
Backing up Wikipedia
Databases

Jaime Crespo & Manuel Aróstegui

Data Persistence
 Subteam,

Site Reliability Engineering

Contents
1) Existing Environment

2) Design

3) Implementation Details

4) Results

5) Planned Work & Lessons Learned

What we are going to mention in this talk is our experience and our learnings -

this is what worked for our environment at the time. Your needs and

requirements may be different.

Existing Environment

Why
backups?

● We use RAID 10, read replicas,

multiple DCs for High Availability

● Public XMLDumps

● But what about...

○ Checking a concrete record back

in time?

○ Application bug changing data

on all servers?

○ Operator mistake?

○ Abuse of external user?

https://meta.wikimedia.org/wiki/Data_dumps

Database
context

(mid-2019)

● Aside from the English Wikipedia,

800 other wikis in 300 languages

● ~550 TB of data of relational data

over 24+ replica groups

● ~60 TB of those is unique data, of

those:

○ ~24TB of compressed mediawiki

insert-only content

○ The rest is metadata, local

content, misc services, disk

cache, analytics, backups, ...

Brief description
of our

environment

● Self hosted on bare metal

● Only open source software

● 2 DCs holding data - at the moment,

one active and one passive

● Normal replication topology with

several intermediate masters
https://dbtree.wikimedia.org/

https://dbtree.wikimedia.org/

We were
using only
mysqldump

○ Coordinates were not being saved

○ No good monitoring in place,
failures could be missed

○ Single file with the whole
database (100GB+ compressed
file)

○ Slow to backup and recover

Backup hosts
were different
from production

● Used TokuDB for compression and to
maximize disk space resources whilst
production runs InnoDB

● Running multisource replication
○ It could not be used for an

automatic provisioning system

Hardware
needed to be
refreshed

● Hardware was old, and
prone to suffer issues

● More disk and IOPS
needed

● Lack of proper DC
redundancy

Design

New backup
system

requirements

● For simplicity, we started with full
backups only

● Cross-dc redundancy

● Scale over several instances for

flexibility and performance

● Aiming for 30 minute TTR

● Row granularity

● 90 day retention

● Fully automated creation and recovery

Storage

● Bacula is used as cold, long term

storage, primarily because it’s the tool

shared with the rest of the

infrastructure backups

● Data deduplication was considered but

no good solution that fit our needs

○ Space saving at application side,

InnoDB compression and

parallel gzip were considered

good enough

Logical
Backups vs
Snapshots

● Logical backups provide great

flexibility, small size, good

compatibility, and less prone to

data-corruption

● Logical backups are fast to generate

but slow to recover

● Snapshots are faster to recover, but

take more space and are less flexible

● We decided to do both!

○ Snapshots will be used for full

disaster recovery, and

provisioning

○ Dumps to be used for long term

archival and small-scale

recoveries

* Image from Old El Paso
commercial own by
General Mills, Inc
Use under fair use

mysqlpump
vs

mysqldump
vs

mydumper

● mysqlpump discarded early due to

incompatibilities (mariadb GTID)

● mysqldump is the standard tool, but

required hacks to make it parallel, too

slow to recover

● mydumper has good MariaDB support,

integrated compression, a flexible

dump format and is fast and

multithreaded Our
 ch

oic
e

LVM vs
Xtrabackup vs

Cold Backup vs
Delayed slave (I)

● LVM

○ Disk-efficient (especially for

multiple copies)

○ Fast to recover if kept locally

○ Requires dedicated partition

○ Needs to be done locally and then

moved remotely to be stored

LVM vs
Xtrabackup vs

Cold Backup vs
Delayed slave (II)

● xtrabackup*

○ --prepare

○ Can be piped through network

○ More resources on generation

○ xtrabackup works at innodb level

and lvm at filesystem level

* We use mariabackup as xtrabackup isn’t supported for

MariaDB

Our
 ch

oic
e

LVM vs
Xtrabackup vs

Cold Backup vs
Delayed slave

(III)

● Cold backups

○ Requires stopping MySQL

○ Consistent on a file level wise

○ Combined with LVM can give

good results

LVM vs
Xtrabackup vs

Cold Backup vs
Delayed slave

(IV)

● Delayed slave

○ Faster recovery: for a given time

period

○ We used to have it and had bad

experiences

○ Not great for provisioning new

hosts

Provisioning
& testing

● Backups will not be just tested on a lab

○ New hosts will be provisioned

from the existing backups

● Dedicated backup testing hosts:

○ Replication will automatically

validate most “live data”

○ We already have production

row-by-row data comparison

Implementation
Details

Hardware

● 5 dedicated replicas with 2 mysql

instances each (consolidation)

● 2 provisioning hosts (SSDs + HDs)

● 1 new bacula host

○ 1 disk array dedicated for

databases

● 1 test host (same spec as regular

replicas)

Per Datacenter

Development

● Python 3 for gluing underlying

applications

● WMF-specific development and

deployment is done though puppet so

not a portable “product”

○ WMFMariaDBpy:
https://phabricator.wikimedia.org/diffusion/OSMD/

○ Our Puppet:
https://phabricator.wikimedia.org/source/operations-puppet/

● Very easy to add new backup methods

https://phabricator.wikimedia.org/diffusion/OSMD/
https://phabricator.wikimedia.org/source/operations-puppet/

class NullBackup:

config = dict()

def __init__(self, config, backup):
 """
 Initialize commands
 """
 self.config = config
 self.backup = backup
 self.logger = backup.logger

def get_backup_cmd(self, backup_dir):
 """
 Return list with binary and options to execute to generate a new backup at backup_dir
 """
 return '/bin/true'

def get_prepare_cmd(self, backup_dir):
 """
 Return list with binary and options to execute to prepare an existing backup. Return
 none if prepare is not necessary (nothing will be executed in that case).
 """
 return ''

Configuration

root@cumin1001:~$ cat /etc/mysql/backups.cnf
type: snapshot
rotate: True
retention: 4
compress: True
archive: False
statistics:
 host: db1115.eqiad.wmnet
 database: zarcillo
sections:
 s1:
 host: db1139.eqiad.wmnet
 port: 3311
 destination: dbprov1002.eqiad.wmnet
 stop_slave: True
 order: 2
 s2:
 host: db1095.eqiad.wmnet
 port: 3312
 destination: dbprov1002.eqiad.wmnet
 order: 4

● Backups are taken from

dedicated replicas for

convenience

● A cron job starts the backup

on the provisioning servers,

running mydumper

● Several threads used to dump

in parallel, result is

automatically compressed per

table

● Snapshots have to be

coordinated remotely as

it requires file transfer

● Xtrabackup installed on

the source db is used to

prevent incompatibilities

● Content is piped directly

through network to avoid

local disk write step

root@cumin1001:~$ transfer.py --help
usage: transfer.py [-h] [--port PORT] [--type {file,xtrabackup,decompress}]
 [--compress | --no-compress] [--encrypt | --no-encrypt]
 [--checksum | --no-checksum] [--stop-slave]
 source target [target ...]
positional arguments:
 source [...]
 target [...]
optional arguments:
 -h, --help show this help message and exit
 --port PORT Port used for netcat listening on the source. By default, 4444,
but it must be changed if more
 than 1 transfer to the same host happen at the same time, or the
second copy will fail top open
 the socket again. This port has its firewall disabled during
transfer automatically with an extra
 iptables rule.
 --type {file,xtrabackup,decompress}
 File: regular file or directory recursive copy
 xtrabackup: runs mariabackup on source
 --compress Use pigz to compress stream using gzip format (ignored on
decompress mode)
 --no-compress Do not use compression on streaming
 --encrypt Enable compression using openssl and algorithm chacha20 (default)
 --no-encrypt Disable compression- send data using an unencrypted stream
 --checksum Generate a checksum of files before transmission which will be
used for checking integrity after
 transfer finishes. It only works for file transfers, as there is
no good way to checksum a running
 mysql instance or a tar.gz
 --no-checksum Disable checksums
 --stop-slave Only relevant if on xtrabackup mode: attempt to stop slave on the
mysql instance before running
 xtrabackup, and start slave after it completes to try to speed up
backup by preventing many changes
 queued on the xtrabackup_log. By default, it doesn't try to stop
replication.

● A wrapper
utility to
transfer files,
precompressed
tarballs and
piping
xtrabackup
output

● Postprocessing both types of

backups involves:

● --prepare

● consolidation of files

● metadata gathering

● compression

● validation

● Main monitoring is done

from the backup metadata

database

root@dbprov2001:/srv$ tree
├── backups
│ ├── dumps
│ │ ├── archive
...
│ │ ├── latest
│ │ │ ├── dump.m2.2019-09-10--00-00-01
│ │ │ │ ├── debmonitor.auth_group_permissions-schema.sql.gz
│ │ │ │ ├── debmonitor.auth_group-schema.sql.gz
...
│ │ │ │ ├── wikidatawiki.wbt_item_terms.00000.sql.gz
│ │ │ │ ├── wikidatawiki.wbt_item_terms.00001.sql.gz
│ │ │ │ ├── wikidatawiki.wbt_item_terms.00002.sql.gz
│ │ │ ├── dump.x1.2019-09-10--00-00-01
│ │ │ │ ├── 10wikipedia.gz.tar
│ │ │ │ ├── aawikibooks.gz.tar
│ │ │ │ ├── aawiki.gz.tar
│ │ │ │ ├── aawiktionary.gz.tar
│ │ │ │ ├── abwiki.gz.tar
│ │ └── ongoing
│ └── snapshots
│ ├── archive
│ │ ├── snapshot.m5.2019-05-07--20-00-02.tar.gz
│ │ ├── snapshot.s4.2019-09-24--21-45-51.tar.gz
│ │ ├── snapshot.s5.2019-09-25--01-08-39.tar.gz
│ │ ├── snapshot.s6.2019-09-25--02-55-21.tar.gz
│ │ ├── snapshot.s8.2019-09-24--19-00-01.tar.gz
│ │ └── snapshot.x1.2019-09-25--06-52-57.tar.gz
│ ├── latest
│ └── ongoing

Large tables are split into
several files

Small databases are consolidated
into one file

At least 2 (normally 3) copies are
kept of each backup from different
timestamps

Backup
validation &
monitoring

● Backup failure cannot be 100% avoided

● Once backups are done, a few checks are

performed:

○ Did the process exit with an error?

○ Any errors logged?

○ Are expected final files present?

● Alerting is based on metadata heuristics:

○ A correct backup for the section,

type and datacenter exists?

○ With a size larger than X bytes?

○ Newer than X days?

db1115[zarcillo]> SELECT * FROM backups WHERE [..]\G
******************** 1. row ********************
 id: 2921
 name: dump.s1.2019-09-24--03-27-38
 status: finished
 source: db1139.eqiad.wmnet:3311
 host: dbprov1002.eqiad.wmnet
 type: dump
 section: s1
start_date: 2019-09-24 03:27:38
 end_date: 2019-09-24 05:00:01
total_size: 159537777604
******************** 2. row ********************
 id: 1310
 name: snapshot.s1.2019-05-09--20-38-02
 status: failed
 source: db2097.codfw.wmnet:3311
 host: dbprov2002.codfw.wmnet
 type: snapshot
 section: s1
start_date: 2019-05-09 22:10:53
 end_date: NULL
total_size: NULL

2 rows in set (0.00 sec)

db1115[zarcillo]> SELECT * FROM backup_files WHERE [..]
*********************** 1. row ***********************
 backup_id: 2930
 file_path: enwiki
 file_name: recentchanges.frm
 size: 8412
 file_date: 2019-09-24 20:26:18
backup_object_id: NULL
*********************** 2. row ***********************
 backup_id: 2930
 file_path: enwiki
 file_name: recentchanges.ibd
 size: 3573547008
 file_date: 2019-09-24 20:35:25
backup_object_id: NULL
*********************** 3. row ***********************
 backup_id: 2930
 file_path: enwiki
 file_name: revision.frm
 size: 4926
 file_date: 2019-09-24 20:26:21
backup_object_id: NULL
*********************** 4. row ***********************
 backup_id: 2930
 file_path: enwiki
 file_name: revision.ibd
 size: 186025771008
 file_date: 2019-09-24 20:35:25
backup_object_id: NULL

● Regular day-to-day

provisioning is done with

the exact same workflow

● Recovery can be done from

logical backups or

snapshots, in both hot and

cold storage

root@dbprov2002:~$ recover_dump.py --help
usage: recover_dump.py [-h] [--host HOST] [--port PORT]
[--threads THREADS]
 [--user USER] [--password PASSWORD]
[--socket SOCKET]
 [--database DATABASE] [--replicate]
 section

Recover a logical backup

positional arguments:
 section Section name or absolute path of the
directory to
 recover("s3",
"/srv/backups/archive/dump.s3.2022-11-12
 --19-05-35")

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host to recover to
 --port PORT Port to recover to
 --threads THREADS Maximum number of threads to use for
recovery
 --user USER User to connect for recovery
 --password PASSWORD Password to recover
 --socket SOCKET Socket to recover to
 --database DATABASE Only recover this database
 --replicate Enable binlog on import, for imports
to a master that
 have to be replicated (but makes
load slower).By
 default, binlog writes are disabled.

● A myloader wrapper simplifies
the recovery

● .sql.gz files per table are easy to
process and recover individually

● Binlogs obtained directly

from the master with

mysqlbinlog and archived

on provisioning servers for

point in time recovery

● Not implemented yet

● Content databases are special

because they are append-only

● Incremental logical backups

are sent to cold storage

● Not yet implemented

Results

Total
dataset
backed up
& retention
policy

● Per run, 18 TB of metadata and misc

source hosts + 15 TB of read write

content

● Weekly 1.4 TB of dumps after

compression

○ Also 12 TB of content dumps

● 3 latest dumps are stored on hot

storage

○ Latest 3 months (~12 copies) on

cold

● 2.7 TB of snapshots every other day

○ Retention of 1 week (3 copies)

Per Datacenter

Available
disk &

Example Size

● Total database backup storage

available at the moment (hot + cold):

75 TB

● Example: English Wikipedia metadata

(enwiki)- Sept 2019

○ Production host: 2.0 TB

○ Backup source: 1.3TB (no binlogs,

InnoDB compressed)

○ Mydumper, compressed: 149 GB

○ Snapshot, compressed: 371GB

Per Datacenter

Time to
backup

● 4 dumps + 2 snapshot jobs are processed

in parallel on each datacenter

● Total backup time:

○ All dumps: ~7 hours

○ All snapshots: ~12 hours

● enwiki (2TB) takes:

○ 1h25m for mydumper + 10m for

post-processing

○ 1h20m for xtrabackup transfer +

1h20m for post-processing

● Replication is stopped on replicas with

high write throughput

Time to
Recovery

● The fastest time our enwiki database

(2TB) can be recovered from the

provisioning host is 12m30s:

○ Not all steps have been

automated yet (not real TTR)

○ Requires 10Gbit

○ Requires resources (network,

cpu) not always available

○ Large number of small files has

extra overhead

● Realistically: 30m-60m for a full

cluster

Planned Work &
Lessons Learned

Coming
next...

● Fully automated provisioning & testing

cycle

● Improve monitoring

● Fully automated content backups

● Automated point in time recovery

● Research incrementals methods

● Offline backups

Lessons
Learned

● Parallelize (and redundancy)

● Get Data about your Backups

● Plan, but be open to changes

● Think about recovery first; design your

backups for it

● Have a plan B, plan C, ...
and even a plan D...

* Screenshot of
article by Chris

Taylor from
Mashable:

https://mashable.co
m/article/moon-libra
ry-beresheet-crash-

wikipedia
Used under fair use

https://mashable.com/article/moon-library-beresheet-crash-wikipedia/?europe=true
https://mashable.com/article/moon-library-beresheet-crash-wikipedia/?europe=true
https://mashable.com/article/moon-library-beresheet-crash-wikipedia/?europe=true
https://mashable.com/article/moon-library-beresheet-crash-wikipedia/?europe=true

Author: Jaime Crespo & Manuel Arostegui, Wikimedia Foundation
License: CC-BY-SA-3.0 (except where noted)

Thank you!
Special thanks: Alex, Ariel, Effie, Mark, Rubén, WMF SRE Team and Percona Live Committee

Author: Jaime Crespo & Manuel Arostegui, Wikimedia Foundation
License: CC-BY-SA-3.0 (except where noted)

Please rate us!

We are hiring:
https://wikimediafoundation.org/abo

ut/jobs/

https://event.crowdcompass.com/ple2019/activity/6wOrW5Rh1f
https://wikimediafoundation.org/about/jobs/
https://wikimediafoundation.org/about/jobs/

