DESI Cox UEGT
 mavil postenourte semol

MOMEEY, CA 23940

NAVAL POSTGRADUATE SCHOOL Monterey, Califionnia

THESIS

MODELS FOR CALCULATING MULTIPLE ROUND HIT PROBABIIITY WITH 4 BOMBS

by

Ok Hwan Cha

$$
\text { March } 1979
$$

```
Thesis Aavisor:
Alan R. Washburn
```

Approved for public release; distribution uniimited.
$\stackrel{5}{0}+\infty$

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETIMG FORM
T. REPORT NUMEER [2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG Number
4. TITLE (and Subtitio) Models for Calculating Multiple Round Hit Probability With 4 Bombs	5. TYPE OF REPORT A PERIOD COVERED Master's Thesis; March 1979
7. AUTHOR(O) Ok Hwan Cha	8. CONTRACT OR GRANT NLMEER(A)
Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENTPROJECT. TASK AREAS WORK UNITMUMEERS
11. CONTROLLING OfFICE NAME AND ADORESS Naval Postgraduate School Monterey, California 93940	12. REPORT OATE MarCh 1979 13. NUMBER OEPAGES 72
T4. MONITORING AGENCY NAME A ADORESS(if dffitront from Cantrolline Office) Naval Postgraduate School Monterey, California 93940	15. SECURITY CLASS. (of thte raport) Unclassified 15a. OECLASSIFICATION/DOWNGRADING SCHEDULE

6. DISTRIBUTION STATEMENT (of tht © Report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT fof the ebetract miered in Block 20, if differmit from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reveree elde Il neceeaary and ldenttiy by bfock number)
20. ABSTRACT (Concinue an revaree oide It noceceary and tdon(tity by block numbor)

Models for calculating multiple round hit probability (the chance of at least one hit) with 4 bombs on a circular target are constructed by computer simulation. Pattern firing and artillery registration are compared to determine which firing method is optimal. It is rroved neither one is optimal. Therefore, another method called modified artillery registration is developed. The basic idea of modified artillery registration is feed back superimposed on a pattern. This method always aives higher probability

20. (Continued)

than the former two methods.

Approved for public release; distribution unlimited.

> Models for Calculating Multiple Round Hit Probability With 4 Bombs

by

Ok Hwan Cha
Major, Republic of Ǩorea Air Force B.S., Republic of Korea Air Force Academy, 1969

> Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL March 1979

$$
2850=2
$$

ABSTRACT

Models for calculating multiple round hit probability (the chance of at least one hit) with 4 bombs on a circular target are constructed by computer simulation. Pattern firing and artillery registration are compared to determine which firing method is optimal. It is proved neither one is optimal. Therefore, another method called modified artillery registration is developed. The basic idea of modified artillery registration is feed back superimposed on a pattern. This method always gives higher probability than the former two methods.

TABLE OF CONTENTS

I. INTRODUCTION 8
II. DISCUSSION OF PATTERN FIRING METHOD 11
III. DISCUSSION OF ARTIIIERY REGISTRATION METHOD 20
IV. COMPARISON OF PATTERN FIRING AND A. R. METHOD 27
V. EXPANDED ARTILIERY REGISTRATION METHOD 29
VI. MODIFIED ARTIIIERY REGISTRATION METHOD 35
VII. CONCIUSION AND RECOMMENDATION 40
APPENDIX 41
INITIAL DISTRIBUTION LIST 72

LIST OF TABLES

I. PATTERN FIRING HIT PROBABIEITY
ILLUSTRATION 1 16
II. PATTERN FIRING HIT PROBABILITY
IILUSTRATION 2 17
III. COMPARISON OF AIMING AT THE CENTER AND

IV. HIT PROBABILITY OF ARTILLERY REGISTRATION METHOD -.-... 26
V. HIT PROBABILITY COMPARISON OF ARTILIERY

REGISTRATION AND EXPANDED ARTILIERY REGISTRATION ---- 31
VI. HIT PROBABIIITY COMPARISON OF ARTIIIERY REGISTRA-

1. Typical multiple rounds pattern for $N=4$ 10
2. Pattern firing method 12
3. An example of hit and no-hit with
pattern firing 14
4. Artillery registration programming algorithm 25
5. Graphical comparison of pattern and artillery registration method 28
6. Illustration of artificial dispersion 30
7. Graphical comparison of pattern, artilleryregistration, expanded A. R. and modified A. R...- 36

I. INTRODUCTION

A frequent and important problem facing the weapon systems analyst is that of making calculations of hit probabilities for multiple rounds, and finding the best method to increase the hit probability with the given rounds. The purpose of this thesis is to present models for calculation of the probability of at least one hit, and to find the firing method that maximizes the hit probability under the following assumptions:
A. 4 bombs are fired at a circular target of radius R whose position is drawn from a circular normal distribution with mean at the origin of Cartesian coordinate and variance σ_{1}^{2}. This is called "target location" error.
B. The "round-to-round" errors are governed by a circular normal distribution with mean 0 and variance σ_{2}^{2}.
C. In cases where an observer is involved, the "report" errors are also distributed by a circular normal distribution with mean 0 and variance σ_{3}^{2}.
D. Even though observers in real life tend to make larger errors when observing large miss distance, the three errors above, referred to as the "target location" error, "round-toround" error and "report" error, respectively, are assumed to be independent.

A typical multiple rounds firing is shown in Figure 1 for $N=4$ where the circular dot represents the target position with radius R (the center is drawn from a circular normal
distribution with mean 0 and variance σ_{1}^{2}) and the crosses represent the individual round impact points (drawn independently from a circular normal distribution centered on the origin with mean 0 and variance σ_{2}^{2}). If any one of four bombs hits within the target radius, the target is considered to be killed. The rest of this thesis will examine several different methods for aiming the 4 shots.

Figure 1: Typical Multiple Rounds Pattern for $N=4$

II. DISCUSSION OF PATTERN FIRING METHOD

As discussed in the previous chapter, a target is considered to be destroyed if any one of 4 bombs lies within a lethal radius of the target. The hit probability formulation can be obtained by writing the conditional probability of at least one hit in density form and using the classical probability rules pertaining to conditional, joint, and marginal probability densities. For a given set of aim points, the hit probability (probability of at least one hit) is then some complicated function of $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and the lethal radius R. In general, the hit probability is not maximized by aiming all shots at the origin but rather in some sort of pattern. Naturally, one expects that the optimal pattern will be some simple geometric figure. For three rounds, for example, the aim point pattern should be vertices of a triangle. In this thesis, the four aim points will be at the corners of a square, since there is some evidence developed by Washburn that this is superior to the "triangle-plus-one-in-the-middle" pattern.

Figure 2 shows the pattern firing method. Target location is a random number from circular normal distribution with mean 0 and variance σ_{1}^{2}. The impact point is the aiming point plus "round-to-round" error which is drawn from a normal distribution with mean 0 and variance σ_{2}^{2}. In Figure 2, the triangle represents the target location, the crosses $1,2,3,4$ are the aiming points of four bombs which are the corners of a square, and the

Figure 2: Pattern Firing Method

4 circular dots represent the real impact points. Therefore, if one shoots all 4 bombs aimed at the center of Cartesian coordinates, the real impact points are the "round-to-round" error points. So the target is considered to be destroyed if the target location is in the lethal area with radius R of any one of the 4 bombs. For example, suppose the target coordinates are $(-2,5)$, and that 4 bombs with lethal radius 2 are shot with "round-to-round" errors $(-1,2),(2,1),(2,-3),(-2,-2)$. Figure 3 represents the situation. The dotted circles represent the lethal region when all shots are aimed at the center. As the picture shows, the target doesn't lie in any one of the lethal areas. In the case where the shots are aimed at the points $(-2,2),(2,2),(2,-2),(-2,-2)$, the corners of a square, the crosses represent the impact points of the bomb. The picture shows the target $(-2,5)$ lies in the circle associated with impact point $(-3,4)$.

The above illustration presents the case that the pattern firing method can be better than firing all shots at the center. In the computer simulation, $10,000 \mathrm{x}$-coordinates are generated from a normal distribution with mean 0 and variance σ_{1}^{2} and $10,000 Y$-coordinates are also generated from the same normal distribution as target locations. For each target location, 4 round-to-round error X-coordinates and $4 Y$-coordinates are generated from a normal distribution with mean 0 and variance σ_{2}^{2}. The square pattern size is gradually increased to determine the best pattern size. Table I and Table II illustrate the computer run results. In the table, the upper right
 $=$
为

H

\qquad
－
\qquad

Figure 3: An Example of Hit and No-Hit with Pattern Firing
aim point ($\mathrm{X}=\mathrm{Y}$) 3 represents the first corner (3,3) of the square. Therefore, the other three aiming points should be $(3,-3),(-3,3)$, and $(-3,-3)$. Table I shows that the pattern firing method is better than aiming at the center. Because when aimed at the center, the hit probability is 0.611 and hit probability increases as the size of a square increases and reaches at the maximum value 0.651 when one aims $(2,2), 2,-2)$, $(-2,2),(-2,-2)$. After that point if one increases the pattern size, the probability decreases. On the other hand, Table II shows a case where there is no necessity to use a pattern. If one increases the pattern size instead of aiming at the center, the hit probability decreases from 0.430 to 0.427, 0.404, . . . etc.

Table III illustrates the results of the computer simulation with lethal radius 5, and target location error (σ_{1}) 5, with round-to-round error (σ_{2}) variables.

When σ_{2} is 0.05 , the hit probability aiming at the center is 0.527 and the best pattern firing hit probability is 0.780 . As "round-to-round" error increases, pattern firing hit probability decreases and the size of the best square becomes smaller and smaller. But the hit probability aiming at the center increases to the value 0.608 when σ_{2} is 4 . When σ_{2} is larger than 4, all the fires should be aimed at the center. That means intentional dispersion decreases hit probability when "round-to-round" error is larger than 4.

Another important fact is that the size of the pattern should become larger as the lethal radius becomes larger. For example,

Lethal Radius $=5.0$
Target Location Error $=$ Normal $\left(0,5^{2}\right)$
Round-to-Round Error $=\operatorname{Normal}\left(0,3^{2}\right)$

Aim Point $(X=Y)$	hit probability
0	0.611
1	0.638
2	0.651
3	0.631
4	0.565
5	0.468
6	0.364
7	0.259
10	0.171
11	0.109
12	0.068
13	0.036
14	0.020
15	0.011
	0.004
	0.002

TABLE II: Pattern Firing Hit Probability Illustration 1

Lethal Radius $=3.75$

$$
\begin{aligned}
& \text { Target Location Error }=\text { NORMAL }\left(0,5^{2}\right) \\
& \text { Round-to-Round Error }=\text { NORMAL }\left(0,4^{2}\right)
\end{aligned}
$$

aim point $(X=Y)$	hit probability
0	0.430
1	0.427
2	0.404
4	0.369
5	0.325
7	0.268
9	0.205
10	0.160
11	0.108
12	0.070
13	0.047
14	0.028
15	0.015
	0.011

TABLE II: Pattern Firing Hit Probability Illustration 2

Lethal Radius $=5$
Target Location Error $=\operatorname{NORMAL}\left(0,5^{2}\right)$

σ_{2}	aimat the center probability	pattern firing	
0.05	0.527	0.780	3.5
1.00	0.550	0.773	3.0
2.00	0.597	0.722	3.0
3.00	0.605	0.651	2.0
4.00	0.608	0.613	0.5
5.00	0.565	0.565	0.0
6.00	0.516	0.516	0.0

TABLE III: Comparison of Aiming at the center and Pattern Firing
with $\sigma_{1}=5$ and $\sigma_{2}=1$ the best upper right aiming corner becomes (1.5, 1.5), (2.0, 2.0), (3.0, 3.0), (3.5, 3.5), (4.0, 4.0) as the lethal radius increases from 2.5 to $3.75,5,6.25$, and 7.5.

As shown above, the exact relationship between all of the parameters of interest to maximize the expected hit probability is likely to be very complex. Therefore, a simplified general formula of hit probability that includes all of the parameters is not available.

In the next chapter we introduce another firing method called artillery registration which is often more efficient than pattern firing in the case where one observer provides feed back about miss distance between shots.

III. DISCUSSION OF ARTILLERY REGISTRATION METHOD

In the previous chapter, it was concluded that pattern firing is efficient when an observer is not available. This chapter will introduce a firing method called artillery registration (A.R.) that is used when noisy reports on miss distance are available.

In A.R., one aims his first shot at the estimated target position. After the first shot, the observer reports the distance between the impact point and the target location. But since the observer is inaccurate, he himself makes mistakes. In one dimension, suppose the marksman aims his first shot at 0 and the observer reports the target location is 10 to the right of the first hit. If the marksman believes the observer is accurate, he will choose the next aim point quite close to 10. If not, he will choose the next aim point quite close to the original aim point at 0 . In any case, the next aim point will be somewhere on the line between 0 and 10 . So the first problem is what point on the line between them should one locate his estimate, and secondarily, what is the variance of the target's position from this new estimate. That means what kind of random variable is the position of the target when the observer's report is given.

Let the X -coordinate of the target be a one-dimensional random variable X which is drawn from a normal distribution with mean μ and variance σ_{T}^{2}. So the target location $X=\mu+E_{I}$
where E_{1} represents the "target location" error governed by NORMAL $\left(0, \sigma_{T}^{2}\right)$. The marksman aims at μ and fires. The impact point Y is $\mu+E_{2}$ where E_{2} represents "round-to-round" error governed by NORMAL $\left(0, \sigma_{2}^{2}\right)$. Then the reporter will observe the impact point Y and report the miss distance Z which is $X-Y+E_{3}=X-\left(\mu+E_{2}\right)+E_{3}$ where E_{3} represents the "report" error governed by NORMAL $\left(0, \sigma_{3}^{2}\right)$. Therefore, $E(Z \mid X)=X-E(Y \mid X)=$ $x-\mu$ and the observation of miss distance Z is governed by the normal distribution with mean $X-\mu$ and variance $\sigma_{Z}^{2} \equiv$ $\sigma_{2}^{2}+\sigma_{3}^{2}$ when X is given. So the question is, if X is initially normally distributed, what is the posterior distribution of X when Z is given?

The posterior density function $f_{X \mid Z}(x \mid z)$ can be determined from the joint density function $f_{X, Z}(x, z)$, since $f_{X \mid z}(x \mid z)=$ $K " f_{X, Z}(x, z)$ in which k " represents some constant that does not depend on x. But

$$
f_{X, Z}(x, z)=f_{X}(x) f_{z \mid X}(z \mid x)=K e^{-\frac{1}{2}\left(\frac{X-\mu}{\sigma_{T}}\right)^{2}} e^{\left.-\frac{1}{2} \frac{z-X+\mu}{\sigma_{z}}\right)^{2}} \text {, }
$$

since $f_{X}(x)$ is NORMAL $\left(\mu, \sigma_{T}^{2}\right)$ and $f_{z} \mid X(x)$ is NORMAL $\left(X-\mu, \sigma_{Z}^{2}\right)$. By equating powers of x^{2} and x, we can write $f_{X, Z}(x, z)$ as

$$
f_{X, Z}(x, z)=K^{\prime} e^{-\frac{1}{z}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Which is also a normal distribution with mean μ and variance σ° ? We have

$$
\begin{aligned}
& \left(\frac{x-\mu}{\sigma_{T}}\right)^{2}+\left(\frac{z-x+\mu}{\sigma_{z}}\right)^{2}=\frac{x^{2}-2 \mu x+\mu^{2}}{\sigma_{T}^{2}}+\frac{z^{2}-2 z x+2 z \mu+x^{2}-2 \mu x+\mu^{2}}{\sigma_{z}^{2}} \\
= & \left(\frac{1}{-\sigma_{T}^{2}}+\frac{1}{\sigma_{z}^{2}}\right)^{2}-\left(\frac{\mu}{\sigma_{T}^{2}}+\frac{z+\mu}{\sigma_{z}^{2}}\right) 2 x+\frac{2 z \mu+\mu^{2}+z^{2}}{\sigma_{z}^{2}}+\frac{\mu^{2}}{\sigma_{T}^{2}}
\end{aligned}
$$

We also have

$$
\left(\frac{x-\mu^{\prime}}{\sigma^{2}}\right)^{2}=\frac{1}{\sigma^{2}} x^{2}-\left(\frac{\mu^{\prime}}{\sigma^{2}}\right) 2 x+\frac{\mu^{-2}}{\sigma^{2}}
$$

Equating the coefficients of x^{2} and x,

$$
\begin{align*}
& \frac{1}{\sigma^{-2}}=\frac{1}{\sigma_{\mathrm{T}}^{2}}+\frac{1}{\sigma_{z}^{2}} \tag{1}\\
& \frac{\mu^{\prime}}{\sigma^{-2}}=\frac{\mu}{\sigma_{T}^{2}}+\frac{z+\mu}{\sigma_{z}^{2}} \tag{2}\\
& \mu^{-}=\frac{\mu}{\sigma_{T}^{2}} \sigma^{-2}+\frac{z}{\sigma_{z}^{2}} \sigma^{-2}+\frac{\mu}{\sigma_{z}^{2}} \sigma^{-2} \\
& =\frac{\mu}{\sigma_{T}^{2}} \sigma^{-2}+\frac{\mu}{\sigma_{Z}^{2}} \sigma^{-2}+\frac{z}{\sigma_{Z}^{2}} \sigma^{-2} \\
& =\mu \sigma^{-2}\left(\frac{1}{\sigma_{\mathrm{T}}^{2}}+\frac{1}{\sigma_{z}^{2}}\right)+Z \frac{\sigma^{-2}}{\sigma_{z}^{2}} \\
& =\mu \frac{\sigma^{-2}}{\sigma^{-2}}+z \frac{\sigma^{-2}}{\sigma_{z}^{2}} \\
& =\mu+z \frac{\sigma^{-2}}{\sigma_{z}^{2}}
\end{align*}
$$

So the new mean μ^{\prime} for X having observed Z depends upon Z. The new mean is the same as the old mean plus Z times some dimensionless constant. If Z is positive, the observer reported that X was greater than its mean. Consequently the new estimate of X should be greater than the old one. If Z is negative, the new estimate of x ought to be smaller than the old one.

Suppose for a moment that σ_{z} is infinite, then in the formula $\mu^{\mu}=\mu+z \frac{\sigma^{-2}}{\sigma_{z}^{2}}$, the $z \frac{\sigma^{-2}}{\sigma_{z}^{2}}$ term becomes 0 . The new estimate $\mu^{\text {- }}$ is the same as the old estimate μ. That makes sense because $\sigma_{z}=\infty$ means that the reporter is useless. So the marksman should aim at the old estimate. On the other hand, if σ_{z} is very small, which means the observer is perfectly
accurate, it is not hard to show that $\mu^{\wedge}=Z+\mu$. This makes sense because when σ_{z} is 0 , the observer's report is the exact value $X-\mu$. So the formula $\mu^{\prime}=\mu+z \frac{\sigma^{-2}}{\sigma_{z}^{2}}$ makes intuitive sense. Its use is what we refer to as "artillery registration."

Let
$T=\frac{\sigma_{2}^{2}}{\sigma_{T}^{2}}=\frac{\sigma_{2}^{2}+\sigma_{3}^{2}}{\sigma_{T}^{2}}$ for easy computation and $T^{\prime}=\frac{\sigma_{Z}^{2}}{\sigma^{2}}=\frac{\sigma_{Z}^{2}}{\frac{\sigma_{T}^{2} \sigma_{Z}^{2}}{\sigma_{Z}^{2}+\sigma_{T}^{2}}}=\frac{\sigma_{Z}^{2} \sigma_{Z}^{2}+\sigma_{Z}^{2} \sigma_{T}^{2}}{\sigma_{T}^{2} \sigma_{Z}^{2}}=\frac{\sigma_{Z}^{2}}{\sigma_{T}^{2}}+1=T+1$

Then $\mu^{\prime}=\mu+\frac{z}{T^{\prime}}=\mu+\frac{Z}{(T+1)}$
So far we have only discussed the case of one dimension. But the Y-coordinate has the same character as the X-coordinate, since errors are symmetric. Therefore, the above theory is exactly the same for the Y-coordinate.

With the above theory, the computer programming algorithm is shown in Figure 4. In the simulation program $\sigma_{z}^{2}=\sigma_{2}^{2}+\sigma_{3}^{2}=$ "round-to-round" error plus "reporter" error, and the initial value of T is $\frac{\sigma^{2}+\sigma_{3}^{2}}{\sigma_{1}^{2}}$. Let A_{x} represent the aiming point of the X-coordinate. ' The first shot is aimed at zero, since target location is assumed to be distributed NORMAL $\left(0, \sigma_{1}^{2}\right)$ initially. Then the impact point I_{x} of a first shot will be $A_{x}+E_{2}$, where E_{2} represents the "round-to-round" error. If the target location is in the lethal radius of the impacted bomb, it is hit; if not, the observer will report the miss distance $R_{x}=X-I_{x}+E_{3}$, where E_{3} is the "reporter" error which is drawn from NORMAL $\left(0, \sigma_{3}^{2}\right)$. Then the marksman will aim at the new aiming point A_{x}^{\prime}, that is old aiming point $A_{x} p l u s \frac{R_{x}}{(1+T)}$.

As Figure 4 shows, the initial value of σ_{T} is σ_{1} and the initial value of T is $\frac{\sigma_{2}^{2}}{\sigma_{2}^{2}}$. After every shot, the T value changes to $T+1$. So the ${ }^{1}$ procedure described above is essentially an application of Bayes' theorem over and over again. Each time through the loop, it aims at the most likely position of the target.

Table IV shows an example of computer results with lethal radius 5, target location error equals 5, and round-to-round error 2. As the table shows, the hit probability decreases when the reporter error increases.

Figure 4: A.R. Firing Program Algorithm

Lethal Radius $=5$
Target Location Error $=$ NORMAL $\left(0,5{ }^{2}\right)$
Round-to-Round Error $=$ NORMAL $\left.(0,2)^{2}\right)$

(Report Error)	Hit Probability
0	0.999
1	0.998
2	0.992
4	0.980
5	0.952
6	0.916
7	0.883
9	0.841
11	0.808
12	0.786
13	0.755
14	0.742
15	0.723
	0.709

TABLE IV: Hit Probability of A. R. Method
IV. COMPARISON OF PATTERN FIRING AND A.R. METHOD

In the previous two chapters, we discussed pattern firing and artillery registration. Figure 5, which is typical, illustrates the comparison of the two methods. The pattern firing probability is 0.773 and the A.R. probability is very high when σ_{3} is small. As σ_{3} increases, the A.R. hit probability decreases. At approximately $\sigma_{3}=8.8$, the hit probability of the two methods is the same. For larger values of σ_{3}, the $A \cdot R$. method has a lower hit probability than the pattern firing method. With different values of $R, \sigma_{1}, \sigma_{2}$, and σ_{3}, the computer simulation shows that if the pattern firing method gives the best hit probability when aimed at the origin, then the $A \cdot R$. method is always better. But in case the pattern is not null, then pattern firing is better when σ_{3} is large.

In general neither method is optimal in all circumstances.

V. EXPANDED ARTILLERY REGISTRATION METHOD

In this chapter, a new firing method called "expanded artillery registration" (E.A.R.) will be discussed. It is a feed back procedure plus some "artificial dispersion." The marksman follows the A.R. procedure, except that the round-to-round error is artificially increased to keep all the shots from bunching up. The reason for using artificial dispersion is shown in Figure 6.

In Figure 6, the triangle represents the real target location, the black circle is the best estimate of target location, the crosses represent the impact point when one fires without making artificial dispersion, and the squares are the impact points when one increases the round-to-round error artificially. The dotted circles represent lethal areas. Without artificial dispersion, the black circle area is over covered because the firing is too accurate. But the real target isn't covered at all. In the cases where one uses artificial dispersion, one bomb covers the target. So artificial dispersion-is better in this case.

Table V shows the comparison of pattern firings, artillery registration (A.R.) and expanded artillery registration (E.A.R.). When the ratio of lethal radius to target location error $\left(\frac{R}{\sigma_{l}}\right)$ is less than 0.5 , the hit probability is low, pattern firing should aim at the origin, and A.R. is better than pattern firing or E.A.R. . Therefore, when the ratio $\frac{R}{\sigma_{1}}$ is less than 0.5 , it is not worthwhile to make a table. So the table is made from the ratio $\frac{R}{\sigma_{1}}=0.5 . \quad \frac{\sigma_{3}}{\sigma_{1}}$ in the 5 th column represents the ratio

Figure ε. Illustration of Artificial Dispersion

$R / 0_{1}$	$0_{2} / \sigma_{1}$	Pattern Aim Point $\left(X / v_{1}\right)$	A.R. \& pattern Probability	$v_{3} / 0_{1}$	E.A.R.	
					$\square_{2}{ }^{2} \sigma_{1}$	Prob-
0.5	0.01	0.4	0.345	2.0	0.4	0.377
0.5	0.2	0.4	0.312	2.8	0.4	0.330
0.5	0.4	0.4	0.280	6.0	0.6	0.286
0.5	0.6	0.0	0.254	∞	0.6	0.254
0.5	0.8	0.0	0.246	ω	0.8	0.246
0.5	1.0	0.0	0.206	∞	1.0	0.206
0.75	0.01	0.4	0.583	1.8	0.4	0.623
0.75	0.2	0.4	0.568	2.0	0.4	0.603
0.75	0.4	0.4	0.518	3.2	0.6	0.530
0.75	0.6	0.2	0.469	10.0	0.6	0.469
0.75	0.8	0.0	0.430	∞	0.8	0.430
0.75	1.0	0.0	0.394	∞	1.0	0.394
1.0	0.01	0.6	0.780	1.6	0.4	$0.8 \overline{20}$
1.0	0.2	0.6	0.773	1.8	0.4	0.808
1.0	0.4	0.6	0.722	2.4	0.6	0.727
1.0	0.6	0.4	0.651	4.8	0.6	0.651
1.0	0.8	0.0	0.613	12.0	0.8	0.613
1.0	1.0	0.0	0.565	∞	1.0	0.565

TABLE V: Hit Probability Comparison of A.R. and E.A.R.

$R / 0_{1}$	$\sigma_{2} / 1 i_{1}$	Pattern Aim Point ($\mathrm{X} / \mathrm{O}_{1}$)	A.R. \& Pattern Probability	$\mathrm{U}_{3} / \mathrm{O}_{1}$	E.A.R.	
					$\sigma_{2}^{\prime} / \sigma$	Prob- ability
1.25	0.01	0.8	0.900	1.6	0.4	0.917
1.25	0.2	0.6	0.875	1.8	0.4	0.885
1.25	0.4	0.6	0.859	2.1	0.6	0.865
1.25	0.6	0.6	0.793	4. 2	0.6	0.793
1.25	0.8	0.4	0.758	8.6	0.8	0.758
1.25	1.0	0.0	0.720	∞	1.0	0.720
1.5	0.01	0.8	0.950	1.6	0.4	0.956
1.5	0.2	0.8	0.948	1.7	0.4	0.952
1.5	0.4	0.8	0.938	1.9	0.4	0.938
1.5	0.6	0.6	0.887	3.2	0.6	0.887
1.5	0.8	0.2	0.849	7.8	0.8	0.849
1.5	1.0	0.0	0.820	∞	1.0	0.820

TABLE V: Hit Probability Comparison of A.R. and E.A.R.

of reporter error to target location error for which the A.R. hit probability is the same as that of pattern firing, with the common value being shown in the 4 th column. As explained by Figure 5 in Chapter IV, the A.R. hit probability is higher than the pattern hit probability when the reporter error σ_{3} is small. But the A.R. hit probability decreases as σ_{3} increases. So when the ratio $\frac{\sigma_{3}^{3}}{\sigma_{1}}$ reaches the value in the 5 th column in Table V, the two methods have the same hit probability. After that, pattern hit probability is higher than A.R. hit probability.

Therefore, the A.R. method is recommended rather than pattern firing or E.A.R. when $\frac{\sigma_{3}}{\sigma_{1}}$ is small. When $\frac{\sigma_{3}}{\sigma_{1}}$ is large, the pattern firing method is recommended rather than A.R. or E.A.R. On the other hand around $\frac{\sigma_{3}}{\sigma_{1}}$ in the 5 th column, there is no great difference of hit probability between pattern firing and A.R. But expanded artillery registration gives higher probability than those of the other two methods. So $\frac{\sigma_{2}}{\sigma_{1}}$ where A.R. hit probability and pattern hit probability are the same is the best case for E.A.R.

The ratio $\cdot \frac{\sigma_{2}^{2}}{\sigma_{2}}$ represents the amount of artificial dispersion which gives the better probability in column 7. For example, when $\frac{R}{\sigma_{1}}$ is 0.5 and $\frac{\sigma_{2}}{\sigma_{1}}$ is 0.01 , then pattern firing should aim at the 4 corners of the square, one of whose ratio of X-coordinate to σ_{1} is 0.4. The hit probability is 0.345 . On the other hand, the A.R. method gives the probability 0.345 when $\frac{\sigma_{3}}{\sigma_{1}}$ is 2.0. When $\frac{\sigma_{3}}{\sigma_{1}}$ is less than 2.0 , the A.R. method gives a better hit probability. Given the condition that $\frac{\sigma_{2}}{\sigma_{1}}$ is 0.01 and $\frac{\sigma_{3}}{\sigma_{1}}$ is 2.0 , one makes the artificial dispersion.

So one uses the round-to-round error ratio $\left(\frac{\sigma_{2}^{\prime}}{\sigma_{1}}\right) 0.4$ instead of 0.01 and the probability is 0.377 which is higher than 0.345 .

On the other hand when the ratio $\frac{\sigma_{2}}{\sigma_{1}}$ is 0.6 , A.R. gives a hit probability that is always greater than but asymptotic to the pattern hit probability for large $\frac{\sigma_{3}}{\sigma_{1}}$, as evidenced by the ∞ symbol in the table. This means there is no necessity to make an artificial dispersion because round-to-round error is already big enough. Note that $-\frac{\sigma_{2}}{\sigma_{1}}=\frac{\sigma_{2}}{\sigma_{1}}$ in this case. Therefore, the computer simulation has indicated that artificial dispersion in artillery registration is sometimes a better method than either A.R. or pattern firing for scoring at least one hit with 4 bombs.

VI. MODIFIED ARTILIERY REGISTRATION METHOD

In the previous chapter, it was concluded that making some artificial dispersion in A.R. gives a better hit probability when the ratio $\frac{\sigma_{2}}{\sigma_{1}}$ is small. The E.A.R. uses round-to-round error which is larger than σ_{2}.

In this chapter, we will discuss another intentional dispersion method called modified artillery registration (M.A.R.). M.A.R. is artillery registration plus pattern firing. The round-to-round error direction is random in E.A.R. . But in the modified artillery registration, one decides the direction by choosing the corners of a square.

For example, to use 4 corners $(1,1),(-1,1),(-1,-1)$, $(1,-1)$ in M.A.R., the first shot aiming point will be the $(1,1)$ which is the summation of $(0,0)$ and $(1,1)$. Then the $o b-$ server will report the miss distance and the new estimate of the target location will be calculated. If the new estimate is $(3,1)$, the second shot aiming point is $(2,2)$, which is the sum of $(3,1)$ and $(-1,1)$. If the target is not hit and the new expected mean is $(1,2)$, the third shot is aimed at the point $(0,1)$, the sum of $(1,2)$ and $(-1,-1)$ and so on. So the modified artillery registration is the procedure which uses feed back plus pattern firing.

Figure 7 shows the comparison of four methods when all parameters except σ_{3} are fixed. As the figure shows, modified artillery registration gives the best probability among the 4
Lethal Radius $=3.75$
$\sigma_{1}=5$
$\sigma_{2}=1$

methods. Comparisons of hit probability of different methods with several parameters are presented in Table VI; M.A.R. always gives at least as high a hit probability as the other three methods.

As in Table $V, \frac{\sigma_{3}}{\sigma_{1}}$ represents the ratio of reporter error to aim point error where the pattern firing and artillery registration methods give the same hit probability. In the last column, the aim point represents the X -coordinate of one of the 4 corners of the square.

$\mathrm{R} /{ }^{\circ} 1$	$v_{2} /{ }^{\prime}{ }_{1}$	$c_{3} / 0_{1}$	Probability			M.A.R. Aim point $\left(X / \sigma_{1}\right)$
			$\begin{aligned} & \hline \text { Pattern } \\ & \text { s A. } \mathrm{B} \\ & \hline \end{aligned}$	EA, R	M. B	
0.5	0.01	2.0	0.345	0.377	0.400	0.4
0.5	0.2	2.8	0.312	0.330	0.350	0.4
0.5	0.4	6.0	0.280	0.286	0.311	0.4
0.5	0.6	\propto	0.254	0.254	0.254	0.0
0.5	0.8	∞	0.246	0.246	0.246	0.0
0.5	1.0	∞	0.206	0.206	0.206	0.0
0.75	0.01	1.8	0.583	0.623	0.672	0.4
0.75	0.2	2.0	0.568	0.603	0.617	0.4
0.75	0.4	3.2	0.518	0.530	0.560	0.6
0.75	0.6	10.0	0.469	0.469	0.495	0.2
0.75	0.8	∞	0.430	0.430	0.430	0.0
0.75	1.0	∞	0.394	0.394	0.394	0.0
1.0	0.01	1.6	0.780	0.820	0.860	0.4
1.0	0.2	1.8	0.773	0.808	0.828	0.4
1.0	0.4	2.4	0.722	0.727	0.764	0.6
1.0	0.6	4.8	0.651	0.651	0.678	0.6
1.0	0.8	12.0	0.613	0.613	0.613	0.0
1.0	1.0	∞	0.565	0.565	0.565	0.0

TABLE VI: Hit Probability Comparison of A.R., E.A.R., and M.A.R.

$\mathrm{R} \mathrm{U}_{1}$	U_{2} / σ_{1}	$\mathrm{O}_{3} / \mathrm{Cl}_{1}$	Probability			M.A.R. Aim Point $\left(X / \sigma_{j}\right)$
			$\begin{aligned} & \text { Pattern } \\ & \text { \& A.R. } \end{aligned}$	E.A.B.	M.A.R.	
1.25	0.01	1.6	0.900	0.917	0.949	0.6
1.25	0.2	1.8	0.875	0.885	0.921	0.6
1.25	0.4	2.1	0.859	0.865	0.896	0.6
1.25	0.6	4.2	0.793	0.793	0.826	0.6
1.25	0.8	8.6	0.758	0.758	0.782	0.2
1.25	1.0	∞	0.720	0.720	0.720	0.0
1.5	0.01	1.6	0.950	0.956	0.983	0.6
1.5	0.2	1.7	0.948	0.952	0.974	0.8
1.5	0.4	1.9	0.938	0.938	0.962	0.6
1.5	0.6	3.2	0.887	0887	0.916	0.6
1.5	0.8	7.8	01849	0.849	0.873	0.6
1.5	1.0	∞	0.820	0.820	0.820	0.0

TABLE VI: Hit Probability Comparison of A.R., E.A.R., and M.A.R.

VII. CONCLUSION AND RECOMMENDATION

The analysis made in the previous chapters indicated that neither the pattern firing method nor the artillery registration method is optimal and that intentional dispersion introduced to artillery registration by the square pattern will improve the chance of at least one hit.

Hit probability tables for pattern firing, artillery registration, and the modified artillery registration method calculated by computer simulation for $N=4$ and various parameters combinations are given in the Appendix.

It is hoped that the analysis and models developed in this thesis will be of assistance to weapon system analysts, and that this work will generate an interest in additional investigations of the firing process.

APPENDIX: HIT PROBABILITY FOR $N=4$

References for reading the table:
A. Sample Size $=10,000$.
B. Confidence Interval of P in the table $=P \pm 0.0196 \sqrt{P(1-P)}$ with confidence coefficient 0.95 .

For example, C.I. $=0.9 \pm 0.0098$ when $P=0.9$
$=0.5 \pm 0.0058$ when $P=0.5$.
C. List of Symbols
$R=$ lethal radius or circular target radius
$\sigma_{1}=$ aiming error standard deviation
$\sigma_{2}=$ round-to-round error standard deviation
$\sigma_{3}=$ reporter error standard deviation
A.R. = Artillery Registration Method
M.A.R. = Modified Artillery Registration Method
D. Aim point represents the size of a square. For example, if $\sigma_{1}=2$ and aim point value in the table is 0.4, the first aim point $=\sigma_{1} \mathrm{x}$ aim point value $=0.8$. Therefore, 4 bombs should be aimed at (0.8, 0.8), (0.8, $-0.8),(-0.8,-0.8)$ and $(-0.8,0.8)$.
$R / \sigma_{1}=0.5$
$\sigma_{2} / \sigma_{1}=0.01$

PROBABILITY OF PATTERN $=0.345$, AIM POINT $=0.4:$			
σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	1.000	1.000	0
0.2	1.000	1.000	0
0.4	0.954	0.954	0
0.6	0.800	0.800	0
0.8	0.667	0.667	0
1.0	0.576	0.576	0
1.2	0.497	0.497	0
1.4	0.441	0.486	$0.1-0.2$
1.6	0.393	0.444	$0.2-0.3$
1.8	0.364	0.422	$0.3-0.4$
2.0	0.345	0.400	$0.3-0.4$
2.2	0.317	0.392	$0.3-0.4$
2.4	0.296	0.387	$0.4-0.5$
2.6	0.284	0.383	$0.4-0.5$
2.8	0.275	0.380	$0.4-0.5$
3.0	0.258	0.377	$0.4-0.5$
3.2	0.250	0.375	$0.4-0.5$
3.4	0.248	0.370	$0.4-0.5$
3.6	0.238	0.368	$0.4-0.5$
3.8	0.234	0.365	$0.4-0.5$
4.0	0.218	0.363	$0.4-0.5$
4.2	0.215	0.360	$0.4-0.5$
4.4	0.211	0.358	$0.4-0.5$
4.6	0.204	0.356	$0.4-0.5$
4.8	0.201	0.355	$0.4-0.5$
5.0	0.198		$0.4-0.5$

$R / \sigma_{1}=0.5$
$\sigma_{2} / \sigma_{1}=0.2$
PROBABILITY OF PATTERN $=0.312$, AIM POINT $=0.4$

σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	0.998	0.998	0
0.2	0.990	0.990	0
0.4	0.917	0.917	0
0.6	0.789	0.789	0
0.8	0.667	0.667	0
1.0	0.577	0.577	0
1.2	0.507	0.507	$0 .-0.1$
1.4	0.454	0.454	$0 .-0.1$
1.6	0.409	0.429	$0.1-0.2$
1.8	0.392	0.413	$0.1-0.2$
2.0	0.369	0.404	$0.2-0.3$
2.2	0.349	0.385	$0.2-0.3$
2.4	0.333	0.373	$0.3-0.4$
2.6	0.321	0.358	$0.3-0.4$
2.8	0.309	0.350	$0.4-0.5$
3.0	0.295	0.345	$0.4-0.5$
3.2	0.285	0.342	$0.4-0.5$
3.4	0.279	0.338	$0.4-0.5$
3.6	0.269	0.336	$0.4-0.5$
3.8	0.266	0.335	$0.4-0.5$
4.0	0.262	0.334	$0.4-0.5$
4.2	0.259	0.333	$0.4-0.5$
4.4	0.255	0.333	$0.4-0.5$
4.6	0.248	0.332	$0.4-0.5$
4.8	0.245	0.332	$0.4-0.5$
5.0	0.241		$0.4-0.5$

$$
\mathrm{R} / \sigma_{1}=0.5
$$

$$
\sigma_{2} / \sigma_{1}=0.4
$$

PROBABILITY OF PATTERN $=0.280, \mathrm{AIM} \mathrm{POINT}=0.4$			
$\sigma_{3} \sigma_{1}$	A.R. PROBABILITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.808	0.808	0
0.2	0.781	0.781	0
0.4	0.730	0.730	0
0.6	0.660	0.660	0
0.8	0.582	0.582	0
1.0	0.527	0.527	0
1.2	0.477	0.477	0
1.4	0.447	0.447	0
1.6	0.404	0.404	0. -0.1
1.8	0.392	0.392	0. -0.1
2.0	0.377	0.377	0. -0.1
2.2	0.364	0.372	0.1-0.2
2.4	0.352	0.363	0.1-0.2
2.6	0.339	0.354	0.1-0.2
2.8	0.330	0.350	0.2-0.3
3.0	0.324	0.345	0.2-0.3
3.2	0.321	0.339	0.2-0.3
3.4	0.313	0.335	0.2-0.3
3.6	0.306	0.327	0.2-0.3
3.8	0.304	0.325	0.2-0.3
4.0	0.302	0.323	0.2-0.3
4.2	0.301	0.320	0.3-0.4
4.4	0.299	0.319	0.3-0.4
4.6	0.297	0.317	0.3-0.4
4.8	0.295	0.315	0.3-0.4
5.0	0.293	0.312	0.3-0.4

$R / \sigma_{1}=c .5$
$\sigma_{2} / \sigma_{1}=0.6$

PROBABILITY OF PATTERN $=0.254$, AIM POINT $=0$

σ_{3} / G	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.556	0.556	0
0.2	0.539	0.539	0
0.4	0.529	0.529	0
0.6	0.490	0.490	0
0.8	0.461	0.461	0
1.0	0.429	0.429	0
1.2	0.403	0.403	0
1.4	0.387	0.387	0
1.6	0.368	0.368	0
1.8	0.357	0.357	0
2.0	0.346	0.346	0
2.2	0.335	0.335	0
2.4	0.324	0.324	0
2.6	0.315	0.315	0
2.8	0.313	0.313	0
3.0	0.310	0.310	0
3.2	0.308	0.308	0
3.4	0.305	0.305	0
3.6	0.303	0.303	0
3.8	0.299	0.299	0
4.0	0.298	0.298	0
4.2	0.297	0.297	0
4.4	0.295	0.295	0
4.6	0.294	0.294	0
4.8	0.292	0.292	0
5.0	0.291	0.291	0

$R / \sigma_{1}=0.5$
$\sigma_{2} / \sigma_{1}=0.8$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.395	0.395	0
0.2	0.393	0.393	0
0.4	0.379	0.379	0
0.6	0.364	0.364	0
0.8	0.345	0.345	0
1.0	0.332	0.332	0
1.2	0.321	0.321	0
1.4	0.316	0.316	0
1.6	0.312	0.312	0
1.8	0.307	0.307	0
2.0	0.294	0.294	0
2.2	0.290	0.290	0
2.4	0.286	0.286	0
2.6	0.283	0.283	0
2.8	0.281	0.281	0
3.0	0.278	0.278	0
3.2	0.274	0.274	0
3.4	0.272	0.272	0
3.6	0.270	0.270	0
3.8	0.268	0.268	0
4.0	0.267	0.267	0
4.2	0.266	0.266	0
4.4	0.265	0.265	0
4.6	0.264	0.264	0
4.8	0.262	0.262	0
5.0	0.261	0.261	0

$$
R / \sigma_{1}=0.5
$$

$$
\sigma_{2} / \sigma_{1}=1.0
$$

PROBABILITY OF PATTERN $=0.206$, AIM POINT $=0$

σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	0.292	0.292	0
0.2	0.288	0.288	0
0.4	0.284	0.284	0
0.6	0.280	0.280	0
0.8	0.268	0.268	0
1.0	0.262	0.262	0
1.2	0.258	0.258	0
1.4	0.254	0.254	0
1.6	0.247	0.247	0
1.8	0.245	0.245	0
2.0	0.243	0.243	0
2.2	0.241	0.241	0
2.4	0.239	0.239	0
2.6	0.236	0.236	0
2.8	0.235	0.235	0
3.0	0.232	0.232	0
3.2	0.230	0.230	0
3.4	0.228	0.228	0
3.6	0.227	0.227	0
3.8	0.225	0.225	0
4.0	0.224	0.224	0
4.2	0.223	0.223	0
4.4	0.222	0.222	0
4.6	0.221	0.221	0
4.8	0.220	0.220	0
5.0	0.219	0.219	0

PROBABILITY OF PATTERN $=0.583$, AIM POINT $=0.4$				
σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT	
0	1.000	1.000	0	
0.2	1.000	1.000	0	
0.4	0.998	0.998	0	
0.6	0.963	0.963	0	
0.8	0.893	0.893	0	
1.0	0.802	0.802	0.0 .0 .1	
1.2	0.733	0.743	$0.2-0.3$	
1.4	0.671	0.710	$0.3-0.4$	
1.6	0.623	0.688	$0.3-0.4$	
1.8	0.587	0.672	$0.4-0.5$	
2.0	0.549	0.647	$0.5-0.6$	
2.2	0.518	0.642	$0.5-0.6$	
2.4	0.495	0.638	$0.5-0.6$	
2.6	0.481	0.634	$0.5-0.6$	
2.8	0.463	0.632	$0.5-0.6$	
3.0	0.449	0.631	$0.5-0.6$	
3.2	0.436	0.631	$0.5-0.6$	
3.4	0.422	0.630	$0.5-0.6$	
3.6	0.414	0.630	$0.5-0.6$	
3.8	0.401	0.629	$0.5-0.6$	
4.0	0.389	0.629	$0.5-0.6$	
4.2	0.386	0.628	$0.6-0.7$	
4.4	0.381	0.628	$0.6-0.7$	
4.6	0.372	0.627	$0.6-0.7$	
4.8	0.370	0.627	$0.6-0.7$	
5.0	0.367	0.627	$0.6-0.7$	

$R / \sigma_{1}=0.75$
$\sigma_{2} / \sigma_{1}=0.2$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	1.000	1.000	0
0.2	0.999	0.999	0
0.4	0.993	0.993	0
0.6	0.953	0.953	0
0.8	0.881	0.881	0
1.0	0.815	0.815	0
1.2	0.746	0.746	0. -0.1
1.4	0.693	0.693	$0 .-0.1$
1.6	0.648	0.663	0.1-0.2
1.8	0.602	0.643	0.2-0.3
2.0	0.568	0.617	0.3-0.4
2.2	0.546	0.612	0.4-0.5
2.4	0.524	0.605	0.5-0.6
2.6	0.513	0.602	0.5-0.6
2.8	0.491	0.600	0.5-0.6
3.0	0.483	0.596	0.5-0.6
3.2	0.465	0.592	0.5-0.6
3.4	0.455	0.589	0.5-0.6
3.6	0.449	0.588	0.5-0.6
3.8	0.441	0.586	0.5-0.6
4.0	0.427	0.584	0.5-0.6
4.2	0.425	0.584	0.5-0.6
4.4	0.422	0.583	0.5-0.6
4.6	0.412	0.582	0.5-0.6
4.8	0.409	0.581	0.5-0.6
5.0	0.404	0.580	0.5-0.5

PROBABILITY OF PATTERN $=0.518$, AIM POINT $=0.4$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	0.978	0.978	0
0.2	0.970	0.970	0
0.4	0.940	0.940	0
0.6	0.903	0.903	0
0.8	0.845	0.845	0
1.0	0.783	0.783	0
1.2	0.738	0.738	$0 .-0.1$
1.4	0.696	0.696	$0 .-0.1$
1.6	0.659	0.659	$0 .-0.1$
1.8	0.623	0.650	$0.2-0.3$
2.0	0.603	0.627	$0.2-0.3$
2.2	0.578	0.611	$0.2-0.3$
2.4	0.566	0.599	$0.3-0.4$
2.6	0.547	0.580	$0.3-0.4$
2.8	0.533	0.569	$0.3-0.4$
3.0	0.528	0.562	$0.4-0.5$
3.2	0.512	0.560	$0.4-0.5$
3.4	0.510	0.558	$0.4-0.5$
3.6	0.500	0.556	$0.4-0.5$
3.8	0.498	0.553	$0.4-0.5$
4.0	0.498	0.550	$0.4-0.5$
4.2	0.493	0.546	$0.5-0.6$
4.4	0.485	0.544	$0.5-0.6$
4.6	0.480	0.542	$0.5-0.6$
4.8	0.475	0.540	$0.5-0.6$
5.0	0.471	0.540	$0.5-0.6$

$$
R / \sigma_{1}=0.75
$$

$$
\sigma_{2} / \sigma_{1}=0.6
$$

PROBABILITY OF PATTERN $=0.469$, AIM POINT $=0.2$

$R / \sigma_{1}=0.75$
$\sigma_{2} / \sigma_{1}=0.8$

PROBABIIIITY OF PATIERN $=0.430$, AIM POINT $=0$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	0.666	0.666	0
0.2	0.661	0.661	0
0.4	0.656	0.656	0
0.6	0.642	0.642	0
0.8	0.622	0.622	0
1.0	0.589	0.589	0
1.2	0.574	0.574	0
1.4	0.563	0.563	0
1.6	0.559	0.559	0
1.8	0.549	0.549	0
2.0	0.526	0.526	0.
2.2	0.520	0.520	0
2.4	0.515	0.515	0
2.6	0.510	0.510	0
2.8	0.498	0.498	0
3.0	0.495	0.495	0
3.2	0.493	0.493	0
3.4	0.491	0.491	0
3.6	0.483	0.483	0
3.8	0.480	0.480	0
4.0	0.479	0.479	0
4.2	0.478	0.478	0
4.4	0.475	0.475	0
4.6	0.472	0.472	0
4.8	0.468	0.468	0
5.0	0.467	0.467	0

$$
\mathrm{R} / \sigma_{1}=0.75
$$

$$
\sigma_{2} / \sigma_{1}=1.0
$$

σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABIIIITY	M.A.R. AIM POINT
0	0.532	0.532	0
0.2	0.528	0.528	0
0.4	0.524	0.524	0
0.6	0.519	0.519	0
0.8	0.510	0.510	0
1.0	0.496	0.496	0
1.2	0.482	0.482	0
1.4	0.471	0.471	0
1.6	0.462	0.462	0
1.8	0.459	0.459	0
2.0	0.457	0.457	0
2.2	0.453	0.453	0
2.4	0.448	0.448	0
2.6	0.442	0.442	0
2.8	0.437 .	0.437	0
3.0	0.434	0.434	0
3.2	0.432	0.432	0
3.4	0.429	0.429	0
3.6	0.427	0.427	0
3.8	0.425	0.425	0
4.0	0.422	0.422	0
4.2	0.420	0.420	0
4.4	0.419	0.419	0
4.6	0.419	0.419	0
4.8	0.418	0.418	0
5.0	0.418	0.418	0

$$
R / \sigma_{1}=1.0
$$

$$
\sigma_{2} / \sigma_{1}=0.01
$$

PROBABILITY OF PATTERN $=0.780$, AIM POINT $=0.6$

σ_{3} / σ_{1}	A.R. PROBABIITTY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
	1.000	1.000	0
0	1.000	1.000	0
0.2	1.000	1.000	0
0.4	0.994	0.994	0
0.6	0.974	0.974	$0 .-0.1$
0.8	0.925	0.925	$0 .-0.1$
7.0	0.876	0.871	$0.2-0.3$
7.2	0.827	0.860	$0.3-0.4$
7.4	0.780	0.848	$0.4-0.5$
1.6	0.747	0.829	$0.5-0.6$
1.8	0.712	0.821	$0.5-0.6$
2.0	0.683	0.815	$0.5-0.6$
2.2	0.657	0.812	$0.5-0.6$
2.4	0.636	0.810	$0.6-0.7$
2.6	0.622	0.808	$0.6-0.7$
2.8	0.586	0.803	$0.6-0.7$
3.0	0.578	0.800	$0.6-0.7$
3.2	0.566	0.796	$0.7-0.8$
3.4	0.552	0.794	$0.7-0.8$
3.6	0.548	0.794	$0.7-0.8$
3.8	0.540	0.793	$0.7-0.8$
4.0	0.530	0.793	$0.7-0.8$
4.2	0.526		$0.7-0.8$
4.4	0.521		$0.7-0.8$
4.6	0.513		
4.8			

PROBABILITY OF PATTERN $=0.773, \mathrm{AIM}$ POINT $=0.6$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM FCINT
0	1.000	1.000	0
0.2	1.000	1.000	0
0.4	0.999	0.999	0
0.6	0.993	0.993	0
0.8	0.968	0.968	$0-0.1$
1.0	0.927	0.936	0.2-0.3
1.2	0.882	0.897	0.3-0.4
1.4	0.843	0.867	0.3-0.4
1.6	0.795	0.833	0.4-0.5
1.8	0.764	0.828	0.4-0.5
2.0	0.730	0.823	0.5-0.6
2.2	0.705	0.815	0.5-0.6
2.4	0.684	0.799	0.5-0.6
2.6	0.667	0.795	0.6-0.7
2.8	0.649	0.791	0.6-0.7
3.0	0.638	0.789	0.6-0.7
3.2	0.627	0.787	0.6-0.7
3.4	0.641	0.785	0.6-0.7
3.6	0.603	0.784	0.7-0.8
3.8	0.591	0.783	0.7-0.8
4.0	0.584	0.783	0.7-0.8
4.2	0.579	0.782	0.7-0.8
4.4	0.571	0.782	0.7-0.8
4.6	0.564	0.781	0.7-0.8
4.8	0.559	0.781	0.7-0.8
5.0	0.557	0.781	0.7-0.8

$$
\mathrm{R} / \sigma_{1}=1.0 \quad \sigma_{2} / \sigma_{1}=0.4
$$

PROBABILITY OF PATTERN $=0.722$, AIM POINT $=0.6$			
σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIITTY	M.A.R.AIM POINT
0	0.999	0.999	0
0.2	0.998	0.998	0
0.4	0.992	0.992	0
0.6	0.980	0.980	0
0.8	0.952	0.952	0
1.0	0.916	0.916	0
1.2	0.883	0.883	$0 .-0.1$
1.4	0.841	0.846	$0.1-0.2$
1.6	0.820	0.827	$0.3-0.4$
1.8	0.786	0.802	$0.3-0.4$
2.0	0.755	0.779	$0.3-0.4$
2.2	0.742	0.771	$0.4-0.5$
2.4	0.723	0.764	$0.4-0.5$
2.6	0.709	0.752	$0.5-0.6$
2.8	0.695	0.743	$0.5-0.6$
3.0	0.689	0.737	$0.5-0.6$
3.2	0.670	0.734	$0.5-0.6$
3.4	0.661	0.730	$0.5-0.6$
3.6	0.656	0.725	$0.6-0.7$
3.8	0.650	0.725	$0.6-0.7$
4.0	0.643	0.724	$0.6-0.7$
4.2	0.638	0.723	$0.6-0.7$
4.4	0.634	0.723	$0.6-0.7$
4.6	0.629	0.722	$0.6-0.7$
4.8	0.625	0.722	$0.6-0.7$
5.0	0.622	0.722	$0.6-0.7$

$R / \sigma_{1}=1.0$
$\sigma_{2} / \sigma_{9}=0.6$

PROBABILITY OF PATTERN $=0.651$, AIM POINT $=0.4$			
σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIITTY	M.A.R.AIM POINT
0	0.962	0.962	0
0.2	0.957	0.957	0
0.4	0.948	0.948	0
0.6	0.931	0.931	0
0.8	0.899	0.899	0
1.0	0.875	0.875	0
1.2	0.848	0.848	0
1.4	0.828	0.828	0
1.6	0.806	0.806	0
1.8	0.777	0.777	0
2.0	0.761	0.761	0
2.2	0.745	0.745	$0 .-0.1$
2.4	0.737	0.737	$0 .-0.1$
2.6	0.725	0.725	$0 .-0.1$
2.8	0.704	0.711	$0.1-0.2$
3.0	0.699	0.707	$0.2-0.3$
3.2	0.692	0.704	$0.2-0.3$
3.4	0.687	0.701	$0.2-0.3$
3.6	0.679	0.698	$0.3-0.4$
3.8	0.674	0.694	$0.3-0.4$
4.0	0.669	0.691	$0.4-0.5$
4.2	0.664	0.688	$0.4-0.5$
4.4	0.661	0.657	0.684
4.6	0.654	0.681	$0.4-0.5$
4.8	0.649	0.674	$0.5-0.6$
5.0	0.6	$0.5-0.6$	
			$0.5-0.6$

$$
R / \sigma_{1}=1.0
$$

$$
\sigma_{2} / \sigma_{1}=0.8
$$

PROBABILITY OF PATTERN $=0.613$, AIM POINT $=0$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R.PROBABIITITY	M.A.R. AIM POINT
0	0.864	0.864	0
0.2	0.855	0.855	0
0.4	0.848	0.848	0
0.6	0.833	0.833	0
0.8	0.820	0.820	0
1.0	0.805	0.805	0
1.2	0.781	0.781	0
1.4	0.761	0.761	0
1.6	0.749	0.749	0
1.8	0.729	0.729	0
2.0	0.722	0.722	0
2.2	0.711	0.711	0
2.4	0.700	0.700	0
2.6	0.692	0.692	0
2.8	0.683	0.683	0
3.0	0.678	0.678	0
3.2	0.674	0.674	0
3.4	0.668	0.668	0
3.6	0.666	0.666	0
3.8	0.661	0.661	0
4.0	0.657	0.657	0
4.2	0.655	0.655	0
4.4	0.652	0.652	0
4.6	0.647	0.647	0
4.8	0.645	0.645	0
5.0	0.644	0.644	0

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.743	0.743	0
0.2	0.740	0.740	0
0.4	0.737	0.737	0
0.6	0.728	0.728	0
0.8	0.720	0.720	0
1.0	0.705	0.705	0
1.2	0.690	0.690	0
1.4	0.678	0.678	0
1.6	0.673	0.673	0
1.8	0.670	0.670	0
2.0	0.664	0.664	0
2.2	0.652	0.652	0
2.4	0.645	0.645	0
2.6	0.640	0.640	0
2.8	0.637	0.637	0
3.0	0.630	0.630	0
3.2	0.625	0.625	0
3.4	0.620	0.620	0
3.6	0.618	0.618	0
3.8	0.614	0.614	0
4.0	0.612	0.612	0
4.2	0.610	0.610	0
4.4	0.608	0.608	0
4.6	0.606	0.606	0
4.8	0.604	0.604	0
5.0	0.603	0.603	0

$R / \sigma_{1}=1.25$
$\sigma_{2} / \sigma_{1}=0.01$

PROBABILITY OF PATTERN $=0.900$, AIM POINT $=0.8$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	1.000	1.000	0. -0.2
0.2	1.000	1.000	0. -0.2
0.4	1.000	1.000	0. -0.2
0.6	0.999	0.999	0. -0.2
0.8	0.995	0.995	0. -0.2
1.0	0.978	0.978	0. -0.2
1.2	0.955	0.961	0.2-0.3
1.4	0.920	0.955	0.4-0.5
1.6	0.895	0.949	0.5-0.6
1.8	0.861	0.935	0.6-0.7
2.0	0.840	0.928	0.6-0.7
2.2	0.813	0.920	0.6-0.7
2.4	0.797	0.918	0.7-0.8
2.6	0.774	0.915	0.7-0.8
2.8	0.762	0.914	0.7-0.8
3.0	0.743	0.912	0.7-0.8
3.2	0.733	0.910	0.7-0.8
3.4	0.721	0.907	0.7-0.8
3.6	0.712	0.906	0.7-0.8
3.8	0.708	0.905	0.7-0.8
4.0	0.697	0.904	0.8-0.9
4.2	0.689	0.904	0.8-0.9
4.4	0.684	0.903	018-0.9
4.6	0.676	0.903	0.8-0.9
4.8	0.672	0.902	0.8-0.9
5.0	0.665	0.902	0.8-0.9

$$
R / \sigma_{1}=1.25
$$

$$
\sigma_{2} / \sigma_{1}=0.2
$$

PROBABILITY OF PATTERN $=0.875$, AIM POINT $=0.6$

σ_{3} / σ_{1}	A.R. PROBABIIIIIY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	1.000	1.000	0. -0.2
0.2	1.000	1.000	0. -0.2
0.4	1.000	1.000	0. -0.2
0.6	0.999	0.999	0. -0.2
0.8	0.993	0.993	0. -0.2
1.0	0.978	0.978	0. -0.2
1.2	0.956	0.960	0.2-0.3
1.4	0.925	0.945	0.3-0.4
1.6	0.899	0.932	0.4-0.5
1.8	0.878	0.921	0.5-0.6
2.0	0.851	0.918	0.6-0.7
2.2	0.828	0.914	0.6-0.7
2.4	0.806	0.912	0.7-0.8
2.6	0.791	0.908	0.7-0.8
2.8	0.778	0.906	0.7-0.8
3.0	0.768	0.904	0.7-0.8
3.2	0.759	0.903	0.7-0.8
3.4	9.751	0.903	0.7-0.8
3.6	0.741	0.902	0.7-0.8
3.8	0.732	0.902	0.7-0.8
4.0	0.726	0.901	0.7-0.8
4.2	0.718	0.901	0.8-0.9
4.4	0.714	0.900	0.8-0.9
4.6	0.711	0.900	0.8-0.9
4.8	0.707	0.899	0.8-0.9
5.0	0.705	0.899	0.8-0.9

$$
\mathrm{R} / \sigma_{1}=1.25
$$

$$
\sigma_{2} / \sigma_{1}=0.4
$$

PROBABILITY OF PATTERN $=0.859, ~ A I M ~ P O I N T ~=0.6$			
σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	1.000	1.000	$0 .-0.2$
0.2	1.000	1.000	$0 .-0.2$
0.4	0.999	0.999	$0 .-0.2$
0.6	0.998	0.998	$0 .-0.2$
0.8	0.990	0.990	$0 .-0.2$
1.0	0.970	0.970	$0 .-0.2$
1.2	0.953	0.953	$0 .-0.2$
1.4	0.927	0.932	$0.2-0.3$
1.6	0.907	0.925	$0.3-0.4$
1.8	0.885	0.915	$0.3-0.4$
2.0	0.866	0.911	$0.4-0.5$
2.2	0.851	0.891	$0.5-0.6$
2.4	0.834	0.886	$0.5-0.6$
2.6	0.822	0.882	$0.6-0.7$
2.8	0.813	0.880	$0.6-0.7$
3.0	0.804	0.877	$0.6-0.7$
3.2	0.795	0.876	$0.7-0.8$
3.4	0.786	0.874	$0.7-0.8$
3.6	0.779	0.872	$0.7-0.8$
3.8	0.773	0.871	$0.7-0.8$
4.0	0.768	0.869	$0.7-0.8$
4.2	0.764	0.867	$0.7-0.8$
4.4	0.760	0.865	$0.7-0.8$
4.6	0.758	0.863	$0.7-0.8$
4.8	0.652	0.862	$0.7-0.8$
5.0	0.745	0.861	$0.7-0.8$

$R / \sigma_{1}=1.25$
$\sigma_{2} / \sigma_{1}=0.6$
PROBABILITY OF PATTERN $=0.793$. AIM POINT $=0.6$

σ_{3} / σ_{1}	A.R. PROBABILITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.993	0.993	0
0.2	0.992	0.992	0
0.4	0.987	0.987	0
0.6	0.982	0.982	0
0.8	0.970	0.970	0
1.0	0.954	0.954	0
1.2	0.938	0.938	0
1.4	0.921	0.921	0
1.6	0.904	0.912	0. -0.1
1.8	0.888	0.901	0.1-0.2
2.0	0.873	0.886	0.2-0.3
2.2	0.859	0.876	0.2-0.3
2.4	0.848	0.863	0.2-0.3
2.6	0.836	0.856	0.3-0.4
2.8	0.827	0.848	0.3-0.4
3.0	0.818	0.842	0.3-0.4
3.2	0.812	0.836	0.3-0.4
3.4	0.806	0.834	0.4-0.5
3.6	0.802	0.832	0.4-0.5
3.8	0.797	0.830	0.4-0.5
4.0	0.795	0.828	0.5-0.6
4.2	0.793	0.826	0.5-0.6
4.4	0.791	0.825	0.5-0.6
4.6	0.785	0.823	0.6-0.7
4.8	0.782	0.821	0.6-0.7
5.0	0.779	0.820	0.6-0.7

$$
R / \sigma_{1}=1.25
$$

$$
\sigma_{2} / \sigma_{1}=0.8
$$

PROBABILITY OF PATTERN $=0.758$, AIM POINT $=0.4$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITIY	M.A.R. AIM POINT
0	0.955	0.955	0
0.2	0.952	0.952	0
0.4	0.950	0.950	0
0.6	0.936	0.936	0
0.8	0.928	0.928	0
1.0	0.916	0.916	0
1.2	0.906	0.906	0
1.4	0.889	0.889	0
1.6	0.881	0.881	0
1.8	0.864	0.864	0
2.0	0.851	0.851	0. -0.1
2.2	0.839	0.839	0. -0.1
2.4	0.827	0.836	0.1-0.2
2.6	0.821	0.832	0.1-0.2
2.8	0.815	0.830	0.1-0.2
3.0	0.807	0.825	0.1-0.2
3.2	0.804	0.822	0.1-0.2
3.4	0.801	0.820	0.1-0.2
3.6	0.796	0.818	0.1-0.2
3.8	0.792	0.816	0.1-0.2
4.0	0.790	0.813	0.1-0.2
4.2	0.788	0.811	0.1-0.2
4.4	0.786	0.810	0.1-0.2
4.6	0.782	0.808	0.1-0.2
4.8	0.778	0.807	0.1-0.2
5.0	0.776	0.805	0.1-0.2

$R / \sigma_{1}=1.25$ $\sigma_{2} / \sigma_{1}=1.0$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.878	0.878	0
0.2	0.874	0.874	0
0.4	0.870	0.870	0
0.6	0.866	0.866	0
0.8	0.857	0.857	0
1.0	0.848	0.848	0
1.2	0.839	0.839	0
1.4	0.827	0.827	0
1.6	0.817	0.817	0
1.8	0.807	0.807	0
2.0	0.801	0.801	0
2.2	0.796	0.796	0
2.4	0.790	0.790	0
2.6	0.786	0.786	0
2.8	0.782	0.782	0
3.0	0.777	0.777	0
3.2	0.768	0.768	0
3.4	0.765	0.765	0
3.6	0.762	0.762	0
3.8	0.760	0.760	0
4.0	0.759	0.759	0
4.2	0.758	0.758	0
4.4	0.757	0.757	0
4.6	0.756	0.756	0
4.8	0.755	0.755	0
5.0	0.754	0.754	0

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=0.01
$$

PROBABILITY OF PATTERN $=0.950$, AIM POINT $=0.8$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	1.000	1.000	$0 .-0.4$
0.2	1.000	1.000	$0 .-0.4$
0.4	1.000	1.000	$0 .-0.4$
0.6	1.000	1.000	$0 .-0.4$
0.8	0.999	0.999	$0 .-0.4$
1.0	0.996	0.996	$0 .-0.4$
1.2	0.985	0.985	$0 .-0.4$
1.4	0.971	0.984	$0.5-0.6$
1.6	0.951	0.983	$0.6-0.7$
1.8	0.938	0.981	$0.7-0.8$
2.0	0.918	0.978	$0.7-0.8$
2.2	0.899	0.976	$0.8-0.9$
2.4	0.886	0.973	$0.8-0.9$
2.6	0.871	0.972	$0.8-0.9$
2.8	0.862	0.970	$0.8-0.9$
3.0	0.846	0.969	$0.8-0.9$
3.2	0.836	0.969	$0.8-0.9$
3.4	0.829	0.968	$0.9-1.0$
3.6	0.821	0.968	$0.9-1.0$
3.8	0.813	0.967	$0.9-1.0$
4.0	0.809	0.967	$0.9-1.0$
4.2	0.803	0.967	$0.9-1.0$
4.4	0.797	0.966	$0.9-1.0$
4.6	0.790	0.966	$0.9-1.0$
4.8	0.785	0.966	$0.9-1.0$
5.0	0.778	0.965	$0.9-1.0$

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=0.2
$$

PROBABILITY OF PATTERN $=0.948$, AIM POINT $=0.8$

σ_{3} / σ_{1}	PROBABILITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	1.000	1.000	0. -0.2
0.2	1.000	1.000	0. -0.2
0.4	1.000	1.000	0. -0.2
0.6	1.000	1.000	0. -0.2
0.8	0.999	0.999	0. -0.2
1.0	0.993	0.997	0.2-0.3
1.2	0.985	0.989	0.2-0.3
1.4	0.972	0.982	0.3-0.4
1.6	0.954	0.976	0.4-0.5
1.8	0.935	0.972	0.6-0.7
2.0	0.921	0.970	0.7-0.8
2.2	0.913	0.968	0.7-0.8
2.4	0.899	0.966	0.8-0.9
2.6	0.882	0.965	0.8-0.9
2.8	0.873	0.964	0.8-0.9
3.0	0.865	0.964	0.8-0.9
3.2	0.859	0.963	0.8-0.9
3.4	0.849	0-963	0.9-1.0
3.6	0.837	0.962	0.9-1.0
3.8	0.832	0.962	$0.9-1.0$
4.0	0.826	0.961	0.9-1.0
4.2	0.821	0.961	0.9-1.0
4.4	0.817	0.961	0.9-1.0
4.6	0.815	0.960	$0.9-1.0$
4.8	0.813	0.960	0.9-1.0
5.0	0.811	0.960	$0.9-1.0$

-

$=-$

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=0.4
$$

1프는

$x-2$
$1+2$
$n=2$

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=0.6
$$

PROBABIIITY OF PATTERN $=0.887$, AIM POINT $=0.6$

σ_{3} / σ_{1}	A.R.PFOBABIIITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	1.000	1.000	0
0.2	1.000	1.000	0
0.4	0.998	0.998	0
0.6	0.997	0.997	0
0.8	0.992	0.992	0
1.0	0.987	0.987	0
1.2	0.976	0.976	0
1.4	0.969	0.969	0. -0.2
1.6	0.954	0.962	0.2-0.3
1.8	0.942	0.958	0.2-0.3
2.0	0.930	0.952	0.3-0.4
2.2	0.921	0.944	0.4-0.5
2.4	0.911	0.937	0.4-0.5
2.6	0.909	0.931	0.5-0.6
2.8	0.900	0.925	0.5-0.6
3.0	0.889	0.920	0.5-0.6
3.2	0.883	0.916	0.6-0.7
3.4	0.878	0.914	0.6-0.7
3.6	0.875	0.913	0.6-0.7
3.8	0.871	0.911	0.6-0.7
4.0	0.868	0.910	0.6-0.7
4.2	0.864	0.908	0.6-0.7
4.4	0.862	0.907	0.7-0.8
4.6	0.860	0.906	0.7-0.8
4.8	0.858	0.905	0.7-0.8
5.0	0.856	0.904	0.7-0.8

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=0.8
$$

PROBABILITY OF PATTERN $=0.849$, AIM POINT $=0.2$			
σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABILITY	M.A.R. AIM POINT
0	0.989	0.989	0
0.2	0.988	0.988	0
0.4	0.987	0.987	0
0.6	0.982	0.982	0
0.8	0.976	0.976	0
1.0	0.969	0.969	0
1.2	0.961	0.961	0
1.4	0.953	0.953	0
1.6	0.942	0.942	$0 .-0.1$
1.8	0.931	0.931	$0 .-0.1$
2.0	0.922	0.928	$0.1-0.2$
2.2	0.915	0.925	$0.1-0.2$
2.4	0.910	0.917	$0.1-0.2$
2.6	0.904	0.913	$0.1-0.2$
2.8	0.898	0.911	$0.2-0.3$
3.0	0.892	0.906	$0.2-0.3$
3.2	0.885	0.902	$0.3-0.4$
3.4	0.880	0.900	$0.3-0.4$
3.6	0.878	0.897	$0.3-0.4$
3.8	0.877	0.895	$0.3-0.4$
4.0	0.875	0.889	$0.4-0.5$
4.2	0.873	0.886	$0.4-0.5$
4.4	0.870	0.884	$0.5-0.6$
4.6	0.868	0.883	$0.5-0.6$
4.8	0.866	0.882	$0.5-0.6$
5.0	0.864	0.881	$0.5-0.6$

$$
R / \sigma_{1}=1.5
$$

$$
\sigma_{2} / \sigma_{1}=1.0
$$

PROBABILITY OF PATTERN $=0.820$, AIM POINT $=0$

σ_{3} / σ_{1}	A.R. PROBABIIITY	M.A.R. PROBABIIITY	M.A.R. AIM POINT
0	0.954	0.954	0
0.2	0.953	0.953	0
0.4	0.950	0.950	0
0.6	0.948	0.948	0
0.8	0.941	0.941	0
1.0	0.934	0.934	0
1.2	0.927	0.927	0
1.4	0.919	0.919	0
1.6	0.910	0.910	0
1.8	0.905	0.905	0
2.0	0.895	0.895	0
2.2	0.890	0.890	0
2.4	0.884	0.884	0
2.6	0.878	0.878	0
2.8	0.875	0.875	0
3.0	0.870	0.870	0
3.2	0.868	0.868	0
3.4	0.866	0.866	0
3.6	0.862	0.862	0
3.8 .	0.860	0.860	0
4.0	0.857	0.857	0
4.2	0.855	0.855	0
4.4	0.854	0.854	0
4.6	0.853	0.853	0
4.8	0.851	0.851	0
5.0	0.850	0.850	0

1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314
2. Library, Code 0142
3. Department Chairman, Code 55

1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
4. Associate Professor A. R. Washburn, Code 55Ws

1 Department of Operations Research Naval Postgraduate School Monterey, California 93940
5. Major Okhwan Cha, R.O.K.A.F.

1 12 Hwangkeumdong (Youngsaeng Byungwon) Kimchon, Kyungbuk, KOREA

```
Thesis
                                    :80782
C33855
    Cha
                                    Models for calcu-
                                    lating multiple round cu-
                                    hit probability with round
                                    4 bombs.
                                    with
```



```
        | J.{.* 39
        14 wh% %9
        20145
                        3566*6*
    3566
    Ther is
C33{55
C33&55 Cha
                            :80782
                        Models for calcu-
                        lating multiple round
                        hit probability with
                        4 bombs.
```

