
Affineness under deformations

We consider a base scheme B and a morphism

Z −→ B

together with an open subscheme W ⊆ Z. For every base point b ∈ B we get
the open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary
with b. In particular we may ask how the cohomological dimension of Wb

varies and how the affineness may vary.

In the algebraic setting we have a D-algebra S and an ideal a ⊆ S which
defines for every prime ideal p ∈ Spec (D) the extended ideal ap in S⊗D κ(p).

This question is already interesting when B is a one-dimensional integral
scheme, in particular in the following two situations.

(1) B = Spec (Z). Then we talk about an arithmetic deformation and
want to know how affineness varies with the characteristic and how
the relation is to characteristic zero.

(2) B = A1
K = Spec (K[t]), where K is a field. Then we talk about a

geometric deformation and want to know how affineness varies with
the parameter t, in particular how the behaviour over the special
points where the residue class field is algebraic over K is related to
the behaviour over the generic point.

It is fairly easy to show that if the open subset in the generic fiber is affine,
then also the open subsets are affine for almost all special points.

We deal with this question where W is a torsor over a family of smooth
projective curves (or a torsor over a punctured spectrum). The arithmetic as
well as the geometric variant of this question are directly related to questions
in tight closure theory. Because of the above mentioned degree criteria in the
strongly semistable case, a weird behavior of the affineness property of torsors
is only possible if we have a weird behavior of strong semistability.

Arithmetic deformations

We start with the arithmetic situation, the following example is due to Bren-
ner and Katzman.

Example 8.1. Consider Z[x, y, z]/(x7 + y7 + z7) and consider the ideal I =
(x4, y4, z4) and the element f = x3y3. Consider reductions Z → Z/(p). Then

f ∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 3 mod 7

and

f 6∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 2 mod 7 .
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In particular, the bundle Syz(x4, y4, z4) is semistable in the generic fiber, but
not for any reduction p = 2 mod 7. The corresponding torsor is an affine
scheme for infinitely many prime reductions and not an affine scheme for
infinitely many prime reductions.

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z) ⊆ Z/(p)[x, y, z, s1, s2, s3]/(x
7 + y7 + z7, s1x

4 + s2y
4 + s3z

4 + x3y3)

has cohomological dimension 1 if p = 3 mod 7 and has cohomological di-
mension 0 (equivalently, D(x, y, z) is an affine scheme) if p = 2 mod 7.

Geometric deformations - A counterexample to the localization
problem

Let S ⊆ R be a multiplicative system and I an ideal in R. Then the locali-
zation problem of tight closure is the question whether the identity

(I∗)S = (IRS)∗

holds.

Here the inclusion ⊆ is always true and ⊇ is the problem. The problem means
explicitly:

if f ∈ (IRS)∗, can we find an h ∈ S such that hf ∈ I∗ holds in R?

Proposition 8.2. Let Z/(p) ⊂ D be a one-dimensional domain and D ⊆ R
of finite type, and I an ideal in R. Suppose that localization holds and that

f ∈ I∗ holds in R⊗D Q(D) = RD∗ = RQ(D)

(S = D∗ = D − {0} is the multiplicative system). Then f ∈ I∗ holds in
R⊗D κ(p) for almost all p in Spec D.

Proof. By localization, there exists h ∈ D, h 6= 0, such that

hf ∈ I∗ in R .

By persistence of tight closure (under a ring homomorphism) we get

hf ∈ I∗ in Rκ(p) .

The element h does not belong to p for almost all p, so h is a unit in Rκ(p)

and hence

f ∈ I∗ in Rκ(p)

for almost all p. �
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In order to get a counterexample for the localization property we will look
now at geometric deformations:

D = Fp[t] ⊂ Fp[t][x, y, z]/(g) = S

where t has degree 0 and x, y, z have degree 1 and g is homogeneous. Then
(for every field Fp[t] → K)

S ⊗Fp[t] K

is a two-dimensional standard-graded ring over K. For residue class fields of
points of A1

Fp
= Spec Fp[t] we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq, the special or algebraic or finite case.

How does f ∈ I∗ vary with K? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-
graded situation.

In order to establish an example where tight closure does not behave uni-
formly under a geometric deformation we first need a situation where strong
semistability does not behave uniformly. Such an example was given, in terms
of Hilbert-Kunz theory, by Paul Monsky in 1997.

Example 8.3. Let

g = z4 + z2xy + z(x3 + y3) + (t + t2)x2y2 .

Consider
S = F2[t, x, y, z]/(g) .

Then Monsky proved the following results on the Hilbert-Kunz multiplicity
of the maximal ideal (x, y, z) in S ⊗F2[t] L, L a field:

eHK(S ⊗F2[t] L) =

{
3 for L = F2(t)

3 + 1
4d for L = Fq = Fp(α), (t 7→ α, d = deg(α)) .

By the geometric interpretation of Hilbert-Kunz theory this means that the
restricted cotangent bundle

Syz (x, y, z) = (ΩP2)C

is strongly semistable in the transcendental case, but not strongly semistable
in the algebraic case. In fact, for d = deg(α), t 7→ α, where K = F2(α), the
d-th Frobenius pull-back destabilizes.

The maximal ideal (x, y, z) can not be used directly. However, we look at the
second Frobenius pull-back which is (characteristic two) just

I = (x4, y4, z4) .

By the degree formula we have to look for an element of degree 6. Let’s take

f = y3z3 .
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This is our example (x3y3 does not work). First, by strong semistability in
the transcendental case we have

f ∈ I∗ in R⊗ F2(t)

by the degree formula. If localization would hold, then f would also belong
to the tight closure of I for almost all algebraic instances Fq = F2(α), t 7→ α.
Contrary to that we show that for all algebraic instances the element f
belongs never to the tight closure of I.

Lemma 8.4. Let Fq = Fp(α), t 7→ α,

deg(α) = d. Set Q = 2d−1. Then

xyfQ 6∈ I [Q] .

Proof. This is an elementary but tedious computation. �

Theorem 8.5. Tight closure does not commute with localization.

Proof. One knows in our situation that xy is a so called test element. Hence
the previous Lemma shows that f 6∈ I∗. �

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z) ⊆ F2(t)[x, y, z, s1, s2, s3]/(g, s1x
4 + s2y

4 + s3z
4 + y3z3)

has cohomological dimension 1 if t is transcendental and has cohomological
dimension 0 (equivalently, D(x, y, z) is an affine scheme) if t is algebraic.

Corollary 8.6. Tight closure is not plus closure in graded dimension two
for fields with transcendental elements.

Proof. Consider

R = F2(t)[x, y, z]/(g) .

In this ring y3z3 ∈ I∗, but it can not belong to the plus closure. Else there
would be a curve mapping Y → CF2(t) which annihilates the cohomology class
c and this would extend to a mapping of relative curves almost everywhere.

�

Corollary 8.7. There is an example of a smooth projective (relatively over
the affine line) variety Z and an effective divisor D ⊂ Z and a morphism

Z −→ A1
F2

such that (Z − D)η is not an affine variety over the generic point, but for
every algebraic point x the fiber (Z −D)x is an affine variety.
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Proof. Take C → A1
F2

to be the Monsky quartic and consider the syzygzy
bundle

S = Syz (x4, y4, z4)(6)

together with the cohomology class c determined by f = y3z3. This class
defines an extension

0 −→ S −→ S ′ −→ OC −→ 0

and hence P(S∗) ⊂ P(S ′∗). Then P(S ′∗)−P(S∗) is an example with the stated
properties by the previous results. �

It is an open question whether such an example can exist in characteristic
zero.


