
Young Won Lim
7/7/17

Functor (1A)

Young Won Lim
7/7/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Functor (1A) 3 Young Won Lim
7/7/17

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 4 Young Won Lim
7/7/17

Typeclasses

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

Such behavior is defined by
function definition
type declaration to be implemented

a type is an instance of a typeclass implies
the functions defined by the typeclass with that type can be used

No relation with classes in Java or Python

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 5 Young Won Lim
7/7/17

A Typeclass Example

the Eq typeclass

defines the functions == and /=

a type Car

comparing two cars c1 and c2 with the equality function ==

The Car type is an instance of Eq typeclass

Instances : various types

Typeclass : a group or a class of these similar types

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type Car

a type Bag

a type Phone

Eq typeclass

functions
== and /=

Functor (1A) 6 Young Won Lim
7/7/17

Eq Typeclass Example

 class Eq a where
 (==) :: a -> a -> Bool - a type declaration
 (/=) :: a -> a -> Bool - a type declaration
 x == y = not (x /= y) - a function definition
 x /= y = not (x == y) - a function definition

 data TrafficLight = Red | Yellow | Green

 instance Eq TrafficLight where
 Red == Red = True
 Green == Green = True
 Yellow == Yellow = True
 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> Red == Red
True
ghci> Red == Yellow
False
ghci> Red `elem` [Red, Yellow, Green]
True

Functor (1A) 7 Young Won Lim
7/7/17

Show Typeclass Example

 class Show a where
 show :: a -> String - a type declaration
 * * *

 data TrafficLight = Red | Yellow | Green

 instance Show TrafficLight where
 show Red = "Red light"
 show Yellow = "Yellow light"
 show Green = "Green light"

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> [Red, Yellow, Green]
[Red light,Yellow light,Green light]

Functor (1A) 8 Young Won Lim
7/7/17

Show Typeclass Example

 class (Eq a) => Num a where
 ...

 class Num a where
 ...

class constraint on a class declaration
only we state that our type a must be an instance of Eq

an instance of Eq
before being an instance of Num

When defining the required function bodies
in the class declaration or
in instance declarations,

we can safely use == because a is a part of Eq

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 9 Young Won Lim
7/7/17

Show Typeclass Example

class constraints in class declarations

to make a typeclass a subclass of another typeclass

class constraints in instance declarations

to express requirements about the contents of some type.

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 10 Young Won Lim
7/7/17

Show Typeclass Example

the a : a concrete type

Maybe : not a concrete type

: a type constructor that takes one parameter

 produces a concrete type.

Maybe a : a concrete type

 instance (Eq m) => Eq (Maybe m) where

 Just x == Just y = x == y

 Nothing == Nothing = True

 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 11 Young Won Lim
7/7/17

Functor typeclass

the Functor typeclass is basically for things that can be mapped over

ex) mapping over lists

the list type is part of the Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 12 Young Won Lim
7/7/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines one function, fmap,

no default implementation

the type variable f

not a concrete type (a concrete type can hold a value)

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 13 Young Won Lim
7/7/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes
● a function from one type to another (a -> b)
● a functor f applied with one type
● returns a functor f applied with another type.

 map :: (a -> b) -> [a] -> [b]

map takes
● a function from one type to another
● a list of one type
● returns a list of another type

map is just a fmap that works only on lists. Here's how the list is an instance of the Functor
typeclass.

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 14 Young Won Lim
7/7/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

Here's how the list is an instance of the Functor typeclass.

 instance Functor [] where

 fmap = map

f : a type constructor that takes one type

[] : a type constructor that takes one type

[a] : a concrete type ([Int], [String] or [[String]])

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 map :: (a -> b) -> [a] -> [b]

 ghci> fmap (*2) [1..3]

 [2,4,6]

 ghci> map (*2) [1..3]

 [2,4,6]

*21 2

fmap[1,2,3] [2,4,6]

Functor (1A) 15 Young Won Lim
7/7/17

Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 ghci> fmap (*2) (Just 200)

 Just 400

 ghci> fmap (*2) Nothing

 Nothing

 ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") (Just "Something serious.")

 Just "Something serious. HEY GUYS IM INSIDE THE JUST"

 ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") Nothing

 Nothing

*2200 400

fmap(Just 200) (Just 400)

Functor (1A) 16 Young Won Lim
7/7/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

If an empty value of Nothing, then just return a Nothing.

If a single value packed up in a Just,

then we apply the function on the contents of the Just.

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fa b

fmapf a f b

Maybea Maybe a

fmapMaybe a Maybe Maybe a

→ Maybe a

Functor (1A) 17 Young Won Lim
7/7/17

Maybe as a functor

Functor typeclass:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a is an instance of a functor type class

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Functor (1A) 18 Young Won Lim
7/7/17

Maybe as a functor

A function f transformed with fmap
can work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

 f :: Int -> Int
fmap f :: Maybe Integer -> Maybe Integer

a Maybe Integer value: m_x

fmap f m_x

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Functor (1A) 19 Young Won Lim
7/7/17

Maybe as a functor

In fact, you could apply a whole chain of
lifted Integer -> Integer functions to Maybe Integer values
and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Functor (1A) 20 Young Won Lim
7/7/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines one function, fmap,

no default implementation

the type variable f

not a concrete type (a concrete type can hold a value)

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fa b

Young Won Lim
7/7/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

