Density Functions

Young W Lim

Mar 172022

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Function of Random Variables

Function of Random Variable (1)

- A new random variable Y can be defined by applying a real Borel measurable functiong $: \mathbb{R} \rightarrow \mathbb{R}$ to the outcomes of a real-valued random variable X.

$$
Y=g(X)
$$

- The cumulative distribution function of Y is then

$$
F_{Y}(y)=\mathrm{P}\{g(X) \leq y\}
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Function of Random Variable (2)

- If function g is invertible
(i.e., $h=g^{-1}$ exists, where h is g 's inverse function)
- and if the function g is either increasing or decreasing, then the previous relation can be extended to obtain

$$
\begin{aligned}
& F_{Y}(y)=P\{g(X) \leq y\} \\
& \quad= \begin{cases}P\{X \leq h(y)\}=F_{X}(h(y)), & \text { if } h=g^{-1} \text { increasing, } \\
P\{X \geq h(y)\}=1-F_{X}(h(y)), & \text { if } h=g^{-1} \text { decreasing. }\end{cases}
\end{aligned}
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Function of Random Variable (3)

- assuming invertibility and differentiability of g
- the relation between the probability density functions can be found by differentiating both sides of the above expression with respect to y, in order to obtain

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Function of Random Variable (4)

- If there is no invertibility of g, but each y admits at most a countable number of roots (i.e., a finite, or countably infinite, number of x_{i} such that $y=g\left(x_{i}\right)$)
- then the generalized relation between the probability density functions

$$
f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right|
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Function of Random Variable (5)

$$
f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right|
$$

- where $x_{i}=g_{i}^{-1}(y)$, according to the inverse function theorem. The formulas for densities do not require g to be increasing.

```
https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables
```


Example I

Let X be a real-valued, continuous random variable and let $Y=X^{2}$

$$
F_{Y}(y)=P\left\{X^{2} \leq y\right\}
$$

If $y<0$, then $P\left\{X^{2} \leq y\right\}=0$, so

$$
F_{Y}(y)=0 \quad \text { if } \quad y<0
$$

If $y \geq 0$, then

$$
P\left\{X^{2} \leq y\right\}=P\{|X| \leq \sqrt{y}\}=P\{-\sqrt{y} \leq|X| \leq \sqrt{y}\}
$$

so

$$
F_{Y}(y)=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \quad \text { if } \quad y \geq 0
$$

Example II (1)

Suppose X is a random variable with a cumulative distribution

$$
F_{X}(x)=P(X \leq x)=\frac{1}{\left(1+e^{-x}\right)^{\theta}}
$$

where $\theta>0$ is a fixed parameter.
Consider the random variable $Y=\log \left(1+e^{-X}\right)$. Then,

$$
\begin{aligned}
F_{Y}(y) & =P\{Y \leq y\} \\
& =P\left\{\log \left(1+e^{-x}\right) \leq y\right\} \\
& \left.=P\left\{\left(1+e^{-x}\right) \leq e^{y}\right\}=P\left\{e^{-x} \leq e^{y}-1\right)\right\} \\
& =P\left\{X \geq-\log \left(e^{y}-1\right)\right\}
\end{aligned}
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example II (2)

The last expression can be calculated in terms of the cumulative distribution of X, so

$$
\begin{aligned}
F_{Y}(y) & =1-F_{X}\left(-\log \left(e^{y}-1\right)\right) \\
& =1-\frac{1}{\left(1+e^{\log \left(e^{y}-1\right)}\right)^{\theta}} \\
& =1-\frac{1}{\left(1+e^{y}-1\right)^{\theta}} \\
& =1-e^{-y \theta} .
\end{aligned}
$$

which is the cumulative distribution function (CDF) of an exponential distribution.

Example III (1)

Suppose X is a random variable with a standard normal distribution, whose density is

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Consider the random variable $Y=X^{2}$
We can find the density using the above formula for a change of variables:

$$
f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right| .
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example III (2)

In this case the change is not monotonic, because every value of Y has two corresponding values of X (one positive and negative).

$$
\begin{gathered}
x_{1}=g_{1}^{-1}(y)=+\sqrt{y} \\
x_{2}=g_{2}^{-1}(y)=-\sqrt{y} \\
f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right| .
\end{gathered}
$$

Example III (3)

However, because of symmetry,
both halves will transform identically, i.e.,

$$
f_{Y}(y)=2 f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|
$$

The inverse transformation is

$$
x=g^{-1}(y)=\sqrt{y}
$$

and its derivative is

$$
\frac{d g^{-1}(y)}{d y}=\frac{1}{2 \sqrt{y}}
$$

Example III (4)

$$
\begin{gathered}
f_{Y}(y)=f_{X}(+\sqrt{y})\left|\frac{d \sqrt{y}}{d y}\right|+f_{X}(-\sqrt{y})\left|\frac{d \sqrt{y}}{d y}\right| \\
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
\end{gathered}
$$

because of the symmetry of $f_{X}(x)$

$$
\begin{aligned}
f_{Y}(y) & =2 f_{X}(\sqrt{y})\left|\frac{d \sqrt{y}}{d y}\right|=2 f_{X}(\sqrt{y}) \frac{1}{2 \sqrt{y}} \\
& =f_{X}(\sqrt{y}) \frac{1}{\sqrt{y}}
\end{aligned}
$$

Example III (4)

Then,

$$
f_{Y}(y)=2 \frac{1}{\sqrt{2 \pi}} e^{-y / 2} \frac{1}{2 \sqrt{y}}=\frac{1}{\sqrt{2 \pi y}} e^{-y / 2}
$$

This is a chi-squared distribution with one degree of freedom.
https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example IV (1)

- Suppose X is a random variable with a normal distribution, whose density is

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

- Consider the random variable $Y=X^{2}$. We can find the density using the above formula for a change of variables:

$$
f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right|
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example IV (2)

- In this case the change is not monotonic, because every value of Y has two corresponding values of X (one positive and negative).

$$
\begin{aligned}
& x_{1}=g_{1}^{-1}(y)=+\sqrt{y} \\
& x_{2}=g_{2}^{-1}(y)=-\sqrt{y}
\end{aligned}
$$

- Differently from the previous example, in this case however, there is no symmetry and we have to compute the two distinct terms:

$$
f_{Y}(y)=f_{X}\left(g_{1}^{-1}(y)\right)\left|\frac{d g_{1}^{-1}(y)}{d y}\right|+f_{X}\left(g_{2}^{-1}(y)\right)\left|\frac{d g_{2}^{-1}(y)}{d y}\right|
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example IV (3)

- The inverse transformation is

$$
x=g_{1,2}^{-1}(y)= \pm \sqrt{y}
$$

- and its derivative is

$$
\frac{d g_{1,2}^{-1}(y)}{d y}= \pm \frac{1}{2 \sqrt{y}} .
$$

https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

Example IV (4)

- Then,

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{2 \sqrt{y}}\left(e^{-(\sqrt{y}-\mu)^{2} /\left(2 \sigma^{2}\right)}+e^{-(-\sqrt{y}-\mu)^{2} /\left(2 \sigma^{2}\right)}\right) .
$$

- This is a noncentral chi-squared distribution with one degree of freedom.
https://en.wikipedia.org/wiki/Random_variable\#Functions_of_random_variables

