
In the remaining lectures we will continue with the question when are the
torsors given by a forcing algebras over a two-dimensional ring affine? We
will look at the graded situation to be able to work on the corresponding
projective curve.

In particular we want to address the following questions

(1) Is there a procedure to decide whether the torsor is affine?
(2) Is it non-affine if and only if there exists a geometric reason for it

not to be affine (because the superheight is too large)?
(3) How does the affineness vary in an arithmetic family, when we vary

the prime characteristic?
(4) How does the affineness vary in a geometric family, when we vary

the base ring?

In terms of tight closure, these questions are directly related to the tantalizing
question of tight closure (is it the same as plus closure), the dependence
of tight closure on the characteristic and the localization problem of tight
closure.

Geometric interpretation in dimension two

We will restrict now to the two-dimensional homogeneous case in order to
work on the corresponding projective curve. We want to find an object over
the curve which corresponds to the forcing algebra.

Let R be a two-dimensional standard-graded normal domain over an algebrai-
cally closed field K. Let C = Proj R be the corresponding smooth projective
curve and let

I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on C the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n⊕

i=1

OC(m− di)
f1,...,fn−→ OC(m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−
n∑

i=1

di) deg (C) .

Thus a homogeneous element f of degree m defines a cohomology class
δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m)), so this defines a torsor over the projective
curve. We mention an alternative description of the torsor corresponding to
a first cohomology class in a locally free sheaf which is better suited for the
projective situation.
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Remark 6.1. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because of
H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of cohomo-
logy, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields projective
subbundles

P(S∗) ⊂ P(S ′∗) .

If V is the corresponding vector bundle, one may think of P(S∗) as P(V )
which consists for every base point x ∈ X of all the lines in the fiber Vx run-
ning through the zero point. The projective subbundle P(V ) has codimension
one inside P(V ′), for every point it is a projective space lying (linearly) insi-
de a projective space of one dimension higher. The complement then is over
every point then an affine space. One can show that the global complement

T = P(S ′∗)− P(S∗)
is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

Semistability of vector bundles

In the situation of a forcing algebra for homogeneous elements, this torsor T
can also be obtained as Proj B, where B is the (not necessarily positively)
graded forcing algebra. In particular, it follows that the containment f ∈ I∗ is
equivalent to the property that T is not an affine variety. For this properties,
positivity (ampleness) properties of the syzygy bundle are crucial. We need
the concept of (Mumford) semistability.

Definition 6.2. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if deg(T )
rk(T )

≤ deg(S)
rk(S)

for all subbundles T .

Suppose that the base field has positive characteristic p > 0. Then S is
called strongly semistable, if all (absolute) Frobenius pull-backs F e∗(S) are
semistable.

Note that a semistable vector bundle need not be strongly semistable, the
following is probably the simplest example.

Example 6.3. Let Y be the smooth Fermat quartic given by x4+y4+z4 and
consider on it the syzygy bundle Syz (x, y, z) (which is also the restricted co-
tangent bundle from the projective plane). This bundle is semistable. Suppose
that the characteristic is 3. Then its Frobenius pull-back is Syz (x3, y3, z3).
The curve equation gives a global nontrivial section of this bundle of total
degree 4. But the degree of Syz (x3, y3, z3)(4) is negative, hence it can not be
semistable anymore.
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For a strongly semistable vector bundle S on Y and a cohomology class
c ∈ H1(Y,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 6.4. Let Y denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over Y to-
gether with a cohomology class c ∈ H1(Y,S). Then the torsor T (c) is an
affine scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 in positive
characteristic).

This result rests on the ampleness of S ′∨ occuring in the dual exact sequence
0 → OY → S ′∨ → S∨ → 0 given by c (work of Hartshorne and Gieseker). It
implies for a strongly semistable syzygy bundles the following degree formula
for tight closure.

Theorem 6.5. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥
∑

di

n− 1
and Rm ∩ I∗ ⊆ I for m <

∑
di

n− 1
.

We indicate the proof of the inclusion result. The degree condition implies
that c = δ(f) ∈ H1(Y,S) is such that S = Syz (f1, . . . , fn)(m) has nonne-
gative degree. Then also all Frobenius pull-backs F ∗(S) have nonnegative
degree. Let L be a line bundle on Y such that its degree is larger than the
degree of ω−1

Y , the dual of the canonical sheaf. Let z ∈ H0(Y,L) be a non-zero
element. Then zF e∗(c) ∈ H1(Y, F e∗(S)⊗ L), and by Serre duality we have

H1(Y, F e∗(S)⊗ L) ∼= H0(F e∗(S∗)⊗ L−1 ⊗ ωY )∨ .

On the right hand side we have a semistable sheaf of negative degree, which
can not have a nontrivial section. Hence zF e∗ = 0 and therefore f belongs
to the tight closure.

Harder-Narasimhan filtration

In general, there exists an exact criterion depending on c and the strong
Harder-Narasimhan filtration of S. For this we give the definition of the
Harder-Narasimhan filtration.

Definition 6.6. Let S be a vector bundle on a smooth projective curve C
over an algebraically closed field K. Then the (uniquely determined) filtration

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = S
of subbundles such that all quotient bundles Sk/Sk−1 are semistable with de-
creasing slopes µk = µ(Sk/Sk−1), is called the Harder-Narasimhan filtration
of S.

The Harder-Narasimhan filtration exists uniquely (by a Theorem of Harder
and Narasimhan). A Harder-Narasimhan filtration is called strong if all the
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quotients Si/Si−1 are strongly semistable. A Harder-Narasimhan filtration
is not strong in general, however, by a Theorem of A. Langer, there exists
some Frobenius pull-back F e∗(S) such that its Harder-Narasimhan filtration
is strong.

Theorem 6.7. Let Y denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over Y together with a cohomology
class c ∈ H1(Y,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = S
be a strong Harder-Narasimhan filteration. Then the torsor T (c) is an affine
scheme if and only if the following (inductively defined property starting with
t) holds: there is an i such that deg (Si/Si−1) < 0 and the image of c in this
sheaf is 6= 0 (and also the Frobenius pull-backs of this class are 6= 0).


