
Swift at Wikimedia
Ben Hartshorne

Operations Engineer
<bhartshorne@wikimedia.org>

Media Storage

● All images, sounds,
and videos on all wikis

● All scaled versions of
all those images

● Currently One Big Box.
● It just keeps growing..

http://commons.wikimedia.org/wiki/Commons:
MIME_type_statistics

http://ganglia.wikimedia.org/latest/?
r=year&cs=&ce=&m=&c=Miscellaneous+pmtpa&h=ms7.pmtpa.
wmnet&tab=m&vn=&mc=2&z=medium&metric_group=ALLGROUPS

Alternatives to One Big Box(tm)

We considered a number of clustered storage
technologies*, but that was before my time.

Reasons to use Swift:
● We're using openstack for labs; sticking with

the same project is beneficial
● HTTP-accessible object store is a good

choice for media storage

* gluster, mogile, swift, etc. http://wikitech.wikimedia.org/view/Media_server/Distributed_File_Storage_choices

Implementation

How it used to work (thumbnails)

How it will work (not all that different)

Rewrite middleware

● New thumbnails are scaled on demand
● 404 handler tries to scale images

 that don't exist
● swift-proxy is built for this

○ in /etc/swift/proxy-server.conf:
[pipeline:main]
pipeline = rewrite healthcheck cache swauth proxy-server

● rewrite does two things
○ call back to get the scaled version of the image
○ write that scaled version into swift

Rewrite middleware

We're only half way through...

Integration with Mediawiki

● MW storage mechanisms abstracted to a
FileBackend class with multiple subclasses
○ local filesystem, swift, azure, S3, etc.

● All interactions with the FileBackend
implemented as appropriate for each
backend storage module

● Swift storage implemented using CloudFiles
○ https://github.com/rackspace/php-cloudfiles

● More detail on this part: Aaron Schulz

Throughput and Latency
Performance

Initial tests

● Tried to use apache bench
○ ab is restricted to one URL
○ abmulti can only handle 20k URLs
○ wound up writing my own

● geturls* showed we could get
○ 1300 reads per second
○ 120 writes per second
○ (full details at http://wikitech.wikimedia.org/view/Swift/Performance_Metrics#test_4)

* geturls code available at https://gerrit.wikimedia.org/r/gitweb?p=operations/software.git;a=tree;f=geturls;hb=HEAD

Effect of load on performance

● Under heavy read load
○ PUT and DELETE latency increases
○ GET latency decreases

Effect of node failure

● One (out of 5) storage nodes crashing
○ 2x read latency (from 100ms to 200ms)

○ 3x write latency (250ms to 750ms)

○ 2.5x delete latency (200ms to 500ms)

● No data (yet) on proxy nodes crashing

Open Performance Questions

● It's not clear where the bottleneck exists
○ Are we bound on CPU, memory or some

configuration parameter?
● how does scaling the number of proxies vs.

storage nodes affect performance?
● what are the impacts of various configuration

choices on performance?
○ eg. number of auditing and replication processes

● what is the effect of rebalancing the rings on
performance?

Open Performance Questions

● how long does it take before a newly added
node no longer affects performance? (~1wk)

● how do we measure container listing
latency?

Open problems

● Effect of one storage node crashing on
performance is too large

● Container listing latency is sometimes too
high

● Consistency problems with the rewrite
middleware
○ ETags help
○ Still have issues sometimes (cleaner script)

● It's difficult diagnosing problems with rewrite
○ natural effect of asynchronous code (eventlet)
○ eg. stack trace in proxy logs

Thanks!
Ben Hartshorne

Operations Engineer
<bhartshorne@wikimedia.org>

