
IN-LINE EDITING:
A NEW APPROACH TO

EDITING WIKIS

Jan Paul Posma

Wikipedia has a problem. New volunteers stop contributing earlier than they used to.

This chart shows the percentage of new volunteers that are still active after a year. This
percentage started to drop in 2005/2006. There are several reasons for this drop, and one of
them is the interface to edit pages.

With this interface the source code of a page can be edited, in a language called ‘wikitext’.
This editing has become a lot harder over time, because the pages became more and more
complex.

Today pages contain infoboxes, references, and other templates. When editing a page, this is
quite scary for new users, as the syntax for these elements can be quite complex.

It can be compared with having users edit a document in LaTeX, while they are used to
working with Microsoft Word. Why is it not possible for users to edit Wikipedia pages in a
visual manner, in a way similar to Word?

After all, it is possible nowadays to do visual editing in the browser, see for example Google
Docs. The fact that we cannot do this on Wikipedia has everything to do with this language
pages are edited and saved in: wikitext. Let’s look first at how such a visual editor can be
implemented in wikis.

browserserver

wikitext HTML

parser

To convert the wikitext source code of a page into a web page, a parser is used. This parser
converts the text to HTML, which can be showed by the browser. If we want to edit this
document, we also have to be able to convert the page back to wikitext.

Saving the page in wikitext is vital, as many current volunteers for Wikipedia and other
projects are used to editing wikitext, so editing in this way must be preserved in order to
keep these existing volunteers happy.

Internally, the parser generates a syntax tree, for example by using a formal grammar. This is
a mathematically well-defined way of expressing how valid wikitext looks like, and is used by
computer scientists for decades, for example to define programming languages. The syntax
tree is a direct representation of the wikitext based on this formal grammar. This syntax tree
is then used to generate the HTML.

When editing the page, one option is to send the syntax tree to the client. Now, every time
the user interacts with the page by changing it, the syntax tree is updated to reflect this
change. Then, the browser can regenerate the HTML in order to show the page again in it
changed state.

Because the syntax tree is a direct representation of wikitext, it can be converted back to raw
wikitext when saving the page.

The problem is, that the parser used at Wikipedia, is not based on a formal grammar. There
isn’t even any way to convert edited HTML back to wikitext! Because of the lack of such a
grammar, it is hard to reconstruct some kind of “reverse parser”. It turns out that it is even
very tough to reconstruct the grammar of the wikitext language.

browserserver

wikitext HTMLsyntax
tree

To convert the wikitext source code of a page into a web page, a parser is used. This parser
converts the text to HTML, which can be showed by the browser. If we want to edit this
document, we also have to be able to convert the page back to wikitext.

Saving the page in wikitext is vital, as many current volunteers for Wikipedia and other
projects are used to editing wikitext, so editing in this way must be preserved in order to
keep these existing volunteers happy.

Internally, the parser generates a syntax tree, for example by using a formal grammar. This is
a mathematically well-defined way of expressing how valid wikitext looks like, and is used by
computer scientists for decades, for example to define programming languages. The syntax
tree is a direct representation of the wikitext based on this formal grammar. This syntax tree
is then used to generate the HTML.

When editing the page, one option is to send the syntax tree to the client. Now, every time
the user interacts with the page by changing it, the syntax tree is updated to reflect this
change. Then, the browser can regenerate the HTML in order to show the page again in it
changed state.

Because the syntax tree is a direct representation of wikitext, it can be converted back to raw
wikitext when saving the page.

The problem is, that the parser used at Wikipedia, is not based on a formal grammar. There
isn’t even any way to convert edited HTML back to wikitext! Because of the lack of such a
grammar, it is hard to reconstruct some kind of “reverse parser”. It turns out that it is even
very tough to reconstruct the grammar of the wikitext language.

browserserver

wikitext HTMLsyntax
tree

To convert the wikitext source code of a page into a web page, a parser is used. This parser
converts the text to HTML, which can be showed by the browser. If we want to edit this
document, we also have to be able to convert the page back to wikitext.

Saving the page in wikitext is vital, as many current volunteers for Wikipedia and other
projects are used to editing wikitext, so editing in this way must be preserved in order to
keep these existing volunteers happy.

Internally, the parser generates a syntax tree, for example by using a formal grammar. This is
a mathematically well-defined way of expressing how valid wikitext looks like, and is used by
computer scientists for decades, for example to define programming languages. The syntax
tree is a direct representation of the wikitext based on this formal grammar. This syntax tree
is then used to generate the HTML.

When editing the page, one option is to send the syntax tree to the client. Now, every time
the user interacts with the page by changing it, the syntax tree is updated to reflect this
change. Then, the browser can regenerate the HTML in order to show the page again in it
changed state.

Because the syntax tree is a direct representation of wikitext, it can be converted back to raw
wikitext when saving the page.

The problem is, that the parser used at Wikipedia, is not based on a formal grammar. There
isn’t even any way to convert edited HTML back to wikitext! Because of the lack of such a
grammar, it is hard to reconstruct some kind of “reverse parser”. It turns out that it is even
very tough to reconstruct the grammar of the wikitext language.

browserserver

wikitext HTML

To convert the wikitext source code of a page into a web page, a parser is used. This parser
converts the text to HTML, which can be showed by the browser. If we want to edit this
document, we also have to be able to convert the page back to wikitext.

Saving the page in wikitext is vital, as many current volunteers for Wikipedia and other
projects are used to editing wikitext, so editing in this way must be preserved in order to
keep these existing volunteers happy.

Internally, the parser generates a syntax tree, for example by using a formal grammar. This is
a mathematically well-defined way of expressing how valid wikitext looks like, and is used by
computer scientists for decades, for example to define programming languages. The syntax
tree is a direct representation of the wikitext based on this formal grammar. This syntax tree
is then used to generate the HTML.

When editing the page, one option is to send the syntax tree to the client. Now, every time
the user interacts with the page by changing it, the syntax tree is updated to reflect this
change. Then, the browser can regenerate the HTML in order to show the page again in it
changed state.

Because the syntax tree is a direct representation of wikitext, it can be converted back to raw
wikitext when saving the page.

The problem is, that the parser used at Wikipedia, is not based on a formal grammar. There
isn’t even any way to convert edited HTML back to wikitext! Because of the lack of such a
grammar, it is hard to reconstruct some kind of “reverse parser”. It turns out that it is even
very tough to reconstruct the grammar of the wikitext language.

mw2html

mwlib

Mediawiki2HTML Machine

Mylyn WikiText

Bliki engine

FlexBisonParse

JAMWiki

Live Preview

Magnus' magic wiki-to-XML converter

Perl Wikipedia Toolkit

Tero-dump

Textile-J

TomeRaider export

Waikiki

Wikiwyg

wik2dict

wiki2pdf

WikiPDF

Wiki2XML

WikiOnCD

WikiPress Publisher

WikiTaxi

Wikifilter

WikiModel

Marker
WikiCloth

XWiki Kiwi

YaCy

MessageParser

Sweble

It turns out to be so tough, that more than 30 attempts at building a compatible parser have
been made, but none of these are 100% compatible with the parser used by Wikipedia. This is
a large problem, not only for reusing data on Wikipedia - which is why most of these parsers
have been made - but also for building a reliable visual editor.

http://wiki.wikipress.de/WikiPress:Wiki_Press_Publisher
http://wiki.wikipress.de/WikiPress:Wiki_Press_Publisher
http://www.mediawiki.org/wiki/Extension:UploadWizard/MessageParser
http://www.mediawiki.org/wiki/Extension:UploadWizard/MessageParser

my solution:
a compromise

My solution to this problem is a kind of a compromise. Users can still edit the page visually,
but I remove the translation back to wikitext. This means that users do have to edit raw
wikitext.

That looks like this. The page looks the same as when simply viewing it, only parts of the
page are colored blue. By clicking such an element, a popup is shown containing the original
wikitext of this element. The idea is that this is a lot less scary for new users, as there is only
a minimal amount of wikitext syntax in, for example, a single sentence. Also, the user can
directly manipulate the page, and instantly see how the changes in the wikitext reflect in the
actual page.

editing
visually...

but also with
wikitext...

My solution to this problem is a kind of a compromise. Users can still edit the page visually,
but I remove the translation back to wikitext. This means that users do have to edit raw
wikitext.

That looks like this. The page looks the same as when simply viewing it, only parts of the
page are colored blue. By clicking such an element, a popup is shown containing the original
wikitext of this element. The idea is that this is a lot less scary for new users, as there is only
a minimal amount of wikitext syntax in, for example, a single sentence. Also, the user can
directly manipulate the page, and instantly see how the changes in the wikitext reflect in the
actual page.

editing
visually...

but also with
wikitext...

My solution to this problem is a kind of a compromise. Users can still edit the page visually,
but I remove the translation back to wikitext. This means that users do have to edit raw
wikitext.

That looks like this. The page looks the same as when simply viewing it, only parts of the
page are colored blue. By clicking such an element, a popup is shown containing the original
wikitext of this element. The idea is that this is a lot less scary for new users, as there is only
a minimal amount of wikitext syntax in, for example, a single sentence. Also, the user can
directly manipulate the page, and instantly see how the changes in the wikitext reflect in the
actual page.

correspondence

wikitext HTML

Such an in-line editing interface as this one can be constructed without a formal grammar.
The only thing that we need, is a correspondence between certain elements in the final HTML
page, and the original wikitext. This means that we only need to know which pieces of
wikitext belong to a sentence, a paragraph, a reference, or a template.

A sentence. Another.
<ref>Reference</ref>
Sentence with a
[[link]].

{{this is a template}}

<p>
A sentence. Another.
[1]
Sentence with a link.
</p>

This is the template
output.

Such an in-line editing interface as this one can be constructed without a formal grammar.
The only thing that we need, is a correspondence between certain elements in the final HTML
page, and the original wikitext. This means that we only need to know which pieces of
wikitext belong to a sentence, a paragraph, a reference, or a template.

A sentence. Another.
<ref>Reference</ref>
Sentence with a
[[link]].

{{this is a template}}

(text positions are incorrect, too lazy to translate that from Dutch!)

For this, we use a trick. Before parsing the wikitext to HTML, we detect elements in the
wikitext. For that we don’t need a formal grammar, as we only need to know how these
elements look like in general. We only need to know where, say, a reference, starts and ends,
not what the exact syntax of such a reference is.

This detection gives us a list with start and end points in the wikitext, which we call a list of
markings. We assign a unique identifier to each marking. Then we add some text of our own
to the wikitext, at the exact positions of the markings. This added text contains the identifier
of the marking, and is chosen in such a way that it survives the parsing to HTML. In this
example XML tags are used, but in reality alphanumeric strings are often the best choice.

This creates the correspondence between the final output and the original wikitext, as we can
look up markings in the output by finding them in the list. This way, we know the exact
pieces of wikitext that belong to a certain piece of the output. For example, when editing the
template in this example, we can look up ‘template0’ in the list of markings, and find that in
the original wikitext it is located at position 67 to 90. We can now show this to the user, and
replace the original wikitext once the user edited it. Then we parse the page again, and show
the edited page to the user.

This means that every time the user makes a change, the page has to be reparsed at the
server. By leveraging the existing parser, we avoid the problem of having to create a new
parser ourselves!

A sentence. Another.
<ref>Reference</ref>
Sentence with a
[[link]].

{{this is a template}}

sentence0 : 0-8
sentence1 : 9-21
reference0 : 22-43
sentence2 : 44-65
paragraph0 : 0-65
template0 : 67-90

“markings”

(text positions are incorrect, too lazy to translate that from Dutch!)

For this, we use a trick. Before parsing the wikitext to HTML, we detect elements in the
wikitext. For that we don’t need a formal grammar, as we only need to know how these
elements look like in general. We only need to know where, say, a reference, starts and ends,
not what the exact syntax of such a reference is.

This detection gives us a list with start and end points in the wikitext, which we call a list of
markings. We assign a unique identifier to each marking. Then we add some text of our own
to the wikitext, at the exact positions of the markings. This added text contains the identifier
of the marking, and is chosen in such a way that it survives the parsing to HTML. In this
example XML tags are used, but in reality alphanumeric strings are often the best choice.

This creates the correspondence between the final output and the original wikitext, as we can
look up markings in the output by finding them in the list. This way, we know the exact
pieces of wikitext that belong to a certain piece of the output. For example, when editing the
template in this example, we can look up ‘template0’ in the list of markings, and find that in
the original wikitext it is located at position 67 to 90. We can now show this to the user, and
replace the original wikitext once the user edited it. Then we parse the page again, and show
the edited page to the user.

This means that every time the user makes a change, the page has to be reparsed at the
server. By leveraging the existing parser, we avoid the problem of having to create a new
parser ourselves!

sentence0 : 0-8
sentence1 : 9-21
reference0 : 22-43
sentence2 : 44-65
paragraph0 : 0-65
template0 : 67-90

“markings”

<paragraph0><sentence0>A sentence.</sentence0>
<sentence1>Another.</sentence1>
<reference0><ref>Reference</ref></reference0>
<sentence2>Sentence with a [[link]].
</sentence2></paragraph0>

<template0>{{this is a template}}</template0>

(text positions are incorrect, too lazy to translate that from Dutch!)

For this, we use a trick. Before parsing the wikitext to HTML, we detect elements in the
wikitext. For that we don’t need a formal grammar, as we only need to know how these
elements look like in general. We only need to know where, say, a reference, starts and ends,
not what the exact syntax of such a reference is.

This detection gives us a list with start and end points in the wikitext, which we call a list of
markings. We assign a unique identifier to each marking. Then we add some text of our own
to the wikitext, at the exact positions of the markings. This added text contains the identifier
of the marking, and is chosen in such a way that it survives the parsing to HTML. In this
example XML tags are used, but in reality alphanumeric strings are often the best choice.

This creates the correspondence between the final output and the original wikitext, as we can
look up markings in the output by finding them in the list. This way, we know the exact
pieces of wikitext that belong to a certain piece of the output. For example, when editing the
template in this example, we can look up ‘template0’ in the list of markings, and find that in
the original wikitext it is located at position 67 to 90. We can now show this to the user, and
replace the original wikitext once the user edited it. Then we parse the page again, and show
the edited page to the user.

This means that every time the user makes a change, the page has to be reparsed at the
server. By leveraging the existing parser, we avoid the problem of having to create a new
parser ourselves!

sentence0 : 0-8
sentence1 : 9-21
reference0 : 22-43
sentence2 : 44-65
paragraph0 : 0-65
template0 : 67-90

“markings”

<p><paragraph0><sentence0>A sentence.
</sentence0> <sentence1>Another.</sentence1>
<reference0>[1]</reference0>
<sentence2>Sentence with a link.</sentence2>
</paragraph0></p>

<template0>This is the template output.
</template0>

(text positions are incorrect, too lazy to translate that from Dutch!)

For this, we use a trick. Before parsing the wikitext to HTML, we detect elements in the
wikitext. For that we don’t need a formal grammar, as we only need to know how these
elements look like in general. We only need to know where, say, a reference, starts and ends,
not what the exact syntax of such a reference is.

This detection gives us a list with start and end points in the wikitext, which we call a list of
markings. We assign a unique identifier to each marking. Then we add some text of our own
to the wikitext, at the exact positions of the markings. This added text contains the identifier
of the marking, and is chosen in such a way that it survives the parsing to HTML. In this
example XML tags are used, but in reality alphanumeric strings are often the best choice.

This creates the correspondence between the final output and the original wikitext, as we can
look up markings in the output by finding them in the list. This way, we know the exact
pieces of wikitext that belong to a certain piece of the output. For example, when editing the
template in this example, we can look up ‘template0’ in the list of markings, and find that in
the original wikitext it is located at position 67 to 90. We can now show this to the user, and
replace the original wikitext once the user edited it. Then we parse the page again, and show
the edited page to the user.

This means that every time the user makes a change, the page has to be reparsed at the
server. By leveraging the existing parser, we avoid the problem of having to create a new
parser ourselves!

In my thesis we also look at optimizing this approach, for example by parsing only a part of
the page when the user makes an edit, instead of having to reparse the entire page again. We
also look at some problems with this algorithm, such as dependencies in the page and
misnesting of markings. However, this is outside the scope of this presentation.

Problem:
new users who click on references,

still see complex wikitext

Solution:
teaching users wikitext by making

different elements editable

How can we present this interface to the user in a convenient way? One problem that arises,
is that when a new user is editing a page, he or she can click a reference, which usually
contains a lot of complex syntax. Because of that, I created a learning method, where the
user starts with editing only sentences, and can then progress to lists, references, etc. By
doing this, the user will learn more and more complex wikitext. Also, specific instructions can
be given for each type of element. I call this interface the “functional editor” because of the
functional differentiation in edit modes.

“functional editor”

How can we present this interface to the user in a convenient way? One problem that arises,
is that when a new user is editing a page, he or she can click a reference, which usually
contains a lot of complex syntax. Because of that, I created a learning method, where the
user starts with editing only sentences, and can then progress to lists, references, etc. By
doing this, the user will learn more and more complex wikitext. Also, specific instructions can
be given for each type of element. I call this interface the “functional editor” because of the
functional differentiation in edit modes.

Problem:
users never learn editing more wikitext at once

Solution:
different teaching method, by progressing to larger blocks

One problem of the functional editor is that users can never edit larger pieces of wikitext.
Adding more edit modes would be a mess, so I created a different learning method. With this,
the user progresses from sentences to paragraphs, and then to sections or even the entire
page. This way, the user learns to be more comfortable with larger amounts of wikitext. A
problem, though, is that it is harder to give specific instructions. Because of the possibility to
edit entire blocks of wikitext, I call this the “block editor”.

“block editor”

One problem of the functional editor is that users can never edit larger pieces of wikitext.
Adding more edit modes would be a mess, so I created a different learning method. With this,
the user progresses from sentences to paragraphs, and then to sections or even the entire
page. This way, the user learns to be more comfortable with larger amounts of wikitext. A
problem, though, is that it is harder to give specific instructions. Because of the possibility to
edit entire blocks of wikitext, I call this the “block editor”.

Usability experiment with the functional editor,
the block editor, and the traditional editing interface

To evaluate whether or not in-line editing is better than one huge text box with wikitext, I
did a usability experiment. 10 students of Information Sciences took part in this experiment,
divided in 3 groups: one with the functional editor, one with the block editor, and one with
the large text box as seen on Wikipedia.

• Fixing a typo

•Adding a sentence

•Adding an external link

•Adding a reference

• Population count +1

Tasks with Wikipedia page “Groningen”

The students had 15 minutes to complete a few tasks on the Wikipedia page of the city of
“Groningen”. First they had to fix a typo, then they had to add a sentence, and then they had
to add an external link in the section at the bottom. As you can see, the tasks were of
increasing difficulty. They had to add a reference, which is in the text, but shows at the
bottom of the page, and finally they had to increase the population count of the city by one,
both in the text and in an info box.

The experiment was a so-called “Think aloud, talk aloud” experiment, which means that the
students had to explicitly say what they were doing, and what they were thinking about. This
has been recorded, together with the actions on the screen, and is available (in Dutch) on
Wikimedia Commons, an online media repository.

Here you can see a few screenshots. The first shows the original editor, the control group.
Then we see the functional editor, with the “Lists” edit mode selected. And finally we see the
block editor with the “Sections” edit mode selected.

The experiment was a so-called “Think aloud, talk aloud” experiment, which means that the
students had to explicitly say what they were doing, and what they were thinking about. This
has been recorded, together with the actions on the screen, and is available (in Dutch) on
Wikimedia Commons, an online media repository.

Here you can see a few screenshots. The first shows the original editor, the control group.
Then we see the functional editor, with the “Lists” edit mode selected. And finally we see the
block editor with the “Sections” edit mode selected.

The experiment was a so-called “Think aloud, talk aloud” experiment, which means that the
students had to explicitly say what they were doing, and what they were thinking about. This
has been recorded, together with the actions on the screen, and is available (in Dutch) on
Wikimedia Commons, an online media repository.

Here you can see a few screenshots. The first shows the original editor, the control group.
Then we see the functional editor, with the “Lists” edit mode selected. And finally we see the
block editor with the “Sections” edit mode selected.

• Edit modes don’t work!

•References are hard!

• In-line editing seems to be better, but
the difference is not really significant

Conclusions

After analysis of the videos, I came to a few conclusions. The first, most interesting
conclusion, is that edit modes do not work at all. Many users didn’t even notice them, and if
they did they used them incorrectly.

The second conclusion is that references are quite hard to understand, even for these well-
educated students. Many had a hard time figuring out how they worked, and ended up trying
to add them at the bottom of the page, rather than inside the text.

Finally, it seemed that in-line editing was an improvement, but it wasn’t quite a significant
difference. This may be due to the fact that these students were used to editing source code,
so in-line editing wouldn’t necessarily be better for them. Therefore, it’s hard to make a clear
statement on this.

• Edit modes don’t work!

“hybrid editor”

I found the first conclusion most interested, as apparently it didn’t work to have users learn
wikitext this way. Therefore, I decided to drop the idea of edit modes entirely. Instead, I
chose to have users edit all different elements at once. With sentences, references, and
templates, this is no problem, as they usually don’t overlap. Paragraphs and sections are
harder though, and finally I came to this solution: bars on the left side of the screen, that
make editing of larger blocks of wikitext possible. Because this interface is somewhat of a
hybrid between the functional editor and the block editor, I call this the “hybrid editor”.

GRNET

Usability experiment with the hybrid editor

When working on the hybrid editor, there was already some interest in this project, most
notably from the Wikimedia Foundation. But at a certain point, I was contacted by GRNET, a
Greek research institute, who were interested in devoting some time to improve in-line
editing. They did a second usability experiment, this time with the hybrid editor. The
experiment was about the same as my first experiment, only they didn’t use a control group,
unfortunately. However, they did have some more inexperienced users, which was an
improvement.

The videos have not been made public, unfortunately, but I can show you some fragments.
Transcripts of the videos are public, though. While this video plays, I can tell you the
conclusions.

First, the hybrid editor seemed to work a lot better than the other two interfaces with the edit
modes. Still, many times it took users a while to figure out that they could edit entire
paragraphs or sections using the bars at the left. When they figured this out, or when the
researches gave a small hint, they usually used it correctly.

Many problems are still inherent to wikitext, such as the problems with references we saw
earlier. There isn’t much we can do about that, although it would be possible to give specific
instructions when clicking certain elements.

Sometimes users tried to use the editor as a visual editor, for example by trying to select
text. This is inherent to this compromise: a real visual editor is probably better, but right now
this is a more feasible alternative for Wikipedia.

The video shows how many things go wrong, but the truth is that most tasks went alright.
Therefore, I think in-line editing is a real improvement for editing pages on Wikipedia, and
has some real potential to be extended to make the editing experience even better. It’s one
of the few alternatives for improving the usability of editing on the short term, and it’s now
up to the Wikimedia Foundation and the community to decide whether or not to implement it.

Thank you.

