Mathematics for natural sciences I

Exercise sheet 23

Warm-up-exercises

Exercise 23.1. Determine the Riemann sum (Treppenintegral) over $[-3,+4]$ of the staircase function

$$
f(t)=\left\{\begin{array}{l}
5, \text { if }-3 \leq t \leq-2 \\
-3, \text { if }-2<t \leq-1 \\
\frac{3}{7}, \text { if }-1<t<-\frac{1}{2} \\
13, \text { if } t=-\frac{1}{2} \\
\pi, \text { if }-\frac{1}{2}<t<e \\
0, \text { if } e \leq t \leq 3 \\
1, \text { if } 3<t \leq 4
\end{array} .\right.
$$

Exercise 23.2. a) Subdivide the interval $[-4,5]$ in six subintervals of equal length.
b) Determine the Riemann sum of the staircase function on $[-4,5]$, which takes alternately the values 2 and -1 on the subdivision constructed in a).

Exercise 23.3. Give an example of a function $f:[a, b] \rightarrow \mathbb{R}$ which assumes only finitely many values, but is not a staircase function.

Exercise 23.4. Let

$$
f:[a, b] \longrightarrow[c, d]
$$

be a staircase function and let

$$
g:[c, d] \longrightarrow \mathbb{R}
$$

be a function. Prove that the composite $g \circ f$ is also a staircase function.

Exercise 23.5. Give an example of a continuous function

$$
f:[a, b] \longrightarrow[c, d]
$$

and a staircase function

$$
g:[c, d] \longrightarrow \mathbb{R}
$$

such that the composite $g \circ f$ is not a staircase function.

Exercise 23.6. Determine the definite integral

$$
\int_{0}^{1} t d t
$$

explicitly with upper and lower staircase functions.

Exercise 23.7. Determine the definite integral

$$
\int_{1}^{2} t^{3} d t
$$

explicitly with upper and lower staircase functions.

Exercise 23.8. Let $I=[a, b]$ be a compact interval and let

$$
f: I \longrightarrow \mathbb{R}
$$

be a function. Consider a sequence of staircase functions $\left(s_{n}\right)_{n \in \mathbb{N}}$ Such that $s_{n} \leq f$ and a sequence of staircase functions $\left(t_{n}\right)_{n \in \mathbb{N}}$ Such that $t_{n} \geq f$. Assume that the two Riemann sums corresponding to the sequences converge and that their limits coincide. Prove that f is Riemann-integrable and that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} s_{n}(x) d x=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} t_{n}(x) d x
$$

Exercise 23.9. Let I be a compact interval and let

$$
f: I \longrightarrow \mathbb{R}
$$

be a function Prove that f is Riemann-integrable if and only if there is a subvision $a=a_{0}<a_{1}<\cdots<a_{n}=b$ such that the individual restrictions $f_{i}=\left.f\right|_{\left[a_{i-1}, a_{i}\right]}$ are Riemann-integrable.

Exercise 23.10. Let $I=[a, b] \subseteq \mathbb{R}$ be a compact interval and let $f, g: I \rightarrow \mathbb{R}$ be two Riemann-integrable functions. Prove the following statements.
(1) If $m \leq f(x) \leq M$ for all $x \in I$, then $m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)$.
(2) If $f(x) \leq g(x)$ for all $x \in I$, then $\int_{a}^{b} f(t) d t \leq \int_{a}^{b} g(t) d t$.
(3) We have $\int_{a}^{b} f(t)+g(t) d t=\int_{a}^{b} f(t) d t+\int_{a}^{b} g(t) d t$.
(4) For $c \in \mathbb{R}$ we have $\int_{a}^{b}(c f)(t) d t=c \int_{a}^{b} f(t) d t$.

ExERCISE 23.11. Let $I=[a, b]$ be a compact interval and let $f: I \rightarrow \mathbb{R}$ be a Riemann-integrable function. Prove that

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Exercise 23.12. Let $I=[a, b]$ be a compact interval and let $f, g: I \rightarrow \mathbb{R}$ be two Riemann-integrable functions. Prove that $f g$ is also Riemann-integrable.

Hand-in-exercises

Exercise 23.13. (2 points)
Let

$$
f, g:[a, b] \longrightarrow \mathbb{R}
$$

be two staircase functions. Prove that $f+g$ is also a staircase function.
Exercise 23.14. (3 points)
Determine the definite integral

$$
\int_{a}^{b} t^{2} d t
$$

as a function of a and b explicitly with lower and upper staircase functions
EXERCISE 23.15. (4 points)
Determine the definite integral

$$
\int_{-2}^{7}-t^{3}+3 t^{2}-2 t+5 d t
$$

explicitly with upper and lower staircase functions.
Exercise 23.16. (3 points)
Prove that for the function

$$
] 0,1] \longrightarrow \mathbb{R}, x \longmapsto \frac{1}{x}
$$

neither the lower nor the upper integral exist.
Exercise 23.17. (6 points)
Prove that for the function

$$
] 0,1] \longrightarrow \mathbb{R}, x \longmapsto \frac{1}{\sqrt{x}},
$$

the lower integral exists, but the upper integral does not exist.
Exercise 23.18. (5 points)
Let I be a compact interval and let

$$
f: I \longrightarrow \mathbb{R}
$$

be a monotone function. Prove that f is Riemann-integrable.

