
Local cohomology and ideal closure operations I

In these two talks I want to discuss three topics related to local cohomology:
the affineness of (quasi-affine) schemes, the relation of local cohomology to
closure operations, in particular tight closure, and the behaviour of local
cohomology (and cohomological dimension) in an (arithmetic or geometric)
deformation.

Affine schemes

A scheme U is called affine if it is isomorphic to the spectrum of some
commutative ring R. If the scheme is of finite type (if we have a variety),
then this is equivalent to saying that there exists global functions

g1, . . . , gk ∈ Γ(U,OU)

such that the mapping

U −→ Ak, x 7−→ (g1(x), . . . , gk(x)),

is a closed embedding. The relation to cohomology is given by the following
well-known theorem of Serre.

Theorem 1.1. Let U denote a noetherian scheme. Then the following pro-
perties are equivalent.

(1) U is an affine scheme.
(2) For every quasicoherent sheaf F on U and all i ≥ 1 we have H i(U,F) =

0.
(3) For every coherent ideal sheaf I on U we have H1(U, I) = 0.

It is in general a difficult question whether a given scheme U is affine. For
example, suppose that X = Spec (R) is an affine scheme and

U = D(a) ⊆ X

is an open subset (such schemes are called quasiaffine) defined by an ideal
a ⊆ R. When is U itself affine? The cohomological criterion above simplifies
to the condition that H1(U,OX) = 0.

Of course, if a = (f) is a principal ideal (or up to radical a principal ideal),
then U = D(f) ∼= Spec (Rf ) is affine. On the other hand, if (R,m) is a local
ring of dimension ≥ 2, then

D(m) ⊂ Spec (R)

is not affine, since
Hd−1(U,OX) = Hd

m(R)

by the relation between sheaf cohomology and local cohomology and a theo-
rem of Grothendieck. A variant of this observation shows that for an open
affine subset U ⊆ X the closed complement Y = X \ U must be of pure
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codimension one (U must be the complement of the support of an effecti-
ve divisor). In a regular or (locally Q)- factorial domain the complement of
every divisor is affine, since the divisor can be described (at least locally
geometrically) by one equation. But it is easy to give examples to show that
this is not true for normal threedimensional domains.

Example 1.2. Let K be a field and consider the ring

R = K[x, y, u, v]/(xu− yv) .

The ideal p = (x, y) is a prime ideal in R of height one. Hence the open subset
U = D(x, y) is the complement of an irreducible hypersurface. However, U
is not affine. For this we consider the closed subscheme

A2
K
∼= Z = V (u, v) ⊆ Spec (R)

and
Z ∩ U ⊆ U .

If U were affine, then also the closed subscheme Z ∩U ∼= A2
K \{(0, 0)} would

be affine, but this is not true, since the complement of the punctured plane
has codimension 2.

The argument employed in this example rests on the following definition and
the next theorem.

Definition 1.3. Let R be a noetherian commutative ring and let I ⊆ R be
an ideal. The (noetherian) superheight is the supremum

sup (ht (IS) : S is a notherian R− algebra) .

Theorem 1.4. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal and U = D(I) ⊆ X = Spec (R). Then the following are equivalent.

(1) U is an affine scheme.
(2) I has superheight ≤ 1 and Γ(U,OX) is a finitely generated R-algebra.

It is not true at all that the ring of global sections of an open subset U of
the spectrum X of a noetherian ring is of finite type over this ring. This
is not even true if X is an affine variety. This problem is directly related
to Hilbert’s fourteenth problem, which has a negative answer. We will later
present examples where U has superheight one, yet is not affine, hence its
ring of global sections is not finitely generated.

Forcing algebras and their torsors

We want to deal now with a very special class of open subsets and ask
whether they are affine or not and what their cohomological dimension is.
Though it is in some sense a very special class it exhibits already a very rich
behaviour. These open subsets are given by so-called forcing equations and
forcing algebras.
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Definition 1.5. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . . + fnTn − f)

is called the forcing algebra of these elements (or these data).

This algebra was introduced by Hochster. The forcing algebra forces that f
belongs to the extended ideal (f1, . . . , fn)B. It yields a scheme morphism

ϕ : SpecB −→ X = SpecR.

We are interested in the relationship:

How is f related to I?

Does f belong to certain closure operations of I? ⇐⇒
Properties of ϕ.

Examples

f ∈ I ⇐⇒ ϕ has a scheme-section .

f ∈ rad I ⇐⇒ ϕ is surjective .

f ∈ I (integral closure)⇐⇒ ϕ is a universal submersion .

Tight closure

We want to deal with tight closure, a closure operation introduced by Hoch-
ster and Huneke.

Let R be a noetherian domain of positive characteristic, let

F : R −→ R, f 7−→ fp,

be the Frobenius homomorphism, and

F e : R −→ R, f 7−→ f q, q = pe ,

its eth iteration. Let I be an ideal and set

I [q] = extended ideal of I under F e

Then define the tight closure of I to be the ideal

I∗ := {f ∈ R : there exists z 6= 0 such that zf q ∈ I [q] for all q = pe} .

The relation between tight closure and forcing algebras is given in the follo-
wing theorem.
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Theorem 1.6. Let R be a normal excellent local domain with maximal ideal
m over a field of positive characteristic. Let f1, . . . , fn generate an m-primary
ideal I and let f be another element in R. Then f ∈ I∗ if and only if

Hdim(R)
m (B) 6= 0 ,

where B = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) denotes the forcing algebra
of these elements.

If the dimension d is at least two, then

Hd
m(R) −→ Hd

m(B) ∼= Hd
mB(B) ∼= Hd−1(D(mB),OB) .

This means that we have to look at the cohomological properties of the
complement of the exceptional fiber over the closed point. Such an open
subset is called a torsor. If the dimension is two, then we have to look whether
the first cohomology of the structure sheaf vanishes. This is true if and only
if the open subset D(mB) is an affine scheme (the spectrum of a ring).

The right hand side of this equivalence - the non-vanishing of the top-
dimensional local cohomology - is independent of any characteristic assump-
tion, and the basis for solid closure.

It is a fact that tight closure is difficult to compute. Since tight closure can
be formulated with local cohomology, it follows that it must be quite difficult
to give a general criterion for vanishing of local cohomology.

An important property of tight closure is that it is trivial for regular rings, i.e.
I∗ = I for every ideal I. This implies the following cohomological property.

Corollary 1.7. Let (R,m) denote a regular local ring of dimension d and of
positive characteristic, let I = (f1, . . . , fn) be an m-primary ideal and f ∈ R
an element with f 6∈ I. Let B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) be the
corresponding forcing algebra. Then for the extended ideal mB we have

Hd
mB(B) = Hd−1(D(mB),OB) = 0.

Proof. This follows from Fakt and f 6∈ I∗. �

In dimension two this is true in every (even mixed) characteristic.

Theorem 1.8. Let (R,m) denote a two-dimensional regular local ring, let
I = (f1, . . . , fn) be an m-primary ideal and f ∈ R an element with f 6∈ I.
Let B = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) be the corresponding forcing
algebra. Then for the extended ideal mB we have

H2
mB(B) = H1(D(mB),OB) = 0.

In particular, the open subset zusatz1D(mB) is an affine scheme if and only
if f 6∈ I.
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The example above, the equation xu+vy = 0 can be considered as the forcing
algebra for the ideal (x, y) and the element 0 ∈ (x, y). The non-affineness of
D(x, y) corresponds to this containment.

We will continue in the next lecture with a detailed study of the situation of
a two-dimensional graded base ring.

In higher dimension in characteristic zero it is not true that a regular ring is
solidly closed, as was shown by the following example of Paul Roberts.

Example 1.9. Let K be a field of characteristic 0 and let

B = K[X, Y, Z][U, V,W ]/(X2U + Y 2V + Z2W −X3Y 3Z3) .

Then the ideal a = (X, Y, Z)B has the property that H3
a (B) 6= 0. This means

that in R = K[X, Y, Z] the element X3Y 3Z3 belongs to the solid closure of
the ideal (X2, Y 2, Z2), and hence the threedimensional polynomial ring is not
solidly closed.

This example uses a forcing equation of a special type: For parameters
x1, . . . , xd in a d-dimensional local ring R and some s ∈ N one considers
the forcing algebra given by

(x1 · · · xd)
s = xs+1

1 T1 + . . . + xs+1
d Td+1 .

The monomial conjecture states that this equation does not have a solution
in R. It is open only in mixed characteristic. The equation expresses that
the Cech cohomology class 1

x1···xn
is mapped to 0 in the forcing algebra.

Robert’s computation shows that this does not imply that the complete local
cohomology module vanishes. Therefore solid closure is not a characteristic-
free replacement for tight closure. There is a variant, called parasolid closure,
which is characteristic free and has all the properties of tight closure (over
a field). A detailed understanding of the top-dimensional local cohomology
of the torsors given by the forcing algebras for these special equations could
solve the monomial conjecture.

Plus closure

The above mentioned (finite) superheight condition is also related to another
closure operation, the plus closure.

For an ideal I ⊆ R in a domain R define

I+ = {f ∈ R : there exists a finite domain extension R ⊆ T such that f ∈ IT} .
Equivalent: let R+ be the absolute integral closure of R. This is the integral
closure of R in an algebraic closure of the quotient field Q(R) (first considered
by Artin). Then

f ∈ I+ if and only if f ∈ IR+ .

The plus closure commutes with localization.
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We also have the inclusion I+ ⊆ I∗. Here the question arises:

Question: Is I+ = I∗?

This question is known as the tantalizing question in tight closure theory.

In terms of forcing algebras and their torsors, the containment inside the plus
closure means that there exists a d-dimensional closed subscheme inside the
torsor which meet the exceptional fiber (the fiber over the maximal ideal) in
one point, and this means that the superheight of the extended ideal is d. In
this case the local cohomological dimension of the torsor must be d as well,
since it contains a closed subscheme with this cohomological dimension.

Remark 1.10. In characteristic zero, the plus closure behaves very differently
compared with positive characteristic. If R is a normal domain of characte-
ristic 0, then the trace map shows that the plus closure is trivial, I+ = I for
every ideal I. This implies also that if R is a twodimensional normal local
ring of characteristic 0 and I an m-primary ideal and f ∈ R an element
with f 6∈ I, then the extendend ideal mB inside the forcing algebra B has
superheight 1. If moreover f belongs to the solid closure of I, then D(mB) is
not affine and so by Fakt its ring of global sections is not finitely generated.

Example 1.11. Let K be a field and consider the Fermat ring

R = K[X, Y, Z]/(Xd + Y d + Zd)

together with the ideal I = (X, Y ) and f = Z2. For d ≥ 3 we have Z2 6∈
(X, Y ). This element is however in the tight closure (X, Y )∗ of the ideal in
positive characteristic (assume that the characteristic p does not divide d)
and is therefore also in characteristic 0 inside the tight closure and inside the
solid closure. Hence the open subset

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(Xd + Y d + Zd, SX + TY − Z2))

is not an affine scheme. In positive characteristic, Z2 is also contained in
the plus closure (X, Y )+ and therefore this open subset contains punctured
surfaces (the spectrum of the forcing algebra contains two-dimensional closed
subschemes which meet the exceptional fiber V (X, Y ) in only one point; the
ideal (X, Y ) has superheight 2 in the forcing algebra). In characteristic zero
however, due to Fakt the superheight is one and therefore by Fakt the algebra
Γ(D(X, Y ),OB) is not finitely generated. For K = C and d = 3 one can also
show that D(X, Y )C is, considered as a complex space, a Stein space.


