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1. Reminder on metric spaces

1.1. Metric spaces.

Definition 1.1.1. A metric space (X, d) is a set X together with a distance function
d : X ×X −→ R satisfying the following properties (P,Q,R ∈ X):

(i) d(P,Q) ≥ 0 and d(P,Q) = 0 if and only if P = Q (positivity).
(ii) d(P,Q) = d(Q,P ) (symmetry).
(iii) d(P,R) ≤ d(P,Q) + d(Q,R) (triangle inequality).

Remark 1.1.2. This concept of a distance is made according to the natural distance
between two points in “space” (the world).

Example 1.1.3. The real numbers are a metric space with the distance function
given by d(a, b) := |a − b|. In a similar way the complex numbers form a metric
space with the distance function given by

d(z, w) := |z − w| =
√

(z1 − w1)2 + (z2 − w2)2 .

(Exercise: check this).

In the next section we will see that every finite dimensional vector space over R or
C can be made into a metric space using a norm.

Example 1.1.4. Let (X, d) be a metric space and let Y ⊆ X be a subset. Then Y
is immediately again a metric space by setting dY (P,Q) := d(P,Q).

With the concept of the distance one can define further important notions.

Definition 1.1.5. Let X and Y be two metric spaces. A function f : X −→ Y is
called continuous in P ∈ X if for every real number ε > 0 there exists a δ > 0
such that for every point Q ∈ X with d(P,Q) < δ we have d(f(P ), f(Q)) < ε. It is
continuous if it is continuous in every point.

The meaning of continuous is that one can control the distance between the two
image points f(P ) and f(Q) by controlling the distance between the points P and
Q.
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Definition 1.1.6. For a real number δ > 0 and a point P ∈ X in a metric space
one calls the set

B(P, δ) := {Q ∈ X : d(P,Q) < δ}
the open ball neighborhood of P of radius δ.

A subset U ⊆ X is called open if for every point P ∈ U there exists a real number
δ > 0 such that B(P, δ) ⊆ U .

A subset A ⊆ X is called closed if its complement X − A is open.

The continuity of f : X −→ Y in P is equivalent to the fact that for every ε > 0
there exist δ > 0 such that f(B(P, δ)) ⊆ B(f(P ), ε).

Example 1.1.7. The balls B(P, δ) in a metric space are open. To show this let
Q ∈ B(P, δ) be a point. This means that d(P,Q) = ε < δ. We claim that

B(Q, δ − ε) ⊆ B(P, δ) .

For this let R ∈ B(Q, δ− ε). Then d(R,Q) < δ− ε and so by the triangle inequality
we have

d(P,R) ≤ d(P,Q) + d(Q,R) < ε+ δ − ε = δ ,

hence R ∈ B(P, δ).

Proposition 1.1.8. Let X be a metric space. Then the system of all open subsets
of X fulfills the following properties :

(i) The whole space X and the empty subset ∅ are open.
(ii) The intersection of two open subsets is again open.
(iii) Let Ui, i ∈ I, be an (arbitrary) collection of open subsets. Then also their

union
⋃
i∈I Ui is open.

Proof. As exercise 1.4. �

A set with a system of subsets fulfilling these properties is called a topological space;
hence metric spaces are topological spaces. Properties of a space which can be
formulated with the notion of open subsets are called topological properties.

Definition 1.1.9. Let X be a metric space. A sequence xn in X is a mapping
N −→ X, n 7→ xn, so that for every natural number n ∈ N a uniquely determined
point xn ∈ X is given. We say that the sequence xn, n ∈ N, converges to x ∈ Xif
for every δ > 0 (∈ R) there exists a natural number n0 (depending on δ) such that
for all m ≥ n0 we have d(xm, x) < δ.

This means that xn gets arbitrarily close to x. The easiest example is xn = 1/n in
X = R, which converges to 0.

Proposition 1.1.10. The following are equivalent for a mapping f : X −→ Y
between two metric spaces.

(i) f is continuous.
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(ii) For every sequence Pn ∈ X converging to P also the image sequence f(Pn) ∈
Y converges to f(P ).

(iii) For every open subset U ⊆ Y also the preimage f−1(U) is open in X.

Proof. (i)⇒ (ii). Let Pn ∈ X be a sequence converging to P . We have to show that
f(Pn) ∈ Y converges to f(P ). Let ε > 0 be given. By the continuous property there
exists a δ > 0 such that f(B(P, δ)) ⊆ B(f(P ), ε). By the convergence property
there exists an n0 such that for all m ≥ n0 we have d(P, Pm) < δ, or equivalently
Pm ∈ B(P, δ). Then also f(Pm) ∈ B(f(P ), ε) for m ≥ n0, which means that f(Pn)
converges to f(P ).

(ii) ⇒ (i). (This is an exercise in the negation of statements) Suppose that (ii)
holds, but that f is not continuous in P ∈ X. Then there exists ε > 0 such that
for every δ > 0 it is not true that f(B(P, δ)) ⊆ B(f(P ), ε). Then in particular for
every natural number n ∈ N we have f(B(P, 1/n)) 6⊆ B(f(P ), ε). This means that
there exists (at least one) a point Pn ∈ B(P, 1/n), but with f(Pn) 6∈ B(f(P ), ε).
This gives a sequence Pn converging to P , but such that the image sequence f(Pn)
does not converge to f(P ). This contradicts (ii).

(i) ⇒ (iii). Let U ⊆ Y be an open subset and let W := f−1(U) be its preimage,
let P ∈ W be a point so that f(P ) ∈ U . By the openness property there exists an
ε > 0 such that B(f(P ), ε) ⊆ U . By (i) there exists δ > 0 such that f(B(P, δ)) ⊆
B(f(P ), ε). Hence P ∈ B(P, δ) ⊆ f−1(U) = W is open.

(iii) ⇒ (i). Let P ∈ X and ε > 0 be given. The subset B(f(P ), ε) is an open
subset by Example 1.1.7, so by (iii) also its preimage f−1(B(f(P ), ε)) is open. As
P belongs to this set, this means in particular by the definition of openness that
there exists some δ with B(P, δ) ⊆ f−1(B(f(P ), ε)). But this is the definition of
continuous in the sense of (i). �

Definition 1.1.11. Let X and Y two metric spaces and f : X −→ Y a mapping. f
is called a homeomorphism, if it is continuous, bijective and if the inverse mapping
f−1 : Y −→ X is also continuous.

Two spaces are called homeomorphic if there exists a homeomorphism between them.

1.2. The norm in a vector space.

We use the symbol K to denote either the real numbers R or the complex numbers
C. In both cases the modulus is defined and makes these fields to metric spaces. In
the following we will consider K-vector spaces, i.e. vector spaces over R or C.

Definition 1.2.1. A norm on a K-vector space V is a mapping

|| || : V −→ R , v 7−→ ||v||
fulfilling the following properties:

(i) ||v|| ≥ 0 for all v ∈ V and ||v|| = 0 if and only if v = 0 (positivity).
(ii) For all a ∈ K and all v ∈ V we have ||a · v|| = |a| · ||v|| (homogeneity).
(iii) ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ V (triangle inequality).
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A vector space endowed with a norm is called a normed vector space.

Fact 1.2.2. Every normed vector space (V, || ||) is also a metric space by declaring
the distance of two points v and w to be

d(v, w) := ||v − w|| .

Proof. As exercise 2.1. �

We will be only interested in metric spaces which are subspaces of a normed vector
space. In particular we will be interested in open subsets G ⊆ V .

Example 1.2.3. The most important norm is the Euclidean norm on Rn and Cn.
On Rn, this is

||z|| :=
√
z2
1 + · · ·+ z2

n .

This gives the ordinary distance from the point z to the origin. This is a consequence
of the Pythagorean theorem. Sometimes we write || ||Euc.
On Cn, the Euclidean norm is

||z|| :=
√
|z1|2 + · · ·+ |zn|2 .

If we identify Cn ∼= R2n, then the real-Euclidean and the complex-Euclidean norm
coincide. (This norm comes from an inner product.)

Example 1.2.4. The sum-norm on Kn is defined as

||x||1 :=
n∑
i=1

|xi| .

This is indeed a norm (sometimes called the taxicab norm). (Prove this. Show that
it does not come from an inner product.)

Example 1.2.5. The maximum norm on Kn is given by

||x||max := max{|xi| : i = 1, . . . , n}.
is also a norm. (Exercise)

Remark 1.2.6. For a finite-dimensional K-vector space V , a norm defines a metric
and hence a topology. The norm and the metric may differ, but the topology is
always the same as we will see. So the topology, i.e. the set of open subsets and the
concept of continuity, is independent of the choice of a norm.

Lemma 1.2.7. Let (V, ‖ ‖) be a normed vector space. Then the norm ‖ ‖ : V −→ R
is continuous.

Proof. As exercise 2.2. �

Lemma 1.2.8. Let W be a normed K-vector space and let (Kn, || ||Euc) be the Eu-
clidean space. Let L : Kn −→ W be a linear map. Then L is bounded, which means
that there exist a real number M such that ‖L(x)‖ ≤ M · ‖x‖ for all x ∈ Kn. It
follows that L is also continuous.
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Proof. For this set T := max{‖L(ei)‖ : i = 1, . . . , n}, where ei are the unit vectors.
Then for x = c1e1 + . . .+ cnen we have

‖L(x)‖ = ‖c1L(e1) + . . .+ cnL(en)‖
≤ ‖c1L(e1)‖+ . . .+ ‖cnL(en)‖
= |c1| ‖L(e1)‖+ . . .+ |cn| ‖L(en)‖
≤ n · max

i=1,...,n
{|ci|} · max

i=1,...,n
{‖L(ei)‖}

≤ n ·
√
c21 + . . .+ c2n · T = ||x||Euc · n · T

Hence M = nT does the job. Now in general, a bounded linear mapping between
arbitrary normed vector spaces are continuous. Let M be such a bound, and v and
w ∈ V be given. Then

||L(v)− L(w)|| = ||L(v − w)|| ≤M ||v − w|| .
So for a given ε > 0 just take δ = ε/M . �

Theorem 1.2.9. Let (V, ‖ ‖) be a finite-dimensional K-vector space of dimension
n. Then V is linearly homeomorphic to the Euclidean space (Kn, || ||Euc).

This means that there exists a linear bijective mapping Kn −→ V which is continuous
and such that the inverse mapping is also continuous.

Proof. Let v1, . . . , vn be a basis of V and let L : Kn −→ V be the linear bijective
mapping given by ei 7→ vi (so that

∑n
i=1 ciei is sent to

∑n
i=1 civi). Then this mapping

is continuous by Lemma 1.2.8. So we only have to show that the inverse mapping
L−1 : V −→ Kn is also continuous.

We show first that there exists another bound m > 0 with the property that
‖L(x)‖ ≥ m ‖x‖ for all x ∈ Kn. For this we use that the composed mapping

Kn L−→ V
‖ ‖−→ R

is continuous (Lemma 1.2.7). On the unit sphere S = {x ∈ Kn : ‖x‖ = 1}, which
is compact (as it is closed and bounded), this function has a minimum non-negative
value, which we call m. By compactness, this minimum is achieved, which means
there exists a point P ∈ S such that ‖L(P )‖ = m. Now m 6= 0, for otherwise
L(P ) = 0, which contradicts the fact that L is a bijection. Hence (as v

‖v‖ lies on the

unit sphere)

‖L(v)‖ =

∥∥∥∥∥‖v‖L(
v

‖v‖
)

∥∥∥∥∥ = ‖v‖
∥∥∥∥∥L(

v

‖v‖
)

∥∥∥∥∥ ≥ m ‖v‖ .

For the inverse mapping L−1 we look at Q ∈ V . Let L−1(Q) = P . Then we know
that ‖L(P )‖ ≥ m · ‖P‖, and replacing P by L−1(Q) gives

‖Q‖ =
∥∥∥L(L−1(Q))

∥∥∥ ≥ m
∥∥∥L−1(Q)

∥∥∥
or ‖L−1(Q)‖ ≤ 1/m · ‖Q‖. So we can take 1/m as a bound from above for L−1

which shows continuity. �
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Theorem 1.2.10. Let V be a finite-dimensional normed K-vector space and let
W be another normed K−vector space. Let L : V −→ W be K-linear. Then L is
continuous.

Proof. Let Ψ : Kn −→ V be a linear homeomorphism as in the proof of Theorem
1.2.9. Hence L is continuous if and only if L◦Ψ is continuous, but L◦Ψ is continuous
by Lemma 1.2.8. �

1.3. Connected spaces.

A subset of a metric (or topological) space can be open, or closed, or neither open
and closed, or both. For example, the whole space and the empty subset are open
and closed.

Definition 1.3.1. A metric (or topological) space X is called connected if X 6= ∅
and if ∅ and X are the only subsets which are open and closed.

Remark 1.3.2. X is not connected if and only if there exists a partition X = U1]U2

with U1 and U2 both open and non empty (U1 ]U2 means the union of the two sets
and that they are disjoint, that is, U1 ∩ U2 = ∅).

Proposition 1.3.3. The image of a connected space under a continuous mapping
is connected.

Proof. Let f : X −→ Y be continuous, let X be connected and consider the image
f(X) ⊆ Y , which is a metric space. Suppose that f(X) = U1 ] U2 is a non-
trivial disjoint partition into two open (hence also closed) subsets. Then also X =
f−1(U1)] f−1(U2) is a non-trivial partition into two open subsets, contradicting the
assumption on X. �

Definition 1.3.4. A metric (or topological) space X is called path-connected if
for every two points P and Q in X there exists a continuous mapping (a path)
γ : [0, 1] −→ X with γ(0) = P and γ(1) = Q.

Example 1.3.5. Let V be a normed K-vector space. Then every ball B(P, δ) is
path-connected. It is enough to show for every point Q ∈ B(P, δ) that there exists
a path to P . Look at t 7→ P + t(Q − P ), t ∈ [0, 1], which is continuous (as it is
affine-linear, hence continuous by Theorem 1.2.10). This path lies inside the ball,
because of

‖P + t(Q− P )− P‖ = ‖t(Q− P )‖ = |t| ‖Q− P‖ ≤ ‖Q− P‖ < δ .

Proposition 1.3.6. Let X be a metric space which is path-connected. Then X is
also connected.

Proof. Assume X = U1 ] U2 with two non-empty open (and hence closed) subsets.
Let P ∈ U1 and Q ∈ U2. By assumption, there exists a continuous mapping γ :
[0, 1] −→ X with γ(0) = P and γ(1) = Q and this gives a partition

[0, 1] = γ−1(U1) ] γ−1(U2)
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(both open and closed and non-empty). This would however mean that the interval
[0, 1] is not connected, which contradicts theorem 1.3.7. �

Theorem 1.3.7. The interval [0, 1] ⊆ R (and every other interval) is connected.

Proof. This is related to the axiomatic treatment of what the real numbers are.
Assume that [0, 1] = U1 ] U2, both open and hence closed and non-empty. Let
a ∈ U1 and b ∈ U2, and assume without loss of generality that a < b. We construct
inductively two sequences by

an+1 := an, if
an + bn

2
∈ U2, and =

an + bn
2

if
an + bn

2
∈ U1

and

bn+1 := bn, if
an + bn

2
∈ U1, and =

an + bn
2

if
an + bn

2
∈ U2 .

Then, by construction, an is a sequence in U1 and bn is a sequence in U2 (proof by
induction), and an < bn. Also, |bn − an| = |b − a|/2n, so their distance converges
to 0. Hence both sequences are Cauchy sequences and they converge in R (this
is the property of the real numbers called completeness) to the same limit point
x. As U1 and U2 are both closed, we have that x ∈ U1 ∩ U2. This contradicts the
disjointness. �

It is also true that every connected subset of R is an interval, see exercise 3.6.

Theorem 1.3.8. Let X be an open subset of a normed vector space V of finite
dimension. Then X is connected if and only if it is path-connected.

Proof. The relation between two points of being path-connected is an equivalence
relation (exercise 2.10). Its equivalence classes are open: With P ∈ X also the
whole ball B(P, δ) ⊆ X (which exists by the open property) is path-connected with
P (Example 1.3.5). So the equivalence classes Ui, i ∈ I, form a partition of X into
open subsets. But then also the complement of such a component is open, as it is a
union of open subsets. This means that the component itself is also closed. Hence in
a connected space there exists only one equivalence class for path-connected, which
means that the space is path-connected. �

2. Differentiation in higher dimensions

2.1. The total differential.

We want to ‘differentiate’ continuous mappings ϕ : V −→ W between vector spaces
and more general continuous mappings which are only defined on a certain open
subset G ⊆ V ,

ϕ : G −→ W .

Already in dimension one, many functions are defined (in a natural way) only on a
certain, often open subset, like the function z 7→ 1/z is defined on R − {0} or on
C− {0}.
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If we recall the situation of one variable, say we have a map ϕ : R −→ R, then the
basic idea of a differentiable map and its differentiation is to find a ‘tangent to the
graph’. This is a line which goes through a point (x, ϕ(x)) and which has the same
‘slope’ as the function. One can say that the tangent is the best linear approximation
of ϕ for a given point x ∈ R. As the slope is just again a number, differentiation
gives for every point x again a number, hence we get a new function, denoted by ϕ′.
In the higher dimensional situation this is very different, but the idea of best linear
approximation is still working.

All vector spaces are finite dimensional and a norm is defined on them.

Definition 2.1.1. Let ϕ : G −→ W be a mapping defined on an open subset G ⊆ V .
Then ϕ is said to be differentiable at a point P ∈ G if there exists a linear mapping
L : V −→ W fulfilling the property that

ϕ(P + v) = ϕ(P ) + L(v) + ||v||r(v)
with a function r : B(0, δ) −→ W which is defined on an open ball neighborhood of
0 and is continuous in 0 with r(0) = 0 and the equation holds for all v ∈ V such
that P + v ∈ B(P, δ) ⊆ G)

This linear mapping, if it exists, is called the (total) differential of ϕ at P , and is
denote by (Dϕ)P .

Equivalent: The expression

r(v) =
ϕ(P + v)− ϕ(P )− L(v)

||v||
has limit 0 for v −→ 0. It is also equivalent to say that the limit (of functions)

lim
v−→0,v 6=0

‖ϕ(P + v)− ϕ(P )− L(v)‖
‖v‖

= 0

exists and is 0.

Remark 2.1.2. Note that this notion is defined using continuity, but since all norms
yield the same topology, it is independent on the actual norm on the vector space.

This is a theoretical concept rather than a computational concept. We will re-
late this concept with the concept of partial derivatives, which is better suited for
computations, which is however dependent on coordinates (see Example 2.2.9).

Example 2.1.3. The function | | : R −→ R, t 7→ |t| is not differentiable in P = 0. A

linear map is given by v 7→ cv, c ∈ R. We have to consider |v|−cv|v| , which is 1− c for

v > 0 and which is 1 + c for v < 0. For c 6= 0 this does not have a limit (as it has
two different limits from left and right), and for c = 0 the limit is 1 6= 0.

Lemma 2.1.4. Let ϕ : G −→ W be a mapping defined on an open subset G ⊆ V . Let
P ∈ G. Then there exists at most one linear mapping with the property described
in Definition 2.1.1. If ϕ is differentiable in P , then the differential is uniquely
determined.
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Proof. Suppose that ϕ(P + v) = ϕ(P ) + L1(v) + ||v||r1(v) and ϕ(P + v) = ϕ(P ) +
L2(v) + ||v||r2(v) with linear mappings L1 and L2 and functions r1, r2 : B −→ W
which are continuous in 0 and with r1(0) = r2(0) = 0. We have to show that
L1 = L2. For this we subtract the two equations (equation of mappings with values
in the vector space W , so subtracting means subtracting the values), and we get the
equation

0 = (L1 − L2)(v) + ||v||(r1(v)− r2(v)) .
Therefore we have to show that the constant 0-mapping has the property that the
linear mapping 0 is its only linear approximation. So suppose that

0 = L(v) + ||v||r(v)
with L linear and r continuous in 0 with r(0) = 0. If L would not be the 0 mapping,
then there exists a vector v with L(v) = w 6= 0. Then for s ∈ K we have

0 = L(sv) + ||sv||r(sv) = sw + |s| · ||v|| · r(sv) .
This implies for s 6= 0 that r(sv) = −sw/|s| · ||v||. Its norm is the constant
||w||/||v|| 6= 0. Hence lims−→0(r(sv)) 6= 0. �

Proposition 2.1.5. Let L : V −→ W be a linear mapping. Then L is differentiable
in every point P ∈ V and the total differential is L itself for every point.

Proof. We can write immediately

L(P + v) = L(P ) + L(v) ,

so we can take r = 0. �

Example 2.1.6. If L : V −→ W is constant, say L(v) ≡ w ∈ W for all v ∈ V , then
it is differentiable with total differential 0 (exercise).

Proposition 2.1.7. Let ϕ1, ϕ2 : G −→ W be mappings which are differentiable in
P ∈ V with differentials (Dϕ1)P and (Dϕ1)P . Then also ϕ = ϕ1+ϕ2 is differentiable
in P with differential (Dϕ)P = (Dϕ1)P + (Dϕ1)P . Also, D(aϕ)P = a(D(ϕ))P .

Proof. Let ϕ1(P + v) = ϕ1(P )+L1(v)+ ||v||r1(v) and ϕ2(P + v) = ϕ2(P )+L2(v)+
||v||r2(v) . Then

(ϕ1 + ϕ2)(P + v) = ϕ1(P + v) + ϕ2(P + v)
= ϕ1(P ) + L1(v) + ||v||r1(v) + ϕ2(P ) + L2(v) + ||v||r2(v)
= (ϕ1 + ϕ2)(P ) + (L1 + L2)(v) + ||v||(r1(v) + r2(v))

This has the required form, and r1 + r2 is also continuous in 0 with (r1 + r2)(0) = 0.
The second statement is similiar. �

Proposition 2.1.8. Let ϕ : G −→ W be a mapping which is differentiable in P ∈ G.
Then ϕ is also continuous in P .

Proof. By definition, we have ϕ(P + v) = ϕ(P ) + L(v) + ||v||r(v). The right hand
side is continuous (by Definition 2.1.1 and Theorem 1.2.10) in v = 0 with value
ϕ(P ), hence ϕ is continuous in P . �
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The beauty of the concept of total differential is seen by the following version of the
chain rule.

Theorem 2.1.9. Let V , W and U be K-vector spaces, let G ⊆ V and D ⊆ W be
open subsets and let ϕ : G −→ W and ψ : D −→ U be mappings with ϕ(G) ⊆ D.
Suppose that ϕ is differentiable in P ∈ G and that ψ is differentiable in ϕ(P ) ∈ D.
Then the composition ψ ◦ ϕ : G −→ U is differentiable in P with differential

D(ψ ◦ ϕ)P = (Dψ)ϕ(P ) ◦ (Dϕ)P .

Proof. By assumption we have (setting Q := ϕ(P ))

ϕ(P + v) = ϕ(P ) + L(v) + ||v||r(v)

and

ψ(Q+ w) = ψ(Q) +M(w) + ||w||s(w)

with linear mappings L : V −→ W and M : W −→ U and mappings r : B −→ W
and s : B′ −→ U (defined on certain open neighborhoods of 0 in V and W ), both
continuous in 0 with value 0 at 0.

Then we get

(ψ ◦ ϕ)(P + v) = ψ(ϕ(P + v))
= ψ(ϕ(P ) + L(v) + ||v|| · r(v))
= ψ(ϕ(P )) +M(L(v) + ||v|| · r(v))

+||L(v) + ||v|| · r(v)|| · s(L(v) + ||v|| · r(v))
= ψ(ϕ(P )) +M(L(v)) +M(||v|| · r(v))

+||L(v) + ||v|| · r(v)|| · s(L(v) + ||v|| · r(v))
= ψ(ϕ(P )) + (M ◦ L)(v) + ||v||M(r(v))

+||(||v||L(
v

||v||
) + ||v|| · r(v))|| · s(L(v) + ||v|| · r(v))

= ψ(ϕ(P )) + (M ◦ L)(v)

+||v||
(
M(r(v)) + ||L(

v

||v||
) + r(v)|| · s(L(v) + ||v|| · r(v))

)

In the first equation we treat L(v) + ||v|| · r(v) as w. The last two equations hold
only for v 6= 0. The expression

t(v) := M(r(v)) + ||L(
v

||v||
) + r(v)|| · s(L(v) + ||v|| · r(v))

is our candidate for the error function. The first summand M(r(v)) is continuous
in v = 0 with value 0, so we only have to deal with the second summand. The
|| ||-expression is bounded in a neighborhood of 0, so the continuity depends only
on the factor on the right. But for v −→ 0 the expression L(v) + ||v|| · r(v) has limit
0. Hence also s(L(v) + ||v|| · r(v)) is continuous in 0 with limit 0 there. �
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2.2. Directional and partial derivatives.

Let f : Kn −→ K be a mapping written as

(x1, . . . , xn) 7−→ f(x1, . . . , xn) .

Then by considering for an index i the other variables xj, j 6= i, as constant, one
gets a mapping K −→ K depending only on xi (respectively, the other variables are
considered as parameters). If this function is differentiable as a function in one
variable, then we say that f is partially differentiable with respect to xi, and the
derivative is denoted by ∂f/∂xi. The advantage of partial derivatives are on the
computational side. It depends however on the choice of a basis. The partial deriva-
tives are themselves mappings Kn −→ K. We want to understand the relationship
between partial derivatives and the total differential.

Definition 2.2.1. Let ϕ : G −→ W be a mapping, G ⊆ V . Let P ∈ G be a point
and let v ∈ V be a fixed vector. Then we say that ϕ is differentiable in direction v
if the limit

lim
s−→0,s 6=0

ϕ(P + sv)− ϕ(P )

s

exists. This limit (if it exists) is a vector in W . In this case this limit is called the
derivative of ϕ in direction v. It is denoted by (Dv(ϕ))P .

The existence of (Dv(ϕ))P depends only on the mapping K ⊇ B −→ W given by
s −→ ϕ(P+sv) (where the interval (in the real case) or the open ball (in the complex
case) is such that s ∈ B implies that P + sv ∈ G).

Total differentiability implies directional differentiability.

Proposition 2.2.2. Let ϕ : G −→ W be a mapping which is differentiable in the
point P ∈ G. Then ϕ is in P differentiable in every direction v, and we have
(Dv(ϕ))P = (DPϕ)(v).

Proof. Note that DPϕ is a linear mapping V −→ W , so the result of applying it to
a vector v ∈ V gives a vector in W . By assumption we have

ϕ(P + v) = ϕ(P ) + L(v) + ||v||r(v)

(with the usual conditions on r). So in particular we have

ϕ(P + sv) = ϕ(P ) + sL(v) + |s| ||v||r(sv) .

Hence

lim
s−→0,s 6=0

ϕ(P + sv)− ϕ(P )

s
= lim

s−→0,s 6=0

sL(v) + |s| ||v||r(sv)
s

= lim
s−→0,s 6=0

(L(v) +
|s|
s
||v||r(sv)) = L(v) ,

since lims−→0 r(sv) = 0 and |s|
s
||v|| is bounded. �
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The partial derivatives are essentially the directional derivatives in the direction of
the basis vectors. So, in particular, partial derivatives make only sense if a basis is
chosen on the vector space where a mapping is defined.

Definition 2.2.3. Let a mapping ϕ : Kn ⊇ G −→ Km be given as

ϕ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

Let P ∈ G = (x1, . . . , xn) be a point. For fixed i and j we can consider the mapping

xi 7−→ fj(x1, . . . , xn) ,

which is a function in one variable, and where the other variables xj, j 6= i, are
fixed. If this function is differentiable, then we say that fj is partially differentiable
with respect to xi, and denote the derivative (which is an element in K) by

∂fj
∂xi

(P )

(called the partial derivative).

We say that the map ϕ is partially differentiable in P if for all i and all j the partial
derivatives exist.

Lemma 2.2.4. Let a mapping ϕ : Kn ⊇ G −→ Km be given as ϕ(x1, . . . , xn). Then
the partial derivative of fj in a point P = (x1, . . . , xn) is the directional derivation
of fj in direction of the ith standard vector ei, and ϕ is partially differentiable if and
only if the directional derivatives exist in direction of all standard vectors.

Proof. We look at f = fj. As the partial derivatives are derivatives of functions in
one variable, we have that

∂fj
∂xi

(P ) = lim
s−→0,s 6=0

f(x1, . . . , xi + s, . . . , xn)− f(x1, . . . , xi, . . . , xn)

s
.

But this is exactly the definition of the derivative in direction of the i-th standard
vector ei = (0, . . . , 0, 1, 0, . . . , 0). �

The following easy example show that all directional derivatives may exist (in par-
ticular, all partial derivatives), but that the mapping itself is not even continuous
(and not differentiable).

Example 2.2.5. Consider the function f : R2 −→ R with f(x, y) := xy3

x2+y6
for

(x, y) 6= 0 and f(0, 0) := 0. For a vector v 6= 0, v = (a, b), and a real parameter s
we get on the linear subspace Rv the function

s 7−→ sas3b3

s2a2 + s6b6
=

s2ab3

a2 + s4b6
.

For a 6= 0 the denominator is always positive and this function is continuous with
value 0 for s = 0 and also differentiable. For a = 0 this function is constant = 0,
hence also differentiable. Hence in 0 all directional derivatives exist. The function
however is not even continuous: for the sequence (1/m3, 1/m) (which converges to

0) we have f(1/m3, 1/m) = 1/m31/m3

1/m6+1/m6 = 1/2, but f(0, 0) = 0.
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Here the partial derivatives are however not continuous in 0.

Theorem 2.2.6. Let ϕ : G −→ Km be a mapping, G ⊆ Kn. Denote the coordinates
of V = Kn by xi. Let P ∈ G. Suppose that all partial derivatives in P exist and that
they are continuous in P . Then ϕ is (totally) differentiable in P . If the mapping ϕ
is given as f1, . . . , fm with respect to a basis of W , then the total differential in P is
the matrix

((∂fj/∂xi)(P ))1≤i≤n,1≤j≤m .

Proof. Recall the Mean value theorem:

Let h : [a, b] −→ V be differentiable. Then there exists σ ∈ [a, b] such that

‖h(b)− h(a)‖ ≤ (b− a) ‖h′(σ)‖ .

By assumptions the mappings

(Di(ϕ))(x) := (Dei
(ϕ))(x) = (

∂f1

∂xi
(x), . . . ,

∂fm
∂xi

(x)) ∈ Km

exist in G and are continuous in P . So the only candidate for the differential is the
linear map giving by

v = (v1, . . . , vn) 7−→
n∑
i=1

vi(Di(ϕ))(P ) .

So we have to show that this map fulfills the defining properties of the total differ-
ential. Set Pi = P + v1e1 + . . . + viei (depending on v). Then (for v small enough)
we have∥∥∥∥∥ϕ(P + v)−ϕ(P )−

n∑
i=1

vi(Di(ϕ))(P )

∥∥∥∥∥=

∥∥∥∥∥
n∑
i=1

(ϕ(Pi)− ϕ(Pi−1)− vi(Di(ϕ))(P ))

∥∥∥∥∥
≤

n∑
i=1

‖ϕ(Pi)− ϕ(Pi−1)− vi(Di(ϕ))(P )‖

=
n∑
i=1

‖ϕ(Pi−1 + viei)−ϕ(Pi−1)− vi(Di(ϕ))(P )‖

We look at the summands independently. The map (defined on the unit interval)

hi : s 7−→ ϕ(Pi−1 + sviei)− svi(Di(ϕ))(P )

is differentiable (because of the existence of the partial derivatives in G) and its
derivative is the map

s 7−→ vi(Di(ϕ))(Pi−1 + sviei)− vi(Di(ϕ))(P ) .

According to the mean value theorem we get that there exists a real number 0 ≤
σi ≤ 1 such that (this is the norm of hi(1)− hi(0))

‖ϕ(Pi−1 + viei)− ϕ(Pi−1)− vi(Di(ϕ))(P )‖

≤ ‖vi(Di(ϕ))(Pi−1 + σiviei)− vi(Di(ϕ))(P )‖ .
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Hence summing up we get the estimate that our expression is bounded by

≤
n∑
i=1

|vi| ‖(Di(ϕ))(Pi−1 + σiviei)− (Di(ϕ))(P )‖

≤ ‖v‖max

n∑
i=1

‖(Di(ϕ))(Pi−1 + σiviei)− (Di(ϕ))(P )‖ .

As the partial derivatives are continuous in P we know that this sum gets arbitrarily
small for v small enough. Hence the limit of this sum is 0 for v −→ 0. �

Remark 2.2.7. This applies immediately for polynomial functions in an arbitrary
number of variables, but also for other holomorphic functions like exponential func-
tion or the trigonometric functions. As the example above shows one has to be
however careful if one inverts such functions.

Example 2.2.8. Consider K3 −→ K2 given by

(x, y, z) 7−→ (xy2 − z3, sin(xy) + x2 exp(z)) = (f1, f2) .

The partial derivatives of f1 are

∂f1/∂x = y2, ∂f1/∂y = 2xy, ∂f1/∂z = −3z2

and the partial derivatives of f2 are

∂f2/∂x = y cos(xy) + 2x exp(z), ∂f2/∂y = x cos(xy), ∂f2/∂z = x2 exp(z) .

This gives for an arbitrary point P = (x, y, z) the matrix which describes the linear
mapping (Dϕ)P , (

y2 2xy −3z2

y cos(xy) + 2x exp(z) x cos(xy) x2 exp(z)

)
.

For a special point, say P = (2, 1, 3), we have to insert to get the matrix,(
4 4 −27

cos(2) + 4 exp(3) 2 cos(2) 4 exp(3)

)
.

The following example stresses that the total differential is independent of a choice
of a basis, whereas the partial derivatives are dependent.

Example 2.2.9. Consider the mapping

f : K3 −→ K, given by (x, y, z) 7−→ 2xy2 + x2z3 + z2 .

It is easy to compute for every point the partial derivatives, yielding∂f/∂x∂f/∂y
∂f/∂z


(x,y,z)

=

2y2 + 2xz3

4xy
3x2z2 + 2z

 ,

and since they are continuous we have also found the total differential for every
point.

Suppose now that we are only interested in the function when restricted to the plane

E ⊂ K3, E = {(x, y, z): 3x+ 2y − 5z = 0} .
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So E is the kernel of L, where L : K3 −→ K is the linear mapping given by (x, y, z) 7→
3x+2y− 5z. As a kernel E is itself a (two-dimensional) vector space. So restricting
f to this plane gives f |E : E −→ K. This mapping can be seen as the composition

E ⊂ K3
f

−→ K, therefore it is differentiable by the chain rule (2.1.9). If we denote
the inclusion of E inside K3 by N (which is linear), then by the chain rule the total
differential of the composed map in a point P ∈ E is just (Df)P ◦N : E −→ K. So
this makes all sense and fits together well.

It does however not make sense to talk about partial derivatives for f |E : E −→ K,
because there is no natural basis on E and so there are no coordinates on it. It is
easy to find a basis on E and hence coordinates, but there is no best choice, and
the partial derivatives look in every basis different.

One basis is given by v1 = (0, 5, 2) and v2 = (5, 0, 3) and another is given by
w1 = (1, 1, 1) and w2 = (2,−3, 0). With such a basis we can identify K2 −→ E
and hence get a numerical description of the mapping K2 ∼= E −→ K, and we can
compute its partial derivatives.

In the first basis the mapping is

(s, t) 7−→ sv1 + tv2 = s(0, 5, 2) + t(5, 0, 3) = (5t, 5s, 2s+ 3t)

and this is mapped by f to

2(5t)(5s)2 + (5t)2(2s+ 3t)3 + (2s+ 3t)2

= 250ts2 + 25t2(8s3 + 36s2t+ 54st2 + 27t3) + 4s2 + 9t2 + 12st
= 250ts2 + 200s3t2 + 900s2t3 + 1350st4 + 675t5 + 4s2 + 9t2 + 12st .

The partial derivatives of this composed mapping (call it g) with respect to this
basis are

∂g/∂s = 500ts+ 600s2t2 + 1800st3 + 1350t4 + 8s+ 12t

and

∂g/∂t = 250s2 + 400s3t+ 2700s2t2 + 5400st3 + 3375t4 + 18t+ 12s .

In the second basis w1 = (1, 1, 1) and w2 = (2,−3, 0) the mapping is

(r, u) 7−→ rw1 + uw2 = r(1, 1, 1) + u(2,−3, 0) = (r + 2u, r − 3u, r)

and this is mapped by f to

2(r + 2u)(r − 3u)2 + (r + 2u)2r3 + r2

= 2r3 + 4r2u− 12r2u− 24ru2 + 18ru2 + 36u3 + r5 + 4r4u+ 4r3u2 + r2

= 2r3 − 8r2u− 6ru2 + 36u3 + r5 + 4r4u+ 4r3u2 + r2 .

The partial derivatives of this composed mapping (call it h) with respect to this
basis are

∂h/∂r = 6r2 − 16ru− 6u2 + 5r4 + 16r3u+ 12r2u2 + 2r

and
∂h/∂u = −8r2 − 12ru+ 108u2 + 4r4 + 8r3u .

Summary: Coordinates are good for computations, but not good for mathematics.
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2.3. Real and complex differentiability.

Let V and W be two complex vector spaces. These vector spaces are then also real
vector spaces (with double dimension). For a mapping G −→ W (where G ⊆ V
open) one has to be careful with the concept of complex differentiability and real
differentiability. If we look at the condition

ϕ(P + v) = ϕ(P ) + L(v) + ||v||r(v) ,

then complex differentiability in a point P ∈ G means that L is a complex-linear
mapping, whereas real differentiability just means that it is a real-linear mapping.
Hence this difference is basically already a problem of linear algebra. Since a
complex-linear mapping is also real-linear, it follows that a complex-differentiable
mapping is also real-differentiable. If ϕ is real-differentiable, then the real total dif-
ferentiable (Dϕ)P is the only possible linear mapping fulfilling the above condition
(as the differential is uniquely determined by 2.1.4), hence it is complex-differentiable
if and only if (Dϕ)P is complex-linear.

Let L : V −→ W be a mapping between complex vector spaces, which is real-linear.
Then L is also complex-linear if and only if L(iv) = iL(v) holds for all v ∈ V . It is
enough to check this condition for a complex basis of V . For a real total differential
(Dϕ)P this is the condition that (Dϕ)P (iv) = i(Dϕ)P (v), or, in terms of directional
derivatives, (Divϕ)P = i(Dvϕ)P (and again it is enough to check this condition
for a complex basis of V ). In the following we discuss several versions on how to
characterize complex differentiability.

Theorem 2.3.1. Let V and W be two complex vector spaces and let ϕ : G −→ W be
a mapping which is real-differentiable in P ∈ G. Let vj, j ∈ J , be a complex basis
of V with coordinate functions zj = xj + iyj. Then ϕ is complex-differentiable in P
if and only if

(
∂ϕ

∂yj
)(P ) = i(

∂ϕ

∂xj
)(P )

holds for all j (on both sides we have vectors in W ).

Proof. Let L = (Dϕ)(P ) be the real total differential, which is a 2m × 2n matrix
with real entries (with respect to a basis of W ). As G −→ W is real-differentiable
it is in particular real partially differentiable with respect to xj and yj, and these
derivatives give the entries in the matrix. The map ϕ is complex-differentiable if
and only if L is (not only real-, but also) complex-linear. As (by Proposition 2.2.2)

(∂ϕ/∂yj)(P )=(Divj
ϕ)(P )=(Dϕ)P (ivj) and (∂ϕ/∂xj)(P )=(Dvj

ϕ)P =(Dϕ)P (vj)

we get that the C-linearity of the differential (namely (Dϕ)P (ivj) = i(Dϕ)P (vj)) is
equivalent to

(
∂ϕ

∂yj
)(P ) = i(

∂ϕ

∂xj
)(P ) .

�
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For W = C we get the following special case, called the Cauchy-Riemann differ-
ential equations.

Corollary 2.3.2. Let G ⊆ Cn open, and let ϕ : G −→ C be a mapping which is
real-differentiable in P ∈ G. Write ϕ = g + ih with real-valued functions g, h :
G −→ R. Write zj = xj + iyj, j = 1, . . . , n, for the coordinates. Then ϕ is complex-
differentiable in P if and only if

(
∂g

∂yj
)(P ) = −(

∂h

∂xj
)(P ) and (

∂h

∂yj
)(P ) = (

∂g

∂xj
)(P )

holds for all j.

Proof. We have

(
∂ϕ

∂yj
)(P ) = (

∂(g + ih)

∂yj
)P = (

∂g

∂yj
)(P ) + i(

∂h

∂yj
)(P )

and similar

(
∂ϕ

∂xj
)(P ) = (

∂g

∂xj
)(P ) + i(

∂h

∂xj
)(P )

Hence the condition in Theorem 2.3.1 is that

(
∂g

∂yj
)(P ) + i(

∂h

∂yj
)(P ) = i((

∂g

∂xj
)(P ) + i(

∂h

∂xj
)(P )) .

Comparing the real and the imaginary part gives the claimed conditions

(
∂g

∂yj
)(P ) = −(

∂h

∂xj
)(P ) and (

∂h

∂yj
)(P ) = (

∂g

∂xj
)(P ) .

�

Remark 2.3.3. Suppose also that V = C with coordinate z = x + iy. Then the
condition for ϕ(z) = g(z) + ih(z) to be complex-differentiable is

(
∂g

∂y
)(P ) = −(

∂h

∂x
)(P ) and (

∂h

∂y
)(P ) = (

∂g

∂x
)(P ) .

This means for the real total differential (the 2× 2-matrix)( ∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

)
that in the diagonal there is the same term and the values on the antidiagonal are
the negative of each other.

Example 2.3.4. Consider the mapping

C = R2 −→ C = R2

given in real coordinates as (x, y) 7→ (4x2 − xy, 2xy2 + y3) = (g, h). This is clearly
differentiable in the real sense, with matrix(

8x− y x
2y2 4xy + 3y2

)
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and it is not complex-differentiable.

Example 2.3.5. Consider the mapping

C = R2 −→ C = R2

given in real coordinates as (x, y) 7→ (x4− 6x2y2 + y4, 4x3y− 4xy3) = (g, h). This is
clearly differentiable in the real sense, with matrix(

4x3 − 12xy2 −12x2y + 4y3

12x2y − 4y3 4x3 − 12xy2

)
.

Hence it fulfills the Cauchy-Riemann differential equation and is complex-differen-
tiable. In fact it is the mapping

z 7−→ z4 = (x4 − 6x2y2 + y4, 4x3y − 4xy3) .

The complex differential is just 4z3. This complex-linear mapping sends

1 7−→ 4z3 = 4(x3 − 3xy2 + (3x2y − y3)i)

and
i 7−→ 4iz3 = 4((x3 − 3xy2)i− (3x2y − y3)) .

These two vectors are the columns of the corresponding real matrix.

2.4. Higher derivatives.

For a map ϕ : G −→ W and a fixed vector u ∈ V the directional derivative in
direction u is (if it exists) itself a mapping

Du(ϕ) : P 7−→ (Du(ϕ))(P ) .

As such it makes sense to ask whether Du(ϕ) is differentiable in direction v. We
speak about higher derivatives. The following theorem is called the Theorem of
Clairaut or Theorem of Schwarz.

Theorem 2.4.1. Let ϕ : G −→ W be a map such that for u, v ∈ V the sec-
ond directional derivatives DvDu(ϕ) and DuDv(ϕ) exist and are continuous. Then
DvDu(ϕ) = DuDv(ϕ).

Proof. By looking at the components we may assume that W = K and that K = R.
We will apply the one dimensional real mean value theorem. Fix a point P ∈ G.
We look at (s, t) 7→ ϕ(P + su + tv) and study this map for s, t small enough. We
fix these (for the moment) and look at

σ 7−→ ϕ(P + σu+ tv)− ϕ(P + σu) .

By the mean value theorem we get an s1 (between 0 and s) such that

ϕ(P + su+ tv)− ϕ(P + su)− ϕ(P + tv) + ϕ(P )

= s(Duϕ)(P + s1u+ tv)− (Duϕ)(P + s1u) .

Now we apply again the mean value theorem to the map

τ 7−→ (Duϕ)(P + s1u+ τv)
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and get the existence of a t1 ≤ t such that

(Duϕ)(P + s1u+ tv)− (Duϕ)(P + s1u) = t(Dv(Duϕ))(P + s1u+ t1v) .

So together we get

ϕ(P + su+ tv)− ϕ(P + su)− ϕ(P + tv) + ϕ(P ) = st(Dv(Duϕ))(P + s1u+ t1v) .

Doing the same trick in the other direction we get also s2 and t2 such that this
expression also equals

st(Du(Dvϕ))(P + s2u+ t2v) .

Hence for given (small enough) s, t 6= 0 we deduce that there exist s1, t1, s2 and t2
such that

(Dv(Duϕ))(P + s1u+ t1v) = (Du(Dvϕ))(P + s2u+ t2v) .

The assumption of continuity of both second directional derivatives implies for s 7→ 0
and t 7→ 0 that also s1, t1, s2 and t2 converge to 0, hence we get the identity. �

3. Differential forms and path integrals

3.1. Differential forms.

Let V and W denote two finite dimensional vector spaces over K. Let G ⊆ V be
an open subset and let ϕ : G −→ W be a (totally) differentiable mapping. Recall
that the process of differentiation gives for every point P ∈ G a K-linear
mapping

(Dϕ)P : V −→ W, v 7−→ (Dϕ)P (v) .

Note that this is an object of a new nature! To a point we assign a linear mapping.
This is quite different to the case of one variable, where the derivative of a function
is again a function, and so it is an object of the same kind.

We make a definition for this new object.

Definition 3.1.1. Let G ⊆ V be an open subset. A 1-form (or a differential
form of first degree) with values in W is a mapping

ω : G −→ HomK(V,W ) .

Here HomK(V,W ) is the set of K-linear mappings, which form itself a K-vector
space.

Question 3.1.2. A guiding question in this course is: Let a 1-form ω be given.
When is it given as the total differential of a differentiable mapping ϕ :
V −→ W , that is, does there exist ϕ with ω = Dϕ?

Remark 3.1.3. This is a generalization of the question when does a (continuous)
function g : I −→ R (where I ⊆ R is an interval) have a primitive function. The
answer to this question is always yes (though it might be very difficult to find a
primitive function explicitly). But here the question and its answer are much more
involved, and totally new phenomena occur:
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(1) There will be some (easy to formulate) necessary conditions on a differential
form to be a differential (“symmetry”, closed form) for the existence of a primitive
function. But this will in general not be sufficient.

(2) Using paths, one can reduce the problem to a one-dimensional integration prob-
lem. However, the choice of the paths is very important. The result will be the same
for two paths if there is a certain topological relation (homotopy) between them.

(3) A primitive mapping might exist locally, but not globally. This means that for
every P ∈ G there exist a (small) neighborhood U of this point (P ∈ U ⊆ G, often
U will be an open ball) such that if we restrict the form to U there exists a primitive
mapping, but for different points these mappings do not ‘glue together’. The dif-
ference between local and global solutions is a typical feature of higher dimensional
analysis.

(4) It will turn out that the analysis depends and reflects topological properties of
the open subset G. A leading example for this is the difference between G = R2

(the real plane, which we will often consider as C) and G = R2 − {0}.
(5) The problem of finding a primitive function for a (continuous) complex function
C ⊇ U −→ C is already very difficult. So though the process of differentiation
is basically the same in the real and the complex case (think of polynomials, the
exponential function or the trigonometric functions), the process of integrating is
very different in the complex case. A typical example is the complex function 1/z :
C − {0} −→ C. What is its integral (its primitive function)? In the real case it is
the logarithm, but there is no complex logarithm which is everywhere defined on
C− {0}. Already all the phenomena mentioned above occur already in this special
case.

Remark 3.1.4. In this course we will only consider one forms and will usually
just talk about differential forms. As HomK(V,W ) is itself a vector space over K
(of dimension dim(V )·dim(W )), one can talk about continuous and differentiable
differential forms. If V = Kn and W = Km, then a linear mapping V −→ W
corresponds to an m× n-matrix. In this case a differential form ω assigns to every
point P ∈ G a matrix. If K = R and W = R, then we talk about real-valued
differential forms . If K = C and W = C, then we talk about complex-valued
differential forms .

For every point P ∈ G we get a linear mapping ω(P ) : V −→ W . In particular, for
P ∈ G and v ∈ V , the expression

ω(P ; v) = (ω(P ))(v)

makes sense and is a vector in W .

Notation 3.1.5. The most important case for us will be V = Kn and W = K.
In this case we will denote by dxj the linear mapping

Kn −→ K , (v1, . . . , vn) 7−→ vj ,

as well as – for an arbitrary open subset G ⊆ Kn –, the differential form, which
assigns to every point P ∈ G the linear mapping dxj. So dxj is the differential
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form, where the linear mapping is always the j-th projection and does not vary
with P ∈ G.

In this case we can express a differential form as

ω = g1dx1 + . . .+ gndxn ,

where g1, . . . , gn are K-valued functions defined on G. A differential form which is
given in this way has to be interpreted in the following way:

ω(P ) = (g1dx1 + . . .+ gndxn)(P ) = g1(P )dx1 + . . .+ gn(P )dxn .

Now gi(P ) ∈ K are numbers and this is a linear combination of linear mappings,
hence it is itself a linear mapping, namely for v = (v1, . . . , vn) this is

(g1(P )dx1 + . . .+ gn(P )dxn)(v) = g1(P )v1 + . . .+ gn(P )vn ∈ K .

If ω = Df is the differential of f : G −→ K, then

Df =
n∑
j=1

∂f

∂x
dxj .

To see that this is true apply both sides to the standard basis and use Lemma 2.2.4.
For a point P and a vector v = (v1, . . . , vn) this gives

(Df)P (v) =
n∑
j=1

∂f

∂x
(P )vj .

Definition 3.1.6. For an open subset G ⊆ V we denote the set of differential
forms by

Ω(G;W )

This is in a natural way itself an (infinite-dimensional) vector space over K.

Even more is true: we can not only multiply a differential form ω with a
constant in K, but also with a function f : G −→ K to get another differential
form. Namely, the form fω is defined to be

(fω)(P ) := f(P )ω(P ) .

Note that here ω(P ) : V −→ W is a linear mapping and f(P ) ∈ K is a scalar, so the
product is again a linear mapping.

Definition 3.1.7. A differential form ω ∈ Ω(G;W ) is called exact if there exists
a differentiable mapping ϕ : G −→ W such that ω = Dϕ. In this case ϕ is called
a primitive function or a primitive mapping for ω.

Theorem 3.1.8. Let G ⊆ V be an open connected subset and let ω be a differ-
ential form on G with values in W . Then the difference between two primitive
mappings (if they exist) ϕ1 and ϕ2 is constant. There exists at most one primitive
mapping with a prescribed value ϕ(P ) = w.
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Proof. We consider the difference ϕ1−ϕ2 : G −→ W , which is also differentiable.
Its total differential is

D(ϕ1 − ϕ2) = Dϕ1 −Dϕ2 = ω − ω = 0 .

So we may assume that ϕ is a differentiable function and that its total differ-
ential is 0 everywhere on G. Then in particular all directional derivatives are
0. For P ∈ G let P ∈ B ⊆ G be an open ball neighborhood. Every other point
Q in B can be reached from P by going along a line segment (see Example 1.3.5).
The value of ϕ along this line segment does not change (by the corresponding
result in one variable). Hence ϕ is constant = ϕ(P ) on B. For every value w ∈ W
it follows that the subset

{Q ∈ G : ϕ(Q) = w}
is the union of open balls, hence open. But then also its complement⋃

u∈W,u 6=w
{Q ∈ G : ϕ(Q) = u}

is open. So if this set is 6= ∅, then it must be already G (connected!), and so ϕ is
constant. �

3.2. Pull-back of differential forms.

The notion of the pull-back is important in many branches of mathematics. The
general setting is that one has on object O (a function, a differential form, a mapping
to it) attached to a basis object B (like a space), and one has a mapping from another
basis object ψ : B′ −→ B. Then one can often construct out of these data a new
object O′ over B′. This is often called the pull-back of O along (or under) the base
change B′ −→ B, and often denoted by ψ∗(O) (the star is always above). Of course,
in every specific situation one has to specify what the exact meaning of a pull-back
is.

The pull-back of a function: Suppose that we have a function ϕ : M −→ N (an
object on M), and a mapping ψ : L −→ M . Then this gives easily a function on L,
namely the composition ϕ ◦ ψ.

From this one might expect that the pull-back of a differential form ω : G −→
HomK(V,W ) for a mapping ψ : G′ −→ G (G′ ⊆ V ′ an open subset in another vector
space) is just ω ◦ ψ. This is however not a good idea. A guiding line is that if ω is
exact with primitive function f (so that Df = ω), then the derivative of the
composition f ◦ ψ should give the pull-back of ω. That is, the diagram

C1(G,W )
ψ∗ //

D
��

C1(G′,W )

D
��

Ω(G,W )
? // Ω(G′,W )

should commute (where C1(G,W ) denotes the set of continuously differentiable
mappings).
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Therefore we arrive at the following definition.

Definition 3.2.1. Let ψ : G′ −→ G be a differential map and let ω ∈ Ω(G,W )
be a differential form. Then the pull-back of ω along ψ is the form ψ∗(ω)
defined by

(ψ∗(ω))(P ′, v′) := ω(ψ(P ′); (Dψ)P ′(v′)) .

In terms of linear maps, (ψ∗(ω))(P ′) is the linear map ω(ψ(P ′))◦(Dψ)P ′ : V ′ −→ W .

Theorem 3.2.2. Let ω ∈ Ω(G,W ) be an exact differential form with primitive
mapping f : G −→ W , and let G′ ⊆ V ′ be an open subset in another vector
space V ′. Let ψ : G′ −→ G be a differentiable map. Then also ψ∗ω is exact
with primitive map f ◦ ψ.

Proof. We just have to differentiate the mapping

G′ −→ W,P ′ 7−→ f(ψ(P ′)) .

This is by Theorem 2.1.7 for a point P ′ ∈ G′ and a vector v′ ∈ V ′ the vector (in
W )

(D(f ◦ ψ))P ′(v′) = (Df)ψ(P ′) ◦ (Dψ)P ′(v′) = ω(ψ(P ′), (Dψ)P ′(v′)) = ψ∗ω(P ′, v′) ,

the last equality follows from the definition of pull-back. �

Remark 3.2.3. If everything is given in coordinates, then the pull-back of a
differential form can be computed as follows. Let ω be a differential form on
Kn (or on an open subset) given as

ω = g1(x1, . . . , xn)dx1 + . . .+ gn(x1, . . . , xn)dxn .

Suppose that a mapping ψ : Kk −→ Kn is given as

(u1, . . . , uk) 7−→ (ψ1(u1, . . . , uk), . . . , ψn(u1, . . . , uk)) .

Then one has to replace ‘symbolically’ in the expression for ω each xj by
ψj(u1, . . . , uk), including dxj according to the following rule:

dxj = d(ψj(u1, . . . , uk)) =
∂ψj(u1, . . . , uk)

∂u1

du1 + . . .+
∂ψj(u1, . . . , uk)

∂uk
duk .

The resulting outcome is an expression of the form
∑k
i=1 hi(u1, . . . , uk)dui, which is

the pull-back.

3.3. Path integrals.

Regarding the question whether differential forms are exact, path integrals play an
important ‘test role’. We have met already paths in the context of path-connected
spaces. A path for us is a continuous mapping γ : [a, b] −→ G ⊆ V . Most of
the time we will also impose the condition that it is piecewise differentiable .
This means that there exist points a < a1< . . . <ak < b such that the restrictions
γ : [a`, a`+1] −→ V are differentiable.
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Note that even for K = C the paths are always defined on a real interval. Note
also that for a one-dimensional space we do not have to distinguish between the
several concepts of differentiability.

A special and the easiest (but already very important) case for piecewise differen-
tiable paths is a piecewise linear path.

Definition 3.3.1. For a differential form ω ∈ Ω(G,W ) and a differentiable
path γ : [a, b] −→ G we define∫

γ
ω :=

∫ b

a
γ∗ω =

∫ b

a
ω(γ(t); γ′(t))dt

and call it the path integral (or line integral) of ω along the path γ.

Remark 3.3.2. Here γ∗ω is the pull-back of the differential form ω along γ,
γ′(t) is the derivative of the path at t, which is a vector in V , and so ω(γ(t); γ′(t))
is a vector (depending on the real parameter t) in W . Therefore on the right we
have an integral depending on a real parameter and having values in W .
Hence this integral is well-defined and has a value in W . If γ is only piecewise
differentiable, we can still define the path integral by looking at a < a1< . . . <ak < b
such that the restrictions γ : [a`, a`+1] −→ V are differentiable and declaring the path
integral to be the (finite) sum of the path integrals over these differentiable paths.

Remark 3.3.3. In the setting of physics, a differential form (or its dual version, a
vector field) describes forces and the path integral is then the amount of energy
or work needed to walk along the path.

Computation 3.3.4. Suppose we want to compute a path integral. Then ω
must be given as

ω(P ) = g1dx1 + . . .+ gndxn ,

where xj are coordinates in V = Kn and gj : G −→ W are mappings. The
path is given as t 7→ (γ1(t), . . . , γn(t)), where each γj is a mapping I −→ K. The
derivative of the path is then the n-tuple (γ′1(t), . . . , γ

′
n(t)). The pull-back of

the differential form is then t 7→
ω(γ(t); γ′(t)) = (g1(γ(t))dx1 + . . .+ gn(γ(t))dxn)(γ

′
1(t), . . . , γ

′
n(t))

τ

= g1(γ(t))(γ
′
1(t)) + . . .+ gn(γ(t))(γ

′
n(t)) .

The first expression is a linear mapping applied to a certain vector (here τ for
transposed) and in the second term we have plucked it in. It needs some time to
get used to this calculus and to see what refers to what. To remember it: in
gj(x1, . . . , xn) each xj has to be replaced by γj(t) and dxj has to be replaced by
γ′j(t).

Example 3.3.5. Consider the differential form (x, y) 7→ 3dx− xdy and the path

[0, 5] −→ R2, t 7−→ (t, t2) .

The derivative of this path is the vector (1, 2t) (depending on t). Hence the pull-back
is

t 7−→ ω((t, t2); (1, 2t)) = 3− t(2t) = 3− 2t2 .
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Example 3.3.6. A trivial example is then the path γ is constant, say t 7→ P for
all t ∈ I. Then its derivative is 0 and since ω(P,−) is a linear mapping, applied to 0
gives always 0. Hence also the path integral is 0 (as integrating over the 0 function
gives 0).

Remark 3.3.7. Important is already the case where γ is a linear path, given
by t 7→ P + tv, where v ∈ V is a certain vector. Then its derivative is always v
(independent of t), so in ω(γ(t); γ′(t)) = ω(P + tv, v) only the first argument varies,
the second is constant.

Example 3.3.8. Consider the differential form

(x, y, z) 7−→ (xy + z2)dx+ zdy + x3dz

and the linear path

γ : [0, 1] −→ R3, t 7−→ (1, 2, 0) + t(3, 0, 2) = (1 + 3t, 2, 2t) .

The pull-back is the mapping t 7→
(((1 + 3t)2 + (2t)2)dx+ 2tdy + (1 + 3t)3dz)(3, 0, 2)τ

= 3((1 + 3t)2 + (2t)2) + 2(1 + 3t)3

= 12t2 + 18t+ 6 + 54t3 + 54t2 + 18t+ 2
= 54t3 + 66t2 + 36t+ 8

Integrating this from 0 to 1 gives∫ 1

0
(54t3 + 66t2 + 36t+ 8)d = (

27

2
t4 + 22t3 + 18t2 + 8t)|10 = 61

1

2
.

Definition 3.3.9. Let G be a topological space. For a path γ : [a, b] −→ G we call
←−γ (t) := γ(b+ a− t) (defined on the same interval) the reverse path of γ.

For a second path β : [b, c] −→ G with β(b) = γ(b) we call the path γβ : [a, c] −→ G,
which follows on [a, b] the first path and on [b, c] the second path, the concatenation
of the two paths.

A path is called closed if its start point and end point are identical. Such
closed paths are also called a contour or a loop.

Remark 3.3.10. For a closed path γ (a contour) the path integral is often called a
contour integral and it is sometimes written as

∮
γ ω.

We collect several rules for the computation of path integrals in the following
theorem.

Theorem 3.3.11. Let G ⊆ V be an open subset in a K-vector space V , let ω, ω1, ω2

be differential forms on G with values in a vector space W . Let γ : I = [a, b] −→ G
be a piecewise differentiable path. Then the following hold.

(i)
∫
γ(c1ω1 + c2ω2) = c1

∫
γ ω1 + c2

∫
γ ω2 , where c1, c2 ∈ K (Linearity).

(ii) Let β : [b, c] −→ G be a second path with β(b) = γ(b) and consider the the
concatenation γβ : [a, c] −→ G. Then

∫
γβ ω =

∫
γ ω +

∫
β ω (Additivity).

(iii) Let ←−γ be the reverse path. Then
∫
←−γ ω = −

∫
γω.
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(iv) Let ψ : G −→ G be differentiable and let γ : I −→ G be a (piecewise
differentiable) path in G with the composition γ = ψ ◦ γ, which is a path
I −→ G. Then

∫
γ ω =

∫
γ ψ
∗(ω) (Substitution).

(v) Suppose that V and W are normed. Then we have the estimate∥∥∥∥∫
γ
ω

∥∥∥∥ ≤ ∫ b

a
‖ω(γ(t))‖ · ‖γ′(t)‖ dt .

Proof. (i).∫
γ
(c1ω1 + c2ω2) =

∫ b

a
γ∗(c1ω1 + c2ω2)

=
∫ b

a
(c1ω1 + c2ω2)(γ(t), γ

′(t))dt

=
∫ b

a

(
c1ω1(γ(t), γ

′(t)) + c2ω2(γ(t), γ
′(t))

)
dt

= c1

∫ b

a
ω1(γ(t), γ

′(t))dt+ c2

∫ b

a
ω2(γ(t), γ

′(t))dt

= c1

∫
γ
ω1 + c2

∫
γ
ω2 .

In the pre-ultimate step we have used the linearity of the integral.

(ii). This follows from the additivity of an integral with respect to two
intervals.

(iii). This follows from ←−γ ′ = −γ′.
(iv). ∫

γ
ω =

∫ b

a
ω(γ(t), γ′(t))dt

=
∫ b

a
ω(ψ(γ(t)), (ψ ◦ γ)′(t))dt

=
∫ b

a
ω
(
ψ(γ(t)), (Dψ)γ(t)(γ

′(t))
)
dt

=
∫ b

a
(ψ∗(ω)(γ(t), γ′(t))dt

=
∫
γ
(ψ∗ω) .

Here we have used in the third equation the chain rule and in the forth the definition
of the pull-back of a differential form.

(v). We have ∥∥∥∥∫
γ
ω

∥∥∥∥ =

∥∥∥∥∥
∫ b

a
ω(γ(t), γ′(t))dt

∥∥∥∥∥
≤

∫ b

a
‖ω(γ(t), γ′(t))‖ dt

≤
∫ b

a
‖ω(γ(t))‖ · ‖γ′(t)‖ dt .
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The first estimate follows from the mean value theorem for integrals and the
second from Exercise 5.12 (the norm of ω(γ(t)) is the norm of a linear map). �

3.4. Exact differential forms and path conditions.

We characterize exactness - the existence of a primitive function - in terms of
path integrals.

Theorem 3.4.1. For a continuous differential form ω on G ⊆ V with values in W
the following are equivalent.

(i) ω is exact.
(ii) For every piecewise differentiable path γ : [a, b] −→ G the path integral∫

γ ω depends only on the start point γ(a) and the end point γ(b).
(iii) For every closed piecewise differentiable path γ one has

∫
γ ω = 0 (so

all contour integrals are zero).

If these conditions are fulfilled, and if G is connected, then one can choose a
point P0 ∈ G and define a primitive map by the integral

ϕ(P ) :=
∫
γ
ω ,

where γ is an arbitrary (piecewise differentiable) path from P0 to P .

Proof. (i)⇒ (ii). Let γ : [a, b] −→ G be a continuous piecewise differentiable path and
let ϕ : G −→ W be a primitive map for ω. We may assume that γ is differentiable.
Then ∫

γ
ω =

∫
γ
Dϕ =

∫ b

a
γ∗(Dϕ) =

∫ b

a
D(γ∗ϕ) = [γ∗ϕ]ba = ϕ(γ(b))− ϕ(γ(a)) .

The third equation is the rule on pull-back and differentiation (3.2.2), the forth is
the fundamental theorem of calculus.

The implication (ii) ⇒ (iii) is trivial: let γ : [a, b] −→ G be a closed path with
γ(a) = γ(b) = P . The integral over this path is by (ii) the same as the integral over
every other path with start point P and end point P . But the integral over the
constant path c : [a, b] −→ G, c = P , is 0 (Example 3.3.6).

The implication (iii) ⇒ (ii) is also not difficult and follows from a nice trick: Let
γ1, γ2 : [a, b] −→ G be two paths with start point P and end point Q. Then∫

γ1
ω −

∫
γ2
ω =

∫
γ1
ω +

∫
←−γ2
ω =

∫
γ1
←−γ2
ω .

Here ←−γ denotes the reverse path, and we have used 3.3.11 (ii), (iii). Now γ1
←−γ2 is

a closed path, hence this path integral is 0 by (iii).

For (ii) ⇒ (i) we have to construct a primitive function on each connected
component of G, so we may assume that G is connected. We construct a primitive
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function in the following way: Look at P0 ∈ G and set

ϕ(P ) :=
∫
γ
ω ,

where γ is an arbitrary (piecewise continuous) path from P0 to P . This is well-
defined by property (ii). We have to show that this function is differentiable and
that ω is its total differential. We work with directional derivatives. Fix a
point P ∈ G and let v ∈ V be a vector representing a direction. Let

γv,s : [0, s] −→ G, t 7−→ P + tv

be the corresponding linear path (make sure that s is small enough such that
P + tv ∈ G for all 0 ≤ t ≤ s). This is a path from P to P + sv. Let γ be a path
from P0 to P . Then

ϕ(P + sv)− ϕ(P ) =
∫
γ
ω +

∫
γv,s

ω −
∫
γ
ω =

∫
γv,s

ω =
∫ s

0
ω(P + tv; v)dt .

Hence

(Dv(ϕ))(P ) = lim
s−→0

ϕ(P + sv)− ϕ(P )

s
= lim

s−→0

1

s

∫ s

0
ω(P + tv; v)dt = ω(P ; v) .

For the last equation observe that t 7→ ω(P + tv; v) is defined on a real interval, so
this equation is the fundamental theorem of calculus. As ω is by assumption
continuous, it follows from Theorem 2.2.6 that ϕ is not only directional differen-
tiable, but also totally differentiable. �

3.5. Symmetric and closed differential forms.

We are going now to understand an easy necessary condition for a differential
form ω to be exact. Consider the form ω : G −→ HomK(V,W ). As HomK(V,W )
is itself a K-vector space, it makes sense to say that ω is differentiable or not.
Suppose it is. Then for every point P ∈ V the differential is a linear mapping

(Dω)P : V −→ Hom(V,W ) ,

where the target vector space is itself a vector space of linear mappings.

A vector v ∈ V can now occur in two places! If v and u belong to V , then the
first vector v defines (for a fixed point P ) a linear mapping in Hom(V,W ), and this
linear mapping applied to u gives then a vector in W . Hence one can consider this
whole thing as defining a (bilinear) mapping

(Dω)P : V × V −→ W, (v, u) 7−→ ((Dω)P (v))(u) .

We write in general (Dω)P (v, u) for this, where in general the order of the vectors
is important.

Definition 3.5.1. We say that a differentiable differential form ω : G −→
Hom(V,W ) is symmetric if its total differential Dω is in every point P ∈ G
symmetric, meaning that

(Dω)P (v, u) = (Dω)P (u, v)
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for all v, u ∈ V .

Remark 3.5.2. Even in the case K = C the notion symmetric refers often to the
underlying real structure. We will adopt this viewpoint in the next section.

Lemma 3.5.3. (i) The expression (Dω)P (v, u) is also the derivative in di-
rection v of the mapping

P 7−→ ω(P, u) .

(ii) If ω is exact and ω = Dϕ, then Dω(v, u) = DvDu(ϕ) (the second direc-
tional derivative).

(iii) The derivative of the mapping G × V −→ W , (P,Q) 7→ ω(P,Q) in
direction (v, u) is

(Dω)P (v,Q) + ω(P, u) .

Proof. (i). The mapping P 7−→ ω(P, u) is the composed mapping

G
ω−→ Hom(V,W )

Evu−→ W ,

where Evu means the evaluation at u, that is, the mapping L 7→ L(u). This
evaluation is linear. So the derivative in direction v can be computed according
to the chain rule as

= (Evu ◦ (Dω)P )(v) = Evu((Dω)P (v)) = ((Dω)P )(v))(u) = (Dω)P (v, u) .

(ii). By part (i), (Dω)P (v, u) is the directional derivative of

P 7−→ ω(P, u) = (Dϕ)P (u) = (Du(ϕ))P

in direction v, and this is (DvDuϕ)(P ) as claimed.

(iii). We are dealing with the composed mapping

G× V (ω,id)−→ HomK(V,W )× V Ev−→ W .

By the chain rule and by Exercise 4.4 we get for the directional derivative

((DEv)(ω(P ),Q) ◦ (Dω, id)(P,Q))(v, u) = (DEv)(ω(P ),Q)((Dω)P (v), u)
= (Dω)P (v,Q) + ω(P, u) .

�

Theorem 3.5.4. Let ω : G −→ Hom(V,W ) be a continuously differentiable
differential form. Suppose that ω is exact. Then ω is also symmetric.

Proof. Write ω = Dϕ. By Lemma 3.5.3 (ii) we have Dω(v, u) = DvDu(ϕ). By
assumption this is continuous, hence by Theorem 2.4.1 we can interchange v and
u, which gives the result. �

In terms of a basis, the symmetry can be checked as follows.
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Proposition 3.5.5. Let v1, . . . , vn be a basis of V with coordinate functions
x1, . . . , xn. Let a continuously differentiable form ω : G −→ Hom(V,W ) be
given as ω =

∑n
j=1 gjdxj, where gj : G −→ W . Then ω is symmetric if and only if

for all 1 ≤ j, i ≤ n
∂gi
∂xj

=
∂gj
∂xi

.

Proof. Note that the form is (continuously) differentiable if and only if all gj are
(continuously) differentiable. By Lemma 3.5.3 (i) we know that (Dω)P (vj, vi) is the
j-th partial derivative of the map

P 7−→ ω(P, vi) = (
n∑
j=1

gj(P )dxj)(vi) = gi(P ) .

So this is ∂gi(P )
∂xj

, and the symmetry implies that ∂gi

∂xj
= ∂gj

∂xi
. On the other hand, if

this condition is fulfilled, then (Dω)P (vj, vi) = (Dω)P (vi, vj) it is enough to check
the symmetry on a basis. �

So we know that exact differential forms are symmetric. Not all symmetric
forms are exact, however they are locally exact. This means that locally, that
is, in a neighborhood of each point, there exists a primitive function. A primitive
function does however not exist globally in general. In fact, the global existence
of a primitive function depends on and reflects topological properties of
G.

We study first a special kind of open subsets where a symmetric form is always
exact.

Definition 3.5.6. A subset G ⊆ V in a finite dimensional K-vector space V is
called star-shaped with respect to P ∈ G if for all Q ∈ G also the connecting real
line segment between P and Q belong to G.

The line segment exists in V and is given as P + s(Q − P ) for s ∈ [0, 1] (a real
number, even if K = C).

Star-shaped subsets are for us the easiest open subsets. A star-shaped subset is in
particular (pathwise) connected. A vector space itself is star-shaped with respect
to every point. Also an open ball is star-shaped with respect to every point.The
punctured plane C − {0} = R2 − {0} is not star-shaped (with respect to no
point).

Theorem 3.5.7. Let G ⊆ V be an open subset which is star-shaped with respect
to Q ∈ G. Let ω be a continuously differentiable form on G. Suppose that ω is
symmetric. Then ω is exact, and a primitive function is given by

ϕ(P ) =
∫
γ
ω =

∫ 1

0
ω(Q+ tP ;P −Q)dt

(where γ is the linear path connecting Q and P ∈ G).
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Proof. We may assume that Q = 0, so that ϕ(P ) =
∫ 1
0 ω(tP ;P )dt. We want to

compute Duϕ, and for this we may differentiate under the integral, so

(Duϕ) =
∫ 1

0
Du(P 7−→ ω(tP, P ))dt .

The derivative in direction u of the mapping P 7−→ ω(tP, P ) is by Lemma 3.5.3
(iii) and by symmetry

(Dω)tP (tu, P ) + ω(tP, u) = t(Dω)tP (P, u) + ω(tP, u) .

For fixed P ∈ G and u ∈ V this is the derivative of the function t 7→ tω(tP, u) (since
Q 7→ ω(Q, u) has differential v 7→ (Dω)Q(v, u)). Thus we get

(Duϕ)(P ) =
∫ 1

0
(t(Dω)tP (P, u) + ω(tP, u))dt = [tω(tP, u)]10 = ω(P, u) .

�

Definition 3.5.8. A differential form ω : G −→ HomK(V,W ) is called closed (or
locally exact) if for every point P ∈ G there exists an open neighborhood U ,
P ∈ U ⊆ G, such that on U there exists a primitive function for ω.

Theorem 3.5.9. A continuously differentiable form on G is closed if and only
if it is symmetric.

Proof. Suppose ω is locally exact. Then ω is symmetric by Theorem 3.5.4, since
symmetric is a local property.

Now suppose ω is symmetric. For every point P ∈ G there exists an open ball
P ∈ B(P, ε), and balls are star-shaped. Hence by 3.5.7 there exists a primitive
function on these balls. �

3.6. Complex-differentiable forms and real closed forms.

For a complex-valued function f : G −→ C, G ⊆ C open, we consider the differential
form f(z)dz as a real form.

Theorem 3.6.1. Let G ⊆ C = R2 be open. Let f : G −→ C be stresscontinuously
differentiable in the real sense. Then the differential form fdz is symmetric (in
the real sense) if and only if f is complex-differentiable.

Proof. We let z = x+ yi and we write f(z) = f(x, y) = g(x, y) + ih(x, y). We then
write the differential form in real terms as

fdz = (g + ih)d(x+ iy) = (g + ih)dx+ (ig − h)dy .
Then symmetry means that

∂(g + ih)/∂y = ∂(ig − h)/∂x .
But this means that the two conditions (looking at the real part and the imag-
inary part) ∂g/∂y = −∂h/∂x and ∂g/∂x = ∂h/∂y hold. These are precisely
the Cauchy-Riemann differential equations (see 2.3.2), which characterizes
complex-differentiability. �
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Remark 3.6.2. Let f be a continuously complex-differentiable function de-
fined on G ⊆ C and let γ = (γ1, γ2) be a (piecewise) differentiable path in G.
Then the path integral for such a path for the closed differential form f(z)dz is∫
γ
f(z)dz =

∫ b

a
((Ref)(γ1(t)+ iγ2(t)) ·γ′1(t))dt+ i

∫ b

a
((Imf)(γ1(t)+ iγ2(t)) ·γ′2(t))dt .

Example 3.6.3. Let f = z3 : C −→ C. As a real function in the variables x and y
this is the mapping

(x, y) 7−→ (x3 − 3xy2, 3x2y − y3)

and the corresponding differential form is

(x, y) 7−→ (x3 − 3xy2)dx+ (3x2y − y3)dy .

The symmetry condition is fulfilled, since we get

∂(x3 − 3xy2)

∂y
= 6xy

and also
∂(3x2y − y3)

∂y
= 6xy .

3.7. Differential forms and vector fields.

Vector fields, which are mappings F : G −→ V , and differential forms (with values in
K) are closely related, in fact they are dual to each other in a precise sense. Vector
fields have more intuition on their side, and the path integral along a vector field
has a meaning which is easier to understand and has a lot of applications in physics.
From a computational point of view there is hardly a difference. The advantage
for differential forms is their functorial behaviour (as expressed in the pull-back, for
example).

If the vector space V has an inner product < , >, then the theory of vector fields
and of K-valued differential forms are equivalent. The terminology is however often
quite different. A vector field which is ‘exact’ is called conservative or a gradient
field, and the negative of a ‘primitive function’ is called a potential.

4. The fundamental group

The path integrals of a differential form reflect properties of the form, but
also of the space. Suppose that ω is a closed, but not exact form. Then by
theorem 3.4.1 there exists a closed path (same start and end point) such that the
path integral along this path is not 0. The typical example for this is G = C−{0}
and the complex differential form dz/z, or, in real terms,

(x, y) 7−→ (
xdx+ ydy

x2 + y2
,
−ydx+ xdy

x2 + y2
) .
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So this form assigns to (x, y) the linear mapping R2 −→ R2 given by the matrix(
x

x2+y2
y

x2+y2
−y

x2+y2
x

x2+y2

)
.

A closed path with non zero path integral is given by γ : [0, 1] −→ G, t 7→ e2πit,
that is, the unit circle, run through one time counter-clockwise. We have computed
(Exercise 6.2) that

∫
γ = 2πi. If we run n times through the circle, then the path

integral is 2nπi. It will turn out that the value of the path integral of a closed
path depends only on how often we effectively run around the hole.

In this section we deal only with paths (and forget the differential forms for a while)
and try to understand which properties of a space (which will always be an open
subset G in a vector space V ) can be seen by looking at the paths in it.

4.1. The fundamental group.

Definition 4.1.1. Two paths γ1, γ2 : I = [0, 1] −→ X in a metric (or topological)
space with same start point γ1(0) = γ2(0) = P and same end point γ1(1) =
γ2(1) = Q (P,Q ∈ X) are called homotopic if there exists a homotopy between
them. This means a continuous mapping H : I × I −→ X with the following
properties.

H(0, t) = γ1(t) and H(1, t) = γ2(t) .

H(s, 0) = P and H(s, 1) = Q for all s .

Remark 4.1.2. For each fixed s ∈ I the restricted mapping H(s,−) is itself a path.
So the idea is that we have a continuous deformation which deforms the path γ1

into the γ2. This is sometimes possible and sometimes not. It is clear that if two
paths are homotopic using a homotopy with the interval [0, 1], then it is also possible
(by shrinking or extending) to use a homotopy defined on another interval. We will
use this without further ado.

Lemma 4.1.3. The relation between paths with fixed start points and end points
of being homotopic is an equivalence relation.

Proof. This is rather an exercise in having understood the definition of homotopic.
For the reflexivity consider the homotopy H(s, t) = γ(t). For the symmetry we
go through the homotopy in the other direction, that is, if H : I × I −→ X is a
homotopy from γ1 to γ2, then H̃(s, t) := H(1 − s, t) is a homotopy from γ2 to γ1.
Transitivity: Let H1 be a homotopy between γ1 and γ2 and let H2 be a homotopy
between γ2 and γ3. We may assume that the homotopies are defined on [0, 0.5]× I.
Then be putting the two homotopies together we get a homotopy relating γ1 with
γ3 (note that this is continuous, as on the common border the mapping is γ2, see
Exercise 6.9). �

Lemma 4.1.4. Let γ : [0, 1] −→ X be a path in a metric (topological) space and
let θ : [0, 1] −→ [0, 1] be a continuous map with θ(0) = 0 and θ(1) = 1 (this is
called an oriented change of parametrization or reparametrization). Then
γ and γ ◦ θ are homotopic.
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Proof. Consider the homotopy given as

H(s, t) = γ((1− s)t+ sθ(t))

For s = 0 this is γ and for s = 1 this is γ◦θ. The continuity is clear, and (1−s)t+sθ(t)
is always inside the unit interval (the “trajectory” of the paths are always the
same, only the velocity changes). �

By 4.1.3 we have a partition of the set of all paths with fixed start point and end
point into equivalence classes, the homotopy classes of paths. The most important
case is the case where the start point is also the end point, which is the case of the
closed paths. In this case the homotopy classes form even a group!

Definition 4.1.5. Let X be a metric (topological) space and let P be a point.
Then π(X,P ) is the set of homotopy classes of closed paths with start and
end point P . It is called the fundamental group of X in the point P .

Proposition 4.1.6. The fundamental group π(X,P ) is in fact a group, where
the composition is given by concatenation of paths and where the neutral el-
ement is given by the constant path γ ≡ P . The inverse element of (the
homotopy class of) a path is given by the inverse path (or reverse path), which is
the path run in the opposite direction.

Proof. For two paths γ1 and γ2 (with start point and end point being P ) the con-
catenation is the path γ1γ2 : [0, 1] −→ X which is defined as

γ1γ2(t) =

γ1(2t) for 0 ≤ t ≤ 0.5

γ2(2(t− 0.5)) for 0.5 ≤ t ≤ 1
.

In the context of homotopy and the fundamental group all paths should be defined
on the unit interval So this is the path which first runs with double velocity through
γ1 and then again with double velocity through γ2

1

Then we define the composition of two homotopy classes [γ1] and [γ2] by [γ1γ2].
One has to check that this definition is independent of the choice of represen-
tative. So let γ1 ∼ β1 and γ2 ∼ β2. We have to show that then γ1γ2 ∼ β1β2. If
H1 and H2 are homotopies which relate γ1 with β1 and γ2 with β2, then one can
concatenate the homotopies to a homotopy to show that the concatenations are
homotopic.

The associativity follows from Lemma 4.1.4, as (γ1γ2)γ3 and γ1(γ2γ3) differ only
change of parameter.

The constant path β = P is the neutral element, since again γβ and γ differ by
a change of parameter.

1This definition of concatenation is slightly different from the one in 3.3.9.
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The inverse path is denoted by ←−γ and defined by ←−γ (t) := γ(1− t). The concate-
nation path γ←−γ is homotopic to the constant path, as shown by the homotopy

H(s, t) =

γ(2st) for t ≤ 1/2

= γ(2s(1− t)) for t ≥ 1/2
.

So the inverse path is really the inverse in the group structure. �

Remark 4.1.7. For a path-connected space X the fundamental group does not
depend on the point P , as follows from exercise 7.6.

Example 4.1.8. Let X = R2. Consider the unit circle [0, 1] −→ R2 given by
t 7→ (cos(2πt), sin(2πt)). Its start and end point is (1, 0). By shrinking the circles
but keeping the start and end point we see that this circle path is homotop to the
constant path:

H(s, t) := (s+ (1− s) cos(2πt), (1− s) sin(2πt)) .

It is clear that for this homotopy we need the area inside the circle. If instead of R2

we would just deal with the unit circle or with R2 − {(0, 0)}, then - as we will see
more precisely below - it is not possible to perform such a homotopy, and the circle
path is not homotopic to the constant path.

Definition 4.1.9. A metric space X is called contractible if there exists a point P ∈
X and a continuous (“contracting”) mapping H : I ×X −→ X with H(0,−) = id
and H(1,−) = P (the constant mapping) and with H(s, P ) = P for all s ∈ I.

Theorem 4.1.10. Suppose that G is a contractible space. Then its fundamen-
tal group is trivial. This is in particular true for a star-shaped subspace of a
vector space.

Proof. Suppose that G is contractible with respect to P and consider π(P,X). Let
H : I ×X −→ X be a contracting homotopy to P and let a closed path (starting
and ending in P be given). Then

I × I id×γ−→ I ×X H−→ X ,

which sends (s, t) 7−→ H(s, γ(t)), is a homotopy between γ and the constant path
≡ P . �

Definition 4.1.11. A topological space is called simply connected if it is path-
connected and if its fundamental group is trivial.

So Theorem 4.1.10 says that contractible spaces are simply connected. This
is true for (open and closed) balls and for every finite dimensional vector space as a
whole.

Proposition 4.1.12. Let ϕ : X −→ Y be a continuous mapping and let P ∈ X
be a point which is mapped to Q = ϕ(P ). Then we get a natural group homo-
morphism

π(ϕ) : π(X,P ) −→ π(Y, P ), [γ] 7−→ [ϕ ◦ γ] .
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Proof. One first has to show that this is well-defined. So let γ ∼ β with a homotopy
H. Then ϕ ◦ H gives a homotopy between ϕ ◦ γ and ϕ ◦ β. That it is a group
homomorphism is clear from the definition of the concatenation of two paths. �

In particular, the image of a zero-homotopic (= homotopic to constant path)
is again zero-homotopic.

4.2. Coverings.

In this section we will deal with topological spaces, not only with metric spaces. We
introduce coverings, which we will use for the computation of fundamental groups
and in the proof of the monodromy theorem 5.1.2.

Definition 4.2.1. Let Y and X be topological spaces and let p : Y −→ X be a
continuous mapping. The mapping is called a covering (and Y is called a covering
space of X) if the following condition holds:

For every point P ∈ X there exists an open neighborhood P ∈ U such that
p−1(U) is the disjoint union of open subsets Vi, i ∈ I, (where I is some index
set), such that the restrictions Vi −→ U are homeomorphisms for every i.

A covering of the form
⊎
i∈I Vi −→ U , where each Vi is mapped homeomorphically

to U , is called trivial. So locally, every covering is trivial, but the global properties
can be quite involved. The word couple local/global is very important in modern
mathematics.

The standard examples are the following.

Example 4.2.2. Let p : R −→ S1 be given by t 7→ (cos(t), sin(t)). For a point
P0 ∈ S1, P0 = (cos(t0), sin(t0)), the preimage consists of t0 + 2nπ, n ∈ Z. The
preimage of the set

{(cos(t), sin(t)): t0 − δ < t < t0 + δ}
for δ small enough (δ < π) is the disjoint union of open intervals⊎

n∈Z
(t0 + 2nπ − δ, t0 + 2nπ + δ) .

On each of these mappings we have a homeomorphism. To see this extend the
mapping to the closed interval,

[t0 + 2nπ − δ, t0 + 2nπδ] −→ {(cos(t), sin(t)): t0 − δ ≤ t ≤ t0 + δ} .
Then closed subsets are compact, so their image is compact and hence again closed,
and we have a homeomorphism.

Example 4.2.3. Let p : C −→ C× = C− {0} given by z 7→ exp(z). That this is in
fact a covering can be best seen using Example 4.2.2. To see this relation consider
the mappings

C −→ R+ × R −→ R+ × S1 −→ C×

given by

(x, y) 7−→ (exp(x), y), (u, v) 7−→ (u, cos(v), sin(v)), (r, s1, s2) 7−→ (rs1, rs2) .
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The composed mapping is

(x, y) 7→ (exp(x) cos(y), exp(x) sin(y)) = exp(x+ iy)

(by Euler formula, see Example 6.3.4), so this is our original mapping. The
mappings on the left and on the right are homeomorphisms, and the mapping in
the middle is in the first component the identity and in the second component the
covering from Example 4.2.2. So by Exercise 8.6 this is a covering.

Example 4.2.4. Let k be a natural number. Then p : S1 −→ S1 given by

(cosu, sinu) 7−→ (cosnu, sinnu), 0 ≤ u ≤ 2π ,

is a covering. The preimage of a point (cos(u0), sin(u0)) (and similarly, of a neigh-
borhood), consists of the n points (cos(u0

n
+ 2πk

n
), sin(u0

n
+ 2πk

n
)), k = 0, . . . , n− 1.

Example 4.2.5. Let n be a natural number. Then p : C× −→ C× given by z 7→ zn

is a covering (the corresponding mapping C −→ C is not). Using the identification
C× ∼= R+ × S1 (given by (r, u) 7→ ru) taking nth powers is the mappings

(r, u) 7−→ (rn, un) .

In the first component this is a homeomorphism, and in the second this is just the
covering from Exercise 4.2.4, as (cosnt, sinnt) = (cos t, sin t)n (recall that multiply-
ing of numbers on the unit circle is adding of the angles).

Definition 4.2.6. Let p : Y −→ X be a continuous mapping between topological
spaces, and let g : T −→ X be another continuous map, where T is also a
topological space. Then a continuous mapping g̃ : T −→ Y is called a lifting of g
if p ◦ g̃ = g.

Y

p

��
T

g̃
>>~~~~~~~

g
// X

Lemma 4.2.7. Let p : Y −→ X be a covering and let g : T −→ X be a continuous
map. Let g1, g2 : T −→ Y be two continuous liftings. Then the set S = {t ∈
T : g1(t) = g2(t)} is open and closed. In particular: If T is connected and two
liftings coincide in one point, then they are identical.

Proof. Let t be a point in this set S. There exists an open neighborhood of
P = g(t) ∈ U such that the restriction p−1(U) −→ U is a trivial covering. The
point Q = g1(t) = g2(t) lies in one Vi which is mapped homeomorphically to
U . As the liftings are continuous there exists a (common) open neighborhood
t ∈ W such that g1(W ), g2(W ) ⊆ Vi. But then g1 and g2 are determined to be
(p|V )−1 ◦ g, so they are the same on W . Hence P ∈ W ⊆ S and S is open.

Assume now that t is not in the set. This means that g1(t) 6= g2(t) and that g1(t) ∈ Vi
and g2(t) ∈ Vj for i 6= j. Then there exists again a (common) open neighborhood
t ∈ W such that g1(W ) ⊆ Vi and g2(W ) ⊆ Vj. Hence on W the two liftings do
not have a point in common, and so W is an open neighborhood of t outside
of the given set. Hence also the complement is open. �
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Theorem 4.2.8. Let p : Y −→ X be a covering and let γ : I = [a, b] −→ X be a
path. Fix a point Q ∈ Y mapping to P = γ(a) ∈ X. Then there exists a uniquely
determined lifting γ̃ : I −→ Y with γ̃(a) = Q.

Proof. By the compactness of a closed interval there exist a = a0 < a1 < . . . <
ak < b such that γ([a`, a`+1]) ⊆ U`, where the covering on U` is trivial (Exercise
8.1). We denote these paths by γ`, ` = 0, . . . , k. We define a lifting for these
paths successively. First we have Q ∈ V0,i for some i and so on [a, a1] we must
have γ̃0 = (p|V0,i

)−1 ◦ γ0. This determines a point γ̃(a1) ∈ Y over γ(a1), which we
use to construct γ̃1. At the end we get a complete lifting. The uniqueness was
already proven in Lemma 4.2.7. �

Theorem 4.2.9. Let p : Y −→ X be a covering and let H : [0, 1] × [0, 1] −→ X be
continuous. Fix a point Q ∈ Y mapping to P = H(0, 0) ∈ X. Then there exists a
uniquely determined lifting H̃ : [0, 1]× [0, 1] −→ Y with H̃(0, 0) = Q. If H(s, 0)
is constant, then also H̃(s, 0) is constant.

Proof. We skip this proof, which is similar to the proof of 4.2.8 (but more compli-
cated). The last sentence follows since H̃(s, 0) is a lifting of the path H(s, 0), and
this is uniquely determined by one point. �

Corollary 4.2.10. Let p : Y −→ X be a covering and let γ1, γ2 : I = [a, b] −→ X be
two paths which are homotopic in X (so in particular γ1(a) = γ2(a) and γ1(b) =
γ2(b)). Let γ̃1 be a lifting of γ1 and let γ̃2 be a lifting of γ2 with γ̃1(a) = γ̃2(a).
Then also γ̃1 and γ̃2 are homotopic and in particular γ̃1(b) = γ̃2(b).

Proof. Write I for the interval and let H : [0, 1]× I −→ X be a homotopy between
the two paths. By Theorem 4.2.9 there exists H̃ : [0, 1] × I −→ Y such that
H̃(0, a) = γ̃1(a) = γ̃2(a). Then H̃(0,−) = γ̃1 and H̃(1,−) = γ̃2. �

4.3. The circle and the punctured plane.

We compute now some fundamental groups with the help of coverings.

Lemma 4.3.1. Let γ : [0, 1] −→ S1 be a closed path, let R −→ S1, t 7→ (cos t, sin t)
be the covering described in Example 4.2.2. Let γ̃ be a lifting. Then γ is homotopic
to the constant path (so [γ] = 0 in π(S1)) if and only if the lifting γ̃ is closed
(so γ̃(0) = γ̃(1)).

Proof. One direction follows from Corollary 4.2.10. On the other hand, if γ̃(0) =
γ̃(1), then γ̃ is (as a path in R, which is contractible) homotopic to the constant
path. So its image path, which is γ, must also be homotopic to the constant
path. �

Theorem 4.3.2. The fundamental group of the circle S1 is Z. Every closed
path γ : [0, 1] −→ S1 is homotopic to one path of the form

t 7−→ (cos 2nπt, sin 2nπt) = e2πint

for one n ∈ Z. The assignment γ 7→ n gives this correspondence.
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Proof. We may assume that the path has start and end point (1, 0). Let R −→ S1

be the covering, and let γ̃ : [0, 1] −→ R be a lifting. The preimage of (1, 0) is exactly
Z2π. Hence we can write γ̃(1)− γ̃(0) = 2nπ with a uniquely determined n ∈ Z.
Let γn be the path t 7−→ (cos 2nπt, sin 2nπt). A lifting to R of this path is of the
form t 7→ 2πk + 2nπt for some k. Now look at the path γ←−γn = γγ−n. Any lifting
of this path has the same start and end point. Hence γγ−n is homotopic to the
constant path by Lemma 4.3.1 and so γ is homotopic to γn. �

Corollary 4.3.3. The fundamental group of the punctured plane C× = R2 −
{0} is Z,

π(C×) ∼= Z .
Every closed path (starting and ending) in (1, 0) is homotopic to a path of
type

t 7−→ (cos 2nπt, sin 2nπt) .

Proof. This follows from the homeomorphism

S1 × R+
∼= C×

given by (θ, r) 7→ rθ (polar coordinates), Exercise 7.7 and the fact that R+ is
contractible. �

5. Exact and closed differential forms

We are still dealing with the question when is a closed continuous differential
form ω ∈ Ω(V,W ) exact and how the path-integrals

∫
γ ω depend on the paths

ω. This section gives the answers in the form of the monodromy theorem and its
corollaries.

5.1. The monodromy theorem.

For a closed differential form ω : G −→ Hom(V,W ) we construct a covering
space Gω −→ G, the so-called “integral covering”. This will be the main technical
tool to proof the monodromy theorem.

Construction 5.1.1. Let ω : G −→ Hom(G,W ) be a closed differential form.
For each point P ∈ G there exists an open neighborhood P ∈ U ⊆ G (a ball for
example) such that the differential form restricted to U is exact (Theorem 3.5.7),
so locally on U there exists a primitive function.

Let Gω := G×W as a set together with the projection p : G×W −→ G. We will
define a topology on Gω such that this projection is a covering. We consider the
following subsets of Gω:

Γ(U, F ) = {(P, F (P )), P ∈ U} ⊆ G×W ,
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where U runs through all open subsets of G such that ω|U is exact and F runs
through all primitive functions for ω on U (they differ by an element of W , if U
is connected) (Γ stands for graph).

We define a topology on Gω by declaring these subsets and all unions of such
subsets to be open. Note that the intersection of two such sets is the union
of such sets. To see this let (P, y) ∈ Γ(U, F ) ∩ Γ(V,G). Then P ∈ U ∩ V , and
let P ∈ B ⊆ U ∩ V be an open ball neighborhood. Since on a connected subset
a primitive function is determined by one value (Theorem 3.1.8) and since y =
F (P ) = G(P ), it follows that F |B = G|B, and so

(P, y) ∈ Γ(B,F |B) ⊆ Γ(U, F ) ∩ Γ(V,G) .

It follows that all unions of such sets form a topology and make Gω into a
topological space (we do not claim that it is metric). For an open subset U ⊆ G
with the property that ω|U is exact, we have that p−1(U) ∼= Uω −→ U is a trivial
covering, and consists of disjoint copies of U , one for each y ∈ W . Therefore Gω

it is a covering space which we call the covering space for the differential form ω
or just the integral covering.

The following theorem is called the monodromy theorem:

Theorem 5.1.2. Let ω be a continuous closed differential form defined on
G ⊆ V with values in W . Let γ1, γ2 : [a, b] −→ G be two piecewise differentiable
paths which are homotopic. Then the path integrals are the same,∫

γ1
ω =

∫
γ2
ω .

Proof. First, let γ : [a, b] −→ G be a piecewise differentiable path and let γ̃ be
a lifting (which exists by Theorem 4.2.8) in the integral covering Gω for ω as
constructed in 5.1.1. We claim that

∫
γ ω = γ̃(b) − γ̃(a). For this let a < a1 <

. . . < ak < b be such that the images of every restricted path γ` : [a`, a`+1] −→ G lie
completely in an open subset U` on which ω is exact (exists by the compactness
of the interval, see Exercise 8.1) and such that γ` is differentiable. Let F` be the
primitive function on U` such that F`(γ(a`)) = γ̃(a`). Note that F` is a section
U` −→ Gω and that then γ̃ = F` ◦ γ` holds on [a`, a`+1] by Theorem 4.2.8.

The path integral is the sum over the path integrals for the paths γ`, and these are∫
γ`

ω = F`(γ(a`+1))− F`(γ(a`)) = γ̃(a`+1)− γ̃(a`) .

Hence summing up for ` = 0, . . . , k gives
∫
γ ω = γ̃(b)− γ̃(a).

Now let γ1 and γ2 be two homotopic paths in G. Then by Corollary 4.2.10 also
two liftings γ̃1 and γ̃2 with same start point are homotopic (and have also the
same end point). Therefore∫

γ1
ω = γ̃1(b)− γ̃1(a) = γ̃2(b)− γ̃2(a) =

∫
γ2
ω .

�
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Corollary 5.1.3. Let ω be a closed continuous differential form defined on
G ⊆ V with values in W . Let γ : [a, b] −→ G be a closed path (with start and end
point P ) and suppose that it is homotopic to the constant path. Then∫

γ
ω = 0 .

Proof. This follows directly from Theorem 5.1.2, since the path integral over a
constant path is 0. �

The following theorem generalizes the same fact which was given for star-shaped
open sets in Theorem 3.5.7.

Theorem 5.1.4. Let G be simply connected. Let ω be a continuous closed
differential form. Then ω is exact. In particular, path integrals over paths in a
simply connected subset depend only on the start point and the end point, and path
integrals over closed paths are 0. A primitive function for ω can be found by choosing
a point P and then defining ϕ(Q) :=

∫
γ ω, where γ is an arbitrary path connecting

P and Q.

Proof. This follows directly from Theorem 5.1.2 and Theorem 3.4.1. �

Example 5.1.5. These results give also a method to show that certain paths are
not homotopic to the constant path by showing that the path integral for a certain
differential form is not 0. For example, since

∫
γ

1
z
dz = 2πi over the unit circle γ in

C×, the circle is not homotopic to the constant path. In particular, π(C×) 6= 0.

An integration version of Corollary 4.3.3 is the following.

Corollary 5.1.6. The mapping

π(C×) −→ Z, γ 7−→ 1

2πi

∫
γ

dz

z

is an isomorphism.

Proof. We may assume that our paths start and end in (1, 0). This mapping is well
defined (as a mapping to C) by the monodromy theorem 5.1.2. By Corollary
4.3.3, every path in C× is homotopic to γn : t 7→ (cos 2πnt, sin 2πnt). Then∫

γn

=
∫ 1

0

1

e2πint
d(e2πint) = 2πin

∫ 1

0
e−2πinte2πintdt = 2πin .

Hence the image is Z. �

5.2. The period mapping.

We look again at the monodromy theorem from several perspectives (this section can
be skipped). We define Ωcl(G,W ) to be the continuous closed differential form on
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G with values in W and by Ωex(G,W ) the exact forms. So Ωex(G,W ) ⊆ Ωcl(G,W )
is a subvector space. By Theorem 5.1.2, the mapping

π(G,P )× Ωcl(G,W ) −→ W, (γ, ω) 7−→
∫
γ
ω

is well defined. Any class [γ] ∈ π(G,P ) is represented by a piecewise differen-
tiable (even piecewise linear) path, along which we can evaluate the integral, and
the result will be the same for every homotopic path.

A similar thing happens with respect to the second argument: for an exact differ-
ential form, the path integral over every closed path is zero (Theorem 3.4.1). It
follows that for a closed form ω and a second exact form α the path integral
over a closed path of ω and of ω + α are the same. Hence we have a mapping

π(G,P )×
(
Ωcl(G,W )/Ωex(G,W )

)
−→ W, (γ, ω) 7−→

∫
γ
ω .

Here Ωcl(G,W )/Ωex(G,W ) is the residue class vector space (in particular a residue
class group).

One can look at this mapping (the pairing between closed paths and closed
differential forms) in several ways. One may look at it as giving a group homo-
morphism

π(G,P ) −→ HomK(Ωcl(G,W ),W ), γ 7−→ (ω 7−→
∫
γ
ω) .

The homomorphism property follows from the fact that the path integral over the
concatenation of two paths is just the sum of the two path integrals.

Note here the following: the group on the right is (as it is a vector space) commu-
tative, but the fundamental group is in general not commutative. This has
an important consequence in understanding the kernel of this group homomorphism.
If γ and β are two paths, then in general γβ 6= βγ, or equivalently, β−1γβγ−1 6= 0.
The image of this combination of γ and β must however be always 0. In general,
for a group G we denote the subgroup generated by h−1ghg−1 by [G,G]. This
is a normal subgroup, and the residue class group G/[G,G] is commutative.

Definition 5.2.1. Let G be a pathwise connected topological space with fun-
damental group π = π(G,P ). Then we set H1(G) := π/[π, π] and we call this
(commutative) group the first homology group of G.

So we have in fact a pairing

H1(G)× (Ωcl(G,W )/Ωex(G,W )) −→ W .

One can look at this mapping as a vector space homomorphism

Ωcl(G,W ) −→ Hom(π(G,P ) −→ W ), ω 7−→ (γ 7−→
∫
γ
ω) .
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So a fixed differential form ω gives a group homomorphism π(G,P ) −→ W .
Taking into account Definition 5.2.1, this can also be seen as a group homomorphism

ψω : H1(G) −→ W ,

which is called the period mapping of ω. One important case for this setting is for
G = C− {0} (or a ball without a point), which we describe in the next section.

Corollary 5.2.2. A continuous closed differential form ω on G ⊆ V is exact
if and only if the period mapping ψω : H1(G) −→ W is trivial.

Proof. This is a reformulation of Theorem 3.4.1. �

6. The main theorems of complex function theory

From now on we will consider open subsets G ⊆ C ∼= R2and complex valued func-
tions f : G −→ Cand the corresponding complex-valued differential forms
f(z)dz. The relation between complex-differentiable functions and closed
(real-symmetric) differential forms (Theorem 3.6.1) provides a bridge between
the theory of differential forms and complex analysis. With this relationship
we will prove the basic results of function theory in one complex variable,
among them the residue calculus, Cauchy integral theorem and Cauchy in-
tegral formula, the differentiability of arbitrary order and the analyticity
of complex-differentiable functions, the theorem of Liouville, the identity
principle and openness.

6.1. Residue calculus.

For a complex-differentiable function f on the disc B the function f/(z − P )
is defined on the punctured disc B − {P} and is complex-differentiable there. This
function might be or might not be extendable to a continuous function on the
whole B. Anyway, via the correspondence of Theorem 3.6.1 we have a closed form
f(z)
z−P dz (which is also a closed real-differential form) on B − {P}. It will turn out
that the complex differentiability of f is such a strong property that the value of
f(P ) can be computed by computing the path integrals of this differential
form for a path which runs one time counter-clockwise around the center.
This is the residue calculus.

Definition 6.1.1. For a continuous closed (C-valued) differential form ω de-
fined on a punctured disc B(P, r)− {P} we set

Res(ω, P ) =
1

2πi

∫
γ1
ω

and call it the residue of ω in P . Here γ1 is a closed path inside B (with arbitrary
start and end point) which runs around P one time counter-clockwise.

Remark 6.1.2. The residue is a complex number. By the monodromy theorem
5.1.2 it does not matter which (one round, counter-clockwise) path we choose to
compute it. It is also independent of the start and end point.
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More generally, if G is any open subset in C, P ∈ C and if ω is a continuous
closed differential form defined on G− {P}, then Res(ω, P ) is defined as before
by taking an open disc B(P, r) ⊆ G (so that γ1 runs only around P , not around any
other missing points).

We gather together some properties of the residue.

Proposition 6.1.3. Let G ⊆ C be open, P ∈ G. Let ω be a real symmetric
(in particular closed) complex-valued differential form on G − {P}. Then the
following hold.

(i) The mapping Res(−, P ) : Ωcl(G− {P}) −→ C is C-linear.
(ii) If ω is exact on G − {P} (or in a punctured ball neighborhood B −
{P} ⊆ G− {P}), then Res(ω, P ) = 0.

(iii) If ω extends to a continuous closed differential form ω̃ on G, then
Res(ω, P ) = 0.

(iv) Res( dz
z−P , P ) = 1.

(v) Res((z − P )idz, P ) = 0 for i ≥ 0 and for i ≤ −2.
(vi) If f(z) =

∑∞
n=a cn(z − P )n (where a ∈ Z) such that the power series (see

Section 6.3)
∑∞
n=0 cn(z − P )n converges (in G or in a neighborhood of P ),

then Res(f(z)dz, P ) = c−1.

Proof. (i) The linearity follows from the linearity of path integrals (Theorem
3.3.11). (ii) follows from Theorem 3.4.1.

(iii). The extended closed form ω̃ is exact on a ball neighborhood of P (by
Theorem 3.5.7), hence ω itself must be exact, and so (ii) gives (iii).

(iv). This was computed in Corollary 5.1.6.

(v). For i ≥ 0 this follows from (ii) (or (iii)) and for i ≤ −2 this follows from (ii).

(vi) follows from the previous results. �

Example 6.1.4. Compute the residue of the differential form f(z)g(z)dz, where

f(z) = z−3 − 2z−1 + 1 + 4z and g(z) = 4z−4 − z−2 + z−1 + 6− 3z2 + 2z3 .

We are only interested at the coefficient for −1. So we have to add −3−12+1−4 =
−18.

6.2. Cauchy integral theorem and Cauchy integral formula.

We continue to reconstruct complex-differentiable functions by knowing their
effect on path integrals.

The following theorem, called the Cauchy integral theorem, is a reformulation
of 5.1.4

Theorem 6.2.1. Let f : G −→ C be a continuously complex-differentiable
function in a simply connected domain G ⊆ C. Then for every closed path
γ we have

∫
γ f(z)dz = 0.
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Proof. By 3.6.1 the form f(z)dz is closed and by Theorem 5.1.4 the form is exact
and all path integrals over closed paths are 0. �

The following theorem is the Cauchy integral formula.

Theorem 6.2.2. Let f : U −→ C be a continuously complex-differentiable
function. Then for P ∈ U we have

f(P ) = Res(
f(z)

z − P
dz;P ) .

Proof. The form f(z)
z−P dz is a (continuous and) closed differential form on G =

U − {P}. We write

f(z)

z − P
dz =

f(z)− f(P )

z − P
dz +

f(P )

z − P
dz

and by the residue calculus we have that f(P ) = Res(f(P )
z−P dz;P ) (Proposition 6.1.3

(iv) and Corollary 5.1.6). So we only have to show that Res(f(z)−f(P )
z−P dz, P ) = 0.Since

f is complex-differentiable and since the expression inside the differential
form is the differential quotient, we know that there exist constants C and δ

such that
∣∣∣f(z)−f(P )

z−P

∣∣∣ ≤ C for z ∈ B(P, δ) (⊆ U). For ε < δ we have by 3.3.11 (v)

the estimate ∣∣∣∣∣Res(
f(z)− f(P )

z − P
, P )

∣∣∣∣∣ =
∣∣∣∣ 1

2πi

∣∣∣∣
∣∣∣∣∣
∫
γ1,ε

f(z)− f(P )

z − P
dz

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ 2π

0

f(γ1,ε(t))− f(P )

γ1,ε(t)− P
· γ′1,ε(t)dt

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0
C ·

∣∣∣γ′1,ε(t)∣∣∣ dt ≤ Cε .

As ε can be chosen arbitrarily small, this expression must be 0. �

Remark 6.2.3. There are several ways to express the Cauchy integral formula. One
can find the formulations/notations

f(P ) = Res(
f(z)

z − P
dz;P ) =

1

2πi

∫
γ1

f(z)

z − P
dz =

1

2πi

∫
∂B

f(z)

z − P
dz .

Here γ1 is a counter-clockwise path around the point P (so that the path is entirely
inside a disc inside U) and ∂B denotes the border of such a disc (with the same
meaning).

Remark 6.2.4. With the help of the Cauchy integral theorem and the Cauchy
integral formula one can compute a lot of path integrals. Suppose that U ⊆ C
is open, P ∈ U and set G = U − {P}. Let f : U −→ C be a continuously complex-

differentiable function, let ω = f(z)
z−P dz be the differential form onG and let γ : I −→ G

be a piecewise differentiable path. Then one can apply either the Cauchy integral
theorem or the Cauchy integral formula under the following conditions.

Suppose first that P is “outside of γ” and inside a simply connected subset H ⊆ G.
Then ω|H is exact and so by the Cauchy integral formula we have

∫
γ ω = 0.
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Suppose next that P is “inside of γ”, and that γ runs once counter-clockwise around
P inside B(P, r) ⊆ U . Then

∫
γ ω = 2πif(P ) by the Cauchy integral formula.

See exercise 9.1 for examples.

Remark 6.2.5. Theorems 6.2.1 and 6.2.2 do hold also without the assumption that
the complex differential is continuous. The same is true for 3.5.7 and 3.6.1. This
generalization is known under the name Lemma of Goursat, and is more difficult
to prove.

Corollary 6.2.6. Suppose the situation of Theorem 6.2.2 and suppose that B(P, r) ⊆
U . Then

f(P ) =
1

2π

∫ 2π

0
f(P + reit)dt .

Proof. We apply Theorem 6.2.2 with the path γ(t) = P + reit = P + r cos t+ ri sin t.
This gives

f(P ) =
1

2πi

∫
γ

f(z)

z − P
dz =

1

2πi

∫ 2π

0

f(P + reit)

reit
dreit

=
1

2πi

∫ 2π

0
f(P + reit)idt =

1

2π

∫ 2π

0
f(P + reit)dt .

�

Corollary 6.2.7. Suppose the situation of Theorem 6.2.2 and suppose that B(P, r) ⊆
U . Let S = S(P, r). Then

|f(P )| ≤ |f |S(P,r) = max
w∈S
|f(w)| .

Proof. This follows immediately from Corollary 6.2.6 �

Theorem 6.2.8. Suppose that f is a continuously complex-differentiable func-
tion on B(Q,R). Then f is infinitely often complex-differentiable on B(Q,R).
For a point P ∈ B(Q, r), r < R, the n-th derivative is

f (n)(P ) =
n!

2πi

∫
γQ,r

f(z)

(z − P )n+1
dz .

Proof. For n = 0 this is Theorem 6.2.2, namely that

f(P ) =
1

2πi

∫
γQ,r

f(z)

(z − P )
dz

for all P ∈ B(Q, r). Suppose first more generally that we have an equation

h(P ) =
∫
γ
g(z, P )dz =

∫ b

a
g(γ(t), P ) · γ′(t)dt ,

where in the integral P is a parameter, on which the integral depends. Suppose that
g(z, P ) is complex-differentiable considered as a function in P (on a certain open
subset), and write ∂g

∂P
for this derivative. Then also h is complex-differentiable

and

h′(P ) =
∫
γ

∂g

∂P
(z, P )dz =

∫ b

a

∂g

∂P
(γ(t), P ) · γ′(t)dt .
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This is a theorem of one dimensional integration theory. Now we do induction
on n and apply this differentiation rule on h = f (n). This gives

f (n+1)(P ) = h′(P ) =

(
n!

2πi

∫
γQ,r

f(z)

(z − P )n+1
dz

)′

=
n!

2πi

∫
γQ,r

∂

∂P

f(z)

(z − P )n+1
dz =

n!

2πi
(n+ 1)

∫
γQ,r

f(z)

(z − P )n+2
dz .

�

The next theorem is called the Cauchy inequality.

Theorem 6.2.9. Suppose that f is a continuously complex-differentiable func-
tion on B(Q,R) and let r < R. Let M = max{|f(z)| : |z −Q| = r}(the maximum
of |f | on the circle S(Q, r)). Then for P ∈ B(Q, r) and n ∈ N we get the inequal-
ity ∣∣∣f (n)(P )

∣∣∣ ≤ Mr(n!)

(r − |P −Q|)n+1
.

Proof. By 3.3.11 (v) we have∣∣∣∣∣
∫
γQ,r

f(z)

(z − P )n+1
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ 2π

0

f(γQ,r(t))

(γQ,r(t)− P )n+1
γ′Q,r(t)dt

∣∣∣∣∣
≤

∫ 2π

0

∣∣∣∣∣ f(γQ,r(t))

(γQ,r(t)− P )n+1

∣∣∣∣∣ ∣∣∣γ′Q,r(t)∣∣∣ dt
≤

∫ 2π

0

M

(r − |P −Q|)n+1
rdt

=
2πMr

(r − |P −Q|)n+1
.

In the last estimate we have used |f(γQ,r(t))| ≤ M , |γQ,r(t)− P | ≥ r − |P −Q|
(triangle inequality) and

∣∣∣γ′Q,r(t)∣∣∣ = r (for a standard circle path of radius r). Then

Theorem 6.2.8 gives the result. �

6.3. Review on power series.

We recall briefly (without proofs) some results about convergent power series
and analytic functions.

Recall that a power series is an expression of the form
∞∑
n=0

cn(z − P )n .

Here cn are coefficients in C, P ∈ C (the center of the power series) and z
should be thought of as a variable. If we plug in for z a complex number, we get a
series of complex numbers, which might converge or not.

Proposition 6.3.1. Let
∑∞
n=0 cn(z − P )n be a power series. Then the following

holds.
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(i) There exists a number R (which might be 0 in the non convergent case, and
which might also be ∞) such that for z ∈ B(P,R) we have that the power
series

∑∞
n=0 cn(z − P )n converges.

(ii) If R > 0, then for z ∈ B(P,R) we get a function f : B(P,R) −→ C by setting
f(z) =

∑∞
n=0 cn(z − P )n.

(iii) The sequence of polynomials fk =
∑k
n=0 cn(z − P )nconverges uniformly

to the function f on B(P, r) for every r < R. This means that for every
δ there exists n0 such that for all m ≥ n0 and all z ∈ B(P, r) we have
‖∑∞n=m(z − P )n‖ ≤ δ.

(iv) The function f(z) is continuous.

Example 6.3.2. The geometric series
∑∞
n=0 z

n has center 0 and all coefficients
are 1. It converges for |z| < 1, and the identity

∞∑
n=0

zn =
1

1− z
holds.

Example 6.3.3. The exponential series
∑∞
n=0

1
n!
zn has center 0 and the coeffi-

cients are cn = 1
n!

. This series converges for every z and the resulting function is (by
definition, well, this is one way to define it) the exponential function.

Example 6.3.4. The cos series and the cos series are

cos z =
∞∑
n=0

(−1)n
z2n

(2n)!
and sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

From these power series one gets immediately the relationship

exp(x+ iy) = exp(x)(cos y + i sin y) .

For x = 0 this is the Euler formula exp(iy) = cos y + i sin y.

Definition 6.3.5. A function f : G −→ K, G ⊆ K, is called analytic if for every
point P ∈ G there exists an r > 0 and a power series

∑∞
n=0 cn(z − P )n which

converges on B(P, r) and such that f(z) =
∑∞
n=0 cn(z − P )nfor z ∈ B(P, r).

Theorem 6.3.6. An analytic function f given on B(P, r) as the power series
f(z) =

∑∞
n=0 cn(z − P )nis differentiable, and its derivative is again analytic,

namely

f ′(z) =
∞∑
n=0

(n+ 1)cn+1(z − P )n .

In particular, an analytic function is differentiable of arbitrary order.

A similar statement holds for integration. If f(z) =
∑∞
n=0 cn(z − P )n converges

on B(P,R), then a primitive function exists and is given as
∑∞
n=0

1
n+1

cnz
n+1 (in

particular, this power series converges on the same disc). More generally, integra-
tion and uniformly convergent sequence of functions are interchangeable, that is,∫
(limn−→∞ fn) = limn−→∞(

∫
fn).
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6.4. Complex differentiable functions are analytic.

We show now that continuously complex-dif ferentiable functions are ana-
lytic. This is also called Taylor’s theorem.

Theorem 6.4.1. Let f : G −→ C be a continuously complex-differentiable
function, and z0 ∈ B(z0, r) ⊆ G. Then for z ∈ B(z0, r) we have the power series

f(z) =
∞∑
n=0

cn(z − z0)
n ,

where

cn =
1

2πi

∫
γz0r

f(u)

(u− z0)n+1
du .

Proof. We write

f(u)

u− z
=

f(u)

u− z0 − (z − z0)
=

f(u)

(u− z0)(1− z−z0
u−z0 )

=
∞∑
n=0

f(u)

(u− z0)n+1
(z − z0)

n ,

where we have used the geometric series 1
1−a

b
=
∑∞
n=0(

a
b
)n, which is allowed since∣∣∣ z−z0

u−z0

∣∣∣ < 1 (as u ∈ S(z0, r)). Also, for fixed z and variable u ∈ S(z0, r), this series

is uniformly convergent. From Theorem 6.2.2 we have

f(z) =
1

2πi

∫
γz0r

f(u)

u− z
du =

1

2πi

∫
γz0r

(
∞∑
n=0

f(u)

(u− z0)n+1
(z − z0)

n)du .

By a theorem on integration, integration and uniformly convergent series are
interchangeable, hence (as z and z0 are constant in the integral) this is

=
∞∑
n=0

(
1

2πi

∫
γz0r

f(u)

(u− z0)n+1
du)(z − z0)

n .

�

6.5. The theorem of Liouville.

Definition 6.5.1. We call a continuously complex-differentiable function f :
G −→ C holomorphic. For G = C, such a function is called entire.

We know already that holomorphic is the same as analytic.

Definition 6.5.2. Two open subsets G,D ⊆ C are called biholomorphic if there
exists a bijective holomorphic mapping f : G −→ D such that the inverse
f−1 : D −→ G is also holomorphic.

The following theorem is the Theorem of Liouville.

Theorem 6.5.3. Let f : C −→ C be an entire-holomorphic function which is
bounded. Then f is constant (so every non-constant entire function is unbounded:
for every real number M there exists z ∈ C such that |f(z)| ≥M).
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Proof. Assume that f is bounded, say |f(z)| ≤M for all z ∈ C. We can apply the
Cauchy inequality (Theorem 6.2.9) for z = P = Q and an arbitrary radius r
to infer

|f ′(z)| ≤ Mr

r2
=
M

r
.

As r might be arbitrarily large, it follows that f ′(z) = 0 for all points z ∈ C.
Hence f is constant. �

Corollary 6.5.4. The complex plane and the open disc B(0, 1) are not biholo-
morphic equivalent.

Proof. This follows immediately from Theorem 6.5.3, since every holomorphic func-
tion f : C −→ B(0, 1) is bounded, hence constant, and cannot be a bijection. �

Remark 6.5.5. It can be easily shown that all discs in C are biholomorphic to
each other. A disc is also biholomorphic to the upper complex half plane {z ∈
C:Re(z) > 0}. In fact, a deep theorem, the so-called Riemann mapping theorem
(Riemannscher Abbildungssatz), tells that every simply-connected open
subset of C, which is not C, is biholomorphic to the disc.

From the Theorem of Liouville we can also deduce the Fundamental Theorem
of Algebra

Theorem 6.5.6. Let p : C −→ C be a non-constant polynomial,

p(z) = cnz
n + cn−1z

n−1 + . . .+ c1z + c0

(cn 6= 0, n ≥ 1). Then p has a zero, that is, there exists z ∈ C such that p(z) = 0.

Proof. Suppose p has no zero. Then p is invertible, that is, the function

1

p
: C −→ C , z 7−→ 1

p(z)

is an entire function. As the polynomial is not constant, its inverse is also not
constant, hence it is unbounded by the Theorem of Liouville.

On the other hand,

|p(z)| ≥ |cnzn| −
∣∣∣cn−1z

n−1 + . . .+ c1z + c0
∣∣∣ .

Let c be the maximum max{|cν | : ν = 0, . . . , n}. Then for |z| ≥ 1 we have∣∣∣cn−1z
n−1 + . . .+ c1z + c0

∣∣∣ ≤ nc |z|n−1 .

This together gives for z with |z| ≥ 1+nc
|cn| =: M that

|p(z)| ≥ |cnzn| − nc |z|n−1 = (|cn| · |z| − nc) |z|n−1 ≥ |z|n−1 .

Hence
∣∣∣ 1
p(z)

∣∣∣ ≤ ∣∣∣ 1
zn−1

∣∣∣ ≤ 1
M

for |z| ≥ M (say n ≥ 2, for n = 1 the result is clear

anyway). Hence this inverse function is all in all bounded, since {z: |z| ≤
M} is compact and the function is bounded on this set anyway. So we get a
contradiction. �
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6.6. Identity theorem.

The analyticity of holomorphic functions (Theorem 6.4.1) implies that a rather
small amount of information determines already a holomorphic function
completely. This is the content of the identity theorem or identity principle.

Definition 6.6.1. Let Z ⊆ X be an (arbitrary) subset of a metric space. A point
P ∈ X is called an accumulation point of Z if for every r > 0 there exists a
point Q ∈ Z ∩B(P, r), Q 6= P .

Theorem 6.6.2. Let G ⊆ C be open and connected and let f : G −→ C be a
holomorphic function. Then the following are equivalent.

(i) f = 0.
(ii) The zero set Z = {P ∈ G: f(P ) = 0} has an accumulation point in G.
(iii) There exists a point Q ∈ G such that f (k)(Q) = 0 holds for all k ∈ N.

Proof. The implication (i)⇒ (ii) is trivial. (ii)⇒ (iii). Let Q be an accumulation
point of the set

Z = {P ∈ G: f(P ) = 0}
We want to show that all derivatives of f at Q are 0. Assume that this is not
true and let k ∈ N be the minimal order such that f (k)(Q) 6= 0. As f is analytic
(Theorem 6.4.1), we can write

f(z −Q) = (z −Q)kf̃(z) ,

where f̃(Q) 6= 0. Then also f̃(z) 6= 0 in a certain open neighborhood around
Q, and therefore also f(z) 6= 0 in such a neighborhood. But then Q cannot be an
accumulation point of Z.

(iii) ⇒ (i). The sets
Wk = {P ∈ G: f (k)(P ) = 0}

are closed. Hence also their intersection W =
⋂∞
k=0Wkis closed. Let P ∈ W be

a point in this intersection, that is, all derivatives at P are zero. This means
that the power series with center P which describes the function in a disc
neighborhood B around P must be zero. But then for all points in this disc
neighborhood all derivatives are again zero. So B ⊆ W and W is also open. As
G is connected, it follows that W = G and so f = 0 on G. �

The following theorem is called the identity theorem.

Theorem 6.6.3. Let G ⊆ C be open and connected and let g, h : G −→ C be
two holomorphic functions. Then the following are equivalent.

(i) g = h.
(ii) The set {P ∈ G: g(P ) = h(P )} has an accumulation point in G.
(iii) There exists a point Q ∈ G such that g(k)(Q) = h(k)(Q) holds for all k ∈ N.

Proof. This statement follows from and is in fact equivalent to Theorem 6.6.3 by
looking at the difference f = g − h. �



53

Corollary 6.6.4. Every holomorphic function is determined on an arbitrar-
ily small open disc. This means that if g, h : G −→ C are given on a connected
open subset G ⊆ C and g|B = h|B for some disc B = B(P, r) ⊆ G, then g = h on
G.

Proof. This follows immediately from Theorem 6.6.3 (ii). �

Corollary 6.6.5. For a function f : R −→ R (or defined on an interval) there

exists at most one holomorphic extension f̃ : C −→ C (that is, a function

f̃ : C −→ C such that f̃ |R = f).

Proof. Let g and h be two extensions of f . Then g and h are identical on the
real numbers (or on any real interval, which is not just a point), and such a subset
has clearly an accumulation point. So g = h by Theorem 6.6.3. �

Remark 6.6.6. Functions like the exponential function or the trigonometric
function are often first defined for real numbers (with real values). There exist
holomorphic extensions (using the power series) to the complex numbers, and
by Corollary 6.6.5 these are the only possibilities.

By the identity principle also certain rules which hold for the real numbers pass
over to the complex numbers. For example, suppose we know the rule

exp(x+ y) = exp(x) exp(y)

only for real arguments. As soon as the exponential mapping is established for
complex arguments, both sides of this identity are holomorphic functions on
C. Since they are identical on R, they must be identical also on C.

Definition 6.6.7. A subset Z ⊆ X in a metric space X is called discrete if for
every point P ∈ Z there exists r > 0 such that B(P, r) ∩ Z = {P}.

Corollary 6.6.8. Let f : G −→ C be a holomorphic non-constant function.
Then for every w ∈ C the set f−1(w) = {P ∈ G: f(P ) = w} is discrete, closed
and in particular countable. In particular, the zero set of a holomorphic function
is discrete, closed and countable.

Proof. The closedness holds for every continuous map. The discreteness follows
again from Theorem 6.6.3. �

Example 6.6.9. For a non-constant polynomial the zero set is always finite.
The trigonometric functions sin and cos are holomorphic functions where the
zero set is not finite, but still countable.

The following corollary is used in the proof of the openness theorem 6.7.4.

Corollary 6.6.10. Let f : G −→ C be a holomorphic non-constant function, Q ∈ G,
G connected. Then there exists a δ > 0 such that f(Q) 6= f(u) for all u ∈ S(Q, δ).
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Proof. Suppose to the contrary that for all radiuses δ such that B(Q, δ) ⊆ G
there exists a point Pδ ∈ S(Q, δ) such that f(Q) = f(Pδ). Then the set {P ∈ G :
f(P ) = f(Q)} has an accumulation point and the map would be constant f(Q)
by Theorem 6.6.3. �

We close this section with an algebraic property of the ring of holomorphic
functions

O(G) = {f : G −→ C: f holomorphic} .

Corollary 6.6.11. Let G ⊆ C be open. Then the ring of holomorphic functions
O(G) is an integral domain if and only if G is connected.

Proof. Assume that G is connected. Let zn be a sequence in G, convergent to
z ∈ G and such that zn 6= zk for n 6= k. Suppose that g · h = 0, both holomorphic
functions. Then (g · h)(zn) = g(zn) · h(zn) = 0 and so g(zn) = 0 or h(zn) = 0 for
every n. Then for at least one of these functions, say for g, we must have g(zn) = 0
for infinitely many n. Hence z is an accumulation point for this subsequence
and so g = 0 by Theorem 6.6.3.

If G is not connected, then let U ⊂ G, U 6= ∅, be a subset which is open and
closed with (also open and closed) complement V . Then the function

e(P ) =

1 for P ∈ U
0 for P ∈ V

is (continuous and) holomorphic, since this is a local property. The same is
true for 1− e, hence e(1− e) = 0. �

6.7. Openness of holomorphic functions.

Definition 6.7.1. Let ϕ : X −→ Y be a map between topological spaces. Then ϕ
is called open if for every open subset U ⊆ X also the image ϕ(U) is open.

We want to show that non-constant holomorphic mappings are open. For
this we need two lemmas.

Lemma 6.7.2. Let B be an open disc with center Q, B ⊆ G and f : G −→ C
holomorphic. Let S be the sphere of the disc. Suppose that |f(Q)| < minu∈S |f(u)|.
Then f has a zero inside B.

Proof. Suppose that f has no zero in B. Then f has no zero in B ⊆ U ⊆ G, U
open (as it has no zero on S, and since the non-zero locus is open). So the function
z 7→ 1

f(z)
is holomorphic on U . By Corollary 6.2.7 we have

|f(Q)|−1 ≤ max
u∈S
|f(u)|−1 = (min

u∈S
|f(u)|)−1 .

This gives |f(Q)| ≥ minu∈S |f(u)| in contradiction to the assumption. �
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Lemma 6.7.3. Let B be an open disc with center Q, B ⊆ G and f : G −→ C
holomorphic. Let S be the sphere of the disc. Set δ := 1

2
minu∈S |f(u)− f(Q)|

and suppose that this is > 0. Then B(f(Q), δ) ⊆ f(B).

Proof. We have to show that every point in B(f(Q), δ) is in the image of f , so
let P ∈ B(f(Q), δ) be given. For u ∈ S we have

|f(u)− P | ≥ |f(u)− f(Q)| − |P − f(Q)| > 2δ − δ = δ .

Hence minu∈S |f(u)− P | > |f(Q)− P |. By Lemma 6.7.2 (applied to f(u)− P ) we
infer the existence of a point z ∈ B with f(z) = P . �

Theorem 6.7.4. Let f : G −→ C be holomorphic and not constant, G a con-
nected subset in C. Then f is open.

Proof. Let U ⊆ G be open and let Q ∈ U . By Corollary 6.6.10 there exists a disc
Q ∈ B(Q, r) ⊂ B ⊆ U such that f(Q) 6= f(u) for all u ∈ S(Q, r) = S. Hence
δ = 1

2
minu∈S |f(u)− f(Q)| > 0 and by Lemma 6.7.3 we deduce that B(f(Q), δ) ⊆

f(U). Therefore f(U) is open. �
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7. Exercises
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THE UNIVERSITY OF SHEFFIELD
DEPARTMENT OF PURE MATHEMATICS

Holger Brenner

PMA444 Real and complex analysis 2007: Exercise sheet 1

Please hand in on Monday, the 12th of February your solutions to the following
questions.

Exercise 1.1. Show that the following subsets of the complex numbers are open;
draw a picture of the situation (it is difficult to draw the openness property). Give
also a description of the (closed) complement.

a) The upper (open) half {z ∈ C : Im(z) > 0} (2 marks).

b) The quadrant {z ∈ C : Im(z) > 0 and Re(z) > 0} (2 marks).

c) {z ∈ C : 1 < |z| < 2} (2 marks).

d) C− {P}, where P ∈ C is a point (2 marks).

e) C− R (2 marks).

f) C− R≥0, where R≥0 denotes the nonnegative real numbers (2 marks).

g) C− N (3 marks).

h) C− {(x, y) : y = x2} (3 marks).

Exercise 1.2. Give an example in R showing that the intersection of infinitely many
open subsets is not open in general (3 marks).

Exercise 1.3. Let X and Y be two metric spaces.

a) Show that their product

X × Y = {(x, y) : x ∈ X, y ∈ Y }
is also a metric space by setting

d((x1, y1), (x2, y2)) := max(d(x1, x2), d(y1, y2)) (3 marks).

b) In the special case X = Y = R, draw an open ball in the product space X×Y =
R× R (2 marks).

c) Let Z be another metric space. Let g : Z −→ X and h : Z −→ Y be two mappings.
Show that the (product) mapping f : Z −→ X × Y , given by f(z) = (g(z), h(z)), is
continuous if and only if g and h are continuous (6 marks).

Exercise 1.4. a) Prove Proposition 1.1.8 (4 marks).

b) Formulate Proposition 1.1.8 for closed subsets (3 marks).
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Exercise 1.5. Fix k ∈ N. Show that the sequence 1/nk, n ∈ N, converges to 0,
using the function x 7→ xk. What happens for k = 1/2, what for k = −1 (6 marks)?

Exercise 1.6. Let X be a metric space and let f : X −→ R be a continuous function.
Show that the subset

{P ∈ X : f(P ) ≥ 0}
is closed. Show also for a given real number α that the subsets

{P ∈ X : f(P ) = α}
are closed (4 marks).

Exercise 1.7. Let X be a metric space, P ∈ X, r > 0. Then the set

B(P, r) = {Q ∈ X: d(P,Q) ≤ r}
is called the closed ball (with center P of radius r). The set

S(P, r) = {Q ∈ X: d(P,Q) = r}
is called the sphere (with center P of radius r).

Show that the closed ball and that the sphere is closed (2 marks).
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THE UNIVERSITY OF SHEFFIELD
DEPARTMENT OF PURE MATHEMATICS

Holger Brenner

PMA444 Real and complex analysis 2007: Exercise sheet 2

Please hand in on Monday, the 19th of February your solutions to the following
questions.

Exercise 2.1. Let V be a normed K-vector space. Show that d(v, w) := ‖w − v‖ is
a distance (so that V is a metric space) (3 marks).

Exercise 2.2. Let (V, ‖ ‖) be a normed K-vector space.

a) Show that | ‖v‖ − ‖w‖ | ≤ ‖v − w‖ for v, w ∈ V (2 marks).

b) Show that the norm is a continuous mapping (2 marks).

Exercise 2.3. a) Prove that the Euclidean norm, the sumnorm and the maximum
norm on Kn are in fact norms (13 marks). If you want you can consider only the
case R2.

b) Draw pictures of the open balls with center 0 in R2 of radius 1 of these three
norms (3 marks).

c) Show for v ∈ Kn that

‖v‖max ≤ ‖v‖Euc ≤ ‖v‖sum ≤ n ‖v‖max (6 marks) .

Exercise 2.4. a) Let V = R3. Compute the distance of the two vectors v = (5, 2−3)
and w = (−1, 0, 4) is the three norms (3 marks).

b) Let V = C2. Compute the three norms of the vector P = (3 − 2i, 2 + 5i) (3
marks).

Exercise 2.5. a) Show that the rational numbers Q ⊆ R form neither a closed nor
an open subset (4 marks).

b) Show that Q is not connected (3 marks).

Exercise 2.6. Let f and g be continuous mappings Kn −→ K. On which subset of
Kn is the function f/g defined (2 marks)? Is this subset open (2 marks)?

Exercise 2.7. Let [0, 2π) = {t ∈ R : 0 ≤ t < 2π} be the interval which is closed
on the left but open on the right, together with the induced metric and topology.
Let S1 = {z ∈ C : ‖z‖ = 1} be the unit circle (again with the induced metric).
Consider the map

ψ : [0, 2π) −→ S1, t 7−→ (cos t, sin t) .
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a) Show that ψ is bijective and continuous (use what you know about cos and sin)
(4 marks).

b) Show that the inverse mapping is not continuous. E.g. describe a sequence
tn ∈ [0, 2π) which does not converge in [0, 2π), but such that ψ(tn) ∈ S1 does
converge (4 marks).

Exercise 2.8. In this exercise we look at the addition and the multiplication, that
is at the mappings

+ : K2 −→ K, (x, y) 7−→ x+ y and × : K2 −→ K, (x, y) 7−→ x× y .

a) Show that the addition is continuous. Is it linear? (2 marks)

b) Show that the multiplication is continuous. Is it linear? (6 marks)

c) Prove in a) and b) whether it is linear or not, and write down a matrix if yes (5
marks).

Exercise 2.9. Let V be a normed K-vector space, and let P1, P2, P3, P3 be four
points (think at the corners of a tetragon).

a) Prove the following inequality

‖P1 − P3‖+‖P2 − P4‖ ≤ ‖P1 − P2‖+‖P2 − P3‖+‖P3 − P4‖+‖P4 − P1‖ (4 marks).

b) Give an interpretation in words of this inequality (2 marks).

Exercise 2.10. Let X be a metric space. Consider the relation where P is related to
Q if there exists a continuous mapping γ : [0, 1] −→ X with γ(0) = P and γ(1) = Q.
Show that this relation is an equivalence relation (4 marks).

Exercise 2.11. Have a look at Topologist’s sine curve under Wikipedia for an
example of a connected, but not-path connected metric space.
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THE UNIVERSITY OF SHEFFIELD
DEPARTMENT OF PURE MATHEMATICS

Holger Brenner

PMA444 Real and complex analysis 2007: Exercise sheet 3

Please hand in on Monday, the 26th of February your solutions to the following
questions.

Exercise 3.1. a) Compute the total differential of the mapping

ϕ : K2 −→ K2, (x, y) 7−→ (xy − 2y3 + 5, x3 − xy2 + y)

for every point (3 marks).

b) What is the total differential in the point P = (1, 2) (2 marks).

c) What is the directional derivative in this point in direction (4,−3) (2 marks).

d) What is the value of ϕ in this point (1 mark).

Exercise 3.2. a) Compute the total differential of the mapping

ϕ : K3 −→ K2, (x, y, z) 7−→ (xy − zy + 2z2, sin(x2yz))

for every point (4 marks).

b) What is the total differential in the point P = (1,−1, π) (3 marks).

c) What is the directional derivative in this point in direction (2, 0, 5) (3 marks).

d) What is the value of ϕ in this point (1 mark).

Exercise 3.3. a) Compute the total differential of the mapping

ϕ : K2 −→ K3, (x, y) 7−→ (x+ y2, xy, exp(x))

for every point (4 marks).

b) What is the total differential in the point P = (3, 2) (3 marks).

c) What is the directional derivative in this point in direction (−1,−7) (3 marks).

d) What is the value of ϕ in this point (1 mark).

Exercise 3.4. Study Example 2.2.9.

Exercise 3.5. We want to illustrate the chain rule in considering the mappings

ϕ : K2 −→ K3, (u, v) 7−→ (uv, u− v, v2)

and
ψ : K3 −→ K2, (x, y, z) 7−→ (xyz2, y exp(xz))

and their composition ψ ◦ ϕ.
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a) Compute the differential Dϕ for an arbitrary point P ∈ K2 with the help of
partial derivatives (3 marks).

b) Compute the differential Dψ for an arbitrary point Q ∈ K3 with the help of
partial derivatives (3 marks).

c) Compute explicitly the composed mapping ψ ◦ ϕ : K2 −→ K2 (3 marks).

d) Compute the differential of ψ ◦ ϕ : K2 −→ K2 in a point P ∈ K2 directly with
partial derivatives (3 marks).

e) Compute the differential of ψ ◦ ϕ : K2 −→ K2 in a point P ∈ K2 directly with the
help of the chain rule and part a) and b) (3 marks).

Exercise 3.6. a) Show the converse of Theorem 1.3.7, namely that a connected
subset of R is an interval (3 marks).

b) Deduce the intermediate value theorem from part a) and from Theorem 1.3.3 (3
marks).

Exercise 3.7. Let f : X −→ Y be a continuous map between metric spaces. Assume
that X is path-connected. Show that also the image f(X) is path-connected (3
marks).

Exercise 3.8. Let V , W1 and W2 be three normed K-vector spaces of finite dimen-
sion. Recall that W1 ×W2 is also a normed vector space.

a) Let L1 : V −→ W1 and L2 : V −→ W2 be two K-linear mappings. Show that also
the mapping

L1 × L2 : V −→ W1 ×W2, v 7−→ (L1(v), L2(v))

is K-linear (3 marks).

b) Let f1 : V −→ W1 and f2 : V −→ W2 be two mappings which are differentiable in
a point P ∈ V . Show that also the map

f = (f1 × f2) : V −→ W1 ×W2, P 7−→ (f1(P ), f2(P ))

is differentiable in P with total differential given by

(Df)P = (Df1)P × (Df1)P (5 marks) .

Exercise 3.9. Determine for addition and for multiplication

+ : K2 −→ K, (x, y) 7−→ x+ y and × : K2 −→ K, (x, y) 7−→ x× y .
the total differential (4 marks).
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Please hand in on Monday, the 5th of March your solutions to the following ques-
tions.

Exercise 4.1. Express the mapping

C −→ C, z 7−→ 2z3 − z2 + 3z + 2− i
in terms of real coordinates. Write down the real differential of this mapping (5
marks).

Exercise 4.2. a) Express the mappings

C −→ C, z 7−→ zk

in terms of real coordinates for k = 0, . . . , 5 (6 marks).

b) Express the mappings

C− {0} −→ C, z 7−→ zk

in terms of real coordinates for k = −1,−2,−3 (6 marks).

Exercise 4.3. Consider the mapping

C = R2 −→ C = R2

given in real coordinates as (x, y) 7→ (x3 − xy2, 5x2y2 − y) = (g, h). Compute the
real differential and check whether the Cauchy-Riemann differential equations hold
(3 marks).

Exercise 4.4. Let V and W be two finite-dimensional K-vector spaces. Consider
the evaluation mapping

Ev : HomK(V,W )× V −→ W, (L, v) 7−→ L(v) .

Note that the Hom-space on the left is also a finite-dimensional K-vector space.

a) Is the evaluation map linear (2 marks)?

b) Determine the directional derivative of this evaluation map in a point (L, v) in
direction (M,u) using the definition of total differentiability (6 marks).

Exercise 4.5. Let G ⊆ V be open and let f, g : G −→ K be two differentiable
functions. Use the chain rule applied to the diagram

G
f,g−→ K×K mult−→ K .

and Exercise 3.9 to show that (D(f · g))P = g(P )(Df)P + f(P )(Dg)P (4 marks).
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Exercise 4.6. Let f1, . . . , fn be functions in one variable which are continuously dif-
ferentiable. Find the differential of the mapping Kn −→ Kn given by (x1, . . . , xn) 7→
(f1(x1), . . . , fn(xn)) (3 marks).

Exercise 4.7. Show that the mappings Re : C −→ C, z 7→ Re(z) and Im : C −→
C, z 7→ Im(z) are real-linear, but not complex-linear. (3 marks).

Exercise 4.8. Is the complex conjugation C −→ C, z 7→ z complex-differentiable?
Is it real-differentiable (3 marks)?

Exercise 4.9. Consider the complex-linear mapping L : C2 −→ C2 given by the
2× 2-complex matrix (

5 3 + 4i
2− 2i i

)
.

Write the corresponding matrix which describes the same linear mapping R4 −→ R4

(4 marks).

Exercise 4.10. Let V and W be Q-vector spaces and let L : V −→ W be an additive
map (that is, L(v + w) = L(v) + L(w)) for all v, w ∈ V . Show that L is already
Q-linear, that is, L(qv) = qL(v) (5 marks).

Exercise 4.11. Study the proof of Theorem 2.2.6.
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Please hand in on Monday, the 12th of March your solutions to the following ques-
tions.

Exercise 5.1. The pull-back of differential forms is linear.

a) What is meant by this statement? Give an explicit formulation (3 marks).

b) Prove your statement in a) (3 marks).

c) Can you describe and prove a statement about the pull-back of fω, where f is a
function with values in K (4 marks).

Exercise 5.2. Let ω ∈ Ω(G,W ) be a differential form. Let ψ : G′ −→ G and
θ : G′′ −→ G′ be differential maps, where G′ ⊆ V ′ and G′′ ⊆ V ′′ are open subsets in
further vector spaces V ′ and V ′′. Show that

(ψ ◦ θ)∗ω = θ∗(ψ∗(ω)) (4 marks) .

Exercise 5.3. Let γ : [0, 2π] −→ R2, t 7→ (cos t, sin t). Compute the path integral
for the following differential forms on R2.

a) ω(x, y) = xdx+ ydy (3 marks).

b) ω(x, y) = xdx− ydy (3 marks).

c) ω(x, y) = ydx+ xdy (3 marks).

d) ω(x, y) = ydx− xdy (3 marks).

Exercise 5.4. Let γ : [−1, 1] −→ R2, t 7→ (t, t2) be given. Compute the path integral
for the differential form given by ω(x, y) = (x+ y)dx+ xydy (3 marks).

Exercise 5.5. Let a, b, c, d, r, s ≥ 1 be natural numbers. Consider the path γ :
[0, 1] −→ R2 given by t 7→ (tr, ts). Compute the path integral for the differential
form given by ω(x, y) = xaybdx+ xcyddy (5 marks).

Exercise 5.6. Let γ : [a, b] −→ G be a constant (or stationary) path, that is,
γ(t) = P for all t. Then show that

∫
γω = 0 for every ω ∈ Ω(G,W ) (2 marks).

Exercise 5.7. Consider the exact differential form given by

(x, y, z) 7−→ 2xydx+ (x2 + z)dy + (y − 2z)dz .

Construct a primitive mapping ϕ using the method of Theorem 3.4.1 taking P0 = 0
in two different ways.
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a) Use the direct linear path from 0 to a given point P = (x, y, z) (2 marks).

b) Use the piecewise linear path from 0 to a given point P = (x, y, z) parallel to the
axes (2 marks).

Exercise 5.8. Let on K3 be the differential form

(x, y, z) 7−→ x2dx+ 3z2dy − 5xydz

be given and let ψ : K2 −→ K3 be the mapping given by

(u, v) 7−→ (u exp(uv2), u2 − v, 3) .

Compute the pull-back ψ∗(ω) (5 marks).

Exercise 5.9. Show that the differential form

(x, y) 7−→ (x2 + y)dx+ 2xydy

is not exact by giving two different paths (say from (0, 0) to 1, 1) with different path
integrals. Give also a closed path such that its path integral is not 0 (5 marks).

Exercise 5.10. Let ω ∈ Ω(G,K) be a differential form, let γ : I −→ G be a piecewise
differentiable path and let θ : I ′ = [c, d] −→ I = [a, b] be a differential mapping with
θ(c) = a and θ(d) = b. Consider the composed path γ ◦ θ : I ′ −→ G. Then show that∫
γ ω =

∫
γ◦θ ω (4 marks).

Exercise 5.11. Show that the mapping C −→ Mat2(R) given by

a+ bi 7−→
(
a −b
b a

)
is a ring homomorphism (4 marks).

Exercise 5.12. Let V and W be two normed finite-dimensional K-vector spaces.
Consider the K-vector space Hom(V,W ) (which is also finite dimensional).

a) Show that defining
‖L‖ := max

v∈V, ‖v‖=1
‖L(v)‖

for L : V −→ W makes Hom(V,W ) into a normed K-vector space (the maximum
exists, since {v ∈ V : ‖v‖ = 1} is compact) (6 marks).

b) Show that
‖L(v)‖ ≤ ‖L‖ · ‖v‖ for v ∈ V

(this means that ‖L‖ gives a bound for a linear mapping) (2 marks).

c) Let V = W and let λ ∈ K be an eigenvalue for L : V −→ V . Show that |λ| ≤ ‖L‖
(2 marks).
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Exercise 6.1. Let f : C −→ C, f(z) = −2+iz2+3z4. Determine the differential form
f(z)dz in real coordinates and show by explicit computation that it is symmetric (4
marks).

Exercise 6.2. Express the differential form dz/z, which is defined on C× with values
in C, in real coordinates. Show explicitly that the real part and the imaginary part
of this form are both symmetric. Show that the real part is exact and that the
imaginary part is not exact (8 marks).

Exercise 6.3. Consider the mapping

ψ : R+ × R −→ C×, (r, θ) 7−→ (r cos θ, r sin θ)

(the restriction of this mapping to R+ × [0, 2π] is called polar coordinates).

a) Compute the differential of this mapping (2 marks).

b) Compute the pull-back of the differential form ω = dz/z under this mapping (6
marks).

c) Show that the pull-back is exact (though ω is not exact) (2 marks).

d) Consider for fixed r0 ∈ R+ the path γ : [0, 2π] −→ R+ × R, t 7→ (r0, t). Compute
the composed path γ = ψ ◦ γ. Say in words what this composed path is. Compute∫
γ ψ
∗(ω) and

∫
γ ω (6 marks).

Exercise 6.4. Consider the complex exponential mapping

exp : C −→ C×, u 7−→ exp(u) .

a) Write down this mapping in real coordinates (2 marks).

b) Compute the pull-back of the differential form ω = dz/z under this mapping (2
marks).

c) Show that the pull-back is exact (though ω is not exact) (2 marks).

d) Consider for fixed a0 ∈ R+ the path γ̃ : [0, 2π] −→ C, t 7→ (a0, t). Compute∫
exp ◦γ̃ ω and

∫
γ̃ exp∗(ω) (4 marks).

e) Find a relationship between the complex exponential mapping and the mapping
considered in Exercise 6.3 (3 marks).
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Exercise 6.5. Compute the path integral for the differential form ω : R+×R+ −→ R
given by

(x, y) 7−→ ln(
√
x+ y)dx+ y2dy

along the linear path from (1, 5) to (5, 1) (4 marks).

Exercise 6.6. Compute the path integral for the differential form ω : R+×R+ −→ R
given by

(x, y) 7−→ 1

x+ y
dx+ xydy

along the linear path from (1, 1) to (4, 4) (4 marks).

Exercise 6.7. Let u = (0, 1), v = (1, 2) and w = (3, 0). Compute for the mapping

ϕ : K2 −→ K2, (x, y) 7−→ (xy3 + y2, x2 − xy)
the directional derivatives Duϕ, Dvϕ, Dwϕ and the higher derivatives DuDuϕ,
DvDvϕ, DwDwϕ, DuDvϕ, DuDwϕ, DvDuϕ, DvDwϕ, DwDuϕ, DwDvϕ (12 marks).

Exercise 6.8. Check which of the following differential forms are symmetric on R2.
Give also, if possible, a primitive function.

a) ω = adx+ bdy (where a, b ∈ R).

b) ω = sinxydx+ sinxydy.

c) ω = y sin xydx+ x sin xydy.

d) ω = 2xy3dx+ 3x2y2dy (8 marks).

Exercise 6.9. Let X and Y be two metric spaces and let [a, b] and [b, c] be two
intervals in R (a < b < c). Let

f1 : [a, b]× Y −→ X and f2 : [b, c]× Y −→ X

be two continuous mappings and suppose that on b × Y both mappings coincide.
Then the mapping f : [a, c]× Y −→ X (to be defined in an obvious manner) is also
continuous (use the sequence criterion for continuity) (7 marks).
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Exercise 7.1. Show that C× = C−{0} is connected, but not star-shaped (3 marks).

Exercise 7.2. Let B = B(P, r) ⊆ V be a ball in a finite dimensional K-vector space
V . Let γ1, γ2 : [a, b] −→ B be two paths with γ1(a) = γ2(a) and γ1(b) = γ2(b). Show
that γ1 and γ2 are homotopic. In particular, a path γ in B is homotopic to the line
segment which connects γ(a) and γ(b) (6 marks).

Exercise 7.3. Show that for every path γ : [a, b] −→ G (G open in a vector space
V ) there exists a piecewise differentiable path which is homotopic to γ (use Exercise
7.2 and the compactness of [a, b]) (4 marks).

Exercise 7.4. Give a piecewise linear path which is homotopic to the unit circle
inside C× (3 marks).

Exercise 7.5. Show that a star-shaped open subset G in a vector space V is con-
tractible by giving an explicit contraction (3 marks).

Exercise 7.6. Let X be a metric path-connected space. Show that for every two
points P and Q there exists a group isomorphism

π(X,P ) −→ π(X,Q) .

This means essentially that the fundamental group is independent of the chosen
point (4 marks).

Exercise 7.7. Let X and Y be two path-connected topological (or metric) spaces.
Show that there exists an isomorphism

π(X × Y ) ∼= π(X)× π(Y ) (6 marks).

Exercise 7.8. Let gj, j = 1, . . . , n be differentiable functions in one variable, gj :
K −→ W . Show that the differential form

ω : Kn −→ W, (x1, . . . , xn) 7−→ g1(x1)dx1 + . . .+ gn(xn)dxn

is symmetric. Show also that it is exact by giving a primitive function (3 marks).



70

Exercise 7.9. Let f : R − {0} −→ R be a differentiable function and consider the
differential form ω : R3 − {0} −→ Hom(R3,R) given by

P = (x, y, z) 7−→ f(‖P‖)xdx+ f(‖P‖)ydy + f(‖P‖)zdz
(where ‖ ‖ is the Euclidean norm). Such a differential form (or the corresponding
vector field) describes a central force, that is, a force which is directed to a central
object and depends only on the distance to the central object (sun, atom).

a) Show that ω is symmetric (3 marks).

b) Write f(t) = h(t)
t

and suppose that H is a primitive function for h on R+. Show
that

ϕ : P 7−→ H(‖P‖)
is a primitive mapping for ω (4 marks).

c) Let γ : [a, b] −→ R3−{0} be a path such that γ(a) = P and γ(b) = Q. Show that∫
γ ω = H(‖Q‖)−H(‖P‖) (1 mark).

d) Describe the central differential forms given by

f(t) =
1

t
, f(t) = − 1

t2
, f(t) =

1

t3
.

explicitly and find primitive mappings for them (6 marks).
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Exercise 8.1. Let γ : [a, b] −→ G be a path and let p : Y −→ G be a covering. Show
that there exist a < a1 < . . . < ak < b such that the images of every restricted
path [a`, a`+1] −→ G lies completely in an open subset U` such that p−1(U`) −→ U` is
trivial (use the compactness of the closed interval) (6 marks).

Exercise 8.2. Compute the preimage of the following points P ∈ C× under the
following coverings p.

a) P = 1, 2,−1, i and p = exp : C −→ C× (8 marks).

b) P = 1, 2,−1, i,−i, 5 + 12i and p = z2 : C× −→ C× (8 marks).

c) P = 1 for p = zn, where n ∈ N (4 marks).

Exercise 8.3. Consider the covering C× −→ C×, z 7→ zk (k ∈ Z). Describe the
corresponding mapping on the fundamental groups (4 marks).

Exercise 8.4. Consider the covering C× −→ C×, z 7→ zk. Can you describe a lifting
for exp : C −→ C× with respect to this covering (3 marks).

Exercise 8.5. Now consider the two coverings

ϕk, ϕ` : C× −→ C×, z 7−→ zk and z 7−→ z` .

Prove that ϕ` has a lifting with respect to ϕk if and only if k divides ` (4 marks).

Exercise 8.6. Let p : Y −→ X be a covering of metric spaces, and let Z be another
metric space. Show that also the product mapping

p× id : Y × Z −→ X × Z , (y, z) 7−→ (p(y), z)

is a covering (the products are metric spaces by Exercise 1.3) (5 marks).

Exercise 8.7. Show that the projection R2 −→ R, (x, y) 7→ x is not a covering in
showing that Lemma 4.2.7 does not hold (take T = R and g = id and describe two
different liftings with a common point) (4 marks).
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Exercise 8.8. Let P1, . . . , Pk be different points in C. Show that there is a surjective
group homomorphism

π(C− {P1, . . . , Pk}) −→ Zk

by looking at the mappings π(C − {P1, . . . , Pk}) −→ π(C − {Pi}) for each i. (6
marks).

Exercise 8.9. Let the points P = (0, 0), P1 = (3, 1), P2 = (−2, 2) and P3 =
(−3,−3) be given. Construct explicitly a piecewise differentiable closed path start-
ing and ending in P which represents (1, 3,−1) in π(C − {P1}) × π(C − {P2}) ×
π(C− {P3}). Make sure that your path is defined on [0, 1] (7 marks).

Exercise 8.10. Study examples 4.2.2 - 4.2.5 in detail. Study 4.3.
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Exercise 9.1. Let γ be the path which runs counter-clockwise along the sides of
the triangle given by (0, 0), (3,−2i), (3, 2i). Compute the following integrals using
either the Cauchy integral formula or the Cauchy integral theorem.∫

γ

ez

z − 2
dz,

∫
γ

ez

z + 1
dz,

∫
γ

e3z

z − 2 + i
dz,

∫
γ

z cos(z)

z2 − 4
dz (8 marks) .

Exercise 9.2. Compute the residue of the differential form f(z)g(z)dz, where

f(z)=z−4−3z−2+2z−1+3+2z and g(z)=3z−3−z−2+z−1+6−2z−3z2+z3 (3 marks).

Exercise 9.3. Let P1, . . . , Pk be different points in C. Show that there is a surjective
group homomorphism

π(C− {P1, . . . , Pk}) −→ Zk

using differential forms and path integrals (compare Exercise 8.8). (6 marks).

Exercise 9.4. Consider the function f : R −→ R defined by

f(x) :=

exp(−x−1) for x > 0

0 for x ≤ 0
.

Show that for x > 0 all derivatives of f(x) exist and are of the form g(x−1) exp(−x−1)
with some polynomial g. Deduce that f is differentiable of arbitrary order and that
f (k)(0) = 0 for all k. Conclude that this is not an analytic function at 0 (this also
shows that the identity theorem does not hold for real-differentiable functions) (6
marks).

Exercise 9.5. Show that there exists a bijective real-differentiable mapping R2 −→
B = B(0, 1) from the real plane to the unit disc. (The Theorem of Liouville will
tell us that there does not exist a bijective complex-differentiable map; you may use
Exercise 9.4) (8 marks).
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Exercise 10.1. Give a holomorphic bijection (with holomorphic inverse function)
between the two open discs B(P, r) and B(Q, s) (4 marks).

Exercise 10.2. a) Give an expression for cos(x+iy) where only the real exponential
and the real trigonometric functions occur (use cos z = 1

2
(eiz + e−iz) and Euler

formula) (5 marks).

b) Check that the Cauchy-Riemann differential equations hold for your expression
(4 marks).

c) Deduce from the identity principle that this is the only way to extend cos as a
complex-differential function to C (3 marks).

Exercise 10.3. Compute the coefficients of the power series around 1 for the
complex-differentiable function z 7→ 1

z
using Taylor’s theorem 6.4.1. Recall that

an expression of the form 1
(u−a1)k1 ·(u−a1)k1

can be expressed as a sum of fractions

with easier denominators (this method is called “partial fractions”) (10 marks).

Exercise 10.4. Compute the coefficients of the power series around 1 for the
complex-differentiable function z 7→ 1

z
again using the geometric series (3 marks).

Exercise 10.5. Show that a non-discrete subset of a metric space has an accumu-
lation point (3 marks).

Exercise 10.6. Let f : G −→ C be holomorphic, G ⊆ C open and connected.
Assume that |f(z)| is constant. Then f itself is constant (3 marks).

Exercise 10.7. Let p : Y −→ X be a covering. Show that p is an open mapping (4
marks).

Exercise 10.8. Show that the exponential mapping exp : C −→ C× is surjective.
Use that this mapping is a group homomorphism and the openness principle (4
marks).

Exercise 10.9. Deduce from the fundamental theorem of algebra that every poly-
nomial p ∈ C[z] factors in a product of linear factors (4 marks).


