
Young Won Lim
3/10/18

Applications of Pointers (1A)

Young Won Lim
3/10/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series : 5.
Applications of Pointers

3 Young Won Lim
3/10/18

Variables and their addresses

&a

data

int a; a

address

int * p;

int **q;

&p p

&q q

Series : 5.
Applications of Pointers

4 Young Won Lim
3/10/18

Initialization of Variables

&a

data

int a; a

address

int * p = &a;

int **q = &p;

&p p = &a

&q q = &p

Series : 5.
Applications of Pointers

5 Young Won Lim
3/10/18

Pointed addresses : p, q

p

data

int a; a

address

int * p = &a;

int **q = &p;

q p

&q q

p = &a
q = &p

Series : 5.
Applications of Pointers

6 Young Won Lim
3/10/18

Dereferenced Variables : *p

p

data

int a; *p

address

int * p = &a;

int **q = &p;

&p p

&q q

*p ≡ a

Series : 5.
Applications of Pointers

7 Young Won Lim
3/10/18

Dereferenced Variables : *p

int a;

int * p = &a;

int **q = &p;

p = &a *p ≡ a

 p ≡ &a
*(p) ≡ *(&a)
* p ≡ a

Address
Assignment

Variables
with the same address

Relations after
address assignment

Series : 5.
Applications of Pointers

8 Young Won Lim
3/10/18

Dereferenced Variables : *q, **q

*q

data

int a; **q

address

int * p = &a;

int **q = &p;

q *q

&q q

**q ≡ a

*q ≡ p

Series : 5.
Applications of Pointers

9 Young Won Lim
3/10/18

Dereferenced Variables : *q, **q

int a;

int * p = &a;

int **q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
Assignment

Variables
with the same address

 q ≡ &p
*(q) ≡ *(&p)
* q ≡ p
**q ≡ *p
**q ≡ a

**q ≡ a

Relations after
address assignment

Series : 5.
Applications of Pointers

10 Young Won Lim
3/10/18

Two more ways to access a : *p, **q

*q **q

q *q

&q q

**q ≡ a

p *p

 &p p

&q q

*p ≡ a

&a a

&p p

&q q

a

Series : 5.
Applications of Pointers

11 Young Won Lim
3/10/18

Two more ways to access a : *p, **q

**q

*p

&a

data

a

address

&p p

&q q

1) Read / Write a
2) Read / Write *p
3) Read / Write **q

Series : 5.
Applications of Pointers

12 Young Won Lim
3/10/18

Variables

&a

data int a;

a can hold an integer
a

address

&a

a = 100;

a holds an integer 100
a 100

dataaddress

Series : 5.
Applications of Pointers

13 Young Won Lim
3/10/18

Pointer Variables

&p

int * p; *p holds an integer

pint * p;

pointer to int

int

int * p;

p holds an address

*p

p holds an address
of a int type data

p

Series : 5.
Applications of Pointers

14 Young Won Lim
3/10/18

Pointer to Pointer Variable

&q

int **q; **q holds an integer

q

int * *q; *q holds an address of
a int type variable

pointer to int

int

int ** q;

q holds an address

int ** q; q holds an address of
a pointer to int type
data pointer to

pointer to int

*qq

*q **q

Series : 5.
Applications of Pointers

15 Young Won Lim
3/10/18

Pointer Variables Examples

int a;

int * p = & a;

int ** q = & p; &q 0x3CE q

dataaddress

 0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q 0x3CE

= 0x3AB

 2000x3A0

p

**q 200

0x3A0

&p

&a a

Series : 5.
Applications of Pointers

16 Young Won Lim
3/10/18

Pointer Variable p

&q 0x3CE q

dataaddress

 0x3A00x3AB

 0x3AB

 2000x3A0

p&p

&a a
dataaddress

p

*p

&p

 p

200

p 0x3A0

&p 0x3AB

*p

Series : 5.
Applications of Pointers

17 Young Won Lim
3/10/18

Pointer Variable q

dataaddress

&q 0x3CE q

dataaddress

 0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q 0x3CE

 0x3AB

 2000x3A0

p

**q 200

0x3A0

&p

&a a

q

*q

**q

&q

 q

*q

Series : 5.
Applications of Pointers

18 Young Won Lim
3/10/18

Interpretation of Pointers – Types

(int)

(int *)

(int **)

Types

address

data

address

Series : 5.
Applications of Pointers

19 Young Won Lim
3/10/18

Interpretation of Pointers – Variables and addresses

(int)

(int *)

(int **)

**q

 *q

 q

Types Variables

 q

*q

&q

Addresses

Series : 5.
Applications of Pointers

20 Young Won Lim
3/10/18

Single and Double Pointer Examples (1)

int a ;

int *p ;

int **q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

a, *p, and **q:
int variables

Series : 5.
Applications of Pointers

21 Young Won Lim
3/10/18

Single and Double Pointer Examples (2)

int a ;

int * p ;

int * *q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

p and *q :
int pointer variables

Series : 5.
Applications of Pointers

22 Young Won Lim
3/10/18

Single and Double Pointer Examples (3)

int a ;

int *p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

q :
double int pointer variables

Series : 5.
Applications of Pointers

23 Young Won Lim
3/10/18

Values of double pointer variables

 (int)

(int *)

(int)

 (int **)

X

(float *)

(float)

X

 (int **)

int ** p, **q ;

p = q;

Series : 5.
Applications of Pointers

24 Young Won Lim
3/10/18

Variable Declarations

a =100&aint a ;

The variable a holds an integer data

p&pint * p ;

The pointer variable p holds an address,
at this address an integer is stored

200

q&qint * * q ;

The pointer variable q holds an address,
where another address is stored,
where an integer data is stored

 30

Series : 5.
Applications of Pointers

25 Young Won Lim
3/10/18

Access Data Via Pointer Variables (1)

a =100&aint a ;

p&pint * p ; *p=200

&a
value

a
address

&p
value

p
address

p *p

integer

address

integer

Indirect Access

Direct Access

Dereference Operator *

the content of the pointed location

*(&p) *p

 p

Series : 5.
Applications of Pointers

26 Young Won Lim
3/10/18

Access Data Via Pointer Variables (2)

q&qint * * q ; *q **q=30

&q
value

q
address

q *q

*q **q

address

integer

address
Double Indirect Access

Dereference Operator *

the content of the pointed location

*(&q) *q

Dereference Operator *

the content of the pointed location

*q **q

 q *q

Series : 5.
Applications of Pointers

27 Young Won Lim
3/10/18

Access Data Via Pointer Variables (3)

a =100&aint a ;

int * p ;

int * * q ;

&a
value

a
address

&p
value

p
address

p *p

&q
value

q
address

q *q
*q **q

integer

address

integer

address

integer

address

Indirect Access

Double Indirect Access

Direct Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

p&p *p=200 p

q&q *q **q=30 q *q

Series : 5.
Applications of Pointers

28 Young Won Lim
3/10/18

Access Data Via Pointer Variables (4)

a =100&aint a

int * p

int * * q

p&p *p=200 p

q&q *q **q=30 q *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *

Series : 5.
Applications of Pointers

29 Young Won Lim
3/10/18

Swapping pointers
- pass by reference
- double pointers

Series : 5.
Applications of Pointers

30 Young Won Lim
3/10/18

p = &a

q = &b

p = &b

q = &a

Swapping integer pointers

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222

Series : 5.
Applications of Pointers

31 Young Won Lim
3/10/18

Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers(&p, &q);

swap_pointers(int **, int **);

function call

function prototype

int *p, *q;

Series : 5.
Applications of Pointers

32 Young Won Lim
3/10/18

Pass by integer pointer reference

void swap_pointers (int **m, int **n)
{

int* tmp;

 tmp = *m;
 *m = *n;

*n = tmp;
}

int a, b;
int *p, *q; p=&a, q=&b;

…
swap_pointers(&p, &q);

int ** m
int * *m

int ** n
int * *n

int * tmp

Series : 5.
Applications of Pointers

33 Young Won Lim
3/10/18

Array of Pointers

Series : 5.
Applications of Pointers

34 Young Won Lim
3/10/18

Array of Pointers (1)

int a [4];

int

Array name a holds the starting address

No. of elements = 4

int * b [4];

a [4]

Type of each element

int *

Array name b holds the starting address

No. of elements = 4

b [4]

Type of each element

Series : 5.
Applications of Pointers

35 Young Won Lim
3/10/18

Array of Pointers (2)

int a [4]; int * b [4];

a[0]
a[1]

a[2]
a[3]

b[0]
b[1]

b[2]
b[3]

a b

b[0]

b[1]

b[2]

b[3]

*b[0]

*b[1]

*b[2]

*b[3]

Series : 5.
Applications of Pointers

36 Young Won Lim
3/10/18

Array of Pointers (3)

int a [4]; int * b [4];

(int)
(int)

(int)
(int)

(int *)
(int *)

(int *)
(int *)

(int)

(int)

(int)

(int)

(int *) (int * *)

Series : 5.
Applications of Pointers

37 Young Won Lim
3/10/18

2-d Arrays

Series : 5.
Applications of Pointers

38 Young Won Lim
3/10/18

c[0]
c[1]

c[2]
c[3]

A 2-D Array

c

int c[4] [4] int c [4] [4];
c[0]

c[1]

c[2]

c[3]

c[0][0]
c[0][1]
c[0][2]
c[0][3]
c[1][0]
c[1][1]
c[1][2]
c[1][3]
c[2][0]
c[2][1]
c[2][2]
c[2][3]
c[3][0]
c[3][1]
c[3][2]
c[3][3]

Series : 5.
Applications of Pointers

39 Young Won Lim
3/10/18

(int *)
(int *)

(int *)
(int *)

A 2-D Array

(int * *)

int c[4] [4] int c [4] [4];
c[0]

c[1]

c[2]

c[3]

(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)

Series : 5.
Applications of Pointers

40 Young Won Lim
3/10/18

A 2-D Array via a double pointer

int c[4] [4]

int c [4] [4]; (c [i])[j]

(*(c+i))[j]

((c+i)+j)

(c [I]) = (*(c+i))

(_)[j] = *((_)+j)

Series : 5.
Applications of Pointers

41 Young Won Lim
3/10/18

(int *)
(int *)

(int *)
(int *)

A 2-D Array

(int * *)

int c [4] [4];
c[0]

c[1]

c[2]

c[3]

(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)
(int)

(c [i])[j]

(*(c+i))[j]

((c+i)+j)

(c+i)
*(c+i)+j

Series : 5.
Applications of Pointers

42 Young Won Lim
3/10/18

A 2-D array via a single pointer

c[0]
c[1]

c[2]
c[3]

c

c[0][0]
c[0][1]
c[0][2]
c[0][3]
c[1][0]
c[1][1]
c[1][2]
c[1][3]
c[2][0]
c[2][1]
c[2][2]
c[2][3]
c[3][0]
c[3][1]
c[3][2]
c[3][3]

int c [4] [4]; c[0]

c[1]

c[2]

c[3]

 0=[0*4+0]

 1=[0*4+1]

 2=[0*4+2]

 3=[0*4+3]

 4=[1*4+0]

 5=[1*4+1]

 6=[1*4+2]

 7=[1*4+3]

 8=[2*4+0]

 9=[2*4+1]

10=[2*4+2]

11=[2*4+3]

12=[3*4+0]

13=[3*4+1]

14=[3*4+2]

15=[3*4+3]
c[i][j]

Series : 5.
Applications of Pointers

43 Young Won Lim
3/10/18

A 2-D array via a single pointer

c[0]
c[1]

c[2]
c[3]

c

int c [4] [4]; c[0]

c[1]

c[2]

c[3]

p[0*4+0]

p[0*4+1]

p[0*4+2]

p[0*4+3]

p[1*4+0]

p[1*4+1]

p[1*4+2]

p[1*4+3]

p[2*4+0]

p[2*4+1]

p[2*4+2]

p[2*4+3]

p[3*4+0]

p[3*4+1]

p[3*4+2]

p[3*4+3]

p =c[0];int *

p[i*4+j]c[i][j]

Series : 5.
Applications of Pointers

44 Young Won Lim
3/10/18

2-D Array Dynamic Memory Allocation (1)

int ** d ;

d = (int **) malloc (4 * size of (int *));
for (i=0; i<4; ++i)
 d[i] = (int *) malloc(4 * sizeof(int));

d[0]
d[1]

d[2]
d[3]

(int *)
(int *)

(int *)
(int *)

d(int **)

Series : 5.
Applications of Pointers

45 Young Won Lim
3/10/18

d[0]
d[1]

d[2]
d[3]

(int *)
(int *)

(int *)
(int *)

2-D Array Dynamic Memory Allocation (2)

(int)
(int)
(int)
(int)

d[0][0]
d[0][1]
d[0][2]
d[0][3]

(int)
(int)
(int)
(int)

d[1][0]
d[1][1]
d[1][2]
d[1][3]

(int)
(int)
(int)
(int)

d[2][0]
d[2][1]
d[2][2]
d[2][3]

(int)
(int)
(int)
(int)

d[3][0]
d[3][1]
d[3][2]
d[3][3]

d(int **)&d

int ** d ;

d = (int **) malloc (4 * size of (int *));
for (i=0; i<4; ++i)
 d[i] = (int *) malloc(4 * sizeof(int));

Series : 5.
Applications of Pointers

46 Young Won Lim
3/10/18

Pointer to Arrays

Series : 5.
Applications of Pointers

47 Young Won Lim
3/10/18

Pointer to array (1)

int a [4];

a[0]
a[1]
a[2]
a[3]

(int)
(int)
(int)
(int)

a(int [])

int (*p) [4]

int a [4]

int func (int a, int b) ; a prototype

int (* fp) (int a, int b) ; a function's type

int m ;

int *n ;

an integer variable

a pointer variable

int * fp (int a, int b) ;

pointer to the array of 4 elements

function pointer

Series : 5.
Applications of Pointers

48 Young Won Lim
3/10/18

Pointer to array (2)

p int (*p) [4] ;

int a [4]

a[0]
a[1]

a[2]
a[3]

(int)

(int)

(int)

(int)

a(int [])

an array with 4 integer elements

*p = a

(*p) = a

&(*p) = &a

 p = &a

sizeof(p)= 4 bytes

sizeof(*p)= 16 bytes

p
*p

(int (*) [])

Series : 5.
Applications of Pointers

49 Young Won Lim
3/10/18

Pointer to array (3)

c[0]
c[1]
c[2]
c[3]

(int [])

(int [])

(int [])

(int [])

c(int (*) []) int c[4] [4]

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

int (*p) [4] ;

p&p

a 2-d array
with 4 rows
and 4 columns

p = c
p

*p

*(p+0)

*(p+1)

*(p+2)

*(p+3)

(int (*) [])

(*p) [i][j];

Series : 5.
Applications of Pointers

50 Young Won Lim
3/10/18

Pointer to array (4)

int c [4][4];
int (*p) [4];

p = c;

func(p, ...);

void func(int (*x)[4], ...)
{

x[r][c] =

}

void func(int x[][4], ...)
{

x[r][c] =

}

Young Won Lim
3/10/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

