Testing with PHPUnit

use Caution:
while (MediaWiki && PHPUnit) {
Ll Write tests

o WIKIMEDIA

Yeah, yeah, we know we need more tests - but it’s more than just having them around
Unit testing, like any other superpower, can be used for good or evil

Let’s talk about how to do this the right way

Unit Tests

o WIKIMEDIA

Unit tests operate in isolation

Integration lests

Y

(\ el < 3 g =l
. R i A4
@ w:¢f}$,_3{% “Y"
\ VAR P ¢ o

> TFPne -~
. P s P A
' _ Y "’"{y

4

L B

y
By’
’.‘,,l} \\'h
FA) 4 '\2" s
>

o WIKIMEDIA

Integration tests interact with other stuff

em separated

¢

Keep

1‘\] /}

WIKIMEDIA

=
(D)
=
)
c
(D)
()
=
)
(D)
0
()]
O
c
(4]
i
L
©
(D)
U
(4]
(Vp]
(4]
o
(D)
()]
Y4
>
(D)
v
c
(D)
()]
=
)
(D)
0
A=
(@)
=
<
)
>
-
()]
>
Ll

Assertions

000000000000 WIKIMEDIA ¢

- You need at least one assertion (or the test is useless)
- But too many will spoil the soup (tests shouldn’t be too busy)

- Use the most specialized assertion available

Test names

“fest” + NameOfSystemUnderTest

Like: testWfMsg or testFileUploads

o WIKIMEDIA

- Always start with the word “test”
- End in a TitleCase description of the system under test

—-- Symbol name for unit tests
—— Behavior description for integration tests

Assertion messages

“Sentenceicase description:

Like: "Returns string of message
key with angle brackets 1if
message does not exist”

o WIKIMEDIA

- Complete sentence, punctuation not necessary
- Should be very descriptive, tell a story

Inventing

o WIKIMEDIA

When making something new...

Inventing

Write tests Write code Run tests

o WIKIMEDIA

1. Write tests as if you are done writing the code
2. Write the actual code

3. Run the tests to verify it works properly

Refactoring

o WIKIMEDIA

When changing something that already exists...

Refactoring

Change tests Change code Run tests

o WIKIMEDIA

1. Modify the tests as if the changes have already been made
2. Make the actual changes

3. Run the tests to verify the changes were made correctly

RTFM!

PHPUnNIt 3.6 ' PHPUnIt 3.6 PHPUnit 3.5
English Japanese Japanese

1. Automating Tests Prev

2. PHPUnit's Goals

Chapter 4. Writing Tests for PHPUnNit

3. Installing PHPUNit

4. Writing Tests for Example 4.1 shows how we can write tests using PHPUnit that exercice

PHP's array operations. The example introduces the basic conventions

[lestiDepencencies and steps for writing tests with PHPUnit:

Data Providers
Testing Exceptions 1. The tests for a class Class go into a class ClassTest.
Testing PHP Errors
Assertions 2. ClassTest inherits (most of the time) from
assertArrayHasKey (PHPUnit_Framework TestCase.
assertClassHasAttr.
assertClassHasStat: . The tests are public methods that are named test*.
assertContains()
assertContainsonly Alternatively, you can use the @test annotation in a method's

assertEmpty() docblock to mark it as a test method.
assertEqualXMLStru

assertEquals() . Inside the test methods, assertion methods such as
SETEALCREA() assertEquals() (see the section called “Assertions”) are used to
assertFileEquals()

2 2 assert that an actual value matches an expected value.
assertFileExists()

http://www.phpunit.de/manual/current/en/

o WIKIMEDIA

Writing tests is like learning to cook, improvisation rarely yields a positive outcome
Read the manual and stick to the recipe - don’t start getting fancy with the spices!

http://www.phpunit.de/manual/current/en/
http://www.phpunit.de/manual/current/en/

Happy testing!

