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Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Currying 

Currying recursively transforms 
a function that takes multiple arguments 
into a function that takes just a single argument and 
returns another function if any arguments are still needed.

f :: a -> b -> c    

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Currying Examples

f

g1

x 

x1

f :: a -> b -> c -> d -> e

g2x2

g3x3 z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) x1) x2) x3)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Curry & Uncurry 

f :: a -> b -> c     the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)    

the curried form is usually more convenient 
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)    

the curried form 
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https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application
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