
Geometric vector bundles

We have seen that the forcing algebra has locally the formRfi
[T1, . . . , Ti−1, Ti+1, . . . , Tn]

and its spectrum Spec (B) has locally the form D(fi)× An−1
K . This descrip-

tion holds on the union U =
⋃n

i=1D(fi). Moreover, in the homogeneous case
(f=0) the transition mappings are linear. Hence V |U is a geometric vector
bundle according to the following definition.

Definition 2.1. Let X denote a scheme. A scheme

p :V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃
i∈I Ui and Ui-isomorphisms

ψi :Ui × Ar = Ar
Ui
−→ V |Ui

= p−1(Ui)

such that for every open affine subset U ⊆ Ui ∩ Uj the transition mappings

ψ−1
j ◦ ψi : Ar

Ui
|U −→ Ar

Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r
j=1 aijTj.

Here we can restrict always to affine open coverings. If X is separated then
the intersection of two affine open subschemes is again affine and then it
is enough to check the condition on the intersection. The trivial bundle of
rank r is the r-dimensional affine space Ar

X over X, and locally every vector
bundle looks like this. Many properties of an affine space are enjoyed by
general vector bundles. For example, in the affine space we have the natural
addition

+ : (Ar
U)×U (Ar

U) −→ Ar
U , (v1, . . . , vr, w1, . . . , wr) 7−→ (v1 +w1, . . . , vr +wr),

and this carries over to a vector bundle. The reason for this is that the
isomorphisms occurring in the definition of a geometric vector bundle are
linear, hence the addition on V coming from an isomorphism with some
affine space is independent of the choosen isomorphism. For the same reason
there is a unique closed subscheme of V called the zero-section which is
locally defined to be 0 × U ⊆ Ar

U . Also, the multiplication by a scalar, i.e.
the mapping

· : AU ×U (Ar
U) −→ Ar

U , (s, v1, . . . , vr) 7−→ (sv1, . . . , svr),

carries over to a scalar multiplication

· : AX ×X V −→ V.

In particular, for every point x ∈ X the fiber Vx = V ×X x is an affine space
over κ(x).

For a geometric vector bundle p :V → X and an open subset U ⊆ X one
sets

Γ(U, V ) = {s : U → V |U | p ◦ s = idU} ,
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so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf,
and so we get for every vector bundle a locally free sheaf, which is free on
the open subsets where the vector bundle is trivial.

Definition 2.2. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃
i∈I Ui and OUi

-module-
isomorphisms F|Ui

∼= Or|Ui
for every i ∈ I.

Vector bundles and locally free sheaves are essentially the same objects.

Theorem 2.3. Let X denote a scheme. Then the category of locally free
sheaves on X and the category of geometric vector bundles on X are equi-
valent. A geometric vector bundle V → X corresponds to the sheaf of its
sections, and a locally free sheaf F corresponds to the (relative) Spectrum of
the symmetric algebra of the dual module F∗.

The free sheaf of rank r corresponds to the affine space Ar
X over X.

Torsors of vector bundles

We have seen that V = Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn)) acts on the
spectrum of a forcing algebra T = Spec (R[T1, . . . , Tn]/(f1T1+. . .+fnTn+f))
by addition. The restriction of V to U is a vector bundle, and T restricted
to U becomes a V -torsor.

Definition 2.4. Let V denote a geometric vector bundle over a scheme X.
A scheme T → X together with an action

β :V ×X T −→ T

is called a geometric (Zariski)-torsor for V (or a V -principal fiber bundle or
a principal homogeneous space) if there exists an open covering X =

⋃
i∈I Ui

and isomorphisms

ϕi :T |Ui
−→ V |Ui

such that the diagrams (we set U = Ui and ϕ = ϕi)

V |U ×U T |U
β−→ T |U

↓ ↓
V |U ×U V |U

β−→ V |U
commute.

The torsors of vector bundles can be classified in the following way.
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Proposition 2.5. Let X denote a Noetherian separated scheme and let

p :V −→ X

denote a geometric vector bundle on X with sheaf of sections S. Then there
exists a correspondence between first cohomology classes c ∈ H1(X,S) and
geometric V -torsors.

Proof. We will describe this correspondence. Let T denote a V -torsor. Then
there exists by definition an open covering X =

⋃
i∈I Ui such that there exists

isomorphisms

ϕi :T |Ui
−→ V |Ui

which are compatible with the action of V |Ui
on itself. The isomorphisms ϕi

induce automorphisms

ψij = ϕj ◦ ϕ−1
i :V |Ui∩Uj

−→ V |Ui∩Uj
.

These automorphisms are compatible with the action of V on itself, and this
means that they are of the form

ψij = IdV |Ui∩Uj
+ sij

with suitable sections sij ∈ Γ(Ui ∩Uj,S). This family defines a Cech-cocycle
for the covering and gives therefore a cohomology class in H1(X,S). For
the reverse direction, suppose that the cohomology class c ∈ H1(X,S) is
represented by a Cech-cocycle sij ∈ Γ(Ui ∩ Uj,S) for an open covering X =⋃

i∈I Ui. Set Ti := V |Ui
. We take the morphisms

ψij :Ti|Ui∩Uj
= V |Ui∩Uj

−→ V |Ui∩Uj
= Tj|Ui∩Uj

given by ψij := IdV |Ui∩Uj
+ sij to glue the Ti together to a scheme T over X.

This is possible since the cocycle condition guarantees the glueing condition
for schemes (EGA I, 0, 4.1.7). The action of Vi on Ti by itself glues also
together to give an action on T . �

It follows immediately that for an affine scheme (i.e. a scheme of type Spec (R))
there are no non-trivial torsor for any vector bundle. There will however be
in general many non-trivial torsors on the punctured spectrum (and on a
projective variety).

Forcing algebras and induced torsors

As TU is a VU -torsor, and as every V -torsor is represented by a unique coho-
mology class, there should be a natural cohomology class coming from the
forcing data. To see this, let R be a noetherian ring and I = (f1, . . . , fn) be
an ideal. Then on U = D(I) we have the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .
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An element f ∈ R defines an element f ∈ Γ(U,OU) and hence a cohomology
class δ(f) ∈ H1(U, Syz (f1, . . . , fn)). Hence f defines in fact a Syz (f1, . . . , fn)-
torsor over U . We will see that this torsor is induced by the forcing algebra
given by f1, . . . , fn and f .

Theorem 2.6. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let B = R[T1, . . . , Tn]/(f1T1 +
. . . + fnTn − f) denote the forcing algebra for these data. Then the scheme
Spec (B)|D(I) together with the natural action of the syzygy bundle on it is
isomorphic to the torsor given by c.

Proof. We compute the cohomology class δ(f) ∈ Syz (f1, . . . , fn) and the
cohomology class given by the forcing algebra. For the first computation we
look at the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

On D(fi), the element f is the image of (0, . . . , 0, f
fi
, 0, . . . , 0) (the non-zero

entry is at the ith place). The cohomology class is therefore represented by
the family of differences

(0, . . . , 0,
f

fi

, 0, . . . , 0,− f

fj

, 0, . . . , 0) ∈ Γ(D(fi) ∩D(fj), Syz (f1, . . . , fn)) .

On the other hand, there are isomorphisms

V |D(fi) −→ T |D(fi), (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi

, si+1, . . . , sn).

The difference of two such isomorphisms on D(fifj) is the same as before.
�

Example 2.7. Let (R,m) denote a two-dimensional normal local noetherian
domain and let f and g be two parameters in R. On D(m) we have the short
exact sequence

0 −→ OU
∼= Syz (f, g) −→ O2

U

f,g−→ OU −→ 0

and its corresponding long exact sequence of cohomology,

0 −→ R −→ R2 f,g−→ R
δ−→ H1(U,O) −→ . . . .

The connecting homomorphisms δ sends an element h ∈ R to h
fg

. The torsor

given by such a cohomology class c = h
fg
∈ H1(U,OX) can be realized by the

forcing algebra
R[T1, T2]/(fT1 + gT2 − h) .

Note that different forcing algebras may give the same torsor, because the
torsor depends only on the spectrum of the forcing algebra restricted to the
punctured spectrum of R. For example, the cohomology class 1

fg
= fg

f2g2

defines one torsor, but the two quotients yield the two forcing algebras
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R[T1, T2]/(fT1 + gT2 + 1) and R[T1, T2]/(f
2T1 + g2T2 + fg), which are quite

different. The fiber over the maximal ideal of the first one is empty, whereas
the fiber over the maximal ideal of the second one is a plane.

If R is regular, say R = K[X, Y ] (or the localization of this at (X, Y ) or the
corresponding power series ring) then the first cohomology classes are linear
combinations of 1

xiyj , i, j ≥ 1. They are realized by the forcing algebras

K[X, Y ]/(X iT1 +Y jT2− 1). Since the fiber over the maximal ideal is empty,
the spectrum of the forcing algebra equals the torsor. Or, the other way
round, the torsor is itself an affine scheme.

In the next lectures we will deal with global properties of torsors and forcing
algebras and how these properties are related to closure operations of ideals.

Exercise for Saturday: Show that f belongs to the radical of the ideal (f1, . . . , fn)
if and only if the spectrum morphism

Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)) −→ Spec (R)

is surjective.


