Einführung in die Algebra

Vorlesung 23

Die Gradformel

SATZ 23.1. Seien $K \subseteq L$ und $L \subseteq M$ endliche Körpererweiterungen. Dann ist auch $K \subseteq M$ eine endliche Körpererweiterung und es gilt

$$\operatorname{grad}_K M = \operatorname{grad}_K L \cdot \operatorname{grad}_L M$$
.

Beweis. Wir setzen $\operatorname{grad}_K L = n$ und $\operatorname{grad}_L M = m$. Es sei $x_1, \ldots, x_n \in L$ eine K-Basis von L und $y_1, \ldots, y_m \in M$ eine L-Basis von M. Wir behaupten, dass die Produkte

$$x_i y_i, 1 \le i \le n, 1 \le j \le m,$$

eine K-Basis von M bilden. Wir zeigen zuerst, dass diese Produkte den Vektorraum M über K aufspannen. Sei dazu $z \in M$. Wir schreiben

$$z = b_1 y_1 + \ldots + b_m y_m$$
 mit Koeffizienten $b_j \in L$.

Wir können jedes b_j als $b_j = a_{1j}x_1 + \ldots + a_{nj}x_n$ mit Koeffizienten $a_{ij} \in K$ ausdrücken. Das ergibt

$$z = b_1 y_1 + \dots + b_m y_m$$

= $(a_{11} x_1 + \dots + a_{n1} x_n) y_1 + \dots + (a_{1m} x_1 + \dots + a_{nm} x_n) y_m$
= $\sum_{1 \le i \le n, 1 \le j \le m} a_{ij} x_i y_j$.

Daher ist z eine K-Linearkombination der Produkte x_iy_j . Um zu zeigen, dass diese Produkte linear unabhängig sind, sei

$$0 = \sum_{1 \le i \le n, \, 1 \le j \le m} c_{ij} x_i y_j$$

angenommen mit $c_{ij} \in K$. Wir schreiben dies als $0 = \sum_{j=1}^{m} (\sum_{i=1}^{n} c_{ij} x_i) y_j$. Da die y_j linear unabhängig über L sind und die Koeffizienten der y_j zu L gehören, folgt, dass $\sum_{i=1}^{n} c_{ij} x_i = 0$ ist für jedes j. Da die x_i linear unabhängig über K sind und $c_{ij} \in K$ ist, folgt, dass $c_{ij} = 0$ ist für alle i, j.

Zerfällungskörper

LEMMA 23.2. Sei Kein Körper und F ein Polynom aus K[X]. Dann gibt es einen Erweiterungskörper $K \subseteq L$ derart, dass F über L in Linearfaktoren zerfällt.

Beweis. Sei $F = P_1 \cdots P_r$ die Zerlegung in Primpolynome in K[X], und sei P_1 nicht linear. Dann ist

$$K \longrightarrow K[Y]/(P_1(Y)) =: K'$$

eine Körpererweiterung von K nach Satz 18.5. Wegen $P_1(Y) = 0$ in K' ist die Restklasse y von Y in K' eine Nullstelle von P_1 . Daher gilt in K'[X] die Faktorisierung

$$P_1 = (X - y)\tilde{P},$$

wobei \tilde{P} einen kleineren Grad als P_1 hat. Das Polynom F hat also über K' mindestens einen Linearfaktor mehr als über K. Induktive Anwendung von dieser Konstruktion liefert eine Kette von Erweiterungen $K \subset K' \subset K'' \ldots$, die stationär wird, sobald F in Linearfaktoren zerfällt.

DEFINITION 23.3. Es sei K ein Körper, $F \in K[X]$ ein Polynom und $K \subseteq L$ eine Körpererweiterung, über der F in Linearfaktoren zerfällt. Es seien $a_1, \ldots, a_n \in L$ die Nullstellen von F. Dann nennt man

$$K[a_1,\ldots,a_n]\subseteq L$$

einen Zerfällungskörper von F.

Es handelt sich hierbei wirklich um einen Körper, wie wir gleich sehen werden. Häufig beschränkt man sich auf Polynome vom Grad ≥ 1 , bei konstanten Polynomen sehen wir einfach K selbst als Zerfällungskörper an. Über dem Zerfällungskörper zerfällt das gegebene Polynom in Linearfaktoren, da er ja nach Definition alle Nullstellen enthält, mit denen alle beteiligten Linearfaktoren formuliert werden können.

LEMMA 23.4. Es sei K ein Körper, $F \in K[X]$ ein Polynom und L = Z(F) der Zerfällungskörper von F. Es sei $K \subseteq K' \subseteq L$ ein Zwischenkörper. Dann ist L auch ein Zerfällungskörper des Polynoms $F \in K'[X]$.

Beweis. Das ist trivial. \Box

LEMMA 23.5. Es sei K ein Körper, $F \in K[X]$ ein Polynom und L = Z(F) der Zerfällungskörper von F. Dann ist $K \subseteq L$ eine endliche Körpererweiterung.

Beweis. Es sei $L = K[a_1, \ldots, a_n]$, wobei $a_i \in L$ die Nullstellen von F seien und F über L in Linearfaktoren zerfällt. Es liegt die Kette von K-Algebren

$$K \subseteq K[a_1] \subseteq K[a_1, a_2] \subseteq \cdots \subseteq K[a_1, \ldots, a_n] = L$$

vor. Dabei ist sukzessive a_i algebraisch über $K[a_1, \ldots, a_{i-1}]$, da ja a_i eine Nullstelle von $F \in K[X]$ ist. Daher sind die Inklusionen nach Satz 22.1 endliche Körpererweiterungen und nach Satz 23.1 ist dann die Gesamtkörpererweiterung ebenfalls endlich.

SATZ 23.6. Es sei K ein Körper und sei $F \in K[X]$ ein Polynom. Es seien $K \subseteq L_1$ und $K \subseteq L_2$ zwei Zerfällungskörper von F. Dann gibt es einen K-Algebra-Isomorphismus

$$\varphi: L_1 \longrightarrow L_2.$$

Insbesondere gibt es bis auf Isomorphie nur einen Zerfällungskörper zu einem Polynom.

Beweis. Wir beweisen die Aussage durch Induktion über den Grad grad_K L_1 . Wenn der Grad eins ist, so ist $K = L_1$ und das Polynom F zerfällt bereits über K in Linearfaktoren. Dann gehören alle Nullstellen von F in einem beliebigen Erweiterungskörper $K \subseteq M$ zu K selbst. Also ist auch $L_2 = K$. Es sei nun grad_K $L_1 \ge 2$ und die Aussage sei für kleinere Grade bewiesen. Dann zerfällt F über K nicht in Linearfaktoren. Daher gibt es einen irreduziblen Faktor P von F mit grad P0 P1 und P1 und P2 und P3 ist nach Satz 18.5 und nach Proposition 21.3 eine Körpererweiterung von P4 vom Grad P5 und Pals Faktor von P6 ebenfalls über P5 und über P7 und über P8 in Linearfaktoren zerfällt, gibt es Ringhomomorphismen P9 und P9 und P9 ist nach Satz 23.1 sind dann P9 und P9 und P9 ist nach Satz 23.1 ist grad P9 ist nach Satz 24.1 ist grad P9 ist nach Satz 25.1 ist gra

$$\varphi: L_1 \longrightarrow L_2.$$

Dieser ist erst recht ein K-Algebra-Isomorphismus.

Konstruktion endlicher Körper

Endliche Körper mit der Anzahl p^n konstruiert man, indem man ein in $(\mathbb{Z}/(p))[X]$ irreduzibles Polynom vom Grad n findet. Ob ein gegebenes Polynom irreduzibel ist, lässt sich dabei grundsätzlich in endlich vielen Schritten entscheiden, da es ja zu jedem Grad überhaupt nur endlich viele Polynome gibt, die als Teiler in Frage kommen können. Zur Konstruktion von einigen kleinen endlichen Körpern siehe Aufgabe ***** und Aufgabe *****. Generell kann man einen Körper mit $q=p^n$ Elementen als Zerfällungskörper des Polynoms X^q-X erhalten.

Lemma 23.7. Sei K ein Körper der Charakteristik p, sei $q=p^e$, $e\geq 1$. Es sei

$$M = \{x \in K : x^q = x\}.$$

Dann ist M ein Unterkörper von K.

Beweis. Zunächst gilt für jedes Element $x \in \mathbb{Z}/(p) \subseteq K$, dass

$$x^{p^e} = (x^p)^{p^{e-1}} = x^{p^{e-1}} = \dots = x$$

ist, wobei wir wiederholt den kleinen Fermat benutzt haben. Insbesondere ist also $0, 1, -1 \in M$. Es ist $z^q = F^e(z)$ und der Frobenius

$$F: K \longrightarrow K, x \longmapsto x^p$$

ist ein Ringhomomorphismus. Daher ist für $x, y \in M$ einerseits

$$(x+y)^q = F^e(x+y) = F^e(x) + F^e(y)$$

und andererseits

$$(xy)^q = x^q y^q = xy.$$

Ferner gilt für $x \in M$, $x \neq 0$, die Gleichheit

$$(x^{-1})^q = (x^q)^{-1} = x^{-1}$$
,

so dass auch das Inverse zu M gehört und in der Tat ein Körper vorliegt.

Im Beweis der nächsten Aussage werden wir die Technik des formalen Ableitens verwenden. Ableiten ist eigentlich eine analytische Technik, und bekanntlich ist die Ableitung eines Monoms X^m gleich mX^{m-1} , und die Ableitung eines Polynoms ergibt sich durch lineare Fortsetzung dieser Regel. Da der Exponent der Variablen zum Vorfaktor wird, und da man jede ganze Zahl in jedem Körper eindeutig interpretieren kann, ergeben solche Ableitungen auch rein algebraisch für jeden Grundkörper Sinn. Wir definieren daher.

DEFINITION 23.8. Sei K ein Körper und sei K[X] der Polynomring über K. Zu einem Polynom

$$F = \sum_{i=0}^{n} a_i X^i \in K[X]$$

heißt das Polynom

$$F' = na_n X^{n-1} + (n-1)a_{n-1} X^{n-2} + \dots + 3a_3 X^2 + 2a_2 X + a_1$$

die formale Ableitung von F.

Man beachte, dass, insbesondere bei positiver Charakteristik, das algebraische Ableiten einige überraschende Eigenschaften haben kann. In positiver Charakteristik p ist bspw.

$$(X^p)' = pX^{p-1} = 0.$$

Für einige grundlegende Eigenschaften des Ableitens siehe die Aufgaben. Wichtig ist für uns, dass man mit der formalen Ableitung testen kann, ob die Nullstellen eines Polynoms einfach oder mehrfach sind (eine Nullstelle a heißt mehrfach, wenn das zugehörige lineare Polynom X-a das Polynom mehrfach teilt, d.h. wenn es in der Primfaktorzerlegung mit einem Exponenten ≥ 2 vorkommt).

LEMMA 23.9. Sei K ein Körper der Charakteristik p > 0, sei $q = p^e$, $e \ge 1$. Das Polynom $X^q - X$ zerfalle über K in Linearfaktoren. Dann ist

$$M = \{x \in K : x^q = x\}$$

ein Unterkörper von K mit q Elementen.

Beweis. Nach Lemma 23.7 ist M ein Unterkörper von K, und nach Korollar 18.10 besitzt er höchstens q Elemente. Es ist also zu zeigen, dass $F = X^q - X$ keine mehrfache Nullstellen hat. Dies folgt aber aus F' = -1 und Aufgabe 23.14.

SATZ 23.10. Sei p eine Primzahl und $e \in \mathbb{N}_+$. Dann gibt es bis auf Isomorphie genau einen Körper mit $q = p^e$ Elementen.

Beweis. Existenz. Wir wenden Lemma 23.2 auf den Grundkörper $\mathbb{Z}/(p)$ und das Polynom $X^q - X$ an und erhalten einen Körper L der Charakteristik p, über dem $X^q - X$ in Linearfaktoren zerfällt. Nach Lemma 23.9 gibt es dann einen Unterkörper M von L, der aus genau q Elementen besteht.

Eindeutigkeit. Wir zeigen, dass ein Körper mit q Elementen der Zerfällungskörper des Polynoms $X^q - X$ sein muss, so dass er aufgrund dieser Eigenschaft nach Satz 23.6 eindeutig bestimmt ist. Sei also L ein Körper mit q Elementen, der dann $\mathbb{Z}/(p)$ als Primkörper enthält. Da L^{\times} genau q-1 Elemente besitzt, gilt nach Satz 7.4 die Gleichung $x^{q-1}=1$ für jedes $x\in L^{\times}$ und damit auch $x^q=x$ für jedes $x\in L$. Dieses Polynom vom Grad q hat also in L genau q verschiedene Nullstellen, so dass es also über L zerfällt. Zugleich ist der von allen Nullstellen erzeugte Unterkörper gleich L, so dass L der Zerfällungskörper ist.

NOTATION 23.11. Sei p eine Primzahl und $e \in \mathbb{N}_+$. Der aufgrund von Satz 23.10 bis auf Isomorphie eindeutig bestimmte endliche Körper mit $q = p^e$ Elementen wird mit

 \mathbb{F}_q

bezeichnet.

Für q = p ist $\mathbb{F}_p = \mathbb{Z}/(p)$. Dagegen sind für $q = p^e$, $e \geq 2$, die Ringe \mathbb{F}_q und $\mathbb{Z}/(q)$ verschieden, obwohl beide Ringe q Elemente besitzen. Dies liegt einfach daran, dass \mathbb{F}_q ein Körper ist, $\mathbb{Z}/(q)$ aber nicht.