Vorkurs Mathematik

Arbeitsblatt 4

Übungsaufgaben

Die beiden ersten Aufgaben sollen dazu anregen, über die Güte von Dezimalbruchentwicklungen zu diskutieren.

AUFGABE 4.1. Stimmen die beiden reellen Zahlen

$$\frac{\pi\sqrt{163}}{3}$$
 und ln 640320

überein?

AUFGABE 4.2. Stimmen die beiden reellen Zahlen

$$\sqrt{5} + \sqrt{22 + 2\sqrt{5}}$$
 und $\sqrt{11 + 2\sqrt{29}} + \sqrt{16 - 2\sqrt{29} + 2\sqrt{55 - 10\sqrt{29}}}$ überein?

AUFGABE 4.3. Berechne von Hand die Approximationen x_1, x_2, x_3, x_4 im Heron-Verfahren für die Quadratwurzel von 5 zum Startwert $x_0 = 2$.

Aufgabe 4.4.*

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu b=7 mit dem Startwert $a_0=3$ durch (es sollen also die Approximationen a_1,a_2,a_3 für $\sqrt{7}$ berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden).

AUFGABE 4.5. Sei a eine reelle Zahl. Zeige, dass die Gleichung $x^2=a$ höchstens zwei Lösungen in $\mathbb R$ besitzt.

AUFGABE 4.6. Formuliere und beweise die Lösungsformel für eine quadratische Gleichung

$$ax^2 + bx + c = 0$$

mit $a, b, c \in \mathbb{R}, a \neq 0$.

AUFGABE 4.7. Es sei $(x_n)_{n\in\mathbb{N}}$ eine reelle Folge. Zeige, dass die Folge genau dann gegen x konvergiert, wenn es für jedes $k\in\mathbb{N}_+$ ein $n_0\in\mathbb{N}$ gibt derart, dass für alle $n\geq n_0$ die Abschätzung $|x_n-x|\leq \frac{1}{k}$ gilt.

AUFGABE 4.8. Untersuche die durch

$$x_n = \frac{1}{n^2}$$

gegebene Folge $(n \ge 1)$ auf Konvergenz.

AUFGABE 4.9. Untersuche die durch

$$x_n = \frac{1}{10^n}$$

gegebene Folge auf Konvergenz.

AUFGABE 4.10. Es seien $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ zwei konvergente reelle Folgen mit $x_n \geq y_n$ für alle $n \in \mathbb{N}$. Zeige, dass dann $\lim_{n\to\infty} x_n \geq \lim_{n\to\infty} y_n$ gilt.

Die folgende Aussage nennt man auch das Quetschkriterium für Folgen.

AUFGABE 4.11. Es seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n \leq y_n \leq z_n$ für alle $n \in \mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ konvergieren beide gegen den gleichen Grenzwert a. Zeige, dass dann auch $(y_n)_{n\in\mathbb{N}}$ gegen diesen Grenzwert a konvergiert.

Für die folgende Aufgabe können Sie bekannte Eigenschaften der Sinusfunktion verwenden.

Aufgabe 4.12.*

Bestimme den Grenzwert der Folge

$$\frac{\sin n}{n}$$
, $n \in \mathbb{N}_+$.

Aufgabe 4.13. Beweise die Aussagen (1), (3) und (5) von Lemma 4.7.

AUFGABE 4.14. Sei $k \in \mathbb{N}_+$. Zeige, dass die Folge $\left(\frac{1}{n^k}\right)_{n \in \mathbb{N}}$ gegen 0 konvergiert.

AUFGABE 4.15. Es sei $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge reeller Zahlen mit Grenzwert x. Zeige, dass dann auch die Folge

$$(|x_n|)_{n\in\mathbb{N}}$$

konvergiert, und zwar gegen |x|.

In den beiden folgenden Aufgaben geht es um die Folge der Fibonacci-Zahlen. Die Folge der $Fibonacci-Zahlen\ f_n$ ist rekursiv definiert durch

$$f_1 := 1, f_2 := 1 \text{ und } f_{n+2} := f_{n+1} + f_n.$$

AUFGABE 4.16. Beweise durch Induktion die Simpson-Formel oder Simpson-Identität für die Fibonacci-Zahlen f_n . Sie besagt $(n \ge 2)$

$$f_{n+1}f_{n-1} - f_n^2 = (-1)^n$$
.

AUFGABE 4.17. Beweise durch Induktion die *Binet-Formel* für die Fibonacci-Zahlen. Diese besagt, dass

$$f_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

gilt $(n \ge 1)$.

AUFGABE 4.18. Untersuche die durch

$$x_n = \frac{1}{\sqrt{n}}$$

gegebene Folge $(n \ge 1)$ auf Konvergenz.

Aufgabe 4.19. Bestimme den Grenzwert der durch

$$x_n = \frac{7n^3 - 3n^2 + 2n - 11}{13n^3 - 5n + 4}$$

definierten reellen Folge.

Für die folgende Aufgabe ist Aufgabe 1.5 hilfreich.

Aufgabe 4.20. Zeige, dass die reelle Folge

$$\left(\frac{n}{2^n}\right)_{n\in\mathbb{N}}$$

gegen 0 konvergiert.

AUFGABE 4.21. Bestimme den Grenzwert der durch

$$x_n = \frac{2n + 5\sqrt{n} + 7}{-5n + 3\sqrt{n} - 4}$$

definierten reellen Folge.

AUFGABE 4.22. Man gebe Beispiele für konvergente reelle Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ mit $x_n\neq 0,\ n\in\mathbb{N}$, und mit $\lim_{n\to\infty}x_n=0$ derart, dass die Folge

$$\left(\frac{y_n}{x_n}\right)_{n\in\mathbb{N}}$$

- (1) gegen 0 konvergiert,
- (2) gegen 1 konvergiert,
- (3) divergiert.