

#### Lesson2: Modelling the Web with Simple Statistical Descriptive Text Models Unit4:

#### Test if lesser words are required on Simple English Wikipedia to understand a larger fraction than on English Wikipedia

Rene Pickhardt

Introduction to Web Science Part 2

**Emerging Web Properties** 



Institute for Web Science and Technologies · University of Koblenz-Landau, Germany



## **Completing this unit you should**

- Understand what a log-log plot is
- Improve your skills in reading and interpreting diagrams
- Know about the word rank / frequency plot
- Should be able to transfer a histogram or curve into a cumulative distribution function



## Strategy to fulfil our test

- count the frequency of words in both corpora
- Sort the words descending to their frequency

   This creates a ranking
- Create a plot displaying the frequency depending on the rank
- Transform this to the cumulative plot in order to test our prediction

#### Counting words is really simple in python

```
In [39]: def readWordsFromWiki(filename):
             0.0.0
                 opens a file which has one sentence per line (without punction marks)
                 returns a list with all words
             ....
             f = open(filename)
             allWords=[]
             for line in f:
                 line = line[:-1]
                 words = line.split()
                 allWords.extend(words)
             return allWords
         allSimpleWords = readWordsFromWiki("../datasets/simpleWikiAbstractsOneScentencePerLine")
         allEnWords = readWordsFromWiki("../datasets/enWikiAbstractsOneScentencePerLine")
In [40]: from collections import Counter
         c=Counter(allSimpleWords)
         words, frequencies = zip(*c.most common())
         print words[0:10], frequencies[0:10]
         ('the', 'is', 'a', 'of', 'in', 'and', 'it', 'was', 'to', 'an') (134415, 89447, 81349, 80376, 80309, 39475, 27820, 255
         54, 18726, 15620)
In [23]: cEn=Counter(allEnWords)
```

enWords, enFrequencies = zip(\*cEn.most\_common())
print enWords[0:10], enFrequencies[0:10]

('the', 'of', 'in', 'a', 'is', 'and', 'was', 'to', 'by', 'it') (5307042, 3247413, 2810037, 2594795, 2331626, 1983945, 1128009, 1085090, 748863, 591726)

# 

#### Lets look at the rank frequency diagram

#### • As you can see, you see nothing (:

Wordrank frequency diagram on Wikipedia data sets



## Maybe zooming the axis helps a little bit?

Problems with this plot:

Charles MI

- The frequency of words with a rank bigger than 200 can not be distinguished
- What if all ranks should be displayed?

Wordrank frequency diagram on Wikipedia data sets (Zoomed)





#### Changing the y-axis to a logarithmic scale



- Same data being used
- Very different visualization
- What happens if we include all ranks again?



## **Displaying the full x-axis**

Wordrank frequency diagram on Wikipedia data sets (Zoomed)



• Similar problems as before:

- Top ranks can almost not be distinguished

• Do the same trick as before



## **Compare linear scale plot with log-log plot**



| Linear                                                                                                                  | Logarithmic                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Every interval displays a <b>fixed range</b> of numbers                                                                 | Every interval displays one <b>order of</b><br>magnitude                                    |
| Adding a constant number (10 k) to go from one scale unit to the next one                                               | <b>Multiplying</b> with a constant number (in our case 10) to go from one scale to the next |
| Can visualize best what is happening <b>in</b><br><b>a certain interval</b> - Usually the highest<br>order of magnitude | Can visualize best what happens in <b>each</b> order of magnitude                           |



Chan M



Wordrank frequency diagram on Wikipedia data sets









Wordrank frequency diagram on Wikipedia data sets













6. Formulate a sentence that describes the plot

The 20<sup>th</sup> most frequent word occurs about 8k times whereas at least 10k words occur more than ten times.

 $10^{6}$ 



## Visualizing both data sets

Wordrank frequency diagram on Wikipedia data sets (log-log scale)





#### **Beware word order not the same!**

Wordrank frequency diagram on Wikipedia data sets (log-log scale)





#### **Comparing the top 10 words**

|                   | Simple English Wiki | English Wiki |
|-------------------|---------------------|--------------|
| 1 <sup>st</sup>   | the                 | the          |
| 2 <sup>nd</sup>   | is                  | of           |
| 3 <sup>rd</sup>   | а                   | in           |
| 4 <sup>th</sup>   | of                  | а            |
| 5 <sup>th</sup>   | in                  | is           |
| 6 <sup>th</sup>   | and                 | and          |
| 7 <sup>th</sup>   | it                  | was          |
| 8 <sup>th</sup>   | was                 | to           |
| 9 <sup>th</sup>   | to                  | by           |
| 10 <sup>th</sup>  | an                  | it           |
| Average frequency | 20.04               | 57.74        |
| Median frequency  | 1                   | 1            |

## Creating the Cumulative Distribution Function

```
In [ ]: from collections import Counter
```

```
def getWordCDF(f):
    allWords=readWordsFromWiki(f)
    c=Counter(allWords)
    words,frequencies = zip(*c.most_common())
    cumsum = np.cumsum(frequencies)
    normedcumsum = [x/float(cumsum[-1]) for x in cumsum]
    wrank = {words[i]:i+1 for i in range(0,len(words))}
    return wrank,normedcumsum
```

```
f = open("../datasets/simpleWikiAbstractsOneScentencePerLine")
simpleWordRanks, simpleNormedCumsum = getWordCDF(f)
```

```
f = open("../datasets/enWikiAbstractsOneScentencePerLine")
enWordRanks, enNormedCumsum = getWordCDF(f)
```



#### Visualizing the CDF!

CDF wordrank frequency diagram on Wikipedia data sets





#### Now lets be critical!

- Understanding 80% of all words does not necessarily mean that one understands 80% of the text
- Or do you understand the meaning of:
  - But it is her Schadenfreude
- English Wikipedia Corpus much bigger / more articles than Simple English
  - Comparing apples and peaches?
- Counting is ambiguous: Various forms for the "same" word like:
  - word, words
  - be, was, were, am, is
  - have, has, had

## We could change the question a little bit

- How many words does one need to know all words in a given sentence?
- Can be done with the same tools and techniques
- Lets dig directly into the results



#### **Repeat on sentences instead of words**

CDF for understanding all words in a scentince given a vocab of top popular words of a certain size



Web Science Part2 – 3 Ways to study the Web



# Thank you for your attention!



Contact:

Rene Pickhardt Institute for Web Science and Technologies Universität Koblenz-Landau rpickhardt@uni-koblenz.de



Institute for Web Science and Technologies · University of Koblenz-Landau, Germany



## **Copyright:**

• This Slide deck is licensed under creative commons 3.0. share alike attribution license. It was created by Rene Pickhardt. You can use share and modify this slide deck as long as you attribute the author and keep the same license. All graphics have been self made (unless otherwise stated)