
��

Creating Unicode Compatible OpenType Telugu Fonts

Tirumala Krishna Desikacharyulu
Winnipeg, Manitoba, Canada

Abstract

 Pothana2000 is the first Unicode compatible OpenType font designed for Telugu. It was
designed under Windows 2000, with generous help from Apurva Joshi of Microsoft’s Opentype
Division. This font was working in Windows 2000 even before Microsoft officially released the
Gautami Opentype Telugu font with Windows XP Professional. In this paper I discuss the
practical aspects of designing the Pothana2000 font so as to provide stimulus and guidance to
other Telugu font designers.

1.0 Introduction

 With Windows 2000 Microsoft started supporting Indian languages. The initial support was
limited to Hindi, Sanskrit, Marathi, Konkani and Tamil. This support was extended to Telugu
and Kannada and some other languages in their Windows XP Professional operating system, and
in their Office products such as Word XP. With XP, Microsoft also provided an Opentype
Telugu font named Gautami. But it is a proprietary font, not available without license from
Microsoft. Although Gautami serves the basic needs of the operating system, it is not the best
looking font for aesthetic composition of Telugu documents. So, there is a great need to
develop aesthetically appealing Telugu fonts for publication of Telugu documents and books.

 I was active in Telugu font design for more than a decade. My Pothana font, which was
designed for pre-2000 Windows systems is widely used for publications in North America.
However, like many other Telugu fonts designed in these environments, it doesn’t conform to
any standard. So, when Microsoft started supporting Unicode Indian fonts in Windows 2000, I
upgraded this font to Unicode compatible OpenType format, thus making it the first Telugu font
working in this environment. I have placed it under GPL (General Public License), making it
accessible to researchers and the Telugu language enthusiasts world wide. In this paper I will go
into some details of designing this font, hoping it stimulates similar work from other enthusiastic
font designers.

2.0 Theoretical Background

2.1 The Unicode Script Processor (Uniscribe)

 The processing of Unicode fonts under Windows proceeds as follows. Each language is given
a locale, which defines the language environment, including the keyboard input. This locale
definition maps user’s key strokes to the appropriate Unicode range. For ex.., when you choose
an English locale and press A, a decimal code of 65 is passed to the computer. If you define a

Creating Unicode Compatible OpenType Telugu Fonts

� ��

locale for Telugu that maps A to l, a decimal code of 3078 is passed to the computer when you

press A. An application such as Word receives this keyboard input and lays out text in proper
format with the help of the Unicode Script Processor (USP10.dll), which comes with the
operating system. This processor, called "Uniscribe" in short, contains APIs that facilitate
applications in formatting complex scripts. Uniscribe has multiple "shaping" engines, which
know how to layout multiple complex scripts.
 Uniscribe subdivides a character string into "items", "runs", and "clusters". An Item is a set of
characters having the same script and direction attributes; Runs are portions within an item that
have the same formatting attributes; Clusters are the script-defined, indivisible character group-
ings. An application such as Word XP builds runs based on its own stored formatting attributes,
and on item boundaries obtained from Uniscribe. Using Uniscribe, client applications only need
to manage a buffered storage of Unicode character codes, input by the user in phonetic order.
This buffered sequence of characters are passed on to Uniscribe which does the layout of the
script.. As such this buffered sequence of characters remains intact, untouched by the layout
operations of the Uniscribe. Actually this sequence is what is stored in the Unicode text file.

2.2 OpenType Shaping Engine (OTL Services)

 Windows also contains an OpenType Shaping engine for handling script features unknown to
Uniscribe. These are the features embedded into Opentype fonts. An OpenType font is an
extended version of a TrueType font, which may contain one or more additional tables to handle
features such as contextual glyph substitutions, relative glyph positioning, kerning etc. This
engine frees the client applications from handling complexities of script rendering, such as
applying contextual glyph substitutions, relative glyph positioning etc. Thus the applications
work at the level of features and characters, with which they are already familiar, and let OTL
Services handle the details of lookup tables, glyph Ids, which are built into the font.

2.3 How The Telugu Shaping Engine Works

In this paper, we are only interested in Telugu shaping engine of Uniscribe. Here a brief
description of this engine is given based on the detailed documentation published on Microsoft’s
web site, http://www.microsoft.com/typography/otfntdev/teluguot/shaping.htm. It is essential to
understand how this engine works because we have to design the font to conform to its working.
The Telugu shaping engine works on a Telugu Unicode character string in the following stages:

1. Identifies syllables
2. Reorders characters within the syllables
3. Shapes glyphs using OTL services
4. Positions glyphs using OTL services

First the shaping Engine identifies the boundaries of syllables and isolates certain parts. It

does this to be able to place syllable elements in required positions and to determine if combi-
ning elements have to be preferentially replaced by graphically distinct forms, such as the

Creating Unicode Compatible OpenType Telugu Fonts

� ��

syllable kssa (K�). Then the base consonant, which is displayed in full form, is found, and all

other elements are classified by their position relative to this base. These other elements could be
pre-base (non-existent in Telugu), below-base (quite common), above-base (quite common) and
post-base (quite common). The shaping engine splits the matras that occur on more than one
side of the base consonant into their constituents.

 The phonetic sequence of Unicode characters initially passed on to Uniscribe may not be in
the order that it can work with. So, Uniscribe reorders this sequence and maintains a buffer of
such appropriately reordered character codes, delineated as "clusters". It then gets the appropriate
glyph substitutions for these clusters where necessary, using OTL services. Since Uniscribe
uses reordered character sequences to render the font on the screen, it is essential that the font
designer take this behavior into account when designing the font. This re-ordering is done
according to the following rules:

1. The base consonant is found by the following algorithm: starting from the end of the syllable,
move backwards until a consonant is found that does not have a below-base or post-base form
(post-base forms have to occur after below-base forms), or arrive at the first consonant. The
consonant stopped at will be the base consonant.

2. If the base consonant is not the last one, then Uniscribe moves the halanth from the base
consonant to the last one.

3. Uniscribe splits two part matras such as AIMatra into above base and below base components.

In Telugu there is only one such case, i.e., AI Matra mu���This is split into �'³�������i.e., into an

above-base E Matra (code 0C46) and a below-base AI Length Mark (code 0C56).

4. Uniscribe classifies consonants and matra parts as above-base, below-base and post-base. This
classification is a language feature, not a font dependent feature. For Telugu this classification is
as follows:.

Below-base Markers: All consonant markers (i.e., Ottulu), AI length mark, Anudatta. and
the matras corresponding to Vocalic L and Vocalic LL. Note that the latter three markers are
not yet defined in the Telugu Unicode range, which they must be. They are mentioned here
for completeness.

Above-base Markers : The matras corresponding to vowels l��&��m��%��s��*��u�v���Udatta,

Double Udatta, and Nukta. Note that Udatta, Double Udatta and Nukta are not yet defined in
the Telugu Unicode range, which they must be. 1They are mentioned here for completeness.

���
1 Here I am assuming that we can define a Nukta marker in Telugu similar to the Devanagari
Nukta, to obtain dantya (dontal) ca and ja. Another way of achieving this is to allocate two
additional code points for these two characters in the Telugu Unicode range. This is the

Creating Unicode Compatible OpenType Telugu Fonts

� ��

Post-base Markers : The matras corresponding to vowels +��n��o��p���i.e., Kommu,

Kommu-deerghamu, Rutvamu, Rutvam-deerghamu) are post-base matras. Although the
Anuswara (Sunna), Ardhanuswara (Arasunna), Visarga and Avgaraha occur as post-base
characters, they do not affect the shape of the base consonant or ligature, so they are
classified as Vowel Modifiers (VMs), not as post-base matras. Note that Avagraha is not yet
defined in the Telugu Unicode range, which it must be. It is mentioned here for completeness.

There are no pre-base forms in Telugu.

5. Uniscribe then groups elements of the syllable (consonants and matras) according to this
classification. Thus pre-base elements precede the base consonants, and the above-base, below-
base and post-base components will follow the base glyph. Halanths are moved with the
consonants they affect.

These principles are illustrated by the following example: Consider the Sanskrit word

[��������lDNVKm\DL ����foU /DNVK� mi����

7hiV�word KDV� �� V\� llDEles��lD�
[����kshmyai�
 ������The first syllable is very simple consisting of

a single base consonant. So it doesn’t need any rearrangements, substitutions or relative
positioning. The second syllable is more complex, so let us analyze it further:

User’s Phonetic Input Keyboard Output Rearranged by Uniscribe�

K��?�\��?�h�� mu�������� � Z��?�g��?�\��?��h� mu��� � Z��'³�������g��?�\��?��h��?�

 When the user enters K���the codes Z��?�g��are passed on to the computer because Unicode

doesn’t define a code point for K���but treats it as a composite syllable consisting of the characters�
Z��?�g���Yet, K��is provided on the keyboard because it occurs very frequently and it will be very

clumsy to enter 3 key strokes to compose it every time. So, when the user presses the key corres-
ponding to K���the keyboard driver decomposes it into Unicode compatible character cluster Z��?�
g����Uniscribe knows that it has to substitute a single glyph (K� for this cluster, irrespective of

what transformations it has to apply to other characters that follow it. Thus when K and its

���
preferred option. Even if these are allocated, it is still a good idea to have Nukta in Telugu to
provide extendability of the script to foreign sounds.

Creating Unicode Compatible OpenType Telugu Fonts

� ��

vowel-conjugated (matra) forms occur (in this case ��, Uniscribe applies a language feature

called "akhand" to process these glyphs first before processing any others. So, it rearranges the
character sequence as Z��'³������g��?���by moving the Halanth (�?) after Ssa (g����and moving in the

Ai Matra marker (mu���next ka (Z���and splitting it into its above-base and below-base components

(�'³���������It then applies the akhand feature to get ���Given the character sequence Z��'³������g��?����it is

actually �the OTL services that render this final glyph using the lookup tables and glyphs defined
within the OpenType font. Having taken care of this "akhand" feature, OTL services are used
again to transform the remaining string \��?��h��?��by applying below base forms feature

("blwf") to get ma and ya consonant markers (Ottulu). Although complex, this example by no
means illustrates all the features and transformations required to produce the entire Telugu
script. In general terms syllables before being reordered by Uniscribe have the following form:

1. {C+[Nukta]+H}+ C + [M]+[VM]+[SM]
 - A syllable with consonants and vowels, Ex., the syllable " 3���in the word �� 3���
2. {C+[Nukta]+H}+ C + H
 - A syllable without vowels. Ex, the syllable ����Ý�� �����in the word �������� Ý�� ��
3. VO+[VM]+[SM]
 - A syllable without consonants. Ex., "uP�
After reordering by Uniscribe, the above syllables have the following forms, respectively:

1. Cbase + [Mabove]+[Mbelow]+[Mpost]+{Cbelow+H}+[VMpost]

2. Cbase + {C+H}+ H

3. VO + [VM1] + [VM2]

 where C = Consonant character
 *Nukta = Nukta marker
 H = Halanth (commonly known as Pollu �?� to Telugu people)

 M = Matra marker (Such as AAMatra �5, EMatra �', OMatra �^���UUMatra �@ etc.)

 VM = A Vowel modifier character or glyph (such as Visarga �3, Anuswara �P etc.)

�

SM = A stress Mark, such as Udatta �µ����Anudatta �¶����etc.

 VO = A free standing (independent) vowel such as $��&��n�s�t���etc.

 { } - indicates 0 or more occurrences; [] - indicates 0 or 1 occurrence.

���
�

�These are not yet defined in the Telugu Unicode range, but included here for completeness.

Creating Unicode Compatible OpenType Telugu Fonts

� ��

These rules result in the following character sequences for the three example syllables:

Syllable Input Char Sequence Rordered Character Sequence
--
��� 3� � � a����?��(��?���V����� mu���3� � � a�����������������'�������������������� u������������(���?��V��?��������������3�
� � � � C+H+C+H+C+M+VM Cbase + Mabove+Mbelow+2*(Cbelow+H)+VMpost
�
���Ý�� � � � g����?��c���?��a����?���� � � g���������c���?�a��?�������?���������
� � � � C+H+C+H+C+H Cbase + 2*(C+H) + H

���uP�� � � u����������P� � � � � � � u������������P�
� � � � VO+VM VO+VM

The above three examples illustrate how Uniscribe splits AImatra into its above-base and below-
base components and rearranges the initial phonetic sequence of characters. It is this reordered
sequence that is formatted by OTL services using the lookup tables built into an OpenType
Telugu font. So, when building the lookup tables, the font designer must have a clear concept of
this Uniscribe’s behaviour.

2.4 Features For the Telugu script
� Taking Uniscribe’s reordered sequence of characters as input, the shaping engine applies
various shaping and positioning features in a fixed order. So, the font designer must build these
features into the font and sequence them in the right order to get proper shaping and positioning
of the glyphs that make up a syllable. All these features are implemented through lookup tables
built into the font. Here the word "syllable" is important because all features operate within one
orthographic syllable. The features that shape Telugu script are given below in the order they are
applied:

Language based forms:

 1. akhnd - Akhnad feature.
 This feature applies to the cluster that makes up the syllable KSSA (K) and its matra

variants and shapes them in preference to all others. We have already discussed this in
section 2.3.

2. blwf - Below-base form.

This feature shapes the consonant markers (Ottulu) in the Telugu script. Recall that all
the consonant markers are below-base glyphs in the Telugu script. All the consonant
markers (Ottulu) discussed in section 2.3 were shaped by this feature.

Creating Unicode Compatible OpenType Telugu Fonts

� ��

Conjuncts and typographical forms:

1. blws - Below-base substitution

This feature produces conjuncts of the base glyph with below-base consonant variants
(Ottulu). Context for this feature is C + {Ottu} -> Consonant Conjunct. Examples:

 g�������c�*� ����a�*� ��!��g�� ����g���c�*� ���[�*� ����!��g« �����9���a�*� ��!�9� �����etc.

2. abvs - Above-base substitution

 This feature shapes the above-base matra conjuncts, and (not yet implemented) above-

base accent marks. Recall that the matra conjuncts corresponding vowels l��&��m��%��
s��*��u�v��fall into this class. Udatta, Double Udatta, and Nukta are the (not yet

implemented) above-base stress marks. Context for this feature is C + M -> Matra
Conjunct. Examples: Z����5���!��á���V����X���!��ö���C����'���!�� ���9����D��!� �����etc.

3. psts - Post-base substitution

This feature produces conjuncts with post-base vowel markers. In Telugu the matras
�d���@��`��and �B are the post-base markers. Of these only �d�and �@ need contextual

substitution. Context for this substitution is C + {Marker} -> Consonant Conjunct. The
matras �`��and �B do not need such substitution and can be treated similar to Anu-

swara (�P), Visarga (�3), Arasunna (�N), and Avagraha (O). Examples:

 U�������d���!� ����U����@��!� ��9����@���!�� ����C���d��!�� ����Y����@�!�� ���etc.

Halanth forms:

1. haln - Halanth-form substitution

This feature produces halanth forms where a consonant or a ligature ends with a pollu
(halanth) Examples:

 W�������?���!�ß���K����?���!��à����A����?��!�Ø���6����?��!�Ô��V+ �?��!���½����etc.

Positioning features:

1. abvm - above-base mark positioning

This feature can be used to position above-base matras (such as EMatra) and swara
markers (ex., Udatta) with the base glyph. This feature is not used by Pothana2000, so
we don’t discuss it further.

Creating Unicode Compatible OpenType Telugu Fonts

� ��

2. blwm - below-base mark positioning

This feature can be used to position below-base marks with the base glyph. This
feature is extensively used by Pothana2000 to position below-base consonant markers
(Ottulu) with the base glyph. The impressive positioning of Ottulu in syllables such as
g� ��9� �� ��etc. is achieved by this feature.

2. dist - Distances

This feature can be used to adjust relative position of base and dependent glyphs in a
syllable. This feature is not currently used by the Pothana2000 font, so we don’t
discuss it further.

So, to summarize, the processing of Telugu script takes place as follows. The user inputs the
text in phonetic order from the keyboard. The language locale (driver) maps user’s input into
appropriate Unicode range for the language. The Uniscribe re-orders the characters in user’s input
if required. Then features discussed above are applied on this re-ordered character sequence in the
order specified above to shape and render the syllable.

3.0 The Pothana2000 Font
�
� All the character outlines in the Pothana2000 font were designed using the font editor
Fontographer 4.1. This file was then ported into Microsoft’s Visual OpenType Layout Tool
(VOLT) to add lookups corresponding to the features described above. Here I describe the
architecture of this font as one example of building a Telugu font. I do not claim this is the best
or optimal way of doing it, as there could be many alternate designs. This font contains 630
glyphs, which are divided into the following categories:

1. Punctuation symbols and control characters: 39
2. Arabic Numerals: 10
3. Telugu Numerals: 10
4. Zero Width Joiner and Non-joiner : 2
5. Avagraha , Nukta, Vocalic L Marker, Udatta, Anudatta (all taken from Devanagari range): 5
6. Vowels defined in Telugu Unicode range: 16
7. Vowel markers (Matras) defined in Telugu Unicode range: 14
8. Anuswara, Arasunna, Visarga and Halanth (Virama) : 4
9. Consonants defined in Telugu Unicode range and KSSA (K): 36

10. Below-base consonant markers of the above consonants (Ottulu): 36
11. Vowel conjugated (Matra) forms of the above consonants: 360
 These are limited to Matras �5���X���4��d��@��'��T��^��D��_�

Creating Unicode Compatible OpenType Telugu Fonts

� ��

12. Dantya ca, ja and their matra forms with Matras �5���d��@���^��D��_: 14

13. Halanth forms of all the above consonants: 38
14 Other contextual forms and markers: 46

The font includes Nukta and the dantya ca, ja and their matra forms with the hope that they

will be supported in future versions of Unicode. It also includes Udatta, Anudatta, Double Udatta,
and vocalic L markers with the same expectation. Actually, the Unicode standard says that the
markers defined in one script’s range can also be used in other ranges, but Microsoft’s
implementation doesn’t allow this, if any contextual shaping and positioning involves these
"foreign" markers. Hence, only Avagraha works well as borrowed from Devanagari at present.

Because most of the control characters and punctuation symbols come from Latin1 range,
and some other symbols/markers come from Devanagari range, these languages are declared
within the font definition without any features. Telugu language is declared with all the features,
because all the shaping and positioning in this font occurs only for Telugu glyphs. The feature
definitions within the Pothana2000 font arranged in the order they are processed is given below:

Table 1: Features defined in the Pothana2000 Font

Feature What it processes

Nukta forms <nukt> Nukta Consonant forms. Note: this feature doesn’t work because Nukta

is borrowed from the Devanagari range as it is not defined in the Telugu
range. It is included for completeness, hoping that future revisions of
Telugu Unicode allow this feature, hence the dantya ca and ja and their
volwel-conjugated (Matra) forms.

Akhand <akhn> K���K�Ottu and K�Matra forms

Below-base forms
<blwf>

Below-base forms (Ottulu) of all consonants except K��The K�ottu is

processed by the akhn feature.

Below-base
substitutions <blws>

Performs the following substitutions:
a) Substitutes two consecutively occurring below-base consonant
markers (Ottulu) by a single double ottu form. Ex., g��?�c��?�[���!��g« ����
a��?�g��?�)���!��a

b) In syllables such as ����where AI Length mark and below-base ottu

occur together, it first substitutes AI Length mark by an alternate form
of AI Length mark and then maps this AI Length mark and below-base
ottu combination by a properly formed ottu-AI length marker glyph.
c) In syllables such as ���a�� ��æ�³ � �³ ��� � where below-base ottu and ra-

ottu combinations, or AI Length Mark and ra-ottu combinations occur,

Creating Unicode Compatible OpenType Telugu Fonts

� ��

it substitutes the below-base ra-ottu by its post-base variant.
d) In syllables such as�V² ��\± �� � �9� � ��� where a below-base ra-ottu

occurs, it replaces the default below-base ra-ottu with wider variants or
a post-base variant of it, depending upon the width of the base glyph or
ligature.

Above-base
substitutions <abvs>

This feature processes the consonant-vowel conjugated forms where the
context is a consonant followed by an above-base matra (�5���X���4��d��
�@���'��T���^��D��_��are the above-base matras). Examples:

Z��5��!�á����Z��?�a��X��!��â² ���Ý��?�)��'���!��� ���V��_���!�þ��C��^���!� � etc.�
Post-base substitution
<psts>

Performs the following substitutions:
1. When a consonant is followed by the post-base matras �d���@��it
obtains a proper consonant-vowel conjugated form. Examples:
Z��d��!�ä����Z��@��!��å����Ý��?�)��@��!��� ������V��?�a��@���!�ù± � etc.

2. When the above context occurs with ligatures involving a ra-ottu, it
substitutes the default below-base ra-ottu by its variants depending upon
the width of the ligature. Ex: »�a���d��!�ä± ��9��?�a��d��!�� ���:��?�a��d�
�!�� ����\��?�a��@��!�� � ���<��?�a���@���!�� ��± etc.�
3. It also substitutes the special form of ppu-ottu. Examples:
U��?�U���d��!� ��U��?�U���?�a��d��!� ���

Halanth forms <haln> Puts the base consonant in halanth form when the syllable ends with a
halanth. Examples: Z��?��!�»���A���?��!�Ø���C��?��!�¾ U��?��!�Ñ���
U��?�U���?��!�Ñ����b��?�c��?�b��?��!�Þ¦� ���g��?�c��?�a��?��!�Ý�� ����
a��?�M��?�h��?��!�×�� ��etc.

Below-base mark
positioning <blwm>

This feature includes a number of positioning lookups which place the
below-base glyphs derived by previous features into aesthetically
appealing positions with respect to the base glyph. All the complex
syllables such as Þ¦� , � , Ý�� �� � etc., shown in all previous examples

employ this feature to place below-base marks aesthetically below the
base glyphs.

The above features enable the Pothana2000 font to render the Telugu text in a pleasing

manner. Here is some text to illustrate this point, composed in 12 point size Pothana2000 font.

¡ 11� �² � � a � �÷ £�õ£ �bab£ 1� � a�+â� �a fP¡ � fP�eR]P�eR311�

� $U6P² OU=Q� � ¦�Ì� © �=Q� � � RZ31� � ¦Q]R� � Z�P�â² � �áaá £ 11��$\aé= ��

Creating Unicode Compatible OpenType Telugu Fonts

� ���

�
11��� æe[�USP N² ³ �� cä³ � P P SÐ� Za�
áaP6ä��6Z [] bPaP6äÐ� ��] �
ZbP6äN² � ��û [[bS`õfbP f� � �
ZP f6 PiäP6ä��\]P PV P6äÐ��������� \ �² VefP���Q �a� f]��

�
11���U=� �[R][ë b£]� f² �� �
f � a\ K)Ue) f3US�² ² ��U �PV �
S` �V � bPV��bPVa\ S£` f� � �
£ � Z YPV��YPV\]V £SPi PV� ��������������e R f² ��� \ Y g ��

�

11���e U U =a� � ² ��=ab£� � �

b� h aP8a� � ��8a8£P b£ \² �

\� � g a�� a \ K� � �

aa¥ 8£ b� f�a��Z P 8 ����������������e R f² ��� \ Y g ��

�
\ N�S � aP�QU f P UK g fP �õ]N�QS ¤f a g� : � ZP² ³� � ��Q [�
W b aP �õ]P�QJ]]å �S�e a aZP² ³ �� � b]P �õ]��[K� U�
V6e]P³ ���]bYh\W hP �õ]�]Pf � f éU Zb£aZ\[Z á � 8 8� �
)P³ � P c�äSP f PRZP âf W³ �he£ W � SP]P�SSP ñ[hf f� � ³ ��������

������e R f² ���� \ Y g ��

4.0 A Locale Definition for Telugu

� When I first designed Pothana2000 on Windows 2000, there existed no Telugu locale in that
environment. So, I had to create my own locale using the Tavultesoft Software’s shareware
utility named Keyman (http://www.tavultesoft.com). Keyman versions 5 and 6 are excellent
utilities for creating locales. Version 6 also provides an environment in pre-2000 Windows
systems to input Telugu using Unicode compatible fonts such as Pothana2000. At that time I
looked critically into the issue of designing a user friendly keyboard for Telugu in particular and
for Indian scripts in general, because the usability of a script on computer directly depends upon
the ease of its entry on the keyboard. The main criteria used in designing my Telugu keyboard
were the following:

Creating Unicode Compatible OpenType Telugu Fonts

� ��

a) Familiarity
 As can be seen from the ISCII standard, all Indian scripts basically have the same alphabet
set although their shapes differ from language to language. So, they can use the same phonetic
keyboard, perhaps with minor exceptions. Also, along with Hindi, English happens to be a link
language in India in which people from different linguistic regions communicate. So, they have a
need to type in English, Hindi, and in their own language. Most literate Indians have a working
knowledge of English and they have used a QWERTY type writer or computer keyboard before.
In fact, they are more familiar with a QWERTY keyboard than Indian language keyboards,
because the latter started appearing only recently. So, it makes sense to map Indian characters to
homophonic locations on a QWERTY keyboard so that they do not have to switch to a very
dissimilar keyboard environment when they alternate between Indian scripts and English.
Another primary consideration is that the punctuation symbols and numerals map to their
customary locations. In other words, these keys should not be allocated to any of language
characters; they should mean the same irrespective of the language locale used. It is best to
maintain this conformity as much as possible.
 Even if a person does not know or use the English language, it is still helpful to maintain
this conformity, because if he/she needs to type in English at a later stage, he/she can leverage
this familiarity with the native language keyboard to type English easily. One has to learn a
keyboard anyway; let its design be logical enough to help the person input other languages
easily if need arises.

One can argue that the keyboard mapping should be based on the frequency of occurrence
of various characters within the language. In fact I have looked at this aspect for the Telugu
language, and have come to the realization that QWERTY like mapping is not too far from such
a frequency based configuration. In any case, familiarity and the ability to input Indian and
English languages without changing keyboard configurations should be very important.

b) Ease of use
 The keyboard should be easy to use with most commonly used characters easily
accessible on the keyboard. It is assumed that characters typed by holding down control keys
Shift, AltGr, Shift AltGr are harder to type in this order than unshifted characters. I.e., if we
grade the ease of typing from 1 to 4 (1 being the best and 4 being worst), then k, Shift k, AltGr
k, Shift AltGr k fall into grades 1 to 4, respectively, where k stands for a key that is pressed.

c) Logical Design

Characters should be logically mapped. For example, the mahaprana (aspirate) counterparts
of letters ka (Z), ga (V), ca (R), ja (Y), tta (c), dda (i), ta (f), da (S) should be mapped to shifted

positions of the corresponding keys. I.e., if ka (Z) is mapped to k, kha (:) is mapped K (Shift k)

etc. Similarly, the less frequently occurring nukta forms of consonants ka (Z), kha (:), ga (V), ca

(R), ja (Y), dda (i), ddha (M), pha (<)and ya (h) should be mapped to AltGr k, Shift AltGr k

etc. The main idea here is to map all variants of a given character to the same key, and aceess
them using Shift, AltGr and SHIFT AltGr control key combinations where needed.

Creating Unicode Compatible OpenType Telugu Fonts

� ���

 Extending the above consideration to vowels, the short and long vowels should be
mapped to unshifted and shifted positions, and the corresponding Matra markers to AltGr and
Shift AltGr positions of the same keys. Here it is important to notice that the Unicode
specification requires that in addition to the free standing vowels their matra symbols should also
be present on the keyboard. In fact to get matra-conjugated forms of consonants, one has to type
the matra symbol after the consonant. This means that the keyboard should contain 13 additional
symbols corresponding to matra markers of AA
l���I
&�, II
m��, U�
+�, UU
n�, Vocalic R(o),

Vocalic RR(p), E(%��), EE(s�), AI(t), O(*), OO(u) and AU(v). In an attempt to accommodate

this requirement, some keyboard designs, such as the INSCRIPT keyboard, have used up the
locations normally used by the familiar punctuation symbols with the result that to get these
frequently used symbols one has to switch to a new keyboard locale. INSCRIPT also maps the
Indian characters to totally unintuitive locations on a QWERTY keyboard, making it extremely
difficult to combine English with the Indian language text. This inconvenience can be avoided if
one were to adopt a QWERTY like mapping with some simple contextual dependency built into
the keyboard driver. For example, look at the following extract from my locale’s definition:

store(VowKeys) ’aAiIuUeEYoO[fFqQ]{}’
store(VowCodes) U+0C05 U+0C06 U+0C07 U+0C08 U+0C09 U+0C0A U+0C0E U+0C0F\
 U+0C10 U+0C12 U+0C13 U+0C14 U+0C02 U+0C01 U+0C0B U+0C60 \
 U+0C03 U+0C0C U+0C61
store(ConsKeys) ’k’ ’K’ ’g’ ’G’ ’M’ ’c’ ’C’ ’j’ ’J’ \

 ’V’ ’z’ ’Z’ ’N’ ’t’ ’T’ ’d’ ’D’ ’n’ \
 ’p’ ’P’ ’b’ ’B’ ’m’ ’y’ ’r’ ’R’ ’l’ \
 ’L’ ’v’ ’S’ ’x’ ’s’ ’H’ ’h’ ’w’ ’W’

store(ConsCodes) U+0C15 U+0C16 U+0C17 U+0C18 U+0C19 U+0C1A U+0C1B \
 U+0C1C U+0C1D U+0C1E U+0C21 U+0C22 U+0C23 U+0C1F \
 U+0C20 U+0C26 U+0C27 U+0C28 U+0C2A U+0C2B U+0C2C \
 U+0C2D U+0C2E U+0C2F U+0C30 U+0C31 U+0C32 U+0C33 \
 U+0C35 U+0C36 U+0C37 U+0C38 U+0C39 U+0C4D U+0C24 \
 U+0C25

 The first store statement declares an array of keys that map stand-alone (primary) vowels,

which are identified by the Unicode points specified in the second store statement. Likewise, the
3rd store statement declares an array of keys that map to the Unicode points specified in the 4th
store statement. This is how one can map the Telugu characters to the keys on a QWERTY key-
board. Now, consider the following statements:

any(Conscodes) + ’A’ > context U+0C3E
any(Conscodes) + ’i’ > context U+0C3F
any(ConsCodes) + ’I’ > context U+0C40
any(ConsCodes) + ’u’ > context U+0C41
any(ConsCodes) + ’U’ > context U+0C42
any(ConsCodes) + ’e’ > context U+0C46

Creating Unicode Compatible OpenType Telugu Fonts

� ���

any(ConsCodes) + ’E’ > context U+0C47
any(ConsCodes) + ’Y’ > context U+0C48
any(ConsCodes) + ’o’ > context U+0C4A
any(ConsCodes) + ’O’ > context U+0C4B
any(ConsCodes) + ’[’ > context U+0C4C
any(ConsCodes) + ’q’ > context U+0C43
any(ConsCodes) + ’Q’ > context U+0C44

 These statements say whenever the user types one of the primary vowels after a consonant,
change the context to map this primary vowel to its matra code, which is specified on the right
hand side of the expression. This works very well because a free-standing vowel very rarely
occurs in the middle or at the end of a syllable in Indian scripts. Thus we have:

� ��� �Z�l���!��á��Z�&��!�â����Z�+���!�ä����Z��n���!�å����Z�o��!�Z`����Z�p��!�ZB����
� � Z�%��!�æ���Z�s��!�ç���Z�t��!�æ³ ��Z�*��!�è��Z�u��!�é��Z�v��!�ê���=��?�a��m����!² �������
� � »g�t��!� ���a��?�f��?�b��?�]��?��h�l��!��� ¦��� ��etc.�
 So, in this implementation, we never need to type matra markers explicitly to obtain matra-
conjugated consonant forms, so they can be relegated to hard to access AltGr, and Shift AltGR
locations. This saves us valuable "real estate" on the primary keyboard, which can be allocated to
punctuation symbols. This is exactly what my locale does. In rare cases when a free-standing
vowel has to be typed immediately after a consonant without combining it with the consonant,
the context can be broken by typing the zero width non-joiner character in between (zero width
non-joiner is mapped to AltGr . in my locale).

 The keyboard design based on these considerations is given in the appendix I.

Acknowldgements
I am thankful to Apurva Joshi of Microsoft Corporation for clarifying many points about

OpenType layout features and to Dr. Uma Maheswara Rao for encouraging me to prepare this
paper.

Creating Unicode Compatible OpenType Telugu Fonts

� ���

Appendix 1: Keyboard Mapping for Pathana2000
(Shifted - top to bottom)

~ ! @ # $ % ^ & * () _ +�
�2�� ��������������#������������������������� ��������� � /��� 	� � �� � �� � �� 0��� ��

 Q W E R T Y U I O P { }�
�������p� �J��� s�� � A�� �������>�� � t�� � n� � m�� u�� � <�� � q�� ������r�

A S D F G H J K L : "�
l�� �������=�� � 8�� � �N� � C�������W��� 9�� :�� ������;�� � ��� � ��

Z X C V B N M < > ? |�
M�� �������K�� �������7�� � I���������6�� �)�� �������(�� �������� �������!��������"� � �1�

(Unshifted - top to bottom)

‘ 1 2 3 4 5 6 7 8 9 0 - =�
E�� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � �

q w e r t y u i o p []�
o�� f�� � %�� � a�� �����c�� ����h�� �������+�� ��������&��� *�� � U�� � v���� �3�

a s d f g h j k l ; ’�
$�� �������b�� � S�� �����P�� �������V�� � �?�� Y�� � Z�� � [�� � ��� �
�
 z x c v b n m , . / \�

��������i� � g�� � R�� � e� �Q���]�� � \������������ � ��� � ��� � -

Creating Unicode Compatible OpenType Telugu Fonts

� ��

 (With AltGr - top to bottom) �

1 2 3 4 5 6 7 8 9 0�
z�� ����{�� �������|�� � }�� � ~����� ������������ � ������������ ������y�
 q e r y u I o []�
�� � �`�� �'� � �B� � mu�� �d� � �X� � �^� � �,�� � .�

�
a l ; ’�
�5� � �j�� � ������F�� � G�

/�
O�

In addition, AlltGr , and AltGr . are mapped to ZWJ (zero width joiner) and ZWNJ (zero
width non-joiner), respectively.

(With Shift AltGr)

E Y U I O [�
��T��������� u��� �@�� �4� � ��D�� �_�

