Formal Language (3A)

- Regular Language

Copyright (c) 2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Formal Language

a formal language is a set of strings of symbols together with a set of rules that are specific to it.

Alphabet and Words

The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings of the language may be formed.

The strings formed from this alphabet are called words
the words that belong to a particular formal language are sometimes called well-formed words or well-formed formulas.

Formal Language

A formal language (formation rule)
is often defined by means of a formal grammar
such as a regular grammar or context-free grammar,

Formal Language and Natural Language

The field of formal language theory studies primarily the purely syntactical aspects of such languagesthat is, their internal structural patterns.

Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural languages.
formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with particular meanings or semantics.

Formal Language and Programming Languages

In computer science, formal languages are used among others as the basis for defining the grammar of programming languages

Formal Language and Complexity Theory

In computational complexity theory, decision problems are typically defined as formal languages, and
complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power.

These inputs can be natural numbers, but may also be values of some other kind, such as strings over the binary alphabet $\{0,1\}$ or over some other finite set of symbols.
The subset of strings for which the problem returns "yes" is a formal language, and often decision problems are defined in this way as formal languages.

Formal Language and Logic / Mathematics

In logic and the foundations of mathematics, formal languages are used to represent the syntax of axiomatic systems, and mathematical formalism is
the philosophy that all of mathematics can be reduced to the syntactic manipulation of formal languages in this way.

Alphabet

An alphabet can be any set
think a character set such as ASCII.
the elements of an alphabet are called its letters.
an infinite number of elements
a finite number of elements

Words over an alphabet

A word over an alphabet can be any finite sequence (i.e., string) of letters.

The set of all words over an alphabet Σ is usually denoted by Σ^{*} (using the Kleene star).

The length of a word is the number of letters only one word of length 0 , the empty word (e $/ \varepsilon / \lambda$ or even Λ) By concatenation one can combine two words to form a new word
in logic, the alphabet is also known as the vocabulary and words are known as formulas or sentences;
the letter/word metaphor : formal language a word/sentence metaphor : logic

Kleene star

Given a set V define

$$
\begin{aligned}
& V_{0}=\{\varepsilon\} \text { (the language consisting only of the empty string), } \\
& V_{1}=V
\end{aligned}
$$

and define recursively the set

$$
\begin{aligned}
& V_{i+1}=\left\{w v: w \in V_{i} \text { and } v \in V\right\} \text { for each } i>0 . \\
& V^{*}=\bigcup_{i \in \mathbb{N}} V_{i}=\{\varepsilon\} \cup V \cup V_{2} \cup V_{3} \cup V_{4} \cup \ldots . \quad \text { : zero or more } \\
& V^{+}=\bigcup_{i \in \mathbb{N} \backslash\{0\}} V_{i}=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \quad \quad+\text { : one or more }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{N}^{0}=\mathbb{N}_{0}=\{0,1,2, \ldots\} \\
& \mathbb{N}^{*}=\mathbb{N}^{+}=\mathbb{N}_{1}=\mathbb{N}_{>0}=\{1,2, \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2, \ldots\} \\
& \mathbb{Z}^{+}=\{1,2, \ldots\}
\end{aligned}
$$

Kleene star examples (1)

```
\{"ab","c"\}* = \{ ع, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab",
    "cabc", "ccab", "ccc", ...\}.
\{"a", "b", "c"\}+ = \{ "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...\}.
\{"a", "b", "c"\}* = \{ \&, "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...\}.
\(\varnothing^{*}=\{\varepsilon\}\).
\(\varnothing+=\varnothing\)
\(\varnothing^{*}=\{ \}=\varnothing\),
```


Kleene star examples (2)

```
{ab, c}* =
{\varepsilon,
ab, c,
abab, abc, cab, cc,
ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, ... }
{a,b,c}+ =
{a,b,c,
aa, ab, ac, ba, bb, bc, ca, cb, cc,
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, ...}
{a,b,c}*
{\varepsilon
a, b, c,
aa, ab, ac, ba, bb, bc, ca, cb, cc,
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, ...}
```


Kleene star examples (3)

regular expression
((1*) 0 (1*) $\left.0\left(1^{*}\right)\right)^{*}$,
$\mathbf{(1 *}^{*}=\{\varepsilon, 1,11,111, \ldots\}$
$\left.\left(\begin{array}{c}e \\ 1 \\ 11 \\ 1111 \\ \vdots\end{array}\right) \quad 0 \quad\left(\begin{array}{c}e \\ 1 \\ 11 \\ 111 \\ \vdots\end{array}\right\} \quad 0 \quad \begin{array}{c}e \\ 1 \\ 11 \\ 111 \\ \vdots\end{array}\right\}$

$$
\begin{array}{r}
00\{e, 1,11,111, \cdots\} \\
010\{e, 1,11,111, \cdots\} \\
0110\{e, 1,11,111, \cdots\} \\
0110\{e, 1,11,111, \cdots\}
\end{array}
$$

$$
\begin{array}{r}
100\{e, 1,11,111, \cdots\} \\
1010\{e, 1,11,111, \cdots\} \\
10110\{e, 1,11,111, \cdots\} \\
10110\{e, 1,11,111, \cdots\}
\end{array}
$$

$$
\begin{array}{r}
1100\{e, 1,11,111, \cdots\} \\
11010\{e, 1,11,111, \cdots\} \\
110110\{e, 1,11,111, \cdots\} \\
1101110\{e, 1,11,111, \cdots\}
\end{array}
$$

$$
11100\{e, 1,11,111, \cdots\}
$$

$$
111010\{e, 1,11,111, \cdots
$$

$$
\begin{array}{r}
1110110\{e, 1,11,111, \cdots\} \\
11101110\{e, 1,11,111, \cdots\}
\end{array}
$$

Formal Language Definition

A formal language L over an alphabet Σ is a subset of Σ^{*}, that is, a set of words over that alphabet.

Sometimes the sets of words are grouped into expressions, whereas rules and constraints may be formulated for the creation of 'well-formed expressions'.

Formal Language Examples (1)

The following rules describe a formal language \mathbf{L} over the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,=\}$:

- every nonempty string is in \mathbf{L}
- that does not contain "+" or "="
- does not start with "0"
- the string " 0 " is in L .
- a string containing " $=$ " is in \mathbf{L}
- if and only if there is exactly one "=",
- and it separates two valid strings of \mathbf{L}.
- a string containing "+" but not "=" is in L
- if and only if every "+" in the string separates two valid strings of \mathbf{L}.
- no string is in \mathbf{L} other than those implied by the previous rules.

Formal Language Examples (2)

Under these rules, the string "23+4=555" is in L , but the string "=234=+" is not.

This formal language expresses

- natural numbers,
- well-formed additions,
- and well-formed addition equalities,
but it expresses only what they look like (their syntax), not what they mean (semantics).
for instance, nowhere in these rules is there any indication that " 0 " means the number zero, or that "+" means addition.

Formal Language Examples (3)

- $L=\Sigma^{\star}$, the set of all words over Σ;
- $L=\{" a "\} *=\{" a " n\}$, where n ranges over the natural numbers
and "a"n means "a" repeated $\underline{n} \underline{\text { times }}$
(this is the set of words consisting only of the symbol "a");
- the set of syntactically correct programs in a given programming language (the syntax of which is usually defined by a context-free grammar);
- the set of inputs upon which a certain Turing machine halts; or
- the set of maximal strings of alphanumeric ASCII characters on this line, i.e., the set \{"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII", "characters", "on", "this", "line", "i", "e"\}.

Formal Language Examples (4)

For instance, a language can be given as

- those strings generated by some formal grammar;
- those strings described or matched by a particular regular expression;
- those strings accepted by some automaton,
such as a Turing machine or finite state automaton;
- those strings for which some decision procedure produces the answer YES.
(an algorithm that asks a sequence of related YES/NO questions)

Formal Grammar Example

the alphabet consists of \mathbf{a} and \mathbf{b}, the start symbol is \mathbf{S},
the production rules:

1. $S \rightarrow \mathbf{a S b}$
2. $S \rightarrow$ ba
then we start with \mathbf{S}, and can choose a rule to apply to it. Application of rule 1 , the string aSb.
Another application of rule 1, the string aaSbb.
Application of rule 2, the string aababb

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b a b b
$$

The language of the grammar is then the infinite set

$$
\left\{a^{n} b a b^{n} \mid n \geq 0\right\}=\{b a, a b a b, a a b a b b, a a a b a b b b, \ldots\}
$$

Syntax of Formal Grammars

a grammar G consists of the following components:

- A finite set \mathbf{N} of nonterminal symbols, that is disjoint with the strings formed from G.
- A finite set $\boldsymbol{\Sigma}$ of terminal symbols that is disjoint from \mathbf{N}.
- A finite set \mathbf{P} of production rules,
$(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \rightarrow(\Sigma \cup N)^{*}$
- A distinguished symbol $\mathbf{S} \in \mathbf{N}$ that is the start symbol, also called the sentence symbol.

A grammar is formally defined as the tuple ($\mathbf{N}, \mathbf{\Sigma}, \mathbf{P}, \mathbf{S}$)
often called a rewriting system or a phrase structure grammar

Terminal and Non-terminal Symbols

Terminal symbols are the elementary symbols of the language defined by a formal grammar.

Nonterminal symbols (or syntactic variables) are replaced by groups of terminal symbols according to the production rules.

A formal grammar includes a start symbol, a designated member of the set of nonterminals from which all the strings in the language may be derived by successive applications of the production rules.

In fact, the language defined by a grammar is precisely the set of terminal strings that can be so derived.

Production Rules

$(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \rightarrow(\Sigma \cup N)^{*}$
Head $\quad \rightarrow$ Body

- each production rule maps from one string of symbols to another
- the first string (the "head") contains
- an arbitrary number of symbols
- provided at least one of them is a nonterminal. \boldsymbol{N}
- If the second string (the "body") consists solely of the empty string
- i.e., that it contains no symbols at all
- it may be denoted with a special notation (\wedge, e or ϵ)

Grammar Examples (1)

Consider the grammar \mathbf{G} where $\mathbf{N}=\{\mathbf{S}, \mathbf{B}\}, \mathbf{\Sigma}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{S}$ is the start symbol, and \mathbf{P} consists of the following production rules:

1. $S \rightarrow$ aBSc
2. $S \rightarrow$ abc
3. $\mathrm{Ba} \rightarrow \mathrm{aB}$
4. $B \mathbf{b} \rightarrow \mathbf{b b}$

This grammar defines the language $\mathbf{L}(\mathbf{G})=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid \mathbf{n} \geq \mathbf{1}\right\}$ where \mathbf{a}^{n} denotes a string of \mathbf{n} consecutive $\mathbf{a}^{\prime} \mathrm{s}$.

Thus, the language is the set of strings that consist of 1 or more a's, followed by the same number of b's, followed by the same number of c's.

Grammar Examples (2)

$$
\begin{aligned}
& \underset{2}{\boldsymbol{S}} \boldsymbol{a b c} \\
& \underset{1}{\Rightarrow} \boldsymbol{a B S c} \\
& \Rightarrow a B a b c c \\
& \underset{3}{\Rightarrow} a \boldsymbol{a} \boldsymbol{B} b c c \\
& \Rightarrow a a b b c c \\
& \underset{1}{\Rightarrow} \boldsymbol{a B S c} \underset{1}{\Rightarrow} \boldsymbol{a B a B S} \boldsymbol{c} \\
& \Rightarrow a B a B a b c c c \\
& \underset{3}{\Rightarrow} a \boldsymbol{a} B \operatorname{Babccc} \underset{3}{\Rightarrow} a a B a B b c c c \underset{3}{\Rightarrow} a a \boldsymbol{a} B B b c c c \\
& \underset{4}{\Rightarrow} a a a B b b c c c \underset{4}{\Rightarrow} a a a b b b c c c
\end{aligned}
$$

https://en.wikipedia.org/wiki/Formal_language

Context Free Grammars

Context-free grammars are those grammars in which the left-hand side of each production rule consists of only a single nonterminal symbol.

This restriction is non-trivial; not all languages can be generated by context-free grammars.

$$
\begin{aligned}
& S \rightarrow \text { aSb } \\
& S \rightarrow \text { ba }
\end{aligned}
$$

Those that can are called context-free languages.

Context Free Grammar Examples

The language $L(G)=\left\{a^{n} b^{n} \mathbf{c}^{n} \mid n \geq 1\right\}$ is not a context-free language the grammar \mathbf{G} where $\mathbf{N}=\{\mathbf{S}, \mathbf{B}\}, \boldsymbol{\Sigma}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{S}$ is the start symbol, and \mathbf{P} consists of the following production rules:

1. $S \rightarrow$ aBSc
2. $S \rightarrow a b c$
3. $\mathrm{Ba} \rightarrow \mathrm{aB}$
4. $\mathbf{B b} \rightarrow \mathrm{bb}$

The language $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is context-free
(at least $1 \mathbf{a}$ followed by the same number of \mathbf{b})
the grammar G 2 with $\mathbf{N}=\{\mathbf{S}\}, \boldsymbol{\Sigma}=\{\mathbf{a}, \mathbf{b}\}$, \mathbf{S} the start symbol, and \mathbf{P} the following production rules:

1. $\mathrm{S} \rightarrow \mathrm{aS}$ b
2. $S \rightarrow a b$

Regular Expression Examples

```
.at matches any three-character string
    ending with "at", including "hat", "cat", and "bat".
    [hc]at matches "hat" and "cat".
    [^b]at matches all strings matched by .at except "bat".
    [^hc]at matches all strings matched by .at other than "hat" and "cat".
    ^[hc]at matches "hat" and "cat", but only at the beginning of the string or
    line.
    [hc]at$ matches "hat" and "cat", but only at the end of the string or line.
    [..]] matches any single character surrounded by "[" and "]"
    since the brackets are escaped, for example: "[a]" and "[b]".
s.* matches s followed by zero or more characters,
    for example: "s" and "saw" and "seed".
[hc]?at matches "at", "hat", and "cat".
[hc]*at matches "at", "hat", "cat", "hhat", "chat", "hcat", "cchchat", ...
[hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat",..., but not "at".
cat|dog matches "cat" or "dog".
```


Chomsky's four types of grammars

Grammar	Languages	Automaton	Production rules (constraints)*
Type-0	Recursively enumerable	Turing machine	$\alpha \rightarrow \beta \text { (no }$ restrictions)
Type-1	Contextsensitive	Linear-bounded nondeterministic Turing machine	$\alpha A \beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	Non-deterministic pushdown automaton	$A \rightarrow \gamma$
Type-3	Regular	Finite state automaton	$\begin{aligned} & A \rightarrow \mathrm{a} \\ & \text { and } \\ & A \rightarrow \mathrm{a} B \end{aligned}$
* Meaning of symbols: $\mathrm{a}=$ terminal $\alpha=$ string of terminals, non-terminals, or empty $\beta=$ string of terminals, non-terminals, or empty $\gamma=$ string of terminals, non-terminals, never empty $A=$ non-terminal $B=$ non-terminal			

Type-0 grammars

Unrestricted grammar

Type-0 grammars include all formal grammars.
They generate exactly all languages
that can be recognized by a Turing machine.
These languages are also known as the recursively enumerable or Turing-recognizable languages.

Note that this is different from the recursive languages, which can be decided by an always-halting Turing machine.

Type-0 grammars

Context-sensitive grammar

Type-1 grammars generate the context-sensitive languages.
These grammars have rules of the form $\alpha \mathrm{A} \beta \rightarrow \alpha \mathrm{y} \beta$ with A a nonterminal and α, β, and y strings of terminals and/or nonterminals.

The strings α and β may be empty, but y must be nonempty.
The rule $S \rightarrow \epsilon$ is allowed
if S does not appear on the right side of any rule.
The languages described by these grammars are exactly all languages that can be recognized by a linear bounded automaton (a nondeterministic Turing machine
whose tape is bounded by a constant times the length of the input.)

Type-2 grammars

Context-free grammar

Type-2 grammars generate the context-free languages.
These are defined by rules of the form $A \rightarrow y$ with A being a nonterminal and y being a string of terminals and/or nonterminals.

These languages are exactly all languages that can be recognized by a non-deterministic pushdown automaton.

Context-free languages-or rather its subset of deterministic context-free language-are the theoretical basis for the phrase structure of most programming languages, though their syntax also includes contextsensitive name resolution due to declarations and scope.

Often a subset of grammars is used to make parsing easier, such as by an LL parser.
https://en.wikipedia.org/wiki/Regular_expression

Type-3 grammars (1)

Regular grammar

Type-3 grammars generate the regular languages.
restricts its rules to a single nonterminal on the left-hand side
a right-hand side consisting of a single terminal, possibly followed by a single nonterminal (right regular).
the right-hand side consisting of a single terminal, possibly preceded by a single nonterminal (left regular).

Type-3 grammars (1)

Right regular and left regular generate the same languages.
However, if left-regular rules and right-regular rules are combined, the language need no longer be regular.

The rule $S \rightarrow \epsilon$ is also allowed here if S does not appear on the right side of any rule.

These languages are exactly all languages that can be decided by a finite state automaton.

Additionally, this family of formal languages can be obtained by regular expressions.

Regular languages are commonly used to define search patterns and the lexical structure of programming languages.

Class of Automata

Automata theory

Classes of automata
(Clicking on each layer will take you to an article on that subject)

Chomsky Hierarchy

Class of Automata

Finite State Machine (FSM)	Regular Language
Pushdown Automaton (PDA)	Context-Free Language
Turing Machine	Recursively Enumerable Language

Regular Language

a regular language (a rational language) is
a formal language that can be expressed using a regular expression, in the strict sense

Alternatively, a regular language can be defined as a language recognized by a finite automaton.

The equivalence of regular expressions and finite automata is known as Kleene's theorem.

Regular languages are very useful
in input parsing and programming language design.

Regular Language - Formal Definition

The collection of regular languages over an alphabet Σ is defined recursively as follows:

The empty language \varnothing, and the empty string language $\{\varepsilon\}$ are regular languages.

For each a $\in \Sigma$ (a belongs to Σ), the singleton language $\{a\}$ is a regular language.

If A and B are regular languages, then $A \cup B$ (union), $A \cdot B$ (concatenation), and A^{*} (Kleene star) are regular languages.

No other languages over Σ are regular.
See regular expression for its syntax and semantics. Note that the above cases are in effect the defining rules of regular expression.
https://en.wikipedia.org/wiki/Regular_language

Equivalent Formalism

1. it is the language of a regular expression (by the above definition)
2. it is the language accepted by a nondeterministic finite automaton (NFA)
3. it is the language accepted by a deterministic finite automaton (DFA)
4. it can be generated by a regular grammar
5. it is the language accepted by an alternating finite automaton

6 . it can be generated by a prefix grammar
7. it can be accepted by a read-only Turing machine

Regular Language Example

All finite languages are regular;
in particular the empty string language $\{\varepsilon\}=\varnothing^{*}$ is regular.
Other typical examples include the language consisting of all strings over the alphabet $\{a, b\}$ which contain an even number of a's, or the language consisting of all strings of the form: several as followed by several b's.

A simple example of a language that is not regular is the set of strings $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has finite memory and it cannot remember the exact number of a's.

References

[1] http://en.wikipedia.org/
[2]

