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The onset of stress triggers sympathetic arousal (SA), which
causes detectable changes to physiological parameters such
as heart rate, blood pressure, dilation of the pupils and sweat
release. The objective quantification of SA has tremendous
potential to prevent and manage psychological disorders.
Photoplethysmography (PPG), a non-invasive method to
measure skin blood flow changes, has been used to estimate
SA indirectly. However, the impact of various wavelengths of
the PPG signal has not been investigated for estimating SA.
In this study, we explore the feasibility of using various
statistical and nonlinear features derived from peak-to-peak
(AC) values of PPG signals of different wavelengths (green,
blue, infrared and red) to estimate stress-induced changes in
SA and compare their performances. The impact of two
physical stressors: and Hand Grip are studied on 32 healthy
individuals. Linear (Mean, s.d.) and nonlinear (Katz,
Petrosian, Higuchi, SampEn, TotalSampEn) features are
extracted from the PPG signal’s AC amplitudes to identify
the onset, continuation and recovery phases of those
stressors. The results show that the nonlinear features are the
most promising in detecting stress-induced sympathetic
activity. TotalSampEn feature was capable of detecting stress-
induced changes in SA for all wavelengths, whereas other
features (Petrosian, AvgSampEn) are significant (AUC≥ 0.8)
only for IR and Red wavelengths. The outcomes of this study
can be used to make device design decisions as well as
develop stress detection algorithms.
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1. Introduction

‘Stress’ is an umbrella term representing experiences in which the environmental demands of a situation
outweigh the individual’s perceived psychological and physiological ability to cope with it effectively [1].
Physical or psychological stressors activate the sympathetic nervous system, resulting in sympathetic
arousal (SA). SA results in effector organ responses, which can be measured by physiological
parameters such as blood pressure, skin blood flow and sweat release [2]. Chronic stress may cause
physical, behavioural and/or neuropsychiatric disorders such as executive dysfunction, anxiety and
depression; cardiovascular disorders, such as hypertension; metabolic disorders, such as obesity and
type 2 diabetes mellitus; and sleep disorders, such as insomnia or excessive daytime sleepiness [3,4].

The World Health Organization (WHO) has declared stress as the ‘Health Epidemic of the Twenty-
First Century’ [5]. Two in five Australians experience mental illness at least once in their lifetimes, while
the recurrent expenditure on stress-related mental health services in Australia was estimated at $11 billion
in 2019–2020 [6].

Despite widespread evidence that stress is important in managing health, defining and measuring
‘stress’ is complex, due to its being experienced at social, psychological and physiological levels [4].
Questionnaires are used on a routine basis to assess the exposure to stressors as well as the
individual’s appraisal of these. While their credibility is supported by ample evidence and they are
easy to administer, questionnaires do not capture the body’s response to stress in an objective and
continuous manner, making it difficult to predict the onset of the aforementioned disorders that arise
from chronic stress. Stress is associated with activation of the sympathetic nervous system, or SA
[4,7,8], which has been the subject of much focus in creating objective and continuous markers using
non-invasive wearable sensors [9,10].

These markers include analysis of heart rate (measured either from ECG or from finger blood flow)
and its variability, skin conductance, pupil dilation and blood pressure, where the first and last markers
have been a significant area of focus using photoplethysmography (PPG) at the finger, wrist and the ear
[7]. To the best of our knowledge, only a limited number of laboratory studies have explored using the
information in PPG signals as an indirect measure of SA [7,8], with the sensor in a wearable form factor
e.g. wrist-strap.

Fei et al. explored the relation between PPG-based features (morphological and temporal) and
emotional states [11]. Budidha & Kyriacou [12] have specifically studied the changes in pulse-transit
time (PTT) and power spectral responses with varying phases of a Cold Pressor stress test. Although
the study compared the performance of PTT measured from different body sites, they require both an
electrocardiogram and a PPG signal to calculate PTT, increasing wearable device complexity for
continuous monitoring of SA. In addition, although PPG signal can be acquired using LEDs (light
emitting diodes) of multiple wavelengths (λ) such as Red (λ∼ 690 nm), Infrared (IR) (λ∼ 810 nm),
Green (λ∼ 530 nm) and Blue (λ∼ 470 nm), the authors have explored the uses of IR PPG only. Even
though Red and IR are the most commonly used wavelengths due to their deepest (around 2.5 mm)
penetration capacity, the other lower wavelengths (blue and green) are also important to study since
these are less prone to artefacts. Thus, each wavelength has its unique impact on PPG-based SA
measurement [7,13,14] and should be analysed for making a knowledgeable design decision. Hence,
further studies are necessary to establish the promise of using PPG-based methods to continuously
monitor SA.

In this study, we extend the existing scope of PPG-based measurement of SA in three ways: (i) use a
wide range of features from PPG-derived time series; (ii) use stressors other than a Cold Pressor test and
(iii) analyse the performance for four wavelengths (Red, IR, Blue and Green). Existing studies mostly
used low-frequency response of PPG signal, PPG morphology features, pulse rate and its variability
and PTT features extracted from PPG signal to study SA. Pulse rate and its variability is an indicator
of vagal tone, rather than SA. The suitability of PTT for single-point measurements is an investigation
in itself.

To enable the development of a biomarker that is sensitive to SA alone, we investigate several statistical
and nonlinear parameters of the pulsatile or AC component of PPG for studying SA. It is well established
that the Cold Pressor test, which involves immersion of a hand in ice water, amplifies the direct constriction
of cutaneous vessels, sympathetically mediated by an increase in cutaneous vasoconstrictor drive and is
used widely for studying autonomic function [15,16]. In this study, we use isometric Hand-Grip exercise
along with the Cold Pressor test to ensure the reliability of the responses found for PPG features during
the Cold Pressor test. Finally, to the best of our knowledge, this study is the first to investigate the
feasibility of using multi-wavelength PPG for estimating SA.
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2. Methods

2.1. Data

2.1.1. Acquisition

Non-invasive physiological data (multi-wavelength PPG) were collected from 32 subjects (European and
Asian ethnic backgrounds); 16 men and 16 women, all between 19 and 38 years of age, the mean age
being 24. From each subject, multi-wavelength PPG (Red, Infrared, Green and Blue wavelengths) were
obtained using Verisense Pulse1 device worn on the dorsal side (the upper side of the wrist) of the
non-dominant arm. The data collection set-up (for the non-invasive signals) is shown in figure 1. Data
from Verisense Pulse+ was collected at 100 Hz sampling rate and stored in Verisense’s Cloud server.

2.1.2. Protocol

All data recordings commenced with the subject being seated on a reclined chair in a relaxed state (as
seen in figure 1). PPG was first recorded during baseline condition (relaxed state) for 10min before
applying any stressors. Gradually, two instances of stressors (Hand Grip and Cold Pressor) were
delivered in random order. Each stressor lasted for 2min with a 5min recovery period in between.
The Hand Grip was applied at 30–35% maximal voluntary contraction, determined as the best of
three maximal isometric contractions performed at the beginning of the experiment.

Following this, sensors were set up on the subject as shown in figure 1, and recordings were then
obtained as follows:

(i) Baseline measures (relaxed state) were recorded for 10min.
(ii) Measures were recorded as two stressors were delivered in random order

(a) The Hand Grip test (2 min) was done using ADInstruments Grip Force Transducer. This
allowed visualization of the participant’s maximal Hand Grip strength on a computer and
showed the 30–35% strength range for the participant when they were undergoing the task
so that they could maintain that threshold.

(b) The Cold Pressor test (2 min) was done using a bucket filled with ice and water added to it.
While we did not measure the temperature ourselves, the consensus is that ice water is about
4� in temperature.

(c) A 5-min recovery period between each stressor was also recorded.

Prior to data acquisition, complete ethics approval for the study and protocols was obtained from the
Human Resources Ethics Committee of Western Sydney University (Ethics Reference: H11462).
Participants gave informed consent upon participation.

2.2. Data preprocessing and analysis
Collected data were visually examined before analysis to confirm the quality of the signal, continuity of
the signal over the data collection period and synchronization with event timings.

2.2.1. Pulsatile and non-pulsatile components of PPG

The amplitude of the PPG signal at the peak corresponds to the blood volume during ventricular systole.
The onset point of the PPG indicates the start of ventricular repolarization or diastole. This implies the
amplitude of PPG at its onset gives us the pulsatile increase in cutaneous skin blood volume
following ventricular diastole. This amplitude is also called the DC amplitude (direct current) or non-
pulsatile component of the PPG. The pulsatile component of PPG is measured as the difference in
blood volume between systole and diastole, which is in turn the difference in amplitudes of the peak
and onset points, also called the AC amplitude (alternating current), obtained by high-pass filtering
the PPG signal [14,17,18].

A peak-detection algorithm [19] was used to appropriately filter the PPG signal and then detect
fiducial points from the same. The algorithm involves three major functions; (i) basic filtering of PPG
and baseline detection, (ii) PPG peak detection and (iii) PPG onset detection.
1Verisense pulse+ the first line extension for its verisense® wearable sensing platform—verisense. 2021.



Verisense 4xPPG
Verisense 4xPPG on

subject’s hand

sitting position during PPG signal acquisition

Figure 1. Experimental settings for non-invasive data collection of physiological parameters for right-handed subjects. Limb
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Filtering and baseline detection. The initial step here is to find the inter-beat-interval (IBI) or frequency
of heartbeats in the given PPG signal (blue solid line in figure 2), using power spectral analysis.
Computing the power spectrum of the raw signal (PPG signal), IBI was estimated as the frequency
corresponding to maximum power in the 0.8–3Hz range of the spectrum. This frequency range
translates to an average heart rate range of 50−180 beats min−1. The IBI is used as a control parameter
in designing the filters (table 1).

Filtering has been done in three different stages as follows:

— Step 1: A centre median and centre moving-average filtering to smooth the signal. The smoothed
signal (W1) is shown using a orange solid line in figure 2. This filtering was performed using a
window size 0.2 � IBI.

— Step 2: A third order low pass Butterworth filter was used to remove any ectopic peaks and the output
signal (W2) is shown as a green solid line in figure 2. The Butterworth filter used in this step was
designed with a cut-off frequency of 1.5 � IBI.
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Figure 3. Overall data preprocessing steps from IBI to AC and DC value extractions.
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— Step 3: In this step, a centremoving averagewas used for extracting the baseline and the output (baseline)
is shown as a solid red line in figure 2. The window size used for moving-average filtering is 1.5 � IBI.
PPG peak and onset detection. An initial set of peaks is detected in the PPG signal (solid blue line) by
locating the local maxima in every IBI. After detecting initial peaks, we used the same set of criteria
on the heights of peaks and the inter-peak distances that were reported by Chen et al. [19] for
identifying and removing false peaks. This step helps in retaining the true peaks and relocating them
if necessary. Onsets, the local minima between two peaks on the PPG signal, were then detected
using the true peaks (solid red circles in figure 2). Once the true peaks and onsets have been detected
from a given PPG signal, the AC amplitude is obtained as the magnitudes of |peak-onset| and
further filtered for outliers. The overall data preprocessing steps are shown in figures 3 and 4.
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2.2.2. Event signal generation and feature extraction

Corresponding to the onset, duration, and end of a stressor event (e.g. Cold Pressor, Hand Grip), a 1–0
(amplitude) event signal is generated and mapped to the length of the PPG signals acquired. The event
signal has an amplitude of 1 during the period of a stressor and is 0 otherwise (figure 5).

Statistical, fractal dimensions and entropy-profile based features are extracted from the pulsatile AC
component of the PPG signals. These features are extracted from four different time windows; each
corresponding to a stressor phase as listed below:

— Baseline period, which is 2 min preceding onset of stressor
— First minute of stressor
— Second minute of stressor
— The recovery periods, which is 2 min immediately following end of stressor

The list of features extracted is given in table 2.

2.2.3. Statistical features

Linear time domain measures, namely Mean and s.d., are computed on the signal. While the Mean
summarizes the data for interpretation, s.d. show us the spread of data around the Mean. Given the
AC time-series signal X(n) = {x1, x2,…, xN} of length N, then Mean and s.d. can be computed using
equations (2.1) and (2.2):

Mean ¼ 1
N

NP
i¼1

xi ð2:1Þ

and

s:d: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

NP
i¼1

ðxi �MeanÞ2
vuuut : ð2:2Þ
2.2.4. Fractal dimensions

Fractal dimensions (FDs) are ratios that quantify the complexity contained in a signal by measuring the
changes in signal pattern with the scale (dimension) of observation.

Among available fractal dimension analysis techniques, we have selected three popularly used
methods (Petrosian, Katz and Higuchi) for physiological signal analysis [20,21]. Esteller et al. [22] have
compared Katz, Higuchi and Petrosian for different window sizes, and observed that 150 (less than
sample frequency (250 Hz)) to 8000 samples. They have concluded that careful selection of the
FD algorithm is necessary for individual applications with respect to data length, noise level and FD
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range. Since we have a smaller data length (approx. 120 samples/window), we have just directly applied

the method to see their performance in differentiating sympathetic activation after applying stressors.
The first, in this study Katz, can be defined as follows:

Katz ¼ logðS=MÞ
logðd=MÞ ð2:3Þ

where, S is the sum and M is the mean of the Euclidean distances between successive samples of the
signal and d is the maximum distance between the first sample and any other sample of x(n) [23].

The Petrosian algorithm [22,24] computes fractal dimension from the binary equivalent of a given signal
X(n). The binary sequence from the signal can be generated in multiple ways [22]. For instance, taking a
sample window of the signal and computing the window mean, say Avg, the binary sequence will take
the value ‘1’ (corresponding to a sample of X(n)) if the individual sample value is greater than Avg and
take ‘0’ if not. From such a binary equivalent, the Petrosian dimension is calculated as

Petrosian ¼ log10 n
log10 nþ log10 (n=ðnþ 0:4NDÞ) ð2:4Þ

where, n is the length of the sequence (same as the signal) and NΔ is the number of sign changes (ones to
zeros and vice-versa) in the generated binary sequence.

From the signal {x(n) : 1≤ n≤N}, let vectors given by

Xm
k ¼ xðmþ ikÞ : 0 � i � N �m

k

� �

where k e ½1, kmax� and m e ½1, k�. kmax is a parameter that is greater than or equal to 2. The length of each
Xm

k is then calculated as

LmðkÞ ¼ N � 1
[ðN �mÞ=k]k2

XðN�mÞ=k

i¼1

jxðmþ ikÞ � xðmþ ði� 1ÞkÞj:

From this, an average estimate of Lm(k) across m, for k sets, is given by

LðkÞh i ¼ 1
k

Xk
m¼1

LmðkÞ:

The fractal dimension Higuchi is then given by [23,25]

Higuchi ¼ log LðkÞh i
� log k

: ð2:5Þ
2.2.5. Entropy features

Entropy estimates quantify signal complexity by looking if there are similar patterns in the signal at
multiple scales of observation. The level of self-similarity is what entropy measures try to capture.
The physiological signals being considered are highly complex and nonlinear in nature. They might
exhibit different levels of self-similarity at different scales. This is the reason entropy is being used in
this work. The entropy methods (entropy profiling) that we have used in this study are applicable to
much smaller data length starting from 50 samples. The reliability of this measure for such small
samples has been shown in our previous publications [26–28].

Sample entropy (SampEn). SampEn [29] is a self-match that is avoided in the estimation, unlike ApEn.
A time series {x(n) : 1≤ n≤N} is divided into (N−m) overlapping vectors, each of length m, given by

{Xm
i : 1 � i � ðN �mÞ}, where

Xm
i ¼ {xðiþ kÞ : 0 � k � m� 1}

Cm
i ðrÞ is then the probability of a vector Xm

j to lie within a distance r of the vector Xm
i , 1≤ j≤ (N−m), j≠ i,

distance given by

dmij ¼ fmax jXm
i � Xm

j j : 1 � j � ðN �mÞ, j = ig:
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Then,

SampEnðN, m, rÞ ¼ ln
FmðrÞ
Fmþ1ðrÞ ð2:6Þ

where FmðrÞ ¼ ð1=ðN �mÞÞ½i ¼ 1�N �m
P

Cm
i ðrÞ.

For all experiments conducted in this study, ApEn and SampEn are evaluated at an r value of
0.15 � s.d. of signal and an m value of 2.

Instead of choosing a single value of tolerance r to estimate SampEn, we could use a complete set of
data driven r values (r : 1≤ r≤ q) and generate a profile of SampEn values (SampEn(r)). This method
of entropy profiling was introduced in 2018 by Udhayakumar et al. [27,30].

SampEnðrÞ ¼ ln
FmðrÞ
Fmþ1ðrÞ ; 1 � r � q: ð2:7Þ

Total Sample Entropy (TotalSampEn). TotalSampEn is calculated by adding up all the individual values
of SampEn(r) along the SampEn profile of a signal;

TotalSampEn ¼
Xq
r¼1

SampEnðrÞ: ð2:8Þ

Average Sample Entropy (AvgSampEn). AvgSampEn is calculated by finding the mean of all the
individual values of SampEn(r) along the SampEn profile of a signal;

AvgSampEn ¼ 1
q

Xq
r¼1

SampEnðrÞ: ð2:9Þ
2.3. Statistical analysis
In our study, we have used two statistical test parameters; the p-value and area under the ROC (receiver
operating characteristic) curve in order to test the efficiency of regularity measures in signal classification.
The p-value was calculated using non-parametric Mann–Whitney U test, since we have smaller number
of samples we have selected the non-parametric approach over alternative methods. p can take values
from 0 to 1 and in this study, we considered p < 0.05 statistically significant, rejecting the null
hypothesis, i.e. the samples are not from the same distributions or the values are significantly
different between two groups.

The area under the ROC curve (AUC) is the probability that a classifier ranks a randomly chosen
instance X higher than a randomly chosen instance Y, X and Y being samples taken from two
independent populations. An AUC value of 0.5 indicates that the distributions of the features are
similar in the two groups with no discriminatory power. Conversely, an ROC area value of 1.0 would
mean that the distribution of the features of the two groups do not overlap at all. MATLAB R2019b
Statistics toolbox was used to perform all statistical operations.
3. Results
The Mean ± s.d. amplitude of the extracted features corresponding to the phases of Cold Pressor and
Hand Grip events for all four wavelengths of PPG (Green, Blue, IR and Red) is tabulated in tables 1
and 2, respectively.

3.1. Statistical features
The average amplitude of Mean AC feature decreased during the 1st min of both stressors applied but
increased during the 2ndmin and decreased again during recovery for the green wavelength.
However, these variations between different phases (baseline versus 1st min, 1st min versus 2nd min
and 2ndmin versus recovery) are not statistically significant (table 3 and figure 6a). A similar pattern
was found for the Mean feature for the blue wavelength and the changes between different phases
remains statistically insignificant (table 3). By contrast to Green and Blue wavelength, the Mean
feature showed different patterns of changes for IR and Red wavelengths for two different stressors
(CP and HG). Although the IR varies similarly to the Green and Blue wavelengths for CP, the



Table 3. Statistical significance of PPG features to detect difference in phases of a Cold Pressor and Hand Grip test. Let us define
the phase differences as follows; A = Baseline versus 1st min, B = 1st min versus 2nd min and C—2nd min versus Recovery.
Let us define the magnitude of significance with the following symbols; $—p < 0.05, �—p < 0.01. The lower the value of p,
the higher the statistical significance of separation between the phases.

CP HG

AC feature/event Green Blue IR Red Green Blue IR Red

Mean ABC ABC ABC ABC ABC ABC AB$C ABC

s.d. ABC ABC ABC ABC ABC ABC AB�C ABC

Katz A$B�C AB$C ABC ABC ABC ABC AB�C$ ABC

Petrosian A�BC A$BC A�BC� A�BC� A$BC A$BC$ A�BC$ A�BC
Higuchi ABC ABC A$BC$ A�BC ABC ABC A$BC A�BC�

SampEn AB$C AB$C ABC A�BC ABC ABC ABC ABC

TotalSampEn A�BC� A�BC$ A�BC� A�BC� A�BC$ A�BC$ A�BC� A�BC�

AvgSampEn A�BC� A$BC� A�BC� A�BC� A�BC$ A�BC$ A�BC� A�BC�
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amplitude decreased for the 1st min and increased for the 2ndmin during HG stressor application and
did not further decrease during the recovery phase. Interestingly, the differences in Mean feature between
1st min and 2ndmin of HG stressor were statistically significant (table 3 and figure 6a), whereas all other
changes remained statistically insignificant. Mean feature extracted from Red wavelength for CP stressor
application showed a similar pattern as was found for Blue and Green wavelength, but it increased
during 1st min of HG stressor application. Similar to Green and Blue wavelengths none of these
differences in Mean values between phases are statistically significant (table 3 and figure 6a). Standard
deviation (s.d.) of AC extracted from Blue and IR wavelengths showed similar patterns (decrease
during 1st min, increase during 2ndmin and decrease during recovery). However, for Blue wavelength
such changes were statistically insignificant but for IR wavelength changes between 1st min and 2nd
min of HG stressor was found significant (table 3 and figure 6b). By contrast, for Green wavelength,
average s.d. value increased during 1st min of CP stressor then consistently decreased in subsequent
phases. Whereas, for HG it decreased during 1st min, increased at 2ndmin and then decreased again
during the recovery phase. For the Red wavelength, for HG it showed a continuously decreasing
pattern whereas, for CP stressor, it decreased till 2ndmin of application of stressor and increased
during recovery. However, differences in s.d. values between phases for Green and Red wavelengths
are all statistically insignificant (table 3 and figure 6b).
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3.2. Fractal dimension features
The average Katz value showed a consistent pattern (increase, decrease and increase during 1st min, 2nd
min and recovery phase, respectively) for HG stressor for all wavelengths. However, the complete
opposite pattern (decrease, increase, decrease) was found for CP stressor for Green and Blue
wavelengths. Average Katz feature extracted from IR and Red wavelength during CP stressor showed
increase, increase and decrease pattern during 1st min, 2ndmin and recovery phases, respectively.
Changes in Katz feature values between 1st min and 2ndmin of stressor were found statistically
significant for phases for Green and Blue wavelength during CP stressor and IR wavelength for HG
stressor (table 3 and figure 7a). The Green wavelength also showed statistically significant differences
in Katz values between baseline and 1st min during CP stressor.

Average Petrosian value showed a consistent pattern (increase, decrease and increase during 1st min,
2ndmin and recovery phase, respectively) for CP stressor for all wavelengths except Red. However, it has
shown completely random patterns for HG stressor across all wavelengths. Interestingly, both stressors
showed same pattern increase at 1st min and decrease at recovery phases for Red wavelength.
Changes in Petrosian values were found statistically significant between baseline and 1st min for all
four wavelengths during both events. However, Petrosian feature from IR and Red wavelengths only
showed the highest level of statistical significance (p < 0.01) for both events (table 3 and figure 7b).
Similarly, Petrosian feature from IR and Red also showed the highest level of statistical significance
(p < 0.01) between 2ndmin and recovery phases for CP stressor (table 3 and figure 7b). The differences
in Petrosian feature were also found statistically significantly (p < 0.05) different between 2ndmin and
recovery phases for HG event only for Blue and IR wavelengths.

Average Higuchi value showed a consistent pattern (increase, decrease and increase during 1st min,
2ndmin and recovery phase, respectively) for HG stressor for all wavelengths except Red. Similarly
consistent but opposite pattern (decrease, increase, decrease) was found for CP stressor for the same



baseline
1st m

in

2nd min

recovery

baseline
1st m

in

2nd min

recovery

baseline
1st m

in

2nd min

recovery

baseline
1st m

in

2nd min

recovery

2.5

1.5

Sa
m

pE
n

0.5

1.0

2.0

2.5

1.5

Sa
m

pE
n

0.5

1.0

2.0

2.5 800

1.5

Sa
m

pE
n

0.5

1.0

2.0

2

1

Sa
m

pE
n

–1

0

2.5

2.0

Sa
m

pE
n

1.0

1.5

0.5

2.5

1.5

Sa
m

pE
n

0.5
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.0

2.0

800

400

T
ot

al
Sa

m
pE

n

0

200

600

400

T
ot

al
Sa

m
pE

n

0

200

600
400

0

200

400

0

200

100

300

600600

400

300

200

100

0

T
ot

al
Sa

m
pE

n

T
ot

al
Sa

m
pE

n

T
ot

al
Sa

m
pE

n

T
ot

al
Sa

m
pE

n

400

0

200

100

300

T
ot

al
Sa

m
pE

n

400

300

200

100

0.5

0.4

0.3

0.2

0

T
ot

al
Sa

m
pE

n

A
vg

Sa
m

pE
n

0.5

0.4

0.3

0.2

0.6

0.5

0.4

0.3

0.2

A
vg

Sa
m

pE
n

A
vg

Sa
m

pE
n

0.5

0.4

0.3

0.2

0.5

0.4

0.3

0.2

0.5

0.6

0.4

0.3

0.2

A
vg

Sa
m

pE
n

A
vg

Sa
m

pE
n

0.5

0.4

0.3

0.2

A
vg

Sa
m

pE
n

A
vg

Sa
m

pE
n

0.5

0.4

0.3

0.2
A

vg
Sa

m
pE

n

0

200

400

2.5

1.5

Sa
m

pE
n

0.5

1.0

2.0

2.0

1.0

Sa
m

pE
n

0

0.5

1.5

CP HG CP HG

CP HG

1 2 3 4 1 2 3 4

baseline
1st m

in

2nd min

recovery

baseline
1st m

in

2nd min

recovery

(a) (i) (ii)

(i) (ii)

(iii) (iv)

(iii) (iv)

(i) (ii)

(iii) (iv)

(c)

(b)

Figure 8. Pattern of (a) SampEn, (b) TotalSampEn and (c) AvgSampEn feature changes (during 1st min, 2nd min, recovery phase) for
HG and CP stressor across the Green (i), Blue (ii), IR (iii) and Red (iv) wavelength.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221382
13
set of wavelengths (Green, Blue and IR). Average Higuchi feature extracted from Red wavelength during
CP and HG stressors showed (increase, increase and decrease) and (increase, decrease and decrease)
patterns during 1st min, 2ndmin and recovery phases, respectively. Changes in Higuchi feature values
between base line and 1st min were found statistically significant for IR and Red wavelength and for
both stressors (p < 0.05 for IR, p < 0.01 for Red). However, between 2ndmin and recovery phases the
change in Higuchi values were found statistically significant for IR during the CP event (p < 0.05) and
Red during the HG event (p < 0.01) (table 3 and figure 7c).
3.3. Entropy features
Sample entropy (SampEn) presented in tables 1 and 2 has several empty entries, which means that there
is at least one record for which SampEn is undefined. Thus, the significance results presented in table 3
were calculated using the defined values only. Similarly, the trend in variation of values presented in
figure 8a was also plotted using those defined values of SampEn. Changes in average SampEn
showed different patterns across phases for CP and HG stressors. Green and Blue wavelengths
showed the same pattern (decrease, increase, decrease) for the CP event, whereas the opposite pattern
(increase, decrease, increase) was found for Blue and IR wavelengths during the HG event. However,
differences in SampEn values between differences phases of experiments were found statistically
insignificant except for Green and Blue wavelengths during the HG event, where values between 1st
min and 2ndmin of stressor application were found statistically significantly different (p < 0.05).

Average TotalSampEn value showed a consistent pattern (decrease, increase and increase during 1st
min, 2ndmin and recovery phase, respectively) for both CP and HG stressors for all wavelengths.
Differences in TotalSampEn values between baseline and 1st min as well as between 2ndmin and
recovery phases were found statistically highly significant (p < 0.01) during both events for all
wavelengths except Blue (p < 0.05) during both events and Green (p < 0.05) during the HG event
(table 3).



Table 4. Area under the ROC curve (AUC) of PPG features to detect difference in phases of a Cold Pressor and Hand Grip test.
Let us define the phase differences as follows; A = Baseline versus 1st min and C—2nd min versus Recovery. AUC ranges
between 0 and 1. The closer the value of AUC to 1, the higher the statistical significance of separation between the phases.
AUC � 0:8 is highlighted in italics.

CP HG

AC feature/event Green Blue IR Red Green Blue IR Red

phase difference A, C A, C A, C A, C A, C A, C A, C A, C

Mean 0.5, 0.5 0.6, 0.5 0.6, 0.5 0.6, 0.6 0.6, 0.5 0.6, 0.5 0.6, 0.6 0.5, 0.5

s.d. 0.6, 0.5 0.5, 0.5 0.6, 0.5 0.6, 0.6 0.6, 0.5 0.6, 0.5 0.6, 0.6 0.5, 0.5

Katz 0.7, 0.5 0.6, 0.5 0.6, 0.5 0.5, 0.6 0.5, 0.5 0.6, 0.6 0.6, 0.7 0.6, 0.5

Petrosian 0.7, 0.6 0.7, 0.6 0.8, 0.7 0.8, 0.8 0.7, 0.6 0.7, 0.6 0.7, 0.7 0.8, 0.6

Higuchi 0.5, 0.5 0.5, 0.5 0.7, 0.7 0.7, 0.6 0.6, 0.5 0.5, 0.5 0.7, 0.6 0.7, 0.7

SampEn 0.6, 0.5 0.6, 0.6 0.6, 0.6 0.8, 0.6 0.6, 0.5 0.5, 0.5 0.6, 0.6 0.6, 0.5

TotalSampEn 0.8, 0.7 0.8, 0.7 0.9, 0.7 0.9, 0.8 0.8, 0.7 0.7, 0.6 0.8, 0.8 0.9, 0.8

AvgSampEn 0.7, 0.7 0.7, 0.7 0.8, 0.8 0.9, 0.8 0.7, 0.6 0.7, 0.7 0.8, 0.7 0.8, 0.7

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221382
14
Similar to TotalSampEn, average AvgSampEn value showed a consistent but different pattern
(increase, increase and decrease during 1st min, 2ndmin and recovery phase, respectively) for both
stressors and all wavelengths except the Red wavelength during CP, where the pattern found is
increase, decrease and decrease. Differences in AvgampEn values between baseline and 1st min as well
as between 2ndmin and recovery phases were found statistically highly significant (p < 0.01) for most
of the cases during both events (table 3). A few exceptions for which the statistical significance drops
to p < 0.05 are: (i) between baseline and 1st min for Blue wavelength during CP event and (ii) between
2ndmin and recovery phases for Green and Blue wavelengths during the HG event.
3.4. Area under the curve value
To further investigate which PPG wavelength is more sensitive with onset or withdrawal of the applied
physical stressors, an area under the curve (AUC) value was calculated for onset (baseline versus 1st min
during stressor application) and offset (2ndmin versus recovery phase) of each stressor event (table 4). It
is obvious that features extracted from IR and Red wavelengths showed higher (greater than or equal to
0.8) AUC for multiple features than other wavelengths to detect onset and offset of stressor events. These
wavelengths showed AUC≥ 0.8 value for detecting onset for both stressors for three features, namely
Petrosian, TotalSampEn and AvgSampEn. Although the same set of features for Red wavelength
showed a similar performance (AUC = 0.8) in offset detection for the CP event, only AvgSampEn
showed the same performance for the IR wavelength. From the feature perspective, TotalSampEn
showed more consistent performance across all PPG wavelengths during the CP event. On the other
hand, both TotalSampEn and AvgSampEn showed consistent performance for IR and Red PPG
wavelengths for both CP and HG events.
4. Discussion
PPG is a ubiquitous and cost-effective method of detecting blood volume changes in the skin, which,
given that a reduction in blood volume indicates sympathetically mediated vasoconstriction, is an
indirect indication of SA. This makes it an appealing candidate for non-invasive and continuous
measure of SA in real-world environments on a continuous basis. However, before developing an SA
measurement tool or device, several design issues need to be investigated thoroughly to understand
their sensitivity to variations of SA. This includes the effect of a PPG wavelength and the choice of
features.

In this study, we have investigated the sensitivity of statistical, fractal and nonlinear features extracted
from the pulsatile component of the PPG from four different wavelengths (Green, Blue, IR and Red)
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during SA induced by physical stressor events—Cold Pressor and sustained Hand Grip. We have

investigated the ability of different features in detecting onset (start of application of stressor) and
offset (recovery phase) of the stressor events.

A synopsis of our findings is listed below:

— A larger set of features extracted from IR and Red PPG wavelengths were statistically significant in
detecting physical stressor events as compared to Green and Blue wavelengths.

— TotalSampEn feature was found to be the most consistent in detecting stressor events across all PPG
wavelengths.

— Three features based on Entropy and FD performed better in identifying onset of the applied physical
stressor events for IR and Red wavelength.

— TotalSampEn extracted from all wavelengths showed high AUC (≥0.8) in detecting onset of a stressor
event.

— Maximum AUC value obtained for onset detection is 0.9, in contrast to 0.8 for the offset.

In this study, the pulsatile (AC) component of the PPG signal was used for extracting features instead of
the raw PPG signal. This is motivated by the fact that the AC component represents the cardiac
synchronous variations in blood volume and is significantly influenced by sympathetic activation
[8,31,32]. Due to the short segment length of analysis, we extracted a small set of statistical and
nonlinear features that are suitable for short-length signals.

The Mean and s.d. features represented the magnitude and variation in AC amplitude, and none of
these features showed sensitivity towards the application of stressors (table 4).

The features from the Fractal Dimension familymeasure the dynamics and complexity of AC amplitude
time series. These features extract the hidden information contained in AC time series using fractals, which
despite scaling, preserve the structure and shape of complex signals [33,34]. Out of three measures of
complexity, the Petrosian feature showed statistically significant variation during onset of applied
physical stressors (table 4 and figure 7b). However, only the Red wavelength showed 0.8 AUC area in
detecting onset. This indicates that the application of physical stressors affects the dynamics of AC time
series but not all wavelengths are equally sensitive in measuring those variations. It should be noted that
the result of the FD analysis in this study might be affected by the smaller number of samples (approx.
120 samples/window). However, such an effect might not be severe [22].

The final set of features (SampEn, TotalSampEn, AvgSampEn) used in this studywas extracted based on
nonlinear KS-entropy family that measures irregularity of AC time-series signal. Although SampEn is
efficient in dealing with short-term data, its dependence on input parameters affects the quality of
information retrieval to a great extent [28]. The missing values in table 3 can be attributed to this
unreliability of SamplEn measurement. This limitation was addressed by our group, where we proposed
a data-driven approach for measuring entropy from short-length signals. We have extracted
TotalSampEn and AvgSampEn features using this approach, which also estimates total and average
irregularity in the AC time-series signal [26,28]. From the results, it is evident that these two features
were most sensitive to stress-induced variations in AC time-series signals. This indicates that the
irregularity in the time series of the PPG AC amplitude changes significantly with the application of
physical stressors. In addition, figure 8b indicates that SA increases the regularity of the AC time-series
signal by reducing the beat-to-beat variation in vascular tone. This is aligned with previously reported
findings that stress leads to an increase in predictability or regularity and reduced complexity in heart
rate variability signal [35]. Figure 8b,c is opposite due to the data-driven approach used by the entropy
profiling technique, where the number of r values for which entropy values are calculated is determined
from the signal itself. Therefore, if the signal is more regular, then it results in a reduced number of r
values and vice versa. From the figure, we can assume that during the stress event, randomness
decreases, which results in a reduced number of unique r values, which results in higher average
entropy values during the stress event.

Since the AC time series also presents the modulation of heart rate variability, it is expected that the
irregularity in the AC time series should reduce with the application of physical stressors [36].

Several previous studies reported the effect of the Cold Pressor test on blood pressure reactivity, pain
tolerance, improving mental health and sympathetic nerve activity [12,37–39]. Karthik et al. used PTT for
the assessment of SNA during CP events, which requires multi-site PPG acquisition. By contrast, we
investigate a single site PPG measurement, which is better suited to monitoring SA in real-world
environments on a continuous basis. In addition, the relative performance of multiple wavelengths
helps to select the best wavelength and corresponding feature set that can be used for wearable device
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design for physical and psychological stressors. By contrast to existing literature, we have used two

different stressors (CP and HG) for SA assessment, and the consistent performance across them
further validates the reliability of studied features (tables 3 and 4; figure 8b).
 lsocietypublishing.org/journal/rsos
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5. Conclusion
Detectable changes in skin blood volume are an indirect indication of SA, leading to cutaneous
vasoconstriction in humans. Photoplethysmography, an easy and cost-effective method to measure
blood volume changes, is a promising candidate to facilitate quantification of sympathetic activity. In
this study, we investigate the feasibility of using multi-wavelength PPG to extract information that
correlates with SA. We have studied the impact of two physical stressors; the Cold Pressor test and
Hand Grip exercise on 32 healthy individuals by measuring their respective non-invasive PPGs using
Green, Blue, Infrared and Red wavelengths.

Statistical and nonlinear features were extracted from the pulsatile component of PPG. Our study has
revealed that nonlinear especially entropy features from the PPG, specifically AverageSampleEn and
TotalSampleEn, are the most promising candidates to retrieve correlating information pertaining to SA
from physical stressors. Given the results of this study, we hypothesize that IR (Infrared) and Red
wavelengths will perform best in detecting physical stressors. A similar study shall be carried out for
mental/psychological stressors. In future, we aim to build a machine learning model using a
combinationf of nonlinear features studied here to predict stress.

An accurate estimation of SA from PPG alone has the potential to enable objective quantification of a
person’s response to a stressor. Coupled with understanding the person’s exposure and appraisal of
stress, evidence-based stress management and psychological interventions can be developed at scale
[1,4]. Future studies with larger cohorts and longer continuous recording are necessary to further
validate the findings of this study and explore additional potentials of PPG signal for stress detection.

Ethics. Prior to data acquisition, complete ethics approval for the study and protocols was obtained from the Human
Resources Ethics Committee of Western Sydney University. Participants gave informed consent upon participation.
Ethics Committee: Human Resources Ethics Committee of Western Sydney University. Ethics Reference: H11462.
Data accessibility. Data and code are available on Zenodo at https://doi.org/10.5281/zenodo.7310705 [40].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. R.U.: conceptualization, data curation, formal analysis, investigation, methodology, validation,
writing—original draft; S.R.: conceptualization, formal analysis, investigation, methodology, software, writing—
review and editing; D.B.: funding acquisition, project administration, supervision, writing—review and editing;
V.G.M.: data curation, resources, writing—review and editing; T.D.: data curation, writing—review and editing;
N.M.: data curation; C.K.: conceptualization, data curation, formal analysis, investigation, methodology, project
administration, resources, supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. Philia Labs is jointly developing the technology with the co-authors to compute
sympathetic arousal from wearable data.
Funding. The data collection part of this study was funded by the Medical Device Partnering Program and LaunchVic.
The data analysis part of this study was funded by Philia Labs Pty Ltd.
Acknowledgements. The authors would like to thank the Medical Device Partnering Program and LaunchVic for
supporting the data collection at Baker Heart and Diabetes Institute. The authors also thank Alexander Senior,
Katayoon Sarafrazi and David Lester of Philia Labs for their technical support and commercial guidance during
this investigation.
References

1. Crosswell AD, Lockwood KG. 2020 Best practices

for stress measurement: how to measure
psychological stress in health research. Health
Psychol. Open 7, 2055102920933072. (doi:10.
1177/2055102920933072)

2. Macefield VG. 2021 Recording and quantifying
sympathetic outflow to muscle and skin in
humans: methods, caveats and challenges. Clin.
Auton. Res. 31, 59–75. (doi:10.1007/s10286-020-
00700-6)
3. Chrousos GP. 2009 Stress and disorders of the
stress system. Nat. Rev. Endocrinol. 5, 374–381.
(doi:10.1038/nrendo.2009.106)

4. Epel ES, Crosswell AD, Mayer SE, Prather AA, Slavich
GM, Puterman E, Mendes WB. 2018 More than a
feeling: a unified view of stress measurement for
population science. Front. Neuroendocrinol. 49,
146–169. (doi:10.1016/j.yfrne.2018.03.001)

5. Brule G, Morgan R. 2018 Editorial working with
stress: can we turn distress into eustress?
J. Neuropsychol. Stress Manag. 3, 1–3. (doi:10.
31872/2018/JNSM-100104)

6. Welfare of Health AI. 2022 Mental health
services in Australia (MHSA). Technical report
Australian Government.

7. Chan GSH, Fazalbhoy A, Birznieks I, Macefield VG,
Middleton PM, Lovell NH. 2012 Spontaneous
fluctuations in the peripheral
photoplethysmographic waveform: roles of arterial
pressure and muscle sympathetic nerve activity.

https://doi.org/10.5281/zenodo.7310705
http://dx.doi.org/10.1177/2055102920933072
http://dx.doi.org/10.1177/2055102920933072
http://dx.doi.org/10.1007/s10286-020-00700-6
http://dx.doi.org/10.1007/s10286-020-00700-6
http://dx.doi.org/10.1038/nrendo.2009.106
http://dx.doi.org/10.1016/j.yfrne.2018.03.001
http://dx.doi.org/10.31872/2018/JNSM-100104
http://dx.doi.org/10.31872/2018/JNSM-100104


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221382
17
Am. J. Physiol. Heart Circ. Physiol. 302,

H826–H836. (doi:10.1152/ajpheart.00970.2011)
8. Brown R, Macefield V. 2014 Skin sympathetic

nerve activity in humans during exposure to
emotionally-charged images: sex differences.
Front. Physiol. 5, 111. (doi:10.3389/fphys.2014.
00111)

9. Smets E, De Raedt W, Van Hoof C. 2019 Into the
wild: the challenges of physiological stress
detection in laboratory and ambulatory settings.
IEEE J. Biomed. Health Inform. 23, 463–473.
(doi:10.1109/JBHI.2018.2883751)

10. Alberdi A, Aztiria A, Basarab A. 2016 Towards
an automatic early stress recognition system for
office environments based on multimodal
measurements: a review. J. Biomed. Inform. 59,
49–75. (doi:10.1016/j.jbi.2015.11.007)

11. Fei L, Licai Y, Hongyu S, Chengyu L. 2017
Differences in photoplethysmography
morphological features and feature time series
between two opposite emotions: happiness and
sadness. Artery Res. 18, 7–13. (doi:10.1016/j.
artres.2017.02.003)

12. Budidha K, Kyriacou PA. 2019
Photoplethysmography for quantitative
assessment of sympathetic nerve activity (SNA)
during cold stress. Front. Physiol. 9, 1863.
(doi:10.3389/fphys.2018.01863)

13. Liu J, Yan BP, Dai WX, Ding XR, Zhang YT, Zhao
N. 2016 Multi-wavelength
photoplethysmography method for skin arterial
pulse extraction. Biomed. Opt. Exp. 7,
4313–4326. (doi:10.1364/BOE.7.004313)

14. Elgendi M, Fletcher R, Liang Y. 2019 The use of
photoplethysmography for assessing
hypertension. npj Digit. Med. 2, 60. (doi:10.
1038/s41746-019-0136-7)

15. Silverthorn DU, Michael J. 2013 Cold stress and
the cold pressor test. Adv. Physiol. Educ. 37,
93–96. (doi:10.1152/advan.00002.2013)

16. Stocks JM, Taylor NA, Tipton MJ, Greenleaf JE.
2004 Human physiological responses to cold
exposure. Aviat Space Environ. Med. 75,
444–457. (doi:10.1016/j.autneu.2016.02.009)

17. Jeong I, Jun S, Um D, Oh J, Yoon H. 2010
Non-invasive estimation of systolic blood
pressure and diastolic blood pressure
using photoplethysmograph components. Yonsei
Med. J. 51, 345–353. (doi:10.3349/ymj.2010.51.
3.345)

18. Panula T, Sirkiä JP, Kaisti M. 2021 Control
method for continuous non-invasive arterial
pressure monitoring using the non-pulsatile
component of the PPG signal. In 2021
Computing in Cardiology (CinC), vol. 48, Brno,
Czech Republic, 12 September 2021, pp. 1–4.
New York, NY: IEEE. (doi:10.23919/CinC53138.
2021.9662866)
19. Chen L, Reisner AT, Reifman J. 2009 Automated
beat onset and peak detection algorithm for
field-collected photoplethysmograms. In 2009
Annual Int. Conf. of the IEEE Engineering in
Medicine and Biology Society, Minneapolis, MN,
3–6 September 2009, pp. 5689–5692. New
York, NY: IEEE. (doi:10.1109/IEMBS.2009.
5333542)

20. Azizi T. 2022 On the fractal geometry of
different heart rhythms. Chaos Solitons Fractals
X 9, 100085. (doi:10.1016/j.csfx.2022.100085)

21. Rahman MM, Sarkar AK, Hossain MA, Moni MA.
2022 EEG-based emotion analysis using non-
linear features and ensemble learning
approaches. Expert Syst. Appl. 207, 118025.
(doi:10.1016/j.eswa.2022.118025)

22. Esteller R, Vachtsevanos G, Echauz J, Litt B. 2001
A comparison of waveform fractal dimension
algorithms. IEEE Trans. Circ. Syst. I: Fundam. Theory
Appl. 48, 177–183. (doi:10.1109/81.904882)

23. Chu KL, Andrews S, Gin CL. 2011 Evaluation of
methods for estimating fractal dimension in
motor imagery-based brain computer interface.
Discrete Dyn. Nat. Soc. 2011, 212–221. (doi:10.
1155/2011/724697)

24. Petrosian A. 1995 Kolmogorov complexity of
finite sequences and recognition of different
preictal EEG patterns. In Proc. Eighth IEEE Symp.
on Computer-Based Medical Systems, Lubbock,
TX, 9–10 June 1995, pp. 212–217. New York,
NY: IEEE. (doi:10.1109/CBMS.1995.465426)

25. García-Martínez B, Martínez-Rodrigo A, Alcaraz
R, Fernández-Caballero A. 2021 A review on
nonlinear methods using
electroencephalographic recordings for emotion
recognition. IEEE Trans. Affect. Comput. 12,
801–820. (doi:10.1109/TAFFC.2018.2890636)

26. Udhayakumar RK, Karmakar C, Palaniswami M.
2018 Understanding irregularity characteristics
of short-term hrv signals using sample entropy
profile. IEEE Trans. Biomed. Eng. 65,
2569–2579. (doi:10.1109/TBME.2018.2808271)

27. Udhayakumar RK, Karmakar C, Palaniswami M.
2017 Approximate entropy profile: a novel
approach to comprehend irregularity of short-
term HRV signal. Nonlinear Dyn. 88, 823–837.
(doi:10.1007/s11071-016-3278-z)

28. Karmakar C, Udhayakumar R, Palaniswami M.
2020 Entropy profiling: a reduced-parametric
measure of kolmogorov–sinai entropy from
short-term HRV signal. Entropy 22, 1396.
(doi:10.3390/e22121396)

29. Richman J, Moorman J. 2000 Physiological time-
series analysis using approximate entropy and
sample entropy. Am. J. Physiol. 278, H2039–H2049.
(doi:10.1152/ajpheart.2000.278.6.H2039)

30. Udhayakumar R, Karmakar C, Palaniswami M.
2018 Understanding irregularity characteristics
of short-term HRV signals using sample entropy
profile. IEEE Trans. Biomed. Eng. 65,
2569–2579. (doi:10.1109/TBME.2018.2808271)

31. Akar SA, Kara S, Latifoğlu F, Bilgic V. 2013
Spectral analysis of photoplethysmographic
signals: the importance of preprocessing.
Biomed. Signal Process. Control 8, 16–22.
(doi:10.1016/j.bspc.2012.04.002)

32. Gil E, Orini M, Bailon R, Vergara JM, Mainardi L,
Laguna P. 2010 Photoplethysmography pulse
rate variability as a surrogate measurement of
heart rate variability during non-stationary
conditions. Physiol. Meas. 31, 1271. (doi:10.
1088/0967-3334/31/9/015)

33. Higuchi T. 1988 Approach to an irregular time
series on the basis of the fractal theory. AAPG
Bull. 31, 277–283. (doi:10.1016/0167-
2789(88)90081-4)

34. Katz MJ. 1988 Fractals and the analysis of
waveforms. Comput. Biol. Med. 18, 145–156.
(doi:10.1016/0010-4825(88)90041-8)

35. Dimitriev D, Saperova E. 2015 Heart rate variability
and blood pressure during mental stress. Ross.
Fiziol. Zh. Im. IM Sechenova 101, 98–107.

36. Benchekroun M, Chevallier B, Beaouiss H, Istrate
D, Zalc V, Khalil M, Lenne D. 2022 Comparison
of stress detection through ECG and PPG signals
using a random forest-based algorithm. In 2022
44th Annual Int. Conf. of the IEEE Engineering in
Medicine & Biology Society (EMBC), Glasgow, UK,
11–15 July 2022, pp. 3150–3153. New York,
NY: IEEE. (doi:10.1109/EMBC48229.2022.
9870984)

37. Ketelhut S, Ketelhut RG, Kircher E, Röglin L,
Hottenrott K, Martin-Niedecken AL, Ketelhut K.
2022 Gaming instead of training? Exergaming
induces high-intensity exercise stimulus and
reduces cardiovascular reactivity to cold pressor
test. Front. Cardiovas. Med. 9, 798149. (doi:10.
3389/fcvm.2022.798149)

38. Rauber SB, Boullosa DA, Carvalho FO, de Moraes
JF, de Sousa IR, Simões HG, Campbell CS. 2014
Traditional games resulted in post-exercise
hypotension and a lower cardiovascular
response to the cold pressor test in healthy
children. Front. Physiol. 5, 235. (doi:10.3389/
fphys.2014.00235)

39. Mohammed WA, Pappous A, Sharma D. 2018
Effect of mindfulness based stress reduction
(MBSR) in increasing pain tolerance and improving
the mental health of injured athletes. Front.
Psychol. 9, 722. (doi:10.3389/fpsyg.2018.00722)

40. Udhayakumar R, Rahman S, Buxi D, Macefield
VG, Dawood T, Mellor N, Karmakar C. 2018 Code
for: Measurement of stress-induced sympathetic
nervous activity using multi-wavelength
photoplethysmography. Zenodo. (doi:10.5281/
zenodo.7310705)

http://dx.doi.org/10.1152/ajpheart.00970.2011
https://doi.org/10.3389/fphys.2014.00111
https://doi.org/10.3389/fphys.2014.00111
http://dx.doi.org/10.1109/JBHI.2018.2883751
http://dx.doi.org/10.1016/j.jbi.2015.11.007
http://dx.doi.org/10.1016/j.artres.2017.02.003
http://dx.doi.org/10.1016/j.artres.2017.02.003
http://dx.doi.org/10.3389/fphys.2018.01863
http://dx.doi.org/10.1364/BOE.7.004313
http://dx.doi.org/10.1038/s41746-019-0136-7
http://dx.doi.org/10.1038/s41746-019-0136-7
http://dx.doi.org/10.1152/advan.00002.2013
http://dx.doi.org/10.1016/j.autneu.2016.02.009
http://dx.doi.org/10.3349/ymj.2010.51.3.345
http://dx.doi.org/10.3349/ymj.2010.51.3.345
https://doi.org/10.23919/CinC53138.2021.9662866
https://doi.org/10.23919/CinC53138.2021.9662866
https://doi.org/10.1109/IEMBS.2009.5333542
https://doi.org/10.1109/IEMBS.2009.5333542
http://dx.doi.org/10.1016/j.csfx.2022.100085
http://dx.doi.org/10.1016/j.eswa.2022.118025
http://dx.doi.org/10.1109/81.904882
https://doi.org/10.1155/2011/724697
https://doi.org/10.1155/2011/724697
https://doi.org/10.1109/CBMS.1995.465426
http://dx.doi.org/10.1109/TAFFC.2018.2890636
http://dx.doi.org/10.1109/TBME.2018.2808271
http://dx.doi.org/10.1007/s11071-016-3278-z
http://dx.doi.org/10.3390/e22121396
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.1109/TBME.2018.2808271
http://dx.doi.org/10.1016/j.bspc.2012.04.002
http://dx.doi.org/10.1088/0967-3334/31/9/015
http://dx.doi.org/10.1088/0967-3334/31/9/015
http://dx.doi.org/10.1016/0167-2789(88)90081-4
http://dx.doi.org/10.1016/0167-2789(88)90081-4
http://dx.doi.org/10.1016/0010-4825(88)90041-8
https://doi.org/10.1109/EMBC48229.2022.9870984
https://doi.org/10.1109/EMBC48229.2022.9870984
http://dx.doi.org/10.3389/fcvm.2022.798149
http://dx.doi.org/10.3389/fcvm.2022.798149
http://dx.doi.org/10.3389/fphys.2014.00235
http://dx.doi.org/10.3389/fphys.2014.00235
http://dx.doi.org/10.3389/fpsyg.2018.00722
http://dx.doi.org/10.5281/zenodo.7310705
http://dx.doi.org/10.5281/zenodo.7310705

	Measurement of stress-induced sympathetic nervous activity using multi-wavelength PPG
	Introduction
	Methods
	Data
	Acquisition
	Protocol

	Data preprocessing and analysis
	Pulsatile and non-pulsatile components of PPG
	Event signal generation and feature extraction
	Statistical features
	Fractal dimensions
	Entropy features

	Statistical analysis

	Results
	Statistical features
	Fractal dimension features
	Entropy features
	Area under the curve value

	Discussion
	Conclusion
	Ethics
	Data accessibility
	Declaration of AI use
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


