Digital Signal Octave Codes (0A)

Periodic Conditions

Copyright (c) 2009 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Based on M.J. Roberts, Fundamentals of Signals and Systems S.K. Mitra, Digital Signal Processing : a computer-based approach 2nd ed S.D. Stearns, Digital Signal Processing with Examples in MATLAB

Sampling and Normalized Frequency

Analog and Digital Frequencies

Digital Signals Octave Codes (0A)

Multiplying by T_s – Normalization

Normalization

$$F_0 = f_0 \cdot T_s$$
$$= f_0 / f_s$$
$$= T_s / T_0$$

$$f_0 \cdot T_s$$
 Multiplied by T_s
 f_0 / f_s Divided by f_s

$$\Omega_0 = 2 \pi F_0$$

$$f_0 / f_s < 0.5$$

 $f_s > 2 \cdot f_0$

Sampling Rate Minimum

Digital Signals Octave Codes (0A)

Normalized Cyclic and Radian Frequencies

Normalized Cyclic Frequency

$$F_0$$
 cycles/sample = $\frac{f_0}{f_s}$ cycles/second $\frac{f_0}{f_s}$ samples/second

Normalized <u>Radian</u> Frequency

$$\Omega_0$$
 cycles/sample = $\frac{\omega_0}{f_s}$ cycles/second

Digital Signals Octave Codes (0A)

Periodic Relation : N_o and F_o

$$e^{j(2\pi(n+N_0)F_0)} = e^{j(2\pi nF_0)} \qquad e^{j2\pi m} = 1$$

Digital Signal Period N_0
: the smallest integer
$$e^{j2\pi N_0F_0} \rightarrow e^{j2\pi m} = 1$$
Periodic Condition
: integer m
$$2\pi N_0F_0 = 2\pi m$$

$$N_0F_0 = m$$

Digital Signals Octave Codes (0A)

Periodic Condition : N_o and F_o

$$2\pi N_0 F_0 = 2\pi m$$
 $N_0 F_0 = m$

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s}$$
 \leftarrow Integer * Rational :
must be an Integer

Digital Signal Period N_o : the <u>smallest</u> integer

Periodic Condition : the <u>smallest</u> integer **m**

 $m \neq T_s$ m = preduced form

Periodic Condition : N_o and F_o in a reduced form

N_o and F_o in a reduced form : Examples

Periodic Relations – Analog and Digital Cases

$$e^{j(2\pi(n+N_0)F_0)} = e^{j(2\pi nF_0)}$$

Digital Signal Period **N**_o : the <u>smallest integer</u>

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s}$$

 $k N_0 F_0 = k \cdot m$

$$e^{j(2\pi f_0)(t+T_0)} = e^{j(2\pi f_0)t}$$

integer multiple of m : <u>some</u> integers m all integers

Periodic Conditions – Analog and Digital Cases

Periodic Condition of a Sampled Signal

$$g(nT_s) = A\cos(2\pi f_0 T_s n + \theta)$$

$$F_0 = f_0 T_s = f_0 / f_s$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$\frac{2\pi F_0}{n} = 2\pi m$$

$$F_0 = \frac{m}{n}$$
integers n, m

$$Rational Number$$

$$F_0 = \frac{m}{n}$$

$$f_0 = \frac{m}{n}$$

$$F_0 = \frac{m}{n}$$

$$F_0 = \frac{m}{n}$$

The Smallest Integer n

$$N_0 = min(n)$$
 $F_0 = \frac{m}{N_0}$

M.J. Roberts, Fundamentals of Signals and Systems

F_0 and N_0 of a Sampled Signal

integer n,m,p,q

 $F_0 = \frac{m}{n} = \frac{p}{q}$

$$N_0 F_0 = m$$

$$F_0 = \frac{f_0}{f_s} = \frac{T_s}{T_0} \quad \text{real} \quad f_0, f_s, T_s, T_0$$

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s} = m \cdot \frac{f_s}{f_0} = m \cdot \frac{q}{p}$$

$$2\pi \frac{f_0 T_s}{n}$$

M.J. Roberts, Fundamentals of Signals and Systems

A cosine waveform example

$$n = [0:19]; = 2\pi F_0 n = 2\pi f_0 T_s n = [0:19]; = 2\pi Cos(2^*pi^*(1/10)^*n); = 2\pi F_0 n = 2\pi f_0 T_s n = \frac{1}{2\pi f_0 n T_s} = \frac{1}{f_0} = \frac{1}{f_s} = \frac{T_s}{T_0} \qquad nT_s = n \cdot 1$$

$$2\pi f_0 n T_s = 2\pi \cdot 1 \cdot n \cdot \frac{1}{10} \qquad 2\pi f_0 n T_s = 2\pi \cdot \frac{1}{10} \cdot n \cdot 1$$

$$T_s = 0.1 \qquad T_s = 0.1 \qquad T_s = 1 \qquad f_0 = 1.$$

$$F_0 = f_0 T_s = 0.1 \qquad F_0 = f_0 T_s = 0.1$$

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

18

Two cases of the same $F_o = f_o T_s$

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

19

The same sampled waveform examples

Digital Signals Octave Codes (0A)

20

Many waveforms share the same sampled data

Digital Signals Octave Codes (0A)

21

Different number of data points

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

Normalized data points

t = [0:19]/10;y = cos(2*pi*t); stem(t, y) hold on t2 = [0:199]/100;y2 = cos(2*pi*t2); plot(t2, y2)

x = cos(2*pi*n/10);

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

23

Different number of data points

U of Rhode Island, ELE 436, FFT Tutorial

Normalized data points

U of Rhode Island, ELE 436, FFT Tutorial

Plotting sampled cosine waves

x= cos(2*pi*n/10);

t = [0:19]/10;y = cos(2*pi*t); stem(t, y) hold on t2 = [0:199]/100; y2 = cos(2*pi*t2); plot(t2, y2)

x= cos(0.2*pi*n);

t = [0:19]; y = cos(0.2*pi*t); stem(t, y) hold on t2 = [0:190]/10; y2 = cos(0.2*pi*t2); plot(t2, y2)

<mark>t</mark> = [0:19]/10;	$[0.0, \cdots, 1.9]$ 20 data points
y = cos(<mark>2</mark> *pi <mark>*t)</mark> ;	stem(<mark>t,</mark> y) coarse resolution
<mark>t2</mark> = [0:199]/100;	[0.0,,1.99] 200 data points
y = cos(2*pi* <mark>t2</mark>);	plot(<mark>t2</mark> , y) fine resolution

<mark>t</mark> = [0:19];	[0.0,,1.9]	20 data points
y = cos(<mark>0.2*pi*t)</mark> ;	stem(<mark>t,</mark> y)	coarse resolution
<mark>t2</mark> = [0:199]/00;	[0.0,,1.99] 200 data points	
y = cos(<mark>0.2*pi*<mark>t2</mark>);</mark>	plot(t <mark>2</mark> , y)	fine resolution

U of Rhode Island, ELE 436, FFT Tutorial

Two waveforms with the same normalized frequency

 $\cos(2\pi t)$ $[0.0, \dots, 1.9] \rightarrow 2 \text{ cycles} \qquad F_0 = 0.1$ x = cos(2*pi*n/10);t = **[0:19]/10**: $f_0 = 1$ $\cos(2\pi \cdot \mathbf{1} \cdot t)$ $T_{0} = 1$ v = cos(2*pi*t);0.5 $T_{s} = 0.1$ stem(t, y) $f_{s} = 10$ hold on 0 t2 = **[0:199]/100**: $y^{2} = \cos(2*pi*t^{2});$ plot(t2, y2)-0.5 -1 5 10 15 20 0 $\cos(0.2\pi t)$ $[0., \cdots, 19.] \rightarrow 2$ cycles $F_0 = 0.1$ **x**= cos(0.2*pi***n**); t = **[0:19]**; $\cos(2\pi \cdot \mathbf{0.1} \cdot t) \quad f_0 = 0.1$ $T_0 = 10$ y = cos(0.2*pi*t);0.5 $T_s = 1$ stem(t, y) $f_{s} = 1$ hold on 0 t2 = **[0:190]/10**; $y^{2} = \cos(0.2*pi*t^{2});$ -0.5 plot(t2, y2) -1 5 10 15 20 0

U of Rhode Island, ELE 436, FFT Tutorial

Cosine Wave 1

x= cos(2*pi*n/10);

t = [0:29]/10;y = cos(2*pi*t); stem(t, y) hold on t2 = [0:299]/100;y2 = cos(2*pi*t2); plot(t2, y2)

 $f_0 = 1$

 $T_{s} = 0.1$

 $F_0 = f_0 T_s = 0.1$

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

28

Cosine Wave 2

x= cos(0.2*pi*n);

t = **[0:29]**; y = cos(0.2*pi*t); stem(t, y) hold on t2 = **[0:299]/10**; y2 = cos(0.2*pi*t2); plot(t2, y2)

 $f_0 = 0.1$

 $T_s = 1$

 $F_0 = f_0 T_s = 0.1$

U of Rhode Island, ELE 436, FFT Tutorial

Digital Signals Octave Codes (0A)

Sampled Sinusoids

$$g[n] = A\cos(2\pi F_0 n + \theta) \qquad F_0 \qquad 2\pi F_0$$

$$g[n] = A\cos(2\pi n m/N_0 + \theta) \qquad m/N_0 \qquad 2\pi m/N_0$$

$$g[n] = A\cos(\Omega_0 n + \theta) \qquad \Omega_0/2\pi \qquad \Omega_0$$

$$N_0 = \frac{m}{F_0} \qquad N_0 \neq \frac{1}{F_0}$$

 $g[n] = A e^{\beta n}$

$$g[n] = A z^n$$
 $z = e^{\beta}$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

30

Sampling Period T_s and Frequency f_s

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$F_0 \leftarrow f_0 \cdot T_s$$

$$f_0 \leftarrow F_0 \cdot f_s$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

sampling period

sampling frequency sampling rate

M.J. Roberts, Fundamentals of Signals and Systems

 f_o and F_o

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g(t) = 4\cos\left(\frac{72\pi t}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot t\right)$$

$$f_0 = \frac{36}{19}$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$g[n] = 4\cos\left(\frac{72\pi n}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

there are
many
$$F_0$$
 $F_0 = f_0 T_s = \frac{f_0}{f_s}$

$$T_s = 1 \implies F_0 = f_0$$

 $F_0 = \frac{36}{19}$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

 T_o and N_o

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g(t) = 4\cos\left(\frac{72\pi t}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot t\right)$$

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t+T_0)\right)$$

$$T_0 = \frac{19}{36}$$

Fundamental Period of g(t)

$$g[\mathbf{n}] = A\cos(2\pi F_0\mathbf{n} + \theta)$$

$$g[n] = 4\cos\left(\frac{72\pi n}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n+N_0)\right)$$

there is only one N_o for a given F_o

$$N_0 = 19$$

Fundamental Period of g[n]

M.J. Roberts, Fundamentals of Signals and Systems

Real T_o and Integer N_o

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n+N_0)\right)$$

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t+T_0)\right) \qquad \frac{36}{19} \cdot (t+T_0) \qquad \frac{36}{19} \cdot T_0 \qquad T_0 = \frac{19}{36}$$

integer integer integer $T_0 = \frac{19}{36}$
 $T_0 = \frac{19}{36}$ Fundamental period of $g(t)$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

Cycles in N_o samples

$$F_0 = \frac{q}{N_0}$$
 \leftarrow the number of cycles in N₀ samples \leftarrow the smallest integer : fundamental period

$$F_0 N_0 = q$$

$2\pi F_0 N_0 = 2\pi q$ q cycles in N_o samples

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

Cycles in T_o time duration and N_o samples

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t+T_0)\right) \qquad T_0 = \frac{19}{36} \quad \text{Fundamental Period of } g(t)$$

$$f_0 = \frac{36}{19} = \frac{1}{T_0} \qquad q=1 \text{ cycle in } T_0 = 19/36 \text{ time interval}$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n+N_0)\right) \qquad N_0 = 19 \quad \text{Fundamental Period of } g[n]$$

$$F_0 = \frac{36}{19} = \frac{q}{N_0} \qquad q=36 \text{ cycles in } N_0 = 19 \text{ samples}$$

$$N_0 \neq \frac{1}{F_0} \implies N_0 = \frac{q}{F_0}$$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

36

Difficult to recognize a discrete-time sinusoid

$$F_0 = \frac{36}{19} = \frac{q}{N_0}$$
 \leftarrow the number of cycles in N_o samples \leftarrow the smallest integer : fundamental period

"When F_o is not the reciprocal of an integer (q=1), a discrete-time sinusoid may not be immediately recognizable from its graph as a sinusoid."

$$F'_{0} = \frac{1}{19} = \frac{1}{N_{0}}$$

M.J. Roberts, Fundamentals of Signals and Systems

$$g[n] = 4\cos\left(2\pi \cdot \frac{1}{19} \cdot n\right)$$
$$g[n] = 4\cos\left(2\pi \cdot \frac{2}{19} \cdot n\right)$$
$$g[n] = 4\cos\left(2\pi \cdot \frac{3}{19} \cdot n\right)$$
$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

1 cycles in N_0 =19 samples

- **2** cycles in *N*_o=19 samples
- **3** cycles in N_0 =19 samples

36 cycles in N_0 =19 samples

clf n = [0:36]; t = [0:3600]/100; y1 = 4*cos(2*pi*(1/19)*n); y2 = 4*cos(2*pi*(2/19)*n); y3 = 4*cos(2*pi*(3/19)*n); y4 = 4*cos(2*pi*(36/19)*n); yt1 = 4*cos(2*pi*(1/19)*t); yt2 = 4*cos(2*pi*(2/19)*t); yt3 = 4*cos(2*pi*(3/19)*t); yt4 = 4*cos(2*pi*(36/19)*t);

subplot(4,1,1); stem(n, y1); hold on; plot(t, yt1); subplot(4,1,2); stem(n, y2); hold on; plot(t, yt2); subplot(4,1,3); stem(n, y3); hold on; plot(t, yt3); subplot(4,1,4); stem(n, y4); hold on; plot(t, yt4);

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

39

 $g(t) = A\cos(2\pi f_0 t + \theta)$

 $g_1(t) = 4\cos(2\pi \cdot 1 \cdot t)$ $t \leftarrow n T_1$ $g_2(t) = 4\cos(2\pi \cdot 2 \cdot t)$ $t \leftarrow nT_2$ $g_3(t) = 4\cos(2\pi \cdot 3 \cdot t)$ $t \leftarrow nT_3$

$$g[\mathbf{n}] = A\cos(2\pi F_0\mathbf{n} + \theta)$$

 $g_1[n] = 4\cos(2\pi \cdot \mathbf{1} \cdot \mathbf{n}T_1)$ $g_2[n] = 4\cos(2\pi \cdot 2 \cdot nT_2)$ $g_3[n] = 4\cos(2\pi \cdot 3 \cdot nT_3)$

 $T_1 = \frac{1}{10}$ $T_2 = \frac{1}{20}$ $n = 0, 1, 2, 3, \dots$ \Rightarrow $2 \cdot n T_2 = 0, 0.1, 0.2, 0.3, \dots = 2 \cdot t$ $T_3 = \frac{1}{30}$ $n = 0, 1, 2, 3, \cdots$

 $n = 0, 1, 2, 3, \cdots \implies 1 \cdot n T_1 = 0, 0.1, 0.2, 0.3, \cdots = 1 \cdot t$ $3 \cdot nT_3 = 0, 0.1, 0.2, 0.3, \dots = 3 \cdot t$

 $\{g_1[n]\} \equiv \{g_2[n]\} \equiv \{g_2[n]\}$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

40

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

41

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$g[n] = 4\cos\left(\frac{72\pi n}{19}\right)$$

$$= 4\cos\left(2\pi\left(\frac{36}{19}\right)n\right)$$

$$= 4\cos\left(2\pi\left(\frac{36}{19}\cdot(n + N_0)\right)\right)$$
smallest $N_0 = 19$

$$g(t) = A\cos\left(2\pi f_0 t + \theta\right)$$

$$g(n) = 2\pi m$$

$$g(n) = 19$$

$$g(n) = 2\pi m$$

$$g(n) = 2\pi m$$

$$g(n) = 2\pi m$$

$$g(n) = 2\pi m$$

$$g(n) = 19$$

$$g(n) = 2\pi m$$

$$g$$

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

42

M.J. Roberts, Fundamentals of Signals and Systems

Digital Signals Octave Codes (0A)

43

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings
- [6] A "graphical interpretation" of the DFT and FFT, by Steve Mann