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Variables and their addresses 

&a

data 

int a; a 

address

int  * p;

int **q;

&p p

&q q
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Initialization of Variables

&a

data 

int a; a 

address

int  * p = &a;

int **q = &p;

&p p = &a

&q q = &p
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Pointed addresses : p, q

p

data 

int a; a 

address

int  * p = &a;

int **q = &p;

q p 

&q q 

p = &a
q = &p
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Dereferenced Variables : *p

p

data 

int a; *p 

address

int  * p = &a;

int **q = &p;

&p p 

&q q 

*p ≡ a
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Dereferenced Variables : *p

int a;

int  * p = &a;

int **q = &p;

p = &a *p ≡ a

   p  ≡    &a
*(p) ≡ *(&a)
* p  ≡      a

Address
Assignment

Variables 
with the same address

Relations after 
address assignment
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Dereferenced Variables : *q, **q

*q

data 

int a; **q

address

int  * p = &a;

int **q = &p;

q *q 

&q q 

**q ≡ a

*q ≡ p
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Dereferenced Variables : *q, **q

int a;

int  * p = &a;

int **q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
Assignment

Variables 
with the same address

   q ≡    &p
*(q) ≡ *(&p)
* q ≡      p
**q ≡    *p
**q ≡     a

**q ≡ a

Relations after 
address assignment
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Two more ways to access a : *p, **q

*q **q

q *q 

&q q 

**q ≡ a

p *p 

   &p p 

&q q 

*p ≡ a

&a a 

&p p

&q q

a
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Two more ways to access a : *p, **q

**q 

*p 

&a

data 

a 

address

&p p

&q q

1)  Read / Write    a
2)  Read / Write   *p
3)  Read / Write **q
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Variables 

&a

data int a;

a can hold an integer  
a 

address

&a

a = 100;

a holds an integer 100
a    100

dataaddress
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Pointer Variables

&p   

int    * p; *p holds an integer  

pint    * p;

pointer to int

int

int * p;

p holds an address  

*p

p holds an address
of a int type data  

p
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Pointer to Pointer Variable

&q

int    **q; **q holds an integer  

q

int  *    *q; *q holds an address of 
a int type variable  

pointer to int

int

int ** q;

q holds an address  

int   **  q; q holds an address of 
a pointer to int type 
data  pointer to 

pointer to int

*qq

*q **q
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Pointer Variables Examples

int a;

int * p = & a;

int ** q = & p; &q   0x3CE q

dataaddress

        0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q      0x3CE

= 0x3AB

        2000x3A0

p

**q 200

0x3A0

&p

&a a
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Pointer Variable  p

&q   0x3CE q

dataaddress

        0x3A00x3AB

    0x3AB

        2000x3A0

p&p

&a a
dataaddress

p

*p

&p

  p

200

p 0x3A0

&p     0x3AB

*p
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Pointer Variable  q

dataaddress

&q   0x3CE q

dataaddress

        0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q     0x3CE

     0x3AB

        2000x3A0

p

**q 200

0x3A0

&p

&a a

q

*q

**q

&q   

  q

*q
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Interpretation of Pointers – Types

(int)     

(int *)    

(int **)    

Types

address

data

address
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Interpretation of Pointers – Variables and addresses

(int)     

(int *)    

(int **)    

**q     

  *q     

   q     

Types Variables

  q 

*q 

&q 

Addresses
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Single and Double Pointer Examples (1)

int  a  ;

int       *p  ;

int      **q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

a, *p, and **q: 
int  variables
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Single and Double Pointer Examples (2)

int  a  ;

int *      p  ;

int *    *q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

p and *q : 
int pointer variables



Series : 5. 
Applications of Pointers 

22 Young Won Lim
3/10/18

Single and Double Pointer Examples (3)

int  a  ;

int       *p  ;

int **    q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

q : 
double int pointer variables
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Values of double pointer variables

 (int)   

(int *)   

(int)     

 (int **) 

X

(float *)  

(float)   

X

 (int **) 

int  ** p, **q ;

p = q;
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Variable Declarations 

a =100&aint a ;

The variable a holds an integer data  

p&pint * p ;

The pointer variable p holds an address,
at this address an integer is stored

200

q&qint * * q ; 

The pointer variable q holds an address,
where another address is stored, 
where an integer data  is stored

 30
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Access Data Via Pointer Variables (1) 

a =100&aint a ;

p&pint * p ; *p=200

&a
value 

a 
address

&p
value 

p
address

p *p

integer

address

integer

Indirect Access

Direct Access

Dereference Operator  *

the content of the pointed location

*(&p) *p

   p
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Access Data Via Pointer Variables (2) 

q&qint * * q ; *q  **q=30

&q
value 

q
address

q *q

*q **q

address

integer

address
Double Indirect Access

Dereference Operator *

the content of the pointed location

*(&q) *q

Dereference Operator *

the content of the pointed location

*q **q

   q  *q
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Access Data Via Pointer Variables (3) 

a =100&aint a ;

int * p ;

int * * q ;

&a
value 

a 
address

&p
value 

p
address

p *p

&q
value 

q
address

q *q
*q **q

integer

address

integer

address

integer

address

Indirect Access

Double Indirect Access

Direct Access

Dereference Operator  *

the content of the pointed location

Dereference Operator *

the content of the pointed location

p&p *p=200   p

q&q *q  **q=30   q  *q
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Access Data Via Pointer Variables (4) 

a =100&aint a 

int * p 

int * * q 

p&p *p=200   p

q&q *q  **q=30   q  *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *
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Swapping pointers
- pass by reference
- double pointers



Series : 5. 
Applications of Pointers 

30 Young Won Lim
3/10/18

p = &a

q = &b

p = &b

q = &a

Swapping integer pointers 

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222
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Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers( &p, &q );

swap_pointers( int **, int ** );

function call

function prototype

int *p, *q;
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Pass by integer pointer reference 

void swap_pointers (int **m, int **n)
{

int* tmp;

   tmp = *m;
  *m = *n;

*n = tmp;
}

int   a,  b; 
int *p, *q; p=&a, q=&b;

… 
swap_pointers( &p, &q );

int **    m
int *    *m

int **    n
int *    *n

int *    tmp



Series : 5. 
Applications of Pointers 

33 Young Won Lim
3/10/18

Array of Pointers 
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Array of Pointers (1)

int  a [4];

int  

Array name a holds the starting address  

No. of elements = 4

int * b [4];

a [4] 

Type of each element

int * 

Array name b holds the starting address  

No. of elements = 4

b [4] 

Type of each element
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Array of Pointers (2)

int  a [4]; int * b [4];

a[0] 
a[1] 

a[2] 
a[3] 

b[0] 
b[1] 

b[2] 
b[3] 

a b

b[0]

b[1]

b[2]

b[3]

*b[0] 

*b[1] 

*b[2] 

*b[3] 



Series : 5. 
Applications of Pointers 

36 Young Won Lim
3/10/18

Array of Pointers (3)

int  a [4]; int * b [4];

(int) 
(int) 

(int) 
(int) 

(int *) 
(int *) 

(int *) 
(int *) 

(int)

(int)

(int)

(int)

(int  *) (int * *) 
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2-d Arrays
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c[0] 
c[1] 

c[2] 
c[3] 

A 2-D Array 

c

int  c[4] [4] int c [4] [4];
c[0] 

c[1] 

c[2] 

c[3] 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 
c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 
c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 
c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 
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(int *) 
(int *) 

(int *) 
(int *) 

A 2-D Array 

(int * *) 

int  c[4] [4] int c [4] [4];
c[0] 

c[1] 

c[2] 

c[3] 

(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
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A 2-D Array via a double pointer

int  c[4] [4] 

int c [4] [4]; (c [i])[j]

(*(c+i))[j]

*(*(c+i)+j)

(c [I]) = (*(c+i))

(_)[j] = *((_)+j)
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(int *) 
(int *) 

(int *) 
(int *) 

A 2-D Array 

(int * *) 

int c [4] [4];
c[0] 

c[1] 

c[2] 

c[3] 

(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 
(int) 

(c [i])[j]

(*(c+i))[j]

*(*(c+i)+j)

(c+i)
*(c+i)+j



Series : 5. 
Applications of Pointers 

42 Young Won Lim
3/10/18

A 2-D array via a single pointer

c[0] 
c[1] 

c[2] 
c[3] 

c

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 
c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 
c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 
c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 

int c [4] [4]; c[0] 

c[1] 

c[2] 

c[3] 

  0=[0*4+0] 

  1=[0*4+1] 

  2=[0*4+2] 

  3=[0*4+3] 

  4=[1*4+0] 

  5=[1*4+1] 

  6=[1*4+2] 

  7=[1*4+3] 

  8=[2*4+0] 

  9=[2*4+1] 

10=[2*4+2] 

11=[2*4+3] 

12=[3*4+0] 

13=[3*4+1] 

14=[3*4+2] 

15=[3*4+3] 
c[i][j]
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A 2-D array via a single pointer

c[0] 
c[1] 

c[2] 
c[3] 

c

int c [4] [4]; c[0] 

c[1] 

c[2] 

c[3] 

p[0*4+0] 

p[0*4+1] 

p[0*4+2] 

p[0*4+3] 

p[1*4+0] 

p[1*4+1] 

p[1*4+2] 

p[1*4+3] 

p[2*4+0] 

p[2*4+1] 

p[2*4+2] 

p[2*4+3] 

p[3*4+0] 

p[3*4+1] 

p[3*4+2] 

p[3*4+3] 

p =c[0];int * 

p[i*4+j]c[i][j]
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2-D Array Dynamic Memory Allocation (1)

int **  d ;

d = (int **) malloc (4 * size of (int *));
for (i=0; i<4; ++i) 
  d[i] = (int *) malloc(4 * sizeof(int));

d[0] 
d[1] 

d[2] 
d[3] 

(int *) 
(int *) 

(int *) 
(int *) 

d(int **)
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d[0] 
d[1] 

d[2] 
d[3] 

(int *) 
(int *) 

(int *) 
(int *) 

2-D Array Dynamic Memory Allocation (2)

(int) 
(int) 
(int) 
(int) 

d[0][0] 
d[0][1] 
d[0][2] 
d[0][3] 

(int) 
(int) 
(int) 
(int) 

d[1][0] 
d[1][1] 
d[1][2] 
d[1][3] 

(int) 
(int) 
(int) 
(int) 

d[2][0] 
d[2][1] 
d[2][2] 
d[2][3] 

(int) 
(int) 
(int) 
(int) 

d[3][0] 
d[3][1] 
d[3][2] 
d[3][3] 

d(int **)&d

int **  d ;

d = (int **) malloc (4 * size of (int *));
for (i=0; i<4; ++i) 
  d[i] = (int *) malloc(4 * sizeof(int));
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Pointer to Arrays
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Pointer to array (1)

int  a [4];

a[0] 
a[1] 
a[2] 
a[3] 

(int) 
(int) 
(int) 
(int) 

a(int []) 

int  (*p) [4] 

int  a [4] 

int  func (int   a,  int   b) ; a prototype

int  (* fp)  (int   a,  int   b) ; a function's type

int  m ;

int  *n ;

an integer variable

a pointer variable

int  * fp (int   a,  int   b) ;

pointer to the array of 4 elements 

function pointer
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Pointer to array (2)

p int  (*p) [4]   ;

int  a [4] 

a[0] 
a[1] 

a[2] 
a[3] 

(int) 

(int) 

(int) 

(int) 

a(int []) 

an array with 4 integer elements 

*p = a

(*p) = a

&(*p) = &a

       p = &a

sizeof(p)= 4 bytes

sizeof(*p)= 16 bytes

p
*p

(int (*) []) 
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Pointer to array (3)

c[0] 
c[1] 
c[2] 
c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

c(int (*) []) int  c[4] [4] 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

(int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 

int  (*p) [4]   ;

p&p

a 2-d array 
with 4 rows 
and 4 columns 

p = c 
p

*p

*(p+0)

*(p+1)

*(p+2)

*(p+3)

(int (*) []) 

(*p) [ i ][ j ];
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Pointer to array (4)

int c [4][4];
int (*p) [4];

p = c;

func(p, ... );

void func(int (*x)[4], ... )
{

x[r][c] = 

}

void func(int x[ ][4], ... )
{

x[r][c] = 

}
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