) WIKIMEDIA

FOUNDATION

Logging
infrastructure

Filippo Giunchedi / Keith Herron

Status: final / 2018-09-27

Introduction

As systems become more distributed and complex so does the complexity of debugging.
Traditionally, applications logs are stored in plain text files on the same host the application is
running on. However, in a distributed system scenario, individually checking application logs
across multiple hosts is time consuming and error-prone. To address this the so-called ELK
stack (Elasticsearch, Logstash, Kibana) has been adopted at Wikimedia Foundation. Initially
spearheaded by Bryan Davis in 2015 as a grassroot project, the ELK stack (now renamed to
Elastic Stack) provides a single interface for browsing production logs, and has proven robust
enough to receive continued maintenance by the Search Platform team (and its predecessor,
Discovery). Starting FY 2018/2019 the SRE Infrastructure Foundations team has taken the

maintainer role for the logging infrastructure.

The current architecture of logging is composed of a mixture of physical and virtual hosts to
run all ELK components, Logstash is used to receive inbound logs through a variety of
protocols and formats: the most common are syslog with plain and JSON payloads, GELF and

"JSON lines" over UDP or TCP.

While this architecture has worked so far it has a number of shortcomings, notably most

protocols involved are unreliable and plain text. Also Logstash itself in our experience hasn’t

WIKIMEDIA FOUNDATION 1

) WIKIMEDIA

FOUNDATION

been very performant in handling sudden spikes of UDP traffic, resulting in dropped packets

(and thus logs). Also the current ELK deployment is present only in one datacenter (eqiad).

Goals

Design a logging infrastructure that will support Tech at least for the next three to five
years.

Address scalability concerns and volume of logs.

Ensure availability and reliability is greater than or equal to what we currently have.
Define a common and simple to use interface to the logging system for applications to

use.

Non-goals

It is also important to outline what goals are out of scope for this document, both for reasons of

brevity and focus of the document itself.

Design and agree on a minimum common schema for logs (related to fields explosion
problem mentioned later)

Decide on "admission criteria" for logs to be in Logstash and thus accessible to people
with an NDA signed.

Address multi tenancy (related to the above, i.e. different access levels for different

types of logs)

WIKIMEDIA FOUNDATION

) WIKIMEDIA

FOUNDATION

Overview

This section provides an overview of the major components and their relationships. We can

talk about logging pipeline, or a composition of stages.

Host
Local

R .
| Files App | Kafka Kibana

Consumption

Tail Sockat
. [e || i |
Ingestion Shipping Storage

Logging pipeline inside a single data center
Ingestion

A log entry is accepted into the pipeline and will make its way to storage. Protocols and
encoding vary between applications but can be abstracted into two broad categories:
structured and unstructured to indicate whether the log is (essentially) a key -> value map (e.g.
JSON logs) or opaque strings with limited metadata (i.e. syslog messages). Parsing logs into
structured fields is a generic approach and is typically applied to logs from third party or legacy

applications that don't support structured logging, for example network devices.

As of July 2018 ingestion happens by way of applications sending logs to Logstash in plain text

over the network, with the majority of traffic using unreliable transports (i.e. UDP).

WIKIMEDIA FOUNDATION 3

) WIKIMEDIA

FOUNDATION

To improve ingestion reliability, security and simplify logging requirements for applications a
local daemon is introduced. The daemon runs on every host and collects logs from

applications, preferably via syslog or standard output and error via the system’s journal.

Shipping

Once logs are ingested they need to be reliably shipped to storage. In the current infrastructure
shipping over the network often happens via best effort transports like UDP. While UDP offers
some benefits (low overhead) it is problematic because log events are often sent in the clear

and may be lost in flight.

The shipping stage is centered around a queue for reliable and secure shipping. A queue
decouples ingestion from storage, allowing producers and consumers to work at their own
pace and easily manage sudden surges in logs production. For example an Elasticsearch cluster
restart doesn’t result in lost logs but in a temporary backlog stored in Kafka. The log daemon
will talk directly to Kafka and produce JSON logs. Consumers will be in the backend, reading

from the queue and writing to storage.

We have chosen to use Kafka as it is the de-facto queue in production at Wikimedia Foundation

and it is well supported by the Elastic stack.

Storage
Elasticsearch is in use today for storing logs. It is something the Foundation has experience

with in production and has worked well so far. Currently retention is 30 days due to resource
constraints, mainly disk space. Historically, all logs have been funneled into a single index
prefix. This practice is being changed to segregate different types of logs into different prefixes
(e.g. syslog) and allows for example different retention policies for different indices. Using

multiple indices also helps with the so-called “fields explosion” problem described in T180051.
As of July 2018 per-log storage requirements are on average as follows: (no replication)

logstash ~850 bytes
logstash-syslog ~450 bytes

WIKIMEDIA FOUNDATION 4

https://phabricator.wikimedia.org/T180051

) WIKIMEDIA

FOUNDATION

When enrolling a new application these figures are useful to estimate the disk space
requirements. For example the Linux kernel emits about 450k log lines per day across the fleet,
resulting in 200MB per day required for storage (600MB, including 3x replication in a single

site).

Consumption
Consumption in this is case refers to systems and use cases that sit downstream of the logging

infrastructure. Further processing might be needed for the logs once they are shipped, to this
end it should be simple to tap into the logs stream for example to calculate time series, store

into HDFS for archival, browse via HTTP and so on.

Detailed design

Ingestion
The ingestion stage is by far the most important as far as applications are concerned: it is the

interface through which logs are accepted and will be eventually indexed and stored. The
proposal in this document is to have the following interfaces available: local syslog', standard
output/error and tailing of log files, both handled by a log daemon. The former being
preferred, and the latter to be used only in cases where logging to syslog proves to be more
complex. For applications running as daemon standard output and error will also be captured

by the system’s journal and sent as part of the application logs.

As of July 2018 rsyslog is deployed across the fleet by virtue of being the standard Debian log
daemon and carrying out multiple functions: send all syslog messages to centralized hosts?, act
as the central receiving server, and send applications logs (including MediaWiki) to Logstash
via syslog over UDP. Applications not using local syslog for ingestion send their logs directly to
Logstash using a variety of transports and encodings, whereas application logs written to disk

are not ingested into Logstash or central syslog hosts.

As of today the proposed interface is implemented already for applications using syslog;

applications sending logs directly to Logstash will need to be migrated either to syslog or log

! Over UNIX socket
2TLS encryption to be deployed to most of the fleet as per T136312

WIKIMEDIA FOUNDATION 5

https://phabricator.wikimedia.org/T136312

) WIKIMEDIA

FOUNDATION

files (and their rotation). Introducing a log daemon between the application and Logstash also
introduces various tradeoffs: on the plus side TLS is uniformly enforced by the log daemon
(instead of the application) and logging requirements are simplified. However, these benefits
come at the cost of increased overall complexity. Also note that due to the requirements
outlined below and the fact that the log daemon will run on all hosts Logstash isn’t a candidate

for this task.

The syslog interface involves writing a syslog-formatted message (according to rfc5424) to a
UNIX socket (the canonical location being /dev/log). The MSG field can contain a free-form
string in case of unstructured logs or a JSON object for the structured case. In the latter case
the JSON object will be parsed as such and sent to shipping, possibly augmented with metadata
generated by the log daemon. In case of unstructured data the whole message will be wrapped
into a JSON object with appropriate metadata and sent to shipping, the MSG field might

undergo some basic parsing as needed.

Using a UNIX socket provides advantages compared to a TCP/UDP connection: access control
happens based on the UID/GID of calling process, access to logging inside containers can
happen by bind-mounting the socket from outside the container instead of requiring
networking inside the container itself. One fundamental advantage is for the log daemon to
receive information from the kernel about the sending process, allowing the log daemon to

attach trusted metadata to log messages.

The log daemon will likely require per-application configuration, in the common case coming
from Puppet. In the case of applications running on Kubernetes the log daemon configuration

will come from config maps from Kubernetes itself.

WIKIMEDIA FOUNDATION 6

https://tools.ietf.org/html/rfc5424

WIKIMEDIA

FOUNDATION

Requirements for log daemon:

e Support multiple inputs: syslog, systemd journal, tailing log files

e Support output TLS, Kafka

e Rate limits for inputs

e Handling of long logs/events (e.g. stacktraces)

e Bonus: failover when specifying multiple outputs, support for json input, splitting logs

into fields, spool to local files if outputs are unavailable

Type Logs last 30d | Percent | Transport | Format Library
mediawiki 1,668,972,724 | 70.78% | udp json monolog
parsoid 266,472,759 | 11.30% | udp gelf service-runner
wdqgs 124,565,124 5.28% | udp jsontsyslog | logback
ores 117,729,989 4.99% | udp json wsgi's logging
elasticsearch 77,215,960 3.27% | udp gelf log4j
logback 61,349,489 2.60% | udp json logback
syslog 11,520,139 0.49% | udp syslog proprietary,
from network
devices
restbase 8,601,422 0.36% | udp gelf service-runner
cpjobqueue 4,507,883 0.19% | udp gelf service-runner
parsoid-tests 3,482,283 0.15% | udp gelf service-runner
hhvm 3,199,859 0.14% | udp syslog custom, via
rsyslog
webrequest 2,822,727 0.12% | tcp json via socat, from
oxygen.eqiad
citoid 1,417,667 0.06% | udp gelf service-runner
eventstreams 1,409,819 0.06% | udp gelf service-runner
cassandra 1,354,945 0.06% | udp json logback

Top 15 logs producer over the last 30 days as of August 2018 (excluding long tail of 0.2% traffic)

One fundamental part of the logging pipeline is turning unstructured logs into structured ones:

in other words converting logs from applications we don’t control into meaningful key / value

WIKIMEDIA FOUNDATION 7

) WIKIMEDIA

FOUNDATION

pairs. One powerful mechanism to accomplish this in Logstash is grok: a library of common

regular expressions to extract fields.

For applications using unstructured logs grok parsing and splitting will happen on the Logstash
backends when consuming from Kafka with the grok configuration managed by Puppet. To
ensure maintenance and safety against regressions the grok configuration should be tested,
ideally by continuous integration. To that end, applications should provide sample logs and
their structured counterpart. Deploying new configuration will cause no loss of availability

since Logstash supports hot-reloading configuration.

For applications already implementing their own parsing/splitting of logs (e.g. emitting logs
from varnishncsa) no changes are needed, logs can be sent to syslog with JSON as the

payload.

WIKIMEDIA FOUNDATION 8

WIKIMEDIA

FOUNDATIO

N

Shipping

ENE
N 4)

kafka

[LS backend]

elastic
search

e

-

kafka

[LS backend }

elastic
search

giad

/

Multi-datacenter configuration for the logging pipeline

The shipping stage consists of (in order):

1. Receiving logs over the network from the logging daemon

2. Producing logs to the Kafka queue

3. Consuming logs from the Kafka queue

4. Indexing and storage in Elasticsearch.

WIKIMEDIA FOUNDATION

) WIKIMEDIA

FOUNDATION

In this stage logs are shipped from each site to their closest Kafka queue (codfw or eqiad as of
August 2018). Usage of TLS is mandatory when communicating with a Kafka queue that lives on

a remote site (e.g. for caching sites).

As far as Kafka itself is concerned the production will happen on a dedicated topic per Kafka
queue. Log rates received by Logstash as of July 2018 are in the order of 1500/s and expected to
increase® as more applications are enrolled. The default Kafka topic retention should provide
ample buffering margins, with an estimated 4G/hour (replication and compression excluded)

required for Kafka storage.

Once logs are produced into the site-local Kafka queue they will be consumed by multiple
Logstash backend instances. Redundancy in this tier is achieved through the Logstash Kafka
plugin support of consumer groups. This enables other backend Logstash instances to take
over if a consumer fails for some reason. Furthermore, logs are replicated to two sites. Each
Logstash backend consumes from all other Kafka queue sites and writes to the local
Elasticsearch. This provides log replication to two sites while avoiding the complexity of high

latency multi-site clustering within Elasticsearch.

® Exact increase is unknown, though even a 10x increase shouldn’t cause problems for Kafka.

WIKIMEDIA FOUNDATION 10

\») WIKIMEDIA

FOUNDATION

Storage
Currently ELK data is stored on a 3 host bare metal Elasticsearch cluster hosted in the eqiad

datacenter. The disk capacity of each Elasticsearch host ranges from 2.7TB to 3.4TB. Current
utilization is at approximately 30% with ~865GB stored on each node (including Elasticsearch

shard replication)

shards disk.indices disk.used disk.avail disk.total disk.percent host ip node
78 867.6gb 868gb 2.6tb 3.4tb 24 10.64.48.109 10.64.48.109 logstash1006
78 864.6gb 865gb 1.8tb 2.7tb 31 10.64.16.185 10.64.16.185 logstash1005
79 864.3gb 864.7gb 1.8tb 2.7tb 31 10.64.0.162 10.64.0.162 logstash1004

In order to provide scale out capability in a seamless way, and because the number of differing
hardware configurations backing Elasticsearch will continue to grow over time, we will
introduce node metadata tags within Elasticsearch to differentiate hardware classes. We'll

begin with two tags:

e SSD - High performance SSD backed hosts. Use case: indexing
e HDD - Medium performance rotating disk backed hosts. Use case: online search,

longer-term storage

In order to make use of these tags we will modify the logstash Elasticsearch template with a
routing allocation requirement that directs newly created indices to the currently appropriate
storage type for indexing. Then, as indices age, a curator job will alter the allocation. This

instructs Elasticsearch to (seamlessly and online) migrate data shards to another storage class.
The life of a logstash index:

e Initial index creation occurs on SSD indexing tier

e After 7 days index is moved to HDD online search tier

Since identical data will be stored in both eqiad and codfw, we plan to support depooling of a
single site for maintenance. Likewise, we plan to support resynchronization after an outage

resulting in ELK data loss at a single site.

WIKIMEDIA FOUNDATION n

\») WIKIMEDIA

FOUNDATION

High level site depooling procedure:

1. Reindex .kibana index from the active cluster into the to-be-promoted cluster via
Elasticsearch remote reindex

2. Redirect Kibana traffic to the desired Kibana frontend (via varnish puppet commit)

3. Redirect log daemon traffic to the desired Kafka cluster hosted in the to-be-promoted
site (ideally automatically handled by logging daemon, alternatively performed

manually via dns)
High level data recovery/re-synchronization procedure:

1. Depool affected site (see above)

2. Address issue(s) impacting availability at affected site

3. Ensure service is restored at affected site and allow affected site to ingest data for 24
hours while remaining depooled.

4. Recover any indices with data gaps from the working site using the reindex from
remote api

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html#rei

ndex-from-remote

Consumption
There are two high level categories of ELK consumers -- Tooling and users.

Users consume log data through Kibana. Kibana is a web interface that provides log search,
visualizations (charts, graphs, etc.) and dashboarding functionality (groupings of saved
searches and visualizations). Kibana runs in a HA configuration, and speaks directly to the
Elasticsearch cluster. We currently provide Kibana access to users with membership to LDAP
groups ops, nda and wmf. There is no plan at the present time to modify this (see non-goals

section)

Tooling generally consumes Logstash log data directly from Elasticsearch. Because of this it is
important that we prepare to provide connectivity for tools to access the API of the
Elasticsearch cluster storing ELK log data. There are no plans in this document to introduce

specific new tools that consume log data, though such tools would be useful. As an example of

WIKIMEDIA FOUNDATION 12

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html#reindex-from-remote
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html#reindex-from-remote

) WIKIMEDIA

FOUNDATION

the type of tool being described is Elastalert. Elastalert is software which performs queries
against Logstash data in Elasticsearch on a regular interval and generates alerts based on the
output. Another example is go get my logs used to provide a familiar command line interface to

fetching logs.

Alternatives
The main interface to logging is writing JSON messages to Kafka, with local log daemon coming

second. Applications able to write JSON to Kafka are encouraged to do so; communications to
Kafka are required to use TLS when crossing datacenter boundaries and TLS is recommended

when a Kafka cluster exists inside the datacenter.

For applications that can’t write to Kafka, sending JSON with syslog header to the log daemon
over UNIX socket is the recommended alternative for structured messages. For applications
running as daemons standard output and error will be also captured and sent as part of the

application’s logs.

For third party applications that don’t support structured logging, unstructured syslog is the
recommended interface. Such messages will be regarded as generic syslog messages and sent
as JSON to Kafka by the log daemon. Further splitting/processing can happen when Logstash

backend consumes from Kafka and before storage.

WIKIMEDIA FOUNDATION 13

https://github.com/bd808/ggml

) WIKIMEDIA

FOUNDATION

Cross cutting concerns

This section outlines considerations common to all services SRE operates, as such are not

included in the main design.

Privacy and security

TLS across the board for communications over the network
o Logs daemon can use the host certificate from puppet
o For server certs we can use certgen-issued certs
When ingestion is local we can ask the kernel for the UID of the running process and
attach that to the log
For the future: SIEM, log sealing, auditing, etc

Observability

Most, ideally all, components have Prometheus metrics exposing the “golden signals”
below

Latency time from log ingestion to being able to query the ingested log

Traffic logs/s and bytes/s (ingested/shipped/stored), number of Elasticsearch queries
running

Errors logs/s dropped (not ingested/shipped/stored), Elasticsearch cluster status
(red/yellow)

Saturation queues utilization (both internal e.g. to Logstash or external like Kafka)
Grafana dashboards for the whole logging pipeline (via four golden signals)

Alerts for thresholds based on golden signals

Backups

Backing up log data is not being considered in this document, given the retention guidelines

and the significant size requirements. Kibana dashboards will need periodic backups, likely via

elasticsearch-dump and storage in WMF’s backup infrastructure.

Scalability

We should be able to seamlessly add capacity at each layer with no downtime, and without

requiring major config changes.

WIKIMEDIA FOUNDATION

) WIKIMEDIA

FOUNDATION

We should prepare for differing hardware classes (e.g. high performance indexing and lower

performance archival) and ensure we have the ability to seamlessly migrate between them.

We should document estimated upper boundaries at each layer and set up mechanisms to

provide actionable warnings with adequate advance notice.

Availability
One of the main tenets of SREs is achieving the expected availability, and the feature #1 of any

system is that it works.

Ingestion availability depends on the local log daemon working as intended. Namely the
daemon must be running, accepting logs from local applications and tailing log files. A
non-running daemon will cause unavailability for applications using syslog and no
unavailability for applications writing to log files. When the log daemon is down particular
care must be taken to ensure applications gracefully handle blocking writes to syslog. Kafka is
involved in received collected logs over the network: its availability depends on the network

and hosts running Kafka itself.

Maintenance to Kafka should result in no loss of availability as long as enough brokers are

available.

Shipping involves producing to the closest datacenter Kafka queue, and Logstash backend
consuming from all queues. Upon Kafka unavailability the producers should spool logs locally
until Kafka is available again, and consumers will pick up where they left off. In other words
Kafka unavailability resulting in a slow down of the logging pipeline with properly-behaved

producers.

Storage availability is bound to Elasticsearch availability. While Elasticsearch clusters are
designed to be highly available certain operations like major version upgrades require a full
cluster restart. When it isn’t possible to write to Elasticsearch the Kafka consumers can either

spool locally or stop consuming from Kafka, and resume once Kafka is available again.

Consumption is equally bound to Elasticsearch: upon unavailability of Elasticsearch

consumption (e.g. Kibana) can’t work. To mitigate this kind of unavailability and assuming

WIKIMEDIA FOUNDATION 15

\») WIKIMEDIA

FOUNDATION

independent Elasticsearch clusters fail independently, consumption can be switched to an

available Elasticsearch cluster.

Kibana currently is hosted on a single VM, though its availability can be increased with little
(same datacenter) or moderate (different datacenters) effort. For example adding more VMs in

diverse datacenters and making sure the dashboards storage is replicated.

Maintenance
We should be able to take down individual components for maintenance without significant

impact overall.

Ingestion maintenance involves upgrading the logs daemon, causing temporary unavailability

for applications sending logs to the daemon, and no unavailability when tailing log files.

Shipping Kafka maintenance should cause no lost logs; brokers can be rebooted individually
and clients will fail over to other brokers. Kafka maintenance should result in no lost logs; the
log daemon will spool logs locally and retry shipment once Kafka comes back up. Taking down
Logstash backends one at a time will cause no problem because other Logstash backends will

take over consuming from Kafka.

Storage Elasticsearch maintenance or brief unavailability should cause no lost logs, Kafka

consumers will stop and resume writing logs when Elasticsearch is available again.

Consumption maintenance shouldn’t impact the infrastructure in any way because it sits on
the read path. For stateless cases like Kibana talking to the same Elasticsearch cluster

replication on multiple hosts is trivial.

Deprecation
This section outlines some scenarios for deprecation of components used by the logging

pipeline, the rationale being that when setting up a new system it is also important to consider

how to tear such system down.

Ingestion deprecation means swapping the logs daemon with another one, the daemon itself is

stateless and thus deprecation should be straightforward.

WIKIMEDIA FOUNDATION 16

) WIKIMEDIA

FOUNDATION

Shipping deprecation as far as Kafka is concerned is possible to replace with a similar queue,
though unlikely to happen since Kafka has proven reliable in production. Replacing Logstash is
also possible because any Kafka consumer will do. Parsing unstructured logs into structured
ones can also be deprecated, most likely moved to the log daemon and thereby distributing the
load from Logstash backend onto individual hosts. Another possibility for parsing unstructured
logs is so-called stream processing: in this case consuming from Kafka, transform/parse as

needed and produce back to Kafka.

Storage deprecation will entail changing Elasticsearch for something else with similar

functionality, while possible it is fair to say it is pretty unlikely to happen in the next five years.

Consumption specifically Kibana, the same considerations for Elasticsearch apply: possible

but unlikely at least for the next five years.

WIKIMEDIA FOUNDATION 17

