
Young Won Lim
8/2/17

Applicative (2A)

Young Won Lim
8/2/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Applicative (2A) 3 Young Won Lim
8/2/17

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 4 Young Won Lim
8/2/17

Currying

Currying recursively transforms
a function that takes multiple arguments
into a function that takes just a single argument and
returns another function if any arguments are still needed.

f :: a -> b -> c

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 5 Young Won Lim
8/2/17

Currying Examples

f

g1

x

x1

f :: a -> b -> c -> d -> e

g2x2

g3x3 z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) x1) x2) x3)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 6 Young Won Lim
8/2/17

Curry & Uncurry

f :: a -> b -> c the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)

the curried form is usually more convenient
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)

the curried form

Applicative (2A) 7 Young Won Lim
8/2/17

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

Applicative (2A) 8 Young Won Lim
8/2/17

Curry & Uncurry

f :: a -> b -> c the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)

the curried form is usually more convenient
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)

the curried form

Applicative (2A) 9 Young Won Lim
8/2/17

Curry & Uncurry

f :: a -> b -> c the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)

the curried form is usually more convenient
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)

the curried form

Young Won Lim
8/2/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

