
Table of contents

Introduction! 2

The big picture ! 2

Content delivery network! 4

Cacheable content ! 5

Cache efficiency! 6

CDN Configuration files! 6

CDN Notes! 8

Application! 9

Components! 9

Caching! 11

Profiling! 13

Media storage! 15

Database! 16

Database balancing! 16

Database API! 19

Database servers! 21

External Storage! 22

Database queries! 23

Splitting! 24

Data itself! 25

Compression! 27

Search! 28

LVS: Load balancer! 29

Administration! 30

NFS! 30

dsh! 30

Nagios! 30

Ganglia! 30

People! 30

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 1

Introduction
Started as Perl CGI script running on single server in 2001, site has grown into distributed
platform, containing multiple technologies, all of them open. The principle of openness
forced all operation to use free & open-source software only. Having commercial alterna-
tives out of question, Wikipedia had the challenging task to build efficient platform of freely
available components.

Wikipedia"s primary aim is to provide a platform for building collaborative compendium of
knowledge. Due to different kind of funding (it is mostly donation driven), performance and
efficiency has been prioritized above high availability or security of operation.

At the moment there"re six people (some of them recently hired) actively working on inter-
nal platform, though there"re few active developers who do contribute to the open-source
code-base of application.

The Wikipedia technology is in constant evolution, information in this document may be
outdated and not reflecting reality anymore.

The big picture
Generally, it is extended LAMP environment - core components, front to back, are:

• Linux - operating system (Fedora, Ubuntu)

• PowerDNS - geo-based request distribution

• LVS - used for distributing requests to cache and application servers

• Squid - content acceleration and distribution

• lighttpd - static file serving

• Apache - application HTTP server

• PHP5 - Core language

• MediaWiki - main application

• Lucene, Mono - search

• Memcached - various object caching

Many of the components have to be extended to have efficient communication with each
other, what tends to be major engineering work in LAMP environments.

This document describes most important parts of gluing everything together - as well as
required adjustments to remove performance hotspots and improve scalability.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 2

Content acceleration
& distribution network

People & Browsers

Application

Thumbs service

Media storage

Core databaseAuxiliary databases

Search

Object cache

Management

As application tends to be most resource hungry part of the system, every component is
built to be semi-independent from it, so that less interference would happen between mul-
tiple tiers when a request is served.

The most distinct separation is media serving, which can happen without accessing any
PHP/Apache code segments.

Other services, like search, still have to be served by application (to apply skin, settings
and content transformations).

The major component, often overlooked in designs, is how every user (and his agent)
treats content, connections, protocols and time.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 3

Content delivery network
!

People & Browsers

PowerDNS
(geo-distribution)

Regional datacenter

Regional text cache cluster

LVS

CARP Squid

Cache Squid

Regional media cache cluster

LVS

CARP Squid

Cache Squid

Primary datacenter

Regional text cache cluster

LVS

CARP Squid

Cache Squid

Regional media cache cluster

LVS

CARP Squid

Cache Squid

Application

Media storagePurge multicast

Content delivery network is the #holy grail" of performance for Wikipedia. Most of pages
(except for logged in users) end up generated in such a manner, where both caching and
invalidating the content is fairly trivial.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 4

Cacheable content
Key rules for such setup are:

• There"re no unaccounted dynamic bits on a content page (if there are, the changes are
not invalidated in cache layer, hence causing stale data)

• Every content page has strict naming, with single URI to the file (good for having uni-
form linking and not wasting memory on dupe cache entries)

• Caching is application-controlled (via headers) (simplifies configuration, more efficient
selection of what can and cannot be cached)

• Content purging is completely application-driven (the amount of unpredictable changes
in unpredictable areas would render lots of stale data otherwise)

• Application must support lightweight revalidations (If-Modified-Since requests)

Example of random page response header en-route from application to CDN:

HTTP/1.1 200 OK
...
Vary: Accept-Encoding,Cookie
Cache-Control: s-maxage=2678400, must-revalidate, max-age=0
Last-modified: Tue, 03 Apr 2007 17:50:55 GMT

Squid would cache such request for a month, unless purged or user has a cookie.
The request for the very same page to CDN would give slightly different cache-control
headers:
HTTP/1.0 200 OK
Date: Tue, 03 Apr 2007 19:36:07 GMT
...
Vary: Accept-Encoding,Cookie
Cache-Control: private, s-maxage=0, max-age=0, must-revalidate
Last-Modified: Tue, 03 Apr 2007 17:50:55 GMT
...
Age: 53020

All non-managed caches must revalidate every request (that usually consists of sending
IMS request to upstream), though ones in CDN have explicit purges coming in.

Due to current limitations in Squid only complete headers can be replaced, not their por-
tions, so all external requests get #private" Cache-Control bit, which forbids the caching.
Ideally, this should be fixed, but requires refactoring of that particular Squid code (or up-
grade to Squid3...)

We had to extend Squid to handle HTCP purges properly, and also multicast is employed -
every invalidation is sent out from application once, but then is delivered to every managed
cache server.

Until recently every CDN datacenter used to have just single tier of cache servers, each
trying to coordinate their caches with their neighbors. Squid"s ICP and HTCP protocols are
not designed for a big cluster of servers, so not much of efficiency is achieved, though
number of problems is still increased.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 5

Cache efficiency
Neighbor coordination doesn"t yield perfect results, so multiple-tier approach was chosen
for every data-center, and cache clusters were split into task-oriented groups, as content
serving has different access/communication patterns than media serving.

The major recent change was adding URI-based distribution layer in front, utilizing CARP
(Cache-Array-Routing-Protocol). It"s major advantage is hash-based distribution of re-
quests and very efficient handling of node failures - the requests for content handled by
failing node are redistributed across pool of active machines according to their weights.

Such request distribution reduces the number of object copies, and requests for especially
active objects can still handled by front-most layer.

Our caches use COSS (cyclical object storage) - the really efficient on-disk storage of
cached blobs.

CDN Configuration files
We do generate per-server configuration files from a master configuration.

The closest to application servers pool (tier1 cache nodes):

no negative caching
negative_ttl 0 minutes
half_closed_clients off
pipeline_prefetch on
read_timeout 1 minute
request_timeout 1 minute
cache_mem 3000 MB
maximum_object_size 600 KB
maximum_object_size_in_memory 75 KB
Purge groups
mcast_groups 239.128.0.112

cache_dir coss /dev/sda6 8000 max-size=524288 max-stripe-waste=32768 block-size=1024
cache_dir coss /dev/sdb 8000 max-size=524288 max-stripe-waste=32768 block-size=1024
..
client_db off
digest_generation off
No logging for CARP-balanced caches, that will be done by the frontends
cache_access_log none
First some handy definitions
acl all src 0.0.0.0/0.0.0.0
acl localsrc src 127.0.0.1/255.255.255.255
acl purge method PURGE
defining managed hosts -
acl tiertwo src 66.230.200.0/24 # pmtpa
acl tiertwo src 145.97.39.128/26 # knams
acl tiertwo src 211.115.107.128/26 # yaseo
acl tiertwo src 10.0.0.0/16 # pmtpa internal
Upstream - Application
cache_peer 10.0.5.3 parent 80 3130 originserver no-query connect-timeout=5 login=PASS
Only connect to the configured peers
never_direct allow all
Allow coordination requests
htcp_access allow all

Only internal nodes allowed to connect to caching CDN nodes
http_access allow tiertwo
http_access deny all

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 6

Such kind of CDN node does not do any direct interactions with clients, that is the job for
front-end node:

no negative caching
negative_ttl 0 minutes
cache_mem 10 MB
maximum_object_size 600 KB
maximum_object_size_in_memory 75 KB

No cache directories for CARP squids
cache_dir null /tmp
client_db off
digest_generation off

Send out logs to log collectors
logformat wikimedia sq20.wikimedia.org %sn %ts.%03tu %tr %>a %Ss/%03Hs %<st %rm %ru %Sh/%<A %mt
%{Referer}>h %{X-Forwarded-For}>h %{User-Agent}>h
cache_access_log udp://1.2.3.4:5555 wikimedia

Only connect to the configured peers
never_direct allow all

cache_peer 66.230.200.129 parent 3128 0 no-query connect-timeout=5 login=PASS carp
weight=10 monitorurl=http://en.wikipedia.org/wiki/Main_Page monitortimeout=30
cache_peer 66.230.200.130 parent 3128 0 no-query connect-timeout=5 login=PASS carp
weight=10 monitorurl=http://en.wikipedia.org/wiki/Main_Page monitortimeout=30
cache_peer 66.230.200.131 parent 3128 0 no-query connect-timeout=5 login=PASS carp
weight=10 monitorurl=http://en.wikipedia.org/wiki/Main_Page monitortimeout=30
...

lots of various ACLs :-)
...

css and js files
acl wpstatic urlpath_regex :.*/.*\.(css|js)
acl wpstatic urlpath_regex action=raw
wiki content pages
acl wpcontent url_regex -i http://.*/wiki/.*
acl wpcontent url_regex -i http://.*/w/.*

#important: replace cache headers, s-maxage has to be 0!
#this won't be needed with Squid3, there s-maxage is 0 anyway and lifetime
#on our Squid is controlled via Surrogate-Control
header_access Cache-Control allow wpstatic
header_access Cache-Control allow tiertwo
header_access Cache-Control deny wpcontent
header_replace Cache-Control private, s-maxage=0, max-age=0, must-revalidate

Additionally, some kernel configuration parameters are set in sysctl.conf on these servers:

increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
increase Linux autotuning TCP buffer limits
min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
don't cache ssthresh from previous connection
net.ipv4.tcp_no_metrics_save = 1
recommended to increase this for 1000 BT or higher
net.core.netdev_max_backlog = 2500
Increase the queue size of new TCP connections
net.core.somaxconn = 1024
net.ipv4.tcp_max_syn_backlog = 4192

There are some differences for media caching cluster, for example for media cache server
such differences exist:

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 7

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page

Override reloads from clients (for upload squids)
refresh_pattern . 60 50% 527040 ignore-reload

Different destinations may be served by different image servers/clusters

acl commons_thumbs url_regex ^http://upload.wikimedia.org/wikipedia/commons/thumb/
acl de_thumbs url_regex ^http://upload.wikimedia.org/wikipedia/de/thumb/
acl en_thumbs url_regex ^http://upload.wikimedia.org/wikipedia/en/thumb/

amane.pmtpa.wmnet
Default destination
cache_peer 10.0.0.33 parent 80 3130 originserver no-query connect-timeout=5 login=PASS
cache_peer_access 10.0.0.33 deny commons_thumbs
cache_peer_access 10.0.0.33 deny de_thumbs
cache_peer_access 10.0.0.33 allow all

bacon.wikimedia.org
cache_peer 66.230.200.200 parent 80 3130 originserver no-query connect-timeout=5 log-
in=PASS
cache_peer_access 66.230.200.200 deny de_thumbs
cache_peer_access 66.230.200.200 allow commons_thumbs
cache_peer_access 66.230.200.200 deny all

srv6.wikimedia.org
cache_peer 66.230.200.198 parent 80 3130 originserver no-query connect-timeout=5 log-
in=PASS
cache_peer_access 66.230.200.198 deny commons_thumbs
cache_peer_access 66.230.200.198 allow de_thumbs
cache_peer_access 66.230.200.198 deny all

CDN Notes
It is very important not to expose too many hostnames to client browsers, as then persis-
tent connections are not possible (and keep-alive fails).

Keep-alive becomes especially important in long-distance connections.

There have been keep-alive failures because of short-comings of HTTP/1.0 - sometimes
simple issues have caused serious performance impact.

Many bugs have been hit on the way of building such environment, most of them fixed in
Squid 2.6 - Wikipedia"s Tim and Mark are in AUTHORS list, and Adrian and Henrik from
Squid team were especially helpful too.

Additional stuff:

http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpmcast/ - UDP-multicast bridge (for
purges)

http://svn.wikimedia.org/viewvc/mediawiki/trunk/udplog/ - UDP logging code

http://svn.wikimedia.org/viewvc/mediawiki/trunk/HTCPpurger/ - HTCP purging for app

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 8

http://svn.wikimedia.org/viewvc/mediawiki/trunk/HTCPpurger/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/HTCPpurger/
http://upload.wikimedia.org/wikipedia/commons/thumb/
http://upload.wikimedia.org/wikipedia/commons/thumb/
http://upload.wikimedia.org/wikipedia/de/thumb/
http://upload.wikimedia.org/wikipedia/de/thumb/
http://upload.wikimedia.org/wikipedia/en/thumb/
http://upload.wikimedia.org/wikipedia/en/thumb/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpmcast/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpmcast/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udplog/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udplog/

Application
Components
Though MediaWiki, Wikipedia"s in house software, could be run on standard LAMP plat-
form, quite a few external extensions are required:

MediaWiki

Imagemagick

Tex

DjVu

rsvg

PHP

APC

Apache

FastStringSearch

Proctitle

APC, the bytecode cache for PHP, should be treat as very important member of a stack,
as running PHP applications without it (or alternatives) is a resource waste.

For handling richer content external libraries had to be used, though we had to roll out our
own packages for them, as many requirements for big website are different from regular
users.

• Imagemagick does most of thumbnailing work. Though PHP often comes with GD in-
cluded, it may lack some of features - quality control included (sharpening thumbnails
tends to provide more attractive results). Imagemagick though has multiple modes of
conversions, resulting in different math applied to internal calculations. Also, pthread-
enabled distribution package did not fail gracefully in case of memory boundaries, caus-
ing deadlocks.

• Ocaml-written filter calls Tex libraries to render formulae and other scientific content.
Output to PNG format was added to Tex libraries just recently, and some minor glitches
in older versions of dvipng force to maintain our own packages.

• rsvg support was hacked out of #test" utility coming with librsvg. Usually the library is
used for desktop applications.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 9

• Fast String Search is replacement module for PHP"s strtr() function, which utilizes
Commentz-Walter style algorithm for multiple search terms, or a Boyer-Moore algorithm
for single search terms. License collisions (GPL code was used for it) do not allow this to
be included in PHP. Using proper algorithm instead of foreach loops is incredible boost
for some applications.

• Proctitle extension to PHP allows seeing which portion of code is executed by Apache
child at the moment simply using #ps":

20721 ? SNs 0:00 httpd: php_init
20722 ? SN 0:01 httpd: requestfinish
20723 ? SN 0:01 httpd: LuceneSearchSet::newFromQuery-contact-10.0.5.10 [frwiki]
20724 ? SN 0:01 httpd: requestfinish
20725 ? RN 0:00 httpd: MessageCache::addMessages [hewiki]

• WikiDiff provides faster facility for comparing articles.

• APC used to be constant pain with new PHP5 features actively used (like accessing par-
ent class" static arrays, autoloading, early and late code binding combined, etc). The
support we had from APC people helped as well.

• We tend to hit some of issues regularly, whereas other sites see them only as excep-
tions. Cleanup of PHP tends to trigger recursive free(), causing deadlocks with pthread-
enabled Apache/PHP stack. This of course causes confusion in load balancing - servers
without any CPU use end up not accepting connections.

• Migration to PHP5 caused some unhappy voices among 3rd party MediaWiki users. We
tend to use fresh PHP releases, and often - new features (like code autoloading)

• MediaWiki itself is home-grown application that is widely used by 3rd party users as well.
This often forces use of modular design with some features replaced by more efficient
components. This leads to situation, where performance-oriented use of software re-
quires disabling some features and enabling more complex distributed backends for fea-
tures, that can be handled by trivial solutions on regular locations.

As components are quite heavy, we tend to have powerful application servers (nowadays -
8-core) - it allows more efficient resource usage than trying to load-balance heavy re-
quests across zillions of nodes.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 10

Caching

The common mistake is to believe that database is too slow and everything in it has to be
cached somewhere else. In scaled out environments reads are very efficient, and differ-
ence of time between efficient MySQL query and memcached request is negligible - both
may execute in less than 1ms usually).

Sometimes memcached request may be more expensive than database query simply be-
cause it has to establish connection to a server, whereas database connection is usually
open.

There"re important questions to be asked before deciding, to cache or not to cache:

• How often the object will be read? How often will it be invalidated?

• How often will the object be written?

• Does it have to stay persistent?

• Does it have to be replicated all over the database cluster?

• What will be the hitrate?

• Can it be cached locally?

• What are the invalidation rules?

• Can individual cache objects be grouped together?

There have been situations where the remote cache request would always miss, then ap-
plication would fetch the object from database and would populate the cache, hence the
operation of #get small bit" would get 200% overhead.

These are basic shared cache groups in Wikipedia:

MediaWiki

Content acceleration
& distribution network

Parser cache
Primary interface
language cache

Secondary interface
language cache

Difference cache Revision text cache

Image metadata Users & Sessions

The memcached memory pool consists of 30 servers, 2GB each (um, 60GB!)

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 11

Remote caches use LRU expiration policy, which is quite efficient for most uses.

• Parser cache is most critical for application performance - it stores preprocessed HTML
output. The content language, wikitext, allows integrating multiple content sources, pre-
processing clauses and depend on many other content objects. Page views by users
with same settings would not cause re-parsing of content.

• #Compare articles" output is cached in difference cache, and it is especially efficient with
#recent changes patrol" - people reviewing changes.

• Interface language cache combines dynamic interface changes, together with messages
from source code. Even parsing the PHP file is quite expensive, so having this serialized
or directly in APC cache helps a lot.

• Revision cache was introduced after revision texts (hundreds of gigabytes of content)
were moved away from core databases to bigger but slower distributed storage. Some
operations do need source text, and hitting the storage backend may be much slower,
and having this content in shared cache helps.

• Image metadata keeps simple information about images, that doesn"t have to go to da-
tabases, and may be forgotten.

• Session information may be especially dynamic but has no long-term value - writing into
database would result with replication pollution, even though on single server it could be
quite efficient.

• There"re quite a few other small bits cached, like pre-parsed interface parts, information
about database server states, etc.

• If application requests more than two objects from same cache type, it is already impor-
tant to reconsider the caching. In past there were >50 accesses for simple kind of infor-
mation, and that added more than 50ms to each request of a popular page. Simply stor-
ing such kind of cache as .db file on every application server caused immediate perform-
ance improvements.

Code inside application is usually pretty trivial - removing a content node from all caches,
including CDN is just calling Title::invalidateCache() method, same goes for User objects.

Of course, more direct approach to accessing caches is provided, with simple hash-
database-like interface (get/set/add/etc) - eventually that is mapped to a real backend, like
APC, memcached, MySQL or Fake (though mostly just memcached used on Wikipedia).

Memcached has much cheaper connection costs, therefore it is not that expensive to
maintain persistent connections (200 app servers with 20 apache instances on each would
cause _just_ 4000 efficiently managed connections). MySQL would create thread for each
connection, but in this case event-based engine handles it without sweating.

The example of our memcached configuration file (still maintained by hand):

<?php
/*
 * Before altering the wgMemCachedServers array below, make sure you planned
 * your change. Memcached compute a hash of the data and given the hash
 * assign the value to one of the servers.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 12

 * If you remove / comment / change order of servers, the hash will miss
 * and that can result in bad performance for the cluster !
 *
 * Hashar, based on dammit comments. Nov 28 2005.
 *
 */
$wgMemCachedPersistent = true;
$wgUseMemCached = true;
$wgMainCacheType = CACHE_MEMCACHED;

$wgMemCachedInstanceSize = 2000;

$wgMemCachedServers = array(
 # ACTIVE LIST
 # PLEASE MOVE SERVERS TO THE DOWN LIST RATHER THAN COMMENTING THEM OUT IN-PLACE
 # If a server goes down, you must replace its slot with another server
 # You can take a server from the spare list

SLOT HOST
 0 => '10.0.2.55:11000',
 1 => '10.0.2.102:11000',
 2 => '10.0.2.119:11000',
...
 25 => '10.0.2.118:11000',

/**** DOWN ****
 XX => '10.0.2.62:11000',
 XX => '10.0.2.59:11000',
...
***** SPARE ****
 XX => '10.0.2.111:11000',
...
*************/

);

vim: set sts=4 sw=4 et :
?>

There"re quite a few warnings in configuration, asking not to insert or delete entries - mak-
ing so confuses the distribution algorithm (which generally is rand() % numberofservers),
and all 60GB of cache are rendered useless.

Profiling
For general stack profiling sometimes tools like gprof and oprofile help, but application-
level profiling may need additional tools.

MediaWiki has enclosed many major sections with wfProfileIn() and wfProfileOut() calls,
which map into either database-backed profiler, or can send aggregated data out to a col-
lecting agent, that later provides visualization. Example of such real-time information can
be seen at:

http://noc.wikimedia.org/cgi-bin/report.py

The code for reporting agent is at
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpprofile/

Additionally very useful duet of tools is xdebug profiling combined with kcachegrind - it
may provide visualized tree of calls with execution times and also allows to dive deeper
into various execution trees:

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 13

http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpprofile/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/udpprofile/
http://noc.wikimedia.org/cgi-bin/report.py
http://noc.wikimedia.org/cgi-bin/report.py

http://flake.defau.lt/pics/mediawiki.png

In this particular example immediate optimization urge could be seen for
Title::getInterwikiLink(). Other interesting information can be revealed - that in this case
there was less time spent opening database connections than opening memcached con-
nections, or that adding links to categories did cause separate links resolution.

Of course, every profiler has overhead, and there constantly exists a struggle to have as
accurate data as possible at lower costs.

Profilers can help a lot in detecting site problems - slow connections to particular systems
pop up immediately on reports. Combined with #proctitle" module, it makes big site admini-
stration somewhat easier.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 14

http://flake.defau.lt/pics/mediawiki.png
http://flake.defau.lt/pics/mediawiki.png

Media storage
For now it is the major single point of failure in whole Wikipedia cluster. Servers are not
redundant, backups are less than perfect, etc:

Content acceleration
& distribution network

Application

Media storage

Thumbs service

Most of media delivery is already done by CDN, but the actual storage and thumbs gen-
eration has to go into inner systems.

At the CDN level requests for thumbnails are delivered to distinct servers, each having a
single portion of whole thumbnail set (now split by project). In case file does not exist,
thumbs HTTP server (lighttpd) traps the 404-file-does-not-exist request and sends thumb
generation request to application cluster, which then uses NFS to read data from main
media storage to thumb nodes.

Lighttpd simply has such special configuration statements:

server.error-handler-404 = "/scripts/thumb-handler.php"

fastcgi.server = (".php" => ("localhost" => (
 "socket" => "/tmp/php-fastcgi.socket",
 "bin-path" => "/usr/local/bin/php",
 "bin-environment" => (
 "PHP_FCGI_CHILDREN" => "32"
))))
server.max-fds = 8192
server.max-worker = 8
server.network-backend = "writev"
server.max-keep-alive-requests = 128
server.max-keep-alive-idle = 30
server.max-read-idle = 30
server.max-write-idle = 30
$HTTP["url"] == "/fundraising/2006/meter.png" {
 setenv.add-response-header = ("Cache-Control" => "max-age=300,s-maxage=300")
}
expire.url = ("/fundraising/2006/meter.png" => "access 5 minutes")

The speed of lighttpd (and lack of image server failures) has been one of reasons the
more scalable solution has not been designed so far. Currently there is work to build more
scalable and redundant solution, employing CARP, replication and distribution.

Currently main image server is again under serious I/O contention.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 15

Database
Database balancing
LoadBalancer.php: >600 lines of connection balancing code :)

/*
 * Get a Database object
 * @param integer $db Index of the connection to get. May be DB_MASTER for the
 * master (for write queries), DB_SLAVE for potentially lagged
 * read queries, or an integer >= 0 for a particular server.
 *
 * @param mixed $groups Query groups. An array of group names that this query
 * belongs to. May contain a single string if the query is only
 * in one group.
 */
function &wfGetDB($db = DB_LAST, $groups = array()) {
 global $wgLoadBalancer;
 $ret = $wgLoadBalancer->getConnection($db, true, $groups);
 return $ret;
}

Every database use in code has to acquire Database object via wfGetDB(), and it is al-
ways good idea to separate queries that require master and queries that do not.

LoadBalancer needs array of servers for initialization, and per-project arrays are built by
our separate configuration file, db.php:

Define which projects go into what server groups (separate replication clusterS):
$sectionsByDB = array(
 'enwiki' => 's1',
 'commonswiki' => 's2',
 'fiwiki' => 's2',
 'nlwiki' => 's2',
 'nowiki' => 's2',
...
 'dewiki' => 's2a',
 'frwiki' => 's3a',
 'jawiki' => 's3a',
);

$sectionLoads = array(
 's1' => array(
 'db2' => 0,
 'db3' => 200,
 'ariel' => 0, // watchlist only
 'db4' => 200,
 'db6' => 200,
 'db7' => 70, // used for batch jobs
),
 's2' => array(
 'db8' => 0,
 'lomaria' => 150,
 'ixia' => 200,
),
 's2a' => array(
 'db8' => 0,
 'ixia' => 200,
 'lomaria' => 0,
 'holbach' => 2000, // replicating dewiki only
),
 /* s3 */ 'DEFAULT' => array(
 'thistle' => 0,
 'adler' => 200,
 'samuel' => 200,
 'db1' => 200,

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 16

 'db5' => 80,
),
 's3a' => array(
 'thistle' => 0,
 'samuel' => 200,
 'db1' => 200,
 'db5' => 0,
 'webster' => 2000, // replicating this section only
),
);

Falling back to default section
if (isset($sectionsByDB[$wgDBname])) {
 $section = $sectionsByDB[$wgDBname];
} else {
 $section = 'DEFAULT';
}
$loads = $sectionLoads[$section];

/*if ($section != 's1') {
 $wgReadOnly = 'Routine maintenance, should be back in a few minutes';
}*/

$commonsServers = array(
 'db8' => 100,
 'lomaria' => 100,
 'ixia' => 100,
);

// Make sure commons servers are in the main array
foreach ($commonsServers as $server => $load) {
 if (!isset($loads[$server])) {
 $loads[$server] = 0;
 }
}

$enwikiWatchlistServers = array(
 'ariel' => 100,
);

$enwikiContributionServers = array(
 'db6' => 1000,
);
$enwikiDumpServers = array(
 'db7' => 1000,
);

Miscellaneous settings

$dbHostsByName = array(
 'ariel' => '10.0.0.2',
 'holbach' => '10.0.0.24',
 'webster' => '10.0.0.23',
...
 'db9' => '10.0.0.242',
);

$wgDBservers = array();
$templateServer = array(
 'dbname' => $wgDBname,
 'user' => $wgDBuser,
 'password' => $wgDBpassword,
 'type' => 'mysql',
 'flags' => DBO_DEFAULT,
 'max lag' => 30,
 'max threads' => 100,
 'groupLoads' => array(),

);

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 17

foreach($loads as $name => $load) {
 $server = array(
 'host' => $dbHostsByName[$name],
 'hostname' => $name,
 'load' => $load,
) + $templateServer;

 if (isset($commonsServers[$name])) {
 $server['groupLoads']['commons'] = $commonsServers[$name];
 }

 if ($wgDBname == 'enwiki' && isset($enwikiWatchlistServers[$name])) {
 $server['groupLoads']['watchlist'] = $enwikiWatchlistServers[$name];
 $server['groupLoads']['recentchangeslinked'] = $enwikiWatchlistServers[$name];
 }
 if ($wgDBname == 'enwiki' && isset($enwikiContributionServers[$name])) {
 $server['groupLoads']['contributions'] = $enwikiContributionServers[$name];
 }
 if ($wgDBname == 'enwiki' && isset($enwikiDumpServers[$name])) {
 $server['groupLoads']['dump'] = $enwikiDumpServers[$name];
 }

 $wgDBservers[] = $server;
}

The master generally has more threads running than the others
$wgDBservers[0]['max threads'] = 200;

Such kind of application-level balancing flexibility allows efficient database use, at the cost
of having that inside single application.

LoadBalancer does some additional magic - checking server lags, skipping delayed serv-
ers, and does put site read-only in case of #all lagged" event.

Additionally it has few other useful commands:

LB::commitAll() - doesn"t use 2PC, but with pessimistic locking by InnoDB it is not that
needed

LB::closeAll() - closes all connections open

LB::pingAll() - keeps all sessions up

LB::waitFor() - asks for slave servers to catch up with replication position specified

LB::saveMasterPos() - saves master position into user session, so that subsequent re-
quests would not get out-of-date operation, usually used for rw requests

LB::loadMasterPos() - retrieves master position from session and waits for it if needed

LB::getLagTimes() - retrieves lag times from servers or cached variable

We never use persistent (outside web-request scope) connections for databases, as con-
nect costs are negligible, but having thousands of threads may be not.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 18

Database API
Database class used to be simple DBMS-specific query call abstraction, but eventually
ended up as query abstraction tool too.

Use of Database class forces to treat changes as method calls rather than text.

Example of trivial select:

$res = wfGetDB(DB_SLAVE)->select(
 /* FROM */ array('page', 'categorylinks'),
 /* FIELDS */ array('page_title', 'page_namespace', 'page_len', 'cl_sortkey'),
 /* WHERE */ array($pageCondition,
 'cl_from = page_id',
 'cl_to' => $this->title->getDBKey()),
 /* COMMENT */ __METHOD__,
 /* OPTIONS */ array('ORDER BY' => $this->flip ? 'cl_sortkey DESC' : 'cl_sortkey',
 'USE INDEX' => 'cl_sortkey',
 'LIMIT' => $this->limit + 1));

Every literal passed is properly escaped (and MySQL tends to be efficient with quoted
numbers) - no more space for SQL injection errors. Additionally, due to dynamic nature of
language, various magic expansion happens, if needed:

$count = wfGetDB()->selectField(‘job’,’job_id’,array(‘job_id’=>array(5,6,7,8)));

Would be expanded into:

SELECT /* Database::selectField */ job_id FROM job WHERE job_id IN(‘5’,’6’,’7’,’8’) LIMIT 1

As lists and arrays inside application are already passed around as arrays, actual calls to
Database class methods look much more elegant, than any attempts to build queries.

Object-relational mapping is usually avoided as it brings less control over batch updates or
retrievals. The need to specify fields not only reduces information sent over the wire, but
also more often employs use of covering indexes.

Reading that data can be done in quite usual PHP-like method:

 while($row = $dbr->fetchObject ($res)) {
 $title = Title::makeTitle($row->page_namespace, $row->page_title);
 $this->addPage($title, $row->cl_sortkey, $row->page_len);
 }

Additionally, entries can be wrapped into ResultWrapper:

$r = new ResultWrapper($dbr, $res);

Which allows passing single result object around.

Database class can be used stand-alone, without LoadBalancer, though there might be
references to other MediaWiki classes.

Writing methods are easy too:

wfGetDB(DB_MASTER)->insert(‘table’, array(‘name’ => $this->name, ‘parent’ => $this->parent));

Array of arrays can be passed as an argument too, resulting in multiple-row insert.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 19

Other write operations (DELETE, UPDATE) are combinations of INSERT and SELECT
syntax:

wfGetDB(DB_MASTER)->update(‘table’,
! /* SET */ array(‘modified’ => 1, ...) ,
! /* WHERE */ array(‘id’ => $ids)
);

or

$wfGetDB(DB_MASTER)->delete(‘table’,’*’); // delete all rows

There"re lots of helper functions for manual query building too.

Usually the interface does all required transformations (like adding prefixes to table
names, if needed), but for manual query building various helpers can be used:

! $nameWithQuotes = $dbr->escape($name);
! extract($dbr->tableNames('user','watchlist'));
! $sql = "SELECT wl_namespace,wl_title FROM $watchlist,$use
! ! WHERE wl_user=user_id AND wl_user=$nameWithQuotes";

There is also support for deadlock-prone queries, where a retry logic is done.

On top of such base database class there"re few higher-level wrappers, like Pager (and
subclasses).

It allows to write efficient index-based offsets pager (instead of ugly LIMIT 50 OFFSET
10000). An example of use:

<?php

class CategoryPager extends AlphabeticPager {
 function getQueryInfo() {
 return array(
 'tables' => array('categorylinks'),
 'fields' => array('cl_to','count(*) AS count'),
 'options' => array('GROUP BY' => 'cl_to')
);
 }

 function getIndexField() {
 return "cl_to";
 }

 function formatRow($result) {
 global $wgLang;
 $title = Title::makeTitle(NS_CATEGORY, $result->cl_to);
 return (
 '' . $this->getSkin()->makeLinkObj($title, $title->getText())
 . ' ' . wfMsgExt('nmembers', array('parsemag', 'escape'),
 $wgLang->formatNum($result->count))
 . "\n");
 }
}

?>

It produces a list based on simple specification of dataset and parameters in request (off-
set, order and limit). Additional call to AlphabeticPager::getNavigationBar() provides with a
resultset browsing interface. There"s more sophisticated TablePager class as well.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 20

Database servers
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2917 mysql 15 0 14.4g 14g 4016 S 2.3 91.0 78838:10 mysqld

Though we currently use 16GB-class machines (RAM size is main database server power
metric for us), we still consider ourselves scale-out shop.

The main ideology in operating database servers is RAIS:

Redundant Array of Inexpensive/Independent/Instable[sic] Servers

• RAID0. Seems to provide additional performance/space. Having half of that capacity with
an idea that a failure will degrade performance even more doesn"t sound like an efficient
idea. Also, we do notice disk problems earlier :-) This disk configuration should be
probably called AID, instead of RAID0.

• innodb_flush_log_at_trx_commit=0, tempted to do innodb_flush_method=nosync. If a
server crashes for any reason, there"s not much need to look at its data consistency.
Usually that server will need hardware repairs anyway. InnoDB transaction recovery
would take half an hour or more. Failing over to another server will usually be much
faster. In case of master failure, last properly replicated event is last event for whole envi-
ronment. No #last transaction contains millions" worries makes the management of such
environment much easier - an idea often forgotten by web applications people.

• Complete datacenter crash = loss of just a few transactions. We"d have more stuff to do
than worry about those.

• Software crashes just don"t happen. We run MySQL 4.0 which is completely rock-solid.
Didn"t see software-related crashes for many years! :)

• Well, hardware doesn"t crash too much either. In case of serious master crash we can
just switch site read-only, and most users won"t even notice (except few - “oh no! the edit
button disappeared!”). We"re used to have core database uptimes over a year:

samuel: 08:09:57 up 354 days, 21:38, 0 users, load average: 0.67, 0.71, 0.77
ixia: 08:09:57 up 354 days, 21:38, 1 user, load average: 0.96, 1.08, 1.08
lomaria: 08:09:57 up 354 days, 21:38, 0 users, load average: 1.97, 1.17, 1.27
thistle: 08:09:57 up 45 days, 9:38, 0 users, load average: 0.18, 0.15, 0.15
webster: 08:09:57 up 354 days, 19:43, 1 user, load average: 1.86, 1.81, 1.56
db1: 08:09:58 up 184 days, 4:48, 1 user, load average: 0.66, 0.55, 0.55
db2: 08:09:57 up 229 days, 1:46, 3 users, load average: 0.29, 0.39, 0.50
db4: 08:09:57 up 118 days, 13:07, 0 users, load average: 0.30, 0.45, 0.51
...

• Rebuilding the server after some serious crash is not that expensive. Copying data at
gigabit speeds (>80MB/s) is usually less than an hour even for largest datasets.

• RAIS mysql-node configuration:

back_log=1000
skip-name-resolve
slave-skip-errors=0,1213,1158,1053,1007,1062
innodb_buffer_pool_size=12000M
innodb_log_file_size=500M
innodb_flush_log_at_trx_commit=0
innodb_lock_wait_timeout=10
query_cache_size=64M # Actually, not used
set-variable = table_cache=6000
set-variable = thread_cache=300

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 21

External Storage
In Wikipedia context #External Storage" doesn"t mean SAN or NAS or NFS. It was quick
hack that worked to keep most of our data outside of database servers.

The revision storage used to be in #text" table in main database:

CREATE TABLE `text` (
 `old_id` int(8) unsigned NOT NULL auto_increment,
 `old_text` mediumtext NOT NULL,
 `old_flags` tinyblob NOT NULL,
 UNIQUE KEY `old_id` (`old_id`)
) TYPE=InnoDB

We did hit multiple issues with that:

• It would take space on disk

• It would make resyncs to other nodes longer

• It would consume cache

• It would... have the usual trouble of having too much data

The solution (hack?) was pretty simple - abusing the flags field by putting #external" flag
into it, and treating old_text as locator rather than text itself, then migrating the data
record-by-record into other locations.

The easiest way to implement other location was to deploy lots of small mysql replication
setups across application servers (which always come with big disks, just in case, ATA/
SATA is cheap anyway):

/* db.php External Store definitions */
$externalTemplate = $templateServer;
$externalTemplate['flags'] = 0; // No transactions

$wgExternalServers = array(

 'cluster1' => array(
 array('host'=> '10.0.2.30', 'load' =>1)+$externalTemplate , // Master
 array('host'=> '10.0.2.28', 'load' =>1)+$externalTemplate ,
 array('host'=> '10.0.2.29', 'load' =>1)+$externalTemplate ,
),
 'cluster2' => array(
 array('host'=> '10.0.2.27', 'load' =>1)+$externalTemplate , // Master
 array('host'=> '10.0.2.25', 'load' =>1)+$externalTemplate ,
 array('host'=> '10.0.2.24', 'load' =>1)+$externalTemplate ,
),
! /* up to ... */
! $wgDefaultExternalStore = array('DB://cluster11', 'DB://cluster10', 'DB://cluster12');

Once ExternalStore finds out it needs to fetch something, it can call just:

$db = LoadBalancer::newFromParams($wgExternalServers[$cluster])->getConnection(DB_SLAVE);

The logic in script is slightly more extended, as there"s in-script cache of LoadBalancer ob-
jects.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 22

Database queries
All database interaction is optimized around MySQL"s methods of reading the data.

Some of requirements for every query are obvious, some are luxury, but:

• Every query must have appropriate index for reads - traversing a thousand rows even in
an index to return one hundred is already bad table access efficiency, though of course,
it still happens in some operations (where more criteria is silently slipped into reporting
functions, without managing edge cases).

• Every query result should be sorted by index, not by filesorts. This means strict and pre-
dictable path of data access. This can not yet be possible by few major functions (time-
line of changes for multiple objects, like watchlist, #related changes", etc). Now such op-
erations are sent to a dedicated server in order not to have filesort-caused I/O contention
on other operations on #high-speed" core servers.

• Paging / offsetting should be done just by key positions than by resultsets (no LIMIT 10
OFFSET 100, just WHERE id>... LIMIT 10) - this becomes a problem when some spider
hits #next 5000 results" too often.

• No sparse data reads should be done, except for hottest tables. This means covering
indexes for huge tables, allowing to do reads in different range directions/scopes. Narrow
tables (like m:n relation cross-indexes) usually always have covering indexes to both di-
rections.

Some fat-big-tables have extended covering indexing just on particular nodes, like this in-
dex on revision:

KEY `usertext_timestamp` (`rev_user_text`,`rev_timestamp`)

is extended to:

KEY `usertext_timestamp` (`rev_user_text`,`rev_timestamp`,`rev_user`,`rev_deleted`,
! ! ! ! ! ! ! `rev_minor_edit`,`rev_text_id`,`rev_comment`)

on nodes handling #Contributions for a user" task. As operation would usually hit lots of
cold data, it is much more efficient to keep it clustered this way at least on single server.

More of such effect is described at
http://dammit.lt/2007/01/26/mysql-covering-index-performance/

As well, this effect can be seen in any proper benchmark - range scans from indexes are
extremely efficient in MySQL, as all data is always clustered together, by one key or an-
other.

• Queries prone to hit multiversioning troubles have to be rewritten accordingly - as vari-
ous slow tasks can hold #purging" lock. An example can be job queue pop, where:

SELECT * FROM job LIMIT 1

has to be rewritten into:

SELECT * FROM job WHERE id>${lastid} LIMIT 1

in order not to hit lots of deleted, but still not purged rows.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 23

http://dammit.lt/2007/01/26/mysql-covering-index-performance/
http://dammit.lt/2007/01/26/mysql-covering-index-performance/

Splitting
Multiple database servers allow splitting in many different patterns:

• Move read load to slaves

At mediocre or low write rates this always helps - scaling read operations becomes espe-
cially cheap (everybody knows this nowadays anyway).

If replication positions are accounted in application, the inconsistencies are barely noticed.

• Partitioning by data segments

It can be done just for slaves (different slaves handle different datasets), or for masters as
well (splitting database clusters into multiple clusters). This method allows to reuse out-
dated database hardware to extremes (say, sending German of French requests to
crippled-by-4GB database server). Slower disks or less storage can be resolved this way
too. The only problem remains the inter-segment (in our case - interlanguage) operations,
which we do none (nearly). We had to remove some of cross-database access hacks and
to maintain separate connections or RPC to handle some of accesses.

Of course, more dense data observes much higher cache hits, with much less stress on
disk subsystem. The only database which cannot be optimized this way for now is English
Wikipedia (it is the only database having it"s own dedicated database cluster).

• Partitioning by tasks

Though some tasks can have extended slaves (in terms of indexing or added tables),
some features have to go to separate instances running modified or different software.

The External Store can be an example of such partitioning.

The more radical approach was to move search to Lucene-based daemon (we used to
have dedicated database servers for search, using MySQL fulltext search).

Some indexing methods (like fuzzy text search, intersections, queues, data streams, etc)
could/can be handled by other solutions too.

• Partition by time

Some operations may be done delayed, in serialized manner, hence not clogging replica-
tion or I/O. Job queues help for that too. Of course, having multiple layers of data persis-
tence (squid, memcached, APC, mysql core, external storage) automatically puts most ac-
tive data to front of the system, and archival data lives least touched in slowest storage.

Some changes can be propagated in completely different cycles from replication or appli-
cation updates - the information that is distributed to application nodes as on-disk hash da-
tabases can be delayed and doesn"t need that high consistency requirements, though
read performance is improved magnificently.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 24

Data itself

Page

Revision

Categorylinks

Pagelinks

Templatelinks

Externallinks

Watchlist

User

User groups

Blocks

Langlinks

Imagelinks

Image Oldimage

File archive

Recent changes

Logging Jobs

Profiling

Text

Site stats

Restrictions

...

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 25

Table Rows (counts) Data (bytes) Index (bytes)

page 8m 1g 1g

revision 110m 17g 40g

pagelinks 12m 12g 8g

categorylinks 13m 1.5g 2g

imagelinks 7m 700m 450m

image 1m 450m 100m

text 110m 13g 0

watchlist 26m 2.3g 1.3g

user 3m 5g 300m

recentchanges 8m 2g 2.5g

externallinks 15m 4g 4.5g

compare to numbers last year:

Table Rows Data Index

revision 25m 8g 11g

page 4m 0.5g 0.5g

pagelinks 45m 4.5g 3g

text 25m 0.3t -

watchlist 8m 1g 9.5g

user 1m 1.2g 60m

recent 5m 1.3g 1g

Many tables have more indexing than data (even considering, that PK is index too, though
not included into the #index" column). Usually extended indexing is used (composite PKs
for data clustering, then included into other indexes for covering reads:

Revision PK is (Page ID, Revision ID) - every page has it"s own tree of data

Watchlist PK is (User, Namespace, Title) - containing all fields, this makes every other in-
dex fully covering, even if it is on less fields.

Pagelinks PK is (from, namespace, title) - having all fields too, making (ns,title) index cov-
ering.

Same is for most tables - no crossindex tables have their own PKs, they just provide really
efficient way to connect multiple entities - usually possible just with single block read.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 26

Compression
One of easy ways to save resources is actually by using compression wherever data com-
presses and takes more than a kilobyte. Of course, sending compressed information over
internet makes page loads faster, but even for internal communications, having various
blobs compresed helps in:

• Less fragmentation (less data is split off from row to another blocks in database)

• Less bytes to send over the network

• Less data for DB server to work on - better memory/cpu efficiency, etc.

• Less data for DB server to store

And all this comes out from really fast zlib (gzip) library, which is often treated as too ex-
pensive. It takes a fraction of millisecond to compress ten kilobytes of text, resulting in few
times smaller object to keep around.

Text Compress

ES Cluster 1

Stage

DecompressConcatenate

Recompress Store ES Cluster 2

For external store extreme efficiency is achieved by recompressing - concatenating
bunches of old revisions, then applying compression again. Efficient algorithms take simi-
larity of revisions into account, ending up with 5%-10% of original size, instead of 30%-
50% for single-pass compression.

Of course, such efficiency is required just for long-term storage, and short term storage in
cache (all objects are compressed there) usually does not need that.

Of course, the availability of cheap partitioned/distributed storage on application servers
does allow to slack and some text still waits for the re-compression stage.

Unfortunately, most of media formats are already compressed - there huge wins are just
for text data.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 27

Search
The major component for it is Lucene framework (and it"s ports). Due to licensing issues
Wikipedia did not run Java Virtual Machine from Sun Microsystems (non-free software is
not matching free content ideals), so alternatives were chosen - at first GCJ-based solu-
tion, afterwards .net Lucene port was used on top of Mono .NET framework.

The #mwdaemon" is very simple HTTP interface to Lucene indexes.

The major components for search are:

• LuceneSearch.php - the MediaWiki extension, utilizing mwdaemon - it is just simple
proxy of requests to external HTTP-backed agent

• MWDaemon - the daemon itself. For now the only way to scale it is to run multiple copies
of same index on different machines, though the platform supports #parallel queries" -
those would have to hit all index segments, but cache efficiency on machines would be
higher. For now simply splitting by language and adding more copies of index helps.

• Index Builder - offline batch builder of index. The incremental updates used to leak
memory, so only batch solution has been enabled.

• Mono (or GCJ.. or JVM... depends on mood - we have support for all).

• Balancing. Currently done by LVS.

Current solution is closely integrated with MediaWiki internals - it is not possible as generic
solution at the moment.

Lucene project though has included a simple generic search server in their latest releases
- probably using it directly may be a way to go for this platform.

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 28

LVS: Load balancer
LVS (Linux Virtual Service) is critical component, which allows efficient load balancing in
front of CDN, between CDN and Application, and between Application and Search.

The key advantages against the competition are:

• Kernel-level

• Director gets just inbound traffic, outbound traffic is sent directly from processing node
with proper source IP

• Efficient

We have written tools for monitoring, pooling and depooling servers (so that connections
don"t hit black holes), as well as managing weights (same pool of servers has both 1-cpu
and 8-core machines).

As we"re using balanced connection count based distribution, any server that refuses to
work properly may start getting more load, thus slowing down the site serving.

Monitoring of extremes in connection counters is always important:

IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP upload.pmtpa.wikimedia.org:h wlc
 -> sq10.pmtpa.wmnet:http Route 10 2 151577
 -> sq1.pmtpa.wmnet:http Route 10 2497 1014
 -> sq4.pmtpa.wmnet:http Route 10 2459 1047
 -> sq5.pmtpa.wmnet:http Route 10 2389 1048
 -> sq6.pmtpa.wmnet:http Route 10 2429 1123
 -> sq8.pmtpa.wmnet:http Route 10 2416 1024
 -> sq2.pmtpa.wmnet:http Route 10 2389 970
 -> sq7.pmtpa.wmnet:http Route 10 2457 1008

In this case sq10 needs gentle touch.

The script used to monitor and pool servers can be found at:

http://svn.wikimedia.org/viewvc/mediawiki/trunk/pybal/

Previous generation of monitoring script is called Lvsmon and is kept at:

https://wikitech.leuksman.com/view/Lvsmon

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 29

https://wikitech.leuksman.com/view/Lvsmon
https://wikitech.leuksman.com/view/Lvsmon
http://svn.wikimedia.org/viewvc/mediawiki/trunk/pybal/
http://svn.wikimedia.org/viewvc/mediawiki/trunk/pybal/

Administration
The site-ops personnel is tiny, so the tools are not that sophisticated...

NFS
Lots of bits not used in constant site operation are kept in shared directory. Shared directo-
ries are good. Except when shared directory server goes down - this has caused few
downtimes in past.

Of course, nowadays shared directory server is not used for many additional tasks, what
used to be the case, but still it is SPOF, though with less impact.

dsh
The key tool used by many administration scripts is quite simple perl program called #dsh".

SSH connection is established for each node in nodelists (could be read from file) and
commands are executed.

This is used together with deployment scripts. Most #sync" scripts dsh into bunch of boxes
and ask to copy in data from shared directory to local file systems.

The sync-scripts make backups of files, do verifications of PHP code (against occasionally
slipped in syntax errors), even may announce synced file paths on IRC channel (it is main
communication media for distributed team).

Nagios
The monitoring software is in constant race, will it be the first to announce system failure,
or will that be hundreds joining Wikipedia IRC channels.

Maintaining and automatic configuration of Nagios has been constant issue. Having it in
usable state has helped few times to have accurate diagnosis of what went wrong.

Can be found at http://nagios.wikimedia.org/

Ganglia
Has been tremendous help in understanding site load usage - monitoring resource usage
and trends is quite important for planning of hardware acquisitions. Some problems can be
immediately spotted by comparing different server load patterns.

http://ganglia.wikimedia.org/

People
It is tremendous pleasure to build anything being in such a nice team. Come see us at:

#wikimedia-tech on Freenode (irc.freenode.net)

Your ideas will be always helpful. Especially if implemented already ;-)

Wikipedia: Site internals, configuration, code examples and management issues! !

Domas Mituzas, MySQL Users Conference 2007! 30

http://ganglia.wikimedia.org
http://ganglia.wikimedia.org
http://nagios.wikimedia.org
http://nagios.wikimedia.org

