
Young Won Lim
10/2/18

Side Effects (1A)

Young Won Lim
10/2/18

 Copyright (c) 2016 - 2018 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Side Effects (1A) 3 Young Won Lim
10/2/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Side Effects (1A) 4 Young Won Lim
10/2/18

Imperative programming:

● variables as changeable locations in a computer's memory

● imperative programs explicitly commands (instructs)

the computer what to do

functional programming

● a way to think in higher-level mathematical terms

● defining how variables relate to one another

● the compiler will translate these functions and variables

to instructions so that the computer can process.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Variables

Side Effects (1A) 5 Young Won Lim
10/2/18

Haskell Functional Programming (I)

● Immutability

● Recursive Definition : only in functions

● No Data Dependency

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Haskell Language Features (I)

Side Effects (1A) 6 Young Won Lim
10/2/18

imperative programming:

after setting r = 5 and then changing it to r = 2.

Hakell programming:

an error: "multiple declarations of r".

within a given scope, a variable in Haskell

are defined only once and cannot change,

like variables in mathematics.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Redefinition : not allowed

r = 5

r = 2

no mutation

in Haskell

r = 5

r = 2

Side Effects (1A) 7 Young Won Lim
10/2/18

Immutable:

they can change only based on

the data we enter to run the program.

We cannot define r two ways in the same code,

but we could change the value by changing the file

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Variables in a file

a = 100
r = 5
pi = 3.14159
e = 2.7818

Vars.hs

Side Effects (1A) 8 Young Won Lim
10/2/18

*Main> r = 33
<interactive>:12:3: parse error on input ‘=’

$ ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
Prelude> r = 333
<interactive>:2:3: parse error on input ‘=’
Prelude>

let r = 33

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

No Mutation

No mutation, Immutable

let r = 33

Side Effects (1A) 9 Young Won Lim
10/2/18

$ ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
Prelude> :load Var1.hs
[1 of 1] Compiling Main (var.hs, interpreted)
Ok, modules loaded: Main.
*Main> r
5
*Main> :t r
r :: Integer
*Main>

*Main> :load Var2.hs
[1 of 1] Compiling Main (var2.hs, interpreted)
Ok, modules loaded: Main.
*Main> r
55

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Loading a variable definition file

definition with initialization

:load Var1.hs

:load Var1.hs

Var1.hs file
r = 5
x = 1
y = 3.14
…

Var2.hs file
r = 55
x = 1
y = 3.14
…

Side Effects (1A) 10 Young Won Lim
10/2/18

imperative programming:

incrementing the variable r

(updating the value in memory)

Hakell programming:

No compound assignment like operations

if r had been defined with any value beforehand,

then r = r + 1 in Haskell would bring an error message.

multiple definition not allowed

Use a function

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Incrementing by one

r = r + 1

add1 x = x + 1

r = 3
r = r + 1

r = 3
r = add1 r

as an argument and a parameter of a function in simple cases
add1 x = x + 1

add1 100
x (parameter) = 100 (argument)

Side Effects (1A) 11 Young Won Lim
10/2/18

binding an argument and a parameter of a function

add1 x = x + 1 101 x (parameter)

add1 100 100 (argument)

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Arguments and parameters of a function

add1 x = x + 1

r = 100
r = add1 r

Side Effects (1A) 12 Young Won Lim
10/2/18

Hakell programming:

a recursive definition of r

(defining it in terms of itself)

No compound assignment like operations are allowed

if a had been defined with any value beforehand,

then a = a + b in Haskell would multiply defined

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Recursive Definition

recursive function
factorial 0 = 1
factorial n = n * factorial (n – 1)

non-recursive function
add1 x = x + 1

recursive definitions are allowed
only in function definition

a += b (a = a + b)
a -= b (a = a – b)
a *= b (a = a * b)
a /= b (a = a / b)

Side Effects (1A) 13 Young Won Lim
10/2/18

The most primitive way of x = v is to use a function

taking x as a parameter, and pass the argument v to that function.

i = s = 0; // sum 0..100
while (i <= 100) {
 s = s+i;
 i++;
}
return s;

sum = f 0 0 -- the initial values
 where
 f i s | i <=100 = f (i+1) (s+i) -- increment i, augment s
 | otherwise = s -- return s at the end

This code is not pretty functional programing code,

but it is simulating imperative code

https://stackoverflow.com/questions/43525193/how-can-i-re-assign-a-variable-in-a-function-in-haskell

Simulating imperative codes

x = v

 i = (i+1)
s = (s+i)

Side Effects (1A) 14 Young Won Lim
10/2/18

 y = x * 2 x = 3

 x = 3 y = x * 3

Hakell programming:

because the values of variables do not change

variables can be defined in any order

no mandatory : "x being declared before y"

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

No Data Dependency

Side Effects (1A) 15 Young Won Lim
10/2/18

 area 5

=> { replace the LHS area r = ... by the RHS ... = pi * r^2 }

 pi * 5 ^ 2

=> { replace pi by its value }

 3.141592653589793 * 5 ^ 2

=> { apply exponentiation (^) }

 3.141592653589793 * 25

=> { apply multiplication (*) }

 78.53981633974483

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Evaluation examples

area r = pi * r^2

pi = 3.141592653589793

5^2 = 25

3.141592653589793 * 25 =

78.53981633974483

Side Effects (1A) 16 Young Won Lim
10/2/18

functional programming

● leaving the compiler to translate functions and variables

to the step-by-step instructions

that the computer can process.

replace each function and variable with its definition

repeatedly replace the results until a single value remains.

to apply or call a function means

to replace the LHS of its definition by its RHS.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Translation to instructions

LHS = RHS

LHS

RHS

Side Effects (1A) 17 Young Won Lim
10/2/18

Scope rules define the visibility rules

for names in a programming language.

What if you have references to a variable named k

in different parts of the program?

Do these refer to the same variable or to different ones?

https://courses.cs.washington.edu/courses/cse341/03wi/imperative/scoping.html

Scope

Side Effects (1A) 18 Young Won Lim
10/2/18

Most languages, including Haskell, are statically scoped.

● A block defines a new scope.

● Variables can be declared in that scope,

and are not visible from the outside.

● However, variables outside the scope (in enclosing scopes)

are visible unless they are overridden.

● In Haskell, these scope rules also apply

to the names of functions.

Static scoping is also sometimes called lexical scoping.

https://courses.cs.washington.edu/courses/cse341/03wi/imperative/scoping.html

Haskell Scope

visible

invisible

Side Effects (1A) 19 Young Won Lim
10/2/18

a function or expression is said to have a side effect

if it modifies some state outside its scope or

has an observable interaction

with its calling functions or the outside world

besides returning a value.

a particular function might

● modify a global variable or static variable

● modify one of its arguments

● raise an exception

● write data to a display or file

● read data from a keyboard or file

● call other side-effecting functions

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Side Effects Definition

Side Effects (1A) 20 Young Won Lim
10/2/18

Some Monad types to handle side effects

State monad

manages global variables

Error monad

enables exceptions

IO monad

handles interactions with the file system,

and other resources outside the program

the program itself has no side effects

the action in monads does have side effects

the functional nature of the program

is maintained (pure, no side effects)

https://blog.osteele.com/2007/12/overloading-semicolon/

actions in State, Error, IO monad
have side effects

Side Effects (1A) 21 Young Won Lim
10/2/18

In the presence of side effects,

a program's behaviour may depend on history;

the order of evaluation matters.

the context and histories

imperative programming : frequent utilization of side effects.

functional programming : side effects are rarely used.

The lack of side effects makes it easier

to do formal verifications of a program

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

History, Order, and Context

Side Effects (1A) 22 Young Won Lim
10/2/18

int i, j;

i = j = 3;

i = (j = 3); // j = 3 returns 3, which then gets assigned to i

// The assignment function returns 10

// which automatically casts to "true"

// so the loop conditional always evaluates to true

while (b = 10) { }

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Side Effects Examples in C

Side Effects (1A) 23 Young Won Lim
10/2/18

Haskell Functional Programming (II)

● Pure Function

● Simple IO

● Laziness

● Sequencing

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Haskell Language Features (II)

Side Effects (1A) 24 Young Won Lim
10/2/18

Haskell is a pure language no side effects

programs are made of functions pure functions

that cannot change

any global state or variables,

they can only

do some computations and return their results.

not modify arguments of a function

every variable's value does not change in time

However, some problems are inherently stateful

in that they rely on some state that changes over time.

a bit tedious to model

Haskell has the state monad features

http://learnyouahaskell.com/for-a-few-monads-more

Pure Languages

st1 = 10

s -> (x,s)

st1 (v,10)

immutability

use a function for

stateful computations

Side Effects (1A) 25 Young Won Lim
10/2/18

A pure function has no side effects

● no state nor no access to external states (global variables)

➔ the function call starts from the scratch (no memory)

➔ every invocation with the same set of arguments

returns always the same result

● no argument modifications

➔ calling a pure function is the same as

➔ calling it twice and discarding the result of the first call.

easily parallelizeable

no side effect means no data races

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Pure Function

call 1

call 2

no global variables

no argument
modification

Side Effects (1A) 26 Young Won Lim
10/2/18

Haskell runtime

● first evaluates main (an expression)

 not to a simple value

 but to an action. (function)

● then executes this action. (function) IO action

 the program itself has no side effects

 the action does have side effects stateful computation

the functional nature of the program

is maintained (pure, no side effects)

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Actions

a function as a value

main = putStrLn "Hello World!"

World -> ((), World)

stateful computation

(side effects)

action

IO monad

function

evaluation - execution

Side Effects (1A) 27 Young Won Lim
10/2/18

main calls functions like putStrLn or print,

which return IO actions.

● primitives built into Haskell :

the only non-trivial source of IO actions:

● return trivially converts any value into an IO action.

 IO actions : IO ()

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Simple IO

putStrLn :: String -> IO ()

print :: Show a => a -> IO ()

 IO ()

computations resulting in values

imperative code
using builtin

primitives

non-significant

Side Effects (1A) 28 Young Won Lim
10/2/18

...
writeCharBuffer h_ Buffer{ bufRaw=raw, bufState=WriteBuffer,
 bufL=0, bufR=count, bufSize=sz }
...
writeCharBuffer :: Handle__ -> CharBuffer -> IO ()
writeCharBuffer h_@Handle__{..} !cbuf = do
…

-- |Write a new value into an 'IORef'
writeIORef :: IORef a -> a -> IO ()
writeIORef (IORef var) v = stToIO (writeSTRef var v)

-- |Write a new value into an 'STRef'
writeSTRef :: STRef s a -> a -> ST s ()
writeSTRef (STRef var#) val = ST $ \s1# ->
 case writeMutVar# var# val s1# of { s2# -> (# s2#, () #) }

http://hackage.haskell.org/package/base-4.11.1.0/docs/src/GHC.IO.Handle.Text.html#local-6989586621679303176

Primitives in PutStrLn

 s2# -> (# s2#, () #)

s -> (x,s)

Side Effects (1A) 29 Young Won Lim
10/2/18

IO action is invoked, after the Haskell program has run

● an IO action can never be executed inside the program

in order to execute a function of the type World -> (t, World)

must supply a value of the type World

● once created, an IO action keeps percolating up

until it ends up in main and is executed by the runtime.

● IO action can be also discarded,

but that means it will never be evaluated

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

IO actions in main

main = putStrLn "Hello World!"

putStrLn :: String -> IO ()

 type IO t = World -> (t, World)

World -> ((), World)

runtime

Side Effects (1A) 30 Young Won Lim
10/2/18

Haskell will not calculate anything

unless it's strictly necessary or

is forced by the programmer

Haskell will not even evaluate

arguments to a function before calling it

Haskell assumes that the arguments will not be used,

so it procrastinates as long as possible.

unless proven otherwise

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness

Side Effects (1A) 31 Young Won Lim
10/2/18

A pure function has no side effects.

Calling a function once is the same

as calling it twice and discarding the result of the first call.

not modifying its arguments

but modifying only the result

furthermore, if the result of any function call is not used,

Haskell will spare itself the trouble

and will never call the function.

exception IO () -- () non-significant result

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness and Pure Functions

Side Effects (1A) 32 Young Won Lim
10/2/18

getChar :: RealWorld -> (Char, RealWorld)

main :: RealWorld -> ((), RealWorld)

main world0 = let (a, world1) = getChar world0

 (b, world2) = getChar world1

 in ((), world2)

● not possible here to omit any call of getChar,

just because the result is not used

● nor possible to reorder the getChar's

https://wiki.haskell.org/IO_inside#Welcome_to_the_RealWorld.2C_baby

Laziness and Pure Functions

world2 requires world1

world1 requires world0

the result () is not used

Side Effects (1A) 33 Young Won Lim
10/2/18

Division by zero : undefined - never be evaluated.

main = print $ undefined + 1

no compile time error

but a runtime error

because of an attempt to evaluate undefined.

foo x = 1

main = print $ (foo undefined) + 1

Haskell calls foo but never evaluates its argument undefined

(just returns 1)

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness Example 1

Side Effects (1A) 34 Young Won Lim
10/2/18

this does not come from optimization:

from the definition of foo, the compiler

figures out that its argument is unnecessary.

but the result is the same

if the definition of foo is hidden from view in another module.

{-# START_FILE Foo.hs #-}

-- show

module Foo (foo) where

foo x = 1

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness Example 2

{-# START_FILE Main.hs #-}

-- show

import Foo

main = print $ (foo undefined) + 1

Side Effects (1A) 35 Young Won Lim
10/2/18

laziness allows it to deal with

● infinity (like an infinite list)

● the future that hasn't materialized yet

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness with infinity

Side Effects (1A) 36 Young Won Lim
10/2/18

Laziness or not, a program will be executed at some time.

why an expression should be evaluated?

among many reasons, the fundamental one is

to display its result.

without I/O, nothing would ever be evaluated

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness and IO action

Side Effects (1A) 37 Young Won Lim
10/2/18

Larger IO actions are composed of smaller IO actions.

● the order of composition matters

● sequence IO actions

special syntax for sequencing :

the do notation.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation

Side Effects (1A) 38 Young Won Lim
10/2/18

main = do

 putStrLn "The answer is: "

 print 43

sequencing two IO actions

● one IO action returned by putStrLn

● another IO action returned by print

inside a do block

proper indentation.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation Example

Side Effects (1A) 39 Young Won Lim
10/2/18

whatever you receive from the user or from a file

you assign to a variable and use it later.

main = do

 str <- getLine

 putStrLn str

when executed, creates an action

that will take the input from the user.

then pass this input to the rest of actions of the do block

under the name str when the rest is executed.

(not ordinary variable, but a binding)

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation – input action (1)

immutable variable

just a binding

x <- monadic value

(only the result of the

monadic value execution)

getLine

str

binded name

Side Effects (1A) 40 Young Won Lim
10/2/18

 str <- getLine

 getLine :: IO String

● str is not really a variable

● <- is not really an assignment

● <- creates an action (execution)

● <- binds the name str to the value (String)

that will be returned by executing the action of getLine.

In Haskell you never assign to a variable, (immutable)

instead you bind a name to a value.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation – input action (2)

getLine creates an action that,

when the action executed

will take the input from the user.

It will then pass that input

to the rest of the do block

(which is also an action)

under the name str

when it (the rest) is executed.

only the returned result is passed

Side Effects (1A) 41 Young Won Lim
10/2/18

the do block is used for

sequencing a more general set of

monadic operations such as IO actions

IO is just one example of a monad

inside a monadic do block

● looks like chunks of imperative code.

● behaves like imperative code

the core of monadic operations is built

by imperative programming.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

do block operations

main = do

 mv1 x

mv2 y

mv3 z

mv1 x mv2 y mv3 z

imperative code

Side Effects (1A) 42 Young Won Lim
10/2/18

Monadic value

a value of type M a is interpreted mv :: M a

as a statement in an imperative language M

that returns a value of type a as its result;

https://wiki.haskell.org/Functional_programming#Purity

 M a

computations resulting in values

imperative code

monadic type

Side Effects (1A) 43 Young Won Lim
10/2/18

The way the actions are glued together

is the essence of the Monad.

Since the glueing happens between the lines,

the Monad is sometimes described as

an "overloading of the semicolon."

Different monads overload it differently.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Semicolon Overloading

main = do

 putStrLn "The answer is: " ;

 print 43

main =

 putStrLn "The answer is: " >>

 print 43

Side Effects (1A) 44 Young Won Lim
10/2/18

Semicolon Overloading Examples

can define your own sequencing rule

● execute the first statement once,

and then execute the next statement

● the first statement computes a value,

which the next statement can use

the Maybe monad

● execute the first statement, but only execute

the next statement if the value so far isn’t null

the List monad

● the first statement computes a list of values,

and the second statement runs once using each of them

https://blog.osteele.com/2007/12/overloading-semicolon/

f x = [x, x+1]
g x = [x * x]
f 3 >>= g [9, 16]

1 : [2, 3] >>= \x -> [x *2] [2,4,6]

 mx >>= f1

Nothing

Just y

mx :: Maybe a
f1 :: a -> Maybe b

Side Effects (1A) 45 Young Won Lim
10/2/18

Combining two statements

analogy between statements and variables

● Java and C++ have typed variables

● Haskell adds typed statements

Operators combine values, such as plus and times.

overload operators:

Integer+Integer, String+String, Vector+Vector

semicolon operator combines two statements.

 a monad is a definition for the semicolon operator

it defines the meaning of a compound statement

composed of two simpler ones.

Haskell lets you overload semicolon.

https://blog.osteele.com/2007/12/overloading-semicolon/

value value+

statement statement;

Operator overload

Semicolon overload

monad

>>=

Side Effects (1A) 46 Young Won Lim
10/2/18

The functional language Haskell expresses side effects

such as I/O and

other stateful computations

using monadic actions

IO monad

State monad

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Stateful Computations & IO: Side Effects in Haskell

Side Effects (1A) 47 Young Won Lim
10/2/18

a stateful computation is a function that

takes some state and

returns a value along with some new state.

That function would have the following type:

 s -> (a,s)

s is the type of the state and

a the result of the stateful computation.

http://learnyouahaskell.com/for-a-few-monads-more

Stateful Computation

s -> (a, s)

s (a, s)

a function is an executable data

when executed, a result is produced

action (an executable function)

result is produced if executed

Side Effects (1A) 48 Young Won Lim
10/2/18

Assignment in an imperative language :

will assign the value 5 to the variable x

will have the value 5 as an expression

Assignment in a functional language

as a function that

takes a state and

returns a result and a new state

http://learnyouahaskell.com/for-a-few-monads-more

Assignment in the Haskell runtime

x = 5 x = 529

s (a, s)

w0 (5, w1)

result

Side Effects (1A) 49 Young Won Lim
10/2/18

Assignment in a functional language

as a function that

takes a state and

returns a result and a new state

an input state :

all the variables that have been assigned previously

a result : 5

a new state :

all the previous variable mappings plus

the newly assigned variable.

http://learnyouahaskell.com/for-a-few-monads-more

Assignment as a stateful computation

s -> (a, s)

s (a, s)

all the variables
that have been
assigned
previously

all the previous
mapped variable
plus the newly
assigned variable

 a result : 5

x = 5

Side Effects (1A) 50 Young Won Lim
10/2/18

The stateful computation:

● a function that

➔ takes a state and

➔ returns a result and a new state

● can be considered as a value with a context

the actual value is the result

the context is

 an initial state that must be provided to get the result

not only the result, but also a new state is obtained

through the execution of the function

the result is determined based on the initial state

the result and the new state depend on the initial state

http://learnyouahaskell.com/for-a-few-monads-more

A value with a context

s -> (a, s)

s (a, s)

● all the current

variable mappings

● all the previous

variable mappings

● the new variable

mapping

● a result : 5

context

a value with a context

Side Effects (1A) 51 Young Won Lim
10/2/18

Generally, a monad cannot perform side effects in Haskell.

there is a few exceptions: IO monad, State monad

Suppose there is a type called World,

which contains all the state of the external universe

(actually a reference to such a data structure)

A way of thinking what IO monad does

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Stateful computations of IO Monad

World -> (t, World)

World (t, World)

In Haskell, no variable changes

a state transition via a function

a collection of variables (state)

a new collection of variables (updated)

In Haskell, a function is a value

an action – an executable function

Side Effects (1A) 52 Young Won Lim
10/2/18

https://www.cs.hmc.edu/~adavidso/monads.pdf

Stateful computation models of IO monad

 1st IO
initial
World

updated
World 2nd IO

updated
World 3rd IO

updated
World

IO

current
World

updated
World

only 1 World

using GHCI,

using GHC

Side Effects (1A) 53 Young Won Lim
10/2/18

Pure subset of a language

Some functional languages allow expressions

to yield actions in addition to return values.

These actions are called side effects

to emphasize that the return value is

the most important result of a function

pure languages prohibit side effects

but, pure subsets is still useful

beneficial to write a significant part of a code as pure

and the remaining error prone impure part as small as possible

https://wiki.haskell.org/Functional_programming#Purity

 M a

computations resulting in values

imperative code

actions + return values

actions may yield side effects

{ impure subset }

Side Effects (1A) 54 Young Won Lim
10/2/18

Pure language features

Immutable Data altered copies are used

Referential Transparency the same result on each invocation

Lazy Evaluation defer until needed

Purity and Effects mutable array and IO

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 55 Young Won Lim
10/2/18

Immutable data

Pure functional programs typically

operate on immutable data.

Instead of altering existing values,

altered copies are created and

the original is preserved.

Since the unchanged parts of the structure

cannot be modified, they can often be shared

between the old and new copies,

which saves memory.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 56 Young Won Lim
10/2/18

Referential Transparency

Pure computations yield the same value

each time they are invoked.

This property is called referential transparency

and makes possible to conduct

equational reasoning on the code.

no argument modification

no global variable access

: no side effects

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 57 Young Won Lim
10/2/18

Referential Transparency Examples

y = f x

g = h y y

then we should be able

to replace the definition of g with

g = h (f x) (f x)

and get the same result;

only the efficiency might change.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 58 Young Won Lim
10/2/18

Lazy Evaluation

Since pure computations are referentially transparent

they can be performed at any time

and still yield the same result.

This makes it possible to defer the computation of values

until they are needed, that is, to compute them lazily.

Lazy evaluation avoids unnecessary computations

and allows infinite data structures to be defined and used.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 59 Young Won Lim
10/2/18

Purity and Effects

Even though purely functional programming is very beneficial,

the programmer might want to use features

that are not available in pure programs,

like efficient mutable arrays or convenient I/O.

There are 2 approaches to this problem.

1) extended impure function

2) simulating monads

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 60 Young Won Lim
10/2/18

Using impure functions

Some functional languages extend

their purely functional core with side effects.

The programmer must be careful not to use impure functions

in places where only pure functions are expected.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 61 Young Won Lim
10/2/18

Using monads

Another way of introducing side effects to a pure language

is to simulate them using monads.

While the language remains pure and referentially transparent,

monads can provide implicit state by threading it inside them. stateful computation

The compiler does not care about the imperative features

because the language itself remains pure,

however usually the implementations do care about them

due to the efficiency reasons,

for instance to provide O(1) mutable arrays.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 62 Young Won Lim
10/2/18

Monads enable lazy evaluation

Allowing side effects only through monads

and keeping the language pure makes it possible

to have lazy evaluation that does not conflict

with the effects of impure code.

Even though lazy expressions can be

evaluated in any order,

the monad structure forces the effects

to be executed in the correct order.

https://wiki.haskell.org/Functional_programming#Purity

Side Effects (1A) 63 Young Won Lim
10/2/18

Monads enable lazy evaluation

But now, when you look at a do block, it looks very much like imperative code with hidden side

effects. The Either monadic code looks like using functions that can throw exceptions. State

monad code looks as if the state were a global mutable variable. You access it using get with no

arguments, and you modify it by calling put that returns no value. So what have we gained in

comparison to C?

We might not see the hidden effects, but the compiler does. It desugars every do block and type-

checks it. The state might look like a global variable but it's not. Monadic bind makes sure that

the state is threaded from function to function. It's never shared. If you make your Haskell code

concurrent, there will be no data races.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-State-Monad

Side Effects (1A) 64 Young Won Lim
10/2/18

Monads enable lazy evaluation

If you have a global environment, which various functions read from (and you might, for example,

initialise from a configuration file) then you should thread that as a parameter to your functions

(after having, very likely, set it up in your 'main' action). If the explicit parameter passing annoys

you, then you can 'hide' it with a Monad.

https://wiki.haskell.org/Global_variables

Young Won Lim
10/2/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65

