
Day10 A

Young W. Lim

2017-12-09 Sat

Young W. Lim Day10 A 2017-12-09 Sat 1 / 23

Outline

1 Based on

2 Arrays (1)
Array Definitions
Classification of Arrays
Character Strings
Variable Length Arrays (VLA)

Young W. Lim Day10 A 2017-12-09 Sat 2 / 23

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day10 A 2017-12-09 Sat 3 / 23

An array name and its position numbers

data structure consisting of related data items of the same type
a group of memory locations
each has the same name and the same type
each can be referred by the name and the position number

Young W. Lim Day10 A 2017-12-09 Sat 4 / 23

Each element is a variable

the 1st element of array a a[0]

the 2nd element of array a a[1]

the 3rd element of array a a[2]

the i-th element of array a a[i-1]

the (i+1)-th element of array a a[i]

read access c = a[i]

write access a[i] = 1000

Young W. Lim Day10 A 2017-12-09 Sat 5 / 23

Subscript

the position number contained within the square brackets
positive integer : a[9], a[200]
integer expression : a[i*2+1] (variable length arrays)

actually considered as an operator
has the same precedence level as the function call operator

++a[1], a[1]-- ++(a[1]), (a[1])--
&a[1], *a[1] &(a[1]), *(a[1])
a[1].x, a[1]->y (a[1]).x, (a[1])->y

Young W. Lim Day10 A 2017-12-09 Sat 6 / 23

Defining an array

arrays occupy memory space
must specify

the type of each element
the number of elements

int a[10];
integer type elements
there are 10 integer elements

char a[10];
character type elements
there are 10 character elements
an array of type character is used to store a character string

Young W. Lim Day10 A 2017-12-09 Sat 7 / 23

Initializing the elements of an array

{ comma separated lists of initializers }
when there are fewer initializers than the elements in an array
the remaining elementes are initialized with zero
therefore, {0} initializes the 1st element with zero
the remaining elements with zero
thus, all elements with zero

global variables are initialized with zero by default
local variables must be explicitly initialized

Young W. Lim Day10 A 2017-12-09 Sat 8 / 23

Array Sizes

the array size can be omitted with an array initializer
the array size will be set to the number of elements in the initilizer list
int a[] = {1, 2, 3};
int a[3] = {1, 2, 3};

variable length arrays

the array size can be an expression containing a variable
but it must be resolved into an integer value
before reaching the array defintion
int n=5;
int a[n];
in a[n], n has the integer value of 5

no array bound checking while accessing

Young W. Lim Day10 A 2017-12-09 Sat 9 / 23

Static Arrays : two different terminologies

1 static arrays : statically allocated arrays
allocated in the compile time
in contrast to dynamically allocated arrays (malloc)

2 static arrays : static storage duration arrays
allocated in the persistent memory locations
in contrast to automatic storage duration arrays (stack)

Young W. Lim Day10 A 2017-12-09 Sat 10 / 23

Static Storage Arrays

a static local variable exists for the duration of the program
a static local array does the same

a static array does not have to be created and intialized
whenever a function is called
a static array is not destroyed
whenever a function is exited
this reduces the execution time for large local arrays
of a frequently called function

a compiler initializes static variables and arrays to zero
at the program startup unless an initializer is given

Young W. Lim Day10 A 2017-12-09 Sat 11 / 23

Static Storage Array Examples

#include <stdio.h>

void func(void) {
static int A[4] = {0};

int B[4] = {0};
int i;

for (i=0; i<4; ++i)
printf("%d ", A[i]++);
printf(" : A= %p\n", A);

for (i=0; i<4; ++i)
printf("%d ", B[i]++);
printf(" : B= %p\n", B);

}

int main(void) {

func();
func();
func();

}

0 0 0 0 : A= 0x601050
0 0 0 0 : B= 0x7fffe9ce4340
1 1 1 1 : A= 0x601050
0 0 0 0 : B= 0x7fffe9ce4340
2 2 2 2 : A= 0x601050
0 0 0 0 : B= 0x7fffe9ce4340

Note two distincitve addresses
static arrays in .bss or .data
automatic arrays on the stack

Young W. Lim Day10 A 2017-12-09 Sat 12 / 23

Statically vs. Dynamically Allocated Array Types (1)

Static arrays Dynamic Arrays
allocation statically allocated dynamically allocated

at the compile time at the run time
resize impossible, fixed size possible, dynamic size
storage duration static storage duration like a static duration

.bss or .data (static) heap (non-static)
auto storage duration lifetime is controlled
stack (non-static) by free()

C99 allows variable length arrays
The term "static" has multiple meanings.

Young W. Lim Day10 A 2017-12-09 Sat 13 / 23

Statically vs. Dynamically Allocated Array Types (2)

1 static arrays : statically allocated arrays
allocated at the compile-time
stored on stack
automatic storage duration (without a explicit static)
stored on .bss or .data
static storage duration (with a explicit static)

2 dynamic arrays : dynamically allocated arrays
allocated at the run-time
stored on heap
memory residet until free() is called
lifetime is controlled by free()

de-allocate, resize possible
malloc(), calloc(), free(),realloc()

Young W. Lim Day10 A 2017-12-09 Sat 14 / 23

Fixed vs. Variable Length Arrays (1)

fixed length variable length dynamic arrays
allocation compile-time run-time run-time
resize impossible impossible possible

compile-time allocation
fixed length arrays

run-time allocation
variable length arrays
daynamic arrays

impossible to resize
fixed length arrays
variable length arrays

possible to resize
dynamic arrays

Young W. Lim Day10 A 2017-12-09 Sat 15 / 23

Fixed vs. Variable Length Arrays (2)

1 fixed length arrays
the array size must be determined at the compile-time
resize is not possible

2 variable length arrays
the array size can be determined at the rum-time
resize is not possible

3 dynamic arrays
either at the compile-time or run-time
resize is possible

Young W. Lim Day10 A 2017-12-09 Sat 16 / 23

Dynamic Memory Allocation Examples (1)

using <stdlib.h>

scanf("%d", &n);
the size of array is determined after running the program

p = malloc(n * sizeof(int)) ;

n * sizeof(int) bytes of memory allocation
malloc returns the start address of the allocated memory
n integer items (int)
p must be a type of (int *)

q = realloc(p, 2*n) ;

p points to the original allocated arrays
the array size is doubled : 2*n
returns the same type of a pointer (int *)

Young W. Lim Day10 A 2017-12-09 Sat 17 / 23

Dynamic Memory Allocation Examples (2)

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int i =5, n;
int *p, *q;

n = 3; printf("n=%d\n", n);

p = malloc(n * sizeof(int)) ;

for (i=0; i<n; ++i) p[i] = i;

for (i=0; i<n; ++i)
printf("%d ", p[i]);

printf("\n");

q = realloc(p, 2*n);

for (i=n; i<2*n; ++i) q[i] = i*100;

for (i=0; i<2*n; ++i)
printf("%d ", q[i]);

printf("\n");

}

n=3
0 1 2
0 1 2 300 400 500

Young W. Lim Day10 A 2017-12-09 Sat 18 / 23

Character Strings

use an array of type char to store a character string
a string such as "hello" is stored as an array of characters
every string contains a special string-termination character

null character (’\0’)
can access individual characters in a string directly using array
subscript notation
a string can be printed with the %s conversion specifier

Young W. Lim Day10 A 2017-12-09 Sat 19 / 23

Initialization of Character Strings

a character array can be initialized with a string literal
if the size is omitted, it is determined by the length of the string
char s[] = "hello";

without an initialization string literal,
the array size must be large enough to hold
all characters and the null character
char s[5+1] = "hello";

can be initialized with individual characters in an initializer list
char s[5+1] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’\0’ };

Young W. Lim Day10 A 2017-12-09 Sat 20 / 23

Variable Length Arrays Definitions

#include <stdio.h>

int main(void) {
int i =5;
int n =5;
int a[n];

printf("n=%d\n", n);

for (i=0; i<5; ++i) a[i]= 0;

for (i=0; i<5; ++i)
printf("a[%d]= %d ", i, ++a[i]);

printf("\n");
}

1 n must be evaluated to
an integer value
until reaching a[n]

2 a variable length array
cannot be initialized

3 neither make it
a static storage duration

gcc supports VLA

Young W. Lim Day10 A 2017-12-09 Sat 21 / 23

Array size determined in a function call

#include <stdio.h>

void func(int n) {
int a[n];
int i;

for (i=0; i<n; ++i) a[i]= n;

for (i=0; i<n; ++i)
printf("a[%d]= %d ", i, ++a[i]);

printf("\n");
}

other examples:

- void func(int row, int Ocol, int A[row][col]); // OK
- void func(int A[row][col], int row, int col); // not working

int main(void) {
func(2);
func(3);
func(4);
func(5);

}

Young W. Lim Day10 A 2017-12-09 Sat 22 / 23

Array size determined in the run-time

#include <stdio.h>

int main(void) {
int i =5;
int n ;

printf("input n: ");
scanf("%d", &n);
printf("n=%d\n", n);

int a[n];

for (i=0; i<n; ++i) a[i]= 0;

printf("n=%d\n", n);

for (i=0; i<n; ++i)
printf("a[%d]= %d ", i, a[i]=i);

printf("\n");

}

int n;
first, n is defined
scanf("%d", &n);
then, n is determined in the
run-time
int a[n];
finally, the array a is defined

Young W. Lim Day10 A 2017-12-09 Sat 23 / 23

	Based on
	Arrays (1)
	Array Definitions
	Classification of Arrays
	Character Strings
	Variable Length Arrays (VLA)

