Appendix

In order to establish a correct formulae for the critical values of the Mann-Whitney test the following number theoretical question is important: How many partitions of a natural number a exist such that

$$
a=a_{1}+a_{2}+\ldots a_{n_{1}}, \quad 0 \leq a_{1} \leq \ldots \leq a_{n_{1}} \leq n_{2}
$$

where n_{1} and n_{2} are given?
We will denote the number of those partitions as $p_{n_{1}, n_{2}}(a)$ with $p_{n_{1}, n_{2}}(a)=0$ if $a<0$ or $a>n_{1} n_{2}$. Because

$$
\begin{equation*}
p_{n_{1}, n_{2}}(a)=p_{n_{2}, n_{1}}(a) \tag{1}
\end{equation*}
$$

(see [Ostmann (1956), p. 32ff.]) we can restrict ourselves to the case $n_{1} \leq n_{2}$. A simple modification of this proof shows that also $p_{n_{1}, n_{2}}(a)=p_{n_{1}, n_{2}}\left(n_{1} \cdot n_{2}-a\right)$ is true.

One of the first recursion formulaes was already known to Mann and Whitney:

$$
\begin{equation*}
p_{n_{1}, n_{2}}(a)=p_{n_{1}-1, n_{1}}\left(a-n_{2}\right)+p_{n_{1}, n_{2}-1}(a), \tag{2}
\end{equation*}
$$

but this recursion involves partitions with different numbers n_{1} and n_{2}. Our aim is to establish a formulae using only $p_{n_{1}, n_{2}}(a)$ with different a.
To this end we consider the generating function on \mathbb{R}

$$
\begin{equation*}
F_{n_{1}, n_{2}}(z):=\sum_{a=0}^{n_{1} n_{2}} p_{n_{1}, n_{2}}(a) z^{a}, \quad|z|<1 . \tag{3}
\end{equation*}
$$

Since $p_{n_{1}, n_{2}}(a)$ is equal to the number of partitions we immediately have another equation for the generating function

$$
F_{n_{1}, n_{2}}(z):=\sum_{a_{1}=0}^{n_{2}} \sum_{a_{2}=a_{1}}^{n_{2}} \ldots \sum_{a_{n_{1}}=a_{n_{1}-1}}^{n_{2}} z^{a_{1}+a_{2}+\ldots a_{n_{1}}} .
$$

Our first observation is the fact that the generating function can be written as a product.
Lemma 1 We have

$$
\begin{equation*}
F_{n_{1}, n_{2}}(z)=\prod_{v=1}^{n_{1}}\left(\frac{1-z^{n_{2}+v}}{1-z^{v}}\right) \tag{4}
\end{equation*}
$$

Proof: We prove the claim by induction over n_{1}. Because of (\mathbb{I}) we start with $n_{1}=1$:

$$
\sum_{a=0}^{n_{2}} p_{1, n_{2}}(a) z^{a}=\sum_{a=0}^{n_{2}} z^{a}=\frac{1-z^{n_{2}+1}}{1-z} .
$$

The induction step uses the well known recursion (2):

$$
\begin{aligned}
\sum_{a=0}^{n_{1} n_{2}} p_{n_{1}, n_{2}}(a) z^{a} & =z^{n_{2}} \sum_{a=0}^{n_{1} n_{2}} p_{n_{1}-1, n_{2}}\left(a-n_{2}\right) z^{a-n_{2}}+\sum_{a=0}^{n_{1} n_{2}} p_{n_{1}, n_{2}-1}(a) z^{a} \\
& =z^{n_{2}} \prod_{v=1}^{n_{1}-1}\left(\frac{1-z^{n_{2}+v}}{1-z^{v}}\right)+\prod_{v=1}^{n_{1}}\left(\frac{1-z^{n_{2}-1+v}}{1-z^{v}}\right) \\
& =\prod_{v=1}^{n_{1}}\left(\frac{1-z^{n_{2}+v}}{1-z^{v}}\right)
\end{aligned}
$$

which was to be shown.

In order to develop another recursion formulae we define the following function

$$
\sigma\left(n ; n_{1}, n_{2}\right):=\sum_{n \bmod d=0} \varepsilon_{d} d \quad \text { where } \varepsilon_{d}= \begin{cases}1, & \text { where } 1 \leq d \leq n_{1} \\ 0, & \text { else, } \\ -1, & \text { where } n_{2}+1 \leq d \leq n_{2}+n_{1}\end{cases}
$$

Then, the following holds.

Lemma 2 We have

$$
a p_{n_{1}, n_{2}}(a)=\sum_{i=0}^{a-1} p_{n_{1}, n_{2}}(i) \sigma\left(a-i ; n_{1}, n_{2}\right)
$$

PROOF: In order to verify the proposition we start with

$$
\begin{aligned}
\frac{F_{n_{1}, n_{2}}^{\prime}(z)}{F_{n_{1}, n_{2}}(z)} & =\frac{d}{d z}\left(\ln F_{n_{1}, n_{2}}(z)\right) \\
& =\sum_{v=1}^{n_{1}} \sum_{m=1}^{\infty}\left(v z^{m v-1}-\left(n_{2}+v\right) z^{\left(n_{2}+v\right) m-1}\right) \\
& =\sum_{n=1}^{\infty}\left(\left(\sum_{v m=n, 1 \leq v \leq n_{1}} z^{n-1}\right)-\left(\sum_{v m=n, n_{2}+1 \leq v \leq n_{2}+n_{1}} z^{n-1}\right)\right) \\
& =\sum_{n=1}^{\infty} \sigma\left(n ; n_{1}, n_{2}\right) z^{n-1} .
\end{aligned}
$$

But this implies

$$
F_{n_{1}, n_{2}}^{\prime}(z)=F_{n_{1}, n_{2}}(z) \sum_{n=1}^{\infty} \sigma\left(n ; n_{1}, n_{2}\right) z^{n-1}
$$

or

$$
\sum_{a=1}^{n_{1} n_{2}} a p_{n 1, n_{2}}(a) z^{a-1}=\sum_{i=0}^{n_{1} n_{2}} p_{n 1, n_{2}}(i) \sigma\left(i ; n_{1}, n_{2}\right) z^{a+i-1}
$$

which in turn gives the required equation by comparison of coefficients.

References

[Ostmann (1956)] Ostmann, H.-H. (1956) Additive Zahlentheorie [in German], Berlin Heidelberg Göttingen.

