
Young Won Lim
6/9/18

Formal Language (3A)

● Regular Language

Young Won Lim
6/9/18

 Copyright (c) 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Regular Language (3A) 3 Young Won Lim
6/9/18

Formal Language

https://en.wikipedia.org/wiki/Formal_language

a formal language is
a set of strings of symbols
together with a set of rules
that are specific to it.

Regular Language (3A) 4 Young Won Lim
6/9/18

Alphabet and Words

https://en.wikipedia.org/wiki/Formal_language

The alphabet of a formal language is
the set of symbols, letters, or tokens
from which the strings of the language may be formed.

The strings formed from this alphabet
are called words

the words that belong to a particular formal language
are sometimes called well-formed words
or well-formed formulas.

Regular Language (3A) 5 Young Won Lim
6/9/18

Formal Language

https://en.wikipedia.org/wiki/Formal_language

A formal language (formation rule)
is often defined by means of
a formal grammar

such as a regular grammar or
context-free grammar,

Regular Language (3A) 6 Young Won Lim
6/9/18

Formal Language and Natural Language

https://en.wikipedia.org/wiki/Formal_language

The field of formal language theory studies
primarily the purely syntactical aspects of such languages—
that is, their internal structural patterns.

Formal language theory sprang out of linguistics,
as a way of understanding the syntactic regularities
of natural languages.

formalized versions of subsets of natural languages
in which the words of the language represent concepts
that are associated with particular meanings or semantics.

Regular Language (3A) 7 Young Won Lim
6/9/18

Formal Language and Programming Languages

https://en.wikipedia.org/wiki/Formal_language

In computer science, formal languages are used
among others as the basis for defining
the grammar of programming languages

Regular Language (3A) 8 Young Won Lim
6/9/18

Formal Language and Complexity Theory

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem

In computational complexity theory,
decision problems are typically defined
as formal languages, and

complexity classes are defined
as the sets of the formal languages
that can be parsed by machines
with limited computational power.

These inputs can be natural numbers,
but may also be values of some other kind,
such as strings over the binary alphabet {0,1}
or over some other finite set of symbols.
The subset of strings for which the problem
returns "yes" is a formal language,
and often decision problems are defined
in this way as formal languages.

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem

Regular Language (3A) 9 Young Won Lim
6/9/18

Formal Language and Logic / Mathematics

https://en.wikipedia.org/wiki/Formal_language

In logic and the foundations of mathematics,
formal languages are used to represent
the syntax of axiomatic systems,
and mathematical formalism is
the philosophy that all of mathematics
can be reduced to the syntactic manipulation
of formal languages in this way.

Regular Language (3A) 10 Young Won Lim
6/9/18

Alphabet

https://en.wikipedia.org/wiki/Formal_language

An alphabet can be any set

think a character set such as ASCII.

the elements of an alphabet are called its letters.

an infinite number of elements

a finite number of elements

Regular Language (3A) 11 Young Won Lim
6/9/18

Words over an alphabet

https://en.wikipedia.org/wiki/Formal_language

A word over an alphabet can be
any finite sequence (i.e., string) of letters.

The set of all words over an alphabet Σ
is usually denoted by Σ* (using the Kleene star).

The length of a word is the number of letters
only one word of length 0, the empty word (e / ε / λ or even Λ)
By concatenation one can combine two words to form a new word

in logic, the alphabet is also known as the vocabulary
and words are known as formulas or sentences;

the letter/word metaphor : formal language
a word/sentence metaphor : logic

Regular Language (3A) 12 Young Won Lim
6/9/18

Kleene star

https://en.wikipedia.org/wiki/Kleene_star

Given a set V define

 V
0
 = {ε} (the language consisting only of the empty string),

 V
1
 = V

and define recursively the set

 V
i+1

 = { wv : w V∈
i
and v ∈ V } for each i>0.

*: zero or more

+: one or more

Regular Language (3A) 13 Young Won Lim
6/9/18

Kleene star examples (1)

https://en.wikipedia.org/wiki/Kleene_star

{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab",
 "cabc", "ccab", "ccc", ...}.

{"a", "b", "c"}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

{"a", "b", "c"}* = { ε, "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

∅* = {ε}.

∅+ = ∅

∅* = { } = , ∅

Regular Language (3A) 14 Young Won Lim
6/9/18

Kleene star examples (2)

https://en.wikipedia.org/wiki/Kleene_star

{ab, c}* =
{ ε,
 ab, c,
 abab, abc, cab, cc,
 ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, … }

{a, b, c}+ =
{ a, b, c,
 aa, ab, ac, ba, bb, bc, ca, cb, cc,
 aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

{a, b, c}*
{ ε
 a, b, c,
 aa, ab, ac, ba, bb, bc, ca, cb, cc,
 aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

Regular Language (3A) 15 Young Won Lim
6/9/18

Kleene star examples (3)

https://en.wikipedia.org/wiki/Kleene_star

regular expression
((1*) 0 (1*) 0 (1*))*,

(1*) = {ε, 1, 11, 111, …}

{
e
1
11
111
⋮

} {
e
1
11
111
⋮

} {
e
1
11
111
⋮

}
0 0

00 {e ,1,11,111,⋯}

010 {e ,1,11,111,⋯}
0110 {e ,1,11,111,⋯}

01110 {e ,1,11,111,⋯}
⋮

100 {e ,1,11,111,⋯}

1010 {e ,1,11,111,⋯}
10110 {e ,1,11,111,⋯}

101110 {e ,1,11,111,⋯}
⋮

1100 {e ,1,11,111,⋯}

11010 {e ,1,11,111,⋯}
110110 {e ,1,11,111,⋯}

1101110{e ,1,11,111,⋯}
⋮

11100 {e ,1,11,111,⋯}

111010{e ,1,11,111,⋯}
1110110{e ,1,11,111,⋯}

11101110{e ,1,11,111,⋯}
⋮

Regular Language (3A) 16 Young Won Lim
6/9/18

Formal Language Definition

https://en.wikipedia.org/wiki/Formal_language

A formal language L over an alphabet Σ is

a subset of Σ*, that is, a set of words over that alphabet.

Sometimes the sets of words are grouped into expressions,

whereas rules and constraints may be formulated

for the creation of 'well-formed expressions'.

Regular Language (3A) 17 Young Won Lim
6/9/18

Formal Language Examples (1)

https://en.wikipedia.org/wiki/Formal_language

The following rules describe

a formal language L

over the alphabet Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, = }:                         

● every nonempty string is in L
• that does not contain "+" or "="
• does not start with "0"

● the string "0" is in L.
● a string containing "=" is in L

• if and only if there is exactly one "=",
• and it separates two valid strings of L.

● a string containing "+" but not "=" is in L
• if and only if every "+" in the string separates two valid strings of L.

● no string is in L other than those implied by the previous rules.

Regular Language (3A) 18 Young Won Lim
6/9/18

Formal Language Examples (2)

https://en.wikipedia.org/wiki/Formal_language

Under these rules,
the string "23+4=555" is in L,
but the string "=234=+" is not.

This formal language expresses
● natural numbers,
● well-formed additions,
● and well-formed addition equalities,

but it expresses only what they look like (their syntax),
not what they mean (semantics).

for instance, nowhere in these rules is
there any indication that "0" means the number zero,
or that "+" means addition.

Regular Language (3A) 19 Young Won Lim
6/9/18

Formal Language Examples (3)

https://en.wikipedia.org/wiki/Formal_language

● L = Σ*, the set of all words over Σ;

● L = {"a"}* = {"a"n}, where n ranges over the natural numbers

and "a"n means "a" repeated n times

(this is the set of words consisting only of the symbol "a");

● the set of syntactically correct programs in a given programming language
(the syntax of which is usually defined by a context-free grammar);

● the set of inputs upon which a certain Turing machine halts; or

● the set of maximal strings of alphanumeric ASCII characters on this line, i.e.,
the set {"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII",
"characters", "on", "this", "line", "i", "e"}.

Regular Language (3A) 20 Young Won Lim
6/9/18

Formal Language Examples (4)

https://en.wikipedia.org/wiki/Formal_language

For instance, a language can be given as

● those strings generated by some formal grammar;

● those strings described or matched by a particular regular expression;

● those strings accepted by some automaton,

such as a Turing machine or finite state automaton;

● those strings for which some decision procedure
produces the answer YES.

(an algorithm that asks a sequence of related YES/NO questions)

Regular Language (3A) 21 Young Won Lim
6/9/18

Formal Grammar Example

https://en.wikipedia.org/wiki/Formal_language

the alphabet consists of a and b,
the start symbol is S,
the production rules:

 1. S → aSb
 2. S → ba

then we start with S, and can choose a rule to apply to it.
Application of rule 1, the string aSb.
Another application of rule 1, the string aaSbb.
Application of rule 2, the string aababb

The language of the grammar is then the infinite set

Regular Language (3A) 22 Young Won Lim
6/9/18

Syntax of Formal Grammars

https://en.wikipedia.org/wiki/Formal_language

a grammar G consists of the following components:

● A finite set N of nonterminal symbols,

that is disjoint with the strings formed from G.
● A finite set Σ of terminal symbols

that is disjoint from N.
● A finite set P of production rules,

● A distinguished symbol S ∈ N that is the start symbol,
also called the sentence symbol.

A grammar is formally defined as the tuple (N ,Σ, P, S)

often called a rewriting system
or a phrase structure grammar

Regular Language (3A) 23 Young Won Lim
6/9/18

Terminal and Non-terminal Symbols

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Terminal symbols are the elementary symbols
of the language defined by a formal grammar.

Nonterminal symbols (or syntactic variables)
are replaced by groups of terminal symbols
according to the production rules.

A formal grammar includes a start symbol,
a designated member of the set of nonterminals
from which all the strings in the language
may be derived by successive applications
of the production rules.

In fact, the language defined by a grammar
is precisely the set of terminal strings
that can be so derived.

Regular Language (3A) 24 Young Won Lim
6/9/18

Production Rules

https://en.wikipedia.org/wiki/Formal_language

Head → Body

● each production rule maps from one string of symbols to another
● the first string (the "head") contains

● an arbitrary number of symbols
● provided at least one of them is a nonterminal. N

● If the second string (the "body") consists solely of the empty string
● i.e., that it contains no symbols at all
● it may be denoted with a special notation (Λ , e or)ϵ

Regular Language (3A) 25 Young Won Lim
6/9/18

Grammar Examples (1)

https://en.wikipedia.org/wiki/Formal_language

Consider the grammar G
where N = { S , B }, Σ = { a , b , c }, S is the start symbol,
and P consists of the following production rules:

 1. S → aBSc
 2. S → abc
 3. Ba → aB
 4. Bb → bb

This grammar defines the language L(G) = {anbncn n ≥ 1 }∣
where an denotes a string of n consecutive a's.

Thus, the language is the set of strings that consist of 1 or more a's,
followed by the same number of b's, followed by the same number of c's.

Regular Language (3A) 26 Young Won Lim
6/9/18

Grammar Examples (2)

https://en.wikipedia.org/wiki/Formal_language

 1. S → aBSc
 2. S → abc
 3. Ba → aB
 4. Bb → bb

Regular Language (3A) 27 Young Won Lim
6/9/18

Context Free Grammars

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Context-free grammars are those grammars
in which the left-hand side of each production rule
consists of only a single nonterminal symbol.

This restriction is non-trivial;
not all languages can be generated
by context-free grammars.

Those that can are called context-free languages.

S → aSb
S → ba

Regular Language (3A) 28 Young Won Lim
6/9/18

Context Free Grammar Examples

https://en.wikipedia.org/wiki/Formal_language

The language L(G) = {anbncn n ≥ 1 } ∣ is not a context-free language
the grammar G
where N = { S , B }, Σ = { a , b , c }, S is the start symbol,
and P consists of the following production rules:

 1. S → aBSc
 2. S → abc
 3. Ba → aB
 4. Bb → bb

The language {anbn n ≥ 1 }∣ is context-free
(at least 1 a followed by the same number of b)

the grammar G2 with N = { S }, Σ = { a , b }, S the start symbol,
and P the following production rules:

 1. S → a S b
 2. S → a b

Regular Language (3A) 29 Young Won Lim
6/9/18

Regular Expression Examples

https://en.wikipedia.org/wiki/Regular_expression

.at matches any three-character string
ending with "at", including "hat", "cat", and "bat".

[hc]at matches "hat" and "cat".
[^b]at matches all strings matched by .at except "bat".
[^hc]at matches all strings matched by .at other than "hat" and "cat".
^[hc]at matches "hat" and "cat", but only at the beginning of the string or
line.
[hc]at$ matches "hat" and "cat", but only at the end of the string or line.
\[.\] matches any single character surrounded by "[" and "]"

since the brackets are escaped, for example: "[a]" and "[b]".
s.* matches s followed by zero or more characters,

for example: "s" and "saw" and "seed".

[hc]?at matches "at", "hat", and "cat".
[hc]*at matches "at", "hat", "cat", "hhat", "chat", "hcat", "cchchat", ...
[hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat",..., but not "at".
cat|dog matches "cat" or "dog".

Regular Language (3A) 30 Young Won Lim
6/9/18

Chomsky's four types of grammars

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Language (3A) 31 Young Won Lim
6/9/18

Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Unrestricted grammar

Type-0 grammars include all formal grammars.

They generate exactly all languages
that can be recognized by a Turing machine.

These languages are also known
as the recursively enumerable or
Turing-recognizable languages.

Note that this is different from the recursive languages,
which can be decided by an always-halting Turing machine.

Regular Language (3A) 32 Young Won Lim
6/9/18

Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-sensitive grammar

Type-1 grammars generate the context-sensitive languages.

These grammars have rules of the form α A β → α γ β
with A a nonterminal and α, β, and γ strings of terminals
and/or nonterminals.

The strings α and β may be empty, but γ must be nonempty.

The rule S → is allowed ϵ
if S does not appear on the right side of any rule.

The languages described by these grammars are exactly
all languages that can be recognized by a linear bounded automaton
(a nondeterministic Turing machine
whose tape is bounded by a constant times the length of the input.)

Regular Language (3A) 33 Young Won Lim
6/9/18

Type-2 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-free grammar

Type-2 grammars generate the context-free languages.

These are defined by rules of the form A → γ
with A being a nonterminal and γ being a string of terminals and/or
nonterminals.

These languages are exactly all languages
that can be recognized by a non-deterministic pushdown automaton.

Context-free languages—or rather its subset of deterministic context-free
language—are the theoretical basis for the phrase structure of most
programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope.

Often a subset of grammars is used to make parsing easier,
such as by an LL parser.

Regular Language (3A) 34 Young Won Lim
6/9/18

Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Regular grammar

Type-3 grammars generate the regular languages.

restricts its rules to a single nonterminal on the left-hand side

a right-hand side consisting of a single terminal,

possibly followed by a single nonterminal (right regular).

the right-hand side consisting of a single terminal,

possibly preceded by a single nonterminal (left regular).

Regular Language (3A) 35 Young Won Lim
6/9/18

Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Right regular and left regular generate the same languages.

However, if left-regular rules and right-regular rules are combined,
the language need no longer be regular.

The rule S → is also allowed here ϵ
if S does not appear on the right side of any rule.

These languages are exactly all languages
that can be decided by a finite state automaton.

Additionally, this family of formal languages
can be obtained by regular expressions.

Regular languages are commonly used
to define search patterns and
the lexical structure of programming languages.

Regular Language (3A) 36 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Regular Language (3A) 37 Young Won Lim
6/9/18

Chomsky Hierarchy

https://en.wikipedia.org/wiki/Regular_language

Regular Language (3A) 38 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine (FSM) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine Recursively Enumerable Language

Regular Language (3A) 39 Young Won Lim
6/9/18

Regular Language

https://en.wikipedia.org/wiki/Regular_language

a regular language (a rational language) is
a formal language that can be expressed
using a regular expression,
in the strict sense

Alternatively, a regular language can be defined
as a language recognized by a finite automaton.

The equivalence of regular expressions and
finite automata is known as Kleene's theorem.

Regular languages are very useful
in input parsing and programming language design.

Regular Language (3A) 40 Young Won Lim
6/9/18

Regular Language – Formal Definition

https://en.wikipedia.org/wiki/Regular_language

The collection of regular languages over an alphabet Σ
is defined recursively as follows:

The empty language Ø, and the empty string language {ε}
are regular languages.

For each a Σ (a belongs to Σ), ∈
the singleton language {a} is a regular language.

If A and B are regular languages,
then A B (∪ union), A • B (concatenation),
and A* (Kleene star) are regular languages.

No other languages over Σ are regular.

See regular expression for its syntax and semantics.
Note that the above cases are in effect the defining
rules of regular expression.

Regular Language (3A) 41 Young Won Lim
6/9/18

Equivalent Formalism

https://en.wikipedia.org/wiki/Regular_language

1. it is the language of a regular expression (by the above definition)

2. it is the language accepted by a nondeterministic finite automaton (NFA)

3. it is the language accepted by a deterministic finite automaton (DFA)

4. it can be generated by a regular grammar

5. it is the language accepted by an alternating finite automaton

6. it can be generated by a prefix grammar

7. it can be accepted by a read-only Turing machine

Regular Language (3A) 42 Young Won Lim
6/9/18

Regular Language Example

https://en.wikipedia.org/wiki/Regular_language

All finite languages are regular;

in particular the empty string language {ε} = Ø* is regular.

Other typical examples include the language
consisting of all strings over the alphabet {a, b}
which contain an even number of a’s, or
the language consisting of all strings of the form:
several as followed by several b’s.

A simple example of a language
that is not regular is the set of strings { anbn | n ≥ 0 }.

Intuitively, it cannot be recognized with a finite automaton,
since a finite automaton has finite memory
and it cannot remember the exact number of a's.

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

