Digital Signal Octave Codes (OA)

- Periodic Conditions

Copyright (c) 2009-2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Based on
M.J. Roberts, Fundamentals of Signals and Systems
S.K. Mitra, Digital Signal Processing : a computer-based approach $2^{\text {nd }}$ ed S.D. Stearns, Digital Signal Processing with Examples in MATLAB

Sampling and Normalized Frequency

$$
\omega_{0} t=2 \pi f_{0} t
$$

$$
t=n T_{s}
$$

$\omega_{0} n T_{s}=2 \pi f_{0} n T_{s}$

$$
f_{0}=\frac{1}{T_{0}}
$$

T_{s} : sampling period
T_{0} : signal period

$$
=\frac{2 \pi}{T_{0}} n T_{s}
$$

$$
=2 \pi n \frac{T_{s}}{T_{0}}
$$

$$
\frac{T_{s}}{T_{0}}=\frac{f_{0}}{f_{s}}
$$

$$
=2 \pi n F_{0}
$$

normalization

$$
F_{0}=f_{0} T_{s}=\frac{f_{0}}{f_{s}}
$$

normalization

Analog and Digital Frequencies

Analog Signal Frequency

$$
t=n T_{s}
$$

$$
\omega_{0} T_{s}=\Omega_{0}
$$

$$
\begin{gathered}
\omega_{0} t=2 \pi f_{0} t \\
n \omega_{0} T_{s}=2 \pi n f_{0} T_{s} \\
\\
\Omega_{0} n=2 \pi n F_{0} \\
\text { Digital Signal Frequency }
\end{gathered}
$$

Multiplying by T_{s} - Normalization

$$
\omega_{0} t=2 \pi f_{0} t
$$

$$
\begin{array}{|l|l}
\\
\hline T_{s} & \cdot T_{s}
\end{array} \quad \text { Normalization }
$$

$$
\Omega_{0} n=2 \pi n F_{0}
$$

Analog Signal

Digital Signal

Normalization

$$
\begin{array}{rlrl}
F_{0} & =f_{0} \cdot T_{s} & f_{0} \cdot T_{s} & \\
& =f_{0} / f_{s} & f_{0} / f_{s} & \text { Multiplied by } T_{s} \\
& =T_{s} / T_{0} & & \text { Divided by } f_{s} \\
& & f_{s}>2 \cdot f_{0} \\
S_{0} & =2 \pi F_{0} & f_{0} / f_{s}<0.5 \\
\text { Sampling Rate } \\
\text { Minimum }
\end{array}
$$

Normalized Cyclic and Radian Frequencies

Normalized Cyclic Frequency

$$
F_{0} \text { cycles/sample }=\frac{f_{0} \text { cycles/second }}{f_{s} \text { samples/second }}
$$

Normalized Radian Frequency

$$
\Omega_{0} \text { cycles/sample }=\frac{\omega_{0} \text { cycles/second }}{f_{s} \text { samples/second }}
$$

$$
e^{j\left(2 \pi\left(n+N_{0}\right) F_{0}\right)}=e^{j\left(2 \pi n F_{0}\right)} \quad e^{j 2 \pi m}=1
$$

Digital Signal Period N_{0} : the smallest integer

$$
e^{j 2 \pi N_{0} F_{0}} \quad \Rightarrow \quad e^{j 2 \pi m}=1 \quad \begin{aligned}
& \text { Periodic Condition } \\
& \text { : integer } m
\end{aligned}
$$

$$
2 \pi N_{0} F_{0}=2 \pi m
$$

$$
N_{0} F_{0}=m
$$

$$
2 \pi N_{0} F_{0}=2 \pi m
$$

$$
N_{0} F_{0}=m
$$

$$
N_{0}=\frac{m}{F_{0}}=m \cdot \frac{T_{0}}{T_{s}}
$$

Digital Signal Period N_{0}
: the smallest integer

Periodic Condition
: the smallest integer $m \quad m \neq T_{s}$
$m=p$
reduced form

Periodic Condition : N_{0} and F_{0} in a reduced form

Integer

reduced form

$$
N_{0}=\frac{m}{F_{0}}=m \cdot \frac{T_{0}}{T_{s}}=m \cdot \frac{q}{p} \quad \begin{aligned}
& \text { Integer * Rational : } \\
& \text { must be an Integer }
\end{aligned}
$$

N_{0} and F_{0} in a reduced form : Examples

reduced form

Rational

integer

$N_{0} \rightarrow q$ $m \rightarrow p$

integers

$$
\begin{aligned}
& \frac{1}{F_{0}}=\frac{2.678}{4.017}=\frac{2 \cdot 1.339}{3 \cdot 1.339}=\frac{2}{3} \\
& \frac{1}{F_{0}}=\frac{10}{15}=\frac{2 \cdot 5}{3 \cdot 5}=\frac{2}{3} \\
& m=3 \quad m \neq 4.017 \\
& N_{0}=2 \quad N_{0} \neq 2.678 \\
& m=3 \quad m \neq 15 \\
& N_{0}=2 \quad N_{0} \neq 10
\end{aligned}
$$

Periodic Relations - Analog and Digital Cases

$$
e^{j\left(2 \pi\left(n+N_{0}\right) F_{0}\right)}=e^{j\left(2 \pi n F_{0}\right)}
$$

Digital Signal Period $\boldsymbol{N}_{\boldsymbol{o}}$
: the smallest integer

$$
\begin{aligned}
& N_{0}=\frac{m}{F_{0}}=m \cdot \frac{T_{0}}{T_{s}} \\
& \\
& k N_{0} F_{0}=k \cdot m
\end{aligned}
$$

$$
e^{j\left(2 \pi f_{0}\right)\left(t+T_{0}\right)}=e^{j\left(2 \pi f_{0}\right) t}
$$

Analog Signal Period $\boldsymbol{T}_{\boldsymbol{o}}$

: the smallest real number
integer multiple of m
: some integers m

$$
\begin{gathered}
T_{0}=\frac{1}{f_{0}} \\
\downarrow \\
k T_{0} f_{0}=k \cdot 1
\end{gathered}
$$

Periodic Conditions - Analog and Digital Cases

$$
\begin{aligned}
& N F_{0}=k \cdot m \\
& N=\frac{k \cdot m}{F_{0}} \quad \begin{array}{l}
\text { Integer } N N_{0} \\
\text { Rational } F_{0}
\end{array}
\end{aligned}
$$

Minimum Integer \boldsymbol{N}_{0}

$$
\begin{aligned}
N_{0}=q & F_{0}=\frac{p}{q} \\
m=p & \text { reduced form }
\end{aligned}
$$

$$
N_{0}=\frac{m}{p / q}
$$

$$
\begin{aligned}
& T f_{0}=k \cdot 1 \\
& T=\frac{k \cdot 1}{f_{0}} \quad \begin{array}{c}
\text { Real } T_{0} \\
\text { Real } f_{0}
\end{array}
\end{aligned}
$$

Minimum Real T_{0}

$$
\begin{aligned}
T_{0} & =\frac{1}{f_{0}} \\
m & =1
\end{aligned}
$$

Periodic Conditions Examples

$$
\begin{aligned}
& N F_{0}=k \cdot m \\
& N_{0}=\frac{m}{F_{0}} \quad \text { imteger } N
\end{aligned}
$$

given

$$
F_{0}=\frac{36}{19}
$$

km: multiples of 36
$N_{0}=36 \cdot \frac{19}{36}$
$1 \cdot m=36$
$2 N_{0}=72 \cdot \frac{19}{36}$
$2 \cdot m=72$
$3 N_{0}=108 \cdot \frac{19}{36}$
$3 \cdot m=108$

$$
\begin{aligned}
& T f_{0}=k \cdot 1 \\
& T_{0}=\frac{1}{f_{0}} \quad \text { Real } T
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { given } \\
f_{0}=\frac{36}{19} & k: \text { all integers } \\
T_{0}=1 \cdot \frac{19}{36} & 1 \cdot 1=1 \\
2 T_{0}=2 \cdot \frac{19}{36} & 2 \cdot 1=2 \\
3 T_{0}=3 \cdot \frac{19}{36} & 3 \cdot 1=3
\end{array} . \begin{array}{ll}
&
\end{array} \\
& \\
\hline
\end{array}
$$

Periodic Condition of a Sampled Signal

$$
\begin{aligned}
& g\left(n T_{s}\right)=A \cos \left(2 \pi f_{0} T_{s} n+\theta\right) \\
& F_{0}=f_{0} T_{s}=f_{0} I f_{s} \quad=\quad F_{0}=\frac{m}{n} \quad \text { integers } n, m \\
& g[n]=A \cos \left(2 \pi F_{0} n+\theta\right) \\
& 2 \pi F_{0} n=2 \pi m \\
& F_{0} n=m \\
& \text { Rational Number } \\
& F_{0}=\frac{m}{n} \\
& \text { n, m }
\end{aligned}
$$

F_{0} and N_{0} of a Sampled Signal

Rational Number F_{0}

$$
\begin{aligned}
& F_{0}=\frac{m}{n}=\frac{p}{q} \quad \text { integer } n, m, p, q \\
& F_{0}=\frac{f_{0}}{f_{s}}=\frac{T_{s}}{T_{0}} \quad \text { real } f_{0}, f_{s}, T_{s}, T_{0}
\end{aligned}
$$

$$
2 \pi F_{0} n
$$

Integer \mathbf{N}_{0}

$$
N_{0} F_{0}=m
$$

$$
N_{0}=\frac{m}{F_{0}}=m \cdot \frac{T_{0}}{T_{s}}=m \cdot \frac{f_{s}}{f_{0}}=m \cdot \frac{q}{p}
$$

$$
2 \pi f_{0} T_{s} n
$$

A cosine waveform example

$$
\begin{array}{lll}
\begin{array}{ll}
\mathrm{n}=[0: 19] ; \\
\mathbf{x}=\cos \left(2^{*} \mathrm{p} \mathrm{i}^{*} 1^{*}(\mathrm{n} / 10)\right) ; & =2 \pi F_{0} n=2 \pi f_{0} T_{s} n=
\end{array} & \begin{array}{l}
\mathrm{n}=[0: 19] ; \\
\mathbf{x}=\cos \left(2^{*} \mathrm{p} \mathrm{i}^{*}(1 / 10)^{*} \mathrm{n}\right) ;
\end{array} \\
n T_{s}=n \cdot \frac{1}{10} & F_{0}=f_{0} T_{s}=\frac{f_{0}}{f_{s}}=\frac{T_{s}}{T_{0}} & n T_{s}=n \cdot 1 \\
2 \pi f_{0} n T_{s} & 2 \pi f_{0} n T_{s} \\
=2 \pi \cdot 1 \cdot n \cdot \frac{1}{10} & =2 \pi \cdot \frac{1}{10} \cdot n \cdot 1 \\
\begin{array}{ll}
T_{s}=0.1 & \\
f_{0}=1\left(T_{0}=1\right) & \begin{array}{l}
T_{s}=1 \\
f_{0}=0.1\left(T_{0}=10\right)
\end{array} \\
F_{0}=f_{0} T_{s}=0.1 & F_{0}=f_{0} T_{s}=0.1
\end{array}
\end{array}
$$

Two cases of the same $F_{0}=f_{o} T_{s}$

```
\(\cos \left(2 \pi f_{0} t\right)\)
many possible \(F_{0}\) 's
    \(T_{s}\) specifies \(F_{0}\)
\(\cos \left(2 \pi \stackrel{\vee}{F_{0}} n\right)\)
```


The same sampled waveform examples

Many waveforms share the same sampled data

The same sampled data
1.00000
0.80902
0.30902
-0.30902
-0.80902
-1.00000
-0.80902
-0.30902
0.30902
0.80902
1.00000
0.80902
0.30902
-0.30902
-0.80902
-1.00000
-0.80902
-0.30902
0.30902
0.80902
1.00000
0.80902
0.30902
-0.30902
-0.80902
-1.00000
-0.80902
-0.30902
0.30902
0.80902

$$
\begin{aligned}
& 2 \pi n / 10 \\
& 2 \pi n f_{0} T_{s} \\
& 0.1=f_{0} T_{s} \\
& 0.1=F_{0}
\end{aligned}
$$

U of Rhode Island, ELE 436, FFT Tutorial

Different number of data points

```
x= cos(2*pi*n/10);
t = [0:19]/10;
y= cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)
```

$[0: 19] ;$	$[0, \cdots, 19] 20$ data points
$-111 \mid$	size $([0: 19], 2)=20$
$[0: 199] ;$	$[0, \cdots, 199] 200$ data points

$\operatorname{size}([0: 199], 2)=200$

Normalized data points

```
x= cos(2*pi*n/10);
t = [0:19]/10;
y= cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)
```

 \(\mathrm{t}=[0: 19] / 10 ; \quad[0.0, \cdots, 1.90] 20\) data points
 coarse resolution

Different number of data points

$$
[0: 19] ; \quad[0, \cdots, 19] 20 \text { data points }
$$

$$
\operatorname{size}([0: 19], 2)=20
$$

$x=\cos \left(0.2^{*} \mathrm{pi}^{*} \mathrm{n}\right)$;
$\mathrm{t}=$ [0:19];
$y=\cos \left(0.2^{*} \mathrm{pi}^{\star} \mathrm{t}\right)$;
stem(t, y)
hold on
t2 $=$ [0:199]/10;
$\mathrm{y} 2=\cos \left(0.2^{\star} \mathrm{pi} \mathrm{i}^{\mathrm{t}} 2\right)$;
plot(t2, y2)
$\operatorname{size}([0: 199], 2)=200$

Normalized data points

$$
t=[0: 19] ; \quad[0.0, \cdots, 19.0] 20 \text { data points }
$$

coarse resolution

$$
[0.0, \cdots, 19.0] \rightarrow 2 \text { cycles } \quad[0, \cdots, 4 \pi]
$$

```
x= cos(0.2*pi*n);
t = [0:19];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10;
y2 = cos(0.2* pi*t2);
plot(t2, y2)
```

$t 2=[0: 199] / 10 ; \quad[0.0$	[0.0, $\cdots, 19.9] 200$ data points fine resolution
$[0.0, \cdots, 19.9] \rightarrow 2$ cycles	les $\quad[0, \cdots, 4 \pi]$

Plotting sampled cosine waves

$x=\cos \left(2^{*} \mathrm{pi*} n / 10\right)$;
$\mathrm{t}=[0: 19] / 10 ;$
$y=\cos \left(2^{*} \mathrm{i}^{\star} \mathrm{t}\right)$;
stem(t, y)
hold on
$\mathrm{t} 2=[0: 199] / 100 ;$
$\mathrm{y} 2=\cos \left(2^{*} \mathrm{pi} \mathrm{i}^{\star} \mathrm{t} 2\right)$;
$\operatorname{plot}(\mathrm{t} 2, \mathrm{y} 2)$

$$
\mathrm{x}=\cos \left(0.2^{*} \mathrm{pi} \mathrm{n}\right)
$$

$x=\cos \left(0.2^{*} \mathrm{pi}^{\star} n\right)$;

$$
\mathrm{t}=[0: 19] ;
$$

$\mathrm{t}=$ [0:19];

$$
\begin{array}{rlrl}
\mathrm{t} & =[0: 19] / 10 ; & {[0.0, \cdots, 1.9] 20 \text { data points }} \\
\mathrm{y} & =\cos \left(2^{\star} \mathrm{p} \mathrm{i}^{\star}\right) ; & & \text { stem }(\mathrm{t}, \mathrm{y}) \quad \text { coarse resolution }
\end{array}
$$

$$
y=\cos \left(0.2^{*} \mathrm{pi*}\right)
$$

$y=\cos \left(0.2^{*} \mathrm{pi}{ }^{\star} \mathrm{t}\right)$;
stem(t, y)
stem(t, y)
hold on
hold on

$$
\mathrm{t} 2=[0: 190] / 10 ;
$$

$\mathrm{t} 2=[0: 190] / 10 ;$

$$
\mathrm{y} 2=\cos \left(0.2^{\star} \mathrm{pi} \mathrm{t} 2\right)
$$

$\mathrm{y} 2=\cos \left(0.2^{\star} \mathrm{pi} \mathrm{i}^{\mathrm{t}} 2\right)$;
plot(t2, y2)
plot(t2, y2)

Two waveforms with the same normalized frequency

$\mathrm{x}=\cos \left(2 * \mathrm{pi}{ }^{*} \mathrm{n} / 10\right)$;
$\mathrm{t}=[0: 19] / 10 ;$
$y=\cos \left(2^{*} \mathrm{p}^{\star} \mathrm{t}\right)$;
stem(t, y)
hold on
t2 $=[0: 199] / 100 ;$
$\mathrm{y} 2=\cos \left(2^{*} \mathrm{pi}{ }^{\star} \mathrm{t} 2\right)$;
plot(t2, y2)
$\cos (2 \pi t) \quad[0.0, \cdots, 1.9] \rightarrow 2$ cycles $\quad F_{0}=0.1$

$\mathrm{x}=\cos \left(0.2^{*} \mathrm{pi}{ }^{\star} \mathrm{n}\right)$;
$\mathrm{t}=$ [0:19];
$y=\cos \left(0.2^{*} \mathrm{pi*} \mathrm{t}\right)$;
stem(t, y)
hold on
$\mathrm{t} 2=[0: 190] / 10 ;$
$\mathrm{y} 2=\cos \left(0.2^{\star} \mathrm{pi} \mathrm{i}^{\mathrm{t}} 2\right)$;
plot(t2, y2)

Digital Signals Octave Codes (OA)

Cosine Wave 1

$x=\cos \left(2^{\star} \mathrm{p} \mathrm{i}^{\star} \mathrm{n} / 10\right)$;

$$
\begin{array}{lll}
\cos (2 \pi t) \\
T_{0}=1
\end{array} \quad \begin{array}{lll}
\cos (2 \pi \cdot 1 \cdot t) \\
\hline f_{0}=1 & T_{0}=1 \\
f_{s}=10 & T_{s}=0.1 \\
\hline
\end{array}
$$

$\mathrm{t}=[\mathbf{0 : 2 9]} / \mathbf{1 0}$;
$y=\cos (2 * p i * t)$;
stem (t, y)
hold on
$\mathrm{t} 2=[0: 299] / \mathbf{1 0 0}$;
$\mathrm{y} 2=\cos (2 * \mathrm{p} * \mathrm{t} 2)$;
plot(t2, y2)
$f_{0}=1$
$T_{s}=0.1$
$F_{0}=f_{0} T_{s}=0.1$

Cosine Wave 2

$\mathrm{x}=\cos \left(0.2^{*} \mathrm{pi}{ }^{*} \mathrm{n}\right)$;
$\mathrm{t}=$ [0:29];
$\mathrm{y}=\cos (0.2 * \mathrm{pi*t})$;
stem (t, y)
hold on
$\mathrm{t} 2=[\mathbf{0 : 2 9 9}] / \mathbf{1 0}$;
$\mathrm{y} 2=\cos (0.2 * \mathrm{pi} * \mathrm{t} 2)$; plot(t2, y2)
$f_{0}=0.1$
$T_{s}=1$
$F_{0}=f_{0} T_{s}=0.1$

U of Rhode Island, ELE 436, FFT Tutorial

Sampled Sinusoids

$$
\begin{array}{l|c|c}
g[n]=A \cos \left(2 \pi F_{0} n+\theta\right) & F_{0} & 2 \pi F_{0} \\
g[n]=A \cos \left(2 \pi n m / N_{0}+\theta\right) & m / N_{0} & 2 \pi m / N_{0} \\
g[n]=A \cos \left(\Omega_{0} n+\theta\right) & \Omega_{0} / 2 \pi & \Omega_{0} \\
\hline g[n]=A e^{\beta n} & N_{0}=\frac{m}{F_{0}} & N_{0} \neq \frac{1}{F_{0}} \\
g[n]=A z^{n} \quad z=e^{\beta} &
\end{array}
$$

Sampling Period T_{s} and Frequency f_{s}

$$
g(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

$$
g[n]=A \cos \left(2 \pi F_{0} n+\theta\right)
$$

$$
\begin{array}{ll}
T_{s}=\frac{1}{f_{s}} & \text { sampling period } \\
\frac{1}{T_{s}}=f_{s} & \begin{array}{l}
\text { sampling frequency } \\
\text { sampling rate }
\end{array}
\end{array}
$$

f_{0} and F_{0}

$$
\begin{aligned}
& g(t)=A \cos \left(2 \pi f_{0} t+\theta\right) \\
& g(t)=4 \cos \left(\frac{72 \pi t}{19}\right) \\
&=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot t\right) \\
& f_{0}=\frac{36}{19}
\end{aligned}
$$

$$
\begin{aligned}
g[n] & =A \cos \left(2 \pi F_{0} n+\theta\right) \\
g[n] & =4 \cos \left(\frac{72 \pi n}{19}\right) \\
& =4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot n\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { there are } \\
& \text { many } F_{0}
\end{aligned} \quad F_{0}=f_{0} T_{s}=\frac{f_{0}}{f_{s}}
$$

$$
\begin{array}{r}
T_{s}=1 \hookrightarrow F_{0}=f_{0} \\
F_{0}=\frac{36}{19}
\end{array}
$$

T_{0} and N_{0}

$$
\begin{aligned}
& g(t)=A \cos \left(2 \pi f_{0} t+\theta\right) \\
& g(t)=4 \cos \left(\frac{72 \pi t}{19}\right) \\
&=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot t\right) \\
& g(t)=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(t+T_{0}\right)\right) \\
& T_{0}=\frac{19}{36}
\end{aligned}
$$

Fundamental Period of $g(t)$

$$
g[n]=A \cos \left(2 \pi F_{0} n+\theta\right)
$$

$$
g[n]=4 \cos \left(\frac{72 \pi n}{19}\right)
$$

$$
=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot n\right)
$$

$$
g[n]=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(n+N_{0}\right)\right)
$$

there is only one N_{0} for a given F_{0}

$$
N_{0}=19
$$

Real T_{0} and Integer N_{0}

$$
\begin{aligned}
& g[n]=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(n+N_{0}\right)\right) \quad \begin{array}{ccc}
\frac{36}{19} \cdot\left(n+N_{0}\right) & \frac{1}{19} \cdot N_{0} & N_{0}=19 \\
\text { integer } & \text { integer } & \text { integer }
\end{array} \\
& N_{0}=19 \text { Fundamental period of } g[n] \\
& g(t)=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(t+T_{0}\right)\right) \\
& \frac{36}{19} \cdot\left(t+T_{0}\right) \\
& \text { integer } \\
& T_{0}=\frac{19}{36} \quad \text { Fundamental period of } g(t)
\end{aligned}
$$

Cycles in N_{o} samples

$$
F_{0}=\frac{q}{N_{0}} \longleftarrow \text { the number of cycles in } \mathrm{N}_{0} \text { samples }
$$

$$
F_{0} N_{0}=q
$$

$$
2 \pi F_{0} N_{0}=2 \pi q \quad q \text { cycles in } N_{o} \text { samples }
$$

Cycles in T_{0} time duration and N_{0} samples

$$
\begin{array}{cl}
g(t)=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(t+T_{0}\right)\right) & T_{0}=\frac{19}{36} \quad \text { Fundamental Period of } g(t) \\
f_{0}=\frac{36}{19}=\frac{1}{T_{0}} & q=1 \text { cycle in } T_{0}=19 / 36 \text { time interval } \\
g[n]=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot\left(n+N_{0}\right)\right) & N_{0}=19 \quad \text { Fundamental Period of } g[n] \\
F_{0}=\frac{36}{19}=\frac{q}{N_{0}} & q=36 \text { cycles in } N_{0}=19 \text { samples } \\
& N_{0} \neq \frac{1}{F_{0}} \leadsto N_{0}=\frac{q}{F_{0}}
\end{array}
$$

Difficult to recognize a discrete-time sinusoid

$$
F_{0}=\frac{36}{19}=\frac{q}{N_{0}} \Longleftarrow \text { the number of cycles in } N_{0} \text { samples }
$$

"When F_{0} is not the reciprocal of an integer ($q=1$),
a discrete-time sinusoid may not be
immediately recognizable from its graph as a sinusoid."
$F^{\prime}{ }_{0}=\frac{1}{19}=\frac{1}{N_{0}}$

Periodic Condition Examples

$$
\begin{aligned}
& g[n]=4 \cos \left(2 \pi \cdot \frac{1}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{2}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{3}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot n\right) \\
& 1 \text { cycles in } N_{0}=19 \text { samples } \\
& 2 \text { cycles in } N_{0}=19 \text { samples } \\
& 3 \text { cycles in } N_{0}=19 \text { samples } \\
& 36 \text { cycles in } N_{0}=19 \text { samples }
\end{aligned}
$$

Periodic Condition Examples

$$
\begin{aligned}
& g[n]=4 \cos \left(2 \pi \cdot \frac{1}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{2}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{3}{19} \cdot n\right) \\
& g[n]=4 \cos \left(2 \pi \cdot \frac{36}{19} \cdot n\right)
\end{aligned}
$$

Periodic Condition Examples

$$
g(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

$$
g[n]=A \cos \left(2 \pi F_{0} n+\theta\right)
$$

$$
\begin{array}{lll}
g_{1}(t)=4 \cos (2 \pi \cdot 1 \cdot t) & t \leftarrow n T_{1} & g_{1}[n]=4 \cos \left(2 \pi \cdot 1 \cdot n T_{1}\right) \\
g_{2}(t)=4 \cos (2 \pi \cdot 2 \cdot t) & t \leftarrow n T_{2} & g_{2}[n]=4 \cos \left(2 \pi \cdot 2 \cdot n T_{2}\right) \\
g_{3}(t)=4 \cos (2 \pi \cdot 3 \cdot t) & t \leftarrow n T_{3} & g_{3}[n]=4 \cos \left(2 \pi \cdot 3 \cdot n T_{3}\right)
\end{array}
$$

$$
\begin{array}{lll}
T_{1}=\frac{1}{10} \\
T_{2}=\frac{1}{20} \\
T_{3}=\frac{1}{30} & n=0,1,2,3, \cdots \quad & n=0,1,2,3, \cdots \Rightarrow
\end{array} \quad \begin{aligned}
& 1 \cdot n T_{1}=0,0.1,0.2,0.3, \cdots=1 \cdot t \\
& 2 \cdot n T_{2}=0,0.1,0.2,0.3, \cdots=2 \cdot t \\
& 3 \cdot n T_{3}=0,0.1,0.2,0.3, \cdots=3 \cdot t
\end{aligned}
$$

$$
\left\{g_{1}[n]\right\} \equiv\left\{g_{2}[n]\right\} \equiv\left\{g_{2}[n]\right\}
$$

Periodic Condition Examples

$T_{s}=\frac{1}{10} \quad \omega=2 \pi \cdot 1$

$$
\begin{aligned}
& \text { clf } \\
& \mathrm{n}=[0: 10] ; \mathrm{t}=[0: 1000] / 1000 ; \\
& \text { y1 = 4* } \cos \left(2^{*} \mathrm{pi}^{*} 1^{*} \mathrm{n} / 10\right) \text {; } \\
& \mathrm{y} 2=4^{\star} \cos \left(2^{*} \mathrm{pi}{ }^{*} 2^{*} \mathrm{n} / 20\right) \text {; } \\
& \mathrm{y} 3=4^{\star} \cos \left(2^{*} \mathrm{p} \mathrm{i}^{\star} 3^{\star} \mathrm{n} / 30\right) \text {; } \\
& \text { yt1 }=4^{*} \cos \left(2^{\star} \mathrm{p} \mathrm{i}^{\star t}\right) \text {; } \\
& \mathrm{yt} 2=4^{*} \cos \left(2^{*} \mathrm{pi}{ }^{*} 2^{\star} \mathrm{t}\right) \text {; } \\
& y t 3=4^{\star} \cos \left(2^{\star} \mathrm{pi}{ }^{*} 3^{\star} \mathrm{t}\right) \text {; } \\
& \text { subplot(3,1,1); } \\
& \text { stem(} \mathrm{n}, \mathrm{y} 1 \text {); hold on; } \\
& \text { plot(t, yt1); } \\
& \text { subplot(3,1,2); } \\
& \text { stem(n/20, y2); hold on; } \\
& \text { plot(t, yt2); } \\
& \text { subplot(3,1,3); } \\
& \text { stem(n/30, y3); hold on; } \\
& \text { plot(t, yt3); }
\end{aligned}
$$

Periodic Condition Examples

$$
\begin{aligned}
g(t) & =A \cos \left(2 \pi f_{0} t+\theta\right) \\
g[n] & =A \cos \left(2 \pi F_{0} n+\theta\right) \\
g[n] & =4 \cos \left(\frac{72 \pi n}{19}\right) \\
& =4 \cos \left(2 \pi\left(\frac{36}{19}\right) n\right) \\
& =4 \cos \left(2 \pi\left(\frac{36}{19} \cdot\left(n+N_{0}\right)\right)\right) \\
& \text { smallest } \quad N_{0}=19
\end{aligned}
$$

$$
\begin{aligned}
& 2 \pi F_{0} n=2 \pi m \\
& \frac{36}{19} n=m \quad \text { smallest } \mathrm{n}=19 \\
& \frac{36}{19}=\frac{m}{n} \\
& \frac{36}{19}=\frac{m}{n}=\frac{f_{0}}{f_{s}}
\end{aligned}
$$

$$
F_{0}=\frac{q}{N_{0}}
$$

$$
1 / N_{0}
$$

$$
=F_{0}
$$

$$
=\Omega_{0} / 2 \pi
$$

Periodic Condition Examples

$$
t_{1}=2 t_{2}
$$

$4 \cos \left(2 \omega t_{2}\right)$

$n_{1}=2 n_{2}$

$4 \cos \left(\omega 2 n_{2}\right) \quad n_{2} \cdot 2 \quad T_{s}=2$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M.J. Roberts, Fundamentals of Signals and Systems
[4] S.J. Orfanidis, Introduction to Signal Processing
[5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings
[6] A "graphical interpretation" of the DFT and FFT, by Steve Mann

