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Can each number be specified by a finite text? 
Boris Tsirelson ¹*  

Abstract 
Contrary to popular misconception, the question in the title is far from simple. It involves sets of num-
bers on the first level, sets of sets of numbers on the second level, and so on, endlessly. The infinite 
hierarchy of the levels involved distinguishes the concept of "definable number" from such notions as 
"natural number", "rational number", "algebraic number", "computable number" etc. 
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1 Introduction

The question in the title may seem simple, but is able to cause controversy
and trip up professional mathematicians. Here is a quote from a talk “Must
there be numbers we cannot describe or define?” [1] by J.D. Hamkins.

The math tea argument

Heard at a good math tea anywhere:

“There must be real numbers we cannot describe or define, because
there are uncountably many real numbers, but only countably many
definitions.”

Does this argument withstand scrutiny?

See also “Maybe there’s no such thing as a random sequence” [2] by P.G.
Doyle (in particular, on pages 6,7 note two excerpts from A. Tarski [42]).
And on Wikipedia one can also find the flawed “math tea” argument on talk
pages and obsolete versions of articles.1 2 And elsewhere on the Internet.3

I, the author, was myself a witness and accomplice. I shared and voiced
the flawed argument in informal discussions (but not articles or lectures).

Despite some awareness (but not professionalism) in mathematical logic,4 I
was a small part of the problem, and now I try to become a small part of the
solution, spreading the truth.

Careless handling of the concept “number specified by a finite text” leads
to paradoxes; in particular, Richard’s paradox.∗ See also “Definability para-
doxes” by Timothy Gowers.

In order to ask (and hopefully solve) a well-posed question we have to
formalize the concept “number specified by a finite text” via a well-defined
mathematical notion “definable number”. What exactly is meant by “text”?

∗The paradox begins with the observation that certain expressions of natural language
define real numbers unambiguously, while other expressions of natural language do not.
For example, “The real number the integer part of which is 17 and the nth decimal place
of which is 0 if n is even and 1 if n is odd” defines the real number 17.1010101... =
1693/99, while the phrase “the capital of England” does not define a real number.
Thus there is an infinite list of English phrases (such that each phrase is of finite length,
but lengths vary in the list) that define real numbers unambiguously. We first arrange this
list of phrases by increasing length, then order all phrases of equal length lexicographically
(in dictionary order), so that the ordering is canonical. This yields an infinite list of the
corresponding real numbers: r1, r2, . . . Now define a new real number r as follows. The
integer part of r is 0, the nth decimal place of r is 1 if the nth decimal place of rn is not
1, and the nth decimal place of r is 2 if the nth decimal place of rn is 1.
The preceding two paragraphs are an expression in English that unambiguously defines a
real number r. Thus r must be one of the numbers rn. However, r was constructed so
that it cannot equal any of the rn. This is the paradoxical contradiction. (Quoted from
Wikipedia.)
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And what exactly is meant by “number specified by text”? Does “specified”
mean “defined”? Can we define such notions as “definition” and “definable”?
Striving to understand definitions in general, let us start with some examples.

136 notable constants are collected, defined and discussed in the book
“Mathematical constants” by Steven Finch [3]. The first member of this
collection is “Pythagoras’ Constant,

√
2”; the second is “The Golden Mean,

ϕ”; the third “The Natural Logarithmic Base, e”; the fourth “Archimedes’
Constant, π”; and the last (eleventh) in Chapter 1 “Well-Known Constants”
is “Chaitin’s Constant”.

Each constant has several equivalent definitions. Below we take for each
constant the first (main) definition from the mentioned book.
• The first constant

√
2 is defined as the positive real number whose

product by itself is equal to 2. That is, the real number x satisfying
x > 0 and x2 = 2.
• The second constant ϕ is defined as the real number satisfying ϕ > 0

and 1 + 1
ϕ

= ϕ.

• The third constant e is defined as the limit of (1+x)1/x as x→ 0. That
is, the real number satisfying the following condition:

for every ε > 0 there exists δ > 0 such that for every x satisfying
−δ < x < δ and x 6= 0 holds −ε < (1 + x)1/x − e < ε.

The same condition in symbols:∗

∀ε > 0 ∃δ > 0 ∀x
(

(−δ < x < δ ∧ x 6= 0) =⇒
(−ε < (1 + x)1/x − e < ε)

)
.

We note that these three definitions are of the form “the real number
x satisfying P (x)” where P (x) is a statement that may be true or false
depending on the value of its variable x; in other words, not a statement when
x is just a variable, but a statement whenever a real number is substituted
for the variable. Such P (x) is called a property of x, or a predicate (on real
numbers).

Not all predicates may be used this way. For example, we cannot say
“the real number x satisfying x2 = 2” (why “the”? two numbers satisfy, one
positive, one negative), nor “the real number x satisfying x2 = −2” (no such
numbers). In order to say “the real number x satisfying P (x)” we have to
prove existence and uniqueness:

∗Logical notation: ∧ ”and” ∨ ”or” =⇒ ”implies” ¬ ”not”
∀ ”for every” ∃ ”there exists (at least one)” ∃! ”there exists one and only one”
(link to a longer list).
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existence: ∃x P (x) (in words: there exists x such that P (x));

uniqueness: ∀x, y
(

(P (x) ∧ P (y)) =⇒ (x = y)
)

(in words: whenever x and y satisfy P they are equal).

In this case one says “there is one and only one such x” and writes
“∃!x P (x)”.

The road to definable numbers passes through definable predicates. We
postpone this matter to the next section and return to examples.
• The fourth constant π is defined as the area enclosed by a circle of

radius 1.
This definition involves geometry. True, a lot of equivalent definitions in
terms of numbers are well-known; in particular, according to the mentioned
book, this area is equal to 4

∫ 1

0

√
1− x2 dx = limn→∞

4
n2

∑n
k=0

√
n2 − k2 .

However, in general, every branch of mathematics may be involved in a
definition of a number; existence of an equivalent definition in terms of (only)
numbers is not guaranteed.

The last example is Chaitin’s constant. In contrast to the four constants
(mentioned above) of evident theoretical and practical importance, Chaitin’s
constant is rather of theoretical interest. Its definition is intricate. Here is a
simplified version, sufficient for our purpose.5

• The last constant Ω is defined as the sum of the series
Ω =

∑∞
N=1 2−NAN where AN is equal to 1 if there ex-

ist natural numbers x1, x2, x3, x4, x5, x6, x7, x8, x9 such that
f(N, x1, x2, x3, x4, x5, x6, x7, x8, x9) = 0, otherwise AN = 0; and
f is a polynomial in 10 variables, with integer coefficients, such that
the sequence A1, A2, . . . is uncomputable.

Hilbert’s tenth problem asked for a general algorithm that could ascertain
whether the Diophantine equation f(x0, . . . , xk) = 0 has positive integer
solutions (x0, . . . , xk), given arbitrary polynomial f with integer coefficients.
It appears that no such algorithm can exist even for a single f and arbitrary
x0, when f is complicated enough. See Wikipedia: computability theory,
Matiyasevich’s theorem; and Scholarpedia:Matiyasevich theorem.

The five numbers
√

2, ϕ, e, π,Ω are defined, thus, should be definable
according to any reasonable approach to definability. The first four num-
bers

√
2, ϕ, e, π are computable (both theoretically and practically; in fact,

trillions, that is, millions of millions, of decimal digits of π are already
computed), but the last number Ω is uncomputable. How so? Striving
to better understand this strange situation we may introduce approxima-
tions AM,N to the numbers AN as follows: AM,N is equal to 1 if there
exist natural numbers x1, x2, x3, x4, x5, x6, x7, x8, x9 less than M such that
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f(N, x1, x2, x3, x4, x5, x6, x7, x8, x9) = 0, otherwise AN = 0; here M is ar-
bitrary. For each N we have AM,N ↑ AN as M → ∞; that is, the se-
quence A1,N , A2,N , . . . is increasing, and converges to AN . Also, this se-
quence A1,N , A2,N , . . . is computable (given M , just check all the (M − 1)9

points (N, x1, x2, x3, x4, x5, x6, x7, x8, x9), 0 < x1 < M, . . . , 0 < x9 < M).
Now we introduce approximations ωM to the number Ω as follows: ωM =∑M

N=1 2−NAM,N . We have ωM ↑ Ω (as M →∞), and the sequence ω1, ω2, . . .
is computable. A wonder: a computable increasing sequence of rational num-
bers converges to a uncomputable number!

For every N there exists M such that AM,N = AN ; such M depend-
ing on N , denote it MN and get

∑∞
N=1 2−NAMN ,N = Ω; moreover, Ω −∑K

N=1 2−NAMN ,N ≤ 2−K for all K. In order to compute Ω up to 2−K it suf-

fices to compute
∑K

N=1 2−NAMN ,N . Doesn’t it mean that Ω is computable?
No, it does not, unless the sequence M1,M2, . . . is computable. Well, these
numbers need not be optimal, just large enough. Isn’t MN = 101000N large
enough? Amazingly, no, this is not large enough. Moreover, MN = 10101000N

is not enough. And even the “power tower” MN = 1010·
·10︸ ︷︷ ︸

1000N

is still not enough!

Here is the first paragraph from a prize-winning article by Bjorn Poonen
[4]:

Does the equation x3 + y3 + z3 = 29 have a solution in integers?
Yes: (3, 1, 1), for instance. How about x3 + y3 + z3 = 30? Again
yes, although this was not known until 1999: the smallest solution
is (−283059965,−2218888517, 2220422932). And how about x3 +
y3 + z3 = 33? This is an unsolved problem.

Given that the simple Diophantine equation N+x3+y3−z3 = 0 has solutions
for N = 30 but only beyond 109 we may guess that the ”worst case” Dio-
phantine equation f(N, x1, x2, x3, x4, x5, x6, x7, x8, x9) = 0 needs very large
MN . In fact, the sequence M1,M2, . . . has to be uncomputable (otherwise
Ω would be computable, but it is not). Some computable sequences grow
fantastically fast. See Wikipedia: “Ackermann function”, “Fast-growing hi-
erarchy”. And nevertheless, no one of them bounds from above the sequence
M1,M2, . . . Reality beyond imagination!

Every computable number is definable, but a definable number need not
be computable. Computability being another story, we return to definability.
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2 From predicates to relations

Recall the five definitions mentioned in the introduction. They should be
special cases of a general notion “definition”. In order to formalize this idea
we have to be more pedantic than in the introduction. “Nothing but the hard
technical story is any real good” (Littlewood, A Mathematician’s Miscellany,
page 70); exercises are waiting for you.

All mathematical objects (real numbers, limits, sets etc.) are treated
in the framework of the mainstream mathematics, unless stated otherwise.
Alternative approaches are sometimes mentioned in Sections 9, 10. Naive
set theory suffices for Sections 2–7; axiomatic set theory is used in Sections
8–10.

A definition is a text in a language. A straightforward formalization
of such notions as “definition” and “definable” uses “formal language” (a
formalization of “language”) and other notions of model theory. Surprisingly,
there is a shorter way. Operations on sets are used instead of logical symbols,
and relations instead of predicates.

“However, predicates have many different uses and interpretations in
mathematics and logic, and their precise definition, meaning and use will
vary from theory to theory.” (Quoted from Wikipedia.) Here we use predi-
cates for informal explanations only; on the formal level they will be avoided
(replaced with relations).

The number
√

2 was defined as the real number x such that P (x), where
P (x) is the predicate “x > 0 and x2 = 2”. This predicate is the conjunction
P1(x) ∧ P2(x) of two predicates P1(x) and P2(x), the first being “x > 0”,
the second “x2 = 2”. The single-element set A = {x ∈ R | P (x)} = {

√
2}

corresponding to the predicate P (x) is the intersection A = A1∩A2 of the sets
A1 = {x ∈ R | P1(x)} = (0,∞) and A2 = {x ∈ R | P2(x)} = {−

√
2,
√

2}.
(Here and everywhere, R is the set of all real numbers.)∗

This is instructive. In order to formalize a definition of a number via its
defining property, we have to deal with sets of numbers, and more generally,
relations between numbers.

Also, x2 is the product x · x, and 2 is the sum 1 + 1. But what is
“product”, “sum”, “1” and “0”? The answer is given by the axiomatic
approach to real numbers: they are a complete totally ordered field. It means
that addition, multiplication and order are defined and have the appropriate
properties. Thus, 0 is defined as the real number x satisfying the condition

∗Set notation:
A = {x | P (x)} “A is the set of all x such that P (x)” x ∈ A “x belongs to A”
A ∪B union A ∩B intersection A \B set difference A×B Cartesian product
R real line R2 Cartesian plane and more, more, more.
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∀y (x + y = y). Similarly, 1 is defined as the real number x satisfying the
condition ∀y (x · y = y).

Now we need predicates with two and more variables. The order is a
binary (that is, with two variables) predicate “x ≤ y”. Addition is a ternary
(that is, with three variables) predicate “x+y = z”. Similarly, multiplication
is a ternary predicate “xy = z” (denoted also “x · y = z” or “x× y = z”).

Each unary (that is, with one variable) predicate P (x) on real numbers
leads to a set {x ∈ R | P (x)} of real numbers, a subset of the real line R.
Likewise, each binary predicate P (x, y) on reals leads to a set {(x, y) ∈ R2 |
P (x, y)} of pairs of real numbers, a subset of the Cartesian plane R2 = R×R,
the latter being the Cartesian product of the real line by itself. On the other
hand, a binary relation on R is defined as an arbitrary subset of R2.

Thus, each binary predicate on reals leads to a binary relation on reals.
If we swap the variables, that is, turn to another predicate Q(x, y) that is
P (y, x), then we get another relation {(x, y) | Q(x, y)} = {(x, y) | P (y, x)} =
{(y, x) | P (x, y)}, inverse (in other words, converse, or opposite) to the former
relation (generally different, but sometimes the same).

Similarly, each ternary predicate on reals leads to a ternary relation on
reals; and, changing the order of variables, we get 3! = 6 ternary relations
(generally, different) corresponding to 6 permutations of 3 variables. And
generally, each n-ary predicate on reals leads to a n-ary relation on reals (a
subset of Rn); and, changing the order of variables, we get n! such relations.
The case n = 1 is included (for unification); a unary relation on reals (called
also property of reals) is a subset of R.

Thus, on reals, the order is the binary relation {(x, y) | x ≤ y}, the ad-
dition is the ternary relation{(x, y, z) | x+ y = z}, and the multiplication is
the ternary relation {(x, y, z) | xy = z}. Still, we cannot forget predicates
until we understand how to construct new relations out of these basic rela-
tions. For example, how to construct the binary relation {(x, y) | x+ y = y}
and the unary relation {x | ∀y (x + y = y)} ? We know that if a predicate
P (x) is the conjunction P1(x) ∧ P2(x) of two predicates, then it leads to the
intersection A = A1 ∩ A2 of the corresponding sets. Similarly, the disjunc-
tion P1(x)∨P2(x) leads to the union A = A1 ∪A2, and the negation ¬P1(x)
leads to the complement A = R \ A1. Also, the implication P1(x) =⇒ P2(x)
leads to A = (R \ A1) ∪ A2, and the equivalence P1(x) ⇐⇒ P2(x) leads to
A =

(
(R \A1)∩ (R \A2)

)
∪ (A1 ∩A2). The same holds for n-ary predicates;

the disjunction P1(x, y)∨P2(x, y) still corresponds to the union A = A1∪A2,
the negation ¬P1(x, y, z) to the complement A = R3 \ A1, etc. But what
to do when P (x, y) is P1(x, y, y), or P (x) is ∀y P1(x, y), or P (x, y, z) is
P1(y, x) ∧ P2(y, z), etc?

This question was answered, in context of axiomatic set theory, in the
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first half of the 20th century.6 A somewhat different answer, in the context
of definability, was given by van den Dries in 1998 [5],[6] and slightly modified
by Auke Bart Booij in 2013 [7]; see also Macintyre 2016 [8, “Defining First-
Order Definability”]. Here is the answer (slightly modified).

First, in addition to the Boolean operations (union and complement; in-
tersection is superfluous, since it is complement of the union of complements)
on subsets of Rn, we introduce permutation of coordinates; for example
(n = 3), A = {(x, y, z) ∈ R3 | (z, x, y) ∈ A1}; and in general,

A = {(x1, . . . , xn) ∈ Rn | (xi1 , . . . , xin) ∈ A1}

where (i1, . . . , in) is an arbitrary permutation of (1, . . . , n).
In particular, permutation of coordinates in a binary relation gives the

inverse relation. For example, the inverse to {(x, y) | x ≤ y} is {(x, y) | y ≤
x} = {(x, y) | x ≥ y}. And, by the way, the intersection of these two is the
relation {(x, y) | x = y} (corresponding to the predicate “x = y”).

Second, set multiplication, in other words, Cartesian product by R: A =
A1 × R, that is,

A = {(x1, . . . , xn+1) ∈ Rn+1 | (x1, . . . , xn) ∈ A1},

turns a n-ary relation to a relation that is formally (n+ 1)-ary, but the last
variable is unrelated to others.

Now, returning to a predicate P (x, y, z) of the form P1(y, x) ∧ P2(y, z),
we treat the corresponding ternary relation A = {(x, y, z) ∈ R3 | P (x, y, z)}
as the intersection of two ternary relations A1 = {(x, y, z) ∈ R3 | P1(y, x)}
and A2 = {(x, y, z) ∈ R3 | P2(y, z)}; and A1 as the Cartesian product of
the binary relation B1 = {(x, y) ∈ R2 | P1(y, x)} by R, B1 being inverse
to the relation B2 = {(x, y) ∈ R2 | P1(x, y)} (corresponding to the given
predicate P1(x, y)); and A2 as obtained (by permutation of coordinates) from
the Cartesian product {(y, z, x) ∈ R3 | P2(y, z)} = {(y, z) ∈ R2 | P2(y, z)} ×
R (by R) of the relation corresponding to the given predicate P2(y, z).

Third, the projection; for example (n = 1), A = {x | ∃y ∈ R
(
(x, y) ∈

A1

)
}; and in general,

A = {(x1, . . . , xn) | ∃xn+1 ∈ R
(
(x1, . . . , xn+1) ∈ A1

)
};

it turns a (n+ 1)-ary relation to a n-ary relation. For n = 1 the set A is also
called the domain of the binary relation A1.

Now, returning to a predicate P (x, y) of the form P1(x, y, y), we rewrite
it as “∃z

(
P1(x, y, z) ∧ y = z

)
” and treat the corresponding binary relation

as the projection of the ternary relation {(x, y, z) | P1(x, y, z)} ∩ {(x, y, z) |
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y = z}, and {(x, y, z) | y = z} as a permutation of the Cartesian product
{(y, z) | y = z} × R.

What if P (x) is “∀y P1(x, y)”? Then we rewrite it as “¬∃y ¬P1(x, y)”
and get the complement of the projection of the complement of the relation
corresponding to P1(x, y).

So, we accept the 3 given relations (order, addition, multiplication) as
“definable”, and we accept the 5 operations (complement, union, permuta-
tion, set multiplication, projection) for producing definable relations out of
other definable relations. Thus we get infinitely many definable relations
(unary, binary, ternary and so on).

More formally, these relations are called “first-order definable (without
parameters) over (R;≤,+,×)”; but, less formally, “definable over” is often
replaced with “definable in” (and sometimes “definable from”); “without
parameters” is omitted throughout this essay; also “first order” and “over
(R; . . . )” are often omitted in this section. See Wikipedia: “Definable set”:
Definition; The field of real numbers.

Generally, starting from a set (not necessarily the real line) and some
chosen relations on this set (including the equality relation if needed), and
applying the 5 operations (complement, union, permutation, set multiplica-
tion, projection) repeatedly (in all possible combinations), one obtains an
infinite collection of relations (unary, binary, ternary and so on) on the given
set. Every such collection of relations is called a structure (Booij [7]), or
a VDD-structure (Brian Tyrrell [9]) on the given set. According to Tyrrell
[9, page 3], “The advantage of this definition is that no model theory is
then needed to develop the theory”. The technical term “VDD structure”
(rather than just “structure” used by van den Dries and Booij) is chosen
by Tyrrell “to prevent a notation clash” (Tyrrell [9, page 2]), since many
other structures of different kinds are widely used in mathematics. “VDD”
apparently refers to van den Dries who pioneered this approach. But let
us take a shorter term “D-structure”, where “D” refers to “definable” and
“Dries” as well. The D-structure obtained (by the 5 operations) from the
chosen relations, in other words, generated by these relations, is the smallest
D-structure containing these relations.

Generality aside, we return to the special case, the D-structure of defin-
able relations on the real line defined above (generated by order, addition
and multiplication; though, the order appears to be superfluous).

Exercise 2.1. Prove that a relation is definable in (R;≤,+,×) if and only
if it is definable in (R; +,×). Hint: x ≤ y if and only if ∃z ∈ R (x+ z2 = y).

We say that a number x is definable, if the single-element set {x} is a
definable unary relation.
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Exercise 2.2. Prove that the numbers 0 and 1 are definable. Hint: recall
“∀y (x+ y = y)” and “∀y (x · y = y)”.

Exercise 2.3. Prove that the sum of two definable numbers is definable.
Hint: ∃y ∈ R ∃z ∈ R

(
(y ∈ A1) ∧ (z ∈ A2) ∧ (y + z = x)

)
.

Exercise 2.4. Prove that the number 355
113

is definable. Hint: ∃y ∈ R ∃z ∈
R (y = 113 ∧ z = 355 ∧ xy = z).

Exercise 2.5. Prove that the number
√

2 is definable. Hint: (x > 0)∧(x·x =
2).

Exercise 2.6. Prove that the golden ratio ϕ is definable.

Exercise 2.7. Prove that the binary relation “y = |x|” is definable. Hint:
(x2 = y2 ∧ y ≥ 0).

In contrast, the ternary relation “xy = z” is not definable. Moreover, the
binary relation {(x, y) | y = 2x ∧ 0 ≤ x ≤ 1} is not definable. The problem
is that all relations definable in (R; +,×) are semialgebraic sets over (the
subring of) integers.∗

Thus, we cannot define the number e via (1 + x)1/x in this framework.
Also, only algebraic numbers are definable in this framework.

Each natural number is definable, which does not mean that the set N of
all natural numbers is definable (in (R; +,×)). In fact, it is not!†

∗Theorem. All relations definable in (R; +,×) are semialgebraic sets over integers.
Proof. The two relations “+”, “×” are semialgebraic (evidently). Two operations,

permutation and set multiplication, applied to semialgebraic relations, give semialgebraic
relations (evidently). The third, projection operation, applied to a semialgebraic relation,
gives a semialgebraic relation by the Tarski-Seidenberg theorem[10, Theorem 2.76].

Theorem. If a > 1 and −∞ < b < c < ∞, then the binary relation {(x, y) | (y =
ax) ∧ (b ≤ x ≤ c)} is not semialgebraic.

Proof. Assume the contrary. Then the function x 7→ ax on [b, c], being semialgebraic,
must be algebraic.[10, Prop. 2.86], [11, Corollary 3.5]. It means existence of a polyno-
mial p(·, ·) (not identically 0) such that p(x, ax) = 0 for all x ∈ [b, c]. It follows that
p(z, ez log a) = 0 for all complex numbers z. Taking z = 2nπi

log a we get p
(
2nπi
log a , 1

)
= 0 for all

integer n. Therefore p(z, 1) = 0 for all complex z (otherwise the polynomial z 7→ p(z, 1)
cannot have infinitely many roots). Similarly, taking z = log u+2nπi

log a we get p(z, u) = 0 for
all complex z and all u > 0, therefore everywhere; a contradiction.

†Follows immediately from the lemma below.
Lemma. For every semialgebraic subset A of R there exists a ∈ R such that either

(a,∞) ⊂ A or (a,∞) ∩A = ∅.
Proof. First, the claim holds for every set of the form A = {x ∈ R | p(x) > 0} where

p(·) is a polynomial, since either p(x)→ +∞ as x→ +∞, or p(x)→ −∞ as x→ +∞, or
p(x) is constant. Second, a Boolean operation (union, complement), applied to sets that
satisfy the claim, gives a set that satisfies the claim (evidently).
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We could accept the set N of natural numbers as definable, that is, turn
to definability in (R; +,×,N), but does it help to define the number e? Sur-
prisingly, it does! “[. . . ] then the situation changes drastically” (van den
Dries [5, Example 1.3]). See also Booij [7, page 17]: “[. . . ] if we add the
seemingly innocent set Z to the tame structure of semialgebraic sets, we get
a wild structure [. . . ]”

3 Beyond the algebraic

In this section, “definable” means “first order definable in
(R; +,×,N)”. In other words, the real line is endowed with the D-struc-
ture generated by addition, multiplication, and the set of natural numbers.
Good news: we’ll see that the five numbers

√
2, ϕ, e, π,Ω, discussed in In-

troduction, are definable. Bad news: in addition to their usual definitions
we’ll use Diophantine equations, computability and Matiyasevich’s theorem
(mentioned in Introduction in relation to Chaitin’s constant). The reader
not acquainted with computability theory should rely on intuitive idea of
computation (instead of formal proofs of computability), and consult the
linked Wikipedia article for computability-related notions (“recursively enu-
merable”, “computable sequence”). Alternatively, the reader may skip to
Section 5; there, usual definitions will apply, no computability needed.

Every Diophantine set

{(a1, . . . , an) ∈ Nn | ∃x1, . . . , xm ∈ N p(a1, . . . , an, x1, . . . , xm) = 0}

(where p(. . . ) is a polynomial with integer coefficients), treated as a subset
of Rn, is a definable n-ary relation. And every recursively enumerable set is
Diophantine.

For every computable sequence (k1, k2, . . . ) of natural numbers, the bi-
nary relation {(n, k) ∈ N2 | k = kn} = {(1, k1), (2, k2), . . . } is recursively
enumerable, therefore definable.

In particular, the binary relation “x ∈ N and y = xx” is definable, as
well as “x ∈ N and y = (x+ 1)x”. Now (at last!) the number e is definable,

via limn→∞(1 + 1
n
)n = limn→∞

(n+1)n

nn
; more formally, e is the real number x

satisfying the condition

∀ε > 0 ∃n ∈ N ∀m ∈ N
(
m ≥ n =⇒ −εmm < (m+ 1)m − emm < εmm

)
.

This is not quite the definition mentioned in Introduction, but equivalent to
it.
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Similarly, for every convergent computable sequence of rational numbers,
its limit is a definable number. In other words, every limit computable real
number is definable.

Every computable real number is limit computable, therefore definable.
In particular, the number π is computable, therefore definable.

Chaitin’s constant is not computable, but still, limit computable (recall
Introduction: it is the limit of a computable increasing sequence of ratio-
nal numbers), therefore definable. So, all the five constants discussed in
Introduction (taken from the book ”Mathematical constants”) are definable.
Moreover, all the constants discussed in that book are definable.

On the other hand, if we choose a number between 0 and 1 at random,
according to the uniform distribution, we almost surely get an undefinable
number, because the definable numbers are a countable set.

Of course, such a randomly chosen undefinable number is not an explicit
example of undefinable number. It may seem that “explicit example of unde-
finable number” is a patent nonsense, just as “defined undefinable number”.
But no, not quite nonsense, see Section 4.

An infinite sequence (x1, x2, . . . ) = (xn)n of real numbers is nothing but
the binary relation {(n, x) | n ∈ N ∧ x = xn} = {(1, x1), (2, x2), . . . }; if
this binary relation is definable, we say that the sequence is definable. If a
sequence is definable, then all its members are definable numbers. However,
a sequence of definable numbers is generally not definable.

Exercise 3.1. If a definable sequence converges, then its limit is a definable
number. Prove it.

A function f : R→ R is nothing but the binary relation “f(x) = y”, that
is, A = {(x, y) | f(x) = y}; if this binary relation is definable, we say that
the function is definable. An arbitrary binary relation A is a function if and
only if for every x there exists one and only one y such that (x, y) ∈ A.

Exercise 3.2. If f is a definable function and x is a definable number, then
f(x) is a definable number. Prove it.

However, a function that has definable values at all definable arguments
is generally not definable.

Exercise 3.3. If a definable function is differentiable, then its derivative is
a definable function. Prove it. Hint: the derivative is the limit of. . .

Exercise 3.4. If a definable function f is continuous, then its antiderivative
F is definable if and only if F (0) is a definable number. Prove it. Hint:
F (x) = F (0) + limn→∞

x
n

∑n
k=1 f( k

n
x).
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Similarly to the number e we can treat the exponential function x 7→ ex.
First, the relation

{
(n, p, q, u) | n ∈ N ∧ p ∈ N ∧ q ∈ N ∧ u =

(
1 + p

q
· 1
n

)
n
}

is

definable (since
(
1 + p

q
· 1
n

)
n is a computable function of n, p, q). Second, the

relation {(x, y) | y = ex} is definable, since ex is the limit of
(
1 + p

q
· 1
n

)
n as

n tends to infinity and p
q

tends to x; more formally (but still not completely

formally. . . ), y = ex if and only if

∀ε > 0 ∃δ > 0 ∀n ∈ N ∀p ∈ Z∀q ∈ N ∀u((
n ≥ 1

δ

)
∧
(
− δ < x− p

q
< δ
)
∧
(
u =

(
1 + p

q
· 1
n

)
n
)

=⇒ ε < y− u < ε

)
;

here Z is the set of integers (evidently definable).
The cosine function may be treated via complex numbers and Euler’s

formula eix = cos x + i sinx. First, the real part of the complex number(
1 + ip

q
· 1
n

)
n is a computable function of n, p, q. Second, its limit as n tends

to infinity and p
q

tends to x is equal to the real part cos x of the complex

number eix.
Note that the exponential integral Ei(x) and the sine integral Si(x) are

definable nonelementary functions.
Definable functions can be pathological and disrespect dimension. In

particular, there is a definable one-to-one correspondence between the (two-
dimensional) square (0, 1)× (0, 1) and a subset of the (one-dimensional) in-
terval (0, 1), which will be used in Section 6. Here is a way to this fact.

Given two numbers x, y ∈ (0, 1), we consider their decimal digits: x =
(0.α1α2 . . . )10 =

∑∞
n=1 10−nαn where αn ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for each n,

and the set {n : αn 6= 9} is infinite (since we represent, say, 1
2

as (0.5000 . . . )10
rather than (0.4999 . . . )10); and similarly y = (0.β1β2 . . . )10. We interweave
their digits, getting a third number z = (0.α1β1α2β2 . . . )10 ∈ (0, 1). The
ternary relation between such x, y, z is a function W2 : (0, 1) × (0, 1) →
(0, 1). Not all numbers of (0, 1) are of the form W2(x, y) (for example, 21

1100
=

(0.01909090 . . . )10 is not), which does not matter. It does matter that x, y
are uniquely determined by W2(x, y), that is, W2(x1, y1) = W2(x2, y2) implies
x1 = x2 ∧ y1 = y2. In other words, W2 is an injection (0, 1)× (0, 1)→ (0, 1).

Denoting by D(n, x) the n-th decimal digit αn of x ∈ (0, 1) we have
D(n, x) = b10 · frac(10n−1x)c; here bac is the integer part of a, and frac(a) =
a− bac is the fractional part of a.

Exercise 3.5. The integer part function is definable. Prove it. Hint: {(x, bxc) |
x > 0} = {(x, n) | x > 0 ∧ n+ 1 ∈ N ∧ n ≤ x < n+ 1}.

Exercise 3.6. The function D : N × (0, 1) → R is definable. (See Booij [7,
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Lemma 3.4].) Prove it. Hint: D(n, x) = d ⇐⇒ ∃k ∈ N ∃y ∈ R
(
k =

10n−1 ∧ y = frac(kx) ∧ d = b10yc
)
.

Exercise 3.7. The function W2 : (0, 1)2 → (0, 1) is definable. Prove it. Hint:
z = W2(x, y)⇐⇒ ∀n ∈ N

(
D(2n, z) = D(n, y) ∧D(2n− 1, z) = D(n, x)

)
.

Exercise 3.8. Generalize the previous exercise to W3 : (0, 1)3 → (0, 1). Hint:
consider D(3n− 2, z), D(3n− 1, z), D(3n, z).

4 Explicit example of undefinable number

We construct such example in two steps. First, we enumerate all numbers
definable in (R; +,×,N) (“first order” is meant but omitted, as before); that
is, we construct a sequence (x1, x2, . . . ) of real numbers that contains all
numbers definable in (R; +,×,N) (and only such numbers). Second, we
construct a real number not contained in this sequence.

The second step is well-known and simple, so let us do it now, for an
arbitrary sequence (x1, x2, . . . ) of real numbers. We construct a real number
x via its decimal digits, as x =

∑∞
n=1

αn
10n

, and we choose each αn to be
different from the n-th digit (after the decimal point) of the absolute value
|xn| of xn. To be specific, let us take αn = 3 if 10k + 7 ≤ 10n|xn| < 10k + 8
for some integer k, and αn = 7 otherwise. Then x 6= xn since the integral
part of 10n|x|, being of the form 10`+ αn for integer `, is different from the
integral part of 10n|xn|, the latter being of the form 10k + βn for integer k,
and αn 6= βn (either βn = 7, αn = 3 or βn 6= 7, αn = 7). This is an instance
of Cantor’s diagonal argument.

Now we start constructing a sequence (x1, x2, . . . ) of real numbers that
contains all numbers definable in (R; +,×,N) (and only such numbers).
These numbers being elements of single-element subsets of R definable in
(R; +,×,N), and these subsets being unary relations, we enumerate all rela-
tions (unary, binary, . . . ) definable in (R; +,×,N). These are obtained from
the three given relations (addition, multiplication, “naturality”) via the 5
operations (complement, union, permutation, set multiplication, projection)
applied repeatedly. We may save on permutations by restricting ourselves to
adjacent transpositions, that is, permutations that swap two adjacent num-
bers k, k + 1 and leave intact other numbers of {1, . . . , n}; this is sufficient,
since every permutation is a product of some adjacent transpositions. We
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start with the three given relations

A1 = {(x, y, z) | x+ y = z}, “addition”

A2 = {(x, y, z) | xy = z}, “multiplication”

A3 = N, “naturality”

and apply to them the five operations (whenever possible). The first opera-
tion “complement” gives

A4 = {(x, y, z) | x+ y 6= z},
A5 = {(x, y, z) | xy 6= z},
A6 = {x | x /∈ N}.

The “union” operation gives

A7 = {(x, y, z) | (x+ y = z) ∨ (xy = z)}.

The “permutation” operation (reduced to adjacent transpositions), applied
to the ternary relation A1, gives two relations A8, A9; namely, A8 = {(x, y, z) |
y + x = z} (equal to A1 due to commutativity, but we do not bother) and
A9 = {(x, y, z) | x + z = y}; we apply the same to A2 getting A10, A11.
Further, “set multiplication” gives the 4-ary relation

A12 = {(x, y, z, w) | x+ y = z},

similarly A13, and A14 = {(x, y) | x ∈ N}. The most remarkable “projection”
operation gives

A15 = {(x, y) | ∃z (x+ y = z)}

(in fact, A15 = R2), and similarly A16.
The first 16 relations A1, . . . , A16 are thus constructed. On the next it-

eration we apply the 5 operations to these 16 relations (whenever possible;
though, some are superfluous) and get a longer finite list. And so on, end-
lessly. A bit cumbersome, but really, a routine exercise in programming, isn’t
it? Well, it is, provided however that the “programming language” stipulates
the data type “relation over R” and the relevant operations on relations. By
the way, equality test for relations is not needed (unless we want to skip
repetitions); but test of existence and uniqueness (for unary relations), and
extraction of the unique element, are needed for the next step.

Now we are in position to construct xn; for each n we check, whether the
relation An is of the form {u} for u ∈ R or not; if it is, we take xn = u,
otherwise xn = 0. (Note that xn = 0 whenever the relation An is not unary.)
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Applying the diagonal argument (above) to this sequence (x1, x2, . . . )
we construct a real number x not contained in the sequence, therefore, not
definable in (R; +,×,N).

This number x is defined, but not in (R; +,×,N). Why not? Because the
definition of x involves a sequence of relations in R. Sequences of numbers
are used in Section 3, but sequences of relations are something new, beyond
the first order. (See Wikipedia: First-order logic, Second-order logic.)

Is there a better approach? Could we define in (R; +,×,N) the same
sequence (x1, x2, . . . ), or maybe another sequence containing all computable
numbers, by a clever trick? No, this is impossible. For every sequence
definable in (R; +,×,N) the diagonal argument gives a number definable
in (R; +,×,N) and not contained in the given sequence.

• there is no definable enumeration of definable reals (Poincaré
1909), see Stanford Encyclopedia of Philosophy: Paradoxes and
Contemporary Logic.

5 Second order

We introduce second-order definability in (R; +,×). The set N of natural
numbers is second-order definable in (R; +,×), as we’ll see soon. In contrast
to the first order definability, usual definitions of mathematical constants will
apply without recourse to computability and Diophantine sets.

A second-order predicate is a predicate that takes a first-order predicate
as an argument. Likewise, a second-order relation is a relation between
relations. For example, the binary relation f ′ = g between a function f
and its derivative g may be thought of as a relation between two binary
relations: first, the relation f(x) = y between real numbers x, y, and second,
the relation g(t) = v between real numbers t, v. First order definability of a
real number involves definable first-order relations (between real numbers).
Second order definability of a real number involves definable second-order
relations (between first-order relations). Here is a possible formalization of
this idea.

We introduce the set

S =
(
R∪R2∪R3∪. . .

)
∪
(
P(R)∪P(R2)∪P(R3)∪. . .

)
=

( ∞⋃
n=1

Rn

)
∪
( ∞⋃
n=1

P(Rn)

)
that contains, on one hand, all tuples (finite sequences) (x1, . . . , xn) ∈ Rn

of real numbers (for all n; here we do not distinguish 1-tuples from real
numbers), and on the other hand, all n-ary relations A ⊂ Rn on R (for all
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n). Here P(R) is the set of all subsets (that is, the power set) of the real line
R, in other words, of unary relations on R; P(R2) is the set of all subsets
(that is, the power set) of the Cartesian plane R2, in other words, of binary
relations on R; and so on. On this set S we introduce two relations:
• membership, the binary relation ∪∞n=1{

(
(x1, . . . , xn), A

)
| (x1, . . . , xn) ∈

A} ⊂ S2; it says that the given n-tuple belongs to the given n-ary
relation;
• “appendment”, the ternary relation ∪∞n=1{

(
x, (x1, . . . , xn), (x1, . . . , xn, x) |

x1, . . . , xn, x ∈ R} ⊂ S3; it says that the latter tuple results from the
former tuple by appending the given real number.

The two ternary relations on R, addition and multiplication, may be
thought of as ternary relations on S (since R ⊂ S):
• addition: {(x, y, z) | x, y, z ∈ R, x+ y = z} ⊂ S3;
• multiplication: {(x, y, z) | x, y, z ∈ R, xy = z} ⊂ S3.
We endow S with the D-structure generated by the four relations (mem-

bership, appendment, addition, multiplication). All relations on S that be-
long to this D-structure will be called second-order definable. In the rest
of this section, “definable” means “second-order definable”, unless stated
otherwise.

Exercise 5.1. The set ∪∞n=1Rn of all tuples and the set ∪∞n=1 P(Rn) of all
relations are definable subsets of S. Prove it. Hint: first, the set of all tuples
is {s ∈ S | ∃r, t ∈ S (r, s, t) ∈ A} where A is the appendment relation;
second, take the complement.

Exercise 5.2. The set R of all real numbers is a definable subset of S. Prove
it. Hint: R = {r ∈ S | ∃s, t ∈ S (r, s, t) ∈ A} where A is the appendment
relation.

Exercise 5.3. Each Rn is a definable subset of S. Prove it. Hint: Rn+1 =
{t ∈ S | ∃r ∈ R ∃s ∈ Rn (r, s, t) ∈ A} where A is the appendment relation.

Exercise 5.4. The set P(R) of all sets of real numbers (that is, unary rela-
tions) is a definable subset of S. Prove it. Hint: for A ∈ ∪∞n=1 P(Rn) we have
A ∈ P(R) ⇐⇒ A ⊂ R ⇐⇒ (∀a ∈ A a ∈ R) ⇐⇒ ¬(∃a ∈ A a /∈ R); apply
the projection to {(A, a) | A ∈ ∪∞n=1 P(Rn) ∧ a ∈ A ∧ a /∈ R}.

Exercise 5.5. For each n the set P(Rn) of all n-ary relations is a definable
subset of S. Prove it. Hint: similar to the previous exercise.

Exercise 5.6. If B ⊂ P(R) is a definable set of subsets of R, then the union
∪A∈BA of all these subsets is a definable set (of real numbers). Prove it.
Hint: for x ∈ R we have x ∈ ∪A∈BA ⇐⇒ ∃A (A ∈ B ∧ x ∈ A); take the
projection of {(x,A) | A ∈ B ∧ x ∈ A} = (R×B) ∩ {(x,A) | x ∈ A}.
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Exercise 5.7. Do the same for the intersection ∩A∈BA. Hint: ∩A∈BA =
R \∪A∈B(R \A); consider {(x,A) | A ∈ B ∧x ∈ R \A} = (R×B)∩{(x,A) |
x /∈ A}. (But what if B is empty?)

Exercise 5.8. Generalize the two exercises above to B ⊂ P(R2), B ⊂ P(R3)
and so on. Hint: now x is a tuple.

In particular, taking a single-element set B = {A} we see that definability
of {A} implies definability of A. The converse holds as well (see below).

Exercise 5.9. If a set A ⊂ R (of real numbers) is definable, then the set
P(A) (of all subsets of A) is definable. Prove it. Hint: for A1 ∈ P(R) we
have A1 ∈ P(A)⇐⇒ A1 ⊂ A⇐⇒ (∀x ∈ A1 x ∈ A)⇐⇒ ¬(∃x ∈ A1 x /∈ A);
consider {(A1, x) | A1 ∈ P(R) ∧ x ∈ R ∧ x ∈ A1 ∧ x /∈ A} =

(
P(R) × (R \

A)
)
∩ {(A1, x) | x ∈ A1}.

Exercise 5.10. Do the same for the set {A1 ∈ P(R) | A1 ⊃ A} (of all
supersets of A). Hint: similarly to the previous exercise, consider

(
P (R) ×

A
)
∩ {(A1, x) | x /∈ A1}.

Exercise 5.11. Generalize the two exercises above to A ⊂ R2, A ⊂ R3 and
so on.

Remark. These 11 exercises (above) do not use addition and multiplica-
tion, nor any properties of real numbers. They generalize readily to a more
general situation. One may start with an arbitrary set R (rather than the
real line R), consider the set S constructed from R as above (all tuples and
all relations), endow S by a D-structure such that the two relations on S,
membership and appendment, are definable, and generalize the 11 exercises
to this case.

Taking the intersection of the set of subsets and the set of supersets we
see that definability of A implies definability of the single-element set (called
singleton) B = {A}. So, A is definable if and only if {A} is definable. And
still (by convention, as before) a real number x is definable if and only if {x}
is definable.

Does it mean that, for example, numbers 0, 1,
√

2 are definable (as well as
every rational number and every algebraic number)? We know that they are
first-order definable in (R; +,×); does it follow that they are (second-order)
definable in S?

The answer is affirmative, but needs a proof. Here we face another general
question. Let S be a set and R ⊂ S its subset. Every n-ary relation on R is
also a n-ary relation on S (since R ⊂ S =⇒ Rn ⊂ Sn =⇒ P(Rn) ⊂ P(Sn)).
Thus, given some relations on R, we get two D-structures; first, the D-struc-
ture on R generated by the given relations, and second, the D-structure on
S generated by the same relations.
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Lemma. Assume that R is a definable subset of S (according to the
second D-structure). Then every relation on R definable according to the
first D-structure is also definable according to the second D-structure.∗

Now we are in position to prove definability of the set N of natural num-
bers. It is sufficient to prove definability of the set B ⊂ P(R) of all sets
A ⊂ R satisfying the two conditions 1 ∈ A and ∀x ∈ A (x+1 ∈ A) (since the
intersection of all these A is N). The complement P(R) \ B = {A ∈ P(R) |
∃x ∈ R (x ∈ A∧ x+ 1 /∈ A)} is the projection of the intersection of two sets,
{(A, x) ∈ P(R)×R | x ∈ A} and {(A, x) ∈ P(R)×R | x+1 /∈ A}. The former
results from the (permuted) membership relation; the latter is the projection
of the projection of {(A, x, y, z) ∈ P(R)×R3 | y ∈ {1} ∧ x+ y = z ∧ z /∈ A},
this set being the intersection of three sets: first, P(R)×R×{1}×R; second,
P(R) times the addition relation; third, P(R)× R× R× (R \ A). It follows
that B is definable, whence N = ∩A∈BA is definable.

This is instructive. In order to formalize a definition of a set via its defin-
ing property, we have to deal with sets of sets, and more generally, relations
between sets.

Using again the lemma above we see that all real numbers first-order
definable in (R; +,×,N) are second-order definable. Section 3 gives many
examples, including the five numbers

√
2, ϕ, e, π,Ω, discussed in Introduction.

But second-order proofs of their definability are much more easy and natural.
The binary relation “x ∈ N ∧ y = x!” is the sequence (n!)n∈N of factori-

als, that is, the set {(1, 1), (2, 2), (3, 6), (4, 24), (5, 120), . . . }. It is definable,
similarly to N, since it is the least subset A of R2 such that (1, 1) ∈ A and
(x, y) ∈ A =⇒

(
x+ 1, (x+ 1)y

)
∈ A. Alternatively, it is definable since it is

∗Proof. Denote the first D-structure by DR and the second by DS . We know that
R ∈ DS . It follows (via set multiplication) that R × S ∈ DS , R × S × S = R × S2 ∈ DS ,
and so on; by induction, R× Sn ∈ DS for all n. Thus (via permutation), Sn ×R ∈ DS .

In order to prove that DR ⊂ DS we compare the five operations on relations (comple-
ment, union, permutation, set multiplication, projection) over R (call them R-operations)
and over S (S-operations). We have to check that each R-operation applied to relations
on R that belong to DS gives again a relation (on R) that belongs to DS .

For the union we have nothing to check, since the R-union of two relations is equal to
their S-union. Similarly, we have nothing to check for permutation and projection. Only
set multiplication and complement need some attention.

Set multiplication. The R-multiplication applied to A ∈ P(Rn) ∩DS gives A× R. We
have A×R = (A× S) ∩ (Sn ×R) ∈ DS since A× S ∈ DS and Sn ×R ∈ DS .

It follows (by induction) that Rn ∈ DS for all n.
Complement. The R-complement applied to A ∈ P(Rn)∩DS gives Rn\A. We note that

the S-complement Sn\A belongs to DS (since A ∈ DS), thus Rn\A = Rn∩(Sn\A) ∈ DS

(since Rn ∈ DS).
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the only subset A of R2 with the following three properties:

∀(x, y) ∈ A x ∈ N,
∀x ∈ N ∃!y ∈ R (x, y) ∈ A,

∀(x, y) ∈ A
(
x+ 1, (x+ 1)y

)
∈ A.

That is, the factorial is the only function N → R satisfying the recurrence
relation (n+ 1)! = (n+ 1)n! and the initial condition 1! = 1.

Exercise 5.12. Partial sums of the series
∑∞

n=0
1
n!

are a definable sequence.
Prove it.

Exercise 5.13. The number e is definable. Deduce it from the previous
exercise.

In the first-order framework it is possible to treat many functions (for in-
stance, the exponential function x 7→ ex, the sine and cosine functions sin, cos,
the exponential integral Ei and the sine integral Si) and many relations be-
tween functions (for instance, derivative and antiderivative); arguments and
values of these functions are arbitrary real numbers (not necessarily defin-
able), but the functions are definable. Such notions as arbitrary functions
(not necessarily definable), continuous functions (and their antiderivatives),
differentiable functions (and their derivatives) need the second-order frame-
work.

As was noted there, a function f : R → R is nothing but the binary
relation “f(x) = y”, that is, A = {(x, y) | f(x) = y}. An arbitrary binary
relation A is such a function if and only if for every x there exists one and
only one y such that (x, y) ∈ A (existence and uniqueness). For functions
defined on arbitrary subsets of the real line the condition is weaker: for every
x there exists at most one y such that (x, y) ∈ A (uniqueness).

Exercise 5.14. (a) All A ∈ P(R2) satisfying the uniqueness condition are a
definable subset of P(R2); (b) the same holds for the existence and uniqueness
condition. Prove it.

Exercise 5.15. All continuous functions R → R are a definable subset of
P(R2). Prove it.

Exercise 5.16. All differentiable functions R→ R are a definable subset of
P(R2). Prove it.

Exercise 5.17. The binary relation “f ′ = g” is definable. That is, the set
of all pairs (f, g) of functions R → R such that ∀x ∈ R

(
f ′(x) = g(x)

)
is a

definable subset of P(R2)× P(R2) (in other words, definable binary relation
on P(R2)). Prove it.
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Antiderivative can now be treated in full generality. In contrast, in the
first-order framework it was treated via Riemann integral F (x) = F (0) +
limn→∞

x
n

∑n
k=1 f( k

n
x) for continuous definable f only. In particular, now

the exponential function x 7→ ex may be treated via f(ex) − f(1) = x
where f ′(x) = 1

x
for x > 0; accordingly, the constant e may be treated via

f(e)− f(1) = 1. Alternatively, the exponential function may be treated via
the differential equation f ′ = f (and initial condition f(0) = 1). Trigonomet-
ric functions sin, cos may be treated via the differential equation f ′′ = −f ;
accordingly, the constant π may be treated as the least positive number
such that (f ′′ = −f) =⇒

(
f(π) = −f(0)

)
. Or, alternatively, as π =

4
∫ 1

0

√
1− x2 dx (via antiderivative).

This is instructive. In the second-order framework we may define func-
tions (and infinite sequences) via their properties, irrespective of computabil-
ity, Diophantine equations and other tricks of the first-order framework.

Nice; but what about second-order definable real numbers? Are they
all first-order definable, or not? Even if obtained from complicated dif-
ferential equations, they are computable, therefore, first-order definable in
(R; +,×,N). Probably, our only chance to find a second-order definable but
first-order undefinable number is, to prove that the explicit example of (first-
order) undefinable number, given in Section 4, is second-order definable; and
our only chance to prove this conjecture is, to formalize that section within
the second-order framework.

6 First-order undefinable but second-order de-

finable

Recall the infinite sequence of relations (Ak)
∞
k=1 treated in Section 4. Is it

second-order definable? Each Ak belongs to the set S (from Section 5); their
infinite sequence is a binary relation between k and Ak (namely, the set of
pairs {(1, A1), (2, A2), . . . }), thus, a special case of a binary relation on S;
the question is, whether this relation is definable, or not. Like the sequence
of factorials, it is defined by recursion. But factorials, being numbers, are
first-order objects, which is why their sequence is second-order definable via
its properties. In contrast, relations Ak are second-order objects! Does it
mean that third order is needed for defining their sequence by recursion?

True, the sequence of factorials is first-order definable (over (R; +,×,N))
due to its computability, via Matiyasevich’s theorem. Could something like
that be invented for second-order objects? Probably not.

Yet, these obstacles are surmountable. The sequence of relations may be
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replaced with a single relation by a kind of currying (or rather, uncurrying);
the disjoint union {1} × A1 ∪ {2} × A2 ∪ . . . may be used instead of the
set of pairs {(1, A1), (2, A2), . . . }. Further, relations Ak of different arities
may be replaced with unary relations (subsets of the real line), since two
real numbers may be encoded into a single real number via an appropriate
definable injection R2 → R, and the same applies to three and more num-
bers (moreover, to infinitely many numbers, see Booij [7, Sect. 3.2]). In
addition, tuples (x1, . . . , xn) may be replaced (whenever needed) by finite se-
quences (xk)

n
k=1 = {(1, x1), . . . , (n, xn)}, which provides a richer assortment

of definable relations.
The distinction between tuples and finite sequences is a technical subtlety

that may be ignored in many contexts, but sometimes requires attention. It
is tempting to say that an ordered pair (a, b), a 2-tuple (that is, tuple of
length 2), and a 2-sequence (that is, finite sequence of length 2) are just all
the same. However, the 2-sequence is, by definition, a function on {1, 2},
thus, the set of two ordered pairs {(1, a), (2, b)}. Surely we cannot define an
ordered pair to be a set of two other ordered pairs! If sequences are defined
via functions, and functions are defined via pairs, then pairs must be defined
before sequences, and cannot be the same as 2-sequences. See Wikipedia:
sequence (formal definition), tuples (as nested ordered pairs), and ordered
pair: Kuratowski’s definition. For convenience we’ll denote a finite sequence
(xk)

n
k=1 = {(1, x1), . . . , (n, xn)} by [x1, . . . , xn]; it is similar to, but different

from, the tuple (x1, . . . , xn).
We’ll construct again, this time in the second-order framework, the se-

quence (x1, x2, . . . ) of real numbers that contains all numbers first-order de-
finable in (R; +,×,N), exactly the same sequence as in Section 4. To this
end we’ll construct first the disjoint union {1}×B1∪{2}×B2∪ . . . of unary
relations Bk on R similar to, but different from, relations A1, A2, . . . (unary,
binary, ...) constructed there (that exhaust all relations first-order definable
in (R; +,×,N)).

Before the unary relations Bk we construct 4-tuples bk of integers (call
them ”instructions”) imitating a program for a machine that computes Bk.
Similarly to a machine language instruction, each bk contains an operation
code, address of the first operand, a parameter or address of the second
operand (if applicable, otherwise 0), and in addition, the arity of Ak.

Recall Section 4. Three relations A1, A2, A3 of arities 3, 3, 1 are given, and
lead to the next 13 relations A4, . . . , A16. In particular, A4 is the complement
of A1. Accordingly, we let b4 = (1, 1, 0, 3); here, operation code 1 means
“complement...”, operand address 1 means “...of A1”, the third number 0
is dummy, and the last number 3 means that the relation A4 is ternary.
Similarly, b5 = (1, 2, 0, 3) and b6 = (1, 3, 0, 1).
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Further, A7 being the union of A1 and A2, we let b7 = (2, 1, 2, 3); operation
code 2 means “union. . . ”, first operand address 1 means “. . . of A1”, second
operand address 2 means “. . . and A2”, and again, 3 is the arity of A7.

Further, A8 being a permutation of A1, we let b8 = (3, 1, 1, 3); operation
code 3 means “permutation. . . ”, operand address 1 means “. . . of A1”, the
parameter 1 means “swap 1 and 2”, and 3 is the arity of A8. Similarly,
b9 = (3, 1, 2, 3) (in A1 swap 2 and 3), b10 = (3, 2, 1, 3) (in A2 swap 1 and 2),
b11 = (3, 2, 2, 3) (in A2 swap 2 and 3).

Further, A12 being A1×R, we let b12 = (4, 1, 0, 4); operation code 4 means
“set multiplication”, 1 refers to the operand A1, and 4 is the arity of A12.
Similarly, b13 = (4, 2, 0, 4) and b14 = (4, 3, 0, 2).

Further, A15 being the projection of A1, we let b15 = (5, 1, 0, 2); opera-
tion code 5 means ”projection. . . ”, 1 means ”. . . of A1”, and 2 means ”. . . is
binary”. Similarly, b16 = (5, 2, 0, 2).

This way, the finite sequence [3, 3, 1] of natural numbers (interpreted as
arities) leads to the finite sequence [b4, . . . , b16] of 4-tuples (interpreted as in-
structions). Similarly, every finite sequence of natural numbers leads to the
corresponding finite sequence of 4-tuples. The relation between these two
finite sequences is definable; the proof is rather cumbersome, like a routine
exercise in programming, but doable. Having this relation, we define an infi-
nite sequence of 4-tuples bk (interpreted as the infinite “program”) together
with an infinite sequence (kn)∞n=1 by the following defining properties:
• k1 = 3; ∀n ∈ N kn < kn+1;
• b1 = b2 = (0, 0, 0, 3); b3 = (0, 0, 0, 1);
• for every n = 1, 2, . . . the finite sequence [bkn+1, . . . , bkn+1 ] of 4-tuples

corresponds (according to the definable relation treated above) to the
finite sequence of the natural numbers that are the last (fourth) ele-
ments of the 4-tuples b1, . . . , bkn .

In particular, k1 = 3, k2 = 16; the third property for n = 1 states that
[b4, . . . , b16] corresponds to [3, 3, 1]. And for n = 2 it states that [b17, . . . , bk3 ]
corresponds to [3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 4, 4, 2, 2, 2]. And so on.

The infinite program is ready. It could compute all relations Ak if exe-
cuted by a machine able to process relations of all arities. Is such machine
available in our framework? The disjoint union {1}×A1∪{2}×A2∪. . . could
be used instead of the set of pairs {(1, A1), (2, A2), . . . }, but is not contained
in (say) R100. True, in practice 100-ary relations do not occur in definitions;
but we investigate definability in principle (rather than in practice). We
encode all relation into unary relations as follows.

We recall the definable injective functions W2 : (0, 1)2 → (0, 1) and W3 :
(0, 1)3 → (0, 1) treated in the end of Section 3. The same works for any
(0, 1)m. But we need to serve all dimensions m by a single definable function.
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To this end we turn from sets Rm of m-tuples (x1, . . . , xm) to sets, denote
them R[m], of m-sequences [x1, . . . , xm].

Exercise 6.1. The set of all finite sequences of real numbers, {[x1, . . . , xm] |
m ∈ N, x1, . . . , xm ∈ R} = ∪∞m=1R[m] ⊂ P(R2), is definable, and the bi-
nary relation ”length”, {([x1, . . . , xm],m) | m ∈ N, x1, . . . , xm ∈ R} =
∪∞m=1

(
R[m] × {m}

)
⊂ P(R2) × R, on S is a definable function on that set.

Prove it. Hint: start with the binary relation.

Exercise 6.2. The function E : ([x1, . . . , xm], k) 7→ xk (”evaluation”) is a
definable real-valued function on the set ∪∞m=1

(
R[m] × {1, . . . ,m}

)
. Prove it.

Hint: for s = [x1, . . . , xm], k ∈ N and x ∈ R we have E(s, k) = x⇐⇒ (k, x) ∈
s⇐⇒ ∃p

(
p ∈ s ∧ (k, x) = p

)
; use the two given relations on S, membership

and appendment (consider n = 1 in the definition of appendment).

We choose a definable bijection h : R → (0, 1), for example, h(x) =
1
2
(1 + x

1+|x|), and define a function W : ∪∞m=1R[m] → R by W ([x1, . . . , xm]) =

Wm

(
h(x1), . . . , h(xm)

)
for all m ∈ N and x1, . . . , xm ∈ R.

Exercise 6.3. The function W is definable. Prove it. Hint: for all
m ∈ N, x1, . . . , xm ∈ R and z ∈ R we have W ([x1, . . . , xm]) = z ⇐⇒
Wm

(
h(x1), . . . , h(xm)

)
= z ⇐⇒ ∀k ∈ {1, . . . ,m} ∀n ∈ N D(m(n − 1) +

k, z) = D(n, h(xk)); that is, for all m ∈ N, s ∈ R[m] and z ∈ R holds W (s) =
z ⇐⇒ ∀k ∈ N

(
k ≤ m =⇒ ∀n ∈ N D(m(n− 1) + k, z) = D(n, h(E(s, k))

)
.

At last, we are in position to “execute the infinite program” (bk)
∞
k=4, that

is, to prove (second-order) definability of the set B = {1} ×B1 ∪ {2} ×B2 ∪
· · · ⊂ R2, the disjoint union of unary relationsBk on R that encode (according
to W ) the relations A1, A2, . . . (that exhaust all relations first-order definable
in (R; +,×,N)).

We extract B1 = {c ∈ R | (1, c) ∈ B}, decode the ternary relation
{[x, y, z] | W ([x, y, z]) ∈ B1} = {s ∈ R[3] | W (s) ∈ B1} and require it
to be (like A1) the addition relation {[x, y, z] | x + y = z} = {s ∈ R[3] |
E(s, 1) + E(s, 2) = E(s, 3)}. That is, we require

∀s ∈ R[3]
(
(1,W (s)) ∈ B ⇐⇒ E(s, 1) + E(s, 2) = E(s, 3)

)
.

This condition fails to uniquely determine the set B1, since the image of
R[3] under W is not the whole R (not even the whole (0, 1)). We prevent
irrelevant points by requiring in addition that ∀x ∈ R

(
(1, x) ∈ B =⇒ ∃s ∈

R[3] W (s) = x
)
. We do not repeat such reservation below.
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Similarly, B2 must encode the multiplication relation, and B3 must encode
the set of natural numbers:

∀s ∈ R[3]
(
(2,W (s)) ∈ B ⇐⇒ E(s, 1)E(s, 2) = E(s, 3)

)
;

∀s ∈ R[1]
(
(3,W (s)) ∈ B ⇐⇒ E(s, 1) ∈ N

)
.

These first three requirements (above) are special. Other requirements should
be formulated in general, like this: for every k ≥ 4, if the first element of bk
(the operation code) equals 1, then (...), otherwise (...). But let us consider
several examples before the general case.

According to the instruction b4, the set B4 must encode the complement
of the set encoded by B1:

∀s ∈ R[3]
(
(4,W (s)) ∈ B ⇐⇒ (1,W (s)) /∈ B

)
;

similarly,

∀s ∈ R[3]
(
(5,W (s)) ∈ B ⇐⇒ (2,W (s)) /∈ B

)
;

∀s ∈ R[1]
(
(6,W (s)) ∈ B ⇐⇒ (3,W (s)) /∈ B

)
.

According to the instruction b7, the set B7 must encode the union of the sets
encoded by B1 and B2:

∀s ∈ R[3]
(
(7,W (s)) ∈ B ⇐⇒

(
(1,W (s)) ∈ B ∨ (2,W (s)) ∈ B

))
.

According to the instruction b8, the set B8 must encode the permutation of
the set encoded by B1:

∀[x, y, z] ∈ R[3]
(
(8,W ([x, y, z])) ∈ B ⇐⇒ (1,W ([y, x, z])) ∈ B

)
;

similarly,

∀[x, y, z] ∈ R[3]
(
(9,W ([x, y, z])) ∈ B ⇐⇒ (1,W ([x, z, y])) ∈ B

)
;

∀[x, y, z] ∈ R[3]
(
(10,W ([x, y, z])) ∈ B ⇐⇒ (2,W ([y, x, z])) ∈ B

)
;

∀[x, y, z] ∈ R[3]
(
(11,W ([x, y, z])) ∈ B ⇐⇒ (2,W ([x, z, y])) ∈ B

)
.

According to the instruction b12, the set B12 must encode the Cartesian
product (by R) of the set encoded by B1:

∀[x, y, z, u] ∈ R[4]
(
(12,W ([x, y, z, u])) ∈ B ⇐⇒ (1,W ([x, y, z])) ∈ B

)
;

similarly,

∀[x, y, z, u] ∈ R[4]
(
(13,W ([x, y, z, u])) ∈ B ⇐⇒ (2,W ([x, y, z])) ∈ B

)
;

∀[x, y] ∈ R[2]
(
(14,W ([x, y])) ∈ B ⇐⇒ (3,W ([x])) ∈ B

)
.
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According to the instruction b15, the set B15 must encode the projection of
the set encoded by B1:

∀[x, y] ∈ R[2]
(
(15,W ([x, y])) ∈ B ⇐⇒ ∃z ∈ R (1,W ([x, y, z])) ∈ B

)
;

similarly,

∀[x, y] ∈ R[2]
(
(16,W ([x, y])) ∈ B ⇐⇒ ∃z ∈ R (2,W ([x, y, z])) ∈ B

)
.

Toward the general formulation. We observe that the first two cases (com-
plement and union) are unproblematic, while the other three cases (permu-
tation, set multiplication, and projection) need some additional effort. The
informal quantifiers like “∀[x, y, z]” should be replaced with “∀s”, and the
needed relations between finite sequences should be generalized (and formal-
ized).

Exercise 6.4. The binary relation of truncation {([x1, . . . , xn+1], [x1, . . . , xn]) |
n ∈ N, x1, . . . , xn+1 ∈ R} is definable. Prove it. Hint: use the evaluation
function.

Exercise 6.5. The ternary relation of appendment
{(x, [x1, . . . , xn], [x1, . . . , xn+1]) | n ∈ N, x1, . . . , xn, x ∈ R} is definable.
Prove it.

Now the reader should be able to compose himself the general formula-
tion. Also the additional condition that prevents irrelevant points should be
stipulated. We conclude that the set B = {1} × B1 ∪ {2} × B2 ∪ · · · ⊂ R2

is definable. For each n we check, whether the relation encoded by Bn is of
the form {u} for u ∈ R or not; if it is, we take xn = u, otherwise xn = 0. We
get the definable sequence that contains all numbers first-order definable in
(R; +,×,N). The next step (explained in Section 4), readily formalized (via
the function D from Section 3), provides a definable number not contained
in this sequence.

7 Fast-growing sequences

Looking at decimal digits of two real numbers, for example,

x = 0.62831 85307 17958 64769 25286 76655 90057 68394 33879 87502 11641 . . .

y = 0.65465 36707 07977 14379 82924 56246 85835 55692 08082 39542 45575 . . .

can you see, which one is “more definable”? Probably not. (Answer: y =√
3/7 is algebraic, therefore first-order definable in (R; +,×), while x = π/5
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is not.) Surprisingly, a kind of visualization of definability is possible in an
interesting special case. The number

∞∑
n=0

10−3
n

= 0.10100 00010 00000 00000 00000 01000 00000 00000 00000 . . .

is transcendental (that is, not algebraic). Moreover, every number of the
form

∑∞
n=1 10−kn with kn ∈ N, limn→∞

kn+1

kn
> 2 is transcendental, which

follows from Roth’s theorem.

Exercise 7.1. If (kn)∞n=1 is a definable sequence of natural numbers, strictly
increasing (that is, k1 < k2 < . . . ), then the number

∑∞
n=1 10−kn is defin-

able. Prove it both in the framework of Section 3 (first-order definability
in (R; +,×,N)) and the framework of Section 5 (second-order definability).
Hint: ∀i ∈ N

(
D(i, x) = 1⇐⇒ ∃n ∈ N i = kn

)
, and ∀i ∈ N D(i, x) ≤ 1.

Exercise 7.2. If a number
∑∞

n=1 10−kn with kn ∈ N, k1 < k2 < . . . , is
definable, then the sequence (kn)∞n=1 is definable. Prove it in the framework
of Section 5 (second-order definability). Hint: for every n, kn+1 is the least
k such that k > kn ∧D(k, x) = 1.

Note that the sequence (kn)∞n=1 is defined by its property, which works
only in the second-order framework. The first-order framework requires an
explicit relation between n and k = kn. Nevertheless, the claim of Exercise
7.2 holds also in the framework of Section 3.∗

Thus, in order to get a first-order undefinable but second-order definable
real number, it is sufficient to find a first-order undefinable but second-order
definable strictly increasing sequence of natural numbers. This can be made
similarly to Sections 4, 6, replacing Cantor’s diagonal argument with the
following fact:
• For every sequence of sequences (of numbers) there exists a strictly

increasing sequence (of numbers) that overtakes all the given sequences
(of numbers).

The proof is immediate: take yn = n + maxi,j∈{1,...,n} xi,j where the number
xi,j is the i-th element of the j-th given sequence; then clearly yn > xn,m
whenever n ≥ m.

∗It is easy to obtain the sequence (nk)∞k=1 out of the sequence (sk)∞k=1 of sums sk =∑k
i=1 αi of the digits αi = D(i, x). The problem is that in the first-order framework we

cannot define (sk)∞k=1 just by the property “∀k sk+1 = sk + αk+1”. Yet, this obstacle
is surmountable; we can computably encode by natural numbers all tuples of natural
numbers. (A similar trick was used in Section 6.)
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Exercise 7.3. If the ternary relation {(i, j, xi,j) | i, j ∈ N} is definable,
then the binary relation {(n, yn) | n ∈ N} is definable. Prove it. Hint:
y = yn ⇐⇒

(
(∃i ∃j (i ≤ n ∧ j ≤ n ∧ y − n = xi,j)) ∧ (∀i ∀j (i ≤ n ∧ j ≤

n =⇒ y − n ≥ xi,j))
)
.

Reusing the construction of Section 6, we enumerate all sequences of
natural numbers, definable in the framework of Section 3, by enumeration
definable in the framework of Section 5, and then overtake them all by a
strictly increasing sequence of natural numbers, definable in the framework
of Section 5.

To fully appreciate the incredible growth rate of this sequence, we note
that it overtakes all computable sequences, as well as an extremely fast-
growing sequence (MN)∞N=1 mentioned in Introduction. Recall AN and
AM,N discussed there. In the framework of Section 3, the ternary rela-
tion {(M,N,AM,N) | M,N ∈ N}, being recursively enumerable (therefore
Diophantine) is definable; and the binary relation {(N,AN) | N ∈ N} is
definable, since a = AN ⇐⇒

(
(∃M ∈ N a = AM,N)∧ (∀M ∈ N a ≥ AM,N)

)
.

Defining MN as the least M such that AM,N = AN we observe that the se-
quence (MN)∞N=1 is definable (since m = MN ⇐⇒ (Am,N = AN ∧ Am−1,N <
AN)). On the other hand, as noted in Introduction, this sequence cannot be
bounded from above by a computable sequence.

More discussions of large numbers are available, see Scott Aaronson,7

John Baez8 and references therein. A quote from Aaronson (pages 11–12):

You defy him to name a bigger number without invoking Turing
machines or some equivalent. And as he ponders this challenge,
the power of the Turing machine concept dawns on him.

Definability could be mentioned here along with Turing machines.

8 Definable but uncertain

Two sets are called equinumerous if there exists a one-to-one correspondence
between them. In particular, two subsets A,B of R are equinumerous if (and
only if) ∃f ∈ P(R2)

(
f ⊂ A × B ∧ (∀x ∈ A ∃!y ∈ B (x, y) ∈ f) ∧ (∀y ∈

B ∃!x ∈ A (x, y) ∈ f)
)
. We see that the binary relation “equinumerosity”

on P(R) is second-order definable.
Some subsets of R are equinumerous to {1, . . . , n} for some n ∈ N (these

are finite sets). Others may be equinumerous to N (these are called countable,
or countably infinite), or R (these are called sets of cardinality continuum),
or. . . what else? Can a set be more than countable but less than continuum?
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This seemingly innocent question is one of the most famous in set theory,9

the first among the Hilbert’s problems. The answer was expected to be “no
such sets”, which is the continuum hypothesis (CH); Georg Cantor tried hard
to prove it, in vain; Kurt Gödel proved in 1940 that CH cannot be disproved
within the axiomatic set theory called ZFC, and hoped that new axioms will
disprove it;10 Paul Cohen proved in 1963 that CH cannot be proved within
ZFC, and felt intuitively that it is obviously false.11 Nowadays some experts
hope to find “the missing axiom”, others argue that this is hopeless.12

A wonder: million published theorems13 in all branches of mathematics
formally are deduced from the 9 axioms of ZFC; they answer, affirmatively
or negatively, million mathematical questions; some questions remain open,
waiting for solutions in the ZFC framework; but the continuum hypothesis
is an exception!14

Back to definability. Consider the set Z of all subsets of R that are more
than countable but less than continuum. We do not know, whether Z is
empty or not, but anyway, we know that Z is second-order definable. We
define a number z by the following property:

( z = 0 ∧ ∃A A ∈ Z ) ∨ ( z = 1 ∧ ∀A A /∈ Z ) .

That is, z is 1 if CH is true, and 0 otherwise. This is a valid definition;
z is second-order definable; but we cannot know, is it 0 or 1. Each one of
the two equalities, z = 0 and z = 1, could be added (separately!) to the
axioms of ZFC without contradiction;∗ according to the model theory, it
means existence of two models of ZFC, one with z = 0, the other with z = 1.
In this sense, z is model dependent.

Is z computable? Yes, it is, just because 0 and 1 are computable num-
bers, and z is one of these. You might feel bothered, even outraged, but
this is a valid argument. Compare it with the well-known proof that an
irrational elevated to an irrational power may be rational:

(√
2
)√

2 is ei-
ther rational (which gives the needed example), or irrational, in which case(√

2
√
2)√2 =

(√
2
)
2 = 2 gives the needed example.15 Seeing this, some retreat

to intuitionism, but almost all mathematics is classical, it accepts the law of
excluded middle and cannot arbitrarily disallow it in some cases.

So, what is the algorithm for computing z? Surely the definition of an
algorithm disallows such condition as “if CH holds, then” within an al-
gorithm. However, it cannot disallow a model-dependent algorithm A =
(if CH holds then A1 else A0), where A1 is a (trivial) algorithm that com-
putes the number 1, and A0 computes 0. The conditioning “if CH holds,

∗Assuming, of course, that ZFC itself is consistent.
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then” is allowed outside the algorithms (similarly, the conditioning “if
(√

2
)√

2

is rational, then” is allowed outside the formulas). If you are unhappy with
the affirmative answer to the question “is z computable?”, ask a different
question: “is z computable by a model-independent algorithm?” The an-
swer is negative (see below).

On the other hand, definability of the number z is established by a kind of
“generalized algorithm” able to process second-order objects (real numbers,
relations between these, and relations between relations; recall the “program”
(bk)k in Section 6). This “generalized algorithm” is model independent, but
its output is model dependent.

In contrast, the number π is model independent; for every rational number
r one of the two inequalities π < r, π > r is provable in ZFC. The same
applies to the numbers

√
2, ϕ, e discussed in Introduction, since each of these

numbers can be computed by a model independent algorithm. If a number
is computable by a model-independent algorithm, then this number is both
model independent and computable.

What about Chaitin’s constant Ω? It is limit computable by a model-
independent algorithm. Also, it is first-order definable (in (R; +,×,N)), and
the first-order framework disallows questions (such as CH) about arbitrary
sets of numbers, thus, one might hope that Ω is model independent. But it
is not!

Here we need one more fact about Ω. The sequence (AN)∞N=1 of its binary
digits is not just uncomputable, that is, the set {N | AN = 1} is not just
non-recursive, but moreover, this set belongs to “the most important class
of recursively enumerable sets which are not recursive”,16 the so-called cre-
ative sets, or equivalently, complete recursively enumerable sets. Basically, it
means that this sequence contains answers to all questions of the form “does
the natural number n belong to the recursively enumerable set A?” And
in particular(!), all questions of the form “can the statement S be deduced
from the theory ZFC?”, since in ZFC (and many other formal theories as
well) the set of (numbers of) provable statements is recursively enumerable.
Taking S to be the negation of something provable (for instance, 0 6= 0) we
get the question “is ZFC consistent?” answered by one of the binary digits
AN of Ω, whose number NZFC can be computed; if this ANZFC

is 0, then ZFC
is consistent; if ANZFC

is 1, then ZFC is inconsistent. However, by a famous
Gödel theorem, this question cannot be answered by ZFC itself! Assum-
ing that ZFC is consistent we have ANZFC

= 0, but this truth is not provable
(nor refutable) in ZFC. (In fact, it is provable in ZFC+large cardinal axiom.)
Therefore, in some models of ZFC we have ANZFC

= 0, in others ANZFC
= 1,

which shows that Ω is model dependent. Moreover, there are versions of Ω
such that every binary digit of Ω is model dependent [22], [23].
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Yet the (first-order) case of ANZFC
is less bothering that the (second-

order) case of z, since we still believe that ANZFC
= 0. Adding the axiom

“ANZFC
= 1”, that is, “ZFC is inconsistent” to ZFC we get a theory that is

consistent∗ but not ω-consistent. This strange theory claims existence of a
proof of “0 6= 0” in ZFC, of a finite length N06=0, this length being a natural
number. And nevertheless, this theory claims that N06=0 > 1, N06=0 > 2,
N06=0 > 3, and so on, endlessly.† Every model of this strange theory contains
more natural numbers than the usual 1, 2, 3, . . . In mathematical logic we
must carefully distinguish between two concepts of a natural number, one
belonging to a theory, the other to its metatheory. In particular, when
saying “for every rational number r one of the two inequalities π < r, π > r
is provable in ZFC” we should mean that |r| is the ratio of two metatheoretical
natural numbers.

Using as binary digits an infinite sequence of independent “yes/no” pa-
rameters of models of ZFC we get a model dependent definable number w
whose possible values are all real numbers. More exactly, the following holds
in the metatheory: for every real number x there exists a model of ZFC‡

whose natural numbers (and therefore rational numbers) are the same as in
the metatheory, and for every rational number r the inequality w > r holds
in the model if and only if x > r. Is this possible in the first or second order
framework? I do not know. But in the third order framework this is possible,
as suggested by the generalized continuum hypothesis.17

9 Higher orders; set theory

Recall the transition from first-order definability to second-order definability
(Section 5); from the set R of all real numbers to the set S of all tuples and
relations over R, and the D-structure on S generated by the D-structure on
R and two relations, membership and appendment, on S. The next step
suggests itself: the set T =

(
S∪S2 ∪S3 ∪ . . .

)
∪
(
P(S)∪P(S2)∪P(S3)∪ . . .

)
of all tuples and relations over S, with the D-structure on T generated by
the D-structure on S and two relations, membership and appendment, on
T, formalizes third-order definability. This way we may introduce infinitely
many orders of definability, R ⊂ S ⊂ T ⊂ . . . , or T1 ⊂ T2 ⊂ T3 ⊂ . . . where
T1 = R, T2 = S, T3 = T and so on. Similarly to Section 6 we can prove
that each order brings new definable real numbers (and new, faster-growing

∗Assuming, of course, that ZFC itself is consistent.
†Beware of the elusive distinction between two phrases, “for each n it claims N06=0 > n”

and “it claims ∀n N06=0 > n”.
‡Assuming, of course, that ZFC itself is consistent.
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sequences of natural numbers, recall Section 7).
But this is only the tip of the iceberg. The union of all these sets,

T∞ = T1 ∪ T2 ∪ . . . , endowed with the D-structure generated by the given
D-structures on all Tn, formalizes a new, transfinte order of definability, and
starts a new sequence of orders. Should we denote them by T∞+1, T∞+2, . . . ?
What about T∞+∞ ? How high is this hierarchy? Is it countable, or not?

Transfinite hierarchies are investigated by set theory (see Wikipedia:Set
theory, and Section “Some ontology” there). Surprisingly, set theory does
not need the field R of real numbers as the starting point; not even the set N
of natural numbers. A wonder: set theory is able to start from nothing and
get everything!18

The cumulative hierarchy starts with the empty set, denoted by ∅ or {},
the number 0 defined as just another name of the empty set, and stage zero,
denoted by V0 and defined as still another name of the empty set. On the next
step we consider the set P(V0) of all subsets of V0. There is only one subset of
∅, the empty set itself, thus P(V0) = P(∅) = {∅} = {0}; we define the number
1 to be {0}, and stage one V1 = P(V0). Similarly, P(V1) is the two-element set
2 = {∅, {∅}} = {0, 1} = V2, stage two. Somewhat dissimilarly, P(V2) is the
four-element set {∅, {0}, {1}, {0, 1}} = {0, 1, {1}, 2}, its three-element subset
{0, 1, 2} is (by definition) the number 3, and V3 = P(V2) is the third stage.
More generally, n + 1 = {0, 1, . . . , n} ⊂ P(Vn) = Vn+1 for n = 1, 2, 3, 4, . . . .

Thus, Vn is a set of 22·
·2︸︷︷︸

n−1

elements(!), while n is its subset of n elements.

Exercise 9.1. V0 ⊂ V1 ⊂ V2 ⊂ . . . Prove it. Hint: A ⊂ B =⇒ P(A) ⊂ P(B).

Here we face crossroads. One way is to treat the union V0 ∪ V1 ∪ V2 ∪ . . .
of all Vn as the class V of all sets (a proper class, not a set). This way leads
to the finite set theory (see Takahashi [27], Baratella and Ferro [28] and
others; see also Wikipedia:General set theory). The other way is to treat
the union V0 ∪ V1 ∪ V2 ∪ . . . of all Vn as an infinite set, its infinite subset
ω = {0, 1, 2, . . . } as the first transfinite ordinal number, and Vω = ∪∞n=0Vn as
the first transfinite stage of the cumulative hierarchy. This way leads to the
set theory widely accepted by the mainstream mathematics.19

9.1 Finite set theory

The finite set theory is equivalent (in some sense) to arithmetic (Kaye and

Wong [29]); consistency of these theories is nearly indubitable,20 in contrast
to the (full) set theory whose axiom of infinity says basically that the class

Vω is a set.21
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In the finite set theory, the class N ∪ {0} of numbers 0, 1, 2, . . . may be
defined as the class of all sets x such that x is transitive, that is, ∀y ∀z (y ∈
x ∧ z ∈ y =⇒ z ∈ x), and x is totally ordered by membership, that is,
∀y ∀z

(
(y ∈ x ∧ z ∈ x) =⇒ (y = z ∨ y ∈ z ∨ z ∈ y)

)
. Adding the condition

that x is non-empty, that is, ∃y y ∈ x, we get the class N of natural numbers
{1, 2, . . . }.

Each set x is equinumerous to one and only one n ∈ N ∪ {0}; as before,
“equinumerous” means existence of a set f such that f ⊂ x × n, that is,
∀p ∈ f ∃y ∈ x ∃m ∈ n p = (y,m) where (y,m) = {{y}, {y,m}}), and f
is a one-to-one correspondence between x and n, that is, (∀y ∈ x ∃!m ∈
n (y,m) ∈ f) ∧ (∀m ∈ n ∃!y ∈ x (y,m) ∈ f). In this case we say that n is
the number of members of x.

The sum m + n of m,n ∈ N ∪ {0} may be defined as the number of
members in the disjoint union {1} × m ∪ {2} × n. The product mn of
m,n ∈ N∪{0} may be defined as the number of members in the set product
m × n = {(k, `) | k ∈ m, ` ∈ n}. The power mn for m,n ∈ N ∪ {0} may be
defined as the number of functions from n to m (that is, from {0, . . . , n− 1}
to {0, . . . ,m− 1}).

A rational number could be defined as an equivalence class of triples
(p, n, q) of natural numbers p, n, q ∈ N w.r.t. such equivalence relation:
(p1, n1, q1) ∼ (p2, n2, q2) when p1q2 + n2q1 = p2q1 + n1q2 (informally this
means that p1−n1

q1
= p2−n2

q2
, of course). However, in this case we cannot intro-

duce the class of rational numbers (since a proper class cannot be member of
a class). Thus, it is better to choose a single element in each equivalence class,
and define a rational number as a triple (p, n, q) of numbers p, n, q ∈ N∪{0}
such that q 6= 0, at least one of the two numbers p, n is 0, and the other
is coprime to q (or 0). We get the class Q of all rational numbers. And,
in order to treat natural numbers as a special case of rational numbers, we
identify each natural number n ∈ N with the corresponding rational number
(n, 0, 1) ∈ Q.22

Back to definability. We want to endow the class V (of all sets in the
finite set theory) with the D-structure generated by the membership relation
{(x, y) | x ∈ y}. True, the notion of a D-structure on V transcends the finite
set theory, since a collection of classes is neither a set nor a class. But still, in
the metatheory, a class may be called definable when it is obtainable from the
membership relation by the 5 operations (complement, union, permutation,
Cartesian product, projection) introduced in Section 2 for relations on the
real line R in particular, and arbitrary set in general. However, a pair of real
numbers is not a real number, while a pair of sets is a set! That is, R and
R2 are disjoint; in contrast, V 2 ⊂ V . The order relation “x < y” between
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real numbers x, y ∈ R is a subset of R2 (rather than R). But what about the
membership relation “x ∈ y” between sets x, y ∈ V ? Should we treat it as a
subclass of V or V 2 ?

True, the plane R2 is not a subset of the line R, but it can be injected
into R by a definable function; recall the injection W2 : R2 → R introduced
in the end of Section 3 and used in Section 6 for encoding binary relations by
unary relations. For example, the binary relation {(x, y) | x < y} is encoded
by the unary relation {W2(x, y) | x < y}.

Here is a general lemma basically applicable in both situations, W2 :
R2 → R and V 2 ⊂ V (though, in the latter case it needs some adaptation to
the proper class).

Lemma. Let R be a set endowed with a D-structure, and f : R2 → R a
definable injection. Then a binary relation A ⊂ R2 is definable if and only if
the unary relation f(A) ⊂ R is definable.

Exercise 9.2. Prove this lemma. Hint: “If”: (x, y) ∈ A⇐⇒ ∃z
(
f(x, y) =

z ∧ z ∈ f(A)
)
. “Only if”: z ∈ f(A)⇐⇒ ∃x, y

(
f(x, y) = z ∧ (x, y) ∈ A

)
.

Exercise 9.3. All relations over V mentioned above are definable classes.
Prove it. Hint: the equality relation “x = y” is “∀z (z ∈ x⇐⇒ z ∈ y)”; the
relation “{x} = y” is “∀z (z = x⇐⇒ z ∈ y)”; the ternary relation “{x, y} =
z” is “∀u

(
(u = x ∨ u = y)⇐⇒ u ∈ z

)
”; the ternary relation “(x, y) = z” is

“∃u, v, w ({x} = u ∧ {x, y} = v ∧ {u, v} = z)”; the lemma applies; further,
N ∪ {0} is the intersection of the class of transitive sets and the class of sets
totally ordered by membership, etc. etc., up to “(p1, n1, q1) ∼ (p2, n2, q2)”.

Similarly, the basic relations between rational numbers are definable classes.
Real numbers cannot be represented by finite sets, but can be represented

by classes (of finite sets) in several ways. In the spirit of Dedekind cuts we
treat a real number as the class of all rational numbers smaller than this real
number. More formally: a real number is a subclass A of Q such that
• A is a lower class; that is, ∀a, b ∈ Q (a < b ∧ b ∈ A =⇒ a ∈ A);
• A contains no greatest element; that is, ∀a ∈ A ∃b ∈ A a < b;
• A is not empty, and not the whole Q; that is, ∃a ∈ Q a ∈ A and
∃b ∈ Q b /∈ A.

And, in order to treat rational numbers as a special case of real numbers,
we identify each rational number a ∈ Q with the corresponding real number
{b ∈ Q | b < a} ∈ R.

Some examples. The real number
√

2 (“the Pythagoras’ constant”) is the
class of all rational numbers a such that a < 0 ∨ a2 < 2. The golden mean ϕ
is the class of all rational numbers a such that a ≤ 0 ∨ 0 < a < 1+ 1

a
. The real

number e is the class of all rational numbers a such that ∃n ∈ N (n+1)n

nn
> a.
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Can we define e via factorials, as in Exercise 5.13? We can define factorials
without recursion; n! is the number of bijective functions from n to itself
(that is, from {0, . . . , n − 1} to itself; in other words, permutations). But
still, we need recursion when defining partial sums of the series

∑∞
n=1

1
n!

for
e. Generally, an infinite sequence of rational numbers (sn)∞n=1 is the class of
pairs (n, sn). Specifically, the sequence of partial sums of

∑
n an is the class

S of pairs such that ∀n ∈ N ∀b ∈ Q
(
(n − 1, b) ∈ A =⇒ (n, b + an) ∈ A

)
(and ∀n ∈ N ∃!b ∈ Q (n − 1, b) ∈ A, and (0, 0) ∈ A, of course). But
we cannot define a class by its property! We deal with a D-structure on
V . A class must be defined by a common property of all its members, not
a property of the class. Otherwise it would be second-order definability in
V (thus, a transfinite level of the cumulative hierarchy). Can we formulate
the appropriate property of a pair (n, sn) alone? Yes, we can. Here is the
property: there exists a function f : {0, . . . , n} → Q such that f(0) = 0 and
∀k ∈ {1, . . . , n} f(k) = f(k − 1) + ak. The clue is that a finite segment of
the infinite sequence (of partial sums) is enough.

Similarly, an infinite sequence (xn)∞n=0 of sets xn ∈ V is the class of pairs
(n, xn), and it can be defined recursively, by a recurrence relation of the form
∀n ∈ N (xn−1, xn) ∈ B where B is a definable class of pairs, and an initial
condition for x0. (Use finite segments of the infinite sequence.)

Thus, every computable sequence of natural (or rational) numbers is a
definable class of pairs. No need to use Diophantine sets. Rather, for every
Turing machine, all possible “complete configurations” (called also “situa-
tions” and “instantaneous descriptions”) may be treated as elements of a
subclass of V , and the rule of transition from one complete configuration to
the next complete configuration may be treated as a definable class of pairs
(of complete configurations).

It follows that every computable real number, and moreover, every limit
computable real number is definable. Having a convergent definable sequence
(an)n of rational numbers, we define its limit as the class of rational numbers
b such that ∃n ∀k (k > n =⇒ ak > b+ 1

n
). In particular, π (the Archimedes’

constant) and Ω (the Chaitin’s constant) are definable.
A sequence (xn)n of real numbers cannot be treated as the class of pairs

(n, xn) (since xn is not a set), but can be treated as the disjoint union {1}×
x1∪{2}×x2∪ . . . , that is, the set of pairs (n, a) where a ∈ xn (recall a similar
workaround in Section 6). Also, a continuous function f : R → R cannot
be treated as the class of pairs

(
x, f(x)

)
, but can be treated as the class of

pairs (a, b) of rational numbers such that b < f(a). Such precautions allow
us to translate basic calculus into the language of finite set theory. However,
arbitrary functions R→ R and arbitrary subsets of R are unavailable. Thus,
the continuum hypothesis makes no sense. Also, transferring measure theory
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and related topics (especially, theory of random processes) to this ground (as
far as possible) requires effort and ingenuity.

The finite set theory can provide a reliable alternative airfield for much
(maybe most) of the mathematical results especially important for appli-
cations, in case of catastrophic developments in the transfinite hierarchy.
Several possible such “alternative airfields” are examined by mathematicians
and philosophers [30], [31], [32], [33], [34], [35], [36].

Informally, the finite set theory uses (for infinite classes) the idea of po-
tential infinity, prevalent before Georg Cantor, while the transfinite hierarchy
uses the idea of actual (completed) infinity, prevalent after Georg Cantor.23

9.2 Transfinite hierarchy

The transfinite part of the cumulative hierarchy begins with the first trans-
finite ordinal number ω = {0, 1, 2, . . . } (an infinite set) and the first trans-
finite stage Vω = ∪n∈ωVn of the hierarchy (an infinite set; ω ⊂ Vω). Note
that x ∈ Vω implies P(x) ∈ Vω, but x ⊂ Vω implies rather P(x) ⊂ Vω+1. We
continue as before:

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . } ∪ {ω} ⊂ P(Vω) = Vω+1 ,

ω + 2 = (ω + 1) ∪ {ω + 1} = {0, 1, 2, . . . } ∪ {ω, ω + 1} ⊂ P(Vω+1) = Vω+2

and so on; we get the stages Vω+n for all finite n, and again, Vω+n ⊂ Vω+n+1.
The union of all these stages is the stage V2ω = Vω ∪ Vω+1 ∪ Vω+2 ∪ · · · =
∪α<2ωVα (still an infinite set), and 2ω = {0, 1, 2, . . . } ∪ {ω, ω + 1, ω + 2, . . . }
(an infinite subset of V2ω). Again, x ∈ V2ω implies P(x) ∈ V2ω. Let us dwell
here before climbing higher.

Encoding of various mathematical objects by sets is somewhat arbitrary
(see Wikipedia: Equivalent definitions of mathematical structures; likewise,
an image may be encoded by files of type jpeg, gif, png etc.), and their places
in the hierarchy vary accordingly. Treating a pair (a, b) as {{a}, {a, b}} and
a triple (a, b, c) as

(
(a, b), c

)
we get (for 0 < n < ω)

∀a, b ∈ Vn (a, b) ∈ Vn+2 ; ∀a, b, c ∈ Vn (a, b, c) ∈ Vn+4 ;

∀a, b ∈ Vω (a, b) ∈ Vω ; ∀a, b, c ∈ Vω (a, b, c) ∈ Vω ;

∀a, b ∈ Vω+n (a, b) ∈ Vω+n+2 ; ∀a, b, c ∈ Vω+n (a, b, c) ∈ Vω+n+4 .

Treating the set N of natural numbers as ω \ {0} we get N ⊂ Vω, N ∈
Vω+1. Treating a rational number as an equivalence class of triples (p, n, q)
of natural numbers we get Q ⊂ Vω+1, Q ∈ Vω+2, where Q is the set of all
rational numbers. Alternatively, treating an integer as an equivalence class
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of pairs of natural numbers, and a rational number as an equivalence class
of pairs of integers,24 we get

Z ⊂ Vω+1 , Z ∈ Vω+2 ; Q ⊂ Vω+4 , Q ∈ Vω+5 ;

here Z is the set of all integers. Treating a real number as a set of rational
numbers we get

R ⊂ Vω+n , R ∈ Vω+n+1 ,

where R is the set of all real numbers, and n is such that Q ∈ Vω+n; be it 2
or 5, anyway, it follows that R ∈ V2ω.

Taking into account that generally A ∈ V2ω =⇒ P(A) ∈ V2ω, and
A,B ∈ V2ω =⇒ A × B ∈ V2ω (since A,B ⊂ Vω+n =⇒ A × B ⊂ Vω+n+2),
we get Rn ∈ V2ω and P(Rn) ∈ V2ω for all n ∈ N. Every subset of Rn belongs
to V2ω, and every set of subsets of Rn belongs to V2ω; in particular, the
σ-algebra of all Lebesgue measurable subsets of Rn belongs to V2ω. Also,
every function Rn → Rm belongs to V2ω, and every set of such functions
belongs to V2ω; in particular, every equivalence class (under the relation of
equality almost everywhere) of Lebesgue measurable functions Rn → Rm

belongs to V2ω, and the set L1(Rn) of all equivalence classes of Lebesgue
integrable functions Rn → R belongs to V2ω. And the set of all bounded
linear operators L1(Rn) → L1(Rn) belongs to V2ω. Clearly, a lot of notable

mathematical objects belong to V2ω.25

Would something like Vω+100 suffice for all the objects mentioned above?
The answer is negative as long as Rn is defined as Rn−1 × R = {(x, y) | x ∈
Rn, y ∈ R} where (x, y) means {{x}, {x, y}}. For every n ∈ N the relation
Rn /∈ Vω+2n−1 is ensured by the two exercises below.

Exercise 9.4. If A × B ⊂ Vω+n+2, then A,B ⊂ Vω+n. Prove it. Hint:
{{a}, {a, b}} = (a, b) ∈ Vω+n+2 =⇒ a, b ∈ Vω+n.

Exercise 9.5. If An+1 ⊂ Vω+2n for some n, then A ⊂ Vω. Prove it. Hint:
induction in n ≥ 1, and the previous exercise.

A more economical encoding is available (and was used in Section 6,
see Exer. 6.1, 6.2); instead of the set Rn of all n-tuples (x1, . . . , xn) we
may use the set R[n] of all n-sequences [x1, . . . , xn]; as before, [x1, . . . , xn] =
{(1, x1), . . . , (n, xn)} is the set of pairs.

Exercise 9.6. If A ∈ Vω+m+1, then A[n] ∈ Vω+m+4 for all n ∈ N. Prove it.
Hint: a1, . . . , an ∈ Vω+m =⇒ [a1, . . . , an] ∈ Vω+m+3.

A lot of theorems are published about real numbers, real-valued functions
of real arguments, spaces of such functions etc. I wonder, is there at least
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one such theorem sensitive to the distinction between Vω+100 and Vω+200 ?
That is, theorem that can be formulated and proved within Vω+200 but not
Vω+100 ? I guess, the answer is negative. A seemingly similar question: is
definability of real numbers sensitive to the distinction between Vω+100 and
Vω+200 ? I mean, is there at least one real number definable in Vω+200 but not
Vω+100 ? This time, the answer is affirmative, as explained below.

For each n ∈ N ∪ {0} we endow the set Vω+n with the D-structure Dω+n

generated by the membership relation {(x, y) | x ∈ y} (for x, y ∈ Vω+n, of
course).

Recall that, treating a real number as a set of rational numbers, and a
rational number as an equivalence class of triples (p, n, q) of natural numbers,
we have Q ∈ Vω+2 and R ∈ Vω+3. That is, Q ⊂ Vω+1 and R ⊂ Vω+2.

Similarly to the finite set theory, N and Q are definable subsets of Vω+n
(whenever n ≥ 1), and the basic relations between natural numbers are de-
finable, as well as the basic relations between rational numbers. Dissimilarly
to the finite set theory, R is a definable subset of Vω+n (whenever n ≥ 2),
and the basic relations between real numbers are definable. An example:
for x, y ∈ R we have x ≤ y ⇐⇒ ∀a ∈ Q (a < x =⇒ a < y) ⇐⇒ ∀a ∈
Q (a ∈ x =⇒ a ∈ y) ⇐⇒ x ⊂ y. Another example: for x, y, z ∈ R we
have x + y = z ⇐⇒ ∀c ∈ Q

(
c < z ⇐⇒ ∃a ∈ Q (a < x ∧ c − a < y)

)
.

Also the relation “x = {b ∈ Q | b < a}” between a rational number a and
the corresponding real number x is definable, which implies definability of N
embedded into R. Thus, all real numbers first-order definable in (R; +,×,N)
(as in Section 3) are definable in Vω+n (whenever n ≥ 2).

What about second-order definability? It was treated in Section 5 as a
D-structure on the set

(
∪∞n=1Rn) ∪

(
∪∞n=1 P(Rn)

)
, but a more economically

encoded set S =
(
∪∞n=1R[n]) ∪

(
∪∞n=1 P(R[n])

)
may be used equally well.

Exercise 9.7. S ⊂ Vω+6. Prove it. Hint: use Exercise 9.6.

Moreover, for every n ≥ 6, S is a definable subset of Vω+n; and the four
relations (that generate the D-structure in Section 5) are definable relations
on Vω+n. Thus, all real numbers second-order definable as in Section 5 are
definable in Vω+n whenever n ≥ 6. In particular, the “first-order undefin-
able but second-order definable” number of Section 6 is definable in Vω+6.
However, all said does not mean that it is undefinable in Vω+2.

What we need is the second-order definability in (Vω+2, Dω+2) rather
than (R; +,×,N); that is, definability in the set Wω+2 =

(
∪∞n=1V

n
ω+2) ∪(

∪∞n=1 P(V n
ω+2)

)
.

Exercise 9.8. Wω+2 ⊂ Vω+6. Prove it. Hint: similar to Exercise 9.7.
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Once again, Wω+2 is a definable subset of Vω+6, and all real numbers
definable in Wω+2 are definable in Vω+6. That is, all real numbers second-
order definable in Vω+2 are (first-order) definable in Vω+6.

A straightforward generalization of Section 6 gives a real number second-
order definable in Vω+2 but first-order undefinable in Vω+2. This number is
definable in Vω+6 but undefinable in Vω+2. Similarly, for each n ≥ 2 there
exist real numbers definable in Vω+n+4 but undefinable in Vω+n. We observe
an infinite hierarchy of definability orders within V2ω.

Climbing higher on the cumulative hierarchy we get stages Vα for ordinal
numbers α such as 2ω+n, 3ω+n, . . . Still higher, ω·ω = ω2, then ω3, . . . , then
ωω, ω(ω2), ω(ω3), . . . ω(ωω), . . . Everyone may continue until feeling too dizzy;
see Wikipedia:Ordinal notation, Ordinal collapsing function, Large countable
ordinal. All these are countable ordinals. By the way, every countable ordinal
α may be visualized by a set of rational numbers, using a strictly increasing
function f : α→ Q (that is, f : {β | β < α} → Q). For example, 2ω may be
visualized by {1− 1

n
| n ∈ N} ∪ {2− 1

n
| n ∈ N}.

For every countable ordinal α ≥ ω + 2 there exist real numbers definable
in Vα+4 but undefinable in Vα. Moreover, some of these real numbers are
of the form

∑∞
k=1 10−kn (recall Section 7), since there exists an increasing

sequence (of natural numbers) definable in Vα+4 that overtakes all sequences
definable in Vα.

A wonder: stages Vα for α like ωω
ω

are as far from ordinary mathematics
as numbers like 10101000 from ordinary engineering. Nevertheless these Vα
contribute to the supply of definable real numbers.

Still higher, the set of all countable ordinals is the first uncountable or-
dinal ω1. It cannot be visualized by a set of rational or real numbers. Its
cardinality is the first uncountable cardinality ℵ1. The continuum hypothesis
is equivalent to the equality between ℵ1 and the cardinality continuum.

For every ordinal α ≥ ω+ 2 (countable or not) the set of all real numbers
definable in Vα is countable (and moreover, has an enumeration definable in
Vα+4). In particular, the set of all real numbers definable in Vω1 is countable.
On the other hand, new definable real numbers emerge on all countable levels,
and there are uncountably many such levels. A contradiction?!

No, this is not a contradiction. Denoting by Rα the set of all real numbers
definable in Vα, and by Oα the set of all ordinals definable in Vα, we have
Rβ ⊂ Rα wherever β ∈ Oα (which follows from the lemma of Section 5). For
all countable ordinals mentioned before we have Oα = α (that is, all ordinals
below α are definable in Vα). In contrast, Oω1 6= ω1, since Oω1 is countable.
The union R̃ = ∪α<ω1Rα contains all real numbers definable with ordinal
parameters α ∈ ω1; but definability with parameters is outside the scope of
this essay (recall Section 2).
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It is natural to ask, whether Oα = α for all countable ordinals α, or
not. Probably, we only know that the affirmative answer cannot be proved
without the choice axiom, and do not know, which answer (if any) can be

proved with the choice axiom.26

If Oα = α for all countable ordinals α, then Rα ↑ R̃, and R̃ is uncountable
(of the cardinality ℵ1 of ω1). Otherwise, there exists a countable ordinal α
such that Oα 6= α while Oβ = β for all β < α (and therefore Oα = β for some
β < α). In this case the transfinite sequence (Oα)α<ω1 is not monotone, and
we do not know, whether the union R̃ is countable, or not.

Countability or uncountability of R̃ matters for model dependence. There
is a countable set of formulas (in the language of the set theory) that define
real numbers on all levels Vα. Some are model independent, others are model
dependent. If R̃ is countable, then each of these model dependent definable
real numbers has at most countably many possible values. Otherwise, if R̃
is uncountable, then at least one of these model dependent definable real
numbers has uncountably many possible values.

This matter is closely related to the position of Laureano Luna [37] (see
also [38, pages 19–20]):

“Pieces of language taken as mere syntactical expressions (letter-
strings) should be distinguished from definitions, which are se-
mantical objects, namely, interpreted letter-strings.” (Page 61.)
“The meanings of the letter-strings that express definitions of re-
als are context-dependent, the context being here the definability
level on which they are used. [. . . ] if some letter-strings express
more than one definition of a real number, there is no reason
to think there are only countably many such definitions and only
countably many definable real numbers.” (Page 64.)

Two objections arise. First, we did not prove that R̃ is uncountable.
Second, model dependence does not apply to Vα, since Vα is not a model of
ZFC. We’ll return to the second objection after climbing on the cumulative
hierarchy to Vω1 and much higher.

The stage Vω1 of the cumulative hierarchy is vast; its cardinality is very
large (much larger than the cardinality ℵ1 of ω1). Now consider the first ordi-
nal α of this very large cardinality and the corresponding stage Vα. Iterating
this jump we get a slight idea of the class of all sets, the incredible universe
VZFC of the set theory ZFC. The whole VZFC grows from a small seed, the first
infinite ordinal ω, whose existence is just postulated (the axiom of infinity).

If you want to soar above VZFC, you need a new axiom of infinity that
ensures existence of an ordinal α such that Vα is a model of ZFC; every such
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ordinal, being initial, is a cardinal, called a worldly cardinal. For climbing still
higher try the so-called large cardinals. And be assured that these supernal
stages do contribute to the supply of definable real numbers.27

Assuming existence of large cardinals we get a transfinite hierarchy of
worldly cardinals κα, and the corresponding models Wα = Vκα of ZFC, for
all countable ordinals α (and more; but here we do not need uncountable α).
Using Wα instead of Vα we get new versions of Oα, Rα and R̃. Again, we do
not know, whether this new R̃ is countable, or not. If it is uncountable, then
again, at least one model dependent definable real number has uncountably
many possible values; and this time, model dependence applies.

9.3 Getting rid of undefinable numbers

Climbing down to earth, is it possible to restrict ourselves to definable num-
bers and still use the existing theory of real numbers and related objects?
An affirmative answer was found in 1952 [40] and enhanced recently [39].

Before climbing down we need to climb up to the first worldly cardinal α
and the corresponding model Vα of ZFC. Within the model we consider the
constructible hierarchy (Lβ)β≤α, take the least β such that Lβ is a model of
ZFC, and get the so-called minimal transitive model of ZFC. This model is
pointwise definable [1, “Minimal transitive model”], that is, every member
of this model is definable (in this model).

Accordingly, this model is countable (and β is countable). Nevertheless,
every theorem of ZFC holds in every model of ZFC; in particular, Cantor’s
theorem “R is uncountable” holds in the countable model Lβ. No contradic-
tion; enumerations of R∩Lβ exist, but do not belong to Lβ. Likewise, a well-
known theorem of measure theory states that the interval (0, 1) cannot be
covered by a sequence of intervals (an, bn) of total length

∑∞
n=1(bn−an) < 1.

True, for every ε > 0 the set (0, 1) ∩ Lβ, being countable, can be covered by
a sequence of intervals of total length ε; but such sequences do not belong
to Lβ (even if endpoints an, bn do belong). Working in Lβ we have to ensure
that all relevant objects (not only real numbers) belong to Lβ.

• One often hears it said that since there are indenumerably many
sets and only denumerably many names, therefore there must be
nameless sets. The above shows this argument to be fallacious.
(Myhill 1952, see [40, the last paragraph].)

• In my opinion, an object is conceivable only if it can be defined
with a finite number of words. (Poincaré 1910, translated from
German, see [37, page 58].)
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10 Conclusion

Each definition (of a real number, or another mathematical object) is a finite
text in a language. The language may be formal (mathematical) or infor-
mal (natural). In both cases the text is composed of expressions that refer
to objects and relations between objects. The extension of an expression is
the corresponding set of objects, or set of pairs (of objects), or triples, and
so on. For a mathematical language, all objects are mathematical; a natu-
ral language may mention non-mathematical objects, and even itself, as in
the phrase “The preceding two paragraphs are an expression in English that
unambiguously defines a real number r” (recall Introduction, Richard’s para-
dox), which leads to a problem: the mentioned expression in English fails
to define! “So when we speak in English about English, the ‘English’ in the
metalanguage is not exactly the same as the ‘English’ in the object-language.”
[38, p. 15]. A natural language, intended to be its own metalanguage, is bur-
dened with paradoxes. A mathematical language avoids such (and hopefully,
any) paradoxes at the expense of being different from its metalanguage. The
metalanguage is able to enumerate all real numbers definable in the language
and define more real numbers.

On one hand, a natural language itself is inappropriate for mathematics.
On the other hand, a mother tongue is always a natural language. In order
to avoid both restrictions of a fixed mathematical theory and paradoxes of a
natural language we may get the best of both worlds by considering two-part
texts. The first part, written in a natural language, introduces a mathemat-
ical theory. The second part, written in the (mathematical) language of this
theory, defines some real number.

In this framework the question “is every real number definable?” falls
out of mathematics, because the notion “mathematical theory” above can-
not be formalized. Some may admit only potential infinity and stop on the
finite set theory. Some may admit actual infinity and the transfinite hier-
archy up to (exclusively) some preferred ordinal (sometimes 2ω [42]; more
often, something controversially believed to be the first undefinable ordi-
nal28). Or the whole universe of ZFC but no more (equivalently, up to the

first worldly cardinal).29 Or the Tarski-Grothendieck set theory. Or higher,
up to some preferred large cardinal. Or some more exotic alternative set
theory. Or something brand new, like a kind of homotopy type theory. Or
even something not yet published. Most choices mentioned above were un-
thinkable in the first half of the 20th century. Who knows what may happen
near year 2100? “Mathematics has no generally accepted definition” (from
Wikipedia:Definitions of mathematics); the same can be said about “math-

ematical theory”.30 Admitting actual infinity we do not get rid of potential
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infinity; the latter returns, hardened, on a higher level [34], [41]. Maybe the
recent, hotly debated conception of multiverse is another fathomable segment
of the unfathomable potential infinity of mathematics. “The most general
definition of a definition” appears to be as problematic as “the set of all sets”.

Another problem manifests itself as model dependence for a mathemati-
cal language, and context dependence for a natural language. In both cases
a single text may refer to different objects (depending on the model or the
context, respectively), which blurs the idea of definability. Recall Section 8
(the last paragraph): every real number is “hardwired” in some model of
the set theory (ZFC). We may feel that definability of the number does not
follow unless the model is definable; but what do we mean by definability of
a model? Another case, recall Section 9.2 (the last paragraph): uncountable
hierarchy of models indexed by countable ordinals leads to a set of real num-
bers, possibly uncountable (but maybe not). Nothing is “hardwired” here,
except for these countable ordinals. Outside mathematics, a more or less
similar case, treated by Luna [37], shows context dependence in a hierarchy
of contexts (levels of definability) indexed by definable countable ordinals.
A mathematical counterpart with uncountably many definable real numbers
could exist in some alternative (to ZFC and alike; probably closer to Kripke-
Platek) set theory such that the class of all definable countable ordinals is
not a countable set, and preferably, not a set at all [37, p. 65].

Bad news: definability is a very subtle property of a real number. Good
news: other properties, more relevant to applications, are unsubtle; and
definability is rather of philosophical interest. “Mathematicians, in general,
do not like to deal with the notion of definability; their attitude toward this
notion is one of distrust and reserve.” (Tarski [42], the first phrase; now
partially obsolete, partially actual.)

Notes and references

1. Whichever definition of ‘definable’ you choose, the formula that defines a definable object
is a finite sequence of characters belonging to a finite alphabet. Thus the set of definable
objects is definitively countable. (From Wikipedia. A talk page. 2018.)

2. Classical mathematics permits (and requires) the existence of undefinable objects, but many
people find this philosophically disquietening, questioning how an object can be said to exist
if no mathematical statement can be used to uniquely identify it.
As a result, a few mathematicians have developed systems of mathematics that do not
involve undefinable objects. (From Wikipedia. Obsolete version of an article. 2004.)

3. The describable numbers are all numbers for which there is any possible finite description
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that uniquely identifies the number. The countability argument still works: you can still
enumerate all possible finite-length strings that could be descriptions, and define a one-to-
one correspondence between strings that could be descriptions and natural numbers. The
set of describable numbers is, thus, still countable, and the set of undescribables is not,
which implies that the set of undescribables is far, far larger that the describables. (From:
Chu-Carroll, Mark C. (2014) “You can’t even describe most numbers!” “Good Math/Bad
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4. Tsirelson, Boris (2003) “Reminiscences”. Self-published.

5. Because Ω depends on the program encoding used, it is sometimes called Chaitin’s con-
struction instead of Chaitin’s constant when not referring to any specific encoding. (From
Wikipedia:Chaitin’s Constant.) The polynomial f used in this definition is not uniquely
determined as “such that the sequence A1, A2, . . . is uncomputable”, but for now every
such polynomial serves our purpose; later, in Section 8, we’ll add one more requirement
related to the uncomputability. Other requirements, related to randomness, are irrelevant
to this essay. Existence of such f follows from Matiyasevich’s theorem; 9 unknowns are
sufficient according to: James Jones (1982) “Universal Diophantine equation” J. Symbolic
Logic (Cambridge) 47 (3): 549–571.

6. See Wikipedia:Von Neumann-Bernays-Gödel set theory and Gödel operation.

7. Aaronson, Scott (1999). “Who can name the bigger number?” Self-published.

8. Baez, John (2012). “Enormous integers”. Self-published.

9. “Are there any sizes in between?” This question (in the case of a negative answer, it is
the continuum hypothesis), is one of the most famous in set theory. Much as in the case
of the parallel postulate, it was widely believed that the continuum hypothesis could simply
be proven from ZFC, and Cantor and many others devoted enormous time and effort to
developing such a proof. It was not until much later that the combined efforts of Gödel
and Cohen established once and for all:
Theorem 3 (Gödel, Cohen) The continuum hypothesis is independent of ZFC. (From:
J. Reitz [12, Section 3].)

10. Therefore one may on good reason suspect that the role of the continuum problem in set
theory will be this, that it will finally lead to the discovery of new axioms which will make
it possible to disprove Cantor’s conjecture. (From: K. Gödel [14, the end].)
It was Gödel who first suggested that perhaps “strong axioms of infinity” (large cardinals)
could decide interesting set-theoretical statements independent over ZFC, such as CH. This
hope proved largely unfounded for CH — one can show that virtually all large cardinals
defined so far do not affect the status of CH. (From: R. Honzik [13, Abstract].)

11. A point of view which the author feels may eventually come to be accepted is that CH
is obviously false. [. . . ] This point of view regards C as an incredibly rich set given
to us by one bold new axiom, which can never be approached by any piecemeal process
of construction. Perhaps later generations will see the problem more clearly and express
themselves more eloquently. (From: P. Cohen [15, p. 151].)
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If we really believe that the set-theoretic universe has to be built up piecemeal we surely
cannot accept an axiom according to which enormous new sets (enormous because there is
a jump in cardinality) simply nonconstructively appear. (From: Nik Weaver [16, p. 5].)

12. Many set theorists yearn for a definitive solution of the continuum problem, what I call a
dream solution, one by which we settle the continuum hypothesis (CH) on the basis of a
new fundamental principle of set theory, a missing axiom, widely regarded as true, which
determines the truth value of CH. [. . . ] If achieved, a dream solution to the continuum
problem would be remarkable, a cause for celebration.
In this article, however, I shall argue that a dream solution of CH has become impossible
to achieve. Specifically, what I claim is that our extensive experience in the set-theoretic
worlds in which CH is true and others in which CH is false prevents us from looking upon
any statement settling CH as being obviously true. (From: J. Hamkins [17].)
Such a situation with the continuum problem raises doubts about the widely used set
theory, especially the axiom of powerset. Alternative, more constructive approaches at-
tract the attention of mathematicians and philosophers [18], [19], [20], [21]. Maybe the
collection of all subsets of an infinite set should be treated as a class rather than a set.

13. 2.3 mln articles in science and engineering are published in 2014, of them 2.6% = 0.06 mln
in mathematics. (See National Center for Science and Engineering Statistics. 2018.) Also,
0.3 mln articles were submitted to arXiv till now, of them 0.03 mln in 2014. (See arXiv
submission rate statistics. 2017.) Thus, probably, 0.6 mln math articles are published
for now. I guess, the average number of theorems per article is at least 2, which gives
1.2 mln published theorems. Some of them are notable, many are so-so, some are not
new. And probably, hundreds or even thousands of them only pretend to be theorems,
because of unnoticed errors in proofs. On the other hand, numerous lemmas formally are
theorems. True, authors usually build proofs in the framework of the relevant branch of
mathematics; but nearly all branches are embedded into ZFC. Today ZFC is the standard
form of axiomatic set theory and as such is the most common foundation of mathematics.
(From Wikipedia:ZFC.)

14. Most notable exception, not the only exception. About 30 exceptions are available in
Wikipedia:List of statements independent of ZFC.

15. Wikipedia, “Law of excluded middle”; also “Gelfond-Schneider constant”.

16. From Encyclopedia of Mathematics:Creative set.

17. In set theory, we have the phenomenon of the universal definition. This is a property
ϕ(x), first-order expressible in the language of set theory, that necessarily holds of exactly
one set, but which can in principle define any particular desired set that you like, if one
should simply interpret the definition in the right set-theoretic universe. So ϕ(x) could be
defining the set of real numbers x = R or the integers x = Z or the number x = eπ or a
certain group or a certain topological space or whatever set you would want it to be. For
any mathematical object a, there is a set-theoretic universe in which a is the unique object
x for which ϕ(x).
Theorem. Any particular real number r can become definable in a forcing extension of
the universe.
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(From: J. Hamkins “The universal definition”. Self-published. 2017. See also [24].)
We adapt this idea. For notation used here, see Wikipedia:Ordinal number, in particular,
Section “Ordinals and cardinals”; ω = ω0; and by the way, N ∪ {0} = {0, 1, 2, . . . }.
Also, following Kunen [25], the relation 2α = β between two initial ordinals α and β is
interpreted as the same relation between the corresponding cardinals. Thus, 2ω = c is the
initial ordinal of the cardinality of the continuum.
For every sequence (an)∞n=1 of binary digits an ∈ {0, 1} the set {(ωn, ωω+1+a1+···+an) |
n ∈ N ∪ {0}} ∪ {(ωω+1, ω2ω)} is a Easton index function [25, Section 8.4, Def. 4.1];
Easton forcing [25, Section 8.4, Th. 4.7; also Corollary 4.8] gives a model of ZFC such that
2ωn = ωω+1+a1+···+an for all n ∈ N ∪ {0}, and 2ωω+1 = ω2ω (and the model has the same
cardinals as the metatheory). Note that in this model ωn < c (since c = 2ω0 = ωω+1), and
2ωn < 2c (since 2c = ω2ω = ωω+ω).
We consider the second-order definable set B of all disjoint unions B = {0} ×B0 ∪ {1} ×
B1 ∪ · · · ⊂ R2 of sets B0, B1, B2, · · · ⊂ R such that B0 is equinumerous to N, and for each
n ∈ N ∪ {0},

• Bn is equinumerous to some subset of Bn+1;
• Bn is not equinumerous to Bn+1;
• every subset of Bn+1 not equinumerous to Bn+1 is equinumerous to some subset of
Bn.

(It means that Bn is of cardinality ωn.) We note that equinumerosity of P(Bn) and
P(Bn−1) is third-order definable. If B is empty, we let w = 0. Otherwise, for every n ∈ N
we define bn to be 0 if P(Bn) and P(Bn−1) are equinumerous for some (therefore, all) sets
B = {0} × B0 ∪ {1} × B1 ∪ · · · ∈ B; otherwise bn = 1. (It means that bn = an.) Finally,
we choose a definable map f from [0, 1] onto R and let w = f(

∑∞
n=1 2−nbn).

18. So ecumenical set theorists instead spin this amazing structure from only the set that does
not depend on the existence of anything: the empty set. This is the closest mathematicians
get to creation from nothing! (From “Nothingness”. Stanford Encyclopedia of philosophy.
2017.)

19. From the standpoint of mainstream mathematics, the great foundational debates of the
early twentieth century were decisively settled in favor of Cantorian set theory, as for-
malized in the system ZFC (Zermelo-Fraenkel set theory including the axiom of choice).
Although basic foundational questions have never entirely disappeared, it seems fair to
say that they have retreated to the periphery of mathematical practice. Sporadic alter-
native proposals like topos theory or Errett Bishop’s constructivism have never attracted
a substantial mainstream following, and Cantor’s universe is generally acknowledged as
the arena in which modern mathematics takes place. (From: Nik Weaver [16, the first
paragraph].)

20. The vast majority of contemporary mathematicians believe that Peano’s axioms are consis-
tent, relying either on intuition or the acceptance of a consistency proof such as Gentzen’s
proof. A small number of philosophers and mathematicians, some of whom also advocate
ultrafinitism, reject Peano’s axioms because accepting the axioms amounts to accepting the
infinite collection of natural numbers. (From Wikipedia:Peano axioms.)

21. “There is something profoundly unsatisfactory about the axiom of infinity. It cannot be
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described as a truth of logic in any reasonable use of this term and so the introduction of
it as a primitive proposition amounts in effect to the abandonment of Frege’s project of
exhibiting arithmetic as a development of logic” (Kneale and Kneale, p. 699).
This patched up set theory could not be identified with logic in the philosophical sense of
“rules for correct reasoning.” You can build mathematics out of this reformed set theory,
but it no longer passes as a foundation, in the sense of justifying the indubitability of
mathematics. (From [26, p. 148–149].)

22. In many cases of interest there is a standard (or “canonical”) embedding, like those of the
natural numbers in the integers, the integers in the rational numbers, the rational numbers
in the real numbers, and the real numbers in the complex numbers. In such cases it is
common to identify the domain X with its image f(X) contained in Y , so that X ⊂ Y .
(From Wikipedia:Embedding.)

23. In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance
(if the axiom of infinity is included) of infinite entities, such as the set of all natural num-
bers or an infinite sequence of rational numbers, as given, actual, completed objects. This
is contrasted with potential infinity, in which a non-terminating process (such as ”add 1 to
the previous number”) produces a sequence with no last element, and each individual result
is finite and is achieved in a finite number of steps. (From Wikipedia:Actual infinity.)
Before Cantor, the notion of infinity was often taken as a useful abstraction which helped
mathematicians reason about the finite world; for example the use of infinite limit cases
in calculus. The infinite was deemed to have at most a potential existence, rather than an
actual existence. (From Wikipedia:Controversy over Cantor’s theory.)
The difficulty with finitism is to develop foundations of mathematics using finitist as-
sumptions, that incorporates what everyone would reasonably regard as mathematics (for
example, that includes real analysis). (Ibid., “Objection to the axiom of infinity”.)

24. In Wikipedia see Integer:Construction, and Rational number:Formal construction.

25. Vω+ω is the universe of “ordinary mathematics”, and is a model of Zermelo set theory.
(From Wikipedia:Von Neumann universe.)

26. In ZF (Zermelo-Frenkel set theory without the choice axiom) we can do the following.
For arbitrary countable ordinal α the set Dα of all α-definable (that is, definable in
Vα) relations on Vα is countable, and has an (α + 4)-definable enumeration. Doing so
for all α simultaneously we get a ω1-definable function f : ω1 × ω → ∪∞n=1(ω1)n such
that ∀α ∈ ω1 ∀A ∈ Dα ∃n ∈ ω f(α, n) = A. Restricting ourselves to A of the
form {β} (where β ∈ ω1) we get a ω1-definable function g : ω1 × ω → ω1 such that
∀α ∈ ω1 ∀β ∈ Oα ∃n ∈ ω g(α, n) = β.
Now, for every sequence (αn)n∈ω of countable ordinals, the union ∪nOαn is not just a
countable union of countable sets, but a countable union of sets enumerated simultane-
ously by some function (which is trivial in ZFC but nontrivial in ZF), and therefore their
union is countable, hence, not the whole ω1. On the other hand, existence of (αn)n∈ω such
that ∪nαn = ω1 is consistent with ZF (Feferman and Lévy 1963, see Cohen [15, p. 143]).
Thus, it is consistent with ZF that ∪nOαn

6= ∪nαn.
This matter is closely related to a question about another definable (in Vα, or otherwise)
family, see MathStackExchange:“Is it possible to define a family of fundamental sequences
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for all countable (limit) ordinals? (Without AC)”, especially, the answer by Noah Schwe-
ber, and Remark 24 in Section 2.1 of Forster, Thomas E. “A tutorial on countable ordi-
nals”. Self-published.
Another question of this kind, “Is the smallest Lα with undefinable ordinals always count-
able?” is answered affirmatively by Miha Habič.

27. Eventually, we will in our definitions be attracted to the possibilities of using higher order
mathematical objects and constructions, such as function classes, spaces or measures, and
this amounts to defining objects in increasingly large fragments Vα of the set-theoretic
universe. Most all of the classical mathematical structure is itself definable in the set-
theoretic structure 〈Vω+ω,∈〉, a model of the Zermelo axioms, and so the definable reals
of this structure includes almost every real ever defined classically. The structures arising
with larger ordinals, however, allow us to define even more reals. (From [39, Section 1].)

28. Thus, our definability levels cannot go beyond the countable definable ordinals. What these
are is contentious. Constructivists will typically argue that all ordinals are constructive
and that the (classical) least nonconstructive ordinal ωCK

1 does not exist, though from more
liberal standpoints it is a definable countable ordinal. Some predicativists believe that the
classical Feferman-Schütte ordinal Γ0 does not exist (though from the classical viewpoint it
is a definable countable ordinal); some, as Weaver 2009, believe predicativity can go beyond
Γ0. (Luna [37, p. 64].)

29. Someone may say: I just use ZFC “as is” and do not care about worldly cardinals. But
in this case many interesting definable real numbers are model dependent (recall Section
8), they exploit large cardinals whenever possible.

30. The set of all consistent effectively axiomatized formal theories is well-defined but irrele-
vant, because most of them have no intended interpretation.
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[14] Gödel, Kurt (1947). “What is Cantor’s continuum problem?” The
American Mathematical Monthly 54 (9): 515–525.

[15] Cohen, Paul (1966). Set theory and the continuum hypothesis . W. A.
Benjamin. ISBN 978-0-805-32327-6.

[16] Weaver, Nik (2005). “Mathematical conceptualism.”
arXiv:math:0509246 (self-published).

[17] Hamkins, Joel David (2015). “Is the dream solution of the continuum
hypothesis attainable?” Notre Dame J. Formal Logic 56 (1): 135–145.
Also arXiv:1203.4026 .

49

http://intlpress.com/site/pub/files/_fulltext/journals/cdm/1998/1998/0001/CDM-1998-1998-0001-a004.pdf
http://intlpress.com/site/pub/files/_fulltext/journals/cdm/1998/1998/0001/CDM-1998-1998-0001-a004.pdf
http://en.wikipedia.org/wiki/Lou van den Dries
http://www.beck-shop.de/fachbuch/leseprobe/9780521598385_Excerpt_001.pdf
http://resolver.tudelft.nl/uuid:161ff691-2ae4-4cd8-a1bb-cf78d2a90353
http://en.wikipedia.org/wiki/Angus Macintyre
http://www.advgrouptheory.com/agta2016/Macintyre.pdf
http://www.advgrouptheory.com/agta2016/
https://www.maths.tcd.ie/~btyrrel/thesis.pdf
https://www.maths.tcd.ie/~btyrrel/thesis.pdf
http://en.wikipedia.org/wiki/Richard M. Pollack
http://en.wikipedia.org/wiki/Marie-Françoise Roy
http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted1.html
http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted1.html
https://books.google.co.il/books?id=m9scDgAAQBAJ
https://books.google.co.il/books?id=m9scDgAAQBAJ
https://doi.org/10.1007/s40961-017-0099-5
https://doi.org/10.1007/s40961-017-0099-5
https://link.springer.com/chapter/10.1007/978-3-319-62935-3_10
https://link.springer.com/chapter/10.1007/978-3-319-62935-3_10
http://en.wikipedia.org/wiki/Kurt Gödel
http://www.jstor.org/stable/2304666
http://en.wikipedia.org/wiki/Paul Cohen
https://books.google.co.il/books?id=ZKc-AAAAIAAJ
https://arxiv.org/abs/math/0509246
http://en.wikipedia.org/wiki/Joel David Hamkins
https://projecteuclid.org/euclid.ndjfl/1427202977
https://projecteuclid.org/euclid.ndjfl/1427202977
https://arxiv.org/abs/1203.4026


[18] Rathjen, Michael (2016). “Indefiniteness in semi-intuitionistic set the-
ories: on a conjecture of Feferman”. The Journal of Symbolic Logic 81
(2): 742–753. Also arXiv:1405.4481 .

[19] Lingamneni, Shivaram (2017). “Can we resolve the continuum hypoth-
esis?” Synthese (Springer Verlag).

[20] Koellner, Peter (2017). “Feferman on set theory: infinity up on trial”.
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model dependent, 29
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chosen at random, 12
computable, 4
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uncomputable, 4
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overtake, 27

paradox, Richard’s, 2
pointwise definable, 41
predicate, 3

binary, 7
ternary, 7
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appendment, 17
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definable, 9
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order, 7
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recursively enumerable, 11
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undefinable
number, 10
relation, 10

worldly cardinal, 41

ZFC, axiomatic set theory, 29
D(n, x), the n-th digit, 13
E, evaluation, 24
N, the set of all natural numbers, 10
P(R), power set, 17
P(Rn), set of relations, 16
R, the set of all real numbers, 6
S, set of all tuples and relations, 16
W , injects n-dim to 1-dim, 24
W2, injects 2-dim to 1-dim, 13
Z, the set of all integers, 37
ω, the first transfinite ordinal, 36
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