
Young Won Lim
10/7/17

State Monad (3E)

Young Won Lim
10/7/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

State Monad
Examples (3E)

3 Young Won Lim
10/7/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad
Examples (3E)

4 Young Won Lim
10/7/17

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where

 -- return :: a -> Maybe a

 return x = Just x

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

 f :: a -> m b

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad

State Monad
Examples (3E)

5 Young Won Lim
10/7/17

a monad is a parameterized type m

that supports return and >>= functions of the specified types

m must be a parameterized type,

rather than just a type (not a concrete type)

It is because of this declaration

that the do notation can be used to sequence Maybe values.

More generally, Haskell supports the use of this notation

with any monadic type.

examples of types that are monadic,

the benefits that result from recognizing and exploiting this fact.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad

State Monad
Examples (3E)

6 Young Won Lim
10/7/17

monad (plural monads)

● An ultimate atom, or simple, unextended point;
something ultimate and indivisible.

● (mathematics, computing) A monoid in the
category of endofunctors.

● (botany) A single individual (such as a pollen
grain) that is free from others, not united in a
group.

monoid (plural monoids)

● (mathematics) A set which is closed under an
associative binary operation, and which contains
an element which is an identity for the operation.

https://en.wiktionary.org/wiki/monad, monoid

Monad, Monoid

https://en.wiktionary.org/wiki/monad

State Monad
Examples (3E)

7 Young Won Lim
10/7/17

The Maybe monad provides a simple model of computations

that can fail,

a value of type Maybe a is either Nothing (failure)

the form Just x for some x of type a (success)

The list monad generalises this notion,

by permitting multiple results in the case of success.

More precisely, a value of [a] is

either the empty list [] (failure)

or the form of a non-empty list [x1,x2,...,xn] (success)

for some xi of type a

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad

State Monad
Examples (3E)

8 Young Won Lim
10/7/17

instance Monad [] where

 -- return :: a -> [a]

 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = concat (map f xs)

return converts a value into a successful result containing that value

>>= provides a means of sequencing computations

that may produce multiple results:

xs >>= f applies the function f to each of the results in the list xs

to give a nested list of results,

which is then concatenated to give a single list of results.

(Aside: in this context, [] denotes the list type [a] without its parameter.)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad

xs :: [a]

f :: a -> [b]

(>>=) :: [a] -> (a -> [b]) -> [b]

State Monad
Examples (3E)

9 Young Won Lim
10/7/17

instance Monad [] where

 -- return :: a -> [a]

 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = concat (map f xs)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

State Monad
Examples (3E)

10 Young Won Lim
10/7/17

type State = ...

type ST = State -> State

the problem of writing functions that manipulate some kind of state,

represented by a type, whose detail is not our concern now.

a state transformer (ST), which takes the current state as its argument,

and produces a modified state as its result,

which reflects any side effects performed by the function:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

State Monad
Examples (3E)

11 Young Won Lim
10/7/17

type State = ...

type ST = State -> State

type ST a = State -> (a, State)

want to return a result value in addition to the modified state

generalized state transformers also return a result value,

as a parameter of the ST type

State -> (a, State)

 s -> (v, s’)

 s: input state, v: the result value, s’: output state

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generalized State Transformer

State Monad
Examples (3E)

12 Young Won Lim
10/7/17

type ST a = State -> (a, State) generalized ST

type ST’ a b = b -> State -> (a, State) further generalized ST

 b -> ST a = b -> State -> (a, State) think currying

also may need to take argument values

no need to use more generalized ST type

can be exploiting currying.

a state transformer that takes a character and returns an integer

would have type Char -> ST Int

Char -> State -> (Int, State) curried form

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Curried Generalized State Transformer

State Monad
Examples (3E)

13 Young Won Lim
10/7/17

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

>>= provides a means of sequencing state transformers:

st >>= f applies the state transformer st to an initial state s,

then applies the function f to the resulting value x

to give a second state transformer (f x),

which is then applied to the modified state s' to give the final result:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad

(x,s') = st s

 f x s'

st :: ST a

f :: a -> ST b

(>>=) :: ST a -> (a -> ST b) -> ST b

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> ST b)
-> ST b

State Monad
Examples (3E)

14 Young Won Lim
10/7/17

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

st :: ST a

f :: a -> ST b

(>>=) :: ST a -> (a -> ST b) -> ST b

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad

(x,s') = st s

 f x s'

s → (x,s')

State Monad
Examples (3E)

15 Young Won Lim
10/7/17

 cylinder :: (RealFloat a) => a -> a -> a

 cylinder r h =

 let sideArea = 2 * pi * r * h

 topArea = pi * r ^2

 in sideArea + 2 * topArea

The form is let <bindings> in <expression>.

The names that you define in the let part

are accessible to the expression after the in part.

Notice that the names are also aligned in a single column.

For now it just seems that let puts the bindings first

and the expression that uses them later

whereas where is the other way around.

http://learnyouahaskell.com/syntax-in-functions

let … in …

State Monad
Examples (3E)

16 Young Won Lim
10/7/17

instance Monad [] where

 -- return :: a -> [a]

 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = concat (map f xs)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

instance Monad Maybe where

 -- return :: a -> Maybe a

 return x = Just x

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

State Monad
Examples (3E)

17 Young Won Lim
10/7/17

type ST a = State -> (a, State) generalized ST

data ST0 a = S0 (State -> (a, State))

types defined using the type mechanism

cannot be made into instances of classes.

types defined using the data mechanism

can be made into instances of classes.

but requires a dummy constructor (S0)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Dummy Constructor S0

State Monad
Examples (3E)

18 Young Won Lim
10/7/17

type ST a = State -> (a, State) generalized ST

data ST0 a = S0 (State -> (a, State))

In order to remove the dummy constructor,

define our own application function (apply0) for this type

apply0 :: ST0 a -> State -> (a, State)

apply0 (S0 f) x = f x

f :: State -> (a, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Removing Data Constructor

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f x returns a function of type b -> c

* Curried Function

State Monad
Examples (3E)

19 Young Won Lim
10/7/17

type ST a = State -> (a, State) generalized ST

data ST0 a = S0 (State -> (a, State))

apply0 :: ST0 a -> State -> (a, State)

apply0 (S0 f) x = f x

apply0 (S0 g) x = g x

instance Monad ST0 where

 -- return :: a -> ST a

 return x = S0 (\s -> (x,s))

 -- (>>=) :: ST a -> (a -> STT b) -> ST b

 st >>= f = S0 (\s -> let (x, s') = apply0 st s in apply0 (f x) s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

State Monad
Examples (3E)

20 Young Won Lim
10/7/17

data Colour = Red | Green | Blue

data Colour = RGB Int Int Int

RGB :: Int -> Int -> Int -> Colour

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Data Constructor

State Monad
Examples (3E)

21 Young Won Lim
10/7/17

pairs :: [a] -> [b] -> [(a,b)] do

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

this function returns all possible ways of pairing elements from two lists

each possible value x from the list xs, and

each value y from the list ys, and

return the pair (x,y).

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Examples (1)

State Monad
Examples (3E)

22 Young Won Lim
10/7/17

pairs :: [a] -> [b] -> [(a,b)] do

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

pairs xs ys = [(x,y) | x <- xs, y <- ys] comprehension

In fact, there is a formal connection

between the do notation and the comprehension notation.

Both are simply different shorthands

for repeated use of the >>= operator for lists.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Examples (1)

State Monad
Examples (3E)

23 Young Won Lim
10/7/17

(>>) :: Monad m => m a -> m b -> m b;

 a1 >> a2 takes the actions a1 and a2 and

returns the mega action which is

a1-then-a2-returning-the-value-returned-by-a2.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Simple Examples (1)

State Monad
Examples (3E)

24 Young Won Lim
10/7/17

type State = Int

fresh :: ST0 Int

fresh = S0 (\n -> (n, n+1))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

ghci> apply0 wtf1 0

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Simple Examples (1)

State Monad
Examples (3E)

25 Young Won Lim
10/7/17

return :: a -> ST0 a

> wtf2 = fresh >>= \n1 ->

> fresh >>= \n2 ->

> fresh >>

> fresh >>

> return [n1, n2]

> wtf2' = do { n1 <- fresh;

> n2 <- fresh;

> fresh ;

> fresh ;

> return [n1, n2];

> }

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Simple Examples (2)

State Monad
Examples (3E)

26 Young Won Lim
10/7/17

ghci> apply0 wtf2 0

> wtf3 = do n1 <- fresh

> fresh

> fresh

> fresh

> return n1

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Simple Examples (3)

State Monad
Examples (3E)

27 Young Won Lim
10/7/17

to generate Int dice - result : a number between 1 and 6

throw results from a pseudo-random generator of type StdGen.

the type of the state processors will be

State StdGen Int

StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Dice Examples

State Monad
Examples (3E)

28 Young Won Lim
10/7/17

the StdGen type : an instance of RandomGen

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

assume a is Int and g is StdGen

the type of randomR

randomR (1, 6) :: StdGen -> (Int, StdGen)

already have a state processing function

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad
Examples (3E)

29 Young Won Lim
10/7/17

randomR (1, 6) :: StdGen -> (Int, StdGen)

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad
Examples (3E)

30 Young Won Lim
10/7/17

module StateGame where

import Control.Monad.State

-- Example use of State monad

-- Passes a string of dictionary {a,b,c}

-- Game is to produce a number from the string.

-- By default the game is off, a C toggles the

-- game on and off. A 'a' gives +1 and a b gives -1.

-- E.g

-- 'ab' = 0

-- 'ca' = 1

-- 'cabca' = 0

-- State = game is on or off & current score

-- = (Bool, Int)

https://wiki.haskell.org/State_Monad

Some Examples (1)

State Monad
Examples (3E)

31 Young Won Lim
10/7/17

type GameValue = Int

type GameState = (Bool, Int)

playGame :: String -> State GameState GameValue

playGame [] = do

 (_, score) <- get

 return score

https://wiki.haskell.org/State_Monad

Some Examples (2)

State Monad
Examples (3E)

32 Young Won Lim
10/7/17

playGame (x:xs) = do

 (on, score) <- get

 case x of

 'a' | on -> put (on, score + 1)

 'b' | on -> put (on, score - 1)

 'c' -> put (not on, score)

 _ -> put (on, score)

 playGame xs

startState = (False, 0)

main = print $ evalState (playGame "abcaaacbbcabbab") startState

https://wiki.haskell.org/State_Monad

Some Examples (3)

Young Won Lim
10/7/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

