
Swift and Media Storage
at Wikimedia

Ben Hartshorne
Operations Engineer

<bhartshorne@wikimedia.org>

What is
Media Storage?

● All images, sounds,
and videos on all wikis

● All scaled versions of
all those images

● It just keeps growing..

http://commons.wikimedia.org/wiki/Commons:
MIME_type_statistics

http://ganglia.wikimedia.org/latest/?
r=year&cs=&ce=&m=&c=Miscellaneous+pmtpa&h=ms7.pmtpa.
wmnet&tab=m&vn=&mc=2&z=medium&metric_group=ALLGROUPS

Original Media

Thumbnails (Scaled Media)

What do we need
from a Media Store?

● Large Capacity
○ currently 25TB; minimum for growth: 50-100TB

● Fault Tolerence
○ any component must be able to fail without impact

● Medium Throughput
○ rate of image requests, additions is about 100/s

● Medium Latency
○ most end-user actions are served from cache

What is Swift?

OpenStack Storage (http://openstack.org/software/openstack-storage/)

<buzzword>scalable fault tolerant object store</buzzword>

● Scalable: Increase cluster size (and throughput) by adding additional
hardware; latency shouldn't increase with cluster size

● Fault Tolerant: No single point of failure

● Object Store: Not a filesystem - stores whole objects

Swift Architecture

Four main
server processes

Many ancillary processes for background jobs: synchronization, auditing,
replication, etc.

Swift Architecture

Four main
server processes

Many ancillary processes for background jobs: synchronization, auditing,
replication, etc.

Grouped onto
two machine types

Machine Types

● Frontend Proxy Server
○ dual 6-core CPU
○ 16GB RAM
○ two 250GB SATA disks RAID1

● Backend Storage Server
○ dual 6-core CPU
○ 48GB RAM
○ two 160GB SSDs
○ twelve 2TB SATA disks (no RAID)

Swift Architecture

Four main
server processes

Many ancillary processes for background jobs: synchronization, auditing,
replication, etc.

Grouped onto
two machine types

SSD
SATA

Swift Architecture

Four main
server processes

Many ancillary processes for background jobs: synchronization, auditing,
replication, etc.

Grouped onto
two machine types

SSD
SATA

12 Storage

5 Proxies

How is Swift used in MW?

● Thumbnails

● Originals
○ Mediawiki FileBackend class has multiple

modules; calls Swift using CloudFiles

Thanks!
Ben Hartshorne

Operations Engineer
<bhartshorne@wikimedia.org>

http://wikitech.wikimedia.org/view/Swift

end of presentation

some optional slides follow - they might be
used if people ask specific questions

Rewrite middleware

● New thumbnails are scaled on demand
● 404 handler tries to scale images

 that don't exist
● swift-proxy is built for this

○ in /etc/swift/proxy-server.conf:
[pipeline:main]
pipeline = rewrite healthcheck cache swauth proxy-server

● rewrite does two things
○ call back to get the scaled version of the image
○ write that scaled version into swift

Query flow: client to scaled image

What about that 404 handler?

Perfect for middleware in the proxy pipeline
[pipeline:main]
pipeline = rewrite healthcheck cache swauth proxy-server

Rewrite does two things:
● Handle 404s

○ if the object doesn't exist in swift
○ call back to mediawiki to generate the image
○ optionally write the generated image into swift

What about that 404 handler?

Perfect for middleware in the proxy pipeline
[pipeline:main]
pipeline = rewrite healthcheck cache swauth proxy-server

Rewrite does two things:
● Change URL into Container / Object

Integration with Mediawiki

● MW storage mechanisms abstracted to a
FileBackend class with multiple subclasses
○ local filesystem, swift, azure, S3, etc.

● All interactions with the FileBackend
implemented as appropriate for each
backend storage module

● Swift storage implemented using CloudFiles
○ https://github.com/rackspace/php-cloudfiles

● More detail on this part: Aaron Schulz

Throughput and Latency
Performance

Initial tests

● Tried to use apache bench
○ ab is restricted to one URL
○ abmulti can only handle 20k URLs
○ wound up writing my own

● geturls* showed we could get
○ 1300 reads per second
○ 120 writes per second
○ (full details at http://wikitech.wikimedia.org/view/Swift/Performance_Metrics#test_4)

* geturls code available at https://gerrit.wikimedia.org/r/gitweb?p=operations/software.git;a=tree;f=geturls;hb=HEAD

Effect of load on performance

● Under heavy read load
○ PUT and DELETE latency increases
○ GET latency decreases

Effect of node failure
● One (out of 5) storage nodes crashing

○ 0.5s timer on connection failures - adjustable
○ 2x read latency (from 100ms to 200ms)

○ 3x write latency (250ms to 750ms)

○ 2.5x delete latency (200ms to 500ms)

● No data (yet) on proxy nodes crashing

Some problems encountered along
the way
● Effect of one storage node crashing on

performance is too large
○ solved by reducing the connection timeout from 0.5s

to 0.1s
● Container listing latency is high

○ solved by moving container and account servers to
SSD leaving objects on spinning media

● Consistency issues with rewrite middleware
○ ETags help
○ Still have issues sometimes (cleaner script)
○ solved by having mediawiki write to swift instead

● It's difficult diagnosing problems with rewrite
○ natural effect of asynchronous code (eventlet)
○ eg. stack trace in proxy logs

