
Young Won Lim
1/3/17

A Sudoku Solver – Pruning (3A)

● Richard Bird Implementation

Young Won Lim
1/3/17

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Bird’s Sudoku
Pruning (3A) 3 Young Won Lim

1/3/17

Based on

Thinking Functionally with Haskell, R. Bird

https://wiki.haskell.org/Sudoku

http://cdsoft.fr/haskell/sudoku.html

https://gist.github.com/wvandyk/3638996

http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996
http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Bird’s Sudoku
Pruning (3A) 4 Young Won Lim

1/3/17

Single-Cell Expansion

> prune :: Matrix Choices -> Matrix Choices
> prune =
> pruneBy boxs . pruneBy cols . pruneBy rows
> where pruneBy f = f . map pruneRow . f

> pruneRow :: Row Choices -> Row Choices
> pruneRow row = map (remove ones) row
> where ones = [d | [d] <- row]

Bird’s Sudoku
Pruning (3A) 5 Young Won Lim

1/3/17

Single-Cell Expansion

solve :: Grid -> [Grid]
solve = filter valid . expand. Choices

prune :: Matrix [Digit] -> Matrix [Digit]
filter valid . Expand = filter valid . Expand

pruneRow :: Row [Digit] -> Row [Digit]
pruneRow row = map (remove fixed) row

where fixed = [d | [d] ← row]

remove :: [Digit] -> [Digit] -> [Digit]
remove ds [x] = [x]
remove ds xs = filter (`notElem` ds) xs

notElem :; (Eq a_ => a -> [a] -> Bool
notElem x xs = all (/= x) xs

Bird’s Sudoku
Pruning (3A) 6 Young Won Lim

1/3/17

Single-Cell Expansion

pruneRow [[6], [1,2], [3], [1,3,4], [5,6]]
[[6], [1,2], [3], [1,4], [5]]

PruneRow [[6], [3,6], [3], [1,3,4], [4]]
[[6], [], [3], [1], [4]]

filter nodups . cp = filter nodups . cp . PruneRow

filter (p. f) = map f . filter p . map f
filter (p. f) map f = map f . filter p

Bird’s Sudoku
Pruning (3A) 7 Young Won Lim

1/3/17

Single-Cell Expansion

map f. filter p . map f
= map f . filter (p . f)

map f . map f . filter (p . f)
= filter (p . f)

filter valid . expand
= filter (all nodups . boxs) .
 filter (all nodups . cols) .
 filter (all nodups . rows) . expand

Bird’s Sudoku
Pruning (3A) 8 Young Won Lim

1/3/17

Single-Cell Expansion

filter (all nodups . boxs) . expand
= map boxs . filter (all nodups) . map boxs . expand
= map boxs . filter (all nodups) . cp . map cp . boxs
= map boxs . cp . map (filter nodups) .map cp . boxs
= map boxs .cp . map (filter nodups . cp) . boxs

boxs . boxs = id
map boxs . expand = expand . boxs
filter (all p) . cp = cp . map . (filter p)

filter nodups . cp = filter nodups . cp . prunerow

map boxs . cp . map (filter nodups . cp . prunerow) . boxs

Bird’s Sudoku
Pruning (3A) 9 Young Won Lim

1/3/17

Single-Cell Expansion

map boxs . cp . map (filter nodups . cp . prunerow) . box =
map boxs .cp . map (filter nodups) . map (cp . prunerow) . boxs =
map boxs . filter (all nodups) . cp . map (cp . prunerow) . boxs =
map boxs . filter (all nodups) . cp . map cp . map prunerow . boxs =
map boxs. filter (all nodups) . expand . map prunerow . boxs =
filter (all nodups . boxs) . map boxs . expand . map prunerow . boxs =
filter (all nodups . boxs) . expand . bosx . map prunerow . boxs =
filter (all nodups . boxs) .expand . pruneby boxs =

filter (all nodups . boxs) . expand =
filter (all nodups . boxs) . expand . pruneby boxs

filter valid . expand = filter valid . expand . prune

prune = prunby boxs .pruneby cols . pruneby rows

Bird’s Sudoku
Pruning (3A) 10 Young Won Lim

1/3/17

Single-Cell Expansion

solve = filter valid . expand . prune . choices

many :: (eq a) => (a -> a) -> a -> a
many f x = if x == y then x else many f y
 where y = f x

solve = filter valid . expand . many prune . choices

Bird’s Sudoku
Pruning (3A) 11 Young Won Lim

1/3/17

Single-Cell Expansion

expand1 :: Matrix Choices -> [Matrix Choices]
expand1 rows =
 [rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs]
 where
 (rows1,row:rows2) = break (any smallest) rows
 (row1,cs:row2) = break smallest row
 smallest cs = length cs == n
 n = minimum (counts rows)

 counts = filter (/=1) . map length . concat

Bird’s Sudoku
Pruning (3A) 12 Young Won Lim

1/3/17

Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]
> search cm
> |not (safe pm) = []
> |complete pm = [map (map head) pm]
> |otherwise = (concat . map search . expand1) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [_] = True
> single _ = False

Bird’s Sudoku
Pruning (3A) 13 Young Won Lim

1/3/17

Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]
> search cm
> |not (safe pm) = []
> |complete pm = [map (map head) pm]
> |otherwise = (concat . map search . expand1) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [_] = True
> single _ = False

Bird’s Sudoku
Pruning (3A) 14 Young Won Lim

1/3/17

Single-Cell Expansion

> safe :: Matrix Choices -> Bool
> safe cm = all ok (rows cm) &&
> all ok (cols cm) &&
> all ok (boxs cm)

> ok row = nodups [d | [d] <- row]

Young Won Lim
1/3/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

