conductor. This device may be stationary, or it may be placed in the cord itself. The cable or cord must be attached to the heating apparatus in such manner that it will be protected from kinking, chafing, or like injury at or near the point of connection.
(e) Smoothing irons, sad irons. and other heating appliances that are intended to be applied to inflammable articles, such as clothing, must conform to the above rules, so far as they apply. They must also be provided with an approved stand, on which they should be placed when not in use.

An approved automatic attachment which will cut off the current when the iron is not on the stand or in actual use, is desirable. Inspection Departments having jurisdiction may require this provision to be carried out if they deem it advisable.
$(f)$ Stationary electric heating apparatus, such as radiators, ranges, plate warmers, etc., must be placed in a safe location, isolated from inflammable materials, and be treated as sources of heat.

Devices of this description will often require a suitable heat resisting material placed between the device and its surroundings. Such protection may best be secured by installing two or more plates of tin or sheet iron with a 1 inch air space between or by alternate layers of sheet iron and asbestos with a similar air space.
(g) Must each be provided with name-plate, giving the maker's name and the normal capacity in volts and amperes.

## LOW=POTENTIAL SYSTEMS.

## 550 Volts or Less.

Any circuit attached to any machine, or combination of machines, which develops a difference of potential between any 2 wires, of over 10 volts and less than 550 volts, shall be considered as a low-potential circuit, and as coming under this class, unless an approved transforming device is used, which cuts the difference of potential down to 10 rolts or less. The primary circuit not to exceed a potential of 3,500 volts unless the primary wires are installed in accordance with the requirements as given in No. 12 A , or are underground.

For 550 volt motor equipments a margin of 10 per cent. above the 550 volt limit will be allowed at the generator or transformer.

Before pressure is raised above 300 volts on any previously existing system of wiring, the whole must be strictly brought up to all of the requirements of the rules at date.

## 24. Wires.

General Rules.

## (See also Nos. 14, 15, and 16.)

(a) Must be so arranged that under no circumstances will there be a difference of potential of over 300 volts between any bare metal parts in any distributing switch or cutout cabinet, or equivalent centre of distribution.

This rule is not intended to prohibit the placing of switches or single pole cutouts for motor systems of voltages above 300 in cabinets, but would require that the cabinets be divided by approved barriers so arranged that no one section shall contain more than 1 switch nor more than 1 single pole cutout.
(b) Must not be laid in plaster, cement, or similar finish, and must never be fastened with staples.
(c) Must not be fished for any great distance, and only in places where the inspector can satisfy himself that the rules have been complied with.
(d) Twin wires must never be used, except in conduits, or where flexible corductors are necessary.
(e) Must be protected on side walls from mechanical injury. When crossing floor timbers in cellars, or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip, not less than $1 / 2$-inch in thickness, and not less than 3 inches in width. Instead of the running-boards, guard strips on each side of and close to the wires will be accepted. These strips to be not less than $7 / 8$-inch in thickness, and at least as high as the insulators.

Suitable protection on side walls may be secured by a substantial boxing, retaining an air space of 1 inch around the conductors, closed at the top (the wires passing through bushed holes), and extending not less than 5 feet from the floor; or by an iron-armored or metal-sheathed insulating conduit sufficiently strong to withstand the strain to which it will be subjected, and with the ends protected by the lining or by special insulating bushings, so as to prevent the possibility of cutting the wire insulation; or by plain metal pipe, lined with approved flexible tubing, which must extend from the insulator next below the pipe to the one next above it.

If metal conduits or iron pipes are used to protect wires carrying alternating currents, the two or more wires of each circuit must be placed in the same conduit, as troublesome induction effects and heating of the pipe might otherwise result; and the insulation of each wire must be reinforced by approved flexible tubing extending from the insulator next below the pipe to the one next above it. This should also be done in direct-current wiring if there is any possibility of alternating current ever being used on the system.

For high-voltage work, or in damp places, the wooden boxing may be preferable, because of the precautions which would be necessary to secure proper insulation if the pipe were used. With these exceptions, however, iron pipe is considered preferable to the wooden boxing, and its use is strongly urged. It is especially suitable for the protection of wires near belts, pulleys, etc.
$(f)$ When run in unfinished attics, will be considered as concealed and when run in close proximity to water tanks or pipes, will be considered as exposed to moisture.

In unfinished attics wires are considered as exposed to mechanical injury and must be run between or through floor joists and not on knobs on upper edge of joists.

Special Rules.

## For Open Work:

In dry places:
(g) Must have an approved rubber or "slow-burning weather-proof" insulation (see Nos. 41 and 42).

A "slow-burning weather-proof" covering is considered good enough where the wires are entirely on insulating supports. Its main object is to prevent the copper conductors from coming accidently into contact with each other or anything else.
(h) Must be rigidly supported on non-combustible, non-absorptive insulators, which will separate the wires from each other and from the surface wired over in accordance with the following table:

Voltage. Distance from Surface. Distance between wires.
0 to 300
$1 / 2$ inch
301 to $550 \quad 1^{1 / 2}$ inch
${ }_{4}^{21 / 2}$ inches

Rigid supporting requires under ordinary conditions, where wiring along flat surfaces, supports at least every $4 \frac{1}{2}$ feet. If the wires are liable to be disturbed, the distance between supports should be shortened. In buildings of mill construction, mains of No. $8 \mathrm{~B} . \& \mathrm{~S}$. gauge wire or over, where not liable to be disturbed, may be separated about 6 inches, and run from timber to timber, not breaking around, and may be supported at each timber only.
This rule will not be interpreted to forbid the placing of the neutral of an Edison 3 -wire system in the centre of a 3 -wire cleat where the difference of potential between the outside wires is not over 300 volts, provided the outside wires are separated $21 / 2$ inches.

In damp places, or buildings specially subject to moisture or to acid or other fumes liable to injure the wires or their insulation.
(i) Must have an approved insulating covering.

For protection against water, rubber insulation must be used. For protection against corrosive vapors, either weather-proof or rubber insulation must be used. (See Nos. 41 and 44.)
(j) Must be rigidly supported on non-combustible, non-absorptive insulators, which separate the wire at least 1 inch from the surface wired over, and must be kept apart at least $21 / 2$ inches for roltage up to 300 , and 4 inches for higher voltages.

Rigid supporting requires under ordinary conditions, where wiring over flat surfaces, supports at least every $41 / 2$ feet. If the wires are liable to be disturbed, the distance between supports should be shortened. In buildings of mill construction, mains of No. 8 B. \& S. gauge wire or over, where not liable to be disturbed, may be separated about 6 inches, and run from timber to timber, not breaking around, and may be supported at each timber only.
(k) (Stricken out.)

## For Moulding Work:

(l) Must have an approved rubber insulating covering (see No. 41).
( $m$.) Must never be placed in moulding in concealed or damp places, or where the difference of potential between any two wires in the same moulding is over 300 volts.

As a rule, moulding should not be placed directly against a brick wall, as the wall is likely to "sweat" and thus introduce moisture back of the moulding.

## For Conduit Work :

(n) Must have an approved rubber insulating covering (see No. 47).
(o) Must not be drawn in until all mechanical work on the building has been, as far as possible, completed.

Conductors in vertical conduit risers must be supported within the conduit system in accordance with the following table:

No. 14 to 0 every 100 feet.
No. 00 to 4-0 every 80 feet.
0000 to 350,000 C. M. every 60 feet.
350,000 C. M. to 500,000 C. M. every 50 feet.
$500,000 \mathrm{C}$. M. to $750,000 \mathrm{C}$. M. every 40 feet.
750,000 C. M. every 35 feet.
A turn of 90 degrees in the conduit system will constitute a satisfactory support, as per above table.

The following methods of supporting cables are recommended:

1. Junction boxes may be inserted in the conduit system at the required intervals, in which insulting supports of approved type must be installed and secured in a satisfactory manner so as to withstand the weight of the conductors attached thereto, the boxes to be provided with proper covers.
2. Cables may be supported in approved junction boxes on 2 or more insulating supports so placed that the conductors will be deflected at an angle of not less than 90 degrees, and carried a distance of not less than twice the diameter of the cable from its vertical position. Cables so suspended may be additionally secured to these insulators by tie wires.

Other methods, if used, must be approved by the Inspection Departments having jurisdiction.
( $p$ ) Must, for alternating systems, have the 2 or more wires of a circuit drawn in the same conduit.

It is advised that this be done for direct current systems also, so that they may be changed to alternating systems at any time, induction troubles preventing such a change if the wires are in separate conduits.

The same conduit must never contain circuits of different systems, but may contain two or more circuits of the same system.

## For Concealed "Knob and Tube" Work:

(q) Must have an approved rubber insulating covering (see No. 41).
$(r)$ Must be rigidly supported on non-combustible, non-absorptive insulators which separate the wire at least 1 inch from the surface wired over. Must be kept at least 10 inches apart, and, when possible, should be run singly on separate timbers or studdings. Must be separated from contact with the walls, floor timbers and partitions through which they may pass by non-combustible, non-absorptive insulating tubes, such as glass or porcelain.

Rigid supporting requires under ordinary conditions, where wiring along flat surfaces, supports at least every $4 \frac{1}{2}$ feet. If the wires are liable to be disturbed, the distance between supports should be shortened.

Wires passing through timbers at the bottom of plastered partitions must be protected by an additional tube extending at least 4 inches above the timber.
(s) When, in a concealed knob and tube system, it is impracticable to place any circuit on non-combustible supports of glass or porcelain, approved metal conduit or approved armored cable must be used (see No. $24 t$ ), except that if the difference of potential between the wires is not over 300 volts, and if the wires are not exposed to moisture, they may be fished on the loop system if separately encased throughout in continuous lengths of approved flexible tubing.
$(t)$ Mixed concealed knob and tube work as provided for in No. 24 s , must comply with requirements of No. 24 to $p$, and No. 25 , when conduit is used, and with requirements of No. 24 A, when armored cable is used.
(u) Must at all outlets, except where conduit is used, be protected by approved flexible insulating tubing, extending in continuous lengths from the last porcelain support to at least 1 inch beyond the outlet. In the case of combination fixtures the tubes must extend at least flush with outer end of gas cap.

## For Fixture Work :

(v) Must have an approved rubber insulating covering (see No. 46), and be not less in size than No. 18 B. \& S. gauge.

See No. 46, $e$, fine print note, for exceptions to the use of rubber-covered wire.
$(w)$ Supply conductors, and especially the splices to fixture wires, must be kept clear of the grounded part of gas-pipes, and, where shells or outlet boxes are used, they must be made sufficiently large to allow the fulfilment of this requirement.
( $x$ ) Must, when fixtures are wired outside, be so secured as not to be cut or abraded by the pressure of the fastenings or motion of the fixture.
(y) Under no circumstances must there be a difference of potential of more than 300 volts between wires contained in or attached to the same fixture.

## 24 A. Armored Cables.

(For Construction Rules, see No. 48.)
(a) Must be continuous from outlet to outlet or to junction boxes, and the armor of the cable must properly enter and be secured to all fittings.

In case of underground service connections and main runs, this involves runing such armored cable continuously into a main cutout cabinet or gutter surrounding the panel board, as the case may be. (See No. 54.)
(b) Must be equipped at every outlet with an approved outlet box or plate, as required in conduit work. (See No. 49 A.)

Outlet plates must not be used where it is practicable to install outlet boxes.

In buildings already constructed where the conditions are such that neither outlet box nor plate can be installed, these appliances may be omitted by special permission of the Inspection Department having jurisdiction, provided the armored cable is firmly and rigidly secured in place.
(c) Must have the metal armor of the cable permanently and effectively grounded.

It is essential that the metal armor of such systems be joined so as to afford electrical conductivity sufficiently to allow the largest fuse or circuitbreaker in the circuit to operate before a dangerous rise in temperature in the system can occur. Armor of cables and gas-pipes must be securely fastened in metal outlet boxes so as to secure good electrical connection. Where boxes used for centres of distribution do not afford good electrical connection, the armor of the cables must be joined around them by suitable bond wires. Where sections of armored cable are installed without being fastened to the metal structure of buildings or grounded metal piping, they must be bonded together and joined to a permanent and efficient ground connection.
(d). When installed in so-called fire-proof buildings in course of construction or afterwards if concealed, or where it is exposed to the weather, or in damp places such as breweries, stables, etc., the cable must have a lead covering at least $\frac{1}{32}$ inch in thickness placed between the outer braid of the conductors and the steel armor.
(e) Where entering junction boxes, and at all other outlets, etc., must be provided with approved terminal fittings which will protect the insulation of the conductors from abrasion, unless such junction or outlet boxes are specially designed and approved for use with the cable.
( $f$ ) Junction boxes must always be installed in such a manner as to be accessible.
(g) For alternating current systems must have the two or more conductors of the cable enclosed in one metal armor.

## 25. Interior Conduits.

## (See also Nos. $24 n$ to $p$, and 49.)

The object of a tube or conduit is to facilitate the insertion or extraction of the conductors and to protect them from mechanical injury. Tubes or conduits are to be considered merely as raceways, and are not to be relied upon for insulation between wire and wire, or between the wire and the ground.
(a) No conduit tube having an internal diameter of less than $5 / 8$-inch shall be used. Measurements to be taken inside of metal conduits.
(b) Must be continuous from outlet to outlet or to junction boxes, and the conduit must properly enter, and be secured to all fittings.

In case of underground service connections and main runs, this involves running each conduit continuously into a main cutout cabinet or gutter surrounding the panel board, as the case may be (see No. 54).
(c) Must be first installed as a complete conduit system, without the conductors.
(d) Must be equipped at every outlet with an approved outlet box or plate (see No. $49 l$ to $o$ ).

Outlet plates must not be used where it is practicable to install outlet boxes.

In buildings already constructed where the conditions are such that neither outlet box nor plate can be installed, these appliances may be
omitted by special permission of the Inspection Department having jurisdiction, providing the conduit ends are bushed and secured.
(e) Metal conduits where they enter junction boxes, and at all other outlets, etc., must be provided with approved bushings fitted so as to protect wire from abrasion, except when such protection is obtained by the use of approved nipples, properly fitted in boxes or devices.
( $f$ ) Must have the metal of the conduit permanently and effectually grounded.

It is essential that the metal of conduit systems be joined so as to afford electrical conductivity sufficient to allow the largest fuse or circuit-breaker in the circuit to operate before a dangerous rise in temperature in the conduit system can occur. Conduits and gas-pipes must be securely fastened in metal outlet boxes so as to secure good electrical connection. Where boxes used for centres of distribution do not afford good electrical connection, the conduits must be joined around them by suitable bond wires. Where sections of metal conduit are installed without being fastened to the metal structure of buildings or grounded metal piping, they must be bonded together and joined to a permanent and efficient ground connection.
(g) Junction boxes must always be installed in such a manner as to be accessible.
( $h$ ) All elbows or bends must be so made that the conduit or lining of same will not be injured. The radius of the curve of the inner edge of any elbow not to be less than $31 / 2$ inches. Nust have not more than the equivalent of four quarter bends from outlet to outlet, the bends at the outlets not being counted.

## 26. Fixtures.

## (See also Nos. 22 $e, 25 v$ to $x$.)

(a) Must, when supported from the gas-piping or any grounded metal work of a building be insulated from such piping or metal work by means of approved insulating joints (see No. 50) placed as close as possible to the ceiling or walls.

Gas outlet pipes must be protected above the insulating joint by approved insulating tubing, and where outlet tubes are used they must be of sufficient length to extend below the insulating joint, and must be so secured that they will not be pushed back when the canopy is put in place.

Where canopies are placed against plaster walls or ceilings in fire-proof buildings, or against metal walls or ceilings, or plaster walls or ceilings on metallic lathing in any class of buildings, they must be thoroughly and permanently insulated from such walls or ceilings.
(b) Must have all burs, or fins, removed before the conductors are drawn into the fixture.
(c) Must be tested for " contacts" between conductors and fixture, for "short circuits" and for ground connections before it is connected to its supply conductors.

## 27. Sockets.

(For Construction Rules, see No. E5.)
(a) In rooms where inflammable gases may exist the incandescent lamp and socket must be enclosed in a vapor-tight globe, and supported on a pipe-hanger, wired with approved rubber-covered wire (see No. 41) soldered directly to the circuit.

Key sockets contain a switch (see No. 17 b.)
(b) In damp or wet places, or over specially inflammable stuff, waterproof sockets must be used.

Water-proof sockets should be hung by separate, stranded, rubber-covered wires, not smaller than No. 14 B. \& S. gauge, which should preferably be twisted together when the pendant is over 3 feet long. These wires should be soldered direct to the circuit wires, but supported independently of them.

## 28. Flexible Cord.

(a) Must have an approved insulation and covering (see No. 45.)
(b) Must not be used where the difference of potential between the two wires is over 300 volts.
(c) Must not be used as a support for clusters.
(d) Must not be used except for pendants, wiring of fixtures, portable lamps or motors, and portable heating apparatus.

The practice of making the pendants unnecessarily long and then looping them up with e rid adjusters is strongly advised against. It offers a temptation to carry about lamps which are intended to hang freely in the air, and the cord adjusters wear off the insulation very rapidly.

For all portable work, including those pendants which are liable to be moved about sufficiently to come in contact with surrounding objects, flexible wires and cables especially designed to withstand this severe service are on the market, and should be used. (See No. $45 f_{\text {. }}$ )

The standard socket is threaded for $1 / 8$ inch pipe, and if it is properly bushed, the reinforced flexible cord will not go into it, but this style of cord may be used with sockets threaded for $3 / 8$ inch pipe, and provided with substantial insulating bushings. The cable to be supported independently of the overhead circuit by a single cleat, and the two conductors then separated and soldered to the overhead wires.

The bulb of an incandescent lamp frequently becomes hot enough to ignite paper, cotton, and similar readily ignitible materials, and in order to prevent it from coming in contact with such materials, as well as to protect it from breakage, every portable lamp should be surrounded with a substantial wire guard.
(e) Must not be used in show windows.
( $f$ ) Must be protected by insulating bushings where the cord enters the socket.
(g) Must be so suspended that the entire weight of the socket and lamp will be borne by some approved device under the bushing in the socket, and above the point where the cord comes through the ceiling-block or rosette, in order that the strain may be taken from the joints and binding screws.

This is usually accomplished by knots in the cord inside the socket and rosette.

## 29. Arc Lamps on Constant=potential Circuits.

(a) Must have a cutout (see No. 17 a) for each lamp or each series of lamps.

The branch conductors should have a carrying capacity about 50 per cent. in excess of the normal current required by the lamp to provide for heavy current required when lamp is started or when carbons become stuck without overfusing the wires.
(b) Must only be furnished with such resistances or regulators as are enclosed in non-combustible material, such resistances being treated as sources of heat. Incandescent lamps must not be used for this purpose.
(c) Must be supplied with globes and protected by spark arresters and wire netting around the globe, as in the case of series arc lamps (see Nos. 19 and 58.)

Outside are lamps must be suspended at least 8 feet above sidewalks. Inside arc lamps must be placed out of reach or suitably protected.
(d) Lamps when arranged to be raised and lowered, either for carboning or other purposes, shall be connected up with stranded conductors from the last point of support to the lamp, when such conductor is larger than No. 14 B. \& S. gauge.

## 30. Economy Coils.

(a) Economy and compensator coils for arc lamps must be mounted on non-combustible, non-absorptive insulating supports, such as glass or porcelain, allowing an air space of at least 1 inch between frame and support, and must in general be treated as sources of heat.

## 31. Decorative Lighting Systems.

(a) Special permission may be given in writing by the Inspection Department having jurisdiction for the temporary installation of approved Systems of Decorative Lighting, provided the difference of potential between the wires of any circuit shall not be orer 150 volts and also provided that no group of lamps requiring more than 1320 watts shall be dependent on 1 cutout.

No " System of Decorative Lighting " to be allowed under this rule which is not listed in the Supplement to the National Electrical Code containing list of approved fittings.
(b) Incandescent lamps connected in series must not be used for decorative purposes inside of buildings except by special permission in writing from the Inspection Department having jurisdiction.

## 32. Car=wiring and Equipment of Cars.

A-Protection of Car=body, etc.

1. Under side of car bodies to be protected by approved fire-resisting insulating material, not less than $1 / 8$ inch in thickness, or by sheet iron or steel, not less than . 04 inch in thickness, as specified in Section $a, 2,3$, and 4. This protection to be provided over all electrical apparatus, such as motors with a capacity of over 75 H. P. each, resistances, contactors, lightning arresters, air-brake motors, etc., and also where wires are run, except that protection may be omitted over wires designed to carry 25 amperes or less if they are encased in metal conduit.
2. At motors of over 75 H. P. each, fire-resisting material or sheet iron or steel extend to not less than 8 inches beyond all edges of openings in motors, and not less than 6 inches beyond motor leads on all sides.
3. Over resistances, contactors, and lightning arresters, and other electrical apparatus, excepting when amply protected by their casing, fireresisting material or sheet iron or steel to extend not less than 8 inches beyond all edges of the devices.
4. Over conductors, not encased in conduit, and conductors in conduit when designed to carry over 25 amperes, unless the conduit is so supported as to give not less than $1 / 2$ inch clear air space between the conduit and the car, fire-resisting material or sheet iron or steel to extend at least 6 inches beyond conductors on either side.

The fire-resisting insulating material or sheet iron or steel may be omitted over cables made up of flame-proof braided outer covering when surrounded by $1 / 8$ inch flame-proof covering, as called for by Section $i, 4$.
5. In all cases fire-proof material or sheet iron or steel to have joints well fitted, to be securely fastened to the sills, floor timbers and cross braces, and to have the whole surface treated with a water-proof paint.
6. Cutout and switch cabinets to be substantially made of hard wood. The entire inside of cabinet to be lined with not less than $1 / 8$ inch fire-resisting insulating material which shall be securely fastened to the woodwork, and after the fire-resisting material is in place the inside of the cabinet shall be treated with a water-proof paint.

## B-Wires, Cables, etc.

1. All conductors to be stranded, the allowable carrying capacity being determined by Table "A" of No. 16, except that motor, trolley and resistance leads shall not be less than No. 7 B. \& S. gauge, heater circuits not less than No. $12 \mathrm{~B} . \& \mathrm{~S}$. gauge, and lighting and other auxiliary circuits not less than No. 14 B. \& S. gauge.

The current used in determining the size of motor, trolley and resistance leads shall be a per cent. of the full load current, based on 1 hour's run of the motor, as given by the following table:

| Size each | Motor | Trolley | Resistance |
| :---: | :---: | :---: | :---: |
| motor. | leads. | leads. | leads. |
| 75 H. H. or less | $50 \%$ | $40 \%$ | $15 \%$ |
| Over 75 H. P. | $45 \%$ | $35 \%$ | $15 \%$ |

Fixture wire complying with No. 46 will be permitted for wiring approved clusters.
2. To have an insulation and braid as called for by No. 41 for wires carrying currents of the same potential.
3. When run in metal conduit, to be protected by an additional braid as called for by No. 47.

Where conductors are laid in conduit, not being drawn through, the additional braid will not be required.
4. When not in conduit, in approved moulding, or in cables surrounded by an $1 / 8$ inch flame-proof covering, must comply with the requirements of No. 41-except that tape may be substituted for braid-and be protected by an additional flame-proof braid, at least $\frac{1}{32}$ inch in thickness, the outside being saturated with a presercative flame-proof compound.

This rule will be interpreted to include the leads from the motors.
5. Must be so spliced or joined as to be both mechanically and electrically secure without solder. The joints must then be soldered and covered with an insulation equal to that on the conductors.

This rule will not be construed to apply to connection of leads at motors, plows, or third-rail shoes.
6. All connections of cables to cutouts, switches and fittings, except those to controller connection boards, when designed to carry over 25 ampheres, must be provided with lugs or terminals soldered to the cable, and securely fastened to the device, by bolts, screws, or by clamping; or, the end of the cable, after the insulation is removed, shall be dipped in solder and be fastened into the device by at least 2 set screws having check nuts.

All connections for conductors to fittings, etc., designed to carry less than 25 amperes, must be provided with turued-up lugs that will grip the couductor between the screw and the lug, the screws being provided with flat washers; or by block terminals having 2 set screws, and the end of the conductors must be dipped in solder. Soldering, in addition to the connection of the binding screws, is strongly recommended, and will be insisted on when above requirements are not complied with.

This rule will not be construed to apply to circuits where the maximum potential is not over 25 volts and current does not exceed 5 amperes

## C-Cutouts, Circuit=breakers and Switches.

1. All cutouts and switches having exposed live metal parts to be located in cabinets. Cutouts and switches, not in iron boxes or in cabinets, shall be mounted on not less than $1 / 4$ inch fire-resisting insulating material, which shall project at least $1 / 2$ inch beyond all sides of the cutout or switch.
2. Cutouts to be of the approved cartilage or approved blow-out type.
3. All switches controlling circuits of over 5 ampere capacity shall be of approved single pole, quick break, or approved magnetic blow-out type.

Switches controlling circuits of 5 ampere or less capacity may be of the approved single pole, double break, snap type.
4. Circuit-breakers to be of approved type.
5. Circuits must not be fused above their safe carrying capacity.
6. A cutout must be placed as near as possible to the current collector, so that the opening of the fuse in this cutout will cut off all current from the car.

When cars are operated by metallic return circuits, with circuit-breakers connected to both sides of the circuit, no fuses in addition to the circuitbreakers will be required.

## D-Conduit.

When from the nature of the case, or on account of the size of the conductors, the ordinary pipe and junction box construction is not permissible, a special form of conduit system may be used, provided the general requirements as given below are complied with.

1. Metal conduits, outlet and junction boxes to be constructed in accordance with No. 49, except that conduit for lighting circuits need not be over $\frac{5}{16}$ inch internal diameter and $1 / 2$ inch external diameter, and for heating and air motor circuits, need not be over $3 / 8$ inch internal diameter and $\frac{9}{16}$ inch external diameter, and all conduits where exposed to dampness must be water-tight.
2. Must be continuous between and be firmly secured into all outlet or junction boxes and fittings, making a thorough mechanical and electrical connection between same.
3. Metal conduits, where they enter all outlet or junction boxes and fittings, must be provided with approved bushings fitted so as to protect cables from abrasion.
4. Except as noted in Section $i, 2$, must have the metal of the conduit permanently and effectively grounded.
5. Junction and outlet boxes must be installed in such a manner as to be accessible.
6. All conduits, outlets, or junction boxes and fittings to be firmly and substantially fastened to the framework of the car.

## E-MouIding.

1. To consist of a backing and a capping and to be constructed of fireresisting insulating material, except where circuits which they are designed to support are nominally not exposed to moisture, they may be constructed of hard wood.
2. When constructed of fire-resisting insulating material, the backing shall be not less than $1 / 4$ inch in thickness and be of a width sufficient to extend not less than 1 inch beyond conductors at sides.

The capping, to be not less than $1 / 8$ inch in thickness, shall cover and extend at least $3 / 4$ inch beyond conductors on either side.

The joints in the moulding shall be mitred to fit close, the whole material being firmly secured in place by screws or nails, and treated on the inside and outside with a water-proof paint.

When fire-resisting moulding is used over surfaces already protected by $1 / 8$ inch fire-resisting insulating material, no backing will be required.
3. Wooden mouldings must be so constructed as to thoroughly encase the wire and provide a thickness of not less than $3 / 8$ inch at the sides and back of the conductors, the capping being not less than $\frac{3}{16}$ inch in thickness. Must have both outside and inside 2 coats of water-proof paint.

The backing and the capping shall be secured in place by screws.

## F-Lighting and Lighting Circuits.

1. Each outlet to be provided with an approved porcelain receptacle, or an approved cluster. No lamp of over 32 candle-power to be used.
2. Circuits to be run in approved metal conduit, or approved moulding.
3. When metal conduit is used, except for sign lights, all outlets to be provided with approved outlet boxes.
4. At outlet boxes, except where approved clusters are used, porcelain receptacles to be fastened to the inside of the box, and the metal cover to have an insulating bushing around opening for the lamp.

When approved clusters are used, the cluster shall be thoroughly insulated from the metal conduit, being mounted on blocks of hard wood or fire-resisting insulating material.
5. Where conductors are run in moulding the porcelain receptacles or cluster to be mounted on blocks of hard wood or of fire-proof insulating material.

## G-Heaters and Heating Circuits.

1. Heaters to be of approved type.
2. Panel heaters to be so constructed and located that when heaters are in place all current-carrying parts will be at least 4 inches from all woodwork.

Heaters for cross seats to be so located that current-carrying parts will be at least 6 inches below under side of seat, unless under side of seat is protected by not less than $1 / 4$ inch fire-resisting insulating material, or .04 inch sheet metal with 1 inch air space over same, when the distance may be reduced to 3 inches.
3. Circuits to be run in approved metal conduit, or in approved moulding, or if the location of conductors is such as will permit an air space of not less than 2 inches on all sides except from the surface wired over, they may be supported on porcelain knobs or cleats, provided the knobs or cleats are mounted on not less than $1 / 4$ inch fire-resisting insulating material extending at least 3 inches beyond conductors at either side, the supports raising the conductors not less than $1 / 2$ inch from the surface wired over, and being not over 12 inchès apart.

## H-Air Pump Motor and Circuits.

1. Circuits to be run in approved metal conduit, or in approved moulding, except that when run below the floor of the car they may be supported on porcelain knobs or cleats, provided the supports raise the conductor at least $1 / 2$ inch from the surface wired over and are not over 12 inches apart.
2. Automatic control to be enclosed in an approved metal box. Air pump and motor, when enclosed, to be in approved metal box or a wooden box lined with metal of not less than $\frac{1}{32}$ inch in thickness.

When conductors are run in metal conduit the boxes surrounding automatic control and air pump and motor may serve as outlet boxes.

## I-Main Motor Circuits and Devices.

1. Conductors connecting between trolley stand and main cutout or circuit-breakers in hood, to be protected where wires enter car to prevent ingress of moisture.
2. Conductors connecting between the third-rail shoes on same truck, to be supported in an approved fire-resisting insulating moulding, or in approved iron conduit supported by soft rubber or other approved insulating cleats.
3. Conductors on the under side of the car, except as noted in Section $i$, 4, to be supported in accordance with one of the following methods:
(a) To be run in approved metal conduit, junction boxes being provided where branches in conduit are made, and outlet boxes where conductors leve conduit.
(b) To be run in approved fire-resisting insulating moulding.
(c) To be supported by insulating cleats, the supports being not over 12 inches apart.
4. Conductors with flame-proof braided outer covering, connecting between controllers at either end of car, or controllers and contractors, may be run as a cable, provided the cable where exposed to the weather is encased in a canvas hose or canvas tape, thoroughly taped or sewed at ends and where taps from the cable are made, and the hose or tape enters the controllers.

Conductors with or without flame-proof braided outer covering connecting between controllers at either end of the car, or controllers and contactors, may be run as a cable, provided the cable throughout its entire length is surrounded by $1 / 8$ inch flame-proof covering, thoroughly taped or sewed at ends, or where taps from cable are made, and the flameproof covering enters the controllers.

Cables where run below floor of car may be supported by approved insulating straps or cleats. Where run above floor of car, to be in a metal conduit or wooden box painted on the inside with not less than 2 coats of flame-proof paint, and where this box is so placed that it is exposed to water, as by washing of the car floor, attention should be given to making the box reasonably water-proof.

Canvas hose or tape, or flame-proof material surrounding cables after conductors are in same, to have not less than 2 coats of water-proof insulating material.
5. Motors to be so drilled that, on double truck cars, connecting cables can leave motor on side nearest to king bolt.
6. Resistances to be so located that there will be at least 6 inch air space between resistances proper and fire-resisting material of the car. To be mounted on iron supports, being insulated by non-combustible bushings or washers, or the iron supports shall have at least 2 inches of insulating surface between them and metal work of car, or the resistances may be mounted on hard wood bars, supported by iron stirrups, which shall have not less than 2 inches of insulating surface between foot of resistance and metal stirrup, the entire surface of the bar being covered with at least $1 / 8$ inch fire-resisting insulating material.

The insulation of the conductor, for about 6 inches from terminal of the resistance, should be replaced, if any insulation is necessary, by a porcelain bushing or asbestos sleeve.
7. Controllers to be raised above platform of car by a not less than 1 inch hard wood block, the block being fitted and painted to prevent moisture working in between it and the platform.

## J-Lightning Arresters.

1. To be preferably located to protect all auxiliary circuits in addition to main motor circuits.
2. The ground conductor shall be not less than No. 6 B. \& S. gauge, run with as few kinks and bends as possible, and be securely grounded.

## K-General Rules.

1. When passing through floors, conductors or cables must be protected by approved insulating bushings, which shall fit the conductor or cable as closely as possible.
2. Moulding should never be concealed except where readily accessible. Conductors should never be tacked into moulding.
3. Short bends in conductors should be a voided where possible.
4. Sharp edges in conduit or in moulding must be smoothed to prevent injury to conductors.

## 33. Car=houses.

(a) The trolley wires must be securely supported on insultating hangers.
(b) The trolley hangers must be placed at such a distance apart that, in case of a break in the trolley wire, contact cannot be made with the floor.
(c) Must have a cutout switch located at a proper place outside of the building, so that all trolley circuits in the building can be cut out at one point, and line circuit-breakers must be installed, so that when this cutout switch is open the trolley wire will be dead at all points within 100 feet ot the building. The current must be cut out of the building whenever the latter is not in use or the road is not in operation.
(d) All lamps and stationary motors must be installed in such a way that one main switch can control the whole of each installation-lighting or power-independently of the main feeder-switch. No portable incandescent lamps or twin wire will be allowed, except that portable incandescent lamps may be used in the pits, the circuit to be controlled by a switch placed outside of the pit, and the connections to be made by 2 approved rubber-covered flexible wires (see No. 41), properly protected against mechanical injury.
(e) All wiring and apparatus must be installed in accordance with rules for constant-potential systems.
( $f$ ) Must not have any system of feeder distribution centring in the building.
$(g)$ The rails must be bonded at each joint with a conductor having a carrying capacity not less than that of a No. 2 B. \& S. gauge annealed copper wire
(h) Cars must not be left with the trolley in electrical connection with the trolley wire.

## 34. Lighting and Power from Railway Wires.

(a) Must not be permitted, under any pretense, in the same circuit with trolley wires with a ground return, except in electric railway cars, electric car-houses and their power stations; nor shall the same dynamo be used for both purposes.

## HIGH=POTENTIAL SYSTEMS.

550 to 3,500 Volts.
Any circuit attached to any machine or combination of machines, which develops a difference of potential between any 2 wires of over 550 volts and less than 3,500 volts, shall be considered as a high-potential circuit, and as coming under that class, unless an approved transforming device is used, which cuts the difference of potential down to 550 volts or less.
(See note following first paragraph under Low-potential Systems, page 783.)

## 35. Wires.

(See also, Nos. 14, 15, and 16.)
(a) Must have an approved rubber-insulating covering (see No. 41.)
(b) Must be always in plain sight and never encased, except where required by the Inspection Department having jurisdiction.
(c) Must be rigidly supported on glass or porcelain insulators, which raise the wire at least 1 inch from the surface wired over, and must be kept about 8 inches apart.

Rigid supporting requires under ordinary conditions, where wiring along flat suriaces, supports at least about every $41 / 2$ feet. If the wires are unusually liable to be disturbed, the distance between supports should be shortened.

In buildings of mill construction, mains of No. $8 \mathrm{~B} . \& \mathrm{~S}$. gauge or over, where not liable to be disturbed, may be separated about 10 inches and run from timber to timber, not breaking around, and may be supported at each timber only.
(d) Must be protected on side walls from mechanical injury by a substantial boxing, retaining an air space of 1 inch around the conductors, closed at the top (the wires passing through bushed holes) and extending not less than 7 feet from the floor. When crossing floor timbers, in cellars, or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than $1 / 2$ inch in thickness.

For general suggestions on protection. see note under No. $24 e$. See also note under No. 18 e.
36. Transformers (when permitted inside buildings under No. 13.)
(For Construction Rules, see No. 62.) (See also Nos. 13 and 13 A.)

Transformers must not be placed inside of buildings without special permission from the Inspection Department having jurisdiction.
(a) Must be located as near as possible to the point at which the primary wires enter the building.
(b) Must be placed in an enclosure constructed of fire-resisting material: the enclosure to be used only for this purpose, and to be kept securely locked, and access to the same allowed only to responsible parties.
(c) Must be thoroughly insulated from the ground, or permanently and effectually grounded, and the enclosure in which they are placed must be practically air-tight, except that it must be thoroughly ventilated to the out-door air, if possible, through a chimney or flue. There should be at least 6 inches air space on all sides of the transformer.

## 37. Series Lamps.

(a) No multiple-series or series-multiple system of lighting will be approved.
(b) Must not, under any circumstances, be attached to gas-fixtures.

## EXTRA HIGH=POTENTIAL SYSTEMS.

Over 3,500 Volts.
Any circuit attached to any machine or combination of machines which develops a difference of potential, between any 2 wires, of over 3,500 volts, shall be considered as an extra high-potential circuit, and as coming under that class, unless an approved transforming device is used, which cuts the difference of potential down to 3,500 volts or less.

## 38. Primary Wires.

(a) Must not be brought into or over buildings, except power stations and sub-stations.

## 39. Secondary Wires.

(a) Must be installed under rules for high-potential systems when their immediate primary wires carry a current at a potential of over 3,500 volts, unless the primary wires are installed in accordance with the requirements as given in No. 12 A or are entirely underground, within city, town, and village limits.

# CLASS D.-FITTINGS, MATERIALS, AND DETAILS OF CON= STRUCTION. 

(Light, Power, and Heat. For Signaling Systems, see Class E.)

## All Systems and Voltages.

The following rules are but a partial outline of requirements. Devices or materials which fulfill the conditions of these requirements and no more, will not necessarily be acceptable. All fittings and materials should be submitted for examination and test before being introduced for use.

Insulated Wires, Rules 40 to 48.

## 40. General Rules.

(a) Copper for insulated conductors must never vary in diameter so as to be more than $\frac{1^{2}{ }^{2} \sigma}{}$ inch less than the specified size.
(b) Wires and cables of all kinds designed to meet the following specifications must have a distinctive marking the entire length of the coil so that they may be readily identified in the field. They must also be plainly tagged or marked as follows:

1. The maximum voltage at which the wire is designed to be used.
2. The words "National Electrical Code Standard."
3. Name of the manufacturing company and, if desired, trade name of the wire.
4. Month and year when manufactured.

## 41. Rubber=covered Wire.

(a) Copper for conductors must be thoroughly tinned.

## Insulation for Voltages between 0 and 600.

(b) Must be of rubber or other approved substance, and of a thickness not less than that given in the following table for B. \& S. gauge sizes:

| From | 18 to | 16, in | $\frac{1}{32}$ inch. |
| :---: | :---: | :---: | :---: |
| From | 15 to | 8, inclu | $\frac{3}{64}$ inch. |
| From | 7 to | 2 , inclu | $\frac{1}{16}$ inch. |
| From | 1 to | 0,000, inclus | $\frac{5}{64}$ inch. |
| From | 250,000 to | 500,000 C. M., | $\frac{3}{32}$ inch. |
| From | 500,000 to | 1,000,000 C. M., | $\frac{7}{64}$ inch. |
| Over |  | 1,000,000 C. M., | 1/8 inch. |

Measurements of insulating wall are to be made at the thinnest portion of the dielectric.
(c) The completed coverings must show an insulation resistance of at least 100 megohms per mile during 30 days' immersion in water at $70^{\circ} \mathrm{F}$.
(d) Each foot of the completed covering must show a dielectric strength sufficient to resist throughout 5 minutes the application of an electromotive force proportionate to the thickness of insulation in accordance with the following table:

| Thickness in | Breakdown test <br> on 1 foot. |
| :---: | :---: |
| 64 ths inch. | 3,000 Volts A. C. |
| 1 | 6,000 Volts A. C. |
| 2 | 9,000 Volts A. C. |
| 3 | 11,00 Volts A. C. |
| 4 | 13,000 Volts A. C. |
| 5 | 15,000 Volts A. C. |
| 6 | 16,500 Volts A. C. |
| 7 | 18,000 Volts A. C. |
| 8 | 21,000 Volts A. C. |
| 10 | 23,500 Volts A. C. |
| 12 | 26,000 Volts A. C. |
| 14 | 28,000 Volts A. C. |

The source of alternating electro-motive force shall be a transformer of at least 1 kilowatt capacity. The application of the electro-motive force
shall first be made at 4,000 volts for 5 minutes and then the voltage increased by steps of not over 3,000 volts, each held for 5 minutes, until the rupture of the insulation occurs. The tests for dielectric strength shall be made on a sample of wire which has been immersed in water for 72 hours. One foot of the wire under test is to be submerged in a conducting liquid held in a metal trough, one of the transformer terminals being connected to the copper of the wire and the other to the metal of the trough.

## Insulations for Voltages Between 600 and $\mathbf{3 , 5 0 0}$.

(e) The thickness of the insulating wall must not be less than that given in the following table for B. \& S. gauge sizes:

( $f$ ) The requirements as to insulation and break-down resistance for wires for low-potential systems shall apply, with the exception that an insulation resistance of not less than 300 megohms per mile shall be required.

## Insulations for Voltages Over 3,500.

(g) Wire for arc-light circuits exceeding 3,500 volts potential must have an insulating wall not less than $\frac{3}{16}$ inch in thickness, and shall withstand a breakdown test of at least 23,500 volts, and have an insulation of at least 500 megohms per mile.

The tests on this wire to be made under the same conditions as for lowpotential wires.

Specifications for insulations for alternating currents exceeding 3,500 rolts have been considered, but on account of the somewhat complex conditions in such work, it has so far been deemed inexpedient to specify general insulations for this use.

## Protecting Braid.

(h) All of the above insulations must be protected by a substantial braided covering, properly saturated with a preservative compound. This covering must be sufficiently strong to withstand all the abrasion likely to be met with in practice, and sufficiently elastic to permit all wires smaller than No. 7 B. \& S. gauge to be bent around a cylinder with twice the diameter of wire, without injury to the braid.

## 42. Slow=burning Weather=proof Wire.

(a) The insulation must consist of 2 coatings, 1 to be fire-proof in character and the other to be weather-proof. The fire-proof coating must be on the outside, and must comprise about $\frac{6}{10}$ of the total thickness of the wall. The completed covering must be of a thickness not less than that given in the following table for B. \& S. gauge sizes :

| From | 14 to | 8, inclu | , |
| :---: | :---: | :---: | :---: |
| From | 7 to | 2 , inclu | $\frac{1}{16}$ inch. |
| From | 1 to | 0,000 , inclusi | h. |
| From | 250,000 to | 500,000, C. M., | $\frac{3}{32}$ inch. |
| From | 500,000 to | 1,000,000, C. M. |  |
| Over |  | 1,000,000, C. M., | inc |

Measurements of insulating wall are to be made at the thinnest portion of the dielectric.

This wire is not as burnable as "weather-proof," nor as subject to softening under heat. It is not suitable for outside work.
(b) The fire-proof coating shall be of the same kind as that required for "slow-burning wire," and must be finished with a hard, smooth surface if it is on the outside.
(c) The weather-proof coating shall consist of a stout braid, applied and treated as required for "weather-proof wire," and must be thoroughly slicked down if it is on the outside.

## 43. Slow=burning Wire.

(a) The insulation must consist of layers of cotton or other thread, all the interstices of which must be filled with the fire-proofing compound, or of material having equivalent fire-resisting and insulating properties. The outer layer must be braided and specially designed to withstand abrasion. The thickness of insulation must not be less than that required for "Slowburning Weather-proof Wire," and the outer surface must be finished smooth and hard.

The solid constituent of the fire-proofing compound must not be susceptible to moisure, and must not burn even when ground in an oxidizable oil, making a compound which, while proof against fire and moisture, at the same time has considerable elasticity, and which, when dry, will suffer no change at a temperature of $250^{\circ} \mathrm{F}$., and which will not burn at even a higher temperature.
"Slow-burning wire" must not be used without special permission from the Inspection Department having jurisdiction.

This is practically the old so-called "underwriters" insulation. It is especially useful in hot, dry places where ordinary insulations would perish, and where wires are bunched, as on the back of a large switchboard or in a wire tower, so that the accumulation of rubber or weather-proof insulations would result in an objectionably large mass of highly inflammable material. Its use is restricted, as its insulating qualities are not high and are diminished by moisture.

## 44. Weather=proof Wire.

(a) The insulating covering shall consist of at least 3 braids, all of which must be thoroughly saturated with a dense moisture-proof compound, applied in such a manner as to drive any atmospheric moisture from the cotton braiding, thereby securing a covering to a great degree water-proof and of high insulating power. This compound must retain its elasticity at $0^{\circ} \mathrm{F}$. and must not drip at $160^{\circ} \mathrm{F}$. The thickness of insulation must not be less than that required for "slow-burning weather-proof wire," and the outer surface must be thoroughly slicked down.

This wire is for use out-doors, where moisture is certain and where fireproof qualities are not necessary.

## 45. Flexible Cord.

## (For Installation Rules, see No. 28.)

(a) Must, except as required for portable heating apparatus (see section g), be made of stranded copper conductors, each strand to be not larger than No. 26 or smaller than No. 30 B. \& S. gauge, and each stranded conductor must be covered by an approved insulation and protected from mechanical injury by a tough, braided outer covering.

## For Pendant Lamps:

In this class is to be included all flexible cord which, under usual conditions, hangs freely in air, and which is not likely to be moved sufficiently to come in contact with surrounding objects.

It should be noted that pendant lamps provided with long cords, so that they can be carried about or hung over nails or on machinery, etc., are not included in this class, even though they are usually allowed to hang freely in air.
(b) Each stranded conductor must have a carrying capacity equivalent to not less than a No. 18 B. \& S. gauge wire.
(c) The covering of each stranded conductor must be made up as follows:

1. A tight, close wind of fine cotton.
2. The insulation proper, which shall be water-proof.
3. An outer cover of silk or cotton.

The wind of cotton tends to prevent a broken strand puncturing the insulation and causing a short circuit. It also keeps the rubber from corroding the copper.
(d) The insulation must be solid, at least $\frac{1}{32}$ inch thick, and must show an insulation resistance of 50 megohms per mile throughout 2 weeks' immersion in water at $70^{\circ} \mathrm{F}$., and stand the tests prescribed for low-tension wires as far as they apply.
(e) The outer protecting braiding should be so put on and sealed in place that when cut it will not fray out, and where cotton is used, it should be impregnated with a flame-proof paint, which will not have an injurious effect on the insulation.

## For Portables :

In this class is included all cord used on portable lamps, small portable motors, or any device which is liable to be carried about.
$(f)$ Flexible cord for portable use must meet all of the requirements for flexible cord "for pendant lamps," both as to construction and thickness of insulation, and in addition must have a tough braided cover over the whole. There must also be an extra layer of rubber between the outer cover and the flexible cord, and in moist places the outer cover must be saturated with a moisture-proof compound, thoroughly slicked down, as required for "weather-proof wire" in No. 44. In offices, dwellings or in similar places where the appearance is an essential feature, a silk cover may be substituted for the weather-proof braid.

## For Portable Heating Apparatus:

(Applies to all smoothing and sad irons and to any other device requiring over 250 watts).
(g) Must be made up as follows:

1. Conductors must be of braided copper, each strand not to be larger than No. 30 or smaller than No. 36 B. \& S. gauge.

When conductors have a greater carrying capacity than No. 12 B. \& S. gauge they may be braided or stranded with each strand as large as No. 28 B. \& S. gauge. If stranded there must be a tight close wind of cotton between the conductor and the insulation.
2. An insulating covering of rubber or other approved material not less than $\frac{1}{64}$ inch in thickness.
3. A braided covering not less than ${ }_{3}^{\frac{1}{2}}$ inch thick, composed of best quality long fibre asbestos, containing not over 5 per cent. of vegetable fibre.
4. The several conductors comprising the cord to be enclosed by an outer reinforcing covering not less than $\frac{1}{64}$ inch thick, especially designed to resist abrasion, and so treated as to prevent the cover from fraying.

## 46. Fixture Wire.

(For Installation Rules, see No, $24 v$ to $y$.)
(a) May be made of solid or stranded conductors, with no strands smaller than No. 30 B. \& S. gauge, and must have a carrying capacity not less than that of a No. 18 B. \& S. gauge wire.
(b) Solid conductors must be thoroughly tinned. If a stranded conductor is used, it must be covered by a tight, close wind of fine cotton.
(c) Must have a solid rubber insulation of a thickness not less than $\frac{1}{3^{2}}$ inch for Nos. 18 to 16 B. \& S. gauge, and $\frac{3}{64}$ inch for Nos. 14 to 8 B. \& S. gauge, except that in arms of fixtures not exceeding 24 inches in length and used to supply not more than one 16 candle-power lamp or its equivalent, which are so constructed as to render impracticable the use of a wire with $\frac{1}{32}$ inch thickness of rubber insulation, a thickness of $\frac{1}{64}$ inch will be permitted.
(d) Must be protected with a covering at least $\frac{1}{64}$ inch in thicknesss, sufficiently tenacious to withstand the abrasion of being pulled into the
fixture, and sufficiently elastic to permit the wire to be bent around a cylinder with twice the diameter of the wire without injury to the braid.
(e) Must successfully withstand the tests specified in Nos. $41 c$ and $41 d$.

In wiring certain designs of show case fixtures, ceiling bulls-eyes and similar appliances in which the wiring is exposed to temperatures in excess of $120^{\circ} \mathrm{F}$., from the heat of the lamps, slow-burning wire may be used (see No. 44). All such forms of fixtures must be submitted for examination test and approved before being introduced for use.

## 47. Conduit Wire.

(For Installation Rules, see No. $24 n$ to $p$.)
(a) Single wire for lined conduits must comply with the requirements of No. 41. For unlined conduits it must comply with the same require-ments,-except that tape may be substituted for braid,-and in addition there must be a second outer fibrous covering, at least $\frac{1}{32}$ inch in thickness and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit.
(b) For twin or duplex wires in lined conduit, each conductor must comply with the requirements of No. 41-except that tape may be substituted for braid on the separate conductors,-and must have a substantial braid covering the whole. For unlined conduit, each conductor must comply with requirements of No. 41,-except that tape may be substituted for braid,-and in addition must have a braid covering the whole, at least $\frac{1}{32}$ inch in thickness and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit.
(c) For concentric wire, the inner conductor must comply with the requirements of No. 41,-except that tape may be substituted for braid,and there must be outside of the outer conductor the same insulation as on the inner, the whole to be covered with a substantial braid, which for unlined conduits must be at least $\frac{1}{32}$ inch in thickness, and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit.

The braid or tape required around each conductor in duplex, twin and concentric cables is to hold the rubber insulation in place and prevent jamming and flattening.

## 48. Armored Cable.

(a) The armor of such cables must have at least as great strength to resist penetration of nails, etc., as is required for metal conduits (see No. 49 b ), and its thickness must not be less than that specified in the following table:

| Nominal | Actual | Actual |  |
| :---: | :---: | :---: | :---: |
| Internal | Internal | External | Thickness |
| Diameter. | Diameter. | Diameter. | of Wall. |
| Inches. | Inches. | Inches. | Inches. |
| 1/8 | . 27 | . 40 | . 06 |
| 1/4 | . 36 | . 54 | . 08 |
| $3 / 8$ | . 49 | . 67 | . 09 |
| $1 / 2$ | . 62 | . 84 | . 10 |
| $3 / 4$ | . 82 | 1.05 | . 11 |
| 1 | 1.04 | 1.31 | . 13 |
| 11/4 | 1.38 | 1.66 | . 14 |
| 11/2 | 1.61 | 1.90 | . 14 |
| 2 | 2.06 | 2.37 | . 15 |
| 21/2 | 2.46 | 2.87 | . 20 |
| 3 | 3.06 | 3.50 | . 21 |
| $31 / 2$ | 3.54 | 4.00 | . 22 |
| 4 | 4.02 | 4.50 | . 23 |
| 41/2 | 4.50 | 5.00 | . 24 |
| 5 | 5.04 | 5.56 | . 25 |
| 6 | 6.06 | 6.62 | . 28 |

An allowance of $\frac{2}{100}$ inch for variation in manufacturing and loss of thickness by cleaning will be permitted.
(b) The conductors in same, single wire or twin conductors, must have an insulating covering as required by No. 41 ; if any filler is used to secure a round exterior, it must be impregnated with a moisture repellent, and the whole bunch of conductors and fillers must have a separate exterior covering.

## 49. Interior Conduits.

(For Installation Rules, see Nos. $24 n$ to $p$ and 25.)
(a) Each length of conduit, whether lined or unlined, must have the maker's name or initials stamped in the metal or attached thereto in a satisfactory manner, so that inspectors can readily see the same.

The use of paper stickers or tags cannot be considered satisfactory methods of marking, as they are readily loosened and lost off in the ordinary handling of the conduit.

## Metal Conduits with Lining of Insulating Material :

(b) The metal covering or pipe must be at least as strong as the ordinary commercial forms of gas-pipe of the same size, and its thickness must be not less than that of standard gas-pipe as specified in the table given in No. 48.
(c). Must not be seriously affected externally by burning out a wire inside the tube when the iron pipe is connected to one side of the circuit.
(d) Must have the insulating lining firmly secured to the pipe.
(e) The insulating lining must not crack or break when a length of the conduit is uniformly bent at temperature of $212^{\circ} \mathrm{F}$. to an angle of $90^{\circ}$, with a curve having a radius of 15 inches, for pipes of 1 inch and less, and 15 times the diameter of pipe for larger sizes.
( $f$ ) The insulating lining must not soften injuriously at a temperature below $212^{\circ} \mathrm{F}$. and must leave water in which it is boiled practically neutral.
( $g$ ) The insulating lining must be at least $\frac{1}{3}$ inch in thickness. The materials of which it is composed must be of such a nature as will not have a deteriorating effect on the insulation of the conductor, and be sufficiently tough and tenacious to withstand the abrasion test of drawing long lengths of conductors in and out of same.
( $h$ ) The insulating lining must not be mechanically weak after 3 days' submersion in water, and when removed from the pipe entire, must not absorb more than 10 per cent. of its weight of water during 100 hours of submersion.
(i) All elbows or bends must be so made that the conduit or lining of same will not be injured. The radius of the curve of the inner edge of any elbow must not be less than $31 / 2$ inches.

## Unlined Metal Conduits :

( $j$ ) Plain iron or steel pipes of thicknesses and strengths equal to those specified for lined conduits in No. $49 b$ may be used as conduits, provided their interior surfaces are smooth and free from burs. In order to prevent oxidization, the pipe must be galvanized, or the interior surfaces coated or e zameled with some substance which will not soften so as to become sticky and prevent the wire from being withdrawn from the pipe.
( $k$ ) All elbows or bends must be so made that the conduit will not be injired. The radius of the curve of the inner edge of any elbow not to be less than $3 \frac{1}{2}$ inches.

## 49 A. Switch and Outlet Boxes.

(a) Must be of pressed steel having a wall thickness not less than 081 inch (No. 12 B . \& S. gauge) or of cast metal having a wall thickness not less than 128 inch (No. 8 B. \& S. gauge).
(b) Must be well galvanized, enameled or otherwise properly coated, :iside and out, to prevent oxidation.
(c) Inlet holes must be effectually closed, when not in use by metal Hich will afford protection substantially equivalent to that of the walls of ne box.
(d) Must be plainly marked, where it may readily be seen when installed, with the name or trade mark of the manufacturer.
(e) Must be arranged to secure in position the conduit or flexible tubing protecting the wire.

This rule will be complied with if the conduit or tubing is firmly secured in position by means of some approved device which may not be a part of the box.
( $f$ ) Boxes used with lined conduit must comply with the foregoing requirements, and in addition must have a tough and tenacious insulating lining at least $\frac{1}{32}$ inch thick, firmly secured in position.
(g) Switch boxes must completely enclose the switch on sides and back, and must provide a thoroughly substantial support for it. The retaining screws for the box must not be used to secure the switch in position.

## 50. Wooden Mouldings.

## (For Wiring Rules, see No. $24 l$ and $m$.)

(a) Must have, both outside and inside, at least 2 coats of water-proof material, or be impregnated with a moisture repellent.
(b) Must be made in 2 pieces, a backing and a capping, and must afford suitable protection from abrasion. Must be so constructed as to thoroughly encase the wire, be provided with a tongue not less than $1 / 2$ inch in thickness between the conductors, and have exterior walls which under grooves shall not be less than $3 / 8$ inch in thickness, and on the sides not less than $1 / 4$ inch in thickness.

It is recommended that only hard wood moulding be used.

## 50 A. Tubes and Bushings.

(a) Construction.-Must be made straight and free from checks or rough projections, with ends smooth and rounded to facilitate the drawing in of the wire and prevent abrasion of its covering.
(b) Material and Test.-Must be made of non-combustible insulating material, which, when broken and submerged for 100 hours in pure water at $70^{\circ} \mathrm{F}$., will absorb over $1 / 2$ of 1 per cent. of its weight.
(c) Marking.-Must have the name, initials, or trade mark of the manufacturer stamped in the ware.
(d) Sizes.-Dimensions of walls and heads must be at least as great as those given in the following table:

| $\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { hole. } \end{gathered}$ | External <br> diameter. | Thickness of wall. | External diameter of head. | Length of head. |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{5}{16} \mathrm{in}$. | ${ }^{9} \mathrm{in}$ in. | 1/8 in. | 13 in. | 1/2 in. |
|  | $\begin{aligned} & 1616 \\ & 1+16 \\ & \hline 16 \end{aligned}$ | $\frac{18}{\frac{5}{32}}$ | ${ }_{\frac{1}{16}}^{16}$ | $1 / 2$ |
| $1 / 2$ | $\frac{13}{13}$ | $\frac{6}{32}$ | $1_{1}{ }^{\frac{3}{6}}$ | $1 / 2$ |
| 5/8 | ${ }^{\frac{15}{16}}$ | $\frac{5}{32}$ | $1 \frac{5}{16}$ | $1 / 2$ |
| 3/4 | $1_{17}^{3}$ | $\frac{7}{32}$ | $1 \frac{11}{16}$ | $5 / 8$ |
| 1 | 176 | $\frac{7}{32}$ | $1{ }^{1 \frac{1}{1} 5}$ | $5 / 8$ |
| $11 / 4$ | $1{ }^{1 \frac{13}{1} \frac{3}{6}}$ | $\frac{9}{32}$ | $2 \frac{5}{16}$ | $5 / 8$ |
| $11 / 2$ | 23 <br> 2 <br> 2 <br> 16 |  | $2 \frac{11}{1} \frac{1}{16}$ | $3 / 4$ |
| $13 / 4$ | $2{ }^{9} 9$ | $\frac{1}{3} \frac{3}{2}$ | $3 \frac{1}{16}$ | 3 |
| 2 | $2{ }_{3}^{15}$ | $\frac{15}{3}$ | $3{ }^{7}$ | $3 / 4$ |
| $21 / 4$ | $3 \frac{5}{16}$ | $\frac{17}{32}$ | $3{ }^{13}$ | 1 |
| $21 / 2$ | $3 \frac{11}{16}$ | $\frac{1}{3} \frac{1}{2}$ | $4 \frac{3}{16}$ | 1 |

An allowance of $\frac{1}{64}$ inch for variation in manufacturing will be permitted, except in the thickness of the wall.

## 50 B. Cleats.

(a) Construction.-Must hold the wire firmly in place without injury to its covering.

Sharp edges which may cut the wire should be avoided.
(b) Supports. - Bearing points on the surface must be made by ridges or rings about the holes for supporting screws, in order to avoid cracking and breaking when screwed tight.
(c) Material and Test.-Must be made of non-combustible insulating material, which, when broken and submerged for 100 hours in pure water at $70^{\circ} \mathrm{F}$., will not absorb over $1 / 2$ of 1 per cent. of its weight.
(d) Marking.-Must have the name, initials, or trade mark of the manufacturer stamped in the ware.
( $\epsilon$ ) Sizes.-Must conform to the spacings given in the following table:

|  | Distance from | Distance <br> Voltage. |
| :---: | :---: | :---: |
| $0-300$ | wire to surface. | between wires. |

This rule will not be interpreted to forbid the placing of the neutral of an Edison 3 -wire system in the centre of a 3 -wire cleat where the difference of potential between the outside wires is not over 300 volts, provided the outside wires are separated $2 \frac{1}{2}$ inches.

## 50 C. Flexible Tubing.

(Note.-The specifications for Flexible Tubing hare been referred to a sub-committee for further consideration and report at the general meeting in December, 1905.)

## 51. Switches.

(For Installation Rules, see Nos. 17 and 22.)

## General Rules.

(a) Must, when used for service switches, indicate, on inspection, whether the current be "on " or "off."
(b) Must, for constant-current systems, close the main circuit and disconnect the branch wires when turned "off": must be so constructed that they shall be automatic in action, not stopping between points when started, and must prevent an arc between the points under all circumstances. They must indicate whether the current be "on" or "off."

## Knife Switches.

Knife switches must be made to comply with the following specifications, except in those few cases where peculiar design allows the switch to fulfill the general requirements in some other way, and where it can successfully withstand the test of Section $i$. In such cases, the switch should be submitted for special examination before being used.
(c) Base.-Must be mounted on non-combustible, non-absorptive, insulating bases, such as slate or porcelain. Bases with an area of over 25 square inches must have at least 4 supporting screws. Holes for the supporting screws must be so located or countersunk that there will be at least $1 / 2$-inch space, measured over the surface, between the head of the screw or washer and the nearest live metal part, and in all cases when between parts of opposite polarity must be countersunk.
(d) Mounting.-Pieces carrying the contact jaws and hinge clips must be secured to the base by at least 2 screws, or else made with a square shoulder, or provided with dowel-pins, to prevent possible turnings, and the nuts or screw-heads on the under side of the base must be countersunk not less than $1 / 8$ inch, and covered with a water-proof compound, which will not melt below $150^{\circ} \mathrm{F}$.
(e) Hinges. - Hinges of knife switches must not be used to carry current unless they are equipped with spring washers, held by lock-nuts or pins, or their equivalent, so arranged that a firm and secure connection will be maintained at all positions of the switch blades.

Spring washers must be of sufficient strength to take up any wear in the hinge and maintain a good contact at all times.
( $f$ ) Metal.-All switches must have ample metal for stiffiness and to prevent rise in temperature of any part of over $50^{\circ} \mathrm{F}$. at full load, the contacts being arranged so that a thoroughly good bearing at every point is obtained with contact surfaces advised for pure copper blades of about 1 square inch for each 75 amperes ; the whole device must be mechanically well made throughout.
(g) Cross=Bars. - All cross-bars less than 3 inches in length must be made of insulating material. Bars of 3 inches and over, which are made of metal to insure greater mechanical strength, must be sufficiently separated from the jaws of the switch to prevent arcs following from the contacts to the bar on the opening of the switch under any circumstances. Metal bars should preferably be covered with insulating material.

To prevent possible turning or twisting the cross-bar must be secured to each blade by 2 screws, or the joints made with square shoulders or provided with dowel-pins.
(h) Connections.-Switches for currents of over 30 amperes must be equipped with lugs, firmly screwed or bolted to the switch, and into which the conducting wires shall be soldered. For the smaller sized switches simple clamps can be employed, provided they are heavy enough to stand considerable hard usage.

Where lugs are not provided, a rugged double-V groove clamp is advised. A set screw gives a contact at only one point, is more likely to become loosened, and is almost sure to cut into the wire. For the smaller sizes, a serew and washer connection with turned up lugs on the switch terminal gives a satisfactory contact.
(i) Test.-Must operate successfully at 50 per cent. overload in amperes and 25 per cent. excess voltage, under the most severe conditions with which they are liable to meet in practice.

This test is designed to give a reasonable margin between the ordinary rating of the switch and the breaking-down point, thus securing a switch which can always safely handle its normal load. Moreover, there is enough leeway so that a moderate amount of overloading would not injure the switch.
( $j$ ) Marking.-Must be plainly marked where it will be visible, when the switch is installed, with the name of the maker and the current and the voltage for which the switch is designed.
(k) Spacings. - Spacings must be at least as great as those giren in the following table. The spacings specified are correct for switches to be used on direct-current systems, and can therefore be safely followed in devices designed for alternating currents.

## 125 Volts or Less.

## For Switch=boards and Panel=boards:

Minimum separation of
nearest metal parts of opposite polarity.
10 amperes or less, $3 / 4$ inch.
$11-30$ amperes,
inch. Minimum break. Distance.

11-30 amperes, $1^{1 / 4}$ inch...................................... $1 / 3 / 4$ inch.
31-50 amperes, $11 / 4$ inches.............. ............. $1^{/ 4}$ inch.
For Individual Switches:

| 10 amperes or les | inch | nch. |
| :---: | :---: | :---: |
| 11-30 amperes, | 11/4 inches. | inch. |
| 31-100 amperes, | $11 / 2$ inches | $11 / 4$ inches. |
| 101-300 amperes, | 2114 inches. | 2 inches. |
| 301-600 amperes, | $23 / 4$ inches | $21 / 2$ inches. |
| 601-1000 amperes, |  | 23/4 inches. |

## For All Switches:

| 10 amperes or less, $11 / 2$ inches..................... $11 / 4$ inches. |  |  |
| :---: | :---: | :---: |
| 11- 30 amperes, | $13 / 4$ inches | $11 / 2$ inches. |
| 31-100 amperes, | 21/4 inches | 2 inches. |
| 101-300 amperes, | $21 / 2$ inches | 21/4 inches. |
| 301-600 amperes, | $23 / 4$ inche | $21 / 2$ inches. |
| 601-1000 amperes, | 3 in | $23 / 4$ inches. |

For 100 ampere switches and larger, the above spacings for 250 volts direct-current are also approved for 500 volts alternating-current. Switches with these spacings intended for use on alternating-current systems with voltage above 250 volts must be stamped with the voltage for which they are designed, followed by the letters "A. C."

## For all Switches:

## 251 to 600 Volts.

> Minimum separation of nearest metal parts of opposite polarity.
> Minimum break. Distance.
> 10 amperes or less, $31 / 2$ inches.......................... 3 inches.
> 11- 35 amperes,
> 36-100 amperes,
> $41 / 2$ inches $31 / 2$ inches.
> 4 inches.

Auxiliary breaks or the equivalent are recommended for switches designed for over 300 volts and less than 100 amperes, and will be required on switches designed for use in breaking currents greater than 100 amperes at a pressure of more than 300 volts.

For 3-wire Edison systems the separations and break distances for plain 3 -pole knife switches must not be less than those required in the above table for switches designed for the voltage between the neutral and outside wires.

## Snap Switches.

Flush, push-button, door, fixture and other snap switches used on constant-potential systems, must be constructed in accordance with the following specifications
(l) Base.-Current-carrying parts must be mounted on non-combustible, non-absorptive insulating bases, such as slate or porcelain, and the holes for supporting screws should be countersunk not less than $1 / 8$-inch. There must in no case be less than ${ }_{6}^{3} \frac{3}{4}$ inch space between supporting screws and current-carrying parts.

Sub-bases of non-combustible, non-absorptive insulating material, which will separate the wires at least $1 / 2$-inch from the surface wired over, must be furnished with all snap switches used in exposed knob or cleat work.
( $m$ ) Mounting.-Pieces carrying contact jaws must be secured to the base by at least two screws, or else made with a square shoulder, or provided with dowel-pins or otherwise arranged, to prevent possible turnings; and the nuts or screw heads on the under side of the base must be countersunk not less than $1 / 8$-inch, and covered with a water-proof compound which will not melt below $150^{\circ} \mathrm{F}$
( $n$ ) Metal.-All switches must have ample metal for stiffness, and to prevent rise in temperature of any part of over $50^{\circ} \mathrm{F}$. at full load, the contacts being arranged so that a thoroughly good bearing at every point is obtained. The whole device must be mechanically well made throughout.

In order to meet the above requirements on temperature rise without causing excessive friction and wear on current-carrying parts, contact surfaces of from 0.1 to 0.15 square inch for each 10 amperes will be required, depending upon the metal used and the form of construction adopted.
(o) Insulating Material.-Any material ased for insulating currentcarrying parts must retain its insulating and mechanical strength when subject to continued use, and must not soften at a temperature of $212^{\circ} \mathrm{F}$.
( $p$ ) Binding Posts.-Binding posts must be substantially made, and the screws must be of such size that the threads will not strip when set up tight.
(q) Covers.-Covers made of conducting material, except face plates for flush switches, must be lined on sides and top with insulating, tough and tenacious material at least $\frac{1}{32}$ inch in thickness, firmly secured so that it will not fall out with ordinary handling. The side lining must extend slightly beyond the lower edge of the cover.
(r) Handle or Button. - The handle or button or any exposed parts must not be in electrical connection with the circuit.
(s) Test.-Must "make" and "break" with a quick snap, and must not stop when motion has once been imparted by the button or handle.

Must operate successfully at 50 per cent. overload in amperes and 25 per cent. excess voltage, under the most severe conditions with which they are liable to meet in practice.

When slowly turned "on and of" at the rate of about 2 or 3 times per minute, while carrying the rated currert, must "make and break" the circuit 6,000 times before failing.
( $t$ ) Marking.-Must be plainly marked, where it may be readily seen after the device is installed, with the name or trade mark of the maker and the current and voltage for which the switch is designed.

On flush switches these markings may be placed on the back of the face plate or on the sub-plate. On other types they must be placed on the front of the cap, cover, or plate.

Switches which indicate whether the current is "on" or "off" are recommended.

## 52. Cutouts and Circuit=breakers.

(For Installation Rules, see Nos. 17 and 21.)
These requirements do not apply to rosettes, attachment plugs, car lighting, cutouts and protective devices for signaling systems.

## General Rules.

(a) Must be supported on bases of non-combustible, non-absorptive insulating material.
(b) Cutouts must be of plug or cartridge type, when not arranged in approved cabinets, so as to obviate any danger of the melted fuse metal coming in contact with any substance which might be ignited thereby.
(c) Cutouts must operate successfully on short circuits, under the most severe conditions with which they are liable to meet in practice, at 25 per cent. above their rated voltage, and for link-fuse cutouts with fuses rated at 50 per cent. above the current for which the cutout is designed, and for enclosed fuse cutouts with the largest fuses for which the cutout is designed.

With link-fuse cutouts there is always the possibility of a larger fuse being put into the cutout than it was designed for, which is not true of enclosed fuse cutouts classified as required under No. 52, $q$. Again, the voltage in most plants can, under some conditions, rise considerably above the normal. The need of some margin, as a factor of safety to prevent the cutouts from being ruined in ordinary service, is therefore evident.

The most severe service which can be required of a cutout in practice is to open a "dead short circuit" with only one fuse blowing, and it is with these conditions that all tests should be made. (See Section $j$.)
(d) Circuit-breakers must operate successfully on short circuits, under the most severe conditions with which they are liable to meet in practice, at 25 per cent. above their rated voltage and with the circuit-breaker set at the highest possible opening point. For the same reason as in Section c.
(e) Must be plainly marked where it will always be visible, with the name of the maker, and current and voltage for which the device is designed.

## Link=fuse Cutouts.

## (Cutouts of porcelain are not approved for link-fuses.)

The following rules are intended to cover open link-fuses mounted on slate or marble bases, including switch-boards, tablet-boards, and single fuse-blocks. They do not apply to fuses mounted on porcelain bases, to the ordinary porcelain cutout blocks, enclosed fuses, or any special or covered type of fuse. When tablet-boards or single fuse-blocks with such open-link fuses on them are used in general wiring, they must be enclosed in cabinet boxes made to meet the requirements of No. 54. This is necessary, because a severe flash may occur when such fuses melt; so that they would be dangerous if exposed in the neighborhood of any combustible material.
( $f$ ) Base.- Must be mounted on slate or marble bases. Bases with an area of over 25 square inches must have at least 4 supporting screws. Holes for supporting screws must be kept outside of the area included by the outside edges of the fuse-block terminals, and must be so located or countersunk that there will be at least $1 / 2$-inch space, measured over the surface, between the head of the screw or washer and the nearest live part.
(g) Mounting.-Nuts or screw-heads on the under side of the base must be countersunk not less than $1 / 8$-inch, and covered with a water-proof compound, which will not melt below $150^{\circ} \mathrm{F}$.
(h) Metal.-All fuse-block terminals must have ample metal for stiffness and to prevent rise in temperature of any part of over $50^{\circ} \mathrm{F}$. at full load. Terminals, as far as practicable, should be made of compact form instead of being rolled out in thin strips; and sharp edges or thin projecting pieces, as on wing-thumb nuts and the like, should be avoided. Thin metal, sharp edges and projecting pieces are much more likely to cause an are to start than a more solid mass of metal. It is a good plan to round all corners of the terminals and to chamfer the edges.
(i) Connections.-Clamps for connecting wires to the fuse-block terminals must be of solid, rugged construction, so as to insure a thoroughly good connection and to withstand considerable hard usage. For fuses rated at over 30 amperes, lugs firmly screwed or bolted to the terminals and into which the conducting wires are soldered must be used. See note under No. 51 h .
(j) Test.-Must operate successfully when blowing only 1 fuse at a time on short circuits with fuses rated at 50 per cent. above and with a voltage 25 per cent. above the current and voltage for which the cutout is designed.
(k) Marking.-Must be plainly marked, where it will be visible when the cutout block is installed, with the name of the maker and the current and the voltage for which the block is designed.
(l) Spacings.-Spacings must be at least as great as those given in the following table, which applies only to plain, open link-fuses mounted on slate or marble bases. The spacings given are correct for fuse-blocks to be used on direct-current systems, and can therefore be safely followed in devices designed for alternating currents. If the copper fuse-tips overhang the edges of the fuse-block terminals, the spacings should be measured between the nearest edges of the tips.

## 125 Volts or Less.



## 126 to 250 Volts.

| 10 amperes or less, | 11/2 inches | inches. |
| :---: | :---: | :---: |
| 11-100 amperes, | $13 / 4$ inches | 11/4 inches. |
| 101- 300 amperes, | 2 inches | $11 / 2$ inches. |
| 301-1000 amperes, | $21 / 2$ inch | inches. |

A space must be maintained between fuse terminals of the same polarity of at least $1 / 2$-inch for voltages up to 125 , and of at least $3 / 4$-inch for voltages from 126 to 250 . This is the minimum distance allowable, and greater separation should be provided when practicable.

For 250 volt boards or blocks with the ordinary front-connected terminals, except where these have a mass of compact form, equivalent to the back-connected terminals usually found in switch-board work, a substantial barrier of insulating material, not less than $1 / 8$-inch in thickness, must be placed in the "break" gap,-this barrier to extend out from the base at least $1 / 8$-inch farther than any bare live part of the fuse-block terminal, including binding screws, nuts, and the like.

For 3 -wire systems cutouts must have the break-distance required for circuits of the potential of the outside wires.

## Enclosed=fuse Cutouts,-Plug and Cartridge Type.

( $m$ ) Base.-Must be made of non-combustible, non-absorptive insulating material. Blocks with an area of over 25 square inches must have at least 4 supporting screws. Holes for supporting screws must be so located or countersunk that there will be at least $1 / 2$-inch space, measured over the surface, between the screw-head or washer and the nearest live metal part, and in all cases when between parts of opposite polarity must be countersunk.
( $n$ ) Mounting. - Nuts or screw-heads on the under side of the base must be countersunk at least $1 / 8$-inch, and covered with a water-proof compound, which will not melt below $150^{\circ} \mathrm{F}$.
(o) Terminals.-Terminals must be of either the Edison plug, spring clip, or knife-blade type, of approved design, to take the corresponding standard enclosed fuses. They must be secured to the base by 2 screws or the equivalent, so as to prevent them from turning, and must be so made as to secure a thoroughly good contact with the fuse. End stops must be provided to insure the proper location of the cartridge fuse in the cutout.
( $p$ ) Connections.-Clamps for connecting wires to the terminals must be of a design which will ensure a thoroughly good connection, and must be sufficiently strong and heavy to withstand considerable hard usage. For fuses rated to carry over 30 amperes, lugs firmly screwed or bolted to the terminals and into which the connecting wires shall be soldered must be used.
(q) Classification.-Must be classified as regards both current and voltage as given in the following table, and must be so designed that the bases of one class cannot be used with fuses of another class rated for a higher current or voltage.

$$
\text { 0-250 Volts. }\left\{\begin{array}{r}
0-30 \text { amperes. } \\
\text { 31- } 60 \text { amperes. } \\
\text { 61-100 amperes. } \\
101-200 \text { amperes. } \\
201-400 \text { amperes. } \\
401-600 \text { amperes. }
\end{array}\right.
$$

251-600 Volts. $\left\{\begin{array}{r}0-30 \text { amperes. } \\ 31-60 \text { amperes. } \\ 61-100 \text { amperes. } \\ 101-200 \text { amperes. } \\ 201-400 \text { amperes. }\end{array}\right.$
(r) Design.-Must be of such a design that it will not be easy to form accidental short circuits across live metal parts of opposite polarity on the block or on the fuses in the block.
(s) Marking.-Must be marked, where it will be plainly visible when the block is installed, with the name of the maker and the voltage and range of current for which it is designed.

## 53. Fuses.

## Link-Fuses.

(a) Terminals.-Must have contact surfaces or tips of harder metal, having perfect electrical connections with the fusible part of the strip.

The use of the hard metal tip is to afford a strong mechanical bearing for the screws, clamps, or other devices provided for holding the fuse.
(b) Rating.-Must be stamped with about 80 per cent. of the maximum current, which they can carry indefinitely, thus allowing about 25 per cent. overload before the fuse melts.

With naked open fuses, of ordinary shapes and with not over 500 amperes capacity, the minimum current which will melt them in about 5 minutes may be safely taken as the melting point, as the fuse practically reaches its maximum temperature in this time. With larger fuses a longer time is necessary. This data is given to facilitate testing.
(c) Marking.-Fuse terminals must be stamped with the maker's name or initials, or with some known trade mark.

## Enclosed=fuses,-Plug and Cartridge Type.

These requirements do not apply to fuses for rosettes, attachment plugs, car lighting, cutouts and protective devices for signaling systems.
(d) Construction.-The fuse plug or cartridge must be sufficiently dust-tight so that lint and dust cannot collect around the fusible wire and become ignited when the fuse is blown.

The fusible wire must be attached to the plug or cartridge terminals in such a way as to secure a thoroughly good connection and to make it difficult for it to be replaced when melted.
(e) Classification.-Must be classified to correspond with the different classes of cutout blocks, and must be so designed that it will be impossible
to put any fuse of a given class into a cutout block which is designed for a current or voltage lower than that of the class to which the fuse belongs.
( $f$ ) Terminals.-The fuse terminals must be sufficiently heavy to ensure mechanical strength and rigidity. The styles of terminals must be as follows:

## $0=250$ Volts.


31-60 volts $\{$ Cartridge fuse (ferrule contact) to fit $\{a$ Spring clip terminals. $\{b$ Edison plug casings.

| 61-100 volts |  |
| :---: | :---: |
| 101-200 volts | Cartridge fuse (knife blade contact) |
| $401-600$ volts |  |

## 251=600 Volts.

$\left.\begin{array}{r}0-30 \text { amperes } \\ 31-60 \text { amperes }\end{array}\right\}$ Cartridge fuse (ferrule contact).

## 61-100 amperes <br> $\left.\begin{array}{l}\text { 101-200 amperes } \\ 201-400 \text { amperes }\end{array}\right\}$ Cartridge fuse (knife blade contact).

(g) Dimensions.-Cartridge enclosed fuses and corresponding cutout blocks must conform to the dimensions given in the table on page 810.
(h) Rating.-Fuses must be so constructed that with the surrounding atmosphere at a temperature of $75^{\circ} \mathrm{F}$. they will carry indefinitely a current 10 per cent. greater than that at which they are rated, and at a current 25 per cent. greater than the rating, they will open the circuit without reaching a temperature which will injure the fuse tube or terminals of the fuse-block. With a current 50 per cent. greater than the rating and at room temperature of $75^{\circ} \mathrm{F}$., and fuses, starting cold, must blow within the time specified.

| 0-30 amperes | 30 seconds. |
| :---: | :---: |
| 31-60 amperes, | 1 minute. |
| 61-100 amperes, | 2 minutes. |
| 101-200 amperes, | 4 minutes. |
| 201-400 amperes, | 8 minutes, |
| 401-600 amperes, | 10 minutes. |

(i) Marking.-Must be marked, where it will be plainly visible, with the name or trade mark of the maker, the voltage and current for which the fuse is designed, and the words "National Electrical Code Standard." Each fuse must have a label, the color of which must be green for 250 -volt fuses and red for 600 -volt fuses.

It will be satisfactory to abbreviate the above designation to "N. E. Code St'd " where space is necessarily limited.
( $j$ ) Temperature Rise.-The temperature of the exterior of the fuse enclosure must not rise more than $125^{\circ} \mathrm{F}$. above that of the surrounding air when the fuse is carrying the current for which it is rated.
(k) Test.-Must not hold an arc or throw out melted metal or sufficient flame to ignite easily inflammable material on or near the cutout, when only one fuse is blown at a time on a short-circuit, on a system having a capacity of 300 K . W. or over, at the voltage for which the fuse is rated.

The above requirement that the testing circuit must have a capacity of at least 300 K . W. is to guard against making the test on a system of so small capacity that the conditions would be sufficiently favorable to allow really poor fuses to stand the test acceptably. On the other hand, it must be remembered that if the test is made on a system of very large capacity, and especially if there is but little resistance between the generators and fuse,
Table of Dimensions of the National Electric Code Standard Cartridge Enclosed Fuse．

Voltage．
$\circ$
io
1
0

| 8 |
| :--- |
| 8 |
| 1 |
| 10 |
| N |


|  | $\stackrel{\square}{0}$ |  |
| :---: | :---: | :---: |


| $\bigcirc$ |  |  |  |
| :---: | :---: | :---: | :---: |
| L |  | べm | $\omega^{*}$ |
| 凹 |  | Non ,minస | ががいがN |
| － |  | apmic－nmbunt | Mr－min momit |
| 0 |  |  | Nos |
| $\wedge$ |  | ーが みギロー | HA゙ ON |
| ＜ |  |  |  |
|  |  |  |  |
|  |  | $\begin{aligned} & \text { Qi } \\ & \text { ín } \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 10 \\ & i \end{aligned}$ |

the conditions may be more severe than are liable to be met with in practice outside of the large power stations, the result being that fuses entirely safe for general use may be rejected if such test is insisted upon. A more definite rule regarding the conditions of this test is desirable, and the matter is under consideration. In any case the test should be arranged to best represent the severer conditions of actual practice, not, howerer, including central station equipments where specially designed and stronger fuses are undoubtedly necessary.

## 53 A. Tablet and Panel Boards.

The following minimum distance between bare live metal parts (busbars, etc.) must be maintained :

| between parts of opposite polarity, except at switches and link-fuses. |  | BETWEEN PARTS OF SAME POLARITY. |
| :---: | :---: | :---: |
| When mounted on the same surface. | When held free in the air. | At link-fuses. |
| 0-125 volts $3 / 4$ inch $126-250$ volts $11 / 4$ inch | $1 / 2$ inch $3 / 4$ inch | 1/2 inch <br> $3 / 4$ inch |

At switches or enclosed fuses, parts of the same polarity may be placed as close together as convenience in handling will allow.

It should be noted that the abore distances are the minimum allowable, and it is urged that greater distances be adopted wherever the conditions will permit.

The spacings given in the first column apply to the branch conductors where enclosed fuses are used. Where link-fuses or knife-switches are used, the spacings must be at least as great as those required by Nos. 51 and 52.

The spacings given in the second column apply to the distance between the raised main bars, and between these bars and the branch bars over which they pass.

The spacings given in the third column are intended to prevent the melting of a link-fuse by the blowing of the adjacent fuse of the same polarity.

## 54. Cutout Cabinets.

(a) Material.-Cabinets must be substantially constructed of non-combustible, non-absorptive material, or of wood. When wood is used the inside of the cabinet must be completely lined with a non-combustible insulating material. Slate or marble at least $1 / 4$-inch in thickness is strongly recommended for such lining, but, except with metai conduit systems, asbestos board at least $1 / 8$-inch in thickness may be used in dry places if firmly secured by shellac and tacks.

With metal conduit systems the lining of either the box or the gutter must be of $\frac{1}{16}$-inch galvanized, painted or enameled iron, or preferably $1 / 4$-inch slate or marble.

The object of the lining of such cutout cabinets or gutters is to render the same approximately fire-proof in case of short circuit after the wires leave the protecting metal conduits.

Two thicknesses of $\frac{1}{32}$ inch iron mar be used instead of one of $\frac{1}{16}$ inch.
With wood cabinets the wood should be thoroughly filled and painted before the lining is put in place.
(b) Door. -The door must close against a rabbet, so as to be perfectly dust-tight. Strong hinges and a strong hook or catch are required. Glass doors must be glazed with heavy glass, not less than $1 / 8$-inch in thickness, and panes should not exceed 300 square inches in area. A space or at least 2 inches must be allowed between the fuses and the door. This is necessary to prevent cracking or breaking by the severe blow and intense heat which may be produced under some conditions.

A cabinet is of little use unless the door is kept tightly closed, and especial attention is therefore called to the importance of having a strong and reliable catch or other fastening. A spring catch is advised if a good one can be obtained, but most of those sold for use on cupboards, etc., are so small that they fail to catch when the door shrinks a little, or are so weak that they soon give out.
(c) Bushings.-Bushings through which wires enter must fit tightly the holes in the box, and must be of approved construction. The wires should completely fill the holes in the bushings, using tape to build up the wire, if necessary, so as to keep out the dust.

## 54 A. Rosettes.

Ceiling rosettes, both fused and fuseless, must be constructed in accordance with the following specifications:
(a) Base.-Current-carrying parts must be mounted on non-combustible, non-absorptive insulating bases. There should be no opening through the rosette base except those for the supporting screws and in the concealed type for the conductors also, and these openings should not be made any larger than necessary.

There must be at least $1 / 4$-inch space, measured over the surface between supporting screws and current-carrying parts. The supporting screws must be so located or countersunk that the flexible cord cannot come in contact with them.

Bases for the knob and cleat type must have at least 2 holes for supporting screws; must be high enough to keep the wires and terminals at least $1 / 2$-inch from the surface to which the rosette is attached, and must have a porcelain lug under each terminal to prevent the rosette from being placed over projections which would reduce the separation to less than $1 / 2$-inch.

Bases for the moulding and conduit box types must be high enough to keep the wires and terminals at least $3 / 8$-inch from the surface wired over.
(b) Mounting.-Contact pieces and terminals must be secured in position by at least 2 screws, or made with a square shoulder, or otherwise arranged to prevent turning.

The nuts or screw heads on the under side of the base must be countersunk not less than $1 / 8$-inch and covered with a water-proof compound which will not melt below $150^{\circ} \mathrm{F}$.
(c) Terminals.-Line terminal plates must be at least .07 inch in thickness, and terminal screws must not be smaller than No. 6 standard screw with about 32 threads per inch.

Terminal plates for the flexible cord and for fuses must be at least .06 inch in thickness, and the terminal screws must not be smaller than No. 5 standard screw with about 40 threads per inch
(d) Cord Inlet.-The diameter of the cord inlet hole should measure $\frac{13}{32}$-inch in order that standard portable cord may be used.
(e) Knot Space.-Ample space must be provided for a substantial knot tied in the cord as a whole.

All parts of the rosette upon which the knot is likely to bear must be smooth and well rounded.
( $f$ ) Cover. - When the rosette is made in 2 parts, the cover must be secured to the base so that it will not work loose.

In fused rosettes, the cover must fit closely over the base so as to prevent the accumulation of dust or dirt on the inside, and also to prevent any flash or melted metal from being thrown out when the fuses melt. .
(g) Markings.-Must be plainly marked where it may readily be seen after the rosette has been installed, with the name or trade mark of the manufacturer, and the rating in amperes and volts. Fuseless rosettes may be rated 3 amperes, 250 volts; fused rosettes, with link-fuses, not over 2 amperes, 125 volts.
$(h)$ Test. - Fused rosettes must have a fuse in each pole and must operate successfully when short circuited on the voltage for which they are designed, the test being made with the two fuses in circuit.

When link-fuses are used thè test shall be made with fuse wire which melts at about 7 amperes in 1 inch lengths. The larger fuse is specified for the test in order to more nearly approximate the severe conditions obtained when only one 2 -ampere fuse (the rating of the rosette) is blown at a time.

Fused rosettes equipped with enclosed fuses are much preferable to the link-fuse rosettes.

## 55. Sockets.

(For Installation Rules, see No. 27.)
Sockets of all kinds, including wall receptacles, must be constructed in accordance with the following specifications.
(a) Standard Sizes. -The standard lamp socket must be suitable for use on any voltage not exceeding 250 aud with any size lamp up to 50 candle-power. For lamps larger than 50 candle-power a standard keyless socket may be used, or if a key is required, a special socket designed for the current to be used must be made. Any special sockets must follow the general spirit of these specifications.
(b) Marking. - The standard socket must be plainly marked 250 volts, 50 candle-power, and with the manufacturer's name or registered trade mark. Special sockets must be marked with the current and voltage for which they are designed.
(c) Shell.-Metal used for shells must be moderately hard, but not hard enough to be brittle or so soft as to be easily dented or knocked out of shape. Brass shells must be at least $\frac{13}{1000}$-inch in thickness, and shells of any other material must be thick enough to give the same stiffness and strength as the required thickness of brass.
(d) Lining.-The inside of the shells must be lined with insulating material, which must absolutely prevent the shell from becoming a part of the circuit, even though the wires inside the socket should start from their position under the binding screws.

The material used for lining must be at least $\frac{1}{32}$ inch in thickness, and must be tough and tenacious. It must not be injuriously affected by the heat from the largest lamp permitted in the socket, and must leave water in which it is boiled practically neutral. It must be so firmly secured to the shell that it will not fall out with ordinary handling of the socket. It is preferable to have the lining in one piece.

The cap must also be lined, and this lining must comply with the requirements for shell linings.

The shell lining should extend beyond the shell far enough so that no part of the lamp base is exposed when a lamp is in the socket.
(e) Cap.-Caps, when of sheet brass, must be at least $\frac{13}{1000}$-inch in thickness, and when cast or made of other metals must be of equivalent strength. The inlet piece, except for special sockets, must be tapped with a standard $1 / 8$-inch pipe thread. It must contain sufficient metal for a full, strong thread, and when not in one piece with the cap, must be joined to it in such a way as to give the strength of a single piece.

There must be sufficient room in the cap to enable the ordinary wireman to easily and quickly make a knot in the cord and to push it into place in the cap without crowding. All parts of the cap upon which the knot is likely to bear must be smooth and well insulated.

The cap lining called for in the note to Section $d$ will provide a sufficiently smooth and well-insulated surface for the knot to bear upon.

Sockets with an outlet threaded for $3 / 8$-inch pipe will, of course, be approved where circumstances demand their use. This size outlet is necessary with most stiff pendants and for the proper use of reinforced flexible cord, as explained in the note to No. 28 d .
$(f)$ Frame and Screws.-The frame which holds the moving strap must be sufficiently heavy to give ample strength and stiffness.

Brass pieces containing screw threads must be at least $\frac{6}{100}$-inch in thickness.

Binding post screws must not be smaller than No. 5 standard screw with about 40 threads per inch.
(g) Spacing.-Points of opposite polarity must everywhere be kept not less than $\frac{3}{64}$ inch apart, unless separated by a reliable insulation.
( $h$ ) Connections.-The connecting points for the flexible cord must be made to very securely grip a No. 16 or $18 \mathrm{~B} . \& \mathrm{~S}$. gauge conductor. A turnedup lug, arranged so that the cord may be gripped between the screw and the lug in such a way that it cannot possibly come out, is strongly advised.
(i) Lamp Holder.-The socket must firmly hold the lamp in place so that it cannot be easily jarred out, and must provide a contact good enough to prevent undue heating with the maximum current allowed. The hold-
ing pieces, springs, and the like, if a part of the circuit, must not be sufficiently exposed to allow them to be brought in contact with anything outside of the lamp and socket.
(j) Base.-With the exception of the lining, all parts of insulating material inside the shell must be made of porcelain.
(k) Key.-The socket key-handle must be of such a material that it will not soften from the heat of a 50 candle-power lamp hanging downwards from the socket in air at $70^{\circ} \mathrm{F}$., and must be securely, but not necessarily rigidly, attached to the metal spindle which it is designed to turn.
(l) Sealing.-All screws in porcelain pieces, which can be firmly sealed in place, must be so sealed by a water-proof compound which will not melt below $200^{\circ} \mathrm{F}$.
( $m$ ) Putting Together.-The socket as a whole must be so put together that it will not rattle to pieces. Bayonet joints or an equivalent are recommended.
( $n$ ) Test.-The socket, when slowly turned "on and off " at the rate of about 2 or 3 times per minute, while carrying a load of 1 ampere at 250 volts, must "make and break" the circuit 6,000 times before failing.
(o) Keyless Sockets.-Keyless sockets of all kinds must comply with the requirements for key sockets as far as they apply.
( $p$ ) Sockets of Insulating Material.-Sockets made of porcelain or other insulating material must conform to the above requirements as far as they apply, and all parts must be strong enough to withstand a moderate amount of hard usage without breaking.

Porcelain shell sockets being subject to breakage, and constituting a hazard when broken, will not be accepted for use in places where they would be exposed to hard usage.
(q) Inlet Bushing. - When the socket is not attached to a fixture, the threaded inlet must be provided with a strong insulating bushing having a smooth hole at least $\frac{9}{32}$ inch in diameter. The edges of the bushing must be rounded and all inside fins removed, so that in no place will the cord be subjected to the cutting or wearing action of a sharp edge.

Bushing for sockets having an outlet threaded for $3 / 8$ inch pipe should have a hole $\frac{13}{32}$ inch in diameter, so that they will accommodate approved reinforced flexible cord.

## 56. Hanger=boards for Series Arc Lamps.

(a) Hanger-boards must be so constructed that all wires and currentcarrying devices thereon will be exposed to view and thoroughly insulated by being mounted on a non-combustible, non-absorptive insulating substance. All switches attached to the same must be so constructed that they shall be automatic in their action, cutting off both poles to the lamp, not stopping between points when started and preventing an arc between points under all circumstances.

## 57. Arc Lamps.

## (For Installation Rules, see Nos. 19 and 29.)

(a) Must be provided with reliable stops to prevent carbons from falling out in case the ciamps become loose.
(b) All exposed parts must be carefully insulated from the circuit.
(c) Must, for constant-current systems, be provided with an approved hand switch, and an automatic switch that will shunt the current around the carbons, should they fail to feed properly.

The hand switch to be approved, if placed anywhere except on the lamp itself, must comply with requirements for switches on hanger-boards as laid down in No. 56.

## 58. Spark Arresters.

(For Installation Rules, see Nos. $19 c$ and $29 c$.)
(a) Spark arresters must so close the upper orifice of the globe that it will be impossible for any sparks, thrown off by the carbons, to escape.

## 59. Insulating Joints.

(See No. 26 a.)
(a) Must be entirely made of material that will resist the action of illuminating gases, and will not give way or soften under the heat of an ordinary gas flame or leak under a moderate pressure. Must be so arranged that a deposit of moisture will not destroy the insulating effect; must show a dielectric strength between gas-pipe attachments sufficient to resist throughout 5 minutes the application of an electro-motire force of 4,000 rolts; and must be sufficiently strong to resist the strain to which they are liable to be subjected during installation.
(b) Insulating joints having soft rubber in their construction will not be approved.

## 60. Rheostats.

(For Installation Rules, see No. $4 a$ and $8 c$.)
(a) Materials.-Must be made entirely of non-combustible materials except such minor parts as handles, magnet insulation, ete.

All segments, lever arms, etc., must be mounted on non-combustible, non-absorptive, insulating material.

Resistance boxes are used for the express purpose of opposing the passage of current, and are therefore very liable to get exceedingly hot. Hence they should have no combustible material in their construction.
(b) Construction.-Must have legs which will keep the current-carrying parts at least 1 inch from the surface on which the rheostat is mounted.

The construction throughout must be heavy, rugged, and thoroughly workmanlike.
(c) Connections.-Clamps for connecting wires to the terminals must be of a design which will ensure a thoroughly good connection, and must be sufficiently strong and heavy to withstand considerable hard usage. For currents above 50 amperes, lugs firmly screwed or bolted to the terminals, and into which the connecting wires shall be soldered, must be used.

Clamps or lugs will not be required when leads designed for soldered connections are provided.
(d) Marking.-Must be plainly marked, where it may be readily seen after the device is installed, with the rating and the name of the maker; and the terminals of motor-starting rheostats must be marked to indicate to what part of the circuit each is to be connected, as "line," "armature," and "field."
(e) Contacts.-The design of the fixed and movable contacts and the resistance in each section must be such as to secure the least tendency towards arcing and roughening of the contacts, even with careless handling or the presence of dirt.

In motor-starting rheostats, the contact at which the circuit is broken by the lever arm when moving from the running to the starting position, must be so designed that there will be no detrimental arcing. The final contact, if any, on which the arm is brought to rest in the starting position must have no electrical connection.

Experience has shown that sharp edges and segments of thin material help to maintain an arc, and it is recommended that these be avoided. Segments of heavy construction have a considerable cooling effect on the arc, and rounded corners tend to spread it out and thus dissipate it.
( $f$ ) No=voltage release.-Motor-starting rheostats must be so designed that the contact arm cannot be left on intermediate segments, and must be provided with an automatic device which will interrupt the supply circuit before the speed of the motor falls to less than one-third of its normal value.
(g) Overload=release.-Overload-release devices which are inoperative during the process of starting a motor will not be approved, unless other circuit-breakers or fuses are installed in connection with them.

If, for instance, the overload-release device simply release the starting arm and allows it to fly back and break the circuit, it is inoperative while the arm is being moved from the starting to the running position.
(h) Test.-Must, after 100 operations under the most severe normal conditions for which the device is designed, show no serious burning of the contacts or other faults, and the release mechanism of motor-starting rheostats must not be impaired by such a test.

Field rheostats, or main-line regulators intended for continuous use, must not be burned out or depreciated by carrying the full normal current on any step for an indefinite period. Regulators intended for intermittent use (such as on electric cranes, elevators, etc.) must be able to carry their rated current on any step for as long a time as the character of the apparatus which they control will permit them to be used continuously.

## 61. Reactive Coils and Condensers.

(a) Reactive coils must be made of non-combustible material, mounted on non-combustible bases and treated, in general, as sources of heat.
(b) Condensers must be treated like other apparatus operating with equivalent voltage and currents. They must have non-combustible cases and supports, and must be isolated from all combustible materials and, in general, treated as sources of heat.

## 62. Transformers.

(For Installation Rules, see Nos. 11, 13, 13 A and 36.)
(a) Must not be placed in any but metallic or other non-combustible cases.

On account of the possible dangers from burn-outs in the coils. (See note under No. 11 a.)

It is advised that every transformer be so designed and connected that the middle point of the secondary coil can be reached if, at any future time, it should be desired to ground it.
(b) Must be constructed to comply with the following tests:

1. Shall be run for 8 consecutive hours at full load in watts under conditions of service, and at the end of that time the rise in temperature, as measured by the increase of resistance of the primary coil, shall not exceed $135^{\circ} \mathrm{F}$.
2. The insulation of transformers when heated shall withstand continuously for 5 minutes a difference of potential of 10,000 volts (alternating) between primary and secondary coils and between the primary coils and core, and a no-load "run" at double voltage for 30 minutes.

## 63. Lightning Arresters.

## (For Installation Rules, see No. 5.)

(a) Lightning arresters must be of approved construction. (See list of Electrical Fittings.)

## CLASS E.-MISCELLANEOUS.

## 64. Signaling Systems.

(Governing wiring for telephone, telegraph, district messenger and call-bell circuits, fire and burglar alarms, and all similar systems which are hazardous only because of their liability to become crossed with electric light, heat, or power circuits.)

When the entire circuit from central station to building is run in underground conduits, sections $a$ to $m$ inclusive do not apply.
(a) Outside wires should be run in underground ducts or strung on poles, and, as far as practicable, kept off of buildings, and must not be placed on the same cross-arm with electric light or power wires. They should not occupy the same duct, manhole or handhole of conduit systems with electric light or power wires.

Single manholes, or handholes, may be separated into sections by means of partitions of brick or tile so as to be considered as conforming with the above rule.

The liability of accidental crossing of overhead signaling circuits with electric light and power circuits may be guarded against to a considerable extent by endeavoring to keep the two classes of circuits on different sides of the same street.
(b) When outside wires are run on same pole with electric light or power wires, the distance between the two inside pins of each cross-arm must not be less than 26 inches.

Signaling wires being smaller and more liable to break and fall, should generally be placed on the lower cross-arms.
(c) Where wires are attached to the outside walls of buildings they must have an approved rubber insulating covering (see No. 41), and on frame buildings or frame portions of other buildings shall be supported on glass petticoat insulators, or porcelain knobs.
(d) The wires from last outside support to the cutouts or protectors must be of copper, and must have an approved rubber insulation (see No. 41); must be provided with drip loops immediately outside the building and at entrance ; must be kept not less than $2 \frac{1}{2}$ inches apart.
(e) Wires must enter building through approved non-combustible, nonabsorptive, insulating bushings sloping upward from the outside.

Installations where the current-carrying parts of the apparatus installed are capable of carrying indefinitely a current of 10 amperes.
$(f)$ An all-metallic circuit shall be provided, except in telegraph systems.
$(g)$ At the entrance of wires to buildings, approved single pole cutouts, designed for 251-600 volts potential and containing fuses rated at not over 10 amperes capacity, shall be provided for each wire. These cutouts must not be placed in the immediate vicinity of easily ignitible stuff, or where exposed to inflammable gases, or dust or to flyings of combustible material.
(h) The wires inside building shall be of copper not less than No. 16 B. \& S. gauge, and must have insulation and be supported, the same as would be required for an installation of electric light or power wiring, $0-550$ volts potential.
(i) The instruments shall be mounted on bases constructed of non-combustible, non-absorptive, insulation material. Holes for the supporting screws must be so located, or countersunk, that there will be at least $1 / 2$-inch space, measured over the surface, between the head of the screw and the nearest live metal part.

Installations where the current-carrying parts of the apparatus installed are not capable of carrying indefinitely a current of 10 amperes.
( $j$ ) Must be provided with an approved protective device located as near as possible to the entrance of wires to building. The protector must not be placed in the immediate vicinity of easily ignitible stuff, or where exposed to inflammable gases or dust or flyings of combustile material.
(k) Wires from entrance to building to protector must be supported on porcelain insulators, so that they will come in contact with nothing except their designed supports.
(l) The ground wire of the protective device shall be run in accordance with the following requirements:

1. Shall be of copper, and not smaller than No. 18 B. \& S. gauge.
2. Must have an approved rubber insulating covering (see No. 41).
3. Must run in as straight a line as possible to a good permanent ground. This may be obtained by connecting to a water- or gas-pipe connected to the street mains and in service, or to a ground rod or pipe driven in permanently damp earth. When connections are made to pipes, preference shall be given to water-pipes. If attachment is made to gas-pipe, the connection in all cases must be made between the meter and the street mains.
In every case the connection shall be made as near as possible to the earth.
When the ground wire is attached to water- or gas-pipes, these pipes shall be thoroughly cleaned and tinned with rosin flux solder, if such a method is practicable; the ground wire shall then be wrapped tightly around the pipe and thoroughly soldered to it.

When the above method is impracticable, then if there are fittings where a brass plug can be inserted, the ground wire shall be thoroughly soldered to it; if there are no such fittings, then the pipe shall be thoroughly cleaned and an approved ground clamp fastened to an exposed portion of the pipe and the ground wire well soldered to the ground clamp.

When the ground wire is attached to a ground rod driven into the earth, the ground wire shall be soldered to the rod in a similar manner.

Steam or hot-water pipes must not be used for a protector ground.
$(m)$ The protector to be approved must comply with the following requirements:

## For Instrument Circuits of Telegraph Systems :

1. An approved single pole cutout, in each wire, designed for 2,000 volts potential, and containing fuses rated at not over 1 ampere capacity. When main line cutouts are installed as called for in section $g$, the instrument cutouts may be placed between the switch-board and the instrument as near the switch-board as possible.

## For All Other Systems :

1. Must be mounted on non-combustible, non-absorptive insulating bases, so designed that when the protector is in place, all parts which may be alive will be thoroughly insulated from the wall to which the protector is attached.
2. Must have the following parts:

A lightning arrester which will operate with a difference of potential between wires of not over 500 volts, and so arranged that the chance of accidental grounding is reduced to a minimum.

A fuse designed to open the circuit in case the wires become crossed with light or power circuits. The fuse must be able to open the circuit without arcing or serious flashing when crossed with any ordinary commercial light or power circuit.

A heat coil, if the sensitiveness of the instrument demands it, which will operate before a sneak current can damage the instrument the protector is guarding.

Heat coils are necessary in all circuits normally closed through magnet windings, which cannot indefinitely carry a current of at least 5 amperes.

The heat coil is designed to warm up and melt out with a current large enough to endanger the instruments if continued for a long time, but so small that it would not blow the fuses ordinarily found necessary for such instruments. These smaller currents are often called "sneak" currents.
3. The fuses must be so placed as to protect the arrester and heat coil:: and the protector terminals must be plainly marked "line," "instrument," " ground."

An easily read abbreviation of the above words will be allowed.
The following rules apply to all systems whether the wires from the central office to the building are overhead or underground.
( $n$ ) Wires beyond the protector, or wires inside buildings where no protector is used, must be neatly arranged and securely fastened in place in some convenient, workman-like manner. They must not come nearer than 6 inches to any electric light or power wire in the building unless encased in approved tubing so secured as to prevent its slipping out of place.

The wires would ordinarily be insulated, but the kind of insulation is not specified, as the protector is relied upon to stop all dangerous currents. Porcelain tubing or approved flexible tubing may be used for encasing wires where required as above.
(o) Wires where bunched together within any building must have fircresisting covering, or else be encased in a non-combustible tube or shaft.

They must not be in the same tube with electric light or power wires, and if in the same shaft must be kept at least 2 inches from such wires. Ducts or shafts for wires must be of fire-proof construction and thoroughly "stopped " at each floor or wall.

Ordinary rubber insulation is inflammable, and when a number of wires are contained in a shaft or duct extending through a building, a ready means of carrying fire from floor to floor exists unless the shaft or duct is "stopped" at floors and walls.

## 65. Electric Gas=Lighting.

(a) Electric-gas lighting must not be used on the same fixture with the electric light.

The above rule does not apply to frictional systems of gas-lighting.

## 65 A. Moving Picture Machines.

(a) Top reel must be encased in an iron box with hole at the bottom only large enough for film to pass through, and cover so arranged that this hole can be instantly closed. No solder to be used in the construction of this box.
(b) A box must be used for receiving the film after being shown, made of galvanized iron with a hole in the top only large enough for the film to pass through freely, with a cover so arranged that this hole can be instantly closed. An opening may be placed at the side of the box to take the film out, with a door hung at the top, so arranged that it cannot be entirely opened, and provided with a spring catch to lock it closed. No solder to be used in the construction of this box.
(c) The handle or crank used in operating the machine must be secured to the spindle or shaft so that there will be no liability of its coming off and allowing the film to stop in front of the lamp.
(d) A shutter must be placed in front of the condenser, arranged so as to be normally closed, and held open by pressure of the foot.
(e) A metal pan must be placed under the are lamp to catch all sparks.
$(f)$ Extra films must be kept in metal box with tight-fitting covers.

## 66. Insulation Resistance.

The wiring in any building must test free from grounds; $i . e .$, the complete installation must have an insulation between conductors and between all conductors and the ground (not including attachments, sockets, receptacles, etc.) not less than that given in the following table :

| Up to | 5 amperes. | 00 ohms. |
| :---: | :---: | :---: |
| Up to | 10 amperes. | 2,000,000 ohms. |
| Up to | 25 amperes. | 800,000 ohms. |
| Up to | 50 amperes. | 400,000 ohms. |
| Up to | 100 amperes. | 200,000 ohms. |
| Up to | 200 amperes. | 100,000 ohms. |
| Up to | 400 amperes. | 50,000 ohms. |
| Up to | 800 amperes. | 25,000 ohms. |
| Up to 1 | 1,600 amperes. | 12,500 ohms. |

The test must be made with all cutouts and safety devices in place. If the lamp sockets, receptacles, electroliers, etc., are also connected, only one half of the resistances specified in the table will be required.

## 67. Soldering Fluid.

(a) The following formula for soldering fluid is suggested:

Saturated solution of zinc chloride
5 parts.
Alcohol.
4 parts.
Glycerine
1 part.

## CLASS F.-MARINE WORK.

## 68. Generators.

(a) Must be located in a dry place.
(b) Must have their frames insulated from their bed-plates.
(c) Must each be provided with a water-proof cover.
(d) Must each be providerl with a name-plate, giving the maker's name, the capacity in volts and amperes, and the normal speed in revolutions per minute.

## 69. Wires.

(a) Must be supported in approved moulding or conduit, except at switch-boards and for portables.

Special permission may be given for deviation from this rule in dynamorooms.
(b) Must have no single wire larger than No. 12 B. \& S. gauge. Wires to be stranded when greater carrying capacity is required. No single solid wire smaller than No. 14 B. \& S. gauge, except in fixture wiring, to be used.

Stranded wires must be soldered before being fastened under clamps or binding screws, and when they have a conductivity greater than that of No. 8 B. \& S. gauge copper wire they must be soldered into lugs.
(c) Splices or taps in conductors must be avoided as far as possible. Where it is necessary to make them they must be so spliced or joined as to be both mechanically and electrically secure without solder. They must then be soldered, to insure preservation, covered with an insulating compound equal to the insulation of the wire, and further protected by a water-proof tape. The joint must then be coated or painted with a waterproof compound.

## For Moulding Work :

(d) Must have an approved insulating covering.

The insulation for conductors, to be approved, must be at least $\frac{3}{32}$ inch in thickness and be covered with a substantial water proof braid.

The physical characteristics shall not be affected by any change in temperature up to $200^{\circ} \mathrm{F}$. After 2 weeks' submersion in salt water at $70^{\circ} \mathrm{F}$., it must show an insulation resistance of 100 megohms per mile after 3 minutes' electrification with 550 volts.
(e) Must have, when passing through water-tight bulkheads and through all decks, a metallic stuffing tube lined with hard rubber. In case of deck tubes, they shall be boxed near deck to prevent mechanical injury.
$(f)$ Must be bushed with hard rubber tubing, $1 / 8$-inch in thickness, when passing through beams and non-water-tight bulkheads.

## For Conduit Work :

(g) Must have an approved insulating covering.

The insulation for conductors, for use in lined conduits, to be approved, must be at least $\frac{3}{32}$ inch in thickness and be covered with a substantial water-proof and flame-proof braid. The physical characteristics shall not be affected by any change in temperature up to $200^{\circ} \mathrm{F}$.

After 2 weeks' submersion in salt water at $70^{\circ} \mathrm{F}$., it must show an insulation resistance of 100 megohms per mile after 3 minutes' electrification with 550 voits.

For unlined metal conduits, conductors must conform to the specifications given for lined conduits, and in addition have a second outer fibrous covering at least $\frac{1}{32}$ inch in thickness, and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit.
( $h$ ) Must not be drawn in until the mechanical work on the conduit is completed and same is in place.
(i) Where run through coal bunkers, boiler rooms, and where they are exposed to severe mechanical injury, must be encased in approved conduit.

## 70. Portable Conductors.

(a) Must be made of 2 stranded conductors, each having a carrying capacity equivalent to not less than No. 14 B. \& S. gauge wire, and each covered with an approved insulation and covering.

Where not exposed to moisture or severe mechanical injury, each stranded conductor must have a solid insulation at least $\frac{1}{32}$ inch in thickness, and must show an insulation resistance between conductors, and between either conductor and the ground, of at least 50 megohms per mile after 2 weeks' submersion in water at $70^{\circ} \mathrm{F}$., and be protected by a slowburning, tough-braided outer covering.

Where exposed to moisture and mechanical injury-as for use on decks, holds and fire-rooms-each stranded conductor shall have a solid insulation, to be approved, of at least $\frac{1}{3^{2}}$ inch in thickness and protected by a tough braid. The 2 conductors shall then be stranded together, using a jute filling. The whole shall then be covered with a layer.of flax, either woven or braided, at least $\frac{1}{32}$ inch in thickness, and treated with a non-inflammable, water-proof compound. After 1 weeks' submersion in water at $70^{\circ}$ F., it must show an insulation between the two conductors, or between either conductor and the ground, of 50 megohms per mile.

## 71. Bell or Other Wires.

(a) Shall never be run in same duct with lighting or power wires.
72. Table of Capacity of Wires.


When greater conducting area than that of $12 \mathrm{~B} . \&$ S. gauge is required, the conductor shall be stranded in a series of $7,19,37,61,91$, or 127 wires, as may be required ; the strand consisting of one central wire, the remainder laid around it concentrically, each layer to be twisted in the opposite direction from the preceding.

## 73. Switchboard.

(a) Must be made of non-combustible, non-absorptive insulating material, such as marble or slate.
(b) Must be kept free from moisture, and must be located so as to be accessible from all sides.
(c) Must have a main switch, main cutout and ammeter for each generator.

Must also have a voltmeter and ground detector.
(d) Must have a cutout and switch for each side of each circuit leading from board.

## 74. Resistance Boxes.

(For Construction Rules, see No. 60.)
(a) Must be located on switch-board or away from combustible material. When not placed on switch-board they must be mounted on non-inflammable, non-absorptive insulating material.

## 75. Switches.

(For Construction Rules, see No. 51.)
(a) Must not be single pole when the circuits which they control supply devices which require over 660 watts of energy.
(b) When exposed to dampness, they must be enclosed in a water-tight case.
(c) Must be of the knife pattern when located on switch-board.
(d) Must be provided so that each freight compartment may be separately controlled.

## 76. Cutouts.

## (For Construction Rules, see No. 52.)

(a) Must be placed at every point where a change is made in the size of the wire (unless the cutout in the larger wire will protect the smaller).
(b) In places such as upper decks, holds, cargo spaces and fire-rooms, a water-tight and fire-proof cutout may be used, connecting directly to mains when such cutout supplies circuits requiring not more than 660 watts energy.
(c) When placed anywhere except on switch-boards and certain places, as cargo spaces, holds, fire-rooms, etc., where it is impossible to run from centre of distribution, they shall be in a cabinet lined with fire-resisting material.
(d) Except for motors, searchlights and diving lamps shall be so placed that no group of lamps, requiring a current of more than 660 watts, shall ultimately be dependent upon one cutout.

## 77. Fixtures.

(a) Shall be mounted on blocks made from well-seasoned lumber treated with two coats of white lead or shellac.
(b) Where exposed to dampness, the lamp must be surrounded by a vapor-proof globe.
(c) Where exposed to mechanical injury, the lamp must be surrounded by a globe protected by a stout wire guard.
(d) Shall be wired with same grade of insulation as portable conductors which are not exposed to moisture or mechanical injury.
(e) Ceiling fixtures over 2 feet in length must be provided with stay chains.

## 78. Sockets.

(For Construction Rules, see No. 55.)

## 79. Wooden Mouldings.

(For Construction Rules, see No. 50.)
(a) Where moulding is run over rivets, beams, etc., a backing strip must first be put up and the moulding secured to this.
(b) Capping must be secured by brass screws.

## 80. Interior Conduits.

(For Installation Rules, see No. 25.)
(For Construction Rules, see No. 49.)

## 81. Signal Lights.

(a) Must be provided with approved telltale board, located preferably in pilot-house, which will immediately indicate a burned-out lamp.

## 82. Motors.

(a) Must be wired under the same precautions as with a current of same volume and potential for lighting. The motor and resistance box must be protected by a double-pole cutout and controlled by a double-pole switch, except in cases where $1 / 4$ horse power or less is used.

The motor leads or branch circuits must be designed to carry a current at least 25 per cent. greater than that for which the motor is rated, in order to provide for the inevitable occasional overloading of the motor, and the increased current required in starting, without overfusing the wires, but where the wires under this rule would be overfused, in order to provide for the starting current, as in the case of many of the alternating current motors, the wires must be of such size as to be properly protected by these larger fuses.

In general, motors should preferably have no exposed live parts.
(b) Must be thoroughly insulated. Where possible, should be set on base frames made from filled, hard, dry wood and raised above surrounding deck. On hoists and winches they shall be insulated from bed-plates by hard rubber, fibre or similar insulating material.
(c) Shall be covered with a water-proof cover when not in use.
(d) Must each be provided with a name-plate giving maker's name, the capacity in volts and amperes, and the normal speed in revolutions per minute.

## 83. Insulation Resistance.

The wiring in any vessel must test free from grounds; i.e., the complete installation must have an insulation between conductors and between all conductors and the ground (not including attachments, sockets, receptacles, etc.) of not less than the following:

| Up to | 25 amperes. | 800,000 ohms. |
| :---: | :---: | :---: |
| Up to | 50 amperes. | 400,000 ohms. |
| Up to | 100 amperes. | 200,000 ohms. |
| Up to | 200 amperes. | 100,000 ohms. |
| Up to | 400 amperes. | 50,000 ohms. |
| Up to | 800 amperes. | 25,000 ohms. |
| Up to | ,600 amperes | 12,500 ohms. |

All cutouts and safety devices in place in the above.
Where lamp sockets, receptacles and electroliers, etc., are connected, one-half of the above will be required.

## General Wiring Formulas.

## (General Electric Company.)

The following general formulas may be used to determine the size of copper conductors, volts loss in lines, current per conductor, and the weight of copper per circuit for any system of electrical distribution :

| Area of conductor, circular mils. | $=\frac{D \times W \times C}{P \times E^{2}} ;$ |
| ---: | :--- |
| Current in main conductors | $=\frac{W \times T}{E} ;$ |
| Volts loss in line | $=\frac{P \times E \times B}{100} ;$ |
| Pounds.of copper | $=\frac{D^{2} W \times C \times A}{P \times E^{2} \times 1,000,000}$. |

Where
$W=$ total watts delivered ;
$D=$ distance of transmission (one way), in feet;
$P=$ loss in line, in per cent., of power delivered,-that is of $W$.
$E=$ voltage between main conductors at receiving or consumers end of circuit.

For continuous current $C=2160, T=1, B=1$, and $A=6.04$.

Values of $A, C$, and $T$.

| System. |  | Values of $C$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Percentage of power factor. |  |  |  |  |
|  |  | 100 | 95 | 90 | 85 | 80 |
| Single phase .. | 6.04 | 2160 | 2400 | 2660 | 3000 | 3380 |
| Two-phase (4-wire) . | 12.08 | 1080 | 1200 | 1330 | 1500 | 1690 |
| Three-phase (3-wire). | 9.06 | 1080 | 1200 | 1330 | 1500 | 1690 |
| System. |  | Values of $T$. |  |  |  |  |
|  |  | Percentage of power factor. |  |  |  |  |
|  |  | 100 | 95 | 90 | 85 | 80 |
| Single phase ............ | 6.04 | 1.00 | 1.05 | 1.11 | 1.17 | 1.25 |
| Two-phase (4-wire) .... | 12.08 | . 50 | . 53 | . 55 | . 59 | . 62 |
| Three-phase (3-wire)... | 9.06 | . 58 | . 61 | . 64 | . 68 | . 72 |

The following formula will be found a convenient one for calculating the copper required for long-distance, three-phase transmission circuits.

$$
\text { Pounds of copper }=\frac{M^{2} \times K w . \times 300,000,000}{P \times E^{2}}
$$

$M=$ distance of transmission in miles ;
$K w .=$ the power delivered, in kilowatts.
Power factor is assumed to be approximately 95 per cent.

## Application of Formulas.

The value of $C$ for any particular power factor is obtained by dividing 2160, the value for continuous current, by the square of that power factor for single-phase, and by twice the square of that power factor for 3 -wire three-phase, or 4 -wire two-phase.

The value of $B$ depends upon the size of wire, frequency, and power factor. It is equal to 1 for continuous current and for alternating current with 100 per cent. power factor, and sizes of wire given in the preceding table of wiring constants.

The figures given are for wires 18 inches apart, and are sufficiently accurate for all practical purposes, provided the displacement in phase between current and electro-motive force at the receiving end is not very much greater than that at the generator ; in other words, provided the reactance of the line is not excessive or the line lost unusually high. For example, the constants should not be applied at 125 cycles if the largest conductors are used and the loss is 20 per cent. or more of the power delivered.

|  | ${ }_{\text {ximbe }}^{\text {B,d }}$ |
| :---: | :---: |
| $\begin{aligned} & \text { 㴯菏 } \end{aligned}$ |  |
|  |  |
|  | Reitame |
|  | ๕ |
|  | : |
|  |  |
|  | : |
|  | ๕ |
|  | : |
|  | $\therefore$ |
|  | \% |
|  | $\bigcirc$ |
|  | : |
|  | $\%$ \% |
|  | 8 |
|  | ๕ |
|  | : |
|  | ${ }^{8}$ |
|  |  |

At lower frequencies, however, the constants are reasonably correct, even under such extreme conditions. They represent about the true values at 10 per cent. line loss, are close enough at all losses less than 10 per cent., and often, at least for frequencies up to 40 cycles, close enough for even much larger losses. Where the conductors of a circuit are much nearer each other than 18 inches the volts loss will be less than that given by the formula, and if close together, as with a multiple-conductor cable, the loss will be only that due to the resistance.

The value of $T$ depends on the system and power factor. It is equal to 1 for continuous current and for single-phase current of 100 per cent. power factor.

The value of $A$ and the weights of wires in the tables are based on 0.00000302 of a pound as the weight of a foot of copper wire of 1 circular mil area.

In using the formulas and constants on page 734, it should particularly be observed that $P$ stands for the per cent. loss in the line of the delivered power, not for the per cent. loss in the line of the power at the generator, and that $E$ is the power at the end of the line and not at the generator.

When the power factor cannot be more accurately determined, it may be assumed to be as follows for any alternating system operating under average conditions: Incandescent lighting and synchronous motors, 95 per cent.; lighting and induction motors together, 85 per cent.; induction motors alone, 80 per cent.

In continuous-current 3 -wire systems the neutral wire for feeders should be made of one-third the section obtained by formula for either of the outside wires. In both continuous- and alternating-current systems the neutral conductor for secondary mains and house-wiring should be taken as large as the other conductors.

The 3 wires of a three-phase circuit and the 4 wires of a two-phase circuit should all be of the same size, and each conductor should be of the cross-section given by the first formula.

## Report of the Committee on Standardization.

> American Institute of Electrical Engineers. $$
1898 .
$$

## GENERAL PLAN.

## Efficiency. Sections 1 to 24.

I. Commutating Machines. Sections 6 to 11.
II. Synchronous Machines. Sections 10 to 11.
III. Synchronous Commutating Machines. Sections 12 to 15.
IV. Rectifying Machines. Sections 16 to 17.
V. Stationary Induction Apparatus. Sections 18 to 19.
VI. Rotary Induction Apparatus. Sections 20 to 23.
VII. Transmission Lines. Section 24.

Rise of Temperature. Sections 25 to 31.
Insulation. Sections 32 to 41.
Regulation. Sections 42 to 61.
Variation and Pulsation. Sections 62 to 65.
Rating. Sections 66 to 73.
Classification of Voltages and Frequencies. Sections 74 to 78 .
Overload Capacities. Sections 79 to 82.
Appendices.
I. Efficiency.
II. Apparent Efficiency.
III. Power Factor and Inductance Factor.
IV. Notation.
V. Table of Sparking Distances.

Electrical apparatus will be treated under the following heads:
I. Commutating Machines, which comprise a constant magnetic field, a closed-coil armature, and a multi-segmental commutator connected thereto.

Under this head may be classed the following: Direct-current generators, direct-current motors, direct-current boosters, motor-generators, dynamotors, converters, and closed-coil arc machines.

A booster is a machine inserted in series in a circuit to change its voltage, and may be driven either by an electric motor or otherwise. In the former case it is a motor-booster.

A motor-generator is a transforming device consisting of two machines, a motor and a generator, mechanically connected together.

A dynamotor is a transforming device combining both motor and generator action in one magnetic field, with two armatures, or with an armature having two separate windings.

For converters, see III.
II. Synchronous Machines, which comprise a constant magnetic field and an armature receiving or delivering alternating currents in synchronism with the motion of the machine,-i.e., having a frequency equal to the product of the number of pairs of poles and the speed of the machine, in revolutions, per second.
III. Synchronous Commutating Machines.-These include: 1, synchronous converters, - i.e., converters from alternating to direct, or from direct to alternating current; and 2, double-current generators,-i.e., generators producing both direct and alternating currents.

A converter is a rotary device transforming electric energy from one form into another without passing it through the intermediary form of mechanical energy.

A converter may be either :
(a) A direct-current converter, converting from a direct current to a direct current, or
(b) A synchronous converter, formerly called a rotary converter, converting from an alternating to a direct current, or vice versa. Phase converters are converters from an alternating-current system to an alter-nating-current system of the same frequency but different phase.

Frequency converters are converters from an alternating-current system of one frequency to an alternating-current system of another frequency, with or without changes of phase.
IV. Rectifying Machines, or Pulsating=current Generators, which produce a unidirectional current of periodically varying strength.
V. Stationary Induction Apparatus,-i.e., stationary apparatus changing electric energy from one form into another without passing it through an intermediary form of energy. These comprise :
(a) Transformers, or stationary induction apparatus, in which the primary and secondary windings are electrically insulated from each other.
(b) Auto-transformers, formerly called compensators,-i.e., stationary induction apparatus, in which part of the primary winding is used as a secondary winding, or conversely.
(c) Potential regulators, or stationary induction apparatus having a coil in shunt and a coil in series with the circuit, so arranged that the ratio of transformation between them is variable at will.

These may be divided into:

1. Compensator potential regulators, in which the number of turns of one of the coils is changed.
2. Induction potential regulators, in which the relative positions of primary and secondary coils is changed.
3. Magneto-potential regulators, in which the direction of the magnetic flux with respect to the coils is changed.
(d) Reactive coils, or reactance coils, formerly called choking coils, i.e., stationary induction apparatus, used to produce impedance or phase displacement.
VI. Rotary Induction Apparatus, which consists of primary and secondary windings, rotating with respect to each other. They comprise:
(a) Induction motors.
(b) Induction generators.
(c) Frequency changers.
(d) Rotary phase converters.

## EFFICIENCY.

1. The "efficiency" of an apparatus is the ratio of its net power output to its gross power input.*
2. Electric power should be measured at the terminals of the apparatus.
3. In determining the efficiency of alternating-current apparatus the electric power should be measured when the current is in phase with the E. M. F., unless otherwise specified, except when a definite phase difference is inherent in the apparatus, as in induction motors, etc.
4. Mechanical power in machines should be measured at the pulley, gearing, coupling, etc., thus excluding the loss of power in said pulley, gearing, or coupling, but including the bearing friction and windage. The magnitude of bearing friction and windage may be considered as independent of the load. The loss of power in the belt and the increase of bearing friction due to belt tension should be excluded. Where, however, a machine is mounted upon the shaft of a prime mover in such a manner that it cannot be separated therefrom, the frictional losses in bearings and in windage, which ought by definition to be included in determining the efficiency, should be excluded, owing to the practical impossibility of determining them satisfactorily. The brush friction, however, should be included.
(a) Where a machine has auxiliary apparatus, such as an exciter, the power lost in the auxiliary apparatus should not be charged to the machine, but to the plant, consisting of machine and auxiliary apparatus taken together. The plant efficiency in such cases should be distinguished from the machine efficiency.
5. The efficiency may be determined by measuring all the losses individually and adding their sum to the output to derive the input, or subtracting their sum from the input to derive the output. All losses should be measured at, or reduced to, the temperature assumed in continuous operation, or in operation under conditions specified. (See Sections 25 to 31.)

In order to consider the application of the foregoing rules to various machines in general use, the latter may be conveniently divided into classes, as follows :

## I. Commutating Machines.

6. In commutating machines the losses are:
(a) Bearing friction and windage. (See Section 4.)
(b) Molecular magnetic friction and eddy currents in iron and copper. These losses should be determined with the machine on open circuit, and at a voltage equal to the rated voltage $+I r$ in a generator and - Ir in a motor, where $I$ denotes the current strength and $r$ denotes the internal resistance of the machine. They should be measured at the correct speed and voltage, since they do not usually vary in proportion to the speed or to any definite power of the voltage.
(c) Armature resistance losses, $I^{2} r^{\prime}$, where $I$ is the current strength in the armature and $r^{\prime}$ is the resistance between armaiure brushes, excluding the resistance of brushes and brush contacts.
(d) Commutator brush friction.
(e) Commutator brush-contact resistance. It is desirable to point out that with carbon brushes the losses, ( $d$ ) and (e), are usually considerable in low-voltage machines.
$(f)$ Field excitation. With separately-excited fields the loss of power in the resistance of the field coils alone should be considered. With shunt fields or series fields, however, the loss of power in the accompanying rheostat should also be included, the said rheostat being considered as an essential part of the machine, and not as separate auxiliary apparatus.
(b) and (c) are losses in the armature, or "armature losses;" (d) and (e), "commutator losses;" ( $f$ ), "field losses."
7. The difference between the total losses under load and the sum of the losses above specified should be considered as "load losses," and are usually trivial in commutating machines of small field distortion. When

[^19]the field distortion is large, as is shown by the necessity for shifting the brushes between no load and full load, or with variations of load, these load losses may be considerable, and should be taken into account. In this case the efficiency may be determined either by input and output measurements or the load losses may be estimated by the method of Section II.
8. Boosters should be considered and treated like other direct-current machines in regard to losses.
9. In motor-generators, dynamotors, or converters the efficiency is the electric output.
electric input.

## II. Synchronous Machines.

10. In synchronous machines the output or input should be measured with the current in phase with the terminal E. M. F., except when otherwise expressly specified.

Owing to the uncertainty necessarily involved in the approximation of load losses, it is preferable, whenever possible, to determine the efficiency of synchronous machines by input and output tests.
11. The losses in synchronous machines are:
(a) Bearing friction and windage. (See Section 4.)
(b) Molecular magnetic friction and eddy currents in iron, copper, and other metallic parts. These losses should be determined at open circuit of the machine at the rated speed and at the rated voltage, + Ir in a synchronous generator, - Ir in a synchronous motor, where $I=$ current in armature, $r=$ armature resistance. It is undesirable to compute these losses from observations made at other speeds or voltages.

These losses may be determined either by driving the machine by a motor, or by running it as a synchronous motor and adjusting its fields so as to get minimum currentinput, and measuring the input by wattmeter. The former is the preferable method; and in polyphase machines the latter method is liable to give erroneous results in consequence of unequal distribution of currents in the different circuits, caused by inequalities of the impedance of connecting leads, etc.
(c) Armature-resistance loss, which may be expressed by $p I^{2} r$, where $r=$ resistance of one armature circuit or branch, $I=$ the current in such armature circuit or branch, and $p=$ the number of armature circuits or branches.
(d) Load losses as defined in Section 7. While these losses cannot well be determined individually, they may be considerable, and, therefore, their joint influence should be determined by observation. This can be done by operating the machine on short circuit and at full-load current,--that is, by determining what may be called the "short-circuit core loss." With the low field intensity and great lag of current existing in this case the load losses are usually greatly exaggerated.

One-third of the short-circuit core loss may, as an approximation, and in the absence of more accurate information, be assumed as the load loss.
(e) Collector-ring friction and contact resistance. These are generally negligible, except in machines of extremely low voltage.
( $f$ ) Field excitation. In separately-excited machines the $I^{2} r$ of the field-coils proper should be used. In self-exciting machines, however, the loss in the field rheostat should be included. (See Section 6, $f$.)

## III. Synchronous Commutating Machines.

12. In synchronous converters the power on the alternating-current side is to be measured with the current in phase with the terminal E. M. F., unless otherwise specified.
13. In double-current generators the efficiency of the machine should be determined as a direct-current generator, in accordance with Section 6 , and as an alternating-current generator, in accordance with Section 11. The two values of efficiency may be different, and should be clearly distinguished.
14. In synchronous converters the losses should be determined when driving the machine by a motor. These losses are:
(a) Bearing friction and windage. (See Section 4.)
(b) Molecular magnetic friction and eddy currents in iron, copper, and metallic parts. These losses should be determined at open circuit and at the rated terminal voltage, no allowance being made for the armature
resistance, since the alternating and the direct currents flow in opposite directions.
(c) Armature resistance. The loss in the armature is $q I^{2 r}$, where $I=$ direct current in armature, $r=$ armature resistance, and $q$, a factor which is equal to 1.37 in single-phasers, 0.56 in three-phasers, 0.37 in quarterphasers, and 0.26 in six-phasers.
(d) Load losses. The load losses should be determined in the same manner as described in Section 11, $d$, with reference to the direct-current side.
$(e)$ and $(f)$ Losses in commutator and collector-friction and brushcontact resistance. (See Sections 6 and 11.)
(g) Field excitation. In separately-excited fields the $I^{2} r$ loss in the field-coils proper should be taken, while in shunt and series fields the rheostat loss should be included, except where fields and rheostats are intentionally modified to produce effects outside of the conversion of electric power, as for producing phase displacement for voltage control. In this case 25 per cent. of the $I^{2} r$ loss in the field proper at non-inductive alternating circuit should be added as proper estimated allowance for normal rheostat losses. (See Section 6, f.)
15. Where two similar synchronous machines are available their efficiency can be determined by operating one machine as a converter from direct to alternating, and the other as a converter from alternating to direct, connecting the alternating sides together and measuring the difference between the direct-current input and the direct-current output. This process may be modified by returning the output of the second machine through two boosters into the first machine and measuring the losses. Another modification might be to supply the losses by an alternator between the two machines, using potential regulators.

## IV. Rectifying Machines, or Pulsating=current Generators.

16. These include open-coil arc machines, constant-current rectifiers, constant-potential rectifiers.

The losses in open-coil are machines are essentially the same as in Sections 6 to 9 (closed-coil commutating machines). In alternating-current rectifiers, however, the output must be measured by wattmeter and not by voltmeter and ammeter, since owing to the pulsation of current and E. M.F. a considerable discrepancy may exist between watts and voltamperes, amounting to as much as 10 or 15 per cent.
17. In constant-current rectifiers, transforming from constant-potential alternating to constant direct current by means of constant-current transformers and rectifying commutators, the losses in the transformers are to be included in the efficiency, and have to be measured when operating the rectifier, since in this case the losses are generally greater than when feeding an alternating secondary circuit. In constant-current transformers the load iosses are usually larger than in constant-potential transformers, and thus should not be neglected.

The most satisfactory method of determining the efficiency in rectifiers is to measure electric input and electric output by wattmeter. The input is usually not non-inductive, owing to a considerable phase displacement and to wave distortion. For this reason the apparent efficiency should also be considered, since it is usually much lower than the true efficiency. The power consumed by the synchronous motor or other source driving the rectifier should be included in the electric input.

## V. Stationary Induction Apparatus.

18. Since the efficiency of induction apparatus depends upon the wave shape of E. M. F., it should be referred to a sine wave of E. M. F., except where expressly specified otherwise. The efficiency should be measured with non-inductive load and at rated frequency, except where expressly specified otherwise. The losses are:
(a) Molecular magnetic friction and eddy currents measured at open circuit and at rated voltage - Ir, where $I=$ rated current, $r=$ resistance of primary circuit.
(b) Resistance losses. The sum of the $I^{2} r$ of primary and of secondary in a transformer, or of the two sections of the coil in the compensator or auto-transformer, where $I=$ current in the coil or section of coil, $r=$ resistance.
(c) Load losses,-i.e., eddy currents in the iron, and especially in the copper conductors, caused by the current. They should be measured by short-circuiting the secondary of the transformer and impressing upon the primary an E. M. F. sufficient to send full-load current through the transformer. The loss in the transformer under these conditions, measured by wattmeter, gives the load losses $=I^{2} r$ losses in both primary and secondary coils.
(d) Losses due to the methods of cooling, as power consumed by the blower in dir-blast transformers and power consumed by the motor drivingpumps in oil- or water-cooled transformers. Where the same cooling apparatus supplies a number of transformers, or is installed to supply future additions, allowance should be made therefor.
19. In potential regulators the efficiency should be taken at the maximum voltage for which the apparatus is designed, and with non-inductive load, unless otherwise specified

## VI. Rotary Induction Apparatus.

20. Owing to the existence of load losses, and since the magnetic density in the induction motor under load changes in a complex manner, the efficiency should be determined by measuring the electric input by wattmeter and the mechanical output at the pulley, gear, coupling, etc.
21. The efficiency should be determined at the rated frequency, and the input measured with sine waves of impressed E. M. F.
22. The efficiency may be calculated from the apparent input, the power factor, and the power output. The same applies to induction generators. Since phase displacement is inherent in induction machines, their apparent efficiency is also important.
23. In frequency changers,-i.e., apparatus transforming from a polyphase system to an alternating system of different frequency, with or without a change in the number of phases and phase converters,-i.e., apparatus converting from an alternating system, usually single-phase, to another alternating system, usually polyphase, of the same frequency, the efficiency should also be determined by measuring both output and input.

## VII. Transmission Lines.

24. The efficiency of transmission lines should be measured with noninductive load at the receiving end, with the rated receiving pressure and frequency, also with sinusoidal impressed E.M.F.'s, except where expressly specified otherwise, and with the exclusion of transformers or other apparatus at the ends of the line.

## RISE OF TEMPERATURE.

## General Principles.

25. Under regular service conditions the temperature of electrical machinery should never be allowed to remain at a point at which permanent deterioration of its insulating material takes place.
26. The rise of temperature should be referred to the standard conditions of a room-temperature of $25^{\circ} \mathrm{C}$., a barometric pressure of 760 millimetres, and normal conditions of ventilation,- that is, the apparatus under test should neither be exposed to draught nor inclosed, except where expressly specified.
27. If the room-temperature during the test differs from $25^{\circ} \mathrm{C}$., the observed rise of temperature should be corrected by $1 / 2$ per cent. for each degree C.* Thus, with a room-temperature of $35^{\circ} \mathrm{C}$. the observed rise of temperature has to be decreased by 5 per cent., and with a room-temperature of $15^{\circ} \mathrm{C}$. the observed rise of temperature has to be increased by 5 per cent. The thermometer indicating the room-temperature should be screened from thermal radiation emitted by heated bodies or from draughts of air. When it is impracticable to secure normal conditions of ventilation

[^20]on account of an adjacent engine or other sources of heat, the thermometer for measuring the air-temperature should be placed so as fairly to indicate the temperature which the machine would have if it were idle, in order that the rise of temperature determined shall be that caused by the operation of the machine.
28. The temperature should be measured after a run of sufficient duration to reach practical constancy. This is usually from 6 to 18 hours, according to the size and construction of the apparatus. It is permissible, however, to shorten the time of the test by running a lesser time on an overload in current and voltage, then reducing the load to normal, and maintaining it thus until the temperature has become constant.

In apparatus intended for intermittent service, as railway motors, starting rheostats, etc., the rise of temperature should be measured after a shorter time, depending upon the nature of the service, and should be specified.

In apparatus which, by the nature of their service, may be exposed to overload, as railway converters, and in very high voltage circuits a smaller rise of temperature should be specified than in apparatus not liable to overloads or in low-voltage apparatus. In apparatus built for conditions of limited space, as railway motors, a higher rise of temperature must be allowed.
29. In electrical conductors the rise of temperature should be determined by their increase of resistance. For this purpose the resistance may be measured either by galvanometer test or by drop-of-potential method. A temperature coefficient of 0.4 per cent. per degree C. may be assumed for copper.* Temperature elevations measured in this way are usually in excess of temperature elevations measured by thermometers.
30. It is recommended that the following maximum values of temperature elevation should not be exceeded:

Commutating machines, rectifying machines, and synchronous machines:

Field and armature, by resistance, $50^{\circ} \mathrm{C}$.
Commutator and collector rings and brushes, by thermometer, $55^{\circ} \mathrm{C}$. Bearings and other parts of machine, by thermometer, $40^{\circ} \mathrm{C}$.
Rotary induction apparatus:
Electric circuits, $50^{\circ} \mathrm{C}$., by resistance.
Bearings and other parts of the machine, $40^{\circ} \mathrm{C}$., by thermometer.
In squirrel-cage or short-circuited armatures, $55^{\circ} \mathrm{C}$., by thermometer, may be allowed.

Transformers for continuous service,-electric circuits, by resistance, $50^{\circ}$ C. ; other parts, by thermometer, $40^{\circ}$ C., under conditions of normal ventilation.

Reactive coils, induction and magneto regulators and transformers of 15 kilowatts or less,-electric circuits, by resistance, $55^{\circ}$ C.; other parts, by thermometer, $45^{\circ} \mathrm{C}$.

Where a thermometer, applied to a coil or winding, indicates a higher temperature elevation than that shown by resistance measurement, the thermometer indication should be accepted. In using the thermometer care should be taken so to protect its bulb as to prevent radiation from it, and, at the same time, not to interfere seriously with the normal radiation from the part to which it is applied.
31. In the case of apparatus intended for intermittent service, the temperature elevation which is attained at the end of the period corresponding to the term of full load should not exceed $50^{\circ} \mathrm{C}$., by resistance, in electric circuits. In the case of transformers intended for intermittent service or not operating continuously at full load, but continuously in circuit, as in the ordinary case of lighting transformers, the temperature elevation above the surrounding air-temperature should not exceed $50^{\circ} \mathrm{C}$., by resistance, in electric circuits, and $40^{\circ} \mathrm{C}$., by thermometer, in other parts, after the period corresponding to the term of full load. In this instance the best load should not be applied until the transformer has been in circuit for a sufficient time to attain the temperature elevation due to core loss. With transformers for commercial lighting the duration of the full-load test

[^21]may be taken as 3 hours, unless otherwise specified. In the case of railway, crane, and elevator motors the conditions of service are necessarily so varied that no specific period corresponding to the full load term can be stated.

## INSULATION.

32. The ohmic resistance of the insulation is of secondary importance only, as compared with the dielectric strength or resistance to rupture by high voltage.

Since the ohmic resistance of the insulation can be very greatly increased by baking, -but the dielectric strength is liable to be weakened thereby, it is preferable to specify a high dielectric strength rather than a high insulation resistance. The high-voltage test for dielectric strength should always be applied.

## Insulation Resistance.

33. Insulation resistance tests should, if possible, be made at the pressure for which the apparatus is designed.

The insulation resistance of the complete apparatus must be such that the rated voltage of the apparatus will not send more than $\frac{1}{1,000,000}$ of the full load current, at the rated terminal voltage, through the insulation. Where the value found in this way exceeds 1 megohm, 1 megohm is sufficient.

## Dielectric Strength.

34. The dielectric strength or resistance to rupture should be determined by a continued application of an alternating E.M. F. for one minute. The source of alternating E.M.F. should be a transformer of such size that the charging current of the apparatus as a condenser does not exceed 25 per cent. of the rated capacity of the transformer.
35. The high-voltage tests should not be applied when the insulation is low owing to dirt and moisture, and should be applied before the machine is put into commercial service.
36. It should be pointed out that tests at high voltages considerably in excess of the normal voltages are admissible on new machines, to determine whether they fulfil their specifications, but should not be made subsequently at a voltage much exceeding the normal, as the actual insulation of the machine may be weakened by such tests.
37. The test for dielectric strength should be made with the completelyassembled apparatus, and not with its individual parts, and the voltage should be applied as follows:
38. Between electric circuits and surrounding conducting material, and,
39. Between adjacent electric circuits, where such exist, as in transformers.

The tests should be made with a sine wave of E.M.F., or, where this is not available, at a voltage giving the same striking distance between needle-points in air as a sine wave of the specified E.M.F., except where expressly specified otherwise. As needles, new sewing-needles should be used. It is recommended to shunt the apparatus during the test by a spark gap of needle-points set for a voltage exceeding the required voltage by 10 per cent.
38. The following voltages are recommended for apparatus, not including transmission lines or switchboards:

| Rated terminal voltage. | Capacity. | Testing voltage. |
| :---: | :---: | :---: |
| Not exceeding 400 volts. | Under 10 kilowatts. | 1000 volts. |
| Not exceeding 400 volts. | 10 kilowatts and over. | 1500 volts. |
| 400 and over, butless than 800 volts. | Under 10 kilowatts. | 1500 volts. |
| 400 and over, butless than 800 volts. | 10 kilowatts and over. | 2000 volts. |
| 800 and over, but less than 1200 volts. 1200 and over, but less than 2500 volts. | Any. | 3500 volts. 5000 volts. |
| 2500 and orer. | Any. | Double the |
|  |  | normal rated voltages. |

Synchronous motor fields and fields of converters started from the alternating current side should be tested at 5000 volts.

Synchronous motors and synchronous converter field-coils should be tested at 5000 volts, since in the starting of such machines a high voltage is induced in their field-coils.

Alternator field circuits should be tested under a breakdown test voltage corresponding to the rated voltage of the exciter referred to an output equal to the output of the alternator,-i.e., the exciter should be rated for this test as having an output equal to that of the machine it excites.

Condensers should be tested at twice their rated voltage and at their rated frequency.

The above values are effective values, or square roots of mean square reduced to a sine wave of E. M. F.
39. In testing insulation between different electric circuits, as between primary and secondary of transformers, the testing voltage must be chosen corresponding to the high-voltage circuit.
40. In transformers of from 10,000 volts to 20,000 volts it should be considered as sufficient to operate the transformer at twice its rated voltage by connecting first the one and then the other terminal of the high-voltage winding to the core and to the low-voltage winding. The test of dielectric resistance between the low-voltage winding and the core should be in accordance with the recommendation in Section 39 for similar voltages and capacities.
41. When machines or apparatus are to be operated in series, so as to employ the sum of their separate E. M. F.'s, the voltage should be referred to this sum, except where the frames of the machine are separately insulated, both from ground and from each other.

## REGULATION.

42. The term "regulation" should have the same meaning as the term "inherent regulation," at present frequently used.
43. The regulation of an apparatus intended for the generation of constant potential, constant current, constant speed, etc., is to be measured by the maximum variation of potential current, speed, etc., occurring within the range from full load to no load under such constant conditions of operation as give the required full-load values, the conditions of full load being considered in all cases as the normal condition of operation.
44. The regulation of an apparatus intended for the generation of a potential, current, speed, etc., varying in a definite manner between full load and no load, is to be measured by the maximum variation of potential, current, speed, etc., from the satisfied condition, under such constant conditions of operation as give the required full-load values.

If the manner in which the variation in potential, current, speed, etc., between full load and no load is not specified, it should be assumed to be a simple linear relation.

The regulation of an apparatus may, therefore, differ according to its qualification for use. Thus, the regulation of a compound-wound generator specified as a constant-potential generator will be different from that it possesses when specified as an over-compounded generator.
45. The regulation is given in percentage of the full-load value of potential, current, speed, etc., and the apparatus should be steadily operated during the test under the same conditions as at full load.
46. The regulation of generators is to be determined a,t constant speed, of alternating apparatus at constant impressed frequency.
47. The regulation of a generator unit, consisting of a generator united with a prime mover, should be determined at constant conditions of the prime mover,-i.e., constant steam pressure, head, etc. It would include the inherent speed variations of the prime mover. For this reason the regulation of a generator unit is to be distinguished from the regulation of either the prime mover or of the generator contained in it and taken separately.
48. In apparatus generating, transforming, or transmitting alternating currents, regulation should be understood to refer to non-inductive load,that is, to a load in which the current is in phase with the E.M.F. at the output side of the apparatus, except where expressly specified otherwise.
49. In alternating apparatus receiving electric power, regulation should refer to a sine wave of E. M. F., except where expressly specified otherwise.
50. In commutating machines, rectifying machines, and synchronous machines, as direct-current generators and motors, alternating-current and polyphase generators, the regulation is to be determined under the following conditions:
(a) At constant excitation in separately-excited fields,
(b) With constant resistance in shunt-field circuits, and
(c) With constant resistance shunting series fields,-i.e., the field adjustment should remain constant, and should be so chosen as to give the required full-load voltage at full-load current.
51. In constant-potential machines the regulation is the ratio of the maximum difference of terminal voltage from the rated full-load value (occurring within the range from full load to open circuit) to the full-load terminal voltage.
52. In constant-current machines the regulation is the ratio of the maximum difference of current from the rated full-load value (occurring within the range from full load to short circuit) to the full-load current.
53. In constant-power machines the regulation is the ratio of maximum difference of power from the rated full-load value (occurring within the range of operation specified) to the rated power.
54. In over-compounded machines the regulation is the ratio of the maximum difference in voltage from a straight line connecting the no-load and full-load values of terminal voltage as function of the current to the full-load terminal voltage.
55. In constant-speed, continuous-current motors the regulation is the ratio of the maximum variation of speed from its full-load value (occurring within the range from full load to no load) to the full-load speed.
56. In transformers the regulation is the ratio of the rise of secondary terminal voltage from full load to no load (at constant primary impressed terminal voltage) to the secondary terminal voltage.
57. In induction motors the regulation is the ratio of the rise of speed from full load to no load (at constant impressed voltage) to the full-load speed.

The regulation of an induction motor is, therefore, not identical with the slip of the motor, which is the ratio of the drop in speed from synchronism to synchronous speed.
58. In converters, dynamotors, motor-generators, and frequencychangers the regulation is the ratio of the maximum difference of terminal voltage at the output side from the rated full-load voltage (at constant impressed voltage and at constant frequency) to the full-load voltage on the output side.
59. In transmission lines, feeders, etc., the regulation is the ratio of maximum voltage difference at the receiving end between no load and full non-inductive load to the full-load voltage at the receiving end, with constant voltage impressed upon the sending end.
60. In steam engines the regulation is the ratio of the maximum variation of speed in passing from full load to no load (at constant steam pressure at the throttle) to the full-load speed.
61. In a turbine or other water motor the regulation is the ratio of the maximum variation of speed from full load to no load (at constant head of water,-i.e., at constant difference of level between tail-race and headrace) to the full-load speed.

## VARIATION AND PULSATION.

62. In prime movers which do not give an absolutely uniform rate of rotation or speed, as in steam engines, the "variation" is the maximum angular displacement in position of the revolving member from the position it would occupy at uniform rotation, expressed in degrees,-that is, with one revolution at $300^{\circ}$; and the pulsation is the ratio of the maximum change of speed in an engine cycle to the average speed.
63. In alternators, or alternating-current circuits in general, the variation is the maximum difference in phase of the generated wave of E. M. F. from a wave of absolutely constant frequency, expressed in degrees, and is due to the variation of the prime mover. The pulsation is the ratio of the maximum change of frequency during an engine cycle to the average frequency.
64. If $n=$ number of poles, the variation of an alternator is $\frac{n}{2}$ times the variation of its prime mover if direct connected, and $\frac{n}{2} p$ times the variation of the prime mover if rigidly connected thereto in the velocity ratio, $p$.
65. The pulsation of an alternating-current circuit is the same as the pulsation of the prime mover of its alternator.

## RATING.

66. Both electrical and mechanical power should be expressed in kilowatts, except when otherwise specified. Alternating-current apparatus should be rated in kilowatts on the basis of non-inductive condition,-i.e., with the current in phase with the terminal voltage.
67. Thus, the electric power generated by an alternating-current apparatus equals its rating only at non-inductive load,-that is, when the current is in phase with the terminal voltage.
68. Apparent power should be expressed in kilovolt-amperes, as distinguished from real power in kilowatts.
69. If a power factor other than 100 per cent. is specified, the rating should be expressed in kilovolt-amperes and power factor at full load.
70. The full-load current of an electric generator is that current which, with the rated full-load terminal voltage, gives the rated kilowatts; but in alternating-current apparatus, only at non-inductive load.
71. Thus, in machines in which the full-load voltage differs from the no-load voltage, the full-load current should refer to the former.

If $P=$ rating of an electric generator and $E=$ full-load terminal voltage, the full-load current is :

$$
\begin{aligned}
& I=\frac{P}{E} \text { in a continuous-current machine or single-phase alternator; } \\
& I=\frac{P}{E \sqrt{3}} \text { in a three-phase alternator; } \\
& I=\frac{P}{2 E} \text { in a quarter-phase alternator. }
\end{aligned}
$$

72. Constant-current machines, such as series arc-light generators, should be rated in kilowatts based on terminal volts and amperes at full load.
73. The rating of a fuse or circuit-breaker should be the current strength at which it will open the circuit, and not the working-current strength.

## CLASSIFICATION OF VOLTAGES AND FREQUENCIES.

74. In direct-current, low-tension generators the following average terminal voltages are in general use, and are recommended :

$$
125 \text { volts. } 250 \text { volts. } 550 \text { volts. }
$$

75. In direct-current and alternating-current, low-pressure circuits the following average terminal voltages are in general use, and are recommended:

$$
110 \text { volts. } 220 \text { volts. }
$$

In direct-current power circuits, for railway and other service, 500 volts may be considered as standard.
76. In alternating-current, high-pressure circuits at the receiving end the following pressures are in general use, and are recommended :

$$
\begin{array}{llll}
1000 \text { volts. } & 3000 \text { volts. } & 10,000 \text { volts. } & 20,000 \text { volts. } \\
2000 \text { volts. } & 6000 \text { volts. } & 15,000 \text { volts. } &
\end{array}
$$

77. In alternating-current, high-pressure generators or generating systems the following terminal voltages are in general use, and are recommended:

$$
1150 \text { volts. } \quad 2300 \text { volts. } \quad 3450 \text { volts. }
$$

These pressures allow of a maximum drop in transmission of 15 per cent. of the pressure at the receiving end. ' If the drop required is greater than 15 per cent., the generator should be considered as special.
78. In alternating-current circuits the following approximate frequencies are recommended as desirable:

$$
25 \sim \text { or } 30 \sim . \quad 40 \sim . \quad 60 \sim . \quad 120 \sim . *
$$

These frequencies are already in extensive use, and it is deemed advisable to adhere to them as closely as possible.

## OVERLOAD CAPACITIES.

79. All guaranties on heating, regulation, sparking, etc., should apply to the rated load, except where expressly specified otherwise, and in alter-nating-current apparatus to the current in phase with the terminal E. M. F., except where a phase displacement is inherent in the apparatus.
80. All apparatus should be able to carry a reasonable overload without self-destruction by heating, sparking, mechanical weakness, etc., and with an increase of temperature elevation not exceeding $15^{\circ} \mathrm{C}$. above those specified for full loads. (See Sections 25 to 31.)
81. Overload guaranties should refer to normal conditions of operation regarding speed, frequency, voltage, etc., and to non-inductive conditions in alternating apparatus, except where a phase displacement is inherent in the apparatus.
82. The following overload capacities are recommended :
83. In direct-current generators and alternating-current generators, 25 per cent. for $1 / 2$ hour.
84. In direct-current motors and synchronous motors, 25 per cent. for $1 / 2$ hour, 50 per cent. for 1 minute, except in railway motors and other apparatus intended for intermittent service.
85. Induction motors, 25 per cent. for $1 / 2$ hour, 50 per cent. for 1 minute.
86. Synchronous converters, 50 per cent. for $1 / 2$ hour.
87. Transformers, 25 per cent. for $1 / 2$ hour, except in transformers connected to apparatus for which a different overload is guaranteed, in which case the same guaranties shall apply for the transformers as for the apparatus connected thereto.
88. Exciters of alternators and other synchronous machines, 10 per cent. more overload than is required for the excitation of the synchronous machine at its guaranteed overload and for the same period of time.

## APPENDIX $I$.

## EFFICIENCY.

## Efficiency of Phase=displacing Apparatus.

In apparatus producing phase displacement, as, for example, synchronous compensators, exciters of induction generators, reactive coils, condensers, polarization cells, etc., the efficiency should be understood to be the ratio of the volt-ampere activity to the volt-ampere activity plus power loss.

The efficiency may be calculated by determining the losses individually, adding to them the volt-ampere activity, and then dividing the voltampere activity by the sum.

1. In synchronous compensators and exciters of induction generators the determination of losses is the same as in other synchronous machines under Sections 10 and 11.
2. In reactive coils the losses are molecular friction, eddy losses, and $I^{2} r$ loss. They should be measured by wattmeter. The efficiency of re-

[^22]active coils should be determined with a sine wave of impressed E. M. F., except where expressly specified otherwise.
3. In condensers the losses are due to dielectric hysteresis and leakage, and should be determined by wattmeter with a sine wave of E. M. F.
4. In polarization cells the losses are those due to electric resistivity and a loss in the electrolyte of the nature of chemical hysteresis, and are usually very considerable. They depend upon the frequency, voltage, and temperature, and should be determined with a sine wave of impressed E. M.F., except where expressly specified otherwise.

## APPENDIX II.

## APPARENT EFFICIENCY.

In apparatus in which a phase displacement is inherent to their operation, apparent efficiency should be understood as the ratio of net power output to volt-ampere input.

Such apparatus comprise induction motors, reactive synchronous converters, synchronous converters controlling the voltage of an alternatingcurrent system, self-exciting synchronous motors, potential regulators, and open magnetic circuit transformers, etc.

Since the apparent efficiency of apparatus generating electric power depends upon the power factor of the load, the apparent efficiency, unless otherwise specified, should be referred to a load power factor of unity.

## APPENDIX III.

## POWER FACTOR AND INDUCTANCE FACTOR.

The power factor in alternating circuits or apparatus may be defined as the ratio of the electric power in watts to volt-amperes.

The inductance factor is to be considered as the ratio of wattless voltamperes to total volt-amperes.

Thus, if $p=$ power factor, $q=$ inductance factor ; then

The power factor is the

$$
p^{2}+q^{2}=1
$$

$\frac{\text { (energy component of current or E. M.F.) }}{\text { total current or E.M.F. }}$
and the inductance factor is the

$$
\frac{\text { (wattless component of current or E. M.F.) }}{\text { (total current of E.M.F.) }}=\frac{\text { true power }}{\text { volt-amperes }} .
$$

Since the power factor of apparatus supplying electric power depends upon the power factor of the load, the power factor of the load should be considered as Unity, unless otherwise specified.

## APPENDIX IV.

The following notation is recommended:

$$
\begin{aligned}
& E, e=\text { voltage, E. M. F., potential difference ; } \quad R, r=\text { resistance ; } \\
& I, i=\text { current; } \\
& P=\text { power ; } \\
& \phi=\text { magnetic flux ; } \\
& \beta=\text { magnetic density } \\
& X, x=\text { reactance; } \\
& X, z=\text { impedance; } \\
& L, l=\text { inductance ; } \\
& C, c=\text { capacity. }
\end{aligned}
$$

Vector quantities, when used, should be denoted by capital italics.

## APPENDIX V.

Table of sparking distances in air between opposed sharp needle-points, for various effective sinusoidal voltages, in inches and in centimetres.

| Kilovolts. <br> Square root of <br> mean square. | Distance. |  | Kilovolts. <br> Square root of <br> mean square. | Distance. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inches. | Centimetres. | Inches. | Centimetres. |  |
| 5 | .225 | .57 | 60 | 4.65 | 11.8 |
| 10 | .470 | 1.19 | 70 | 5.85 | 14.9 |
| 15 | .725 | 1.84 | 80 | 7.10 | 18.0 |
| 20 | 1.000 | 2.54 | 90 | 8.35 | 21.2 |
| 25 | 1.300 | 3.3 | 100 | 9.60 | 24.4 |
| 30 | 1.625 | 4.1 | 110 | 10.75 | 27.3 |
| 35 | 2.00 | 5.1 | 120 | 11.85 | 30.1 |
| 40 | 2.45 | 6.2 | 130 | 12.95 | 32.9 |
| 45 | 2.95 | 7.5 | 140 | 13.95 | 35.4 |
| 50 | 3.55 | 9.0 | 150 | 15.0 | 38.1 |

CARY T. HUTCHINSON,
A. E. Kennelly, John Lieb, JR.,

Charles P. Steinmetz, Lewis B. Stilwell, Elihu Thomson, F. B. Crocker, Chairman.

## ELECTRIC DRIVING.

The general opinion is in favor of independent driving, each tool having its own motor attached. In some cases a group of small machines may be operated to advantage from a short line-shaft driven by an electric motor, but in the great majority of cases the independent driving is to be preferred.

The advantages of independent driving are well set forth in a paper by F. B. Duncan before the Engineers' Society of Western Pennsylvania.

1. Greater output per machine due to positive nature of drive ; in many cases this is at least 50 per cent.
2. Ability to accurately determine-by means of recording instruments centrally located, with a multi-point switch-whether tools are being kept ${ }^{\circ}$ at work in proper manner, thereby affording a graphic record of the time each machine is in operation and its consumption of power. This will also enable the detection of tools that are in bad condition due to abnormal friction of bearings or moving parts.
3. The flexibility of placement of machine tools to suit the passage of the work through the shop.
4. Better light and absence of dirt due to belts, shafting, pulley hangers, etc., and less first cost of building owing to the lighter overhead construction permissible when no shafting, pulleys, hangers, or belt tension have to be taken care of.
5. Free head room for crane service.
6. Ability to shut down or start up any one machine independently of all others.

Mr. Duncan also gives the following data sheet of power required by a number of different machine tools. These represent average practice, using ordinary tool steels, but for the modern high-speed tool steels the cutting speeds may be increased to 80 to 100 feet per minute for cast- or wrought-iron, in which case the power required will be about three times that given on pages 840-843.

For planers the maximum power is that required for reversing the platen, as will be seen.

## Data Sheet of Motor Power on Standard Machine Tools.

## No. 1.

Description of machine, Planer.
Make of machine, Niles Tool Company.
Size of machine, $10^{\prime} \times 10^{\prime} \times 20^{\prime}$.
Number of cutting tools, 3 .
Size of cut, $3 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$, each tool.
Cutting speed, 18 feet per minute.
Material machined, cast-iron.
Weight on platen, 40 tons.
Power for cut, 26.54 H. P.
Power for reverse, 42.93 H. P.
Power for return, 23.56 H. P.
Ratio of return, 3 to 1.
Method of drive, motor belted to counter-shaft.
Kind of motor, Direct-current Compound-wound.
Remarks.-Not enough fly-wheel effect on counter-shaft to equalize load at moment of reversal. A 30 H. P. motor was used for above drive with good results.

## No. 2.

Description of machine, Planer.
Make of machine, Pond Machine Company.
Size of machine, $8^{\prime} \times 8^{\prime} \times 20^{\prime}$.
Number of cutting tools, 3.
Size of cut, $5 / 8^{\prime \prime} \times 1 / 8^{\prime \prime}$, each tool.
Cutting speed, 18 feet per minute.
Material machined, cast-iron.
Weight on platen, 32 tons.
Power for cut, 16 H. P.
Power for reverse, 28.15 H. P.
Power for return, $14.80 \mathrm{H} . \mathrm{P}$.
Ratio of return, 3 to 1.
Method of drive, motor belted to counter-shaft.
Kind of motor, Direct-current Compound-wound.
Remarks.-Not enough fly-wheel effect on counter-shaft to equalize load at moment of reversal. A 25 H. P. motor was used on this machine with good results.

## No. 3.

Description of machine, Planer.
Make of machine, Pond Machine Company.
Size of machine, $66^{\prime} \times 60^{\prime} \times 12^{\prime}$.
Number of cutting tools, 2.
Size of cut, $12^{\prime \prime} \times \frac{1}{16}$.
Cutting speed, 21 feet per minute.
Material machined, open-hearth steel castings.
Weight on platen, 4 tons.
Power for cut, $10 \mathrm{H} . \mathrm{P}$.
Power for reverse, 16 H.P.
Power for return, 14 H.P.
Ratio of return, $31 / 2$ to 1.
Method of drive, Direct-current Compound-wound Motor, mounted on housing of planer with 42 -inch, 1500 -pound fly-wheel, running at 400 revolutions per minute, mounted on motor-shaft. Fly-wheel used as driving pulley for return of platen.
Remarks.-A series of recording ammeter cards taken on this planer showed it was idle an average of $21 / 2$ hours per day, showing a saving of power by use of individual motor drive. The above $21 / 2$ hours was generally made up of short periods for setting work, taking measurements, etc.

## No. 4.

Description of machine, Planer.
Make of machine, Gray.
Size of machine, $28^{\prime \prime} \times 32^{\prime \prime} \times 6^{\prime}$.
Number of cutting tools, 1.
Size of cut, $3 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$.
Cutting speed, 22 feet per minute.
Material machined, cast-iron.
Weight on platen, 3 tons.
Power for cut, 3.1 H. P.
Power for reverse, 4.4 H. P.
Power for return, 3.8 H. P.
Ratio of return, 4 to 1.
Method of drive, Direct-current Compound-wound Motor, mounted on platen housings, with fly-wheel 30 inches in diameter, 496 pounds, 800 revolutions per minute, mounted on motor-shaft and
used as pulley for return of platen.
Remarks.-Average load on motor, 2.48. A 3 H. P. motor at 800 revolutions per minute gave first-class service. Rheostat used in series with shunt field to raise cutting speed on light work to 30 feet per minute.

## No. 5.

Description of machine, Turret Lathe.
Make of machine, Gisholt Machine Company.
Size of machine, 28 inches swing.
Number of cutting tools, 5 .
Size of cut, $3 / 4^{\prime \prime} \times \frac{5}{16}{ }^{\prime \prime}, 1$ tool $; 1^{\prime \prime} \times \frac{5}{64}{ }^{\prime \prime}, 4$ tool.
Cutting speed, 25 feet.
Material machined, Tropenas cast-steel.
Power for cut, 3.9 H. P.
Weight of casting, 400 pounds.
Method of drive, Direct-current Compound-wound Motor, 600 revolutions per minute, geared to headstock gear in place of cone pulley. Speed variations on motor 100 per cent. in all, -25 per cent. by armature control below normal, and 75 per cent. increase above normal by resistance in shunt field. Eleven points in controller, giving, with the three gear speeds, 33 changes of speed in all. An increase in output of 100 per cent. was obtained on this machine by changing from belt to geared motor drive.

## No. 6.

Description of machine, Drill-press.
Make of machine, W. F. \& John Barnes.
Size of machine, 21 inches.
Motor power required, 1 H. P.
Method of drive, Direct-current Compound Motor, mounted on frame of press and belted down to driving pulley. Starter and reversing switch mounted on frame of press within reach of operator seated at table.

## No. 7.

## Description of machine, Radial Drill-press.

Make of machine, Niles Tool Works.
Size of machine, No. 1, 5 -foot arm from centre of column.
Motor power required (maximum), 2.03 H. P.
Size of motor used, 2 H. P., 600 revolutions per minute.
Method of drive, Vertical Direct-current Compound-wound Motor, mounted on top of column and geared to driving-shaft. Raw-hide pinion used on motor-shaft.

## No. 8.

Description of machine, Double-end Emery-wheel Stand.
Size of wheel, $18^{\prime \prime} \times 2^{\prime \prime}$.
Speed of wheels, 950 revolutions per minute.
Kind of work, 2 laborers grinding castings.
Maximum horse-power, 6 H. P. momentarily.
Average horse-power, $3.5 \mathrm{H} . \mathrm{P}$.
Horse-power motor required, $5 \mathrm{H} . \mathrm{P}$. open, with dust-proof covers.
Method of drive, Direct-current Compound-wound Motor, mounted on grinder-shaft between the wheels.

## No. 9.

Description of machine, Vertical Boring Mill.
Make of machine, Pond Machine Company.
Size of machine, 10 -foot table.
Number of cutting tools, 2.
Size of cut, $3 / 4^{\prime \prime} \times \frac{1}{16}{ }^{\prime \prime}$
Cutting speed, 20 feet per minute.
Material machined, cast-iron.
Weight on table, 3.5 tons.
Motor power required, $8.58 \mathrm{H} . \mathrm{P}$.
Method of drive, Direct-current Compound-wound Motor, belted to counter-shaft. 12 H. P. motor gave good results on heaviest cuts and weights of castings.

No. 10.
Description of machine, Slotter.
Make of machine, Bement \& Miles.
Number of cutting tools, 1.
Size of cut, $3 / 8^{\prime \prime} \times \frac{1}{16}$.
Speed of tool, 20 feet per minute.
Material machined, open-hearth steel castings.
Motor power required, 6.98 H . P.
Method of drive, Direct-current Compound-wound Motor, belted to counter-shaft.

## No. 11.

Description of machine, Flat Turret Lathe.
Make of machine, Jones \& Lamson.
Size of machine, $2^{\prime \prime} \times 24^{\prime \prime}$, their standard.
Motor power required, $11 / 2 \mathrm{H}$. P. for satisfactory service.

## No. 12.

Description of machine, Tool Grinder.
Make of machine, Gisholt Machine Company.
Size of wheel, their standard cup wheel.
Speed of wheel, 16 to 18 revolutions per minute.
Maximum horse-power required, 7 for short periods.
Average horse-power required, 4.
Method of drive, Direct-current Compound-wound Inclosed Motor, mounted on grinder-shaft, with iield rheostat in series with shunt coils to increase speed from 1600 to 1800 . A 5 H. P. open motor with inclosing covers gave good satisfaction or this grinder.

## No. 13.

Description of machine, Engine Lathe.
Make of machine, Hendey Norton.
Size of machine, 16 inches.
Motor power required, approximate, 2 H. P. at maximum.
Method of drive, Direct-current Compound-wound Motor, mounted on support, bolted to bed of lathe, and equipped with clutch and cone pulley, with belt to headstock cone.

## No. 14.

Description of machine, Engine Lathe.
Make of machine, Putnam.
Size of machine, $18^{\prime \prime} \times 6^{\prime}$ between centres.
Motor power required, 2.1 H . P.
Method of drive, Direct-current Compound-wound Motor, geared to counter-shaft.

## No. 15.

Description of machine, Engine Lathe.
Make of machine, Pond Machine Company.
Size of tool, $36^{\prime \prime} \times 10^{\prime}$ between centres.
Motor power required, $10 \mathrm{H} . \mathrm{P}$.
Method of drive, Direct-current Compound-wound Motor, directgeared to counter-shaft.
On all the preceding machines, where motors are geared, raw-hide pinions were used on motor-shaft.

## Electric Cranes.

In discussing electric driving before the Engineer's Society of Western Pennsylvania, Mr. S. S. Wales gives data as to the power required for electric cranes.

As in a general crane specification the actual weights of material and gear reduction, etc., are not known, some arbitrary assumptions will have to be made and some empirical formulæ will be used, but as both are founded on facts and experience some reliance may be placed in them.

An electric crane is divided into three general parts,-bridge, trolley, and hoist, -each of which has its own motor and controlling system, and each subjected to different conditions of work.

For the bridge, where the ratio of axle-bearings to diameter of wheel is between 1 to 5 and 1 to 6 , the following table will answer our purpose for weights and traction for different spans.

Let

$$
\begin{aligned}
& L=\text { working load of crane, in tons; } \\
& W=\text { weight of bridge alone, in tons; } \\
& w=\text { weight of trolley alone, in tons; } \\
& S=\text { speed, in feet, per minute } ; \\
& P=\text { pounds per ton required. }
\end{aligned}
$$

| Span. | W. | $P$. |
| ---: | ---: | ---: |
| 25 feet. | .3 L. | 30 pounds. |
| 50 feet. | .6 L. | 35 pounds. |
| 75 feet. | 1.0 L. | 40 pounds. |
| 100 feet. | 1.5 L. | 45 pounds. |

For the trolley we would assume the weight and traction as shown in the following table:

| $L$. | $W$. | $P$. |
| :---: | :---: | :---: |
| 1 to 25 tons. | .3 L. | 30 pounds. |
| 25 to 75 tons. | .4 L. | 35 pounds. |
| 75 to 150 tons. | .5 L. | 40 pounds. |

Now the power required for bridge will be

$$
\frac{(L+W+w) \times P \times S}{33000}=\text { horse-power, }
$$

which result will be used in connection with the motor characteristic to determine the gear reduction from motor to track wheel. As the nominal horse-power rating of a series motor is based on an hour's run, with a rise of $75^{\circ} \mathrm{C}$. above the surrounding air, and as conditions of bad track, bad bearings, or poor alignment of track wheels may be met with, in factory operation $11 / 2$ times the above result should be taken as the proper size motor for the bridge.

For the trolley the power required would be

$$
\frac{(L+w) \times P \times S}{33000}=\text { horse-power }
$$

which will be used for speed and gear reductions; but $11 / 4$ times this should be used for size of motor.

For hoist work we cannot have so large a margin of power, as the variation from full load to no load may imply a possible dangerous increase of speed, and unless the crane is to be subjected to its maximum load continuously, or is to be worked where the temperature of the surrounding air will be high, it is safe to use the size by assuming 1 horse-power per 10 foot-tons per minute of hoisting. This is nearly equal to assuming the useful work done as 60 per cent. of the power consumed.

As an illustration, let us take a crane of 50 -ton capacity; lifting speed of hoist, 15 feet per minute; bridge to be 70 feet span and to run 200 feet per minute with load; trolley to travel 100 feet per minute with full load. On the foregoing assumption the bridge would weigh 50 tons and require 40 pounds per ton for traction, and the trolley would weigh 20 tons and require 35 pounds per ton for traction.

Mr. Wales also gives formulas for the power required for driving the rollers in rolling-mill tables.

The power required by roller tables in mill work varies greatly, as they are subjected to tight bearings and lack of oil to a greater extent than electric cranes; and as there will be from $2 \frac{1}{2}$ to 3 bearings to each roller, and many rollers per table, the chances for trouble are greatly multiplied.

For the average conditions of mill tables, where each roller is driven by a mitre gear from a common line-shaft and with usual mill lubrication, the following empirical formulæ, derived from the test of 20 tables, represent about the power required:

$$
\frac{W \times D \times S \times N}{950000}=\text { horse-power }
$$

where $w=$ weight of roller, in pounds, the load to be carried on table being considered as uniformly distributed over all rollers, $1-N$ to each.
$D=$ diameter of bearings, in inches;
$S=$ speed of table, in revolutions per minute, of rollers;
$N=$ number of rollers in table.

The same $11 / 2$ times power required for size of motors should be taken as for crane bridges.

This takes no account of diameter of roller used, which would of course have some effect on the power required to move the load to be handled, and would also show some fly-wheel effect when starting, but still it will check fairly well with tables now in use under existing conditions, two examples of which are given here :

$$
\begin{aligned}
& N=18 ; \\
& W=1000 \text { pounds } ; \\
& D=41 / \text { inches } ; \\
& S=200 \text { revolutions per minute. }
\end{aligned}
$$

Diameter of roller, 10 inches.

$$
\frac{1600 \times 41 / 2 \times 200 \times 18}{950000}=27.2 \text { horse-power }
$$

From actual test under working conditions, this table required 28.8 horse-power, or the nearest Westinghouse motor being No. 38,- 50 horse-power,--this type should be used. As a matter of fact, this table is equipped with a 30 horse-power motor, and is the source of continual annoyance from over-load.

$$
\begin{aligned}
& N=16 ; \\
& W=1000 \text { pounds ; } \\
& D=3 \text { inches; } \\
& S=110 \text { revolutions per minute. } \\
& \frac{1000 \times 3 \times 115 \times 16}{950000}=5.8 \text { horse-power. }
\end{aligned}
$$

By actual test 5.5 horse-power was required.

## Choice of Motors and System.

In discussing the selection of electric motors for driving machinery, Mr. P. R. Moses, writing in the Engineering Magazine for September, 1901, says:
"The best system in general will be that which will be free from breakdown, able to stand hard usage and frequent sudden overloads, simple and safe to handle, with parts standard and available. It should be uniform and applicable to all the requirements liable to arise in the work contemplated, the speed of the motors should be variable at will of the operator, and in some cases, like hoisting, should vary inversely with the load to prevent undue use of power. The motors should start with small currents and should have high efficiencies at average loads. The first cost should be as low as possible, and the number of parts a minimum.
"The alternating two- or three-phase system at low pressure ( 500 to 220 volts) meets the first few conditions slightly better than the direct-current system of the same voltages. This system consists of a polyphase generator composed of a stationary and a revolving part, an exciter-sometimes revolving on shaft, sometimes belted to shaft-for delivering the current required to magnetize the fields, a system of distributing wires and motors frequently built without brushes, but sometimes, where adjustable speed and good dynamo regulation are required, with brushes and collector rings. The system is simpler than the direct-current system, in that no current has to be delivered to any moving part of the motors. In the direct-current system, current must be delivered to the rotating armatures of the motors through brushes of carbon and commutators made up of copper bars held firmly, clamped by a collar, with mica between the bars and between the bars and collar. This commutator is the chief difference between the motors of the polyphase alternating systems and the motors of the directcurrent systems. The connections to the commutator and the commutator itself are the only parts of the motors in which trouble is liable to arise, with careful construction; and although probably a hundred thousand are in use daily, and the manufacture has been carefully studied, trouble does arise,-generally on account of accumulation of grease or dirt, allowing the current to jump from the copper barsto the iron frame of the machines, or from breaking of connections between winding and commutator lugs, caused by frequent stopping and starting, combined with overheating and slow cooling. This alternation of heating and cooling causes the copper to become brittle and-unless the connections are made flexible-to break off.
"The advantages of simplicity, durability, and freedom from breakdown, therefore, are with the alternating polyphase motors,-more especially of the brushless type; but, unfortunately for the polyphase system at the present day, all the other requirements are much more easily and better met by the direct-current motor.
"The alternating-current system is not yet fully standardized, but is constantly being perfected and broadened in its scope. Its parts are obtainable from but two or three first-class companies; it is not applicable yet to charging storage batteries, to railroad work, or to hoisting, although it has been used for both the last; the speed of motors is not adjustable unless the brush and collector-ring type is used; the starting currents under load are large, causing more or less fluctuation in lights; and the first cost of dynamos and motors is between 25 per cent. and 35 per cent. higher than that of direct-current apparatus of the same capacity. Therefore, unless the value of adjustable speeds, 25 per cent. less first cost, higher average efficiency, etc., are balanced by the possibility of commutator troubles, the direct-current system is at present preferable and advisable for ordinary cases of factory transmission. In such cases the polyphase alternating current's value is confined to the transmission of power from distant sources at higher pressures. In special cases the alternating-current system may prove advisable even for medium distances. One of these instances is in hat, candy, or similar factories, where electricity is largely used for heating, as well as for power and for light; the ease with which an alternating current can be transformed-i.e., small quantity at high pressure changed to large quantity at low pressure, or vice versa-gives this system the preference, as quantity and not pressure is the essential feature of electric heating. Works where naphtha or other explosive gas is used require a sparkless motor, and the alternating motor is the only one fitted for this use. Machine shops with a number of small, scattered machine
tools may be better suited by one system or the other, depending on the question as to the advisability of direct connection of tools, the amount of probable overload, and the question of speed variation. In mills, large machine shops, and factories of all kinds, where the power to transform is not valuable, there is no benefit to be derived from the polyphase current sufficient to offset the disadvantages mentioned.
"As to the best pressure to be used for transmitting direct current, the answer cannot be so definite. The advantages of a high transmitting pressure, such as 440 to 500 volts, are low first cost and small bulk of wiring, switches, and controlling apparatus. The disadvantages are increased liability to ground, danger of shock, increased number and decreased size of field armature wires and of commutator bars. The liability to ground may be guarded against in the construction, but the other difficulties are inherent, and are sufficiently objectionable to make the 500 -volt motor and system inadvisable, except for such purposes as electric railroads, where power has to be transmitted a long distance. The $2: 20$ to 250 -volt motor has only half as many commutator segments, armature conductors, and connections as the 500 -volt motor; and the 110 to 125 -volt motor but one-quarter the number. The sizes of these parts increase in proportion to the decrease in number; hence, the lower the voltage of a motor, the more substantial and the stronger mechanically. The lower voltage offers the advantage, too, of decreased tendency of the current to jump to the frame or from one wire to another. The winding of the fields of the 120 -volt motor is made up of less than one-half the number of turns used in the 240 -volt motor, and while the wire has twice the area, it does not occupy twice the space; on this account the field-coils of the low-voltage motor do not heat as much as the higher-voltage motor. On the other hand, the resistances used to control the speed and starting current, the switches, fuses, and the wiring are much larger and heavier for the 120 -volt motor than for the 240 -volt motor, and for motors of large size this is a decided disadvantage, as it interferes with ease of regulation and control, and increases the first cost.
"For small motors, 5 to 50 horse-power, for transmission over short distances (from 200 to 400 feet), and for fluctuating work, such as elevators, presses, cranes, punches, etc., the 125 -volt 2 -wire system seems preferable. For large motors, transmission over comparatively long distances, or for steady work, where mechanical strength is not essential and where the motor will receive attention, as in silk mills, carpet works, etc., or for work where minimum weight and size are important, the 240 -volt system, or one of higher pressure, is usually the best fitted for the purpose.
"It is my opinion that at present prices the 125 -volt direct-current 2 -wire system is the preferable one in most instances, and little or no trouble with the motors or dynamos is experienced at this voltage. Where the distance through which the power is to be transmitted is such as to make the cost of wires for carrying the current too great, the 240 -volt directcurrent 3 -wire system should be used. Where there are special features, such as those heretofore mentioned, or where the power is transmitted a distance too great for the 240 -volt direct-current system, the three-phase alternating-current system, 60 to 70 cycles per minute, becomes necessary and gives thoroughly satisfactory results.
"The greatest drawback to the alternating-current system to-day is its excessive cost, which brings no equivalent advantage. In the course of a few years this difference will disappear, and the system will probably be used for all situations demanding a higher pressure than 125 volts."

## Speed Variation.

The question of the control of speed with electric driving of machine tools is an important one, especially as the use of modern high-speed tool steels involves the correct speeding for each diameter and material in the lathe, boring mill, or other machine. This subject was thoroughly discussed at a meeting of the Engineer's Club of St. Louis, January 7, 1903, and some abstract of the points there made represent the latest opinions.

Mr. W. A. Layman says:
"The individual drive system may be generally classified under three headings:
"Rheostatic control systems,
"Multi-voltage control,
"Special systems for special tools.
"In the rheostatic control system the motor is of the well-known shunt type, supplied from a constant-potential system of distribution. Speed variation above the normal speed of the motor is secured by the introduction of resistance into the motor shunt-field circuit; speed rariation below normal is secured by the introduction of resistance into the armature circuit.
"The disadvantages of the system are its inefficiency when armature resistance is made use of for speed reduction, and rariation of speed on a given armature resistance with variation of load. To overcome both disadvantages, motors have been designed capable of a very wide variation in speed by variation of field resistance.
"The multiple-voltage control is regarded with favor by many.
"The Westinghouse and the General Electric Companies use a 3-wire system, as shown in the illustration.


Westinghouse 3-wire System for Variable Speed Control.
"The usual direct-current generator is provided with a set of collector rings, these collector rings being connected to the armature winding in such a way as to establish an exact two-phase relation between the potentials of the two pairs of collector rings. By means of choking coils, connected as shown, the neutral wire of the 3 -wire system is exactly and constantly maintained, irrespective of load, at zero potential relative to the outside wires.
"In connection with this 3 -wire system the individual tool is equipped with a standard 250 -volt shunt motor, and speed variation is secured in two ways: first, by running the armature either on 250 volts (normal speed condition) ; and second, by running it on 125 volts (half normal speed condition). For any speed desired between normal and half normal, shunt field resistance is introduced.
"The shunt motor is capable of 100 per cent. speed variation by variation of shunt resistance when the armature is on half voltage (and correspondingly at half load). If speed above normal full speed is required, shunt resistance is again introduced.
"The Bullock Electric Manufacturing Company adrocates a system as
shown in the illustration. A generator, standard in every respect, is supplemented by a small motor-generator set, the design of which is such that a 4 -wire system of distribution is established, providing for six different voltages upon which the motor armature may be operated without the use of armature resistance. The form of motor used is the standard shuntwound type. Without the use of field resistance six speeds may be secured, corresponding in ratio to the ratio of the voltages supplied by the 4 -wire distribution system. By means of shunt resistance any speed intermediate to that possible with the several armature voltages may be secured. The motor-generator set is so proportioned as to take care of the


Bullock Electric Manufacturing Company's Multiple-voltage System.
unbalanced load. This system is also adaptable to 3 -wire distribution, where less speed variation is required; and in the event of 3 -wire distribution an increased amount of field regulation is introduced. This 3-wire distribution differs from the Westinghouse and General Electric systems, in that the voltages on the two sides of the intermediate wire differ, thus giving three pressures instead of two."

In the same discussion Mr. W. Cooper said, in considering the fact that many tools are not designed to stand the high speeds that modern tool steels will permit, "that even if the machines will not stand the maximum speed of the tool, they may yet be operated at the highest speeds of which they are capable.
"There is no reason why a machine tool that is adapted to do a certain work should not do this work at two or three times the speed. The reason for this seems obvious, in the fact that the strains on a machine are due entirely to the torque required to make a given cut. With this given cut the speed may be increased three or four times without producing any greater strains on the machine itself, because the torque remains constant. However, the horse-power will increase directly in proportion as the increase in speed; and right here we have a factor that limits the ordinary belted machine tool,--the belts will not pull the load. For instance, suppose that we have a given machine running with a belt on the largest
step of the cone pulley on the machine, and taking a certain cut; assume the cutting speed to be 20 feet a minute. If it is desired to increase this cutting speed to, say, 80 feet per minute, it is found necessary to put the belt on the smallest step on the cone on the machine. We at once encounter the difficulty that the belt will not begin to pull the cut. This is also true of the various mechanical speed-changing devices that have been introduced. Thus it will be seen that machine tools that were designed on the lines of the cutting speed of 20 feet per minute are not adapted at all to cutting speed of 80 feet per minute. However, they are not limited by the strength of the tool, but by the pulling power. Under these conditions it is only necessary to increase the pulling power of this machine to make it do four times the actual work that it formerly did.
"This can readily be accomplished by the use of the electric motor, so that the limit lies in the stiffness of the bed or frame of the machine to carry the increased load without springing or chatter."

In a paper read before the Iron and Steel Institute, in 1903, by Mr. D. Selby-Bigge, the power required to operate electrically a great variety of machine tools was tabulated. Although in many instances the depth of cut and the speed of cutting surfaces is not given, yet it is understood that these records represent average practice with ordinary tool steels, and that for lathes, boring mills, etc., the power given in the tables would have to be increased in proportion to the increased capacity given by use of the modern high-speed steels.
Motor Tests.


Motor Tests.-Continued.

| Designation of machine. | Work done. |  | E. H. P. absorbed by motor with machine running light. | $\underset{\text { absorbed }}{\text { E. H. P. }}$ with load on. |  | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Maximum. | Average. |  |  |  |  |
| Joiners' shop machines |  |  | Driving shafting, 5.5 E. H. P. | 10 | 20 | During a week this motor was not seen to rise above 10 horse-power. When busy it absorbs about 17 to 18 E. H. P. It drives 12 tools, including 2 circular saws. |
| Vertical ship-yard drills and countersinks. | $11 / 4^{\prime \prime}$ holes and $13 / 4^{\prime \prime}$ countersinks. |  | Driving coun-ter-shaft, off which 2 per cent. drills are worked, 3.5 E. H. P. | 7.5 | 7 | $1^{\prime \prime}$ hole and $11 / 2^{\prime \prime}$ countersink ; <br> 2 machines doing 280 holes in 8 minutes. |
| Punch and shears. | 11/4" holes in 1. <br> Shearing $1^{\prime \prime}$. | Plate. <br> Plate. | 2.7 E. H. P. | 6.0 15. | 12 | $7 / 8^{\prime \prime}$ holes, $5 / 8^{\prime \prime}$ plate, 36 strokes per minute. <br> Shearing $5 / 8^{\prime \prime}$ plate 16 feet per minute. |
| Punch and shears . | Shearing $1^{\prime \prime}$. | Plate. | 2.75 E. H. P. | 3.5 11.0 | 12 | $5 / 8^{\prime \prime}$ holes, $1 / 2^{\prime \prime}$ plate, 34 strokes per minute. <br> Shearing $1 / 2^{\prime \prime}$ plate 11 feet per minute. |
| Mangle rolls. | 11/8' ${ }^{\prime \prime}$ plates. | $3 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$. | 4.5 E. H. P. | 13.5 | 15 | Motor is a series motor, with a tramway controller; belt drives direct to machine, and motor is reversed when mangling. This arrangement has given most excellent results. |


| Wood-working Tools. Hatch-boring machine | $1^{\prime \prime}$ holes. | 5/8' ${ }^{\prime \prime}$ holes. | 2.05 E. H. P. | 3.0 | 3.5 | Boring $5 / 8^{\prime \prime}$ hole in hatch $22^{\prime \prime}$ broad, in 2 minutes. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wood-planing machine. |  |  | 4.4 E. H. P. | 8.8 | 8 | Cutting $1 / 8^{\prime \prime}$ off plank $10^{\prime \prime}$ broad $\times 17^{\prime}$ long, in 1.5 minutes. |
| Wood-planing machine (heavy). |  |  | 4.5 E. H. P. | 16.0 | 16 | $1 /{ }^{\prime \prime}$ off plank $7^{\prime \prime}$ broad $\times 13^{\prime} 6^{\prime \prime}$ long, in 30 seconds. |
| $32^{\prime \prime}$ circular saw |  |  | 0.9 E. H. P. | 14.8 | 15 | Cutting $3^{\prime \prime}$ teak-hand-fed $14^{\prime}$ long, in 20 seconds. |
| Heaviest class of shear ing machinery. | Steel tires of locomotive wheels. | General scrap. | 2 E. H. P. | 29.0 | 30 | Machine cut about 35 pieces $11^{\prime \prime} \times 11 / 8^{\prime \prime}$ section, in 1 min ute. |
| Punching machine.... | $2^{\prime \prime}$ diameter of holes in $11 / 4^{\prime \prime}$ plates. | $11 / 4^{\prime \prime}$ holes in $1^{\prime \prime}$. | 3 E. H. P. | 10.5 | 12 | Punching 19 holes per minute $17 / 8^{\prime \prime}$ in diameter, through $1^{\prime \prime}$ plate. Machine driven by belt. |
| Large ship-yard rolls. . | $26^{\prime}$ rolls to bend 11/4" plates. | $5 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ plates. | 8 E. H. P. | 26.0 | 30 | Bending plates $20^{\prime} \times 4^{\prime} \times 3^{\prime \prime} 4^{\prime \prime}$ (load at reverse 26 E. H.P.) Rolls driven by cross and open belts. |
| $18^{\prime \prime}$ dock pump |  |  |  | 74.0 | 70 | Pump discharges about 500,000 gallons per hour. |
| $5^{\prime \prime}$ dock pump |  |  |  | 11.0 | 10 | Leakage pump. |
| Plate-edge planer | $\begin{aligned} & 5 / /^{\prime \prime \prime}, \frac{1}{2 \prime \prime} \text {, and } 3 / 8^{\prime \prime} \text { plates. } \end{aligned}$ | Planing about $24^{\prime}$ per minute. | $51 / 2$ E. H. P. | $\begin{aligned} & 3 / 8 / 8 \text { plates, } 10.0 \end{aligned}$ | 20 | This machine took 23 E. H. P to reverse; motor has cross and open belts on ; special wide pulley, thus dispensing with the use of a countershaft. |
| Punch and shears ..... | $11 / 4^{\prime \prime} \times 114^{\prime \prime}$. | $1^{\prime \prime}$ holes in 5/8' plates. | 3.5 E. H. P. | 7.5 | 10 | $1^{\prime \prime}$ hole, $5 / 8^{\prime \prime}$ plate. 31 strokes per minute. |

Motor Tests.



Motor
Tests on Cranes. Quick=motion,
Taken August


Note.-The starting efforts given above can be regarded only as approximate, being merely momentary, and volts drop being disregarded. The cranes above are on 220 volts circuit. One longitudinal trolley wire

## Tests.

## Overhead Travelling.

18, 1902.

Figures taken August 18, 1902.

| E. H. P. absorbed. Crane loaded. |  | Speeds and loads during test. |  | Size of motor <br> H. P., brake or electrical. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Starting effort. | Running power. | Actual load. | Approximate speeds. |  |  |
| 29.1 16.8 29.4 | 18.3 9.6 12.6 | 3 tons | 43 feet per minute. 125 feet per minute. 150 feet per minute. | 22 E. H. P. <br> 15 Е. Н. P. <br> 22 Е. Н. P. | This crane has the motors fixed on the main girders above end carriage. Drives by square shaft and gear. Water starting and regulating switch, and metallic lever controlling switch. |
| 27.8 24.5 34.0 | 12.8 10.3 12.4 | \} 3 tons. | Speeds approximately as above. | $\left\{\begin{array}{l} 22 \text { Е. Н. Р. } \\ 15 \text { Е. Н. Р. } \\ 22 \text { Е. Н. Р. } \end{array}\right.$ | As above. |
| 29.4 14.9 32.8 | 19.2 7.3 13.8 | 3 3 tons, | 60 feet per minute. 150 feet per minute. 165 feet per minute. | $\begin{aligned} & 20 \text { В. Н. Р. } \\ & 20 \text { В. Н. Р. } \\ & 20 \text { В. Н. Р. } \end{aligned}$ | This crane has travel motor on main girders and lift and traverse motors on the bogie. Gear driven. Water starting and regulating switch, and metallic lever controlling switch. |

only employed, the return being to "earth." The above working-load tests present a fair and good heavy average load, and are seldom exceeded under actual working conditions in these works.

## Motor Tests.

Taken August 18, 1902.

| Description of machine. | Work done by machine. | E. H. P. absorbed. |  | Type and size of motor. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Light. | Loaded. |  |  |
| 3-ton skullbreaking winch. | Lifts ball weighing 3 tons 8 cwt. to height of 50 feet at speed of 60 feet per minute (timed). | 8.5 | 17.8 | 2-pole open type armature at bottom, 18 E. H.P., serieswound. | This winch is of ordinary band pattern, driven through works and spur gear, with brakes and clutch. Water starting and regulating switch. |

A table of machine tests in a somewhat different form is appended:

## Condensing Plant.

One 10 -horse-power motor of 220 volts, driving direct-coupled 3 -inch centrifugal pump, driving also with belt air pump $91 / 2$ inches in diameter by 9 -inch stroke, and feed pump 2 inches in diameter by 9 -inch stroke. Boiler pressure, 200 pounds.

| Operation. | Revolutions. | Amperes. | Volts. | Vacuum, in inches. | E. H. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Total. | Actual per operation. |
| Centrifugal pump | 1100 | 6 | 240 |  | 1.9 | 1.9 |
| Centrifugal with air and feed pump | 160 | 12 | 240 | 27 | 3.8 | 1.9 |

Brass-shop Motor, 5 Horse-power, 240 Volts.

| Operation. | Revolutions. | Volts. | Amperes. | E. H. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total. | Actual per operation. |
| Motor and shaft | 220 | 250 | 7.00 | 2.3 | 2.3 |
| Disc grinder, 18 -inch emery dises running light. | 1800 | 246 | 8.50 | 2.8 | . 5 |
| Facing $61 / 2$-inch brass valves. | 1800 | 246 | 24.00 | 7.9 | 5.6 |
| 6 -inch capstan lathe (light) |  | 248 | 9.75 | 3.2 | . 9 |
| Turning and screwing $11 /$-inch brass bars for $3 / 4$-inch tap bolts. |  | 248 | 12.0 | 4.0 | 1.7 |
| Parting $11 / 8$-inch brass bars for $3 / 4$-inch tap bolts . |  | 248 | 10.0 | 3.3 | 1.0 |

No. 1 Foundry.-Roots Blower, Acme No. M.

| Operation. | Revolutions. | Volts. | Amperes. | E. H.P. |  | $\operatorname{Time}_{\text {in }},$hours. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total. | Average. |  |
| Motor and shafting, light running |  | 245 | 14 | 4.6 | ........ |  |
| Blowing cupola: |  |  |  |  |  |  |
| Maximum | $\begin{aligned} & 360 \\ & 350 \end{aligned}$ | $\stackrel{246}{233}$ | $\begin{array}{r} 104 \\ 66 \end{array}$ | $\left.\begin{array}{l} 32.7 \\ 21.7 \end{array}\right\}$ | 28.2 | $41 / 2$ |

Total weight of iron melted, 22 tons 10 hundredweights; total weight of iron melted per hour, 5 tons.

No. 2 Foundry.-Roots Blower, Acme No. K.

| Operation. | Revolutions. | Volts. | Amperes. | E. H. P. |  | $\begin{aligned} & \text { Time, } \\ & \text { in } \\ & \text { hours. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total. | Average. |  |
| Motor and shafting, light running |  | 232 | 9.5 | 2.96 |  |  |
| Blowing cupola: |  |  |  |  |  |  |
| Maximum Minimum | $\begin{aligned} & 430 \\ & 394 \end{aligned}$ | $\begin{aligned} & 237 \\ & 225 \end{aligned}$ | $\begin{aligned} & 57.0 \\ & 50.0 \end{aligned}$ | $\left.\begin{array}{l} 17.1 \\ 15.2 \end{array}\right\}$ | 15.94 | 3 |

Total weight of iron melted, 12 tons; total weight of iron melted per hour, 4 tons.

REMARKS.-No. 1 cupola is capable of melting on an average 7 tons per hour.

## Boiler Shop.-Vertical Plate=bending Rolls.

Length of rolls, 11 feet 7 inches; diameter of rolls, 1 foot 11 inches; mean size of plates rolled, $20^{\prime} \times 10^{\prime} 6^{\prime \prime} \times 1^{\prime \prime}$; maximum size of plates rolled, $16^{\prime} \times 11^{\prime} 5^{\prime \prime} \times 11 / 2^{\prime \prime}$.

| Operation. | Amperes. | Volts. | E. H. P. |  | Time, in min utes. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total. | Actual per operation. |  |
| Motor and shafting, light running | 20 | 242 | 6.40 | 6.4 |  |
| Rolls, light running | 24 | 242 | 7.70 | 1.3 |  |
| Rolling plate, $23^{\prime} \times 11^{\prime} 2^{\prime \prime} \times$ | 90-68 | 233 | Average. 19.2 | 12.8 | 3 |
| Putting squeeze on plates....... | 30-60 | 233 | 9-18 | 6-12 |  |
| Reversing the rolls ....... | 50 | 233 | 15.6 | 9.2 |  |

Air Compressor, Belt Driving from Motor.

| Operation. | Revolu- <br> tions. | Volts. | Amperes. | E. H.P. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Motor, shafting, and <br> pumps. | 175 | 230 | 22 | 6.7 | Air compressor, 9 <br> inches in diame- |
| ter, 10-inch stroke. |  |  |  |  |  |
| Pumping up to maxi- <br> mum pressure. | 170 | 230 | 70 | 21.5 | Maximum pressure, <br> 80 pounds. |

Pattern=shop Motor, 15 Horse=power, 220 Volts.

| Operatiou. | Revolutions. | Amperes. | Volts. | E. H. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total. | Actual per operation. |
| Motor and shafting ................ | 170 | 9.5 | 233 | 2.9 | 2.9 |
| Circular saw, 2 feet 8 inches in diameter, running light. | 800 | 10.5 | 233 | 3.2 | . 3 |
| Cutting yellow pine 11 inches deep, 7 feet per minute ......... | $\begin{aligned} & \text { Maxi- } \\ & \text { mum. } \end{aligned}$ Mini- | 40.0 | 233 | 12.4 | 9.2 |
|  | mum. | 18.0 | 233 | 5.6 | 2.4 |
|  | Average. | 29.0 | 233 | 9.0 | 5.8 |
| Thickness of machine, 2 feet 6 inch bed, running light | 3800 | 12.0 | 230 | 3.7 | . 8 |
| Surfacing yellow pine 11 inches wide, 13 feet per minute |  | 17.9 | 232 | 5.5 | 1.8 |

37 Horse=power Motor.

| Operation. | Revolutions. | Amperes. | Volts. | E. H. P. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total. | Actual per operation. |
| Motor and shafting |  | 12 | 230 | 3.7 | 3.7 |
| Circular saw, 3 feet in diameter, running light. | 1200 | 21 | 230 | 6.4 | 2.7 |
| Sawing yellow pine 11 inches deep, 20 feet per minute |  | 71 | 230 | 21.5 | 15.1 |
| Circular saw, 33 inches in diameter, running light.. |  | 26 | 230 | 8.0 | 4.3 |
| Cross-cut lignum-vitæ, $91 / 4$ inches deep by 18 inches long. |  | 41 | 230 | 12.6 | 4.6 |

30-Ton Cranes. Boiler Shop, 25 Horse=power Motor, 220 Volts.

| Operation. | Amperes. | Volts. | E. H. P. |  | Time, in minutes. | Feet. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total. | Actual per operation. |  |  |
| Motor and shafting and belts (light) | 12.0 | 230 | 4.3 | 4.30 |  |  |
| Heaving (light) ................. | 16.0 | 230 | 4.9 | . 60 |  |  |
| Cross travel (light) | 15.0 | 230 | 4.8 | . 50 |  |  |
| Longitudinal travel (light) | 16.0 | 230 | 4.9 | . 60 |  |  |
| Longitudinal and cross travel (light) | 18.0 | 230 | 5.5 | 1.20 |  |  |
| Travelling long | 16.2 | 230 | 4.9 | . 68 | 1 | 90 |
| Weight, 16 tons, heaving | 36.0 | 230 | 11.1 | 6.2 | 1 | 5 |
| Cross travel ${ }_{\text {Longitudinal }}$ | 30.0 18.0 | 230 230 | 9.2 5.5 | 4.4 .6 | 1 | 0 |

## THE COST OF POWER.

In a series of articles in the Journal of the Franklin Institute, October, November, December, 1901, Mr. Clyde D. Gray gives an extended discussion of the cost of power under various conditions, and from these papers the following abstract is made :

## Water Power.

The costs of water-power plants are widely different, depending upon the location, size, and extent of the hydraulic works needed, length of penstock and flume, and many other things that differ in the various localities. Below are given some figures in regard to the costs of plants. These are low-head plants fitted with turbine wheels, and are used principally for mill or factory purposes. The costs do not include costs of dam unless so specified, but include everything else in the plant. The horse-power basis upon which they are figured is the horse-power delivered at the wheel shaft.

## WATER=PLANT COSTS.

| Place. | $\begin{gathered} \text { Cost } \\ \text { per } \\ \text { D. } . \mathrm{P} . \mathrm{P} . \end{gathered}$ | Authority. |
| :---: | :---: | :---: |
| Lawrence, Massachuset | \$68.67 | Manning, A. S. M. E., Vol. X., p. |
| Manchester, New Hampshire.. | 66.00 \} |  |
| Lowell, Massachusetts, 13 feet head | 110.00 |  |
| Lowell, Massachusetts, 18 feet head | 57.00 | C. T. Main, A.S. M. E., Vol. XI., p. |
| Lawrence, Massachusetts........ | 63.00 | 108. |
| Lawrence, Massachusetts, 1000 horse-power. | 67.50 |  |
| Concord, New Hampshire (with dam) | 57.75 |  |
| Augusta, Georgia ......... | 34.20 |  |
| Columbia, South Carolina..... | 37.50 | $\begin{aligned} & \text { rebk } \\ & \hline 1 . \end{aligned}$ |
| Caratonk Falls, Maine (with dam). | 24.00 |  |
| Omaha, Nebraska (estimate) | 67.33 | Eng. Mag., Vol. VII., p. 409. |
| Zurich (with dam) ........ | $\left.\begin{array}{l}100.00 \\ 120.00\end{array}\right\}$ | Eng. Mag., February, 1900. |
| Paderna, Italy (with dam)... power | 120.00 108.25 | Eng. News, October 1, 1896. |
| Average without dam (excluding Lowell, \$110.00) Average with dam. | $\begin{array}{r} \$ 53.41 \\ 79.55 \end{array}$ |  |

It is probable that the cost of such plants will be from $\$ 40.00$ to $\$ 60.00$, excluding the cost of dam, but including all other parts; and when the dam is included that it will be from $\$ 60.00$ to $\$ 100.00$. Webber, in Iron Age, February and March, 1893, says that water-power plants can be put in for $\$ 100.00$ per horse-power; and Stilwell, in A.I. E. E., Vol. X., p. 484, says that the cost may be as low as $\$ 65.00$.

The cost of water power per horse-power year is variable, depending, as it does, upon the first cost of plant; and hence no very good average can be found. The following table may serve to show the costs in some cases that have been reported.

## COST OF WATER POWER.

| Place. | Cost per H. P. year. | Authority. |
| :---: | :---: | :---: |
| Lawrence, Massachusetts | \$13.70 | C. T. Main, A.S. M.E., Vol. XIII., p. 140. |
| Canada (lowest) | 6.25 | Meyer, Sci. Am., February 9, 1882. |
| Cottonwood | 16.10 | Eng. News, October 1, 1896. |
| Lawrence, Massachusetts, 1000 horse-power | 2262 | Manning, A. S. M. E., Vol. X., p. 48. |
| Lawrence, Massachusetts, 500 horse-power | 19.13 | Main, A. S. M. E., Vol. XIII., p. 140. |
| Concord, New Hampshire. | 8.64 |  |
| Augusta, Georgia. | $\left.\begin{array}{r}11.05 \\ 9\end{array}\right\}$ | $41 .$ |
| Columbia, South Carolina..... | 9.50 8.08 | Eng. Mag., Vol. VII., p. 409. |
| Norway (electrolytic work)... | 11.25 | Chem. Ind., Vol. XXIII., p. 121. |
| Niagara (sold for)..... | 13.00 | Emery, A.I. E. E., Vol. XII., p. 358. |
| Estimate on plant.............. | 5.42 | Webber, W. O., Eng. Mag., Vol. |
| Average of the above | \$10.72 |  |

From the above table it may be seen that the cost per horse-power year is $\$ 10.72$. Webber gives it as $\$ 10.00$ to $\$ 12.00$ (Iron Age. February and March, 1893) ; and Conant, in an article in the Street Railway Journal for October, 1898, gives the cost as ranging from $\$ 10.40$ to $\$ 22.40$. A fair average may be taken as varying from $\$ 10.00$ to $\$ 15.00$.

## Steam Power.

## SUMMARY OF BOILER TESTS.

Water Evaporation per Pound of Fuel.

| Authority. | No. of tests. | Water evaporated, in pounds. | Kind of fuel. |
| :---: | :---: | :---: | :---: |
| Kent (Christie), A.S.M.E., Vol. XVIII., p. 365 | 95 | 11.11 | All kinds. |
| Barrus, horizontal tubular ............. | 16 | 10.76 |  |
| Barrus, horizontal tubular, low flue temperature | 6 | $10.40\}$ | Anthracite. |
| Barrus, horizontal tubular, high flue temperature | 10 | 11.00 |  |
| Barrus, horizontal tubular ........... | 10 | 11.59 10.80 | Cumberland. |
| Average from Gray's Tables, W. T..... Average from Gray's Tables, tubular. . | 17 23 | $\left.\begin{array}{l}10.80 \\ 10.40\end{array}\right\}$ | All kinds. |
| Average of all the above | 192 | 10.86 |  |

## SUMMARY OF ENGINE TESTS.

## Pounds of Water per Horse-power Hour.



## STEAM=PLANT COSTS.

The cost of steam plants varies greatly with the locality, size, kind of machinery, boilers, and many other items. The table given herewith shows good approximations to the costs of various constructions.

## TABLE OF PLANT COSTS.

| Authority. | $\begin{aligned} & \text { Cost } \\ & \text { per } \\ & \text { H. P. } \end{aligned}$ | Remarks. |
| :---: | :---: | :---: |
| Manning, A.S.M.E., Vol. X., p. | $\left\{\begin{array}{r}\$ 68.26 \\ 52.50\end{array}\right.$ | Total-engine, boilers, stack, 500 horse-power plant. |
| Field, C. J., A.S.M. E., Vol. XVI., p. 504 . | 52.50 | Total-engine, boilers, stack, 1000 horse-power plant. |
|  | 50.00 65.00 | Steam plant complete. Plant complete. |
| Webber, A.S. M. E., Vol. XVII., p.$41 .$ | 54.71 | High speed, condensing, from Emery's tables for 550. |
|  | 59.51 | Low speed, from Emery. |
|  | 60.35 70.00 | Compound low, fròm E Triple compound, from |
|  | 70.00 | Simple Corliss, condensing, best, 1000 horse-power. |
| Dean, A.S. M.E., Vol. XIX., p. $301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | $\left\{\begin{array}{l}57.00 \\ 60.50\end{array}\right.$ | Compound, condensing, best, 1000 horse-power. <br> Actual cost of a yarn mill, 1132 horse-power. |
| Rathwell, A.I.M.E., Vol. XVII., p. 555 <br> Western Elec., March 16, 1901 | $\begin{aligned} & 40.00 \\ & 60.00 \\ & 28.60 \end{aligned}$ | Engines and boilers. <br> Complete plant. <br> Simple slide valve, non-condensing.* |
| Carpenter, Sib. Jour., Vol. XIV., p. 298 | 30.20 30.00 | Corliss, non-condensing. Compound slide valve, noncondensing. |
|  | 30.00 33.25 | Compound, non-condensing. Compound Corliss, condensing. |
| Elec. World, February 2, 1901, p. 214. | 28.50 | Estimates on plant for South Africa. |
| Thurston, Eng. Mag., Vol. VII., p. 844. |  | Engines, boilers, and piping, simple, condensing. |
|  | 45.00 53.00 | Compound, condensing. |
|  |  |  |

Field, in A. S. M. E., Vol. XVI., p. 504, gives the average cost of steam plants as ranging from $\$ 50.00$ to $\$ 55.00$ per horse-power, and Professor Ryan, in an article in the Engineering Magazine, Vol. VII., p. 733, says that the cost of steam plants with high-speed engines is about $\$ 50.00$, and that for slow-speed Corliss engines ranges from $\$ 65.00$ to $\$ 75.00$. This is exclusive of the cost of the buildings.

The costs of electric plants are dependent upon the cost of engines and boilers, and their cost is usually a constant quantity, for the cost of dynamos is nearly constant per kilowatt plus the cost of engine plant. The cost of dynamos and other electrical apparatus may be assumed as ranging from $\$ 20.00$ to $\$ 35.00$, including switchboard; hence, the cost of complete plants for electric lighting and power may be assumed to be $\$ 75.00$ to $\$ 100.00$, according to circumstances.

[^23]
## COST OF STEAM POWER.

The following table is a condensation of a more detailed one in Mr. Gray's paper, and gives practically the same result. The costs are for the total of fixed and operative charges, in cents, per horse-power hour.

| Authority. | Cost per H. P. hour, cents. |
| :---: | :---: |
| Emery, A. I. E. E., for 3080 hours per annum | . 784 |
| Emery, A.I. E. E., for 7090 hours per annum | . 617 |
| Emery, Eng. Mag., for 3080 hours per annum. | . 856 |
| Webber, 650 horse-power, for 3080 hours per annum | . 720 |
| Webber, 1050 horse-power, for 3080 hours per annum | . 646 |
| Hale, for 2985 hours per annum | . 557 |
| Main, for 3080 hours per annum. | . 637 |
| Foster, for 3080 hours per annum | . 824 |
| Gray's Table. | . 720 |
| Average of all.. | . 707 |

Dr. Louis Bell, in his book, "Electrical Transmission of Power," gives as the cost for 10 -hour day, full load, with large compound-condensing engines, 0.8 to 1.0 cent per horse-power hour, and for simple engines, 1.5 to 2.5 cents; while, if the load is partial and intermittent, these figures become 1.0 to 1.5 and 3.0 to 4.0 cents, respectively.

The cost of engines varies considerably with the class, but the following table is a very good approximation for the different kinds:

| ple stae-val | \$7.00 to \$10.00 |
| :---: | :---: |
| Simple Corliss or low-speed type | 11.00 to 13.00 |
| Compound slide-va | 12.00 to 15.00 |
| Compound Corliss | 18.00 to 23.00 |
| High-speed automatic | 10.00 to 13.00 |
| Low-speed automatic. | 15.00 to 17.00 |

In addition to this is the price of boilers, which is approximately $\$ 10.00$ to $\$ 12.00$ for the plain tubular and about $\$ 15.00$ for the water-tube type, and the cost of pumps, which is about $\$ 2.00$ for a non-condensing and $\$ 4.00$ for a condensing plant, including heaters.

## Gas Power.

The following tables contain some tests of different gas engines, using various kinds of gas. Some of these are small and others large, although there are but few tests of the larger sizes, from the fact that they have not been on the market until recently. The amount of gas used per horsepower is in some cases based upon the indicated, and in others upon the developed or brake horse-power. This is indicated by an (I.) or (B.) placed after the column.

Using Natural Gas.

| Kind. | H. P. | Cubic feet <br> per H. P. | Authority. |
| :---: | :---: | :---: | :---: |
| Westinghouse .......... | $\left\{\begin{array}{r}621 \\ 67\end{array}\right.$ | 9.3 (I.) <br> 10.4 (B.) | Miller \& Gladden, Sib. Jour., <br> June, 1900. <br> Lond. Eng., January 4, 1901. |

The Westinghouse Company will guarantee a gas consumption of 12 cubic feet of gas per B. H. P. on their small engines, and as low as 10 cubic feet of gas per B. H. P. for the larger sizes. The Standard Automatic Gas Engine Company guarantees less than 15 cubic feet per B. H. P.

## Using Coal Gas.

| Kind. | Н. P. | Cubic feet per H. P. | Authority. |
| :---: | :---: | :---: | :---: |
| Westinghouse ........Springfield .......... | 1210 | 14.5 (I.) | Budd \& Moody, Sibley thesis. Spier \& Keely, Sibley thesis. Perry. <br> Lond. Eng., January 4, 1901. <br> Donkin, Eng. Mag., December, |
|  |  | 16.5 (I.) |  |
|  |  | 15.5 (I.) |  |
|  |  | 16.6 (B.) |  |
| Campbell. |  | 15.4 (B.) |  |
| Otto-Crossley | 17 | 24.1 (B.) |  |
| Clerk .... | 9 | 30.4 (B.) |  |
| Atkinson, differential |  |  |  |
| Atkinson, cycle | ${ }^{6}$ | 22.5 |  |
| Griffin. Forward | 16 6 |  | London Elec. Eng., January 25, |
| Simplex |  | 20.4 |  |
| Wells Bros | $\left\{\begin{array}{l}12 \\ 18\end{array}\right.$ | ${ }_{21} 27.8$ |  |
| Premier | (18 | 19.7 |  |
|  | 50 | 17.0 (I.) |  |
| Railway plant | 31 | 21.0 (B.) | Hill \& Brocksmit thesis. |
| Average on B.H.P. |  | 22.9 |  |

This average is rather higher than can be expected of the best modern engines, for these are all rather small units. About 17 or 18 cubic feet may be expected of the average modern engine of moderate size.

Using Producer Gas.


Average cubic feet on B. H. P., 82, or on I. H. P., 62.9. These values are only approximate, as the data are not very complete.

Using Blast=furnace Gas.


## COST OF GAS POWER.

The following table gives some figures on the cost of power produced by different-sized engines using various fuels. The kind of gas used is indicated by the capital letters in parentheses, as well as whether the horse-power is based upon the indicated or the brake.

| Kind. Place. | Cubic feet of gas. | Coal per H. P. | Cost, cents. | Authority. |
| :---: | :---: | :---: | :---: | :---: |
| Ordinary | $\begin{aligned} & 17 \\ & 20 \\ & 23 \end{aligned}$ | 1.00 | $\left.\begin{array}{rl} 1.00 & \text { (B. P. }) \\ 1.02 & \text { (B. C.) } \end{array}\right\}$ | Elec. Eng., January 25, 1901. <br> Guy, "Electric Light and Power." |
|  |  | 1.50 |  |  |
| Otto |  | 1.20 |  | Cost of fuel alone, Robinson, "Gas and Petroleum Engine." |
| Ordinary | 200 |  | . 56 | Eberle, Eng. Mag., Vol. XIV., p. 687. |
| Clausthal..... | 250 | 1.73 | $2.00 \text { (B. P.) }$ | Elec. World, 1897, p. 822. <br> Elec. World, Vol. XXXVI. p. 457. |
| Average engine. | 20 | . 93 | $\left.\begin{array}{r} .90 \text { (B. P.) } \\ \left.\begin{array}{r} 50 \\ 2.00 \\ (\text { B. . . . }) \end{array}\right\} \end{array}\right\}$ | Cassier's, 9. <br> Kerr, Cass. Mag., Vol. - XVIII., p. 425. |
| Glasgo |  | . 25 | (B. B.) | Fuel alone, Cass. Mag Vol. XVIII., p. 425. |
| Ordinary |  |  | 2.00 (B. C.) | Bolton, A.S. M. E., Vo XX., p. 873. |
| Average |  |  | 2.40 (I. C.) | Krone, Dg., Elec. World, 1900, p. 443. |
| Crossley |  | $\left\{\begin{array}{c} \text { per } \\ \mathrm{k} . \mathrm{W} . \end{array}\right\}$ |  | Eng. Mag., Vol. XV., p. 295. |
| Le Tombe Otto $\qquad$ |  | 1.60 1.00 | (B. P ..$)$ | wer |
| Charon |  | 1.06 | (B. P.) | 1900. |
| Crossley |  | 1.23 | (B. P.) |  |

Cost of Gas Power. - Continued.

| Kind. Place. | Cubic feet of gas. | Cost, cents. | Authority. |
| :---: | :---: | :---: | :---: |
| Oil engine. |  | 1.74 (B.) | Guy, "Electric Light and Power." |
| Gasoline engine |  | 1.50 (B.) | Kerr, Cass. Mag., Vol. XVIII., p. |
| Diesel ............ |  | 2.00 (B.) |  |
|  |  | . 66 (B. B.) | Meyer, Sci. Am., February 9, 1901. |
|  | $\{25$ | 3.10 (B. C.) | Hest. Elec., February 23, 1901. |
| Blast furnace. | 80 |  | Dg. Elec. World, January 19, 1901. |

The letters in the parentheses are read as follows: The first one refers to brake or indicated horse-power, and the second to the kind of gas used, either natural, producer, coal, or blast-furnace.

The costs of gas-engine plants are not very different from those of steam plants. Mr. N. W. Perry, in A.I. E. E., 1894, says that the cost of producers or generators is about $\$ 11.00$ per horse-power, which is less than that of steam boilers. He also gives an estimate by Dawson on a plant to have an output of 400 kilowatts, occupying a floor-space $27 \times 54$ feet on one level, and costing, complete, about $\$ 10.38$ per horse-power.

## Electric Power.

While electricity can be considered only as a secondary source of power, requiring itself to be generated from some prime mover, some data as to costs will be found acceptable.

The following table gives some figures on the cost of generating electric power. The costs are based upon the kilowatt-hour, which is the practical unit used to designate power, it being equal to 1.34 horse-power hours. The cost is based, in most cases, upon the power delivered to the feeders that carry the current to the point of application. The cost for lighting and for power is usually different, as the power used for motors does not need such careful regulation of the pressure, and again the amount is usually large as compared with the amount sold for lighting, so that the cost to produce is less per unit, and the amount is not so variable; hence, the machines can be run at better efficiency.

The cost also depends upon the load factor of the plant,-that is, upon the ratio of the average to the maximum output of the station, and the cost increases as this factor decreases.

COST OF ELECTRIC POWER.

| Place and use | Cost per K. W. hour, cents. | Authority. |
| :---: | :---: | :---: |
| Cheltenham, England, lighting. | 5.06 \} | London, E. Rev., January |
| Dundee, England, lighting. | 4.90 \} | 1901. |
| London, price sold, lighting | $5.00\}$ | London, E. Eng., January 4, |
| London, price sold, motors | 5.00 \} |  |
| Estimated operating expense <br> Lighting, 0.5 load factor.... | .58 1.02 |  |
| Manufacturing works, large | . 92 |  |
| Manufacturing works, fairly constant | 1.23 | ary 4, 1901. These seven are <br> for the operating expenses |
| Manufacturing works, small, constant | 2.60 |  |
| Ordinary works, varying load | 1.92 |  |
| Small works, varying load | 3.60 |  |

Cost of Electric Power.-Continued.

| Place and use. | Cost per K. W. hour, cents. | Authority. |
| :---: | :---: | :---: |
| Dudley, England, selling price | $\left\{\begin{array}{c} 4.00 \\ 10.00 \end{array}\right.$ | Elec. World, February 2, 1901, for tramways. Other uses. |
| Average for United Kingdom | 5.34 | Garcke, Elec. World, January 26, 1901. |
| American, practice, range 3.00 to. . | 7.50 | Bolton, A. S. M. E., Vol. XX., p. 873 . |
| Met. Electric Railway, Chicago, operating expenses. | . 88 | E. R., February 15, 1901. |
| Glasgow, Scotland, operating expenses | 2.56 | B. I. E. E. |
| Lighting, to get to customer | 3.56 \} | Field, Cass. Mag., March, 1896 |
| Railway, operating expenses...... Railway, large, at bus bars....... | . 90 | Field, Cass. Mag., March, 1896. |
| Railway, large, at bus bars........ | $\left.\begin{array}{r}1.00 \\ .50\end{array}\right\}$ | Kennelly, Cass. Mag., Vol. |
| Niagara power in Buffalo......... | 2.00 |  |
| Railway, estimated, 33 per cent. load factor | 1.00 \{ | Conant, St. Ry. Jour., Vol. XIV., p. 621. |
| Kansas City, operating expenses. . | . 40 | Conant, St. Ry. Jour., Vol. XIV., p. 71. |
| Average at board | 8.00 | Editorial, St. Ry. Jour., Vol. XIV., p. 92. |
| Brooklyn Heights, operating expenses | . 62 |  |
| Denver Railway | 1.10 \} | Elec. World, February 26, 1901. |
| Denver, motor work | 4.00 |  |
| Kansas City Railway, operating expenses, 1899 | .43) |  |
| Kansas City Railway, operating expenses, 1900 | . 41 \} | W. E., October 20, 1900. |
| Met. Street Railway, New York, 1898. | 1.57 | St. Ry. Jour., November, 1898. |
| Estimate at bus bars | . 50 | Bell, " El. Trans. of Power." |

From the above table it may be seen that the cost of generating power is extremely variable in the different cases, depending upon the purpose for which it is used, the load factor, the cost of fuel, and the size of plant. For the case of large plants run by compound condensing engines, with generators directly connected, operating under fairly good load factors, it may be assumed that the cost of power per kilowatt at the bus-bars is not far from 1 cent, and it may be less with careful attendance. For waterpower plants this figure may be lowered. The cost of distribution is so variable that no attempt has been made to estimate it, and it can only be approximated for specific cases.

The cost of electrical machinery depends upon the price of steel and copper to a large extent, and so is variable: but it may be assumed to range from $\$ 15.00$ to $\$ 25.00$ per kilowatt output for generators, motors, or rotaries of the medium or large sizes. The price per unit increases as the size decreases, as they are less efficient and require more material and more labor in manufacture.


## Electric Driving.

## Variable Speed Control.

Crocker-Wheeler System.
This system enables standard motors to be operated at variable speed by changing the potential of the current at their terminals. The generating plant supplies the highest voltage of the system. This voltage may be termed the primary, and is divided by a 3 -unit balancing transformer into three unvarying voltages of unequal value, which are maintained between the wires of a 4 -wire circuit, various connections of which afford six different and distinct voltages.

It is the function of the balancer to maintain these voltages constant and to accommodate the unbalance of currents between the four wires of the distribution circuit.

Those motors requiring variable speed are connected to the 4 -wire circuit by means of a controller of the drum type adapted for mounting on the tool in a place convenient for the operator. The action of this controller is such that, as the drum revolves, the armature terminals of the motor are connected to the six circuits-afforded by this system-in the proper sequence, and the travel of the drum from one position to the next is so quickened by the action of a spring that contacts are made and broken at a high rate of speed, preventing the formation of arcs and eliminating the possibility of the drum stopping between contacts. This gives six fundamental motor speeds, which are subject to a further refinement by varying the motor's field strength sufficiently to cover the gaps between them.

The speed range obtained on the voltage points alone is $6: 1$, being proportional to the ratio of maximum to minimum voltages. The addition of field-resistance points above the highest voltage points extends the total range in the controller to a value of $10: 1$.

Motors used in an ordinary shop equipment may be divided into classes A, B, C, or D, according to the nature of their duty.

Class A being constant-speed motors, such as drive groups of small tools by shafting.

Class B, controllable-speed motors, generally of the series-wound type, as used on cranes.

The duty which the motors in both these classes have to perform is such that their demand for current is intermittent and often excessive, consequently they are best suited for connection to the outside mains, and such speed regulation as they may require can be obtained by rheostatic control.

The other two classes, $C$ and $D$, are controllable-speed motors for the drive of individual tools, where the speed should be maintained constant at any one of a number of fixed values.

Class C is formed of motors driving tools which demand approximately constant torque at all speeds, the horse-power diminishing with the speed. This characteristic of the tool being identical with the power characteristic of the motor on this system, the normal horse-power of the motor need not be greater than the maximum demanded by the tool.

Class D covers those motors operating lathes, boring mills, etc., where the torque increases as the speed diminishes. If the range required by these tools is to be obtained by using a motor through its maximum range, the motor would be very large and unnecessarily expensive. For this class a speed range of approximately $3: 1$ has been selected as a basis for the determination of the most suitable sizes of motors, with respect to the duty which they have to perform. A motor, therefore, to give a constant horse-power throughout this range, must have a normal rating of about twice the horse-power required by the tool. This range, however, may be extended to cover the entire range required by the tool by using one or more additional gear runs.

## ALUMINUM.

In various modern structures aluminum or some of its alloys are used when lightness is of importance, and the following information, furnished by the Pittsburg Reduction Company, will be found useful:

The low specific gravity of aluminum is one of its most striking properties, being 2.56 in ordinary castings of pure aluminum, and 2.68 in the compressed and worked.

## Specific Gravity at $62^{\circ} \mathrm{F}$. of Aluminum and Aluminum Alloys.

Aluminum commercially pure, cast ..... 2.56
Nickel-aluminum alloy ingots, for rolling ..... 2.72
Nickel-aluminum casting alloy ..... 2.85
Special casting alloy, cast ..... 3.00
Aluminum commercially pure, as rolled, sheets, and wire ..... 2.68
Aluminum commercially pure, annealed ..... 2.66
Nickel-aluminum alloy, as rolled, sheets, and wire ..... 2.76
Nickel-aluminum alloy, sheets annealed ..... 2.74
Weight.

Using these specific gravities, assuming water at $62^{\circ} \mathrm{F}$. and at standard barometric height as 62.355 pounds per cubic foot.

Sheet of cast-aluminum, 12 inches square and 1
inch thick, weighs
13.3024 pounds.

Sheet of rolled aluminum, 12 inches square and 1 inch thick, weighs
Bar of cast-aluminum, 1 inch square and 12 inches long, weighs
13.9259 pounds.
1.1085 pounds.
1.1605 pounds.
.8706 pound.
. 9114 pound. .0920 pound.
.0970 pound. 159.6288 pounds. 167.1114 pounds.

## Strength of Aluminum.

The tensile, crushing, and transverse tests of aluminum vary considerably with different conditions of hardness, due to cold working; also by the amount of work that has been put upon the metal, the character of the section, amount of hardening ingredients, etc. Cast-aluminum has about an equal strength to cast-iron in tension, but under compression it is comparatively weak. The following is a table giving the average results of many tests of aluminum of 99 per cent. purity:

|  | castings | 8,500 pounds. |
| :---: | :---: | :---: |
| Elastic limit per square inch in tension | sheet. | 12,500 to 25,000 pounds. |
|  | wire | 16,000 to 33,000 pounds. |
|  | bars | 14,000 to 23,000 pounds |
| Ultimate strength per squareinch in tension..............$~$ | castin | 18,000 pounds. |
|  | sheet | 24,000 to 40,000 pounds. |
|  | wir | 30,000 to 55,000 pounds. |
|  | bar | 28,000 to 40,000 pounds. |
| Per cent. of reduction of area in tension | casting | \%. 15 per cent. |
|  |  | 20 to 30 per cent. |
|  |  | 40 to 60 per cent. |

Elastic limit per square inch under compression in cast cylindrical short columns, with length twice the diameter

3,500 pounds.
Ultimate strength per square inch under compression in cast cylindrical short columns, with length twice the diameter 12,000 pounds.
The modulus of elasticity of cast-aluminum is about $11,500,000$.
Aluminum in castings can readily be strained to the unit stress of 1500 pounds per square inch in compression, and to 5000 pounds per square inch in tension. It is rather an open metal in its texture ; and for cylinders, to stand pressure, an increase in thickness over the ordinary formulæ should be given to allow for its porosity.

## Nickel=aluminum.

In order to obtain a greater strength than is possessed by pure aluminum, and at the same time to retain as much as possible the advantage of the low specific gravity, an alloy containing from 2 to 5 per cent. of nickel and copper is made, this having a specific gravity of about 2.85 , as compared with 2.56 for pure aluminum.

The following table gives the arerage results of many tests of nickelaluminum :

| Elastic limit per square inch in tension | $\left\{\begin{array}{l} \text { castings } \\ \text { sheet... } \\ \text { bars.... } \end{array}\right.$ | 8,500 to 12,000 pounds. 21,000 to 30,000 pounds. 18,500 to 25,000 pounds. |
| :---: | :---: | :---: |
| Ultimate strength per square inch in tension................. | $\left\{\begin{array}{l} \text { castings } \\ \text { sheet... } \\ \text { bars.... } \end{array}\right.$ | 18,000 to 28000 pounds. 35,000 to 50,000 pounds. 30,000 to 45,000 pounds. |
| Per cent. of reduction of area . | $\left\{\begin{array}{l} \text { castings } \\ \text { sheet ... } \\ \text { bars ... } \end{array}\right.$ | 6 to 8 per cent. <br> 12 to 20 per cent. <br> . 12 to 15 per cent. |

Elastic limit per square inch under compression in short columns, with length twice the diameter.

6,000 to 10,000 pounds.
Ultimate strength per square inch under compression in short columns, with length twice the diameter

1,600 to 24,000 pounds.

## Aluminum for Structural Purposes.

In the use of aluminum for structural purposes, a great deal depends upon the specific purpose to which it is desired to apply the metal, so as to know just what is the proper grade that should be used; but, generally speaking, for purposes where aluminum is brought into tension,-such as in sheets or in rolled shapes, as angles, beams, etc.,-an ultimate tensile strength of from 32,000 to 40,000 pounds per square inch may be reckoned upon, and using a safety factor of 4 gives an allowable working strain of from 8000 to 10,000 pounds. This, of course, is not for pure metal, but for the stronger alloys.

The ultimate tensile strength of pure metal in plates and shapes may be taken at from 24,000 to 28,000 pounds. With the same safety factor of 4 it gives an allowable working strain of from 6000 to 7000 pounds.

For the alloys of cast-aluminum in tension the ultimate strength may be taken at from 18,000 to 28,000 pounds per square inch. Using a safety factor here of 5 , as aluminum castings are quite uniform and solid, a working strain is obtained of from 3600 to 5600 pounds per square inch.

It is difficult to give a value for the ultimate strength of pure castaluminum in tension, for the reason that while the ordinary pure aluminum will run about 16,000 pounds per square inch, this can be increased very considerably by cold working, and in some cases to as much as 24,000 pounds per square inch. Using a safety factor of 4 gives an allowable working strain of from 3200 to 4800 pounds.

In compression, the alloys of aluminum in rolled plates and structural shapes-such as struts, columns, etc.-have an ultimate tensile strength of from 26,000 to 34,000 pounds per square inch, which, using a safety factor of 4 , gives an allowable working strain of from 6500 to 8507 pounds per square inch.

Table of Alloys.
Approximate Percentage Composition by Weight.

| Name. | 苞 | $\dot{\tilde{E}}$ | $\underset{\underset{\Xi}{\Xi}}{\dot{\Xi}}$ | 范 |  | Uses and remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gun metal. | 91 | 9 |  |  |  | Ordnance, bearings, |
| Bell metal | 75 | 25 |  |  |  | Bells, gongs ; rather brittle. |
| Bronze coin. | 95 | 4 | 1 |  |  | Coins, medals. |
| Phosphor bronze.. | 9221 | 7 |  |  | $\frac{1}{2}$ phosphorus. | Strong castings, heavy bearings. |
| Manganese bronze. | 89 | 10 |  |  | 1 manganese. | Propeller blades, pumps. It is non-corrosive and very strong. |
| Aluminum bronze. | 90 |  |  |  | 10 aluminum. | $\begin{aligned} & \text { Very high tensile } \\ & \text { strength. } \end{aligned}$ |
| Valve metal (best). | 88 | 10 | 2 |  |  | Sometimes called " composition." |
| Valve metal. | 83 | 2 | 15 |  |  | Cheaper valves, cocks, etc. |
| Bearing metal. | 77 | 8 |  | 15 | Trace of phosphorus. | Heavy bearings, used on railroads. |
| Brass (common). | $66_{3}^{2}$ |  | $33 \frac{1}{3}$ |  |  | Sheets, wire, tubes, pipe fittings. |
| Muntz metal. | 60 |  | 40 |  |  | Bolts, nuts; malleable at red heat. |
| Delta metal |  |  | 42 |  | 2 iron. | Strong sheets, etc.: "Tobin bronze" is a delta metal with a little tin and lead added. |
| Brazing metal (soft) | 50 | 121 | $37 \frac{1}{2}$ |  |  | Low melting-point. |
| Brazing metal (medium) . | $50$ |  | 50 |  |  | For copper work. |
| Brazing metal (hard) | $75$ |  | $\begin{aligned} & 25 \\ & 0.0 \end{aligned}$ |  |  | Strongest. |
|  |  |  | $20$ |  | 20 nickel. | Ornaments, resistance wire ; composition variable. |
| Fusible plug.... Common solder |  | 10 50 |  | $\begin{aligned} & 86 \\ & 50 \end{aligned}$ | 4 bismuth. | For steam boilers. |
| Fine solder... Babbitt metal | 3 | $\begin{aligned} & 66^{2}{ }^{2} \\ & 89 \end{aligned}$ |  | $33 \frac{1}{3}$ |  | The original Babbitt; |
| Babbitt metal. |  |  |  | 80 | mony. 20 antimony. | for bearings. Commonly called Babbitt; used for repair |
| Pewter |  | 80 |  | 18 | $\begin{aligned} & 2 \text { anti- } \\ & \text { mony. } \end{aligned}$ | Piates, mugs, etc.; composition variable. |
| Britannia metal. |  | 90 |  |  | $10 \text { anti- }$ | Table wear, ornaments; composition rariable. |
| Type metal |  |  |  | 80 | 20 antimony. |  |
| Regulus metal. |  |  |  | 88 | 12 antimony. | Acid cocks, valves, etc. Sometimes called white metal. |

## Strength of Copper=Zinc=Tin Alloys.

U. S. Government Tests.

| Percentage of |  |  | Tensile strength, in pounds, per square inch. |
| :---: | :---: | :---: | :---: |
| 45 | 50 | 5 | 15000 |
| 50 | 45 | 5 | 50000 |
| 50 | 40 | 10 | 15000 |
| 55 | ( 43 | 2 | 65000 |
|  | - 40 | 5 | 62000 |
|  | , 35 | 10 | 32500 |
|  | 30 | 15 | 15000 |
| 60 | 37 | 3 | 60000 |
|  | 35 | 5 | 52500 |
|  | 30 | 10 | 40000 |
|  | 20 | 20 | 10000 |
| 65 | [ 30 | 5 | 50000 |
|  | 25 | 10 | 42000 |
|  | $\{20$ | 15 | 30000 |
|  | 15 | 20 | 18000 |
|  | 10 | 25 | 12000 |
| 70 | [ 25 | 5 | 45000 |
|  | 20 | 10 | 44000 |
|  | \{ 15 | 15 | 37000 |
|  | 10 | 20 | 30000 |
|  | - 5 | 25 | 24000 |
| 75 | ( 20 | 5 | 45000 |
|  | 15 | 10 | 45000 |
|  | 10 | 25 | 43000 |
|  | ( 5 | 20 | 41000 |
| 80 | [ 15 | 5 | 45000 |
|  | $\{10$ | 10 | 45000 |
|  | ( 5 | 15 | 47500 |
| 85 | $\{10$ | 5 | 43500 |
|  | \{ 5 | 10 | 46500 |
| 90 | 5 | 5 | 42000 |

## Strength of Alloys.

## U. S. Government Tests.

Pounds per square inch.
Copper=Tin Alloys (Bronzes).

| Copper, <br> per cent. | Tin, <br> per cent. | Tensile <br> strength. | Yield- <br> point. | Crushing <br> strength. | Elonga- <br> tion, <br> per cent. | Compres- <br> sion, <br> per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | $\ldots$ | 27000 | 14000 | 41000 | 8.0 | 44 |
| 95 | 5 | 31000 | 17000 | 46000 | 10.0 | 41 |
| 90 | 10 | 29000 | 21000 | 54000 | 4.0 | 31 |
| 85 | 15 | 33000 | 26000 | 74000 | 1.6 | 24 |
| 80 | 20 | 32000 | 28000 | 124000 | .5 | 14 |
| 75 | 25 | 18000 | 18000 | 150000 | $\ldots$ | 4 |
| 70 | 30 | 6500 | 6500 | 143000 | $\ldots$ | 8 |
| 65 | 35 | 2800 | 2800 | 75000 | $\ldots$ | 2 |

Copper=Zinc Alloys (Brasses).

| Copper, <br> per cent. | Zinc, <br> per cent. | Tensile <br> strength. | Yield- <br> point. | Crushing <br> strength. | Elongation, <br> per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | $\ldots$ | 27000 | 14000 | 41000 | 7 |
| 95 | 5 | 28000 | 12000 | 28000 | 12 |
| 90 | 10 | 30000 | 10000 | 29000 | 18 |
| 85 | 15 | 32000 | 9000 | 33000 | 25 |
| 80 | 20 | 34000 | 8000 | 39000 | 33 |
| 75 | 25 | 37000 | 9000 | 46000 | 38 |
| 70 | 30 | 41000 | 10000 | 54000 | 38 |
| 65 | 35 | 46000 | 13000 | 63000 | 33 |
| 60 | 40 | 49000 | 17000 | 74000 | 19 |
| 55 | 45 | 44000 | 20000 | 90000 | 10 |
| 50 | 50 | 30000 | 24000 | 116000 | 4 |
| 45 | 55 | 14000 | 14000 | 126000 | $\ldots$ |


|  |  <br>  |
| :---: | :---: |
| $\begin{aligned} \text { in } \\ \cline { 1 - 4 } \\ \hline \end{aligned}$ |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  융 |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
| \|r|r |  <br>  |
|  |  |

## I N D E X

## A

Absolute zero, 515.
A ccelerated circular motion, 280. motion, formulas for, 267, 279.
Acceleration, 242.
of gravity, 267.
resistance to trains, 736.
Accumulator, efficiency of, 606. hydraulic, 605.
Acetic acid, specific heat of, 521.
Acid in feed water, sulphuric, 678.
Adiabatic compression, 533.
compression of air, 531.
expansion, 690.
expansion of air, 531.
Advance, angle of, 724.
Advantages of electric driving, 839.
Air, 528-551.
chambers for pumps, 590.
composition of, 528.
compressed, 531-544.
Air, compression and expansion of 529.
compressor efficiencies, 534.
compressor, power required for, 859.
compressors, heat produced in, 531.
compressors, influence of altitude upon, 534.
delivery through mains, 538, 539. discharge, coefficients of, 533 .
efflux velocities of, 532 .
flow in pipes, 535-545.
flow of, 536 .
flow through orifices, 540 .
friction, 542-545.
friction in pipes, 542-543.
mains, loss of pressure in, 538, 539.

Air, motors, air consumption of, 534. movement of, 541.
power required to compress, 537.
pressure and water heads, 652.
pump for electric cars, 792.
pump, size of, 732 .
pressure, 652.
pressure and temperature of, 529 .
pressure and volume of, 530 .
required for combustion, 649.
required for motors, 534.
specific heat of, 522 .
transmission through pipes, 532545.
velocity of escape, 532.
vessels for pumps, 590 .
volume and temperature of, 529 .
volume and weight of, 528.
volumes and velocities, 650-651.
weight of, 528.
work required to compress, 533.
Alabama coals, tests of, 616, 618.
Alcohol, coefficient of expansion of, 512.
latent heat of, 522 .
specific heat, 521 .
Algebra, 78-81.
Allan's link motion, 726.
Allen slide valve, 728-730.
valve, Zeuner diagram for, 729.
Alloys, composition of, 874.
copper-tin, 876.
copper, zinc, 876.
fusing points, 515 .
percentage of metals in, 291.
strength of, 875,876 .
Alternating current, advantages of, 845.
current secondary systems, grounding, 777.

Alternating-current systems, electric, 845.
Alternators, pulsation of, 835.
Altitude, barometric determination of, 546-551.
influence upon air compressors, 534.
table, metric, 547.
tables, 547-550.
Aluminum, 872, 873.
bronze, 874.
coefficient of expansion of, 513.
fusing point of, 515.
heat transmission through, 523.
specific gravity of, 872 .
specific heat of, 521 .
strength of, 872 .
for structural purposes, 873.
weight of, 872.
American boiler specifications, 670674.
coals, heating value, $610,614$.
coals, tests of, 616-621.
weights and measures, 60-63.
wire gauge, weights of sheet iron, 304.

Ammonia, latent heat of, 522.
Ampere, 761.
Analogies, electrical, 762.
Analyses of boiler scale, 679.
of boiler waters, 680 .
Analysis of coal, 641.
of flue gases, 642.
of indicator diagrams, 705.
Aneroid barometer, 550.
Angle of advance, 724.
of oscillation, 284.
of torsion, 414.
Angles and bends, resistance in, 603.
construction by chords, 108.
construction of, 107, 108.
construction with, 108.
division of, 108.
elements of, 400-410.
of polygons, 110.
sections, moment of inertia of, 376.

Angle valves, 351.
Angström valve gear, 726, 727.
Angular belting, 503.

Angular deflection of shafting, 449. functions, 140.
functions, logarithmic, 187-231.
functions, natural, 142-186.
variation of universal joint, 464.
Antimony, coefficient of expansion of, 512.
fusing point, 515 .
heat transmission through, 523.
specific gravity of, 292.
specific heat of, 521.
Apothecaries' weight, 62.
Apothems of polygons, 110.
Apparent efficiency of electrical apparatus, 838.
Arc lamps, 814.
lamps on constant potential circuits, 789.
lamps, enclosed, 781.
lamps, installation of, 780, 781. series, 780.
Arcs of circles, 121-125.
and segments of circles, 121-127.
of contact, for belts, 495.
Area of chimneys, 647.
of ellipse, 129.
of parabola, 133.
of polygons, 110.
of steam ports, $722,723$.
Areas and circumferences of circles, 112-120.
of flues, 650-651.
of plane figures, 135-137.
of safety valves, 674-677.
for safety valves, board-of-trade, 676.

Simpson's rule for, 137.
Arithmetical progression, 79.
Arkansas coal, heating value of, $610,616,618,619$.
coals, tests of, $616,618,619$.
Armored cables, electric, 787, 800.
Arm sections, transformation of, 466, 467.
Arms for gear wheels, 490.
of gear wheels, 490.
lever, 465.
proportions of, 465.
for pulleys, 497.
Arresters, lightning, 770.
Ashes, 641.

Ash, percentage in coal, 614, 618621.

Ash, wood, strength of, 426-427.
A. S. M. E. code for gas and oil engines, 752-760.
rules for boiler trials, 637.
steam engine code, 698.
Asphalted pipe, water flow in, 561.
Atmosphere, 546.
metric, 546.
Atmospheric pressure, 546-551.
Austrian coals, heating value, 612, 613.

Automatic cutouts, 781.
engines, performance of, 722 .
Auto-starters for electric motors, 772.

Auxiliaries, steam used by, 702.
Auxiliary circles, for bevel gears, 485.

Average strengths of materials, 431-435.
Aveyron coals, heating value of, 611.

Avoirdupois weight, 61.
Axis, neutral, 371.
Axle, crank, 467.

## B

Babbitted bearings, 289.
Babbitt metal, 874.
Back gear ratios, 501. gear speed changes, 502.
Ball bearings, 460-462. on pillar crane, 462.
Balls, safe loads for, 460. weight of, 305, 306.
Ball thrust bearings, 460-462.
Band brake, 704.
Banki engine, 750.
Bar iron, metric weight of, $300,301$. iron, weight of, 295-297.
Barometer, 546. aneroid, 550.
Barometric determination of altitude, 546-550.
leveling, 546-551. tables, 547-550.
tables, British, 549.
tables, metric, 547.
Base circle for gear teeth, 477.

Basic, open-hearth steel, 369.
structural steel, 369.
Batteries, primary, 772, 773.
storage, 772, 773.
Baumé hydrometer, 601.
Bavarian coals, heating value of, 611.

Bazin formula for water flow, 569.
Beams, bending moments for, 384387.
coefficients for deflections, 380 , 381.
coefficients for safe loads, 380, 381.
deflection of, 384-387.
double trussed, 256.
elements of, $380,381$.
framed, 263-265.
loads on, 379.
moment of inertia of sections, 376.
multiple trussed, 257, 258.
safe loads for wooden, $428,429$.
shear in, 249, 250.
simple trussed, 256.
statical moments in, 250.
strength of wooden, $428,429$.
stresses in, 249, 250.
timber, 425.
triple trussed, 257.
trussed, 256, 257.
Bearing metal, 874.
surfaces, engine, 721.
Bearings, 454-462.
babbitted, 289.
ball and roller, 460-462.
cast iron, 289.
collar, 448.
four-part, 457, 458.
friction of thrust, 289.
heating of, 289.
journal, 289.
lubrication of, 289.
for mill shafting, 289.
oil grooves for, 458.
pressure on engine, 721.
pressures on, 289.
projected area of, 289.
roller, 462.
temperature of, 289.
thrust, 448.

Beau de Rochas cycle, 749.
Belgian coals, heating value, 612. roof truss, 259.
Bell metal, 874.
Belting, 493.
angular, 503.
ares of contact of, 495.
centrifugal force of, 494.
horse power of, 494.
rules, 494.
speed of, 493.
tension of, 494.
Belt losses, 498.
Belts, 493.
and pulleys, 493-504.
arrangement of, 502.
creep of, 498.
crossed, 502.
guide pulleys for, 504.
half crossed, 503.
horse power of, 494.
leading-off angle of, 503.
open, 502.
pull of, 504.
quarter twist, 503.
slack side of, 504.
stiffness of, 498.
width of, 494.
Belt transmission, 493.
transmission, losses in, 498.
Bending, 366-371.
boiler plates, 671.
moments for beams, 384-387.
rolls, power required for, 851 , 853, 859.
test, 370.
Bends, pipe, 349.
Bevel gear cutting machines, 485.
Bevel gears, 484, 485.
gears, auxiliary circles for, 485.
gears, rims of, 489.
Binominal coefficients, 78.
theorem, 78.
Birch, strength of, 426, 427.
Birmingham wire gauge, weights of sheet iron, 304.
Bismuth, coefficient of expansion of, 512 .
specific gravity of, 292.
specific heat of, 521 .

Bi-sulphide of carbon, latent heat of, 522.
Blast-furnace gas, 622, 867.
furnace, gas power cost, 867 .
Blowers, power required for foundry, 859.
Board measure, 333, 334.
measure, table of, 334.
Board of Trade, boiler specifications, 653-658.
of Trade rules for boilers, 653-659.
of Trade areas for safety valves, 676.
of Trade unit, 762.
Bohemian coals, heating value of, 613.

Boiler braces, 671-673.
braces, factor of safety of, 673.
bracing, 656.
calking, 672.
capacity, $634,635,645,646$.
details, 653-663.
domes, 673.
drums, 673.
efficiency, 634, 635, 642.
efficiency, calculation of, 642.
and engine test, complete, 700.
factors of safety, 673.
feed water, 677.
feed water, analyses of, 680.
furnace flues, 657.
furnaces, corrugated, 615, 618, 657, 660.
furnaces, stiffened, 657.
furnaces, strength of, 657.
hanging, 674.
heat balance, 642.
horse power, $634,635$.
horse power, Centennial standard, 635.
horse power, commercial, 635.
incrustation, causes of, 678.
man-holes, 673.
materials, 611-616, 670, 671.
materials, tests of, 655.
performances, 862.
plate rolls, power required for, 859.
plates, bending, 671 .
plates, flanging, 671.
plates for flanging, 657.

Boiler plates, forming, 671. plate, tensile strength of, 655.
pressures, 664-668.
proportions, 669.
riveting, 439, 672.
riveting, pitch of, 653.
riveting, rules for, 653.
rivets, 671.
saddles, 673.
scale, 679.
scale, analyses of, 679.
shells, 655.
shells, factor of safety, 655.
shells, materials for, 655.
shells, proportions of, 655.
specifications, 670-674.
staybolts, 656, 671, 673.
stay, girders, 658.
stays, 656, 658.
stays, loads on, 658.
supporting, 674.
surfaces, flat, 672.
suspension, 674.
testing, hydrostatic, 674.
tests, 862.
trials, A. S. M. E. rules, 637.
trials, conditions of, 639.
trials, duration of, 638.
trials, records of, 640.
trials, report of, 643.
trials, rules for, 637-646.
trials, starting and stopping, 639.
troubles due to water, 678.
tube holes, 672.
tube plates, 659.
tube setting, 673.
tubes, 661, 671.
tubes, draught area through, 646.
tubes, extra strong, 323.
tubes, lap welded, 323-338.
tubes, standard, 661.
workmanship, 671-673.
Boilers, 634-680.
causes of corrosion in, 679.
Cornish, 645.
cylinder, 645.
draft area of, 646.
evaporation in, 634.
evaporative power of, $634,646$.
evaporative performance, 635 .
evaporation test, 862.

Boiler, examination of, 637.
flow of gases in, 635.
grate surface of, $645,646$.
heating surface of, 645, 646.
hydrostatic test, 674.
incrustation in, 677-680.
locomotive, 645.
prevention of corrosion in, 679.
prevention of incrustation in, 678.
prevention of priming in, 679.
return tubular, 645.
Scotch, 645.
steam, 634-646.
water tube, 645.
working pressures, 664-668.
tubes, 323, 338.
waters, analyses of, 680.
Bolted flange joints, 440.
Bolts, 440-442.
for flange joints, 440.
for plate couplings, 463.
proportions of stay, 662.
for steam cylinders, 440.
screw, 312, 313.
stresses on, 440.
weight of, 310, 311.
Bolt threads, 441.
Bomb calorimeter, 609.
Boom, framed, 264, 265.
Boring mill, power required for, 842.

Bosnian coals, heating value of. 613.

Boussinesq, formula for perimeter of ellipse, 128.
Boxes, resistance, 770.
Box wood, strength of, 426, 427.
Boyle's law, 546.
Bracing, boiler, 656.
Braces, boiler, 671, 673.
Brake, band, 704.
rope, 704.
water, 704.
horse power, 704.
Brass, 874.
coefficient of expansion of, 512, 513.
fusing point of, 515.
heat transmission through, 523.
specific gravity of, 292.
specific heat of, 521 .

Brass, strength of, 433.
wire, 325.
working tools, power required for, 858.

Brazing metal, 874.
Brasses, connecting rod, 471.
Breast water wheels, 583.
Brick, coefficient of expansion of, 512.
conduits, water flow in, 561.
strength of, 435.
Bridge rivets, weight of, 309.
Bridge trusses, 265, 266.
British coals, heating values, 610.
measures of volume, 63.
money, 64.
steam table, 625-627.
thermal unit, 516.
thermal units to calories, conversion table, 517.
thermal unit, value in foot pounds 521.
weights and measures, 60-63.
Brittleness, 290.
Bronze, aluminum, 874.
coefficient of expansion of, 513. coin, 874.
fusing point of, 515.
manganese, 874.
phosphor, 874.
specific gravity of, 292.
strength of, 433.
Brotherhood hydraulic motor, 606.
Brownlee's formula for discharge of steam, 631.
Brown valve gear, 726, 727.
Brunswick coals, heating value of, 610.
B. T. U., 516 .
to calories, 517.
Buildings, heating of, 526 . near transmission lines, 776.
Bullock system of speed control, 848.

Bulging, resistance to, 656.
Bumped heads for boilers, 672, 673.
Butt straps, boiler, 655.
Bureau veritas rules for boilers, 653-658.
Bus-bars, 769.
spacing of, 811.

Butterfly valves, 351.
Butt-joint riveting, 437.

## C

Cabinets, cutout, 811.
Cables, armored, 787, 800.
electrical, 763.
Calcium carbonate in feed water, 677.
sulphate in feed water, 677.
Calculus, differential and integral, 238-241.
Calibrating indicator springs, 703.
Calking boiler, 672.
Calorie, 516.
value in kilogrammetres, 521.
Calories to British thermal units, conversion table, 518.
to foot pounds, conversion, 519.
Calorific power, 608.
power of blast-furnace gas, 623.
power of coal gas, 623.
power, computation of, 608.
power of fuels, 608, 609, 615.
power of gas fuels, 623.
power of natural gas, 622 .
power of producer gas, $622,623$.
power of water gas, 623.
power of wood, 614.
tests of coal, 641.
value of fuels, table, 609.
value, higher, 605.
value, lower, 615.
Calorimeter, barrel, 633.
steam, 640.
throttling, 633.
Calorimetric bomb, 609.
Calorimetry, 608, 609.
Canals, flow of water in, 569-572.
Cantilever beams, 263.
Cantilevers with straight members, 263.

Capacity of steam boilers, 635.
steam engine, 698.
of wires, carrying, 779.
Caratonk falls, water power plant costs, 861.
Carbonate of lime, solubility of, 679.
of magnesia, solubility of, 679.
Carbon, coefficient of expansion of, 513.

Carbonic anhydride, specific heat of, 522.
oxide, specific heat of, 522 .
Car-houses, electric, 794.
wiring, 794.
Carnol cycle, 709.
Carrying capacity of wires, 779.
Cars, equipment of electric, 790794.

Cartridge fuse, 808-810.
Car wiring, 790-794.
Cast-iron columns, 389.
columns, safe loads for, $411,412$.
expansion and contraction of, 514.
pipe, 319-322.
pipe connections, 322 .
pipe fittings, 347.
pipe, metric system, 319.
pipe, standard dimensions of, 320 , 321.
pipe, water flow in, 561.
pipe, weight of metric, 308. pipe, weight of British, 307.
spheres, weight of, $305,306$.
Catenary, 246-249.
Causes of boiler incrustation, 678. of corrosion in boilers, 679.
of priming in boilers, 679.
Cedar, strength of, $426,427$.
Cement, strength of, 435.
Centennial boiler, horse power, 635.
Centigrade expansion coefficients, 513.
to Fahrenheit, conversion table, 510.
thermometer, 508.
Central forces, 282.
Centre of gravity, 250-254.
of gravity experimentally determined, 252.
of gravity graphical determination of, 251.
of gravity by method of moments, 251.
of gravity of plane figures, 252 , 253.
of gravity of solid figures, 253, 254.
of gyration, 280.
of hydrostatic pressure, 602.
of oscillation, 284, 285.

Centre of pressure, 601, 602.
of suspension, 284, 285.
Centrifugal force, 282.
force of a ball, 283.
force of belting, 494.
force of a cylinder, 283.
force of a disk, 283.
force of a ring, 283.
force of Manila rope, 505.
pumps, 604, 605.
Centripetal force, 282.
C. G. S. units, 761 .

Chain, 327.
Chains, crane, 327.
Chain sheaves, 327.
Changes in cross section of pipes, 603.

Channel sections, moment of inertia of, 376.
Channels, elements of, $382,383$.
flow of water in open, 569-576.
moment of inertia of, 376.
Charging machine, power required for, 855.
Charleroi coals, heating value of, 612.

Check valves, 351 .
Chestnut, strength of, 426, 427.
Cheval-vapeur, 680.
Chézy formula, 561.
Chimney dimensions, table of, 648.
flues, 650, 651.
flues, area of, 650, 651.
formulas, 647, 648.
formulas, metric, 648.
Chimneys, 647-649.
height of, 647.
proportions of, 647.
Chlorine, specific heat of, 522.
Choice of electric motors, 845 .
of electric systems, 845.
Choke coil for lightning arrester, 770.

Choke coils, 770, 771.
Chords, table of, 109.
of circular ares, 121-127.
Circle, 111.
area of, 111.
circumference, of, 111.
diameter of, 111.
formulas, 111.

Circle, ratio of diameter to circumference, 111.
zone, surface of, 138.
Circles, 111-127.
arcs and segments of, 121-127.
areas and circumferences of, 112120.
areas and circumferences by eighths, 112.
areas and circumferences by sixteenths, 112.
extension of tables for, 120.
tables of, 112-120.
Circuit-breakers, 779, 806-808.
for electric cars, 791.
for electric motors, 771.
general rules for, 779 .
for railway power plants, 772.
Circular arc, centre of gravity of, 254.

Circular arcs and segments, 126, 127.

Circular mils, 763.
motion, accelerated, 280.
pitch table, 481.
plates, deflection of, 417.
ring, area of, 136.
segment, centre of gravity of, 253.
sector, centre of gravity of, 253.
tanks, contents of, 579.
Circulating water, volume of, 731.
Circumference of circle, 111.
Circumferences and areas of circles, 112-120.
Circumferential and diametral pitch, 476.
pitch, 475.
Classification of locomotives, 735.
Clearance, cylinder, 688.
and expansion ratio, 688.
space, engine, 722.
in steam engines, 688, 722.
Clutch, cone, 464.
couplings, 464.
Coal, analysis of, 641.
calorific tests of, 641.
determination of character, 637.
determination of moisture in, 640. gas, 866.
gas, calorific power, 623.
gas, power cost, 866.

Coal, heating values of, 610-621. measurement in engine tests, 702. mine water, 680.
and oil, comparative evaporation of, 622.
and oil, relative value, 622.
percentage of ash in, 614.
sampling of, 640.
specific gravity of, 292.
tests of American, 616-621.
theoretical heating values of, $610-$ 614.
unit, standard, 698.
Code, A. S. M. E.gas engine, 752.
A.S. M. E. pumping engine, 596.
A. S. M. E. steam boiler, 637.
A. S. M. E. steam engine, 698.
national electric, 767-823.
Coefficients of air discharge, 533.
binomial, 78.
of discharge of water, 559.
for deflection, 379.
of expansion, Fahrenheit, 512.
of expansion, centigrade, 513.
of friction, $288,289$.
for heat transmission, 522.
for pipe flow, 561.
of radiation, 523.
for safe load, 379.
of wear on gear teeth, 488.
Coils, compensator, 789.
economy, 789.
reactive, 816.
Coinage, fineness of, 64.
Cold saw, power required for, 850.
Collar bearings, 448.
friction in, 289.
Collision, 286, 287.
Colorado coals, tests of, 616, 619.
Columbia, S. C., water power costs, 861, 862.
Columns, 388.
cast-iron, 389, 411, 412.
elements of Z bar, 398.
round cast-iron, 411.
safe loads for cast-iron, 411, 412.
square cast-iron, 412.
Combustible, distribution of heating value, 643.
Combustion, air required, 649.
draught pressure for, 649.

Combustion, motors, internal, 749760.
rate of, 649 .
Commercial cut-off, 706. engine test, 699.
horse power of boilers, 635.
test of steam plant, 699.
Commutating machines, 828.
electrical 826.
losses in, 828.
Comparative evaporation of coal and oil, 622.
steam consumption, 748.
Compensators, synchronous, 837.
Complete engine and boiler test, 700.

Composition of alloys, 874 .
Compound engine tests, 863.
Compound engines, 690, 691.
engines, cylinder ratios for, 690.
engines, performance of, 721, 863.
expansion, 690.
interest, 59.
interest table, 59.
mechanical quantities, 242.
non-condensing engines, performance of, 863 .
pendulum, 285.
shapes, moment of inertia of, 377379.
shapes, radius of, gyration of, 378, 379.
steam engine, 690.
Compressed air, 531-544.
air, flow in pipes, 535.
air, motors, 534.
air, reheating of, 535 .
air, required for motors, 534.
air, velocity of escape, 532.
Compression, 366, 370.
adiabatic, 533 .
of air, power required for, 537.
curve, 705.
curve for gas engines, 751.
and expansion of air, 531.
in gas engines, 749.
isothermal, 533.
space in gas engines, 750 .
Compressing air, work required in, 533.

Compressor efficiencies, 534.

Compressors, influence of altitude upon, 534.
Computation of calorific power, 608.
Concord, N. H., water power costs, 861, 862.
Concrete, strength of, 435.
Condensation, cylinder, 690.
initial, 690.
Condensers, 730-732.
electrical, 816.
gain due to, 730 .
losses in electric, 838.
size of, 730 .
surface, 731, 732.
Condensing engines, performance of, 721, 863.
plant, electrically driven, 858.
water, 730.
Conditions of boiler trials, 641.
Conductivity, Matthiessen's standard, 765.
Conductors, electrical, 769.
flexible cord, 788, 798.
station, 769.
temperature coefficients for electrical, 832.
underground, 778.
Conduit system for electric cars, 791.
wire, 800, 801.
Conduits, electric, 802.
interior, 801.
Cone, centre of gravity of, 253.
clutch, 464.
surface of, 138.
surface of frustum, 138.
volume of, 139.
coupling, 463.
pulleys, 498-501.
pulleys for crossed belts, $498,499$.
pulley diagram, 501.
pulleys for open belts, 499.
Conic frustum, centre of gravity of, 254.
frustum, volume of, 139.
Connecting rods, 468-471.
rods, formulas for, 469.
rod, marine type, 470.
rod, stub end, 471.
Connecting-rod ends, 469-471.
Connections, riveted, 436.

Constant current electric systems, 780.

Constant-potential systems, 781.
Constitution of structural steel, 369.
Construction, materials of, 290-435.
Consumption, materials of, 290.
Contact, arcs of belting, 495.
Contents of pipes, $577,578$.
Contraction of gases, 515.
and expansion of cast-iron, 514.
Conversion of British thermal units to calories, 517.
of calories to British thermal units, 518.
of calories to foot pounds, 519.
of centimetres to mils, 766 .
of foot pounds to calories, 520 .
of fractions, 24.
of inches to feet, 24.
of mils to centimetres, 766.
table, centigrade to Fahrenheit, 510.
table, Fahrenheit to centigrade, 509.
tables, metric, 66-77.
Cooling water for gas engines, 752.
Copper, coefficient of expansion of, 512-513.
fusing point of, 515 .
heat transmission through, 523.
pipe, metric weight of, 340.
radiation from, 523.
specific gravity of, 292.
specific heat of, 521.
strength of, 433.
weight of sheet, $302,303$.
tin alloys, 876.
wire, 325.
wire, strands of, 762.
wire table, 764, 765.
wire, weight of, 325.
zinc-tin alloys, 875.
Cord friction, 495, 496.
friction, on pulleys, 495.
Cord polygon, 243.
Corliss engines, performance, 721.
Cornish boiler, 645.
boiler, heating surface, 646.
Corrosion in boilers, causes of, 679.
in boilers, prevention of, 679 .
Corrugated furnaces, 657-660.

Corrugated furnace, Fox, 657. furnace, Purves-Brown, 657.
furnaces, working pressure, for 659.
iron, $332,333$.
iron, weight of, 332.
Cosecant, 141.
Cosecants, logarithmic, 187-231.
natural, 142-186.
Cosine, 141.
Cosines, logarithmic, 187-231. natural, 142-186.
Cost of electric plants, 864.
of electric power, 868, 869 .
of gas power, 867,868 .
of power, 861-869.
of steam engines, 865 .
of steam power, 862-865.
of water power, 861,862 .
of water power plants, 861 .
Costs of steam plants, 864 .
Cotangent, 141.
Cotangents, logarithmic, 187-231. natural, 142-186.
Cotter, 443.
dimensions of, 443.
Cotters for cross heads, 473.
Cottonwood, water power costs, 861, 862.
Cotton rope transmission, 507.
Coulomb, 761.
Counters, speed, 705.
Coupling, clutch, 464.
muff, 462.
plate, 463.
for propeller shafts, 463.
sellers, 463.
Couplings, 462-464.
Coversed sine, 141.
Crane, ball bearings on, 462.
Crane chain, 327.
Cranes, electric, 843.
power required for, $856,857,860$,
Crank arm, graphical analysis of, 468.
axle, 467.
graphical analysis of, 468.
pins, dimensions, 722.
pins, locomotive, 289.
pins, pressure on, 289, 721.
pins, steam engine, $721,722$.

Cranks, 467-468.
proportions of, 467.
Creep of belts, 498.
Crocker-Wheeler system of variable speed control, $870,871$.
Crossed belts, cone pulleys for, 498 , 499.

Cross heads, 473, 474.
Cross-head pin, 722.
pin, dimensions, 722.
pin, pressure on, 722.
pressure on, 722.
proportions, 473.
Cross section of pipes, changes in, 603.

Crossing of high voltage lines, 775.
Crushing, 366, 370.
Cube root, 25.
roots, table of, 27-57.
Cubes, table of, 27-57.
Cubic feet, contents of cylinders in, 577, 578.
foot, contents in gallons, 62.
Current wheel, 582.
Curtis steam turbine, 746, 747.
Curve, compression, 705.
expansion, 681.
hyperbolic, 690.
isothermal, 689.
polytropic, 690.
resistance on railways, 736.
of swiftest descent, 269.
Curves for Fourneyron turbine, 587.
for Jonval turbine, 590.
thermal efficiency, 710.
Cut-off, commercial, 706.
most economical point of, 688.
point of, 706.
Cutout cabinets, 811.
Cutouts, 779, 806-808.
automatic, 781.
for electric cars, 791.
general rules for, 779 .
Cycle, Beau de Rochas, 749.
Carnot, 709.
Rankine, 709.
Cycloid, 134, 269.
Cycloidal, curves, 134, 135.
Cylinder boiler, 645.
boiler, heating surface, 646.
condensation, 690.

Cylinder boiler, pressure in, 417.
proportions, steam, 689.
ratios for compound engines, 690.
ratios for quadruple-expansion engines, 691.
ratios for triple expansion engines, 690.
volume of, 139.
Cylinders, bolts for steam, 440.
contents of, $577,578$.
thick, 418.
Cylindrical boilers, working presssures for, 664-668.
Cylindric surface, centre of gravity of, 254.

D
Dalmatian coals, heating value of, 613.

Dam, pressure on, 559.
Data for pumping engine trial, 596.
and results of duty trials, 508.
and results of engine tests, 712.
and results of evaporative test, 644.

Deane steam pumps, 594.
Decimal numbers, roots of, 26.
Decimals and fractions, 24.
Decimals of a foot, conversion of inches to, 24.
Deck beam sections, moment of inertia of, 376.
Deflection of beams, 384-387.
of beams, cœfficients for, 380381.
of circular plates, 417.
of shafting angular, 449.
of shafts, $452,453$.
of springs, 419-422.
DeLaval steam turbine, 746, 747.
Delivery of air through mains, 538 , 539.
of air through pipes, 536.
of pumps, 591-593.
Delta metal, 874.
Density, 290.
of water, 551-556.
and volume of water, metric system, 556.
Depreciation, 877.
Derbyshire coal, heating value of, 610.

Design, machine, 436-508.
Details of electrical construction, 796-816.
of steam boilers, 653-663.
Detectors, ground, 771.
Diagram for Bazin formula, 569, 570.
for cone pulleys, 501.
factor indicator, 707.
gas engine, 750.
for Kutter's formula, 572.
for multiple-expansion engines, 691.
polytropic, 690.
temperature-entropy, 666.
for water flow, Kutter, 572.
for water flow, Bazin, 570.
Diagrams, analysis of indicator, 705.
indicator, 692.
for shaft deflection, 452-453.
Diametral pitch, 476.
and circumferential pitch, 476. pitch formulas, 480.
pitch, lineal value of, 476.
pitch table, 482.
Diamond, specific heat of, 521.
Dielectric strength, 833.
Diesel motor, 750.
motor, ignition in the, 531.
Differential calculus formulas, 240.
and integral calculus, 238-241.
Dimensions of chimneys, table, 648.
of gear teeth, 487.
of pipe fittings, 349, 350.
of pumps, 590 .
of slide valve, $727,728$.
Direct current, advantages of, 846 , current electric system, 846.
heating, 526.
Directrix of parabola, 132.
Discharge, ccefficient of, 559.
of steam, 630, 631.
of steam, Brownlee's formula for, 631.
of steam, Napier's rule for, 631.
of water, 559 .
of water from nozzles, 559.
of water through pipes, tables, 563, 564.
of water through square orifices, 581.

Distance, 242.
Distribution, electrical, 823-826.
of heating value, 643.
of hydraulic pressure, 606.
Division of angles, 108.
of lines, 107.
Domes, boiler, 673.
Double-acting pumps, delivery of, 591-593.
Double angles, 406-410.
angles, elements of, 406-410.
extra strong pipe, 337.
ball and socket bearing, 459.
loaded frames, 264.
riveted joints, 653, 654.
trussed beams, 256.
Draft area through boiler tubes, 646. chimney, 649.
pressure for different fuels, 649.
required for combustion, 649. tube, turbine, 588.
Drilling machines, power required for, 852.
Drill presses, power required for, 841.
Driving, advantages of electric, 839.
Driving rig for indicator, 703.
Drop test, work of, 369.
Drums, boiler, 673.
Dry measure, 63.
British, 63.
Ductility, 368.
of rivets, bars, 653.
Dulong's calorimetric formula, 608.
Duplex feed pumps, Knowles, 595. feed pumps, Worthington, 595. steam pumps, 594, 595.
Duration of boiler trials, 638.
of engine test, 699.
Duty trials, data and results, 598.
trials of pumping, engines, 596599.

Dynamical formulas, 276, 279.
Dynamic momentum, 279.
Dynamics, 276-287.
Dynamo bearing, 459.
rooms, 768-773.
Dynamos, 768.
(see Generators, )
overload capacities of, 837 .
rating of, 836.
regulation of, 835 .

## E

Eccentrics, 471, 472.
Eccentric bolts, 472.
imaginary, 727.
straps, 472.
Economical length of engine stroke, 689.
point of cut-off, 688.
Economy of actual and ideal engines, 709.
coils, 789.
standard of steam engine, 707.
Eddy currents, 831.
Effective fire streams, 568.
Efficiency, boiler, 642.
calculations of boiler, 642. curves, thermal, 710.
of electrical machinery, 828.
of gearing, 491.
of heat motors, thermal, 691.
of hydraulic accumulator, 606.
of phase displacing apparatus, 837.
of riveted joints, 437 .
of Reynolds pumping engine, 692.
standard of steam engine, 707.
of steam boilers, $634,635$.
of steam engine, maximum, 692.
of steam engines, thermal, 692.
Efflux of compressed air, 532.
of steam, velocity of, 631.
Elastic bodies, impact of, 287.
limit, 367, 368.
limit of wood, 425.
Elasticity, 367.
modulus of, 367.
of springs, 419-422.
of timber, 425.
Elbows, resistance to steam flow, 633.

Electrical analogies, 762.
apparatus, apparent efficiency of, 838.
apparatus, efficiency of, 828 .
apparatus, overload capacity, 747.
apparatus, pulsation in, 835 .
apparatus, rating of, 836 .
apparatus, regulation, 834 .
apparatus, rise of temperature, 831.
apparatus, variation in, 835 .

Electrical cables, 763.
conductors, 769.
construction, details of, 796-816.
fittings, 796-816.
horse power, steam consumption per, 748.
induction apparatus, rotary, 827.
induction apparatus, stationary, 827.
insulation, 833.
machines, commutating, 828.
machines, synchronous, 829
machines, synchronous commutating, 829.
machinery, efficiency, 828.
machinery, rise of temperature in, $831,832$.
and mechanical units, 761.
standardization, 828-839.
units, 761.
units, equivalents of, 761.
wiring formulas, 823-826.
work, inside, 778.
work, general suggestions for, 767.
work, marine, 819-823.
work, outside, 773-777.
Electrically driven condensing plant 858.

Electric cable, 763.
cable, armored, 800.
circuit breakers, 806.
car-houses, 794.
cars, equipment of, 790-794.
car wiring, 790-794.
code, national, 767-824.
conduits, interior, 787.
conduits, metal, 801.
cranes, $843,844$.
cranes, power required for, 843$856,857$.
cutouts, 806.
driving, 839-860.
driving of machine tools, 840845.
fittings, general rules for, 796.
fixtures, 788.
fixture wire, 799.
fuses, 808.
gas lighting, 818.
generators, 768.

Electric generators, location of, 768. heaters, 783.
lamp sockets, 813.
lighting fixtures, 788.
motors, 771, 772.
motors, choice of, 845 .
motors, installation of, 771.
motor tests, 850-860.
plants, cost of, 864.
power, cost of, 868,869 .
power transmission, 760.
signaling systems, 816-818.
sockets, $788,813,814$.
stations, 768-773.
switches, 803.
systems, alternating, 845.
systems, choice of, 845.
systems, constant current, 780 .
systems, constant potential, 781.
system, direct current, 846.
systems, extra high potential, 795.
systems, high potential, 794.
systems, low potential, 783-794.
Electricity and water flow compared, 762.
Elements of angles, 400-410.
of beams, $380,381$.
of channels, $382,383$.
of double angles, 406-410.
of structure sections, 373 .
of structural shapes, 379.
of tees, 399.
of Z-bars, 396, 397.
Elementary mechanical quantities 242.

Ellipse, 128-131.
area of, 129 .
axes of, 131.
construction of, 128.
equation of, 128.
perimeter of, 128-130.
table for perimeter, 130.
tangent to, 126, 131.
Ellipsoid, volume of, 139.
Elliptical arc, centre of gravity of, 254.

Emery wheels, power required for, 842.

Emission of heat, 523.
Enclosed arc lamps, 781.

Enclosed fuse cutouts, 807. fuses, 808-810.
Ends for connecting rods, 469-471.
Energy of water jets, 559 .
Engine bearings, 456-458.
bearings, pressures on, 289.
capacity, 698.
compound, 690.
cranks, $467,468$.
dimensions, measurement of, 699.
economy, standard of, 707.
efficiency, standard of, 707.
feed-water test of, 714.
parts, sizes of, 722 .
performance, 695-697, 721.
plant, examination of, 698.
proportions, 721.
shaft, size of, 722.
steam, 680-748.
speed, 704.
tests, 863.
test, duration of, 799.
tests, forms for, 712.
tests, heat unit basis for, 697.
tests, measurement of coal in, 702.
tests, recording, 705.
tests, report of, 711.
tests, rules for, 698.
test, starting and stopping, 700.
tests, table of, 717-720.
Engines, cylinder ratios for compound, 690.
cylinder ratios for quadruple expansion, 691.
cylinder ratios for triple expansion, 691.
gas, 749-760.
heat analysis of, 708 .
maximum efficiency of, 692.
measurement of steam consumption, 701.
multiple expansion, 690.
performance of automatic, 721 .
performance of compound, 721.
performance of condensing, 721.
performance of non-condensing, 721.
performance of slide valve, 721 .
pressure on wearing surface, 721.
thermal efficiency of, 692.

Engines, water consumption of, 693, 694-697.
English roof truss, 261.
Entropy diagram, 708, 709.
Epicycloid, 135.
Epicycloidal gear teeth, 476-477.
Equalizers, 770.
Equations, 80.
quadratic, 81.
Equilibrium of forces, 242.
Equipment of electric cars, 790-794.
Equivalent decimals of fractions, 24. eccentric, 727.
evaporation, 635.
of heat, mechanical, 521.
Escape of compressed air, 532.
Ether, specific heat of, 521.
Evaporation in boilers, 634.
of coal and oil, relative, 622.
equivalent, 635.
factors, 635, 636.
rate of, 646.
tests of boilers, 862 .
Evaporative capacity of boilers, 645.
power of fuels, 609.
performance of boilers, 635.
power of boilers, 646.
power of liquid fuels, 622.
tests of boilers, 644.
tests, data and results, 644.
Evolute, 134.
Evolution, 25.
Examination of boiler for testing, 637, 638.
of engine plant, 698.
of steam boilers, 637.
Exhaust pipe, 722.
Expansion, adiabatic, 708.
coefficients, centigrade, 513.
coefficients, Fahrenheit, 512.
of compressed air, 531.
and compression of air, 529-531. compound, 690.
and contraction of cast-iron, 514. curve, 689.
curve in gas engines, 751.
of gases, $515,516$.
linear, 512, 513.
of metals, table, 514.
multiple, 690.
ratio, 688, 707.

Expansion, ratio and clearance, 688.
of steam, 680-690.
superficial, 512, 513.
tables, 686, 687.
volume, 512, 513.
Explosion pressure in gas engines, 751.

Exponents, 78.
negative, 78.
rules for, 78.
External gear teeth, 477.
Extra heavy flanges, 346.
high potential electric systems, 795.
strong pipe, 337.
strong wire rope, 360-364.
Extraction of roots, 25, 57.
Eye bars, 355.
Eye-bar steel, 424.
Factoring, 7.
method for roots, 25.
Factors of evaporation, 635, 636.
Factor of safety boiler, 673.
of safety of boiler braces, 673 .
of safety of boiler shells, 655 .
of safety of flat boiler surfaces, 673.
of safety of riveting, 653.
of safety of rivet seams, 673.
of safety of stay bolts, 673 .
table, 7-23,
Fahrenheit to centigrade conversion table, 509.
expansion coefficients, 512.
scale, origin of, 508.
thermometer, 508.
Falling bodies, 267.
bodies, British table of, 270, 271.
bodies, metric table of, 272, 274.
Farad, 761.
Fastenings, 436.
keyed, 443.
Feathers, shaft, 443.
Feed pumps, Knowles duplex, 595.
Worthington duplex, 595.
water, 677.
water, analyses of, 680.
water, boiler, 677 .
water, calcium carbonate in, 677.
water, calcium sulphate in, 677.
water heating, 635.

Feed pumps, water, impurities in, 677.
water, measurement of, $637,638$. water, measurement of, 701. water purification, 677-680. water, sulphuric acid in, 678. water, temperature of, 701. water, test of steam engine, 714.

## P

Fibre stress, 366. stress, maximum, 371.
Fillister head screws, 316, 317.
Fineness of gold or silver, 64.
Fine screw threads, British standard, 314.

Fink link motion, 726.
Fire brick, coefficient of expansion of, 512.
streams, 568.
Fir wood, strength of, 426, 427.
Fittings, cast-iron pipe, 347. dimensions of pipe, $334,348,349$. electrical, 796-816. general rules for electric, 796. steel pipe, 348.
Fixture wire, 799.
Fixtures, electric, 788.
Flagging, 332.
weight of, 332.
Flange joints, 440.
joints, bolts for, 440.
Flanges, 341-346.
extra heavy, 345.
standard, 341.
welded steel, 342-345.
Flanging boiler plates, 657.
plates for, 657.
Flat boiler plates, 656.
boiler surfaces, 672.
head screws, 316. iron, metric weights of, 300. iron, weight of, 295-297. plates, proportions for, 656.
stayed surfaces, 662.
Flexible cord, electric, 788, 789, 798, 799.

Floor glass, 332.
Flow of air in pipes, 535-545. of air through orifices, 540. of compressed air in pipes, 535.

Flow of gases in boilers, 635.
of steam, 630-633.
of steam in pipes, 631, 632.
of steam, Brownlee's formula for, 631.
of steam, Napier's rule for, 631.
of water, 561-575.
of water, Bazin formula, 569 . of water, and electricity compared, 762.
of water, Kutter formula, 569.
of water in fire hose, 568.
of water in open channels, 569576.
of water, resistance of bends, 603. of water, resistance of valves, 603.
of water through pipes, 561-567.
Flue gases, analysis of, 642.
Flues, area of chimney, 650, 651.
furnace, 657.
velocity of air in, 650, 651.
Fluid, soldering, 819.
Fly wheels, 282.
wheels, rules for weight, 722.
wheels, safe speeds for, 734.
wheels, strength of, 734 .
wheels, weight of, 733.
Focus, of ellipse, 128.
of hyperbola, 134.
of parabola, 132.
Foot, decimals of, 24.
pound, 277.
pounds to calories, conversion, 520.
ton, 277.
Force, 242.
diagrams, 243-266.
of gravity, 269.
in moving bodies, 279.
and motion of masses, 279.
polygon, 243.
Forces, central, 282.
equilibrium of, 242.
represented by lines, 242.
Forestry division, experiments of U. S., 425.

Forming boiler plates, 671.
Form of gear teeth, 476.
Forms for boiler tests, 644, 645.
for gas engine tests, 755.
for pumping engine tests, $562,563$.

Forms for steam engine test, 712716.

Foundry blowers, power required for, 859.
power required for, 859 .
Fourneyron turbine, 587.
turbine, curves for, 587.
Four-part bearings, 457, 458.
Four-point ball bearings, 460.
Fox corrugated furnaces, 657, 659.
Fractions, 24.
conversion of, 24.
equivalent decimals of, 24.
reduced to decimals, 24.
Framed beams, 263-265.
boom, 264, 265.
structures, statics of, 255-266.
Frameworks, graphical statics of, 263-265.
Francis turbine, 588.
French anthracite, heating value of, 611.
coals, heating value, 611.
roof truss, 259.
Frequencies, classifications, 836.
Frequency changers, 831.
Friction, 288, 289.
of air, 542-545.
of air in pipes, 542-545.
coefficients of, 288, 289.
journal, 289.
loss of water-head by, 565 .
Morin's laws of, 288.
plane sliding, 288.
on pulleys, 495.
of thrust bearings, 289.
Tower's experiments on, 289.
of water in pipes, 565-567.
Frustum, centre of gravity of conic, 254.
centre of gravity of pyramidic, 254.
of cone, surface of, 138.
volume of conic, 139.
volume of pyramidic, 140.
volume of wedge, 140.
Fuel, 608-622.
measurement, 702.
Fuels, calorific power of, 608.
calorific values of, 615.
classified, 608.

Fuels, draught pressure for, 649.
evaporative power of, 609.
evaporative power of liquid, 622.
gaseous, 608, 622, 623.
liquid, 608.
solid, 608.
table of calorific values, 609.
tests at Louisiana Purchase Exposition, 618-621.
thermal value of, 608.
Funicular polygons, 245.
Furnace flues, 657.
gas power, cost, 867 .
Furnaces, corrugated, 657, 660.
Morison suspension, 658.
stiffened, 657.
strength of short, 657.
working pressures for Morison, 660.

Fuse dimensions, 810.
terminals, 809.
test, 809.
Fuses, 782, 808-811.
electric, 808.
Fusible metals, 515.
Fusing points, 515.
Fusion, latent heat of, 522.

## G

Gallon, British, 63.
Imperial, 63.
U. S. A., 62.
weight of, 62.
Gallons, contents of cylinders in, 577, 578.
number in cubic foot, 62.
Galvanizing plant, electric driving, 854.

Gas engine, 749-760.
engine, compression space in, 750.
engine, cycle, 749.
engine, diagram, 750.
engine, expansion curve in, 753.
engine, explosion pressure in, 753.
engine, forms for testing, 755-759.
engine, fuel measurement, 753.
engine, heat balance of, 755 .
engine, heat test for, $758,759$.
engine, heat-unit consumption, 753.
engine, jacket water for, 752-753.

Gas engine, mean effective pressures, 752.
engine passages, 752.
engine, power of, 751 .
engine proportions, 751.
engine standards of economy and efficiency, 754.
engine testing, 752-760.
engine tests, $865-868$.
engine, thermal efficiency, 750.
Gaseous fuels, 608, 622, 623.
fuels, calorific values of, 615.
Gases, analysis of flue, 642.
contraction of, 515.
expansion of, 515,516 .
flow in boilers, 635.
specific gravity of, 293.
specific heat of, 522.
volume reduction of, 760 .
Gas, blast furnace, 867.
coal, 866.
consumption in engines, 865-868.
fuels, calorific power of, 623.
lighting, electric, 818.
natural, 865.
and oil engines, A. S. M. E. code, 752-760.
power, 865 .
power, cost of, 867,868 .
power cost, blast furnace gas, 867 .
power cost, coal gas, 866 .
power cost, natural gas, 865 .
power cost, producer gas, 866 .
producer, 866.
Gate valves, 352.
valves, resistance due to, 604.
Gauges, sheet metal, 326.
wire, 324.
Gay Lussac hydrometer, 601.
Gear cutting machines, bevel, 485.
Gearing, 474-493.
efficiency of, 491.
proportions of, 492.
Gears, bevel, 484, 485.
coefficient of wear on, 488.
hoisting, 486.
spiral, 485.
transmission, 486.
wear on, 487.
Gear teeth, dimensions of, 487.
teeth, external, 477.

Gear teeth, form of, 476.
teeth, internal, 477.
teeth, interference of, 479 .
teeth, strength of, 483.
teeth, stresses in, 487.
teeth, wear on, 488.
teeth, wooden, 488.
teeth, working stresses, 483.
wheels, arms of, 490.
wheels, cutters for, 476.
wheels, hubs of, 491.
wheels, pitch of, 475.
wheels, proportions of, 486-493.
wheels, radii of, 475.
wheels, rims of, 488.
wheels, table of proportions, 492.
General wiring rules, 778.
Generating units, regulation of, 834.
Generators, insulated frames for, 768.
location of electric, 768.
Geometrical progression, 79 .
Geological survey fuel tests, 616621.

Geometry, 107-140.
German coals, heating values, 610 .
Lloyd's rules for boilers, 653-658.
rules for safety valves, 677.
silver, 874.
silver, coefficient of expansion of, 513.
silver, heat transmission through, 523.

Gib and cotter, 443.
Girders, boiler stay, 658.
Glass, coefficient of expansion of, 512, 513.
floor, 332.
fusing point of, 515 .
radiation from, 523 .
skylight, 332.
specific heat of, 521 .
strength of, 434.
window, 328.
Globe valves, 351 .
valve, resistance to steam flow, 633.

Gold, coefficient of expansion of, 512, 513.
fineness of, 64.
fusing point of, 515 .

Crold, specific gravity of, 292.
specific heat of, 521 .
Gooch link motion, 725, 726.
iovernor, 284.
porter, 284.
weighted, 284.
Grade resistance to trains, 736.
Granite, coefficient of expansion of, 512.
strength of, 435.
Graphical analysis of cranks, 468.
analysis of shafts, 453.
statics, 255-266.
Graphite, coefficient of expansion of, 513.
specific heat of, 521.
Graphostatics of shafting, 453.
Grate and heating surface, ratio of, 646.
surface of boilers, 646 .
suriace, ratio to heating, 646.
Gravitation, force of, 250.
law ot, 267.
Gravity, acceleration of, 267.
centre of, 250-254.
force of, 269.
specific, 290.
table of specific, 292, 293.
Grindstones, power required for, 851.

Grooves for rope sheaves, 506.
Ground connections, 777.
detectors, 771.
plates, 777 .
return wires, 774.
wires, 777.
Grounding of lightning arresters, 770.
low-potential circuits, 776.
signaling systems, 817 .
Group driving of machine tools, 854.
driving of wood-working machinery, 860 .
riveting, 438.
Guard wires, 774.
wires for transmission, 775.
Guide pulleys for belts, 504.
Guides, pressure on, 474.
Gun metal, 874.
Gyration, centre of, 280.
radius of, $277,280,281,371$.

## H

Half crossed belts, 503.
sphere, centre of gravity of, 253.
Helfenberger hydraulic regulator, 606.

Hangers, 455.
Hanging boiler, 674.
Hanover coals, heating value of, 611.

Hard bodies, impact of, 287.
Hardness, 290.
Hard steel struts, 394, 395.
Hauling rope, wire, 359-364.
Head of water, 557-560.
of water, loss by friction, 565,566 .
Heads and pressures of water, 557, 558.
and velocities of water, 560 .
Heat, 507-527.
analysis of steam engine, 708.
balance, 642, 643.
balance of boiler performance, 642.
balance for gas engines, 755.
defined, 507.
emission of, 523.
influence on strength of steel, 527.
latent, 522.
losses, 526.
losses by radiation, 523.
losses through walls, 525.
mechanical equivalent of, 521.
motors, thermal efficiency, 691, 692.
quantity of, 516 .
specific, 521.
test for gas engines, 758, 759.
test of steam engine, 712.
test of steam engine, form for, 712.
test of steam engine, standard, 700.
transmission, coefficients for, 523. unit basis for engine tests, 697.
unit conversion tables, 517-520.
unit test of pumping engines, $596-$ 599.
unit, value in foot pounds, 521. units, 516-520.
units consumed by steam engine, 700.
units in horse power, 680.
units, measurement, 700,

Heat, unit standard for steam engines, 698.
units in water, $552-555$.
Heaters, electric, 783.
Heating of buildings, 523-526.
capacity of radiators, 525 .
direct, 526.
of electrical apparatus, 831.
electric cars, 792.
and grate surface, ratio of, 646.
indirect, 526.
pipes, 525.
pipes, iron, 499, 525.
surface of boilers, 645.
surface, ratio to grate, 646.
surface, relative value of, 645.
surface, value of, 645.
values of coals, 612-624.
values of coals, theoretical, 610614.

Heavy flanges, extra, 346.
Height of chimneys, 647.
Helical springs, 420, 421.
Hemisphere, centre of gravity of, 253.

Hemlock, 425.
beams, strength of, 428, 429.
strength of, 426, 427, 432.
Hempen rope transmission, 495.
Henry, 761.
Hexagon, construction of, 110.
Hexagon headed bolts, weight of, 311.

Hickory, strength of, 426, 427.
High-potential electric systems, 794.
High-speed steel, power for, 839.
High-voltage lines, 774, 775. tests, 833.
Hoisting gears, 486.
power required for, 844.
rope, wire, $357,358,361-364$.
Hollow shafts, 451-452.
Hooke's law, 367.
Horizontal water-wheels, 581.
Horse-power, 276, 277, 680.
of belts, 494.
of boilers, 634, 635 .
brake, 704.
of cotton-rope transmission, 507. determined by indicator, 693. English, 278.

Horse-power, heat-units equivalent, 680.
indicated, 703.
metric, 76, 278.
of Manila rope transmission, 506.
of shafting, 449-451.
of water, 557,558 .
of water, 576 .
of water, table for, 576.
of water-wheels, $581,582$.
Hose, flow of water in, 568.
Hot-well, temperature of, 730.
Hubs of gear wheels, 491.
Hundredweight, 61.
Hungarian coals, heating value of, 613.

Hydraulic accumulator, 605.
distribution of power, 606.
distribution, ring system, 606.
motor, Brotherhood, 606.
motor, Rigg, 606.
motors, regulation of, 606.
motor, Schmid, 606.
pipe, riveted, 339.
press, 602.
pressure, distribution of, 606.
radius, 561.
radius, table for, 562.
regulator, Helfenberger, 606.
ram, 600.
ram, efficiency of, 600.
riveted pipe, 339.
slopes, table for, 562.
transmission of power, 605607.

Hydrometer, 600, 601.
Baumé, 601.
Gay Lussac, 601.
scales, 601.
specific gravity, 601 .
Hydrostatic paradox, 602.
press, 602.
pressure, centre of, 602.
test of boilers, 674.
Hydrostatics, 601, 602.
Hyperbola, 134.
construction of, 134.
Hyperbolic curve, 690.
logarithms, 681-685.
Hypocycloid, 135.

## I

Ice, specific heat of, 521 .
Ideal steam engine, 709-711.
Ignition in gas engines, 749.
Illinois coals, heating value of, 610, $614,619$.
coals, tests of, 616, 619.
Imaginary eccentric, 727.
Impact, 286, 287.
of elastic bodies, 287.
of hard bodies, 287.
of moving bodies, 286, 287.
Important numbers, logarithms of, 106.

Impulse steam turbine, 746.
Impurities in feed water, 677.
Incandescent lamps, 781.
lamps in series circuits, 781.
lamp sockets, 788.
Inch, miner's, 575.
Inches, decimal fractions of, 24.
Incrustation in boilers, 677.
causes of boiler, 678.
prevention of, 678.
Independent electric driving, 839.
Indiana coal, heating value of, 610, 614, 619.
coals, tests of, 616, 619.
Indian Territory coals, tests of, 616, 619.

Indicated horse-power, 703.
horse-power, steam consumption per, 748.
Indicator, determination of horsepower by, 693.
diagrams, 692, 693.
diagrams, analysis of, 705.
diagram factor, 707.
diagram, typical, 692.
for determination of steam consumption, 693.
reducing motion, 703.
rig, 703.
showing valve action, 693.
springs, testing, 703.
steam accounted, 705.
steam engine, 650, 692.
Indirect heating, 526.
Inductance factor, 838.
Induction apparatus, efficiency of, 830.

Induction apparatus, losses in rotary, 831.
apparatus, rotary, 829.
apparatus, stationary, 829.
Inertia, moment of, 277, 372-379. polar moment of, 413.
Initial condensation, 690.
Injection water, temperature of, 730.
water, volume required, 730 .
Initial pressure, 681.
Injector, steam used by, 638.
Injectors, 638.
Inside electrical work, 778-795.
Installation costs of steam plants, 864.
costs of water power, 861 .
of electric motors, 772 .
of switchboards, 769.
of transformers, 776.
Insulated frames for generators, 768 .
frames for motors, 771.
Insulating joints, electric, 815.
Insulation, 796, 797, 833.
of dynamos, 768.
electrical, 833.
of electric motors, 771.
resistance, 833.
resistances, 819.
resistance on shipboard, 823.
resistance, testing of, 771.
slow burning, 797.
tests, 796, 797.
of transformers, 773.
weather proof, 798.
Insulators for wires, 773.
Integral calculus, 239, 241.
Integral calculus formulas, 241.
Interest, compound, 59.
Interest, 58-60.
simple, 58.
table, compound, 59.
Interference of gear teeth, 479.
Interior conduits, 801.
electric conduits, 787.
Internal-combustion motors, 749760.

Internal gear teeth, 477.
pressure, 412.
Introduction to steam tables, 624.
Involute, 134.
gear teeth, 477-479.

Involution, 25.
Iowa coals, tests of, 616, 619.
Iron, coefficient of expansion of, 512, 513.
corrugated, 332, 333.
fusing point of, 515.
heating pipes, 525.
heat transmission through, 523.
latent heat of, 522.
metric weights of, $300,301$.
radiation from, 523.
shafting, 451.
specific gravity of, 292.
specific heat of, 521.
strength of, 433.
weight of, 295-301.
weight of flat, 295, 297.
weight of round bar, 298, 299.
weight of square bar, 298, 299.
weight of sheet, 302-304.
wire, 325.
Irregular figures, area of, 137. figures, centre of gravity of, 254.
Isothermal compression, 533.
curve, construction of, 689.
Istria coal, heating value of, 613.

## J

Jacket water for gas engines, 752, 753.
water, measurement of, 701.
Jam nuts, 442.
Jet condensers, 730.
Jets, velocity in steam turbines, $744,745$.
Joints, double riveted, 654.
flange, 440.
insulating, 815.
insulating electric, 815.
riveted, 437.
single riveted, 654.
treble riveted, 654.
Joint, universal, 464.
Jonval turbine, 588.
turbine, curves for, 590.
Joule, 761.
Journal friction, 289.
loads, 446.
proportions, formulas for, 445.
proportions, table of, 446,
Journals, 444-446.

Journals, pressures on, 289.

## K

Kansas coals, tests of, 616, 619, 620.
Kentucky coals, 610, 614, 620.
coals, tests of, 617, 620.
Keyed fastenings, 443.
Keys, 443, 444.
dimensions of, 443.
standard, 444.
Kilogramme, derivation of, 65.
Kilowatt, 278.
steam consumption per, 748.
Kinematics, 436.
Knife switches, 803.
Knot, a sea speed, 60.
Knowles duplex feed pumps, 595.
Kutter's formula for water flow, 569.

Kutter's formula, diagram for, 572.

## L

Lag screws, 336.
Lamé, formula for thick cylinders, 418.

Lamps, arc, 814.
enclosed arc, 781.
incandescent, 781.
incandescent in series circuits, 781. installation of arc, 780.
pendant, 798.
series arc, 780.
Lamp sockets, electric, 813.
Lancashire boiler, heating surface, 646.
coal, heating value of, 610.
Lap-joint riveting, 437.
Lap and lead of slide valve, $727,728$. riveted pipe, water flow in, 529 , 561.
of slide valve, 724,727 .
of valve, inside, 727 .
welded boiler tubes, 323, 338.
Latent heat, 522.
heat, of fusion, 522.
heat, of vaporization, 522.
heats, table of, 522.
Lathes, power required for, $842,843$.
Lathe speed changes, 502.
speeds, "lump" in, 502.
Latin monetary union, 64.

Law of gravitation, 267.
Lawrence, Mass., water power costs, 861-862.
Lead, fusing point of, 515. heat transmission through, 523. latent heat of, 522.
specific gravity of, 292.
specific heat of, 521 ,
weight of sheet, 302.
pipe, 331.
of slide valve, $727,728$.
Leading-off angle of belts, 503 .
Leakage test of pumping engine, 597
Leakages in engine tests, 699.
Leaks in steam engine plants, 699.
Length of belt for cone pulleys, 498. British measures of, 60, 61, 65. measures of, 60, 61.
metric measures of, $61,65$.
Leveling, barometric, 546-551.
Leverage, 250, 266, 275.
Lever arms, 465. safety valves, 674 .
Levers, 275, 465-467.
Lighting of electric cars, 792.
Lightning arresters, 770.
arresters for electric cars, 793.
Lignite, heating value of, 614.
Lime, solubility of carbonate, 679. solubility of phosphate of, 679. solubility of sulphate, 679.
Limestone, strength of, 435.
Limit, elastic, 367.
Linear expansion of cast-iron, 514.
Line, division of, 107.
Lines, constant-potential pole, 774775.

Link fuses, 808.
fuse cutouts, 806 .
motions, $725,726$.
motion, Allan's, 726.
motion, Fink's, 726.
motion, Goock's, 725.
motion, Stephenson's, 725.
motion, Walschaert's, 726.
Liquid fuels, 608.
fuels, evaporative power, 622.
measure, British, 63.
measure, U. S. A., 62.
Liquids, specific gravity of, 293.

Lloyd's boiler specifications, 653658.
proportions for riveted joints, 654. rules for boilers, 653-658.
rules for safety valves, 677.
Loads on beams, 379 .
on boiler stays, 658.
maximum, 379.
on steel balls, 460.
for wooden beams, safe, $428,429$.
Lock nuts, 442.
Locomotive boiler, heating surface, 646.
boilers, 645.
crank pins, 289.
data, 736, 737.
Locomotives, classification of, 735. tractive power of, 737.
Log for engine test, 712.
Logarithmic angular functions, 187231.
cosecants, 187-231.
cosines, 187-231.
cotangents, 187-231.
secants, 187-231.
sines, 187-231.
tangents, 187-231.
Logarithms, 81-83.
hyperbolic, 681-685.
of numbers, table of, 84-106.
rules for, $82,83$.
principles of, 81.
special, 106.
table of, 84-106.
use of, 81 .
Loire coals, heating value of, 611.
Long connecting rods, 469.
Long-distance transmission, electric, 824.

Long furnaces, strength of, 657.
Losses in belt transmission, 498.
in commutating machines, 828.
Loss of heat by radiation, 523.
of heat through walls, 525 .
of pressure in air mains, 538, 539.
in steam pipes, entrance, 633.
of steam pressure in pipes, 631632.
of water head by friction, 565 , 566.

Lowell, Mass., water plant costs, 861, 862.
Low-potential circuits, grounding, 776.
electric systems, 783-794.
Low temperatures, 516.
Lubrication of bearings, 289.
"Lump" in lathe speeds, 502.

## M

Machine, 436.
definition of, 426.
design, 436-508.
screws, $316,317$.
screws, standard, $316,317$.
tools electric driving of, 850-860.
tools, electric power required for, 850-854.
tools, group driving of, 854.
tools, motor-power on, 840-843.
Magnesia, solubility of carbonate, 679.

Main bearings of engines, 721, 722.
bearings, pressure on, 722 .
Mains, delivery of air through, 538, 539.
loss of pressure in air, $538,539$. standard cast-iron water, 319321.

Manchester, N. H., water-power costs, $861,862$.
Manganese, fusing point of, 515. specific gravity of, 292.
Magnesium, specific heat of, 521.
Man-holes for boilers, 673.
Manila rope driving, 505.
rope, formulas for, 505.
rope transmission, 505, 506.
Maple, strength of, 426, 427.
Marble, coefficient of expansion of, 512.

Marine electrical work, 819-823. type connecting rod, 470.
Mariotte's law, 546.
Marshall valve gear, 726, 727.
Masses, force and motion of, 279.
Materials, average strength of, 431435.
for bollers, 670.
for boiler rivets, 653. for boiler shells, 655.

Materials for boiler stays, 658.
of construction, 290-435.
of consumption, 290.
of engineering, 290-435.
for riveting, 653.
strength of, 366-435.
ultimate strength of, 432-435.
weight of, 294-311.
Mathematics, 5-241.
Matthiessen's standards, 765.
Maximum efficiency of steam engire, 692.
loads, 379.
Mean effective pressure, 681.
effective pressure above atmosphere, 687.
effective pressure, computation of, 681.
effective pressure in gas engines, 750.
effective pressure, tables of, 686, 687.
effective pressure above vacuum, 686.
pressure tables, 686, 687.
Measure, dry, 63.
table of board, 334.
Measuring tanks, 701.
Measurement of coal in engine tests, 702.
of engine dimensions, 699.
of feed water, 701.
of heat units, 700 .
of jacket water, 701.
of steam consumption, 701.
of steam used by auxiliaries, 702.
timber, 333.
of water, 572.
of water by weirs, 573.
Measures of length, 60, 61,
of length, British, 60.
of length, metric, 65.
of length, U. S. A., 60.
of surface, metric, 65.
of volume, $62,63$.
of volume, metric, $63,65$. and weights, 60-63.
of weight, $61,62$.
of weight, British, 61.
of weight, metric, 65.
of weight, U.S. A., 61.

Mechanical equivalent of heat, 521. units, electrical equivalents of, 761.

Mechanics, 242-290.
Medium steel, 423.
steel struts, 372, 373, 392, 393.
Melting points, 515.
Mercury, coefficient of expansion of, 512.
heat transmission through, 523.
latent heat of, 522.
specific gravity of, 292.
specific heat of, 521.
Metal conduits, electric, 801.
Metals, percentage in alloys, 291. specific gravity of, 292.
strength of, 433.
ultimate strength of, 433, 434.
Metre, derivation of, 65. des Archives, 65.
Metric areas for safety valves, 677. atmosphere, 546.
boiler dimensions, 669.
conversion tables, 66-77.
horse-power, 680.
measures of length, 61.
measures of volume, 63.
measures of weight, 62.
proportions for boilers, 669.
rules for safety valves, 677.
screw threads, 318.
steam table, 628, 629.
system, 65-77.
system, steam table, 628, 629.
weights, 62.
weight of cast-iron pipe, 308.
weight of copper pipe, 340.
weight of iron, $300,301$.
weight of pipe, 340.
weight of sheet metal, 303.
weight of spheres, 306.
weight of wrought iron pipe, 340.
Mild steel, 370.
Mile, nautical, 60.
statute, 60.
Mils, circular, 763.
conversion to centimetres, 766.
Minerals, solubilities of scale-making, 679.
Miners' inch, 575.
inch, table for, 575.

Missouri coals, tests of, 617, 620, 621.

Mitre gears, 484.
Mixed steam turbine, 746.
Modulus of elasticity, 367.
section, 371.
Moisture in coal, determination, 640.
in steam, 633.
in wood, 425.
Molecular weight of water, 551.
Moment, 277.
of inertia, 277.
of inertia, polar, 413, 414.
of inertia of rectangles, 375.
of inertia of structural sections, 372-379.
of resistance, 371.
Momentum, 277.
dynamic, 279.
Moment, statical, 250, 275, 266.
Monetary systems, 63, 64.
union, Latin, 64.
Money, 63, 64.
Belgian, 64.
British, 64.
Canadian, 63.
French, 64.
German, 64.
Greek, 64.
Italian, 64.
Swiss, 64.
U. S., 63.

Mons coals, heating value of, 612.
Moravian coals, heating value of, 613.

Morison suspension furnaces, 657, 659.
suspension furnaces, strength of, 660.
suspension furnaces, working pressures for, 660.
Morin's laws of friction, 288.
Mortar, strength of, 435.
Motion, 267.
accelerated, 267.
accelerated circular, 280.
dynamical formulas for, 279.
formulas for accelerated, 267.
retarded, 268.
rotary, 278.
Motor circuits for electric cars, 774.

Motor leads, electric, 771.
power for machine tools, 840-843. starting rheostats, 772.
tests, electric, 850-860.
Motors, air required for, 534.
choice of electric, 845.
compressed air, 534.
electric, 771, 772.
hydraulic, 606.
internal combustion, 749-760.
installation of electric, 771.
insulated frames for electric, 771.
overload capacities of, 837 .
regulation of electric, 835
on shipboard, electric, 823.
speed variation of electric, 846849.
switches for electric, 771.
voltages, 771.
Movement of air, 541.
Moving bodies, force, power, and work, 279.
bodies, impact of, 286, 287.
bodies, momentum of, 277.
picture machines, 818.
Muff coupling, 462.
Multiple expansion, 690.
expansion engines, 690, 691.
expansion engines, diagram for, 691.
roof truss, 261.
trussed beams, 257.
Multiplication, 5.
table, 5-7.
Multi-voltage speed control, 848.
Muntz metal, 874.

## $\mathbf{N}$

Nails, 335.
wire, 335.
Napier's rule for discharge of steam, 631.

National electric code, 767-824.
Natural angular functions, 142-186. cosecants, 142-186.
cosines, 142-186.
cotangents, 134-178, 142-186.
secants, 142-186.
sines, 142-186.
tangents, 142-186.
versed sines, 142-186.

Natural gas, 622, 865.
gas calorific power, 622.
gas, power costs, 865.
trigonometric functions, 142-186.
Nautical mile, 60.
Negative exponents, 78.
Neutral axis, 371.
Newcastle coal, heating value of, 610.
New Mexico coals, tests of, 617, 621.
Niagara water-power cost, 862.
Nickel-aluminum, 873.
coefficient of expansion of, 513.
fusing point of, 515.
Nitrogen, specific heat of, 522.
Non-condensing engines, performance of, 721.
Nordberg engine, 709.
Norway, water-power cost, 862.
Nozzles, discharge of water through, 559.

Numbers, factors of, 7-23. logarithms of, 82.
prime, 7.
roots of decimal, 26.
Nut locks, 442.
Nuts, standard sleeve, 354.

$$
0
$$

Oak beams, strength of, 428, 429. strength of, $426,427,432$.
Oblique angled spherical triangles, 235, 236.
angled triangles, 233.
angled triangles, formulas for, 233.
angled spherical triangles, 235, 236.

Obstructions in pipes, resistance of, 603.

Octagon, construction of, 110.
Ohm, 761.
Oil and coal, comparative evaporation of, 622.
engines, testing, 752, 760. grooves for bearings, 458. radiation from, 623.
Open belts, cone pulleys for, 499. channels, flow of water in, 569. hearth basic steel, 369.
hearth structure steel, 369.
Operative cost of steam power, 865.

Orifices, discharge of water through, 559.
discharge of water through square, 581.
flow of air through, 540.
velocity of air through, 533.
Orthocycloid, 134.
Oscillating bodies, 277.
Oscillation, angle of, 284.
centre of, $284,285$.
radius of, 277.
Outdoor transformers, 776.
Outflow of steam at various pressures, 630.
Outlet boxes, 801.
Outside electrical work, 773-777.
lap of valve, 727.
wiring, 773.
Overhead lines, electric, 774, 775.
Overhung journals, 444-446.
Overload capacities of electrical apparatus, 837.
release devices, 815.
Overshot water-wheel, 584.
Overturning, resistance of walls to, 266.

Overweights on sheared plates, 424. Oxygen, specific heat of, 522 .

## P

Paderna water-power plant costs, 861.

Palladium, coefficient of expansion of, 512.
Parabola, 132, 133.
area of, 133.
centre of gravity of, 253.
construction of, 132.
equation of, 132.
length of curve, 133.
Paraboloid, volume of, 139.
Paradox, hydrostatic, 602.
Parsons' steam turbine, 746, 747.
Pas de Calais coals, heating value of, 611.
Pelton bucket, 584.
water-wheel, 584.
water-wheel table, $585,586$.
Pencoyd structural shapes, 379-410.
Pendant lamps, 798.
Pendulum, 284-286.

Pendulum, compound, 284, 285.
length of seconds, 286.
simple, 284, 285.
seconds, 286.
Pennsylvania coals, heating value of, $610,614$.
coals, tests of, 621.
Pentagon, construction of, 109.
Percentage of ash in coal, 614.
Performance of simple non-condensing engines, 863.
of steam engines, 695-697.
Perimeter of ellipse, 126-130.
of ellipse, table for, 130.
value of, 111.
wetted, 561.
Perpendiculars, 107.
Petroleum fuel, 622.
Phase displacing apparatus, efficiency of, 837.
Philadelphia rules for safety valves, 675.

Phosphate of lime, solubility of, 679 .
Phosphor bronze, 874.
Physical properties of wood, 426, 427.

Pillars, strength of wooden, 430.
wooden, 425, 430.
Pillow-block, 454-456.
Pine beams, strength of, $428,429$.
strength of, 426, 427, 432.
white, 425.
yellow, 425.
Pinions, 489.
shrouded, 489.
Pins and nuts, 356.
Pin steel, 424.
Pipe bends, 349, 350.
bends, resistance of, 603.
cast-iron, 319-322.
cast-iron, metric system, 319.
connections, cast-iron, 322.
dimensions of cast-iron, 320.
double extra strong, 337.
exhaust, 722.
extra strong, 337.
fittings, cast-iron, 347.
fittings, dimensions of, 349, 350.
fittings, steel, 348.
flanges, standard, 341.
flow, coefficients for, 561.

Pipe lead, 331.
metric weight of copper, 340 .
metric weight of wrought iron, 340.
riveted hydraulic, 339.
spiral riveted, 338.
standard cast-iron, 319-321.
steam, 722.
threads, British standard, 315.
threads, United States standard, 318.
unions, standard, 353.
weight of cast-iron British, 307.
weight of cast-iron, metric, 308.
weight of lead, 331.
Pipes, changes in cross-section, 603.
coefficients of flow for, 561.
contents of, 577, 578 .
for compressed air transmission, 532.
diameter of steam, 722.
flow of steam in, 631, 632.
flow of water through, 561-567.
friction of air in, 542-545.
friction of water in, 565-567.
for heating, 525.
loss of steam pressure in, 632.
pressure of air in, 536.
resistance of obstructions in, 603. steam flow in, 631, 632.
transmission of air through, 532539.

Piston rod, 722.
rod diameter, 722.
speed, average, 680.
speed and delivery of pumps, 591-593.
speed in gas engines, 750.
Pitch of boiler riveting, 653.
circumferential, 475.
diametral, 476.
formulas, diametral, 480.
of gearing, circumferential, 475.
of gearing, diametral, 476.
of gear wheels, 475.
table, circular, 481.
table, diametral, 482.
Pitches for gear wheels compared, 476.

Pivot proportions, table for, 448.
Pivots, 447-448.

Pivots, formulas, for, 447.
Plane figures, areas of, 135-137.
figures, centre of gravity of, 252, 253.
triangles, 232, 233.
Planers, power required for, 840 . power required for, 850.
Plate coupling, 463.
couplings, bolts for, 463 .
rolls, power required for, $851,859$. springs, 419.
tensile strength of boiler, 653.
Plates, boiler tube, 659.
deflection of circular, 417.
for flanging, 657.
ground, 777.
overweights on sheared, 424.
proportions for flat, 656.
Platinum, coefficient of expansion of, 512, 513.
fusing point of, 515 .
specific gravity of, 292.
specific heat of, 521.
Plug and cartridge fuses, 808-810.
Point of cut-off, 706.
Polar force diagrams, 245.
moment of inertia, 413, 414.
section modulus, 413.
valve diagram, 725.
Pole lines, constant-potential, 774 , 775.

Polygon, funicular, 245.
Polygonal roof truss, 261.
Polygons, angles of, 110.
apothems of, 110.
area of, 110.
construction of, 109.
sides of, 110.
table of, 110.
Polyphase circuits, 824-826.
Polytropic curve, 690.
Poncelet, 680.
Poncelet water-wheel, 583.
Poplar, strength of, 426, 427.
Porter governor, 284.
Port width, 727.
Ports, area of steam, $722,723$.
Posts, wooden, 425, 430.
Power, 242.
calorific, 608.
cost of, 861-869.

Power, factor, $824,838$.
formulas for, 276.
of gas engines, 751.
horse, 680.
hydraulic transmission, 605.
in moving bodies, 279.
required for air compressor, 859.
required for bending rolls, 851 , 853, 859.
for brass-working tools, 858. required for boring mill, 842 .
required for charging machine, 855.
required for cold saw, 850.
required to compress air, 537.
required for cranes, $856,857,860$.
required for drill presses, 841.
required for electric cranes, 844.
required for emery wheels, 842 .
required for foundry, 859.
required for grindstones, 851.
required for hoisting, 844.
required for lathes, 842,843 .
required for machine tools, $840-$ $843,854$.
required for planers, $840,850$.
required for plate rolis, 761,769 , 851, 859.
required for punching machines, $852,853$.
required for roller tables, 844.
required for shafting, 851.
required for shears, $852,853$.
required for sheet metal press, 855.
required for slotter, 842.
required for tool grinder, 842 .
required for turret lathe, 841.
required for wood-working machinery, $853,860$.
table for water, 576.
transmitted by ropes, 505 .
units of, 277.
of water, 557 .
of water-wheels, $581,582$.
factor and inductance factor, 838.
Powering of steamships, 737-743.
Powers, operations with, 81.
and roots, 25.
and roots, table of, 27-57.
Practical engine performances, 721.

Premature ignition in gas engines, 750.

Press, hydraulic, 602.
Pressure, air, 652.
of air in pipes, 536.
atmospheric, 546.
centre of, $601,602$.
on dam, 559.
draught, 649.
of gas-engine explosions, 751.
internal, 417.
initial, 681.
mean effective, 681.
tables of mean effective, 686, 687.
and temperature of air, 529.
and volume of air, 530.
of water, 557.
of water, horizontal, 559.
Pressures for stayed surfaces, 662.
for corrugated and suspension furnaces, 659, 660.
Prevention of corrosion in boilers, 679.
of incrustation in boilers, 678.
of priming in boilers, 679.
Primary batteries, 772, 773.
Prime numbers, 7.
Priming in boilers, causes of, 679.
Priming in boilers, prevention of, 679.

Producer gas, 622, 866.
gas, calorific power, 623.
gas, power cost, 866 .
Progression, arithmetical, 79.
geometrical, 79.
Proof hydrometer scale, 601,
Propeller shafts, coupling for, 463.
Properties of aluminum, 872 .
of steam, 625-629.
of timber, 425.
of water, metric system, 556.
of water, tables of, 552-555.
of wood, $426,427$.
Proportions of boiler shells, 655.
of chimneys, 647.
connecting rods, 468.
of cross heads, 473.
of eccentrics, 471.
for flat plates, 656.
of gas engines, 751.
of gear teeth, $47 \%$.

Proportions of gear wheels, 486-493.
of gear wheels, table of, 492.
of lever arms, 465.
of pulleys, 497.
for riveted joints, 438.
of riveting, 653, 654.
of rivets, 653.
of stay bolts, 662.
of safety valves, 674-677.
for stayed surfaces, 656.
of steam engines, 721 .
of steam-engine cylinders, 689.
Protection of electric cars, 790.
Prussian coals, heating value of, 610.

Pull of belts, 504.
Pulley arms, 497.
rim, 497.
Pulleys, 495-504.
and belts, 493-504.
cone, 498-501.
friction on, 495.
proportions of, 497.
Pulsation of electrical apparatus, 835.

Pumping engine, duty of, 596.
engine, leakage test, 597.
engines, standard duty trials, 596-599.
Pumps, 590-604.
air chambers for, 590.
centrifugal, 604, 605.
delivery of, 591-593.
dimensions of, 590.
duplex, 595.
electric power required for, 853.
feed, 595.
Riedler, 590.
slip of, 590.
speed of, 590.
steam, $594,595$.
Punching machines, power required for, $852,853$.
Purification of feed water, 677. .
Purves-Brown furnaces, 657.
Purves corrugated furnace, 659.
Pyramidic frustrum, volume of, 140.
frustrum, centre of gravity of, 254.

Pyramid, volume of, 139.
Pyrometers, 515.

## Q

Quadrangle, centre of gravity of, 252.

Quadrant, area of, 137.
Quadratic equations, 80.
Quadruple-expansion engines, 691. expansion engines, cylinder ratios for, 691.
Quantity of heat, 516.
Quality of steam, 640, 704.
of superheated steam, 633.
Quarter-twist belts, 503 .
R
Rack teeth, 479.
teeth, involute, 479.
Radial valve gears, 726, 727.
Radiation, 523.
coefficients of, 523.
increase with temperature, 524.
loss of heat by, 523 .
at various temperatures, 524.
Radiators, heating capacity of, 525 .
Radii of gear wheels, 475.
Radius of gyration, 277, 280-282, 371.
hydraulic, 561.
of oscillation, 277.
of revolution, 278.
Railways, curve resistance on, 736 .
Railway power plants, 772.
power plants, circuit breakers for, 772.
trains, grade resistance of, 736 . trains, speed resistance of, 736.
Ram, hydraulic, 600.
Rankine cycle, 710.
Rate of combustion, 649.
Rate of evaporation, 646.
Rating of electrical machinery, 836.
Ratio of expansion; 681, 707.
of grate to heating surface, 646.
Ratios for speed cones and back gear, 501.
Reaction steam turbine, 744.
Reactive coils, 816.
Réaumur scale, origin of, 508.
Réaumur thermometer, 508.
Reciprocals, table of, $27-57$.
Recording engine tests, 705.
Records of boiler test, 640.

Rectangle, area of, 135.
Rectangles, moment of inertia of, 375.

Rectangular tanks, contents of, 580.
Rectifying machines, 829.
machines, efficiency of, 830 .
Reducing motion for indicator, 703.
Reduction of fractions to decimals, 24.

Regnault's experiments on steam, 623.

Regular polygons, 110.
Regulation of electrical machinery, 834, 835.
of hydraulic motors, 606.
Reheating compressed air, 535.
Relative value of heating surface, 645.

Release, point of, 705.
Report of boiler trial, 643.
of engine test, 711.
Resilience, 368, 369.
Resistance, 290.
boxes, 770.
to bulging, 656.
boxes, $815,816$.
due to changes in cross section of pipes, 603.
due to gate valves, 604.
of elbows to steam flow, 633.
to electrical rupture, 833.
to entrance in steam pipes, 633. to flow in steam pipes, 632.
of globe valve to steam flow, 633. of insulation, 819,833 .
to internal pressure, 417.
moment of, 371.
of obstructions in pipes, 603.
in pipe angles, 603.
of pipe bends 603 .
on railway curves, 736 .
testing of insulation, 771.
tests of insulation, 833.
of trains, acceleration, 736.
Resistances, insulation, 819.
Results of engine tests, forms for, 712.

Retarded motion, dynamical formulas for, 279.
motion, formulas for, 268.
Return tubular boilers, 645.

Return tubular boiler, heating surface, 646.
wires, ground, 774 .
Reuleaux's valve diagram, 724.
Revolution, radius of, 278.
Revolving bodies, 280.
Reynold's pumping engine, efficiency of, 692.
Rhenish Prussian coals, heating value of, 610.
Rheostatic speed control, 847.
Rheostats, 770, 815, 816.
motor-starting, 772.
Riedler pumps, 590.
Riedler-Stumpf steam turbine, 747.
Rigg hydraulic motor, 606.
Right angle, construction of, 107.
angle, trisection of, 108.
angled spherical triangles, 234.
angled triangles, formulas for, 232.

Rims of bevel gears, 489.
of gear wheels, 488-493.
Ring system of hydraulic distribution, 606.
Rise of temperature of electrical apparatus, 831.
Rittinger, proportions of centrifugal pumps, 604.
Rivers, flow of water in, 569-574.
Rivet bars, ductility of, 653 .
bars, tensile strength of, 653.
seams, factor of safety, 673.
steel, 423.
steel, shearing resistance, 653.
Riveted hydraulic pipe, 339.
boiler, 439.
joints, Lloyd's proportions for, 654.
joints, proportions for, 438.
joints in iron plates, 439.
joints in steel plates, 439.
spiral pipe, 338.
Riveting, 436-439.
boiler, 439.
of boilers, $653,654,672$.
butt joint, 438.
efficiency of, 437.
factor of safety, 653.
group, 438, 439.
lap-joint, 438.

Riveting, material for, 653.
pitch of boiler, 653.
proportions of, 653.
rules for boiler, 653 .
Rivets, boiler, 663, 671. proportions of, 653.
shearing strength of, 663.
weight of bridge, 309.
Rods, connecting, 468-471.
Roller bearings, 462.
Roller tables, power required for, 844.

Rolling circle for gear teeth, 477.
mill tables, power for driving, 844.
Roman cement, coefficient of expansion of, 512.
Roofing materials, 329, 330, 332, 333.
slate, 329.
weight of, 333.
Roof, double trussed, 260.
multiple trussed, 261.
simple, 258.
single trussed, 259, 260.
trusses, 258-262.
truss, polygonal, 261.
loads on, 333.
wind stresses on, 262.
Roots and powers, 25.
and powers, tables of, 27-57.
of decimal numbers, 26.
extraction of, $25,57$.
Rope brake, 704.
driving, American system, 506.
driving, English system, 506.
driving, Manila, 505.
power transmitted by, 505 .
sheaves, 504.
sheaves, grooves for, 506 .
standard wire-hoisting, 357-364.
steel wire, 360-362.
strength of, 434.
transmission, 504-507.
transmission, cotton, 507.
transmission, hempen, 495.
transmission, sag in, 505.
transmission, wire, 495, 496, 504.
weight of Manila, 505.
wire haulage, 359-364.
wire transmission, 359.
Rosettes, electric, 812.

Rotary induction apparatus, 827.
induction apparatus, losses in, 831.
motion, formulas for, 278.
Rotating bodies, moment of inertia of, 277.
Round cast-iron columns, 411. iron, metric weights of, 300 . iron weight of, 298, 299.
head screws, 317.
Rules for boiler riveting, 653. for boiler trials, 637-646. for safety valves, German, 677. for safety valves, Lloyd's, 677. for safety valves, metric, 677. for safety valves, U. S. Treasury Dept., 674.
for steam engine tests, 698-711. for testing gas and oil engines, 752-760.

## S

Saddles, boiler, 673.
Safe load for beams, coefficients, $380,381$.
load, coefficient for, 379.
loads for cast-iron columns, 411, 412.
loads on wooden beams, 428, 429.
Safety devices for dynamos, 768.
valves, 674-677.
valves, area of, 675.
valves, Board of Trade sizes, 676. valves, German rules, 677.
valves, Lloyd's rules, 677.
values, metric areas for, 677.
valves, metric rules for, 677.
valves, Philadelphia rules for, 675.
valves, spring, 675.
valves, U. S. Treasury rules, 674.
Salt-well water, 680.
Sampling coal, 640.
Sand, radiation from, 523.
Sandstone, strength of, 435.
Saone coals, heating value of, 611. Saturated steam, 630.
Sawdust, radiation from, 523.
Saw mill water-wheel, 584.
Saxon coals, heating value of, 610.
Scale, analyses of boiler, 679.
in boilers, 677.

Scale making minerals, solubilities of, 679.
Scales, conversion of thermometer, 508.

Schmid hydraulic motor, 606.
Scotch boilers, 645.
boiler, heating surface, 646.
coal, heating value of, 610.
Screw bolts, 312, 313.
Screws, 336.
lag, 336.
machine, $316,317$.
standard machine, 316,317 .
wood, 336.
Screw staybolts, 656.
threads, 441.
threads, fine, British standard, 314.
threads, metric, 318.
threads, système internationale, 318.
threads, United States standard, 312.
threads, Whitworth standard, 313.
Seasoned timber, strength of, 426 . 427.
wood, strength of, 425.
Secant, 141.
logarithmic, 187-231.
natural, 142-186.
Seconds pendulum, 286.
Section elements, 373, 374.
modulus, 371.
modulus, polar, 413.
Sections, elements of structural, 373-410.
moments of inertia of standard, 376.
torsion, 413.
Sector, area of, 136.
centre of gravity of circular, 253.
of sphere, surface of, 138.
centre of gravity of spherical, 253.
volume of spherical, 139.
Segment, area of, 136.
centre of gravity of circular, 253.
centre of gravity of spherical, 253.
volume of spherical, 139.
Segments of circles, 121-127.
Segments, spherical, 121-125.
Semi-circle, centre of gravity of, 253.

Semi-circular arc, centre of gravity of, 254.
circular surface, centre of gravity of, 253.
ellipsc, centre of gravity of, 253.
Series arc lighting, 780.
arc lamps, 780.
arithmetical, 79.
geometrical, 79.
special, 80.
Shafting, 448-454. angular deflection of, 449.
bearings, for, 289.
deflection of, 452, 453.
hollow, 451, 452.
horse-power of, 449-451.
power required for, 851.
stiffness of, 448-451.
strength of, 448-451.
table for, 450.
torsion of, 449.
wrought iron, 451.
Shafts, deflection of, 452.
diameter of engine, 722.
graphical analysis of, 453.
hollow, 451.
torsion of, 414.
Shear in beams, 249, 250.
Sheared plates, allowable overweights, 424.
Shearing, 366, 370.
resistance of rivet steel, 653.
strength of rivets, 663.
Shears, power required for, 852, 853.
Sheaves, chain, 327.
grooves for rope, 506.
for wire rope, diameters, 357.
Sheet copper, weight of, 302, 303.
iron gauge, U.S. standard, 326.
iron, weight of, 302-304.
lead, weight of, 302.
metal gauges, 326.
metal press, power required for, 855.
metal weights, British, 302, 304.
metal weights, metric, 303.
steel gauge, U. S. standard, 326.
steel, tinned, 330.
zinc, weight of, 302.
Sheets, boiler tube, 659.
Shells, materials for boiler, 655.

Shells, proportions of boiler, 655.
Shingles, number and weight of, 332.
Short connecting rods, 469.
furnaces, strength of, 657.
Shrouded pinions, 489.
Sickel roof truss, 261.
Sides of polygons, 110.
Signaling systems, electric, 816-818.
Silent ball bearings, 461.
Silesian coals, heating value of, 611, 613.

Silver, coefficient of expansion of, 512, 513.
fineness of, 64.
fusing-point of, 515.
heat transmission through, 523.
latent heat of, 522 .
radiation from, 523 .
specific gravity of, 292.
specific heat of, 521.
Simple condensing engines, performance of, 863.
interest, 58.
pendulum, 285.
trussed beams, 256.
Simpson's rule for areas, 137.
Sines, 141.
logarithmic, 187-231.
natural, 142-186.
Single-phase circuits, 824-826.
riveted joints, 654.
riveted joints, strength of, 653.
Sizes of engine parts, 722.
Skylight glass, 332.
Slack side of belts, 504.
Slate, 329.
Sleeve couplings, 462.
nuts, standard, 354.
Slide valve, 724-730.
valve, Allen, 728-730.
valve diagrams, 724, 725, 729.
valve, dimensions of, 727, 728.
valve engine, performances, 721.
valve, gear, 724.
Sliding friction, 288.
Slip of pumps, 590.
Slopes, hydraulic, 561, 562.
Slow burning insulation, 798.
Slotter, power required for, 842.
Smoke observations, 642.
Smoothing irons, electric, 783.

Snap switches, 805.
Sockets, electric, 788, 813, 814.
for incandescent lamps, 788.
Soft steel, 423.
Soldering fluid, 819.
Solid figures, centre of gravity of, 253, 254.
fuels, 608.
fuels, calorific values of, 615.
Solids, surfaces of, 137, 138.
volume of, 138-140.
Solubilities of scale-making minerals, 679.
Spacings for circuit-breakers, 807.
for cutouts, 807.
Spandrel, area of, 137.
Sparking distances, 839.
Special bolt threads, 441.
logarithms, 106.
series, 80.
Specifications for boilers, 670-674. for structural steel, 423, 424.
Specific gravity, 290-293.
gravity of aluminum, 872 .
gravity hydrometer, 601.
gravity, determination of, 290 , 291.
gravity of gases, 293.
gravity of liquids, 293.
gravity of metals, 292.
gravity of stones, 292.
gravity, tables of, 292, 293.
gravity of woods, 292.
heat, 521.
heat, determination of, 521 .
heat of gases, 522.
heats, table of, 521.
heat of water, 551.
Speed changes by cone pulleys, 500 . changes for lathes, 502.
cones, 498.
cones and back gear, 501.
control, Crocker-Wheeler system, 870, 871.
control, multi-voltage, 848 .
control, rheostatic, 847.
counters, 705.
of engines, 704.
of pumps, 590.
resistance to trains, 736.
of steamships, 738, 743.

Speed variations of electric motors, 846-849.
Sphere, pressure in, 417.
surface of, 137.
volume of, 138.
Spheres, table of volumes, 140.
weight of British, 305.
weight of metric, 306.
Spherical sector, centre of gravity of, 253.
sector, volume of, 139.
segments, 121-125.
segment, centre of gravity of, 253.
segment, volume of, 139.
triangles, 234-236.
triangles, oblique angled, 235, 236.
triangles, right-angled, 234.
Spikes and nails, 335.
wire, 335.
wrought, 335.
Spiral gear formulas, 485, 486.
gears, $485,486$.
riveted pipe, 338.
springs, 420.
Splines, 443, 444.
standard, 444.
Split pin, 442.
Spring water, 680.
Spring safety valves, 675.
Springs, 418-422.
deflection of, 418-422.
elasticity of, 418-422.
helical, 421.
plate, 419.
spiral, 420,
supporting power of, 418-422.
testing indicator, 703.
Spruce beams, strength of, $428,429$.
strength of, 426, 427, 432.
Square, area of, 135.
cast-iron columns, 412.
construction of, 109.
headed bolts, weight of, 310 .
iron, metric weights of, 300 .
iron, weight of, 298, 299.
root, 25.
roots, table of, 27-57.
Squares, table of, 27-57.
Standard boiler tubes, 323, 338.
cast-iron pipe, 319-321.
coal unit, 698.

Standard engine tests, 697-716.
feed-water test of steam engine, 714.
flanges, 341.
heat test of steam engine, 712.
pins and nuts, 356.
pipe unions, 353.
pipe threads, British, 315.
pipe threads, United States, 318.
pumping-engine tests, 596-599.
screw threads, U. S., 312.
screw threads, Whitworth, 313.
sleeve nuts, 354.
steel eye bars, 355.
temperatures, 508.
thermal efficiency for engines, 710.
Standardization, electrical, 826-839.
Standards of steam-engine efficiency, 707.
Starting boxes for electric motors, 772.
and stopping boiler tests, 639.
and stopping steam-engine test, 700.

Statical moment, 250, 266, 275.
Statics, 242-275.
of framed structure, 255-266.
Station conductors, 769.
Stations and dynamo rooms, 768.
Stay bolts for boilers, 671.
bolts, factor of safety, 673.
bolts, screw, 656, 673.
bolts, proportions for, 662.
Stayed boiler plates, 656.
surfaces, proportions of, 656.
surfaces, working pressures for, 662.

Stay girders for boilers, 658.
Stays, boiler, 656, 658.
Stays, 658.
tensile strength of, 658.
Steam, 623, 634.
accounted for by the indicator, 705.
boilers, 634-646.
boiler capacity, 634.
boiler details, 653-663.
boiler efficiency, 634, 635.
boiler, evaporative power of, 634.
boiler, horse power of, 634.
calorimeter, $633,640$.

Steam consumption, 748
consumpticn, comparative, 748.
consumption determined by indicator, 693.
consumption, measurement of, 701.
consumption, theoretical, 693.
cylinders, bolts for, 440.
cylinder proportions, 689.
diagram factor, 707.
discharge at various pressures, 630.
engine. See engines.
engine, 680-743.
engine bearings, 456-458.
engine and boiler test, complete, 700.
engine capacity, 698.
engine clearance in, 688.
engine code, A. S. M. E., 699.
engine compound, 690.
engine, cylinder ratios for compound, 690.
engine, cylinder ratios for quad-ruple-expansion, 691.
engine, cylinder ratios for tripleexpansion, 691.
engine, diagram for multiple-expansion, 691
engine, economical point of cutoff, 688.
engine economy, standard of, 707.
engine efficiency, standard of, 707.
engine, examination of plant, 698.
engine, feed-water test of, 714.
engine, heat analysis of, 708.
engine, heat unit standard for, 698.
engine, heat test of, 712 .
engine, heat units consumed by, 700.
engine, ideal, 709-711.
engine indicator, 692.
engine, leaks in plant, 657, 699.
engine, main bearings of, 721,722 ,
engine, maximum efficiency of, 692.
engine, measurement of dimensions, 699.
engine, multiple-expansion, 690. engine performance, 695-697.

Steam engine, performance of automatic, 721.
engine, performance of compound, 721.
engine, performance of condensing, 721.
engine, performance of non-condensing, 721.
engine performances, practical, 721.
engine, performance of slide valve, 721.
engine, pressure on wearing surfaces, 721.
engine proportions, 721.
engine, sizes of parts, 722 .
engine speed, 704.
engine, standard heat test, 700. engine testing, 697-716. engine test, duration of, 699. engine test, forms for, 712-716. engine tests, measurement of coal in, 702.
engine tests, recording, 705. engine test, report of, 711. engine test, starting and stopping, 700.
engine tests, records of, 705.
engine tests, 863.
engine tests, table of, 717-720.
engine, thermal efficiency of, 692. engine, water consumption of, 693, 694-697.
engine, weights of, 722.
engines, cost of, 865.
engines, leakages in, 699.
expansion of, 680-690.
flow of, 630-633.
flow in pipes, 631, 632.
heating, 523-526.
jets, velocity in turbines, 744, 745.
loss of pressure in pipes, 632. moisture in, 633.
passages, 723.
pipe, 722.
pipe, wrought-iron, 318.
pipes, diameter of, 722, 723.
pipes, entrance loṣs in, 633.
pipes, loss of pressure in, 631, 632.
plant, commercial test of, 699.

Steam plant costs, 864.
port, width, 727.
ports, area of, 722, 723.
power, cost of, 862-865.
properties of, 625-629.
pumps, 594, 595.
pumps, Deane, 594.
quality of, 640, 704.
resistance of elbows to flow, 633. saturated, 630.
specific heat of, 522 .
superheated, 630, 633.
table, British system, 625-627.
table, metric system, 628, 629.
tables, introduction to, 624.
turbine, 744-748.
turbine performances, 747.
used by auxiliaries, measurement, 702.
used by injector, 638.
velocity of efflux, 631.
weight of flow through pipes, 632.
Steamship performance, 737-743.
Steamships, powering of, 737-743.
speed of, 737-743.
Steel, 369.
chemical properties of, 423.
classification of, 370.
coefficient of expansion of, 512 , 513.
eye bars, 424.
eye bars, standard, 355.
furnace charging machine, power for, 855.
fusing point of, 515.
hard, 370.
heat transmission through, 523.
influence of heat on strength of, 527.
medium, 370.
mild, 370.
for pins, 424.
pipe fittings, 348.
for rivets, 423.
shearing resistance of rivet, 653. soft, 423.
specifications for structural, 423.
specific gravity of, 292.
strength of, 433.
strength of basic open-hearth, 369 .
struts, 390-395.

Steam test pieces, 423.
wire, 325.
wire, strength of, 365 .
wire rope, 357-364.
wire, weight of, 365 .
Stephenson link motion, 725, 726.
Stiffened furnaces, 657.
Stiffness, 368.
of belts, 498 .
of shafting, 449.
Stone, strength of, 435.
Stones, specific gravity of, 292.
Storage batteries, 772, 773.
Straight line, 107.
link motion, 726.
Strain and stress, 367.
Strains, 366.
Strands of copper wire, 762.
Strap end for connecting rod, 470.
Straps for eccentrics, 472.
Streams, measurement of water in, 573.

Strength of alloys, 875, 876.
of aluminum, 872.
of brick, 435.
of cements, 435.
of corrugated furnaces, 659.
of double riveted joint, 653.
of gear teeth, 483.
of materials, 366-435.
of materials, average, 431-435.
of metals, ultimate, 433, 434.
of rivets, shearing, 663.
of shafting, 449.
of single-riveted joints, 653.
of square threads, 441.
of steel, influence of heat on, 527.
of steel wire, 365 .
of stones, 435.
of suspension furnaces, 660.
of timber, 425-430.
of trapezoidal threads, 441.
of wooden beams, $428,429$.
of wooden pillars, 430.
Stress, 366.
Stresses in beams, 249, 250.
in gear teeth, $483,487$.
Stribeck, proportions for ball bearings, 460.
Stroke, economical length of, 689.

Structural sections, elements of, 373-410.
shapes, elements of, 379 . steel, constitution of, 369. steel, open-hearth, 369. steel, specifications for, 423, 424. steel, strength of, 369.
Struts, 388-395.
factors of safety for, $388,389$.
hard steel, 394, 395.
medium steel, 392, 393.
wrought-iron, 390, 391.
Stub end, 471.
Styrian coals, heating value of, 613.
Sulphate of lime, solubility of, 679.
Sulphur dioxide, latent heat of, 522.
Sulphuric acid, coefficient of expansion of, 512.
acid in feed-water, 678.
acid, specific heat of, 521.
Sulphur, specific gravity of, 292.
specific heat of, 521 .
Superheated steam, 630, 633.
Superheating, measurement of, 640.
Supplementary thermometer tables, 511.

Supporting boilers, 674.
power of springs, 419-422.
Surface condensers, 731, 732.
condenser, Wheeler, 731.
metric measures of, 65.
Surfaces of solids, 137, 138.
Suspension, centre of, 284, 285.
furnace, Morison, 658.
furnace, strength of, 660.
Swiftest descent, curve of, 269.
Switchboards, 769.
Switch boxes, 801.
connections, 804.
spacings, 804.
Switches, 779, 803-806.
for constant-potential systems, 782, 783.
electric, 803.
for electric cars, 791.
general rules for, 779 .
installation of, 782.
for motors, 771.
Synchronous commutating chines, 829.
compensators, 837.

Synchronous electrical machines, 837.
machines, 829 .
machines, efficiency of, 829 .
System of bodies, centre of gravity of, 254.
metric, 65-77.

## T

Table, factor, 7-23.
multiplication, 5-7.
of logarithms of numbers, 84-106.
of powers and roots, 27-57.
of roots of decimal numbers, 26.
Tabular form for boiler tests, 644,645 .
Tangent, 141.
Tangents, logarithmic, 187-231.
natural, 142-186.
Tank measurement, tables for, 579580.

Tanks, measuring, 701.
Tees, elements of, 399.
Tee sections, moment of inertia of, 377.

Teeth, epicycloidal, 477.
internal, 477.
involute, 477.
proportions of, 477 .
rack, 479.
of wheels, 475.
Temperature, 507.
barometric corrections for, 548550.
of bearing, 289 .
for electrical conductors, 832.
entrophy diagram, 708, 709.
of feed-water, 701.
and pressure of air, 529.
rise in electrical machinery, 831, 832.
and volume of air, 529.
Tensile strength of boiler plate, 655. strength of rivet bars, 611, 653.
strength of stays, 658.
Tension, 366, 368.
of belting, 494 .
organs, 493-507.
on wire rope, 504.
Test for boilers, hydrostatic, 674. complete engine and boiler, 700. duration of engine, 699.

Test pieces for steel, 423.
report of engine, 711.
starting and stopping steam-engine, 700.
of steam plant, commercial, 699. of steel eye bars, 424.
Testing indicator springs, 703.
of insulation resistance, 771.
steam boilers, 637-646.
steam engines, 697-716. voltages, 833.
Tests of American coals, 616-621.
for boiler tubes, 671.
of electric motors, 850-860.
of gas engines, 865-868.
insulation, 796.
measurement of coal in, 702.
of pumping engines, standard, 596-599.
recording engine, 705.
rules for conducting steam engine, 698.
steam engine, 697, 863.
of steam engines, forms for, 712.
for stay bolts, 671.
of wooden posts, 425.
Threads for bolts, 441.
Theorem, binomial, 78 .
Theoretical discharge of water, 559.
heating values of coals, 610-614.
steam consumption, 693.
velocity of water, 560 .
Thermal efficiency of combustion motors, 750.
efficiency curves, 710 ,
efficiency of heat motors, 691, 692.
efficiency ratio, 708.
efficiency of steam engines, 692, 710.
unit, British, 516.
units, 516, 608.
units, to calories table, 517.
value, 608.
value of fuels, 608.
Thermometer, 508.
centigrade, 482, 508.
conversion tables, 509-511.
Fahrenheit, 508.
Réaumur, 508.
scales, conversion of, 508.
tables, supplementary, 511.

Thick cylinders, 418.
Three-phase circuits, 824-826.
Three-wire system, grounding, 776.
Throttling calorimeter, 633.
Thrust, 388, 389.
bearings, 448.
bearings, ball, 460-462.
bearings, friction of, 289.
Thumb-shaped teeth, 483.
Timber, 425-430.
elastic limit of, 425.
measurement, 333.
properties of, $426,427$.
ultimate strength of, 432.
Time, 242.
Tin, coefficient of expansion of, 512 , 513.
fusing-point of, 515.
heat transmission through, 523.
radiation from, 523.
specific gravity of, 292.
specific heat of, 521 .
plate, 330.
Tinned sheet steel, 330.
Ton, long, 61.
metric, 62, 65.
short, 61.
Tool grinder, power required for, 842.

Toothed gearing, 474-493.
Tooth outlines, epicycloidal, 476477.
outlines, involute, 477-479.
Torsion, 366, 413-416.
sections, 413.
of shafting, 449.
of shafts, 414.
table, 415, 416.
Torus, surface of, 137.
volume of, 138.
Toughness, 290.
Tower's experiments on friction, 289.

Tractive power of locomotives, 737.
Trains, grade resistance of, 736.
speed resistance of, 736 .
Trajectory, 269.
Transfer of heat, 507.
Transformation of arm sections, $466,467$.
Transformers, 773.

Transformers for high-potential systems, 795.
installation of, 773, 776.
location of, 776.
outdoor, 776.
temperature rise in, 832.
testing of, 834.
Transmission, belt, 494.
coefficients for heat, 523.
of compressed air, 532.
cotton rope, 507.
electric power, 760.
gears, 486.
lines, efficiency of, 831.
long distance electric, 824.
of power, hydraulic, 606.
rope, 504-507.
rope, wire, 359-364.
Transylvanian coals, heating value of, 613.
Trapezium, area of, 136.
Trapezoid, area of, 136.
Trapezoidal threads, strength of, 441.

Treble-riveted joints, 654.
Trial, report of boiler, 643.
Trials of pumping engines, standard, 596-599.
Triangle, area of, 136.
centre of gravity of, 252.
formulas for, 232-236.
oblique-angled, 233.
right-angled, 232.
Trigonometrical formulas, 237.
Trigonometric tables, 141-231.
Trigonometry, 140-237.
Triple-expansion diagram, 691.
expansion engines, $690,691$.
expansion engines, cylinder ratios for, 691.
expansion engines, performance of, 863 ,
expansion engine tests, 863.
trussed beams, 257.
Trolley wires, 774.
Troubles due to water in boilers, 678.

Troy weight, 62.
Trussed beams, 256, 257.
beams, double, 256 .
beams, multiple, 257.

Trussed beams, simple, 255.
beams, triple, 257.
roof, double, 260.
roof, single, 259.
Trusses, bridge, 265, 266. roof, 258-262.
Truss, polygonal roof, 261.
Tube holes, boiler, 672.
plates for boilers, 659.
Tubes, boiler, 323, 338.
dimensions of boiler, 661.
extra strong, 323.
for boilers, 671.
setting, boiler, 673.
Turbine, 587-590.
Fourneyron, 587.
Francis, 588.
Jonval, 588.
steam, 744-748.
Turpentine, latent heat of, 522.
specific heat of, 521.
Turret lathe, power required for, 841.

Tutton formula for water flow in channels, 571.
formula for water flow in pipes, 561.

Two-phase circuits, 824-826.
Typical indicator diagram, 692.

## U

Ultimate strength, 368.
strength of materials, 432-435.
strength of metals, 433, 434.
strength of timbers, 432.
Underground conductors, 778.
Undershot stream wheel, 582.
water-wheels, 582.
Uniform section, beams of, 384-387.
Unions, pipe, 353. .
Unit, Board of Trade, 762.
standard coal, 698.
United States coal, heating value of, 574, 610, 614, 616-621.
States, rules for boilers, 653-658.
States sheet-metal gauge, 326.
States standard pipe threads, 318.
States standard screw threads, 312.

States statutes, boiler specifications, 653-658.

United States Treasury rules for safety valves, 674.
Units, electrical and mechanical, 761.
heat, 516.
of power, 277.
of work, 277.
Universal joint, 464.

Vacuum, 730.
Valenciennes coal, heating value of, 612.

Value, thermal, 608.
Valve action shown by indicator, 693.

Allen, 728-730.
diagram, polar, 725.
diagram, Reuleaux, 724.
diagram, Zeuner, 725.
diagrams, slide, $724,725,729$.
gear, 724-730.
gear, Angström's, 726.
gear, Brown's, 726.
gear, Marshall's, 726.
gear, radial, 726.
leakage of pumping engines, 598. metal, 874.
Valves, angle, globe and check, 351, 352.
butterfly, 351.
dimensions of, 351.
gate, 352.
resistance due to, 604 .
resistance to flow of water, 604.
safety, 674.
slide, 724-730.
Vaporization, latent heat of, 522.
Variable speed control, CrockerWheeler system, 870, 871.
speed control, electric, 847.
Variations of electrical apparatus, 835.

Velocity, 242.
of air in chimney flues, 650, 651. circumferential, 278.
of discharge from orifice, 559.
of efflux of compressed air, 532.
of escape of compressed air, 532.
formulas for, 276.
of water for various heads, 560 .

Velocity of water discharge, 559.
Velocities and heads of water, 560.
Ventilation, 526.
Versed cosines, natural, 142-186.
Versed sine, 141.
sines, natural, 142-186.
Vertical water wheels, 581.
Virginia coal, heating value of, 610.
Vis-viva, 279.
Volt, 761.
Voltage tests, high, 833.
Voltages, 833.
classification of, 836 .
and frequencies classified, 83f. testing, 833.
Volume and density of water, 524 , 552-556.
measures of, 62, 63.
metric measures of, $63,65$.
and pressure of air, 530 .
reduction of gases, 760 .
and temperature of air, 529.
and weight of air, 528.
Volumes of compressed air transmitted through pipes, 532.
of solids, 138-140.
of spheres, table 140.

## W

Wall brackets, 455.
Walls, loss of heat through, 525. resistance to overturning, 266.
Walschaert link motion, 726.
Washers, boiler, 656.
Water, 551-607.
Allegheny river, 680.
brake, 704.
analyses of boiler feed, 680.
Bazin formula for flow, 569.
boiler feed, 677.
calcium carbonate in feed, 677. calcium sulphate in feed, 677. chemical composition of, 551. coal mine, 680.
coefficient of expansion of, 512.
column, air pressure equivalents, 652.
composition of, 551.
consumption of steam engines, 693, 694-697, 863.
consumption table, 694.

Water, density of, 551-556.
density and volume of, 552-556. discharge of, 559.
discharge through pipes, $563,564$. discharge through square orifices, 581.
flow of, 561-575.
flow, Bazin diagram for, 570 .
flow, Bazin formula, 569.
flow in channels, Tutton's formula for, 571.
flow, Chézy formula, 561.
flow, Kutter diagram for, 572.
flow, Kutter formula, 569.
flow in open channnels, 569-576.
flow through hose, 568.
flow through pipes, 561-567.
flow, resistance of changes of cross section, 604.
flow, resistance in pipe bends, 603.
flow, resistance of valves, 604.
flow, Tutton formula, 561.
friction in pipes, 565-567.
gas, 623.
gas, calorific power, 623.
head, loss by friction, $565,566$.
heads and air pressures, 652.
heads and pressures, 557, 558.
heads and velocities, 560.
horizontal pressure of, 559.
horse-power, 557, 558.
horse-power of, 557.
jets, energy of, 559.
heat units in, 552-555.
impurities in feed, 677.
Kutter's formula for flow, 571, 572.
latent heat of, 522 .
mains, standard cast-iron, 319321.
measurement of feed, 701.
measurement of jacket, 701.
measurement by weir, 573 .
measurement of, 572.
molecular weight of, 551.
Monongahela river, 680.
pipe, standard cast-iron, 319-321.
plant costs, $861,862$.
power, cost of, 861,862 .
power plant, cost of, 861 .
power, operative costs, 862 .

Water, pressure of, 557.
properties of, 552-555.
properties of, metric system, 556.
purification of feed, 677-680.
radiation from, 523.
salt well, 680.
specific heat of, 551 .
spring, 680.
sulphuric acid in feed, 678.
table for horse-power, 576.
temperature of feed, 701.
theoretical discharge of, 560 .
volume of, 552-556.
tube boilers, 645.
tube boiler, heating surface, 646.
wheels, 581-590.
wheel, breast, 583.
wheel, overshot, 584.
wheel, Pelton, 584.
wheel, Poncelet, 583.
wheels, power of, 581, 582.
wheel, saw mill, 584.
wheel table, Pelton, 585, 586.
wheels, undershot, 582.
wheels, vertical, 581.
work in lifting, 557, 558.
Waters, analyses of boiler, 680.
Watt, 278, 761.
Wear, coefficient of, 488.
on gear teeth, 488.
on gear wheels, 487.
Wearing surfaces of engines, 721.
Weather proof insulation, 798.
proof wire, 797, 798.
Wedge frustum, volume of, 140.
Weight of aluminum, 872.
apothecaries, 62.
avoirdupois, 61.
of bar iron, metric, 300, 301.
of bodies, 250 .
of holts, 310, 311.
of bridge rivets, 309 .
of cast-iron pipe, 307, 308.
of copper pipe, metric, 340.
of flagging, 332.
of flat rolled iron, 294-297.
of fly wheels, 722, 733.
of iron, 295-301.
of lead pipe, 331.
of Manila rope, 505.
of materials, 294-311.

Weight, measures of, 61,82 .
metric measures of, 65.
of roofing, 333.
of round bar iron, 290, 291, 298, 299.
of sheet copper, 302, 303.
of sheet iron, 302-304.
of sheet lead, 302.
of sheet metal, British, 302.
of sheet zinc, 302.
of shingles, 332.
of spheres, British, 305.
of spheres, metric, 306.
of square bar iron, 298, 299.
of steel wire, 365.
Troy, 62.
volume of air, 528.
of water, molecular, 551.
of water, tables, 552-556.
of wire, 325 .
of wood, 614.
of wrought-iron pipe, metric, 340.
Weighted governor, 284.
safety valves, 674.
Weights and measures, 60.
metric system, 62.
of steam engines, 722.
Weir measurement, table for, 574. measurement of water by, 573 .
Weirs, 573.
Welded steel flanges, 342-345.
Welsh coals, heating value of, 610.
Westinghouse-Parsons steam turbine, 747.
Westinghouse system of speed control, 847.
West Virginia coals, tests of, 617, 621.

Wetted perimeter, 561.
Wheeler surface condenser, 731.
White metal, 874.
Whitworth standard screw threads 313.

Width of belts, 494.
of steam port, 727.
Window glass, 328.
Wind stresses on roofs, 262.
Wire, 325.
conduit, 800.
copper, 764, 765.
crossings, 778.

Wire fixtures, 799.
gauge, American, 304.
gauge, Birmingham, 304.
gauges, 324.
haulage rope, 359-364.
joints, 778.
nails, 335.
rope, 357-365.
rope, extra strong, 360.
rope, flattened strand, 362-364.
rope, Hercules, 361-363.
rope, standard hoisting, 358-364.
rope, tension on, 505.
rope transmission, 504, 505.
rope, working loads of, 357.
slow-burning, 797, 798.
spikes, 335.
strength of steel, 365.
table of copper, $764,765$.
transmission rope, 359-364.
weather-proof, 797, 798.
weight of, 325.
weight of steel, 365.
Wires, capacity of, 821.
carrying capacity of, 779.
electrical, 773, 774.
general rules for electrical, 778.
ground return, 774.
guard, 774.
joining, 774.
insulators for, 773.
outside electrical, 773, 774.
trolley, 774.
Wiring, car, 790.
conduit work, 785.
for constant-current systems, 780.
of electric cars, 790-794.
for extra-high potential systems, 795.
fixture work, 786.
formulas, 823-826.
for high potential systems, 794.
knob and tube work, 786 .
for low potential systems, 784 .
for low voltages, 784-789.
marine electric, 819.
moulding work, 785.
open work, 784.
outside, 773.
rules, general, 778 .
for signaling systems, 816-818.

Wiring on shipboard, 819-821. of switchboards, 769.
Wooden beams, 425.
beams, safe loads for, 428, 429.
gear teeth, 488.
pillars, strength of, 430.
Wood, 425-430.
elastic limit of, 425.
heating value of, 614.
moisture in, 425.
physical properties of, 426, 427.
screws, 336.
stave pipe, water flow in, 561.
strength of, $425,427$.
weight of, 614.
specific gravity of, 292.
Wood-working machinery, electric group driving, 860.
machinery, power required for, $853,860$.
tools, power required for, 853,860 .
Work, 242, 276, 27 .
formulas for, 276.
in compressing air, 533.
in lifting water, 557, 558.
in moving bodies, 279.
units of, 277.
Working pressures for boilers, 664668.
pressures for corrugated furnaces, 659.
pressures for Morison suspension furnaces, 660 .
stresses on gear teeth, 483.
Workmanship on boilers, 671.

Worthington duplex feed pumps, 595.
steam pumps, 595.
Wrapping connectors, 493-507.
Wrenches, 442, 443.
Wrought iron pipe, metric weight of, 340.
iron pipe, water flow in, 561.
iron steam pipe, 318.
iron struts, 390, 391.
spikes, 335.
Wyoming coals, tests of, 617, 621.

$$
\mathbf{Y}
$$

Yield point, 367-370.
Yorkshire coal, heating value of, 610.

$$
\mathbf{Z}
$$

Z-bar columns, 398. bar columns, elements of, 398. bars, elements of, 396, 397.
Zero, absolute, 515.
Zeuner diagram for Allen valve, 728. valve diagram, 725.
Zinc, coefficient of expansion of, 512, 513.
fusing point of, 515 . heat transmission through, 523 .
latent heat of, 522.
specific gravity of, 292.
specific heat of, 521.
weight of sheet, 302.
Zone, surface of circle, 138.
Zurich, water-power plant costs, 861.

## OVER 25,000 MILES IN USE



Rolled from Best Quality of Steel to fit 145 Sections of Rails.

continuous

The extent of their use is the best evidence of their excellence.



CONTINUOUS

Protected by United States Patents


WOLHAUPTER

## THE RAIL JOINT CO.

## Makers of

Rail Joints, Step or Compromise, Girder and Insulating Rail Joints GENERAL OFFICE: 29 WEST 34th STREET, NEW YORK, N. Y.

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| Atlanta, Ga. | Baltalogs at agencies Md. | Boston, Mass. | Chicago, Ills. |
| Cincinnati, Ohio. | Denver, Colo. | New Orleans, La. | Pittsburg, Pa. |
| Seattle, Wash. | St. Paul, Minn. | St. Louls, Mo. | Troy, N. Y. |

# FULLER-LEHIGH PULVERIZER MILL 

Recognized the BEST mill on the market


Tell us what you want to grind and we will write fully .:. .:.

LEHIGH CAR, WHEEL AND AXLE WORKS
Sole Manufacturers
Catasauqua, Pa., U. S. A.

Baldwin Locomotive Works BURNHAM, WILLIAMS \& CO. PHILADELPHIA, PA., U.S.A.


# LOCOMOTIVES Description 

Electric Locomotives, Electric Motor and Trailer Trucks

## STANDARD STEEL WORKS

HARRISON BUILDING, PHILADELPHIA, PA.
Steel Tired Wheels
SOLID FORGED ROLLED
Steel Wheels
LOCOMOTIVE TIRES
FORGINGS
RAILWAY SPRINGS CASTINGS


## A.LESCHEN \& SONS ROPECO.

 BRANCH OFFICES:NEW YORK,
CHICAGO,
ST.LOUIS, MO. DENVER,

## WIRE ROPE for MINES, QUARRIES, ELEVATORS, ETC.

 AERIAL WIRE ROPE TRAMWAYS SINGLE \& DOUBLE ROPE SYSTEMS.UNDERGROUND: SURFACE ${ }^{2}$ NCLNE WHEROPE MAUMACE OUT FMES

- LIT-MILE LESCHEN TRAMWAY - LONGEST IN THE cOUNTRY:


## REEVES

"TUBAL" Manganese Bronze specified by U. S. Govt. Tensile 70,000 lbs., E. L. 30, 000, Elong. and Red. 20 to 25\%. DISC Metal for drawbridges and turntables. Reduction of $1^{\prime \prime}$ cube under $100,000 \mathrm{lb}$. load $\frac{1_{10}^{\prime \prime}}{10}$, elastic limit $30,000 \mathrm{lb}$. HYDRADLIC Bronze for high pressures.

ACID Resisting Bronze, White Brass, Babbitt Metals.
PHOSPHOR Bronze Castings, Wire, Sheet and Rods.

## PAUL S. REEVE \& SONS

 PHILA., U. S. A. 1415 CATHARINE STREET
## In Mill, Factory, Storehouse

and Temporary Building construction, whether first cost is or is not a factor, you cannot use a better roofing material than our

PITTSBURGH

## APOLLO BEST BLOOM Galvanized Sheets.

They are flat, even in gauge, tough, pliable, easily worked, reasonable in price, and will give complete and lasting protection.

Apollo Sheets are world-wide favorites, and it will therefore pay you, as thousands will testify, to demand Apollo when you are ready to place your orders.

We'll gladly give you further information if you will write. Our Weight Card may also prove useful.
AMERICAN SHEET \& TIN PLATE CO. Frick Building, PITTSBURGH, PA.

# Glasgow Iron Company 

 POTTSTOWN, PA.

SPECIALTIES
Flanged and Dished Boiler Heads.
The "ROE" Pressed Steel Manhead and Yoke. "GLASGOW" Pressed Steel Pipe Flanges.
The "ROE" Pressed Steel Boiler Lug.
" Glasgow" Pressed Steel Manhole Saddles. Manholes, Flue Holes, Hand Holes.
Buckled Plates for Bridges and Buildings.
Flanged and Pressed Work of all kinds.


SHEARED AND UNIVERSAL ROLLED Iron and Steel Plates

## PERFECT CONCRETE <br> THE FIRST CON.

 SIDERATION WHEN BUYING A CONCRETE MIXER IS Will It Produce Perfect ConCRETE ? . .Failing in this, no other features of claimed excellence are worthy of consideration.

It is certain that any form of separation in the mixing chamber, where a por-
 tion of the batch is in motion and the remainder in repose, the portions constantly changing their relative position and those at rest do not receive the same mixing and the concrete cannot be of uniform quality.

It is also obvious that any form of shelves, knives, blades, or paddles in the mixing receptacle merely pocket as much as they will hold of some ingredient as it enters, and this material carried by these devices adheres to them during the time the remainder of the batch is being mixed, and simply slides out unmixed when the batch is discharged, producing a streaky concrete.

## THE CHICAGO IMPROVED CUBE CONCRETE MIXER

Has no inside mechanism except small breaker rods. The form of the cube performs the mixing. The entire batch is held together in a single mass. It is all mixed together and more thoroughly mixed than by any other method.

There is nothing to separate the ingredients, and the result must be perfect uniformity of product.

The breaker rods break up any possible ball or mass, and ingredients cannot adhere to them.

The Chicago Improved Cube can be mounted in connection with a steel charging elevator carried by the same truck which supports the mixer, and when mounted in this manner can be loaded within 14 inches of the ground, automatically charged and discharged, and will turn out a batch of absolutely perfect concrete in a minute.

Sizes and mountings for every requirement. Write for catalogue No. 44.

# MUNICIPAL ENGINEERING \& CONTRACTING CO. general offices, railway exchange, chicago, U. S. A. New York Office, 150 Nassau St. 

## THE COX \& SONS COMPANY

Manufacturers of


Pipe-Threading and Cutting-Off Machines
In sizes for Wrought-Iron or Steel Pipe, $1 / 8$ to 18 inches' diameter. Engine, Belt, or Motor Driven.

Works: BRIDGETON, N. J.
Office: 215 Race Street, PHILADELPHIA, PA.

## Dexter <br> FOLDERS



THE DEXTER THREE-FOLD PARALLEL FOLDER.
Dexter Folder Co., : factory
New York, Chicago, Boston. PEARL RIVER, N.Y.

# AIR POWER APPLIANCES 



For thirty-five years the standards of progress in engineering work

AIR and GAS COMPRESSORS ROCK DRILLS
COAL MINING MACHINERY STONE CHANNELERS
PNEUMATIC PUMPING SYSTEMS PNEUMATIC TOOLS ELECTRIC-AIR ROCK DRILLS

# INGERSOLL-RAND CO, 

11 Broadway, NEW YORK
Offices in all the Principal Cities of the World

# Simplex Valve \& Meter Company 



# Digging Machinery 



## The

## HAYWARD

BUCKETS
"ORANGE PEEL" AND "CLAM SHELL"

FOR<br>DREDGING<br>EXCAVATING

AND HANDLING ALL KINDS OF MATERIAL, SUCH AS BROKEN ROCK, PHOSPHATE ROCK, CLAY, DIRT, GRAVEL, SAND, COAL, AND ALL OTHER SUBSTANCES THAT CAN BE PENETRATED.


Dredges, Excavators, Travelling Derricks, Coal-Handling Machinery, etc.

> BUILT ON IMPROVED LINES.

SEND FOR 1903 CATALOGUES

## The HAYWARD CO.

 97 CEDAR STREET NEW YORK
# "taylor-made" <br> Manganese steel CASTINGS 

SPECIAL STEELS FOR
SPECIAL PLACES

ONE
QUALITY ONLYTHE HIGHEST

TAYLOR IRON AND STEEL COO, HIGH

# The American Pipe Manufacturing Company 

| ENGINEERS and |
| :--- |
| CONTRACTORS |
| FOR WATER-WORKS |

112 North Broad St., Philadelphia, Pa.

# LIDGERWOOD HOISTING <br>  <br> Hoisting and Conveying Devices 

Of the latest Improved Design and Construction.

## The Lidgerwood Hoisting Engines

are built to gauge on the Duplicate Part System, insuring quick delivery. They are strictly high grade, and accepted as the STANDARD for all hoisting purposes.
Built for any power or any possible service. OVER 26,000 ENGINES IN USE

## The Lidgerwood Cableways

will hoist and convey loads up to 20 TONS. They combine in their construction all the latest improvements, and are specially adapted for the construction of Dams, Piers, Walls, Sewers, Pipe Lines, Canal Excavating, etc.
Steam and Electric Hoists.
Send for Latest Catalogues


Lidgerwood Electric Hoist. LIDGERWOOD MFG. CO. 96 Liberty St., NEW YORK
Ohicago Boston New Orleans Philadelphia Pittsburg Oleveland Atlanta Denver, Colo. Seattle St. Paul, Minn.

A MONTHLY REVIEW OF THE APPLIED SCIENCE of ENGINEERING Mechanical : Electrical ; Civil : Mining

WHE Current Record of the Engineering Work of the World, from the pens of the Ablest Specialists, Presented in the Highest Style of the Art of the Engraver and Printer. Price, 25 cents a Copy. Three Dollars a Year.

## THE CASSIER MAGAZINE CO.

No. 3 West Twenty-ninth Street, New York.

The Golden Tilting Steam Trap


No floats, no valves inside of trap. All working parts outside. Simple, positive. We know these traps " have no equal."

The Heaviest Line of Automatic Valves for Steam and Water Ser= vice Ever Presented to Users.

The Anderson Cushioned Non-Return Stop Valve


Protect your boilers with an absolute safety stop. They will automatically cut off a boiler in case of accident to the boiler, such as bursting of a tube.

## LOMBARD IRON WORKS \& SUPPLY COMPANY

Foundry Machine and Boiler Works, also Mill and Machinery Supply Store, AUGUSTA, GA.

*

Capacity : 300 hands. High-grade Boilers and Engines, Shafting, Pulleys and Hangers. All kinds of Mill Works and Supplies and Repairs.

CABLE ADDRESS "KOVENLO."

## L. O. KOVEN \& BROTHER <br> MANUFACTURERS OF PLATE STEEL AND SHEET IRON WORK OF EVERY DESCRIPTION

FOR SHIPS, MILLS, MINES, FACTORIES, PLANTATIONS, CHEMICAL WORKS, ABATTOIRS, FERTILIZER PLANTS, WATER WORKS, GOVERN MENT WORK, SEWAGE SYSTEMS, ETC.

Designers of Special Apparatus for Manufacturing Industries.
Notice-We Solicit Orders for Galvanizing.
OFFICE AND WAREROOMS
50 CLIFF STREET, N. Y.

for complete Mechanical, Electrical, ana Sanitary Equipment of Buildings.

Power Piping, Steam, HotWater, and Blower Heating Systems, Plumbing, Water Supply, and Sewerage Disposal, Ventilating, Sheet-Metal Work, and Electric Wiring.
Our plant is equipped for cutting, threading, bending, and lap-jointing pipe up to $24^{\prime \prime}$ in diameter.

## OFFICES AND WORKS

 Pennsylvania Avenue Wallace and Taylor Streets PHILADELPHIA, :: PENNA.
## WESTON STANDARD PORTABLE

## Voltmeters Ammeters

 Millivoltmeters Voltameters Milammeters Ohmmeters Portable Galvanometers Ground Detectors and Circuit TestersDIRECT-READING


Weston Standard Portable Voltmeter

- Our Portable Instruments are recognized as THE STANDARD the world over. Our STATION VOLTMETERS AND AMMETERS are unsurpassed in point of extreme accuracy and lowest consumption of energy.


## WESTON ELECTRICAL INSTRUMENT CO.

Waverly Park, Newark, N. J.
Berlin-European Weston Electrical Instrument Co., Ritterstrasse No. 88. London-Audrey House, Ely Place, Holborn.

New York Office
74 Cortlandt Street
NIGHT AND
DAY FORCE
CONSTANTLY
EMPLOYED.

NIGHT AND DAY FORCE CONSTANTLY EMPLOYED.

$\mathrm{W}^{\mathrm{E}}$E make EVERYTHING in the photo-engraving line, from the highest grade of fine book and magazine illustrations on copper, to the coarsest screen half-tone work on zinc for newspapers, posters, etc.

We are especially equipped for reproducing CATALOGUE ILLUSTRATIONS of Engines, Machinery, Electrical Appliances, etc., either direct from the object, or from photographs or drawings.

The Standard Engraving Co. INCORPORATED
S. E. Cor. 7th and Chestnut Sts., Phila.

## DON’T BE FOOLED BY IMITATIONS OR SUBSTITUTES


"

## Genuine"

 Screw WrenchesBEST STRONGEST

Railway Standard for 50 Years

MADE ONLY BY
COES WRENCH CO.
WORCEST'ER, MASS.
J. C. McCARTY \& CO., NEW YORK JOHN H. GRAHAM \& CO., NEW YORK $\}$

# Surface and Jet <br> CONDENSERS 

Feed-Water

## HEATERS

Vacuum, Boiler-Feed, and Pressure PUMPS WATER-COOLING APPARATUS

## C. H. WHEELER MFG.CO. PHILADELPHIA

## THE CUTLER-HAMMER MFG. CO.

W E are better prepared than ever to furnish you anything you require in the line of motor control devices, including remote control equipments.

STARTING AND REGULATING RHEOSTATS ELEVATOR CONTROLLERS, A. C. \& D. C. PUMP CONTROLLERS, A. C. \& D. C. MACHINE TOOL CONTROLLERS PRINTING PRESS CONTROLLERS THEATRE DIMMERS, ETC.

Main Office and Works : MILWAUKEE, WIS. Branch Offices: New York. Boston. Chicago. Pittsburg.

THE ENGINEERING MAGAZINE is made for the man who wants to grow in his business-whether he holds a subordinate position, is a practicing engineer or a factory manager.

More Ghan 300 Pages Every Issue.

## Timely Articles .

Specially written papers on all important engineering questions of the day, including Electrical, Civil, Mechanical, and Mining Engineering, and Industrial Management in all its branches. Every leading article is written by a specialist,-by a man who has attained position and can write with authority on the subjects discussed.

## Illustrations.

The illustrations aptly supplement the text, are freely used, and in securing them neither effort nor expense is spared. The illustrations are selected for their practical utility rather than for decorative effects.

Engineering Reviews
A concise survey of current industrial engineering progress, as reflected in the entire industrial press of the world.

The Engineering Index
A topical index to the whole range of current engineering and industrial literature, making it possible for one to keep abreast of progress in his specialty by this one publication alone. This index tells of every article on a given specialty published anywhere, and provides a ready means of obtaining it. Ask for descriptive circular.

Improved Machinery New Trade Literature

## WORKS MANAGEMENT

THE COMPLETE COST-KEEPER presents different original cost-keeping systems, varying in complexity from one so simple that the entire history of each production order is recorded on a single printed form, up to some of the most elaborate methods known, by which any desired degree of minuteness in subdivision of accounting can be obtained.

Every step in the use of the several systems is minutely detailed, and when the factory production is separated from the purely commercial operation of disposing of the factory product, the commercial books are also described, and in all cases the number of men at work, and the number and class of bookkeepers, clerks, messengers, time-takers, and so on, employed in cost-accounting is given, so that any manager can tell about what he may expect the use of a similar system to cost in his own establishment.
450 Pages. $6 \times 9$. Illustrated. Cloth Binding. $\$ 5.00$, Prepaid.

THE FACTORY MANAGER tells how they eliminate dead expense ; unnecessary fixed charges; friction and delays in handling work; useless help, methods, and records; unnecessary time and material; interruptions, "waits," and guesswork; too many handlings of work, etc., and how they arrive at the exact cost of all work done.

There is not a theory in the whole book. Every chapter is a working plan available for immediate use. Every method, every card, every blank form and record book, is in successful use ; every one is the result of years of testing, revision, and improvement.

All cards, tickets, order-blanks, page or sheet headings, etc., have the size marked, together with the color and kind of paper on which they are printed. Any one can, therefore, reproduce any form shown and readily apply it in his own business.
432 Pages. $6 \times 9$. Illustrated. Cloth Binding. $\$ 5.00$, Prepaid.

## Trautwine's Civil Engineer's Pocket-Book



JOHN WILEY \& SONS
43 EAST igth STREET
NEW YORK, - $\quad$ N. Y.

# Williamiol dlans or on oncio. 

 PHILADELPHIA, PA.
# Modern Machine Tools 

 Jib CRANES :: :: TRAVELING CRANESImproved Injectors for Boilers
Power Transmission Machinery
Turntables, Transfer Tables, etc., etc.

# Write to <br> J. B. Iippincott Compansy <br> Publishers For a <br> Philadelphia <br> Complete List of Important Scientific Publications 

Sent Free upon Application

# The 0. F. ZURN OIL CO. 

Philadelphia, Penn., U. S. A.
M. ZURN, Pres.
O. F. ZURN, Vice=Pres.
J. D. KELLEY, Sec.
C. J. CURRAN, Treas.

High=Grade
Lubricating


From the Manufacturer to the Consumer Direct.

WE SOLICIT A TRIAL ORDER, MORE PARTICULARLY WHERE LUBRICATING TROUBLE IS BEING EXPERIENCED.


## BEVEL GEARS

Cut Theoretically Correct
Special Facilities for Cutting Spur,
Worm, Spiral, and Internal Gear-Wheels.
HUGO BILGRAM, Machinist 1231 Spring Garden St., Phila., Pa.

ANIMPORTANT BOOK-READY LATE IN I 907

## Hydro-Electric Engineering

BY
H. von SCHON

Member American Society Civil Engineers
A work on water power, especially in its use in the generation and transmission of electric power-a subject that is now receiving such considerable attention from engineers, capitalists, and promoters.

Octavo. Fully Illustrated by Original Drawings, Designs and Photographs

[^24]
# Engineering Dews 

FOUNDED 1874

## POINTS THE WAY TO

The Study of Engineering Specialties The Securing of Profitable Business The Procuring of Good Employment in all Lines of Engineering Work.

The pioneer of American engineering journalism and still the first and foremost authority on all engineering questions.

## Published Every Thursday <br> Five Dollars a Year

The Engineering News Book Department publishes a number of Standard technical books and specifications ; and is also prepared to supply promptly, on receipt of price, any books of a technical or general nature other than those of its own publication. Send for catalogue.

> THE ENGINEERING NEWS PUBLISHING COMPANY
> 220 BROADWAY :: :: NEW YORK

# TECHNICAL LITERATURE ב $A$ MONTHLY REVIEW OF. CURRENT TECHNICAL PUBLICATIONS 

Gives in condensed form the best literary material of general interest appearing in the current technical press of America and Europe, and much valuable information abstracted from society proceedings, trade publications, lectures, etc. Also gives announcements and authoritative reviews of new technical books, notes on technical education, contributed articles, and a classified, descriptive

## INDEX TO TECHNICAL ARTICLES

## IN CURRENT PERIODICAL LITERATURE

covering every department of engineering, and brought down to the end of the month preceding issue. This index gives all details of the articles, so that a regular filing of the index or the transfer of the separate items to cards constitutes a cumulative and up-to-date record of modern industrial progress that CANNOT be duplicated.
"No other journal is devoted wholly to the field selected for 'Technical Literature." It far surpasses any other in the number, length, variety, and general interest of its articles reprinted or condensed from its contemporaries. ${ }^{*}$-ENGINEERING NEWS (New York).
"This splendid publication is even better than the publishers promised. It should have a place in every engineering, scientific, and technical library. We predict for "Technical Literature" a brilliant career."-MINING REPORTER (Denver).
"Contains more engineering miscellany selected with discriminating judgment than we have seen in any other publication. The reviews of books are very careful and of unusual value for technical accuracy."-CONCRETE ENGINEERING (Cleveland).
"Crammed with well selected stuff, not only what is vital, but also what is ob-scure-fine technical information in the bodies of corporation reports, speeches, lectures, etc., which often escapes the regular technical press."-PRINTERS ${ }^{3}$ INK (New York).

## SUBSCRIPTION RATES

Domestic, \$2.00 a Year
Foreign, \$2.50 a Year Single Copies, 20 Cents
Two Months' Trial Subscription, 25 Cents Synopsis of Current Issue Sent on Request

[^25]
## WRITE US - IF YOU WANT

 ANYTHING - IN SPECIAL, MODEL OR EXPERIMENTAL MACHINERYOF INTEREST TO INVENTORS

DIES SPECIAL TOOLS

## EXPERIMENTAL WORK STRICTLY CONFIDENTIAL

W ${ }^{\mathrm{E} \text { do our own designing and can undertake }}$ the construction of PLAIN or AUTOMATIC MACHINERY of almost any weight. Our years of experience in developing and perfecting crude ideas is of great value to our patrons. Our shop is equipped with modern tools and appliances, and we are prepared for all kinds of mechanical experiments.
inventions developed
NORTHERN MACHINE WORKS
Manufacturers of SPECIAL MACHINERY 2008 N. LEITHGOW ST.,

PHILADELPHIA

## J. 13. 近ippiutcott

## Company



IHigh-Class Commercial Printing; Booklets Designed, Arranged and Executed, Printers of Genealogical, Memorial, and other Privately issued Books, Transactions of Literary and Scientific Societies, Journals, Addresses, Lectures, and Catalogues. Bookbinders. :: :: Publishers of Lippincott's Monthly Magazine and Standard and Miscellaneous Books.

## Cast masbington square 

## FIVE-FIGURE

LOGARITHMS OF NUMBERS AND ANGULAR FUNCTIONS BY
HENRY HARRISON SUPLEE, B.Sc., M.E. Author of "Suplee's Mechanical Engineer's Reference Book."

This volume furnishes a set of five-figure logarithms of numbers and of angular functions, together with a set of hyperbolic logarithms, in a form convenient for the pocket and especially suitable for the work of the engineer, constructor, and student.
"Handy in size, and of excellent typography, this collection of logarithmic tables will be found a useful aid."Engineering News, New York.
WILL GO IN YOUR POCKET Bound in limp leather, round corners, gilt edges, 5-16 inch thick. وI pages, $\$ 2.00$ net, transportation prepaid.

## A Text-Book of

WILFRID J. LINEHAM, M.I., Мech.E.
Eighth Edition, Revised and Enlarged.
Part I.-W orkshop Practice.
Part II.-Theory and Examples. Illustrated. I266 pages. Octavo. Cloth, $\$ 4.50$ net.

## J. B. LIPPINCOTT COMPANY PUBLISHERS :: :: :: :: PHILADELPHIA

# A TECHNOLOGICAL AND SCIENTIFIC DICTIONARY 

 EDITED BY G. F. GOODCHILD, M.A., B.Sc. ANDC. F. TWENEY

AUNIQUE and most important work, that will be found absolutely indispensable to the engineer, the manufacturer, the trained mechanic, the teacher, the professional man, the artist, the student, and in fact to everyone whose work takes him into the field of any of the arts or sciences.
T1 The object of the work is to furnish the modern signification of technical terms employed in the various arts and sciences, and by means of exhaustive articles to show clearly the principles and processes of pure and applied science.
©. No similar work exists in the English language, nor will the amount of technical information here contained be found in any other work extant.

Illustrated. 883 pages. Small quarto. Half morocco, gilt top, $\$ 6.00$ net.

[^26]

## Fireside Travel in Foreign Lands

It is a fact that the United States is the home of more pleasureseeking and business travelers in foreign lands than any other country on the globe. And wealth is not the only equipment of these travelers, for as a rule they have read and studied about the countries they are to visit long before setting out. This sort of reading and study is made interesting through the illustrations, colored maps, and authentic descriptive matter to be found in the ten large volumes of

## CHAMBERS'S NEW ENCYCLOPADIA

For those who wish to probe deeper there will be found an excellent summary of the physical, political, and commercial features of every country in the habitable world, with special reference to our own United States. An evening with your family or friends, in England, France, Holland, Germany, etc., around the library table, often affords more real, intellectual enjoyment than many a heedless globe-trotter realizes-and the broadening effect of such knowledge lays the best foundation for lifelong usefulness in the pursuit of things that make "life worth living."

There are one hundred or more beautifully colored maps, verified from the latest authoritative sources. The maps alone are worth more than the price of the entire set.

The complete set of The New Chambers consists of 10 massive volumes, each measuring $101 / 2$ by $73 / 4$ inches. The set weighs 65 pounds, and fills a two=foot shelf. Every line is printed from new type. The half Russia sets are hand=bound at the famous Lippincott binderies, in dark=red leather. Each set has gold=leaf lettering on the back, with head=bands, spring backs, and marbled edges.

Write for our complete pamphlet of colored plates, maps, specimen pages, and bindings-sent FREE. Address your letter to

## J. B. LIPPINCOTT COMPANY

Publishers
::
::
Philadelphia

$$
709
$$




[^0]:    *The following treatment of the subject of the catenary is substantially the same as that given in an article by the author in Engineering-Mechanics, June, 1896.

[^1]:    * Anthority of T. C. Mendenhall, Superintendent United States Coast and Geodetic Survey, January, 1894.

[^2]:    * Proceedings of the Institution of Mechanical Engineers, 1883.

[^3]:    
    

[^4]:    чॅги әлеnbs дəd spunod
    

[^5]:    * Reuleaux, "Constructor," ${ }^{2} 55$, et seq.

[^6]:    * New York, John Wiley \& Sons.

[^7]:    

[^8]:    

[^9]:    * These are not necessary to the main object, but it is desirable to give them.

[^10]:    Temp.
    feed.
    

[^11]:    * These coals are selected because they are about the only coals which possess the essentials of excellence of quality, adaptability to various kinds of furnaces, grates, boilers, and methods of firing, and wide distribution aud general accessibility in the markets.

[^12]:    * In feeding a boiler undergoing test with an injector taking steam from a nother boiler, or from the main steam pipe from several boilers, the evaporative results may be modified by a difference in the quality of the steam from such source compared with that supplied by the boiler being tested, and in some cases the connection to the injector may act as a drip for the main steam pipe. If it is known that the steam from the main pipe is of the same pressure and quality as that furnished by the boiler undergoing the test, the steam may be taken from such main pipe.

[^13]:    * The Committee concludes that it is best to retain the designations "standard" and "alternate," since they have become widely known and established in the minds of engineers and in the repriats of the Code of 1885. Many engineers prefer the "alternate" to the "standard" method, on account of its being less liable to error due to cooling of the boiler at the beginning and end of a test.
    $\dagger$ The gauge glass should not be blown out within an hour before the waterlevel is taken at the beginning and end of a test, otherwise an error in the reading of the water-level may be caused by a change in the temperature and density of the water in the pipe leading from the bottom of the glass into the boiler.

[^14]:    * Favre and Silberman give 14,544 B. T. U. per pound carbon ; Berthelot, 14,647 B. T. U. Favre and Silberman give 62,032 B. T. U. per pound hydrogen ; Thomsen, 61,816 B. T.U.

[^15]:    * See R. S. Hale's paper on "Flue Gas Analysis," "Transactions of the American Society of Mechanical Engineers," Vol. XVIII., p. 109.
    t See Hempel's "Methods of Gas Analysis" (Macmillan \& Co.).

[^16]:    * The weight of gas per pound of carbon burned may be calculated from the gas analyses, as follows :

    Dry gas per pound carbon $=\frac{11 \mathrm{CO}_{2}+80+7(\mathrm{CO}+\mathrm{N})}{3(\mathrm{CO}+\mathrm{CO})}$, in which $\mathrm{CO}_{2}, \mathrm{CO}, 0$, and N are the percentages by volume of the several gases. As the sampling and analyses of the gases in the present state of the art are liable to considerable errors, the result of this calculation is usually only an approximate one. The heat balance itself is also only approximate for this reason, as well as for the fact that it is not possible to determine accurately the percentage of unburned hydrogen or hydrocarbons in the flue gases.

    The weight of dry gas per pound of combustible is found by multiplying the dry gas per pound of carbon by the percentage of carbon in the combustible, and dividing by 100 .
    $\dagger \mathrm{CO}_{2}$ and CO are respectively the percentage by volume of carbonic acid and carbonic oxide in the flue gases. The quantity $10150=$ number of heat units generated by burning to carbonic acid 1 pound of carbon contained in carbonic oxide.

[^17]:    * The horse-power referred to above (items 46-50) is that of the main engine, exclusive of auxiliaries.

[^18]:    * In case of superheated steam engines determine, if practicable, the temperature of the steam in each cylinder.

[^19]:    * An exception should be noted in the case of storage batteries or apparatus for storing energy, in which the efficiency, unless otherwise qualified, should be understood as the ratio of the energy output to the energy intake in a normal cycle.

[^20]:    * This correction is also intended to compensate, as nearly as is at present practicable, for the error involved in the assumption of a constant temperature coefficient of resistivity,-i.e., 0.4 per cent. per degree C., taken with varying initial temperatures.

[^21]:    * By the formula $R_{T}=R_{t}(1+0.004 \theta)$. Where $R_{t}$ is the resistance at roomtemperature, $R_{\mathrm{T}}$ the resistance when heated, and $\theta$ the temperature elevation ( $T-t$ ) in degrees centigrade.

[^22]:    * The frequency of $120 \sim$ may be considered as covering the already-existing commercial frequencies between $120 \sim$ and $140 \sim$, and the frequency of $60 \sim$ as covering the already-existing commercial frequencies between $60 \sim$ and $70 \sim$.

[^23]:    * The costs under this are for engines, boilers, and piping alone, exclusive of cost of building.

[^24]:    J. B. LIP P I N C O T T COMPANY PUBLISHERS :: : PHILADELPHIA

[^25]:    TECHNICAL LITERATURE 220 BROADWAY :: :: NEW YORK

[^26]:    J. B. LIPPINCOTT COMPANY PUBLISHERS :: :: :: :: PHILADELPHIA

