Statische Berechnung
Pfahlgründung Signalausleger

Bauvorhaben: Bahnhof Bitterfeld
Objekt: Signalausleger

Diese Berechnung umfaßt 10 Seiten und gilt nur in Verbindung mit der statischen Berechnung „Signalausleger, Bundesbahn-Zentralamt München vom 17.11.1983“

Aufgestellt: 9. 10. 1997 bei: Steinbrecher + Partner Planungsgesellschaft mbH
Schreinerstraße 2
10247 Berlin

R. Roletschek
Bauingenieur (Tiefbau)
Dipl.-Ing. (FH)
1 Inhaltsverzeichnis

1 INHALTSVERZEICHNIS...3

2 QUELLENVERZEICHNIS...4

3 VERTIKALE TRAGFÄHIGKEIT..5
 3.1 Vorbemerkungen..5
 3.2 Ausgangswerte..5
 3.3 Schweissung...5
 3.4 Trägheitsmoment der verschweisssten Profile.....................6
 3.5 Pfahlmantelwiderstand..6
 3.6 Pfahlfußwiderstand...7
 3.7 Spannungsnachweis..7

4 HORIZONTALE TRAGFÄHIGKEIT...8
 4.1 Ausgangswerte..8
 4.2 Ermittlung Bettungsmodul..8
 4.2.1 Schicht 1 (SU/ST)..8
 4.2.2 Schicht 2 (TA/TL)..8
 4.3 Ansatz...8
 4.4 Ermittlung der elastischen Länge und des Längenverhältnisses 8

5 NACHWEISE...10
 5.1 Nachweis der oberen Abstützung.....................................10
 5.2 Nachweis Spundbohle...10
 5.3 Nachweis der Aufnahme des Torsionsmomentes..............10
 5.4 Pfahlverformungen..11
 5.4.1 Pfahlkopfverschiebung..11
 5.4.2 Pfahlfußverschiebung..11
 5.4.3 Pfahlkopfverdrehung...11
2 Quellenverzeichnis

[1] Baugrundgutachten
Mailänder Ingenieur-Consult GmbH
vom 6. 12. 1994

Statik im Bauwesen
Band II Festigkeitslehre
15. Auflage 1990
VEB Verlag für Bauwesen Berlin

Grundbau Band I
Bodenmechanik und erdstatische Berechnungen
19. Auflage 1994
B. G. Teubner Stuttgart

Grundbau Band II
Baugruben und Gründungen
17. Auflage 1992
B. G. Teubner Stuttgart

[5] Bautabellen für Ingenieure
12. Auflage 1996
Werner-Verlag

[6] Dr. H. Pörschmann
Bautechnische Berechnungstafeln für Ingenieure
20. Auflage 1984
B. G. Teubner Leipzig
3 vertikale Tragfähigkeit

3.1 Vorbemerkungen

3.2 Ausgangswerte:

gew.: Pfahlkopf gem. Musterstatik 1,30 · 1,30 · 1,30

\[
\begin{array}{l}
2 \times I (EC 3) 450 HEM; L = 12,00 m
\end{array}
\]

\[
\begin{align*}
h &= 478 \text{ mm} \\
b &= 307 \text{ mm} \\
A &= 355 \text{ cm}^2 \\
U &= 210 \text{ cm} \\
I_{y(i)} &= 131.500 \text{ cm}^4 \\
I_{x(i)} &= 19.340 \text{ cm}^4 \\
W_x &= 5.500 \text{ cm}^3 \\
tf &= 40 \text{ mm}
\end{align*}
\]

3.3 Schweißung:

Die I- Träger müssen schubfest miteinander verbunden werden.

gew.: einseitig durchgeschweißte Wurzel- V- Naht (alternativ Wurzel- HV- Naht)

\[a = 6 \text{ cm,}\]

Steilflankennaht sowie andere als die oben aufgeführten Stumpfnähte sind nicht zugelassen. Einbrandkerben sind nachzuschweißen, wenn die Querschnittsschwächung mehr als 1,5 mm beträgt. Die Schweißnähte finden keinen Einfluß bei der Ermittlung der Trägheitsmomente.
3.4 Trägheitsmoment der verschweißten Profile

\[
I_y = 2 \cdot I_{y(i)} = 0,00263 \text{ m}^4
\]

\[
I_x = 2 \left(I_{x(i)} + A_x \, e^2 \right) = 2 \left(0,0001934 + 0,0033677 \right) = 0,007122 \text{ m}^4
\]

3.5 Pfahlmantelwiderstand

\[
UM = U + 2 \cdot b = 2,10 + 2 \cdot 0,307 = 2,714 \text{ m}^2/m
\]

\[
L_{mi,1} = 2,20 - 0,85 = 1,35 \text{ m} \quad \text{(SU/ST)}
\]

\[
L_{mi,2} = 6,30 - 2,20 = 4,10 \text{ m} \quad \text{(TA/TL)}
\]

\[
A_{M,1} = UM \cdot L_{mi} = 2,714 \cdot 1,35 = 3,664 \text{ m}^2
\]

\[
A_{M,2} = UM \cdot L_{mi} = 2,714 \cdot 4,10 = 11,127 \text{ m}^2
\]

\[
c_{u(2)} = 25 \text{ kN/m}^2 = 0,025 \text{ MN/m}^2 \quad [1]
\]

\[
q_{c(1)} = 15 \text{ MN/m}^2 \quad [3]; 7.6.
\]

\[
\tau_{Mf(1)} = 0,120 \text{ MN/m}^2 \quad [4]; 3.62.
\]

\[
\tau_{Mf(2)} = 0,025 \text{ MN/m}^2 \quad [3]; 3.63.
\]

\[
Q_{rg(1)} = \tau_{Mf(1)} \cdot A_{M,1} = 0,120 \text{ MN/m}^2 \cdot 3,664 \text{ m}^2 = 0,4397 \text{ MN}
\]

\[
Q_{rg(2)} = \tau_{Mf(2)} \cdot A_{M,2} = 0,025 \text{ MN/m}^2 \cdot 11,127 \text{ m}^2 = 0,2782 \text{ MN}
\]

\[
Q_{rg} = Q_{rg(1)} + Q_{rg(2)} = 0,4397 + 0,2782 = 0,7178 \text{ MN} = 718 \text{ kN}
\]

3.6 Pfahlfußwiderstand

wird vernachlässigt
3.7 Spannungsnachweis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Wert (Einheit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>0,25</td>
</tr>
<tr>
<td>μ</td>
<td>0,80</td>
</tr>
<tr>
<td>η</td>
<td>2,0</td>
</tr>
<tr>
<td>$Q_{zul.}$</td>
<td>0,7178 MN · 0,8 · 0,5</td>
</tr>
<tr>
<td></td>
<td>= 0,287 MN</td>
</tr>
<tr>
<td></td>
<td>= 287 kN</td>
</tr>
<tr>
<td>N</td>
<td>$79,7 + 1,30^2 \cdot 1,30 \cdot 25$</td>
</tr>
<tr>
<td></td>
<td>= 134,6 kN</td>
</tr>
</tbody>
</table>

\[V_{max} = N = 134,6 \text{ kN} < Q_{zul.} = 287 \text{ kN} \]

Die vertikale Tragfähigkeit ist gewährleistet.
4 horizontale Tragfähigkeit

4.1 Ausgangswerte

\[E = 210.000 \text{ MN/m}^2 \]
\[I_y = 0,00263 \text{ m}^4 \]
\[I_x = 0,007122 \text{ m}^4 \]
\[t = 12,00 - 0,85 = 11,15 \text{ m} \]

4.2 Ermittlung Bettungsmodul

4.2.1 Schicht 1 (SU / ST)

\[k_{sh} = \frac{n_h \cdot t}{d} = \frac{(2,0 + 6,5)}{2 \cdot 1,35} / 0,478 = 12,0 \text{ MN/m}^3 \]
[Terzaghi]

4.2.2 Schicht 2 (TA / TL)

\[k_s = k_{s1} \cdot \left(\frac{0,478 + 0,3}{2 \cdot 0,478} \right)^2 = 20 \text{ MN/m}^3 \cdot 0,6623 = 13,3 \text{ MN/m}^3 \]
[4]; 2.36.

\[k_{sh} = k_s = 13,3 \text{ MN/m}^3 \]

\[k_{sh} = 160 \cdot c_u / d = 160 \cdot 0,025 / 0,478 = 8,4 \text{ MN/m}^3 \]
[Sherif]

4.3 Ansatz

Zum Ansatz kommt ein konstantes Bettungsmodul von:

\[k_{sh} = 10,0 \text{ MN/m}^3 \]

über die Pfahlänge von 0,85 m unter OFG bis Pfahlfuß (12,00 m unter OFG)

4.4 Ermittlung der elastischen Länge und des Längenverhältnisses

Diese Werte dienen als Eingangswerte in die Diagramme [4]; S. 349 ff

\[L_k = \left(\frac{E \cdot I}{d \cdot k_{sh}} \right)^{1/4} \]
\[= \left(\frac{(210.000 \text{ MN/m}^2 \cdot 0,00263 \text{ m}^4)}{(0,478 \text{ m} \cdot 10,0 \text{ MN/m}^3)} \right)^{1/4} \]
\[= \left(\frac{552,3 \text{ MNm}^2 / 4,78 \text{ MN/m}^2} {3,279 \text{ m}} \right)^{1/4} \]
\[= 3,279 \text{ m} \]

\[\lambda = \frac{\lambda_k}{L_k} = \frac{t}{L_k} = 11,15 / 3,279 = 3,400 \]
\[\sigma_{m1} = \frac{H}{d \cdot t} \]
\[= \frac{134,6 \text{ kN}}{0,478 \text{ m} \cdot 11,15 \text{ m}} \]
\[= 25,255 \text{ kN/m}^2 \]

\[\sigma_{m2} = \frac{M}{d \cdot t^2} \]
\[= \frac{430,8 \text{ kNm}}{0,478 \text{ m} \cdot 11,15^2 \text{ m}^2} \]
\[= 7,249 \text{ kN/m}^2 \]

\[K = H \cdot t \]
\[= 134,6 \text{ kN} \cdot 12,00 \text{ m} \]
\[= -1615,2 \text{ kNm} \]
5 Nachweise

5.1 Nachweis der oberen Abstützung

\[\sigma_{h_{\text{max}}} = 60,28 \, \text{kN/m}^2 \text{ tritt bei } z/t = 0,25 \text{ bei } t = 2,79 \, \text{m auf} \]

Bodenkennwerte Aufschüttung

\[\gamma = 17,5 \, \text{kN/m}^3; \phi = 17,5^\circ; \delta_a = 2/3 \phi; \Rightarrow k_{ah} = 0,47; k_{ph} = 2,42 \]

\[e_{rh} = e_{ph} - e_{ah} = 17,5 \, \text{kN/m}^3 * (2,42 - 0,47) * z = 34,125 * z \, \text{kN/m}^2 \]

für \(z = 3,64 \, \text{m} \Rightarrow e_{rh} = 34,125 \, \text{kN/m}^2 * 3,64 = 124,215 \, \text{kN/m}^2 \)

\[\eta_p = e_{rh} / \sigma_{h_{\text{max}}} = 124,215 \, \text{kN/m}^2 / 60,28 \, \text{kN/m}^2 = 2,1 > \eta_{p_{\text{erf}}} = 2 \]

5.2 Nachweis Spundbohle

\[M_{\text{max}} = 497,55 \, \text{kNm} \text{ tritt bei } z/t = 0,10 \text{ bei } t = 1,97 \, \text{m auf} \]

\[W_y = 2 \cdot 5.500 \, \text{cm}^3 = 11.000 \, \text{cm}^3 \]

\[\sigma_{Sh_{\text{max}}} = M_{\text{max}} / W_y = 49.755 \, \text{kNcm} / 11.000 \, \text{cm}^3 = 4,52 \, \text{kN/cm}^2 = 45,2 \, \text{N/mm}^2 < 160 \, \text{N/mm}^2 \]

5.3 Nachweis der Aufnahme des Torsionsmomentes

Die minimale Bruchfläche um die Spundbohlen infolge \(M_{\text{max}} = 138 \, \text{kNm} \) wird mit \(d = b = 0,938 \, \text{m} \) angenommen.

GRAFIK AutoCAD

\[\tau_{\text{max}} = \left[2 * M_T \right] / \left[d * (\Pi * d * t) \right] = (2 * 138 \, \text{kNm}) / (0,938^2 \, \text{m}^2 * \Pi * 7) \, \text{m} \]

\[= 14,2 \, \text{kN/m}^2 \]

\[\tau_{mf} = 40 \, \text{kN/m}^2 \text{ Tab. S.7. Lit.[1]} \]

\[\eta = \tau_{mf} / \tau_{mf} = 2,8 > \eta_{\text{erf}} = 2 \]
5.4 Pfahlverformungen

\[\sigma_{n1} = -25,255 \text{ kN/m}^2 = -0,025255 \text{ MN/m}^2 \]
\[\sigma_{n2} = 7,249 \text{ kN/m}^2 = 0,007249 \text{ MN/m}^2 \]
\[k_{sh} = 40 \text{ MN/m}^3 \]

[4] Tab. 3.120.:

\[\varepsilon_{o1} = -15,0 \]
\[\varepsilon_{o2} = -108,0 \]
\[\delta_{u1} = 0,2 \]
\[\delta_{u2} = -1,4 \]
\[\delta_{o1} = -7,0 \]
\[\delta_{o2} = -24,0 \]

5.4.1 Pfahlkopfverschiebung

\[w_o = (\delta_{o5} * \sigma_{m5} + \delta_{o6} * \sigma_{m6}) / k_{sh} \]
\[\lambda = 2,5 \rightarrow \delta_{o5} = -22 \text{ (- Vorzeichen); } \delta_{o6} = 35 \]
\[w_o = [-22 * (-0,00386) + 35 * 0,0101] / 40 = 0,0104 \text{ m} = 1,04 \text{ cm} < w_{zul} \]
\[w_{zul} = 2 \text{ cm} \quad w_{zul} < 0,03 * d = 0,03 * 0,938 \text{ m} = 2,8 \text{ cm} \quad \text{nach DIN 4014 Abs. 7.4.2} \]

5.4.2 Pfahlfußverschiebung

\[w_u = (\delta_{u5} * \sigma_{m5} + \delta_{u6} * \sigma_{m6}) / k_{sh} \]
\[\lambda = 2,5 \rightarrow \delta_{u5} = +5,3 \text{ (- Vorzeichen); } \delta_{u6} = -10 \]
\[w_u = [+5,3 * (-0,00386) - 10 * 0,0101] / 40 = -0,0030 \text{ m} = -0,30 \text{ cm} < w_{zul} \]

5.4.3 Pfahlkopfverdrehung

\[\tan \phi_o = (\varepsilon_{o5} * \sigma_{m5} + \varepsilon_{o6} * \sigma_{m6}) / [k_{sh} * (t + L_1)] \]
\[\lambda = 2,5 \rightarrow \varepsilon_{o5} = -38 \text{ (- Vorzeichen); } \varepsilon_{o5} = 80 \]
\[\tan \phi_o = [(-38 * (-0,000386)) + 80 * 0,0101] / (40 * 8) = 0,00314 \rightarrow \phi = 0,18^\circ \]