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Formal Language

https://en.wikipedia.org/wiki/Formal_language

a formal language is 
a set of strings of symbols 
together with a set of rules 
that are specific to it.
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Alphabet and Words 

https://en.wikipedia.org/wiki/Formal_language

The alphabet of a formal language is 
the set of symbols, letters, or tokens 
from which the strings of the language may be formed.

The strings formed from this alphabet 
are called words

the words that belong to a particular formal language 
are sometimes called well-formed words 
or well-formed formulas. 
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Formal Language

https://en.wikipedia.org/wiki/Formal_language

A formal language (formation rule) 
is often defined by means of 
a formal grammar 

such as a regular grammar or 
context-free grammar, 
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Formal Language and Natural Language

https://en.wikipedia.org/wiki/Formal_language

The field of formal language theory studies 
primarily the purely syntactical aspects of such languages—
that is, their internal structural patterns. 

Formal language theory sprang out of linguistics, 
as a way of understanding the syntactic regularities 
of natural languages. 

formalized versions of subsets of natural languages 
in which the words of the language represent concepts 
that are associated with particular meanings or semantics. 
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Formal Language and Programming Languages

https://en.wikipedia.org/wiki/Formal_language

In computer science, formal languages are used 
among others as the basis for defining 
the grammar of programming languages 
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Formal Language and Complexity Theory

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem

In computational complexity theory, 
decision problems are typically defined 
as formal languages, and 

complexity classes are defined 
as the sets of the formal languages 
that can be parsed by machines 
with limited computational power.

These inputs can be natural numbers, 
but may also be values of some other kind, 
such as strings over the binary alphabet {0,1} 
or over some other finite set of symbols. 
The subset of strings for which the problem 
returns "yes" is a formal language, 
and often decision problems are defined 
in this way as formal languages. 

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem
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Formal Language and Logic / Mathematics

https://en.wikipedia.org/wiki/Formal_language

In logic and the foundations of mathematics, 
formal languages are used to represent 
the syntax of axiomatic systems, 
and mathematical formalism is 
the philosophy that all of mathematics 
can be reduced to the syntactic manipulation 
of formal languages in this way.
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Alphabet

https://en.wikipedia.org/wiki/Formal_language

An alphabet can be any set

think a character set such as ASCII. 

the elements of an alphabet are called its letters.

an infinite number of elements 

a finite number of elements
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Words over an alphabet

https://en.wikipedia.org/wiki/Formal_language

A word over an alphabet can be 
any finite sequence (i.e., string) of letters. 

The set of all words over an alphabet Σ 
is usually denoted by Σ* (using the Kleene star). 

The length of a word is the number of letters 
only one word of length 0, the empty word (e / ε / λ or even Λ)
By concatenation one can combine two words to form a new word

in logic, the alphabet is also known as the vocabulary 
and words are known as formulas or sentences;

the letter/word metaphor : formal language
a word/sentence metaphor : logic
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Kleene star

https://en.wikipedia.org/wiki/Kleene_star

Given a set V define

    V
0
 = {ε} (the language consisting only of the empty string),

    V
1
 = V

and define recursively the set

    V
i+1

 = { wv : w  V∈
i 
and v  ∈ V } for each i>0. 

*: zero or more

+: one or more
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Kleene star examples (1)

https://en.wikipedia.org/wiki/Kleene_star

{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab",
              "cabc", "ccab", "ccc", ...}.

{"a", "b", "c"}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

{"a", "b", "c"}* = { ε, "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

∅* = {ε}.

∅+ =  ∅

∅* = { } = , ∅
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Kleene star examples (2)

https://en.wikipedia.org/wiki/Kleene_star

{ab, c}* = 
{ ε, 
  ab, c, 
  abab, abc, cab, cc, 
  ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, … }

{a, b, c}+ = 
{ a, b, c, 
  aa, ab, ac, ba, bb, bc, ca, cb, cc, 
 aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

{a, b, c}*
{ ε
  a, b, c, 
  aa, ab, ac, ba, bb, bc, ca, cb, cc, 
  aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }
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Kleene star examples (3)

https://en.wikipedia.org/wiki/Kleene_star

regular expression 
((1*) 0 (1*) 0 (1*))*, 

(1*) = {ε, 1, 11, 111, …}

{
e
1
11
111
⋮

} {
e
1
11
111
⋮

} {
e
1
11
111
⋮

}
0 0

00 {e ,1,11,111,⋯}

010 {e ,1,11,111,⋯}
0110 {e ,1,11,111,⋯}

01110 {e ,1,11,111,⋯}
⋮

100 {e ,1,11,111,⋯}

1010 {e ,1,11,111,⋯}
10110 {e ,1,11,111,⋯}

101110 {e ,1,11,111,⋯}
⋮

1100 {e ,1,11,111,⋯}

11010 {e ,1,11,111,⋯}
110110 {e ,1,11,111,⋯}

1101110{e ,1,11,111,⋯}
⋮

11100 {e ,1,11,111,⋯}

111010{e ,1,11,111,⋯}
1110110{e ,1,11,111,⋯}

11101110{e ,1,11,111,⋯}
⋮
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Formal Language Definition

https://en.wikipedia.org/wiki/Formal_language

A formal language L over an alphabet Σ is 

a subset of Σ*, that is, a set of words over that alphabet. 

Sometimes the sets of words are grouped into expressions, 

whereas rules and constraints may be formulated 

for the creation of 'well-formed expressions'.
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Formal Language Examples (1)

https://en.wikipedia.org/wiki/Formal_language

The following rules describe 

a formal language L 

over the alphabet Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, = }:                         

● every nonempty string is in L
• that does not contain "+" or "=" 
• does not start with "0" 

● the string "0" is in L.
● a string containing "=" is in L 

• if and only if there is exactly one "=", 
• and it separates two valid strings of L.

● a string containing "+" but not "=" is in L 
• if and only if every "+" in the string separates two valid strings of L.

● no string is in L other than those implied by the previous rules.
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Formal Language Examples (2)

https://en.wikipedia.org/wiki/Formal_language

Under these rules, 
the string "23+4=555" is in L, 
but the string "=234=+" is not. 

This formal language expresses 
● natural numbers, 
● well-formed additions, 
● and well-formed addition equalities, 

but it expresses only what they look like (their syntax), 
not what they mean (semantics). 

for instance, nowhere in these rules is 
there any indication that "0" means the number zero, 
or that "+" means addition.
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Formal Language Examples (3)

https://en.wikipedia.org/wiki/Formal_language

● L = Σ*, the set of all words over Σ;

● L = {"a"}* = {"a"n}, where n ranges over the natural numbers 

and "a"n means "a" repeated n times

(this is the set of words consisting only of the symbol "a");

● the set of syntactically correct programs in a given programming language 
(the syntax of which is usually defined by a context-free grammar);

● the set of inputs upon which a certain Turing machine halts; or

● the set of maximal strings of alphanumeric ASCII characters on this line, i.e., 
the set {"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII", 
"characters", "on", "this", "line", "i", "e"}.
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Formal Language Examples (4)

https://en.wikipedia.org/wiki/Formal_language

For instance, a language can be given as

● those strings generated by some formal grammar;

● those strings described or matched by a particular regular expression;

● those strings accepted by some automaton, 

such as a Turing machine or finite state automaton;

● those strings for which some decision procedure 
produces the answer YES.

(an algorithm that asks a sequence of related YES/NO questions) 
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Formal Grammar Example

https://en.wikipedia.org/wiki/Formal_language

the alphabet consists of a and b, 
the start symbol is S, 
the production rules:

    1. S → aSb 
    2. S → ba 

then we start with S, and can choose a rule to apply to it. 
Application of rule 1, the string aSb. 
Another application of rule 1, the string aaSbb. 
Application of rule 2, the string aababb

The language of the grammar is then the infinite set  
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Syntax of Formal Grammars

https://en.wikipedia.org/wiki/Formal_language

a grammar G consists of the following components:

● A finite set N of nonterminal symbols, 

that is disjoint with the strings formed from G.
● A finite set Σ of terminal symbols 

that is disjoint from N.
● A finite set P of production rules, 

● A distinguished symbol S  ∈ N that is the start symbol, 
also called the sentence symbol.

A grammar is formally defined as the tuple (N ,Σ, P, S) 

often called a rewriting system 
or a phrase structure grammar 
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Terminal and Non-terminal Symbols

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Terminal symbols are the elementary symbols 
of the language defined by a formal grammar. 

Nonterminal symbols (or syntactic variables) 
are replaced by groups of terminal symbols 
according to the production rules.

A formal grammar includes a start symbol, 
a designated member of the set of nonterminals 
from which all the strings in the language 
may be derived by successive applications 
of the production rules. 

In fact, the language defined by a grammar 
is precisely the set of terminal strings 
that can be so derived.
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Production Rules

https://en.wikipedia.org/wiki/Formal_language

        

Head → Body

● each production rule maps from one string of symbols to another
● the first string (the "head") contains 

● an arbitrary number of symbols 
● provided at least one of them is a nonterminal.  N

● If the second string (the "body") consists solely of the empty string
● i.e., that it contains no symbols at all
● it may be denoted with a special notation (Λ , e or )ϵ
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Grammar Examples (1)

https://en.wikipedia.org/wiki/Formal_language

Consider the grammar G 
where N = { S , B },  Σ = { a , b , c }, S is the start symbol, 
and P consists of the following production rules:

    1. S → aBSc
    2. S → abc 
    3. Ba → aB 
    4. Bb → bb

This grammar defines the language L(G) = {anbncn  n ≥ 1 }∣
where an denotes a string of n consecutive a's. 

Thus, the language is the set of strings that consist of 1 or more a's, 
followed by the same number of b's, followed by the same number of c's.
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Grammar Examples (2)

https://en.wikipedia.org/wiki/Formal_language

    1. S → aBSc
    2. S → abc 
    3. Ba → aB 
    4. Bb → bb
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Context Free Grammars

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Context-free grammars are those grammars 
in which the left-hand side of each production rule 
consists of only a single nonterminal symbol. 

This restriction is non-trivial; 
not all languages can be generated 
by context-free grammars. 

Those that can are called context-free languages. 

S → aSb 
S → ba 
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Context Free Grammar Examples

https://en.wikipedia.org/wiki/Formal_language

The language L(G) = {anbncn  n ≥ 1 } ∣ is not a context-free language
the grammar G 
where N = { S , B },  Σ = { a , b , c }, S is the start symbol, 
and P consists of the following production rules:

    1. S → aBSc
    2. S → abc 
    3. Ba → aB 
    4. Bb → bb

The language {anbn  n ≥ 1 }∣  is context-free
(at least 1 a followed by the same number of b)

the grammar G2 with N = { S }, Σ = { a , b }, S the start symbol, 
and P the following production rules:

    1. S → a S b 
    2. S → a b 
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Regular Expression Examples

https://en.wikipedia.org/wiki/Regular_expression

.at matches any three-character string 
ending with "at", including "hat", "cat", and "bat".

[hc]at matches "hat" and "cat".
[^b]at matches all strings matched by .at except "bat".
[^hc]at matches all strings matched by .at other than "hat" and "cat".
^[hc]at matches "hat" and "cat", but only at the beginning of the string or 
line.
[hc]at$ matches "hat" and "cat", but only at the end of the string or line.
\[.\] matches any single character surrounded by "[" and "]" 

since the brackets are escaped, for example: "[a]" and "[b]".
s.* matches s followed by zero or more characters, 

for example: "s" and "saw" and "seed".

[hc]?at matches "at", "hat", and "cat".
[hc]*at matches "at", "hat", "cat", "hhat", "chat", "hcat", "cchchat", ...
[hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat",..., but not "at".
cat|dog matches "cat" or "dog".
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Chomsky's four types of grammars

https://en.wikipedia.org/wiki/Chomsky_hierarchy
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Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Unrestricted grammar

Type-0 grammars include all formal grammars. 

They generate exactly all languages 
that can be recognized by a Turing machine. 

These languages are also known 
as the recursively enumerable or 
Turing-recognizable languages. 

Note that this is different from the recursive languages, 
which can be decided by an always-halting Turing machine.
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Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-sensitive grammar

Type-1 grammars generate the context-sensitive languages. 

These grammars have rules of the form α A β → α γ β 
with A a nonterminal and α, β, and γ strings of terminals 
and/or nonterminals. 

The strings α and β may be empty, but γ must be nonempty. 

The rule S →  is allowed ϵ
if S does not appear on the right side of any rule. 

The languages described by these grammars are exactly 
all languages that can be recognized by a linear bounded automaton 
(a nondeterministic Turing machine 
whose tape is bounded by a constant times the length of the input.)
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Type-2 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-free grammar

Type-2 grammars generate the context-free languages. 

These are defined by rules of the form A → γ 
with A being a nonterminal and γ being a string of terminals and/or 
nonterminals. 

These languages are exactly all languages 
that can be recognized by a non-deterministic pushdown automaton. 

Context-free languages—or rather its subset of deterministic context-free 
language—are the theoretical basis for the phrase structure of most 
programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope. 

Often a subset of grammars is used to make parsing easier, 
such as by an LL parser.
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Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Regular grammar

Type-3 grammars generate the regular languages. 

restricts its rules to a single nonterminal on the left-hand side 

a right-hand side consisting of a single terminal, 

possibly followed by a single nonterminal (right regular). 

the right-hand side consisting of a single terminal, 

possibly preceded by a single nonterminal (left regular). 
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Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Right regular and left regular generate the same languages. 

However, if left-regular rules and right-regular rules are combined, 
the language need no longer be regular. 

The rule S →  is also allowed here ϵ
if S does not appear on the right side of any rule. 

These languages are exactly all languages 
that can be decided by a finite state automaton. 

Additionally, this family of formal languages 
can be obtained by regular expressions. 

Regular languages are commonly used 
to define search patterns and 
the lexical structure of programming languages.
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory
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Chomsky Hierarchy

https://en.wikipedia.org/wiki/Regular_language
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine (FSM) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine  Recursively Enumerable Language
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Regular Language

https://en.wikipedia.org/wiki/Regular_language

a regular language (a rational language) is 
a formal language that can be expressed 
using a regular expression, 
in the strict sense

Alternatively, a regular language can be defined 
as a language recognized by a finite automaton. 

The equivalence of regular expressions and 
finite automata is known as Kleene's theorem.

Regular languages are very useful 
in input parsing and programming language design.
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Regular Language – Formal Definition

https://en.wikipedia.org/wiki/Regular_language

The collection of regular languages over an alphabet Σ 
is defined recursively as follows:

The empty language Ø, and the empty string language {ε} 
are regular languages.

For each a  Σ (a belongs to Σ), ∈
the singleton language {a} is a regular language.

If A and B are regular languages, 
then A  B (∪ union), A • B (concatenation), 
and A* (Kleene star) are regular languages.

No other languages over Σ are regular.

See regular expression for its syntax and semantics. 
Note that the above cases are in effect the defining 
rules of regular expression.
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Equivalent Formalism 

https://en.wikipedia.org/wiki/Regular_language

1. it is the language of a regular expression (by the above definition)

2. it is the language accepted by a nondeterministic finite automaton (NFA)

3. it is the language accepted by a deterministic finite automaton (DFA)

4. it can be generated by a regular grammar

5. it is the language accepted by an alternating finite automaton

6. it can be generated by a prefix grammar

7. it can be accepted by a read-only Turing machine
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Regular Language Example 

https://en.wikipedia.org/wiki/Regular_language

All finite languages are regular; 

in particular the empty string language {ε} = Ø* is regular. 

Other typical examples include the language 
consisting of all strings over the alphabet {a, b} 
which contain an even number of a’s, or 
the language consisting of all strings of the form: 
several as followed by several b’s.

A simple example of a language 
that is not regular is the set of strings { anbn | n ≥ 0 }.

Intuitively, it cannot be recognized with a finite automaton, 
since a finite automaton has finite memory 
and it cannot remember the exact number of a's. 
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