
Dave	Wichers	
Previous	OWASP	Top	10	Project	Lead	(2003	thru	2017)	

Former	OWASP	Board	Member	(2003	thru	2013)	
CoFounder	and	COO,	Aspect	Security	

which	is	now	EY	

	
	

OWASP	Top-10	2017	



About	the	OWASP	Top	10	

• Not	a	standard…	

OWASP	Top	10	is	an	Awareness	Document	

• Was	probably	3rd	or	4th	OWASP	project,	after		
• Developers	Guide	
• WebGoat	
• Maybe	WebScarab	??	

First	developed	in	2003	

•  2003,	2004,	2007,	2010,	2013,	2017	

Released	

2	



OWASP	Top	Ten	(2017	
Edition)	

3	



What	Didn’t	Change	

• Title	is:	“The	Top	10	Most	Critical	Web	Application	
Security	Risks”	

It’s	About	Risks,	Not	Just	Vulnerabilities	

• Based	on	the	OWASP	Risk	Rating	Methodology,	used	to	
prioritize	Top	10	

OWASP	Top	10	Risk	Rating	Methodology	

4	



OWASP	Top	10	Risk	Rating	
Methodology	

Threat	
Agent	

Attack	
Vector	 Weakness	Prevalence	 Weakness	Detectability	 Technical	Impact	 Business	Impact	

?	
Easy	 Widespread	 Easy	 Severe	

?	Average	 Common	 Average	 Moderate	

Difficult	 Uncommon	 Difficult	 Minor	

3	 2	 3	 3	

2.66	 *	 3	

8.00	weighted	risk	rating	

Injection	Example	

3	
2	
1	

5	



What’s	Changed?	

• Added:	3	
• Merged:		2	merged	into	1	
• Reordered:	3	

Risks	Added,	Risks	Merged,	Risks	Reordered	

• Significantly	broader,	public,	data	call	(two	actually)	
• For	both	Vuln	Data	AND	Industry	Opinions	

• Far	more	data	analysis	
•  Initial	draft	by	original	Top	10	team.	Final	by	new	Top	10	
Team.	

Development	Methodology	For	2017	

6	



Mapping	from	2013		
to	2017	Top	10	



2017-A1	–	Injection	

•  Tricking	an	application	into	including	unintended	commands	in	the	data	sent	
to	an	interpreter	

Injection	means…	

•  Take	strings	and	interpret	them	as	commands	
•  SQL,	OS	Shell,	LDAP,	XPath,	Hibernate,	etc…	

Interpreters…	

• Many	applications	still	susceptible	(really	don’t	know	why)	
•  Even	though	it’s	usually	very	simple	to	avoid	

SQL	injection	is	still	quite	common	

•  Usually	severe.	Entire	database	can	usually	be	read	or	modified	
• May	also	allow	full	database	schema,	or	account	access,	or	even	OS	level	
access	

Typical	Impact	

8	



SQL	Injection	–	Illustrated	

Fi
re
w
al
l	

Hardened	OS	

Web	Server	

App	Server	

Fi
re
w
al
l	

Da
ta
ba
se
s	

Le
ga
cy
	S
ys
te
m
s	

W
eb

	S
er
vi
ce
s	

Di
re
ct
or
ie
s	

Hu
m
an
	R
es
rc
s	

Bi
lli
ng
	

Custom	Code	

APPLICATION	
ATTACK	

N
et
w
or
k	
La
ye
r	

Ap
pl
ic
at
io
n	
La
ye
r	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
tio

n	
Tr
an
sa
ct
io
ns
	

Co
m
m
un

ic
at
io
n	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

ct
io
ns
	

HTTP 
request

M	

SQL 
query

M	

DB Table 
!		
>	

HTTP 
response 

"		
>	

"SELECT * FROM 
accounts WHERE 

acct=‘’ OR 
1=1--’" 

1.	Application	presents	a	form	to	
the	attacker	
2.	Attacker	sends	an	attack	in	the	
form	data	
3.	Application	forwards	attack	to	
the	database	in	a	SQL	query	

Account Summary 
 

Acct:5424-6066-2134-4334 
Acct:4128-7574-3921-0192 
Acct:5424-9383-2039-4029 
Acct:4128-0004-1234-0293 

4.	Database	runs	query	containing	
attack	and	sends	encrypted	results	
back	to	application	

5.	Application	decrypts	data	as	
normal	and	sends	results	to	the	
user	

Account:		

							SKU:		

Account:		

							SKU:		

9	



A1	–	Avoiding	Injection	Flaws	

• Avoid	the	interpreter	entirely,	or	
• Use	an	interface	that	supports	bind	variables	(e.g.,	prepared	
statements,	or	stored	procedures),	
• Bind	variables	allow	the	interpreter	to	distinguish	between	code	and	
data	

• Encode	all	user	input	before	passing	it	to	the	interpreter	
• Always	perform	‘white	list’	input	validation	on	all	user	supplied	input	
• Always	minimize	database	privileges	to	reduce	the	impact	of	a	flaw	

Recommendations	

• https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet	
• https://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_Sheet	

• https://www.owasp.org/index.php/
OS_Command_Injection_Defense_Cheat_Sheet	

• https://www.owasp.org/index.php/
LDAP_Injection_Prevention_Cheat_Sheet		

Follow	the	guidance	from	

10	



2017-A2	–	Broken	
Authentication	

• What	is	your	authentication	scheme?	
• Are	you	incorporating	two-factor	authentication?	
• How	safely	do	you	store	user	credentials?	
• Some	form	of	credentials	have	to	go	with	every	request	(initial	auth,	then	session	ID)	
• Should	use	SSL	for	everything	requiring	authentication	

How	strong	is	initial	user	authentication	

• SESSION	ID	used	to	track	state	since	HTTP	doesn’t	
• and	it	is	just	as	good	as	credentials	to	an	attacker	

• SESSION	ID	is	frequently	exposed	on	the	network,	in	browser,	in	logs,	…	

Session	management	flaws	

• Change	my	password,	remember	my	password,	forgot	my	password,	secret	question,	logout,	
email	address,	etc…	

Beware	the	side-doors	

• User	accounts	compromised	or	user	sessions	hijacked	

Typical	Impact	

11	



Broken	Authentication	
Illustrated	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
at
io
n	

Tr
an

sa
ct
io
ns
	

Co
m
m
un

ic
at
io
n	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

ct
io
ns
	1	 User	sends	credentials	

2	Site	uses	URL	rewriting	
(i.e.,	put	session	in	URL)	

3	 User	clicks	on	a	link	to	http://www.hacker.com	in	
a	forum	

www.boi.com?JSESSIONID=9FA1DB9EA...	

4	

Hacker	checks	referrer	logs	on	www.hacker.com	
and	finds	user’s	JSESSIONID	

5	 Hacker	uses	JSESSIONID	and	
takes	over	victim’s	account	



A2	–	Avoiding	Broken	
Authentication	

• Authentication	should	be	simple,	centralized,	and	standardized	
• User	passwords	need	to	be	STRONGLY	hashed	before	storage	
• Use	the	standard	session	id	provided	by	your	container	
• Be	sure	SSL	protects	both	credentials	and	session	id	at	all	times	

Verify	your	architecture	

• Forget	automated	analysis	approaches	
• Check	your	SSL	certificate	
• Examine	all	the	authentication-related	functions	(particularly	password	storage)	
• Verify	that	logoff	actually	destroys	the	session	

Verify	the	implementation	

• https://www.owasp.org/index.php/Authentication_Cheat_Sheet			
• https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet	
• https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet	
• https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet	
• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet		

Follow	the	guidance	from	

13	



2017-A3	–	Sensitive	Data	Exposure	

• Failure	to	identify	all	sensitive	data	
• Failure	to	identify	all	the	places	that	this	sensitive	data	gets	stored	
•  Databases,	files,	directories,	log	files,	backups,	etc.	

•  Failure	to	identify	all	the	places	that	this	sensitive	data	is	sent	
•  On	the	web,	to	backend	databases,	to	business	partners,	internal	
communications	

• Failure	to	properly	protect	this	data	in	every	location	

Storing	and	transmitting	sensitive	data	insecurely	

• Attackers	access	or	modify	confidential	or	private	information	
•  e.g.,	credit	cards,	health	care	records,	financial	data	(yours	or	your	customers)	

• Attackers	extract	secrets	to	use	in	additional	attacks	
• Company	embarrassment,	customer	dissatisfaction,	and	loss	of	trust	
•  Expense	of	cleaning	up	the	incident,	such	as	forensics,	sending	apology	
letters,	reissuing	thousands	of	credit	cards,	providing	identity	theft	
insurance	

• Business	gets	sued	and/or	fined	

Typical	Impact	



Insecure	Cryptographic	
Storage	Illustrated	

Custom	Code	

Ac
co
un

ts
	

Fi
na

nc
e	

Ad
m
in
is
tr
at
io
n	

Tr
an

sa
ct
io
ns
	

Co
m
m
un

ic
at
io
n	

Kn
ow

le
dg
e	

M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

ct
io
ns
	1	

Victim	enters	credit	card	
number	in	form	

2	Error	handler	logs	CC	
details	because	merchant	

gateway	is	unavailable	

4	 Malicious	insider	
steals	4	million	credit	
card	numbers	

Log	files	

3	Logs	are	accessible	to	all	
members	of	IT	staff	for	

debugging	purposes	



Avoiding	Insecure	
Cryptographic	Storage	

•  Verify	your	architecture	
–  Identify	all	sensitive	data	
–  Identify	all	the	places	that	data	is	stored	
–  Ensure	threat	model	accounts	for	possible	attacks	
–  Use	encryption	to	counter	the	threats,	don’t	just	‘encrypt’	the	data	

•  Protect	with	appropriate	mechanisms	
–  File	encryption,	database	encryption,	data	element	encryption	
–  https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet		

•  Use	the	mechanisms	correctly	
–  Use	standard	strong	algorithms	
–  Generate,	distribute,	and	protect	keys	properly	
–  Be	prepared	for	key	change	

•  Verify	the	implementation	
–  A	standard	strong	algorithm	is	used,	and	it’s	the	proper	algorithm	for	this	situation	
–  All	keys,	certificates,	and	passwords	are	properly	stored	and	protected	
–  Safe	key	distribution	and	an	effective	plan	for	key	change	are	in	place		
–  Analyze	encryption	code	for	common	flaws	



Insufficient	Transport	Layer	
Protection	Illustrated	

Custom	Code	

Employees	

Business	Partners	
External	Victim	

Backend	Systems	

External	Attacker	

1	
External	attacker	
steals	credentials	
and	data	off	
network	

2	

Internal	attacker	
steals	credentials	
and	data	from	
internal	network	

Internal	Attacker	



Avoiding	Insufficient	
Transport	Layer	Protection	

•  Protect	with	appropriate	mechanisms	
–  Use	TLS	on	all	connections	with	sensitive	data	
–  Use	HSTS	(HTTP	Strict	Transport	Security)	
–  Use	key	pinning	
–  Individually	encrypt	messages	before	transmission	

•  E.g.,	XML-Encryption	
–  Sign	messages	before	transmission	

•  E.g.,	XML-Signature	

•  Use	the	mechanisms	correctly	
–  Use	standard	strong	algorithms	(disable	old	SSL	algorithms)	
–  Manage	keys/certificates	properly	
–  Verify	SSL	certificates	before	using	them	
–  Use	proven	mechanisms	when	sufficient	

•  E.g.,	SSL	vs.	XML-Encryption	

•  https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet	
•  https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet		



2017-A4	–	XML	eXternal	Entity	
(XXE)	Attack	

• An	XML	external	entity	is	a	URL,	typically	to	a	local	file	or	web	service,	or	a	
local	variable	within	the	XML	document	

• Many	XML	Parsers	have	XXE	enabled	by	default	
• Particularly	Java	XML	Parsers	

What	is	it?	

• Developers	don’t	even	know	XML	documents	support	external	entities	
•  They	accept	an	XML	document	from	an	untrusted	source	
• Process	the	XML	document	with	XML	parser	that	has	XXE	enabled	by	default	

A	common	mistake	…		

• Attackers	able	to	access	unauthorized	files	(e.g.,	/etc/password)	or	resources	
(back	end	web	services)	

• Denial	of	Service	(consume	all	available	memory)	

Typical	Impact	

19	



XXE	Attack	Examples	

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<!DOCTYPE meh [<!ENTITY xxeFun SYSTEM "file:///etc/
passwd"> ]>> 
<someStuff> 
  <isHere> 
    Hi! &xxeFun; 
  </isHere> 
</someStuff> 
 
	
	
	
	
	
	

<?xml version="1.0"?> 
<!DOCTYPE kaboom [ 
  <!ENTITY a "aaaaaaaaaaaaaaaaaa...">  ]> 
<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;...</kaboom> 
 

What	happens	this	time?	

If This XML document is 
•  received from an external 

provider,  
•  evaluated, then  
•  returned to the user 
The contents of /etc/passwd are 
returned to the attacker 



XXE	Defense	Examples	

Defense	1:	Disable	Entity	inclusion.	The	XML	Validator	will	throw	a	Fatal	Exception	if	such	an	entity	is	
included.	
Xerces	Example:	
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); 
dbf.setNamespaceAware(true); 
try { 
 dbf.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true); 
 // Use DBF here to parse XML (safely) 
} catch (ParserConfigurationException e) { //handle error } 
 

Defense	2:	If	entities	need	to	be	allowed,	disable	expansion	of	external	entities.	
Xerces	Example:	
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); 
dbf.setNamespaceAware(true); 
try { 
 dbf.setFeature("http://xml.org/sax/features/external-general-entities", false); 
 dbf.setFeature("http://xml.org/sax/features/external-parameter-entities", 
false); 
 // Use DBF here 
} catch (ParserConfigurationException e) { //handle error } 
	



A4	–	Avoiding	XXE	

•  Are	you	even	processing	XML	at	all?	
•  If	so,	which	XML	parsers	are	you	using?	
•  Do	they	have	XXE	enabled	by	default?	
•  Are	your	XML	document	sources	trustworthy?	

Verify	your	architecture	

•  Verify	all	the	types	of	XML	parsers	being	used,	if	any.	
•  For	each,	verify	each	XML	parser	has	either	
•  a)	XXE	disabled	by	default	(and	not	enabled),	or	
•  b)	XXE	is	disabled	explicitly,	or	
•  c)	Is	replaced	with	an	XML	parser	of	type	a)	or	b)	

Verify	the	implementation	

•  https://www.owasp.org/index.php/
XML_External_Entity_(XXE)_Prevention_Cheat_Sheet		

Follow	the	guidance	from	

22	



2017-A5	–	Broken	Access	
Control	

• Each	function	and	data	reference	needs	to	verify	user	is	authorized	to	access	in	manner	
requested	(read,	write,	delete,	create,	etc.)	

How	do	you	protect	access	to	specific	functions	and	specific	data	elements?	

• Displaying	only	authorized	links	and	menu	choices	
• This	is	called	presentation	layer	access	control,	and	doesn’t	work	
• Attacker	simply	forges	direct	access	to	‘unauthorized’	functions	and	data	

A	common	mistake	…	

• Attackers	invoke	functions	and	services	they’re	not	authorized	for	
• Access	other	user’s	accounts	and	data	
• Perform	privileged	actions	

Typical	Impact	



Missing	Function	Level	Access	
Control	Illustrated	

•  Attacker	notices	the	URL	
indicates	his	role	

				/user/getAccounts	

•  He	modifies	it	to	another	
directory	(role)	

				/admin/getAccounts,	or	
				/manager/getAccounts	
	
•  Attacker	views	more	

accounts	than	just	their	
own	

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts



Insecure	Direct	Object	
References	Illustrated	

•  Attacker	notices	his	acct	
parameter	is	6065	

				?acct=6065	

•  He	modifies	it	to	a	nearby	
number	

				?acct=6066	
	
•  Attacker	views	the	

victim’s	account	
information	

https://www.onlinebank.com/user?acct=6065	

25	



Avoiding	Broken	Access	
Control	

•  For	a	function,	a	site	needs	to	do	at	least	these	things	
–  Restrict	access	to	authenticated	users	(if	not	public)	
–  Enforce	any	user	or	role	based	permissions	(if	private)	

•  For	data,	a	site	needs	to	verify	
–  User	has	required	role	to	see	that	data,	or	
–  User	has	been	granted	access	(i.e.,	is	data	owner,	is	in	associated	group,	etc.)	
–  User	has	the	TYPE	of	access	being	used	(Read,	Write,	Delete,	etc.)	

•  Verify	your	architecture	
–  Use	a	simple,	positive	model	at	every	layer	
–  Be	sure	you	actually	have	a	mechanism	at	every	layer	

•  Verify	the	implementation	
–  Forget	automated	analysis	approaches	
–  Verify	each	URL	(plus	any	parameters)	referencing	a	function	or	data	is	protected	by	

•  An	external	filter,	like	Java	EE	web.xml	or	a	commercial	product	
•  Or	internal	checks	in	YOUR	code	–	e.g.,	your	isAuthorizedForRESOURCE()	method	

–  Verify	the	server	configuration	disallows	requests	to	unauthorized	file	types	
–  Use	OWASP’s	ZAP	or	your	browser	to	forge	unauthorized	requests	



2017-A6	–	Security	
Misconfiguration	

•  Everywhere	from	the	OS	up	through	the	App	Server	

Web	applications	rely	on	a	secure	foundation	

•  Think	of	all	the	places	your	source	code	goes	
•  Security	should	not	require	secret	source	code	

Is	your	source	code	a	secret?	

• All	credentials	should	change	in	production	

CM	must	extend	to	all	parts	of	the	application	

•  Install	backdoor	through	missing	OS	or	server	patch	
• Unauthorized	access	to	default	accounts,	application	functionality	or	data,	
or	unused	but	accessible	functionality	due	to	poor	server	configuration	

Typical	Impact	



Hardened	OS	

Web	Server	

App	Server	

Framework	

Security	Misconfiguration	
Illustrated	

App	Configuration	

Custom	Code	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
tio

n	
Tr
an
sa
ct
io
ns
	

Co
m
m
un

ic
at
io
n	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

ct
io
ns
	

Test	Servers	

QA	Servers	

Source	Control	

Development	

Database	

Insider	



Avoiding	Security	
Misconfiguration	

•  Verify	your	system’s	configuration	management	
–  Secure	configuration	“hardening”	guideline	

•  Automation	is	REALLY	USEFUL	here	

–  Must	cover	entire	platform	and	application	
–  Analyze	security	effects	of	changes	

•  Can	you	“dump”	the	application	configuration	
–  Build	reporting	into	your	process	
–  If	you	can’t	verify	it,	it	isn’t	secure	

•  Verify	the	implementation	
–  Scanning	finds	generic	configuration	and	missing	patch	problems	



2017-A7	–		
Cross-Site	Scripting	(XSS)	

•  Raw	data	from	attacker	is	sent	to	an	innocent	user’s	browser	

Occurs	any	time…	

•  Stored	in	database	
•  Reflected	from	web	input	(form	field,	hidden	field,	URL,	etc…)	
•  Sent	directly	into	rich	JavaScript	client	

Raw	data…	

•  Try	this	in	your	browser	–	javascript:alert(document.cookie)	

Virtually	every	web	application	has	this	problem	

•  Steal	user’s	session,	steal	sensitive	data,	rewrite	web	page,	redirect	user	to	
phishing	or	malware	site	

• Most	Severe:	Install	XSS	proxy	which	allows	attacker	to	observe	and	direct	all	
user’s	behavior	on	vulnerable	site	and	force	user	to	other	sites	

Typical	Impact	

30	



Cross-Site	Scripting	Illustrated	

Application	with	
stored	XSS	
vulnerability	

3	

2	

Attacker	sets	the	trap	–	update	my	profile	

Attacker	enters	a	
malicious	script	into	a	web	
page	that	stores	the	data	
on	the	server	

1	

Victim	views	page	–	sees	attacker	profile	

Script	silently	sends	attacker	Victim’s	session	cookie	

Script	runs	inside	victim’s	
browser	with	full	access	to	
the	DOM	and	cookies	

Custom	Code	

Ac
co
un

ts
	

Fi
na
nc
e	

Ad
m
in
ist
ra
tio

n	
Tr
an
sa
ct
io
ns
	

Co
m
m
un

ic
at
io
n	

Kn
ow

le
dg
e	
M
gm

t	
E-
Co

m
m
er
ce
	

Bu
s.
	F
un

ct
io
ns
	

31	



(AntiSamy)	

Avoiding	XSS	Flaws	

•  Recommendations	
–  Eliminate	Flaw	

•  Don’t	include	user	supplied	input	in	the	output	page	

–  Defend	Against	the	Flaw	
•  Use	Content	Security	Policy	(CSP)	
•  Primary	Recommendation:	Output	encode	all	user	supplied	input	(Use	

OWASP’s	Java	Encoders	to	output	encode)	
	 	https://www.owasp.org/index.php/OWASP_Java_Encoder_Project	

•  Perform	‘white	list’	input	validation	on	all	user	input	to	be	included	in	page	
•  For	large	chunks	of	user	supplied	HTML,	use	OWASP’s	AntiSamy	to	sanitize	

this	HTML	to	make	it	safe	
							See:	https://www.owasp.org/index.php/AntiSamy	

•  References	
–  For	how	to	output	encode	properly,	read	the	

https://www.owasp.org/index.php/XSS_(Cross	Site	Scripting)	Prevention	Cheat	Sheet		

32	



Safe	Escaping	Schemes	in	Various	
HTML	Execution	Contexts	

CSS Property Values 
(e.g.,	.pdiv	a:hover	{color:	red;	text-decoration:	

underline}	)	

JavaScript Data 
(e.g.,	<script>	

someFunction(‘DATA’)</script>	)	

HTML Attribute Values 
(e.g.,	<input	name='person'	type='TEXT'	

value='defaultValue'>	) 

HTML Element Content 
(e.g.,	<div>	some	text	to	display	</div>	)	

URI Attribute Values 
(e.g.,	<a	href="	http://site.com?search=DATA"	) 

#4:	All	non-alphanumeric	<	256	à	\HH	
ESAPI:	encodeForCSS()	

#3:	All	non-alphanumeric	<	256	à	\xHH	
ESAPI:	encodeForJavaScript()	

#1:		(	&,	<,	>,	"	)	à	&entity;			(	',	/	)	à	&#xHH;	
ESAPI:	encodeForHTML()	

#2:	All	non-alphanumeric	<	256	à	&#xHH;	
ESAPI:	encodeForHTMLAttribute()	

#5:	All	non-alphanumeric	<	256	à	%HH	
ESAPI:	encodeForURL()	

ALL	other	contexts	CANNOT	include	Untrusted	Data	
Recommendation:	Only	allow	#1	and	#2	and	disallow	all	others	
	

See:		www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet		
										https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet		 33	



2017-A8	–	Insecure	
Deserialization	

•  Data	from	attacker	is	deserialized	back	into	application	object	

Occurs	any	time…	

• Major	open	source	libraries/frameworks	(e.g.,	Struts,	Spring)	
•  Custom	code	as	well	(but	less	attractive	to	attackers)	

Commonly	identified	in	

•  Arbitrary	code	execution	caused	as	a	side	affect	of	attempt	to	
construct	application	object	from	deserialized	data	

•  Data	tampering	attacks	where	application	object	is	successfully	
created,	but	object	type	or	object	values	are	not	as	expected/
not	authorized	for	current	user	

Typical	Impact	

34	



Deserialization	Examples	

•  CVE-2017-5954	–	“serialize-to-js	package	0.5.0	for	Node.js.	Untrusted	data	
passed	into	the	deserialize()	function	can	be	exploited	to	achieve	arbitrary	
code	execution	by	passing	a	JavaScript	Object	with	an	Immediately	
Invoked	Function	Expression	(IIFE).”	

•  CVE-2017-9424	–	“IdeaBlade	Breeze	Breeze.Server.NET	before	1.6.5	
allows	remote	attackers	to	execute	arbitrary	code,	related	to	use	of	
TypeNameHandling	in	JSON	deserialization.”	

•  CVE-2017-9805	–	“REST	Plugin	in	Struts	2.1.2	thru	2.3.33	and	2.5.x	before	
2.5.13	uses	an	XStreamHandler	with	an	instance	of	XStream	for	
deserialization	without	any	type	filtering,	which	can	lead	to	Remote	Code	
Execution	when	deserializing	XML	payloads.”	

•  CVE-2017-1000034	–	“Akka	versions	<=2.4.16	and	2.5-M1	are	vulnerable	
to	a	java	deserialization	attack	in	its	Remoting	component	resulting	in	
remote	code	execution”	



Avoiding	Deserialization	
Vulnerabilities	

•  Stay	on	top	of	A9	–	Use	of	known	vulnerable	components,	as	bulk	of	this	risk	
involves	use	of	such	components	

Libraries	

•  Ideal:	Don’t	send	deserialized	objects	to	untrusted	users	
•  If	you	must,	then	
•  try	to	validate	untrusted	data	BEFORE	deserializing	
•  Integrity	seals	recommended	

• Harden	your	deserialization	mechanism	to	ONLY	deserialize	limited	set	of	object	
types	

•  Limit	the	size	of	such	objects	to	avoid	denial	of	service	attacks	

Your	custom	code	

• https://www.owasp.org/index.php/Deserialization_Cheat_Sheet		

Follow	guidance	from	

36	



2017-A9	–	Using	Known	
Vulnerable	Components	

•  Some	vulnerable	components	(e.g.,	framework	libraries)	can	be	identified	
and	exploited	with	automated	tools	

•  This	expands	the	threat	agent	pool	beyond	targeted	attackers	to	include	
chaotic	actors	

Vulnerable	Components	Are	Common	

•  Virtually	every	application	has	these	issues	because	most	development	teams	don’t	
focus	on	ensuring	their	components/libraries	are	up	to	date	

•  In	many	cases,		the	developers	don’t	even	know	all	the	components	they	are	using,	
never	mind	their	versions.	Component	dependencies	make	things	even	worse	

Widespread	

•  Full	range	of	weaknesses	is	possible,	including	injection,	broken	access	control,	XSS	...	
•  The	impact	could	range	from	minimal	to	complete	host	takeover	and	data	
compromise	

Typical	Impact	

37	



What	Can	You	Do		
to	Avoid	This?	

• Automation	checks	periodically	(e.g.,	nightly	build)	to	see	if	your	libraries	
have	known	vulnerabilities	

• Upgrade	to	avoid	critical/exploitable	vulnerabilities	
• Or	mitigate	in	some	other	way	

• Commercial	Solutions:	Numerous	options	now	
• Far	more	than	in	2013	when	2013-A9	was	first	added	

• Free:	https://www.owasp.org/index.php/OWASP_Dependency_Check	

Ideal	(Detect	Known	Vulnerable	Libraries)	

• Automation	checks	periodically	(e.g.,	nightly	build)	to	see	if	your	libraries	
are	out	of	date	

•  If	any	are	out	of	date,	but	you	really	don’t	want	to	upgrade,	check	to	see	if	
there	are	any	known	security	issues	with	these	out	of	data	libraries	
•  If	so,	upgrade	those	

Minimum	(Identify	out	of	date	libraries)	

38	



Automation	Example	for	Java	
–	Use	Maven	‘Versions’	Plugin	

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status 
against Central repository 

Most out of Date! Details Developer Needs 

This can automatically be run EVERY TIME software is built!! 39	



2017-A10	–	Insufficient	
Logging	&	Monitoring	

• They	usually	just	tell	users	about	errors	(failed	attacks)	and	
ask	them	to	try	again	

• They	(usually)	DON’T	log	such	attacks	well	
• They	frequently	don’t	monitor	what	they	do	log	(or	
notice),	and	take	action	when	unexpected	behaviors	are	
detected	(Attacks!!)	

Web	application	are	frequently	very	polite	

• This	enables	attackers	to	try	over	and	over	until	they	
eventually	break	in	

• And	when	they	do,	they	might	not	be	noticed	and/or	how	
they	succeeded	and	what	they	did	cannot	be	determined	

Typical	Impact	



Providing	Sufficient	Logging	&	
Monitoring	

•  Do	you	have	a	standard	logging	system?	
•  Do	all	your	standard	security	controls	log	all	security	critical	events?	
•  Do	all	your	custom	security	controls	log	all	security	critical	events?	
•  Can	you	easily	distinguish	security	vs.	non-security	log	events?	

Logging	

•  Are	application	logs	sent	to	a	central	monitoring	location?	
•  Do	you	have	monitoring	software,	that	is	running?	
•  Can	it	detect	security	critical	events?	Can	it	detect	the	accumulation	of	interesting	
events	above	defined	thresholds?	

•  Can	monitoring	software	raise	alerts	to	system	owners?	
•  Can	monitoring	software	take	action	against	obvious	attackers?	

Monitoring	

•  https://www.owasp.org/index.php/OWASP_AppSensor_Project		

Follow	guidance	from	

41	



Summary:	How	do	you	
address	these	problems?	

•  Develop	Secure	Code	
–  Follow	the	best	practices	in	OWASP’s	Guide	to	Building	Secure	Web	Applications	

•  https://www.owasp.org/index.php/Guide	
•  And	the	cheat	sheets:	https://www.owasp.org/index.php/Cheat_Sheets	

–  Use	OWASP’s	Application	Security	Verification	Standard	as	a	guide	to	what	an	
application	needs	to	be	secure	
•  https://www.owasp.org/index.php/ASVS	

–  Use	standard	security	components	that	are	a	fit	for	your	organization	
•  Use	OWASP’s	ESAPI	to	help	identify	what	standard	security	components	you	are	likely	

to	need	
•  https://www.owasp.org/index.php/ESAPI	

•  Review	Your	Applications	
–  Have	an	expert	team	review	your	applications	
–  Review	your	applications	yourselves	following	OWASP	Guidelines	

•  OWASP	Code	Review	Guide:		
	 	https://www.owasp.org/index.php/Code_Review_Guide		

•  OWASP	Testing	Guide:		
	 	https://www.owasp.org/index.php/Testing_Guide		



Thank	you	
OWASP	Top-10	2017	

	


