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Energy and average power in time domain

power density spectrum for continuous time signals
Energy, Average Power — deterministic, time domain
a deterministic signal x(t)

() = x(t) —-T<t<T
= 0 otherwise

the energy
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Fourier transform

power density spectrum for continuous time signals

Fourier Transform Pair x(t) <= X()

Fourier transform
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Fourier transform of x7(1)

for continuous time signals

bounded duration, bounded variation

for a finite T, x7(t) is assumed to have bounded variation

+T
/ Ix(£)|dt < oo
-T

the Fourier transform of x7 (1)
oo

X7 ( ):/ x7(£)e 0t dt

—o0

+T .
:/ x(t)e It dt
T
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Fourier transforms of x7(t) and X7 (1)

power density spectrum for continuous time signals

deterministic X7(®) v.s. random Xt (®)

a deterministic sample signal x7 (1)
XT(t) <~ XT( )

a random process signal X7(t)

X7 (t) <= Xr(0)
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Parseval's theorem (I)

power density spectrum for continuous time signals

for a deterministic x7(t)

a deterministic sample signal x7 (1)

oo . 1 [+e .
/_ (= [ Xr(0)XH(0)do

oo 1 e
[ r@Pdr=o [ ixr(0)P do
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Parseval's theorem (II)

power density spectrum for continuous time signals

for a deterministic x7(#) v.s. a random X (1)

e a deterministic signal x7(t) <= X7(®)
+oo ) 1 [te )
| xr@Pde=o [ 1xr(0)Pdo
e a random signal X7(t) <= Xr(®)

/_J:QE [|XT(t)’2} dt = ;ﬂ/_:ooE “XT( )’2} 2
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Energy and average power in frequency domain

power density spectrum for continuous time signals

Energy, Average Power — Parseval’s theorem applied

a deterministic signal x7(t)

a0={ 0 e xr(t) = X7(0)

the energy by Parseval's theorem
T 1 [+
_ 2 2
E(T)= [ x(e)de= 2ﬂ/ X7 (0)Pdo

the average power by Parseval's theorem

P(T):%/_ X2 (t)dt = 2/ |XT )lzda)
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E(T) and P(T) in frequency domain — deterministic case

power density spectrum for continuous time signals

deterministic x7 (1) <= X7(®)

the energy for the deterministic X7 () in x7(t) <= X71(®)

E(T) = [ IXr(o)Pdo

—oo

the average power for the deterministic X7 ()

1 [+ | Xr(0)P?
P(T):E/ﬂc Xr(@)” Z(T)’ do

the power density spectrum for the deterministic X1(®)

2
()
T 2T
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E(T) and P(T) in frequency domain — random case

power density spectrum for continuous time signals

random X7 (1) < X7 (®)

the energy for the random X7 () in X7(t) <= X7(»)
()= 1/+°°E[|XT( R
27 J—w
the average power for the random Xt ()

1 /+°°E“XT( )]

~ o). T 9@

P(T)
the power density spectrum for the random Xt ()

E[Xr()]
T o 2T
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Average power P(T) — bounded duraton (—T,+T)

power density spectrum for continuous time signals

P(T) = QIT/_+TTX2(t)dt

@ not the average power in a random process
only the power in one sample function
e to obtain the average power over all possible realizations,
replace x(t) by X(t)
take the expected value of x?(1), that is TE [X?(1)]
e then, the average power is a random variable
with respect to the random process X(t)

@ not the average power in an entire sample function
o take T — oo to include all power in the ensemble member
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Average power Pxx — unbounded duraton (—oo, +o0)

power density spectrum for continuous time signals

-
P(T)= 21T/_+T (1) dt

@ replace x(t) by the random variable X(t)
o take the expected value of x?(1), that is £ [X?(¢)]

P(T) = 217_/+TTE X2(1)) dt

@ take T — o to include all power

Pxx = TlianP(T) = lim L 3 E [X?(t)]dt
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Average power Pxx — time average Ale]

power density spectrum for continuous time signals

The time average

T T
1 1
AT[o]_ﬁ/[o]dt A[.]_}@wﬁ/[.]dt
-T -T
time average and sample average operations
P lim P(T li ! +TE X2(t)|d
= = _ t
XX Tinoo ( ) TlglozT T [ ( )} t

= lim A7 [E [X?(1)]]

T—o0

= A[E [X3(0)]
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Measuring average power

power density spectrum for continuous time signals

for deterministic and random signals

the average power P(T) for a deterministic signal x(t)

=2 [ )d
)_ﬁ/_TX(t)t

the average power Pxx for a random process X(t)

PXX = 7|_im P(T)

+T 5
= | X
TTmQT/

=A[E[X*(1)]]
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Power density spectrum Sxx (o)

power density spectrum for continuous time signals

the average power via power density

the average power Pxx for the random process X1(®)

PXX:f lim dow

2 J—oo | T 2T

TN

the power density spectrum Sxx(®)

2
[Sxx(0)]= T”TMEUX;(- )]

1 /*“’ E [|Xr(»)P]
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Properties of Power Spectrum
power density spectrum for continuous time signals
® Sxx(w)>0

o Sxx(—w) = Sxx() X(t) real

o Sxx(0) real

o L 72 Sxx(w)dw=A[E[X?(t)]]

0 Syx(0) = w?Sxx()

o L [T Sxux(w)e/®dw = A[Rxx(t, t+7)]

° Sxx( ):fj:A[Rxx(t,tﬁ-T)]eij dt
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Equations involving Sxx(®)

power density spectrum for continuous time signals

the average power P,, and the inverse Fourier transform of Sxx ()

the average power related equation
1 [t )
% 3 Sxx( )dw:A[E [X (t)“

the autocorrelation related equation

1 [he :
ﬂ/ Sxx(0)e/ do = A[Rxx(t,t +7)]
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Average power related equation

power density spectrum for continuous time signals

the average power Py

the average power related equation
1 [t

g » Sxx( )da):A[E [Xz(t)“

@ a random process X(t) in time domain

@ a random process X(®) in frequency domain

X(t) = lim X7(t) X(w) = lim X7(w)

@ Parseval's theorem over X7 (1) < Xr()
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Average power Pxx in time / frequency domain

power density spectrum for continuous time signals

Average power Pxx using X7(7) and X7(®)

e Using a random process X7 (t) in time domain

Pxx = I|m 2—/ X2 ()] d
= im 57 [ EDG]a
_ i ar £ 0] <[ AT

e Using a random process X7(®) in frequency domain

1 el E[I X ()]
PXX_E./,.,Q S —t i

[ [ stne
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Autocorrelation related equation

power density spectrum for continuous time signals

the Inverse Fourier transform of Sxx(®)

the average power related equation
N :
or | So@)e dw = AlRx(, t+ 7))

@ auto-correlation function
Rxx(t,t—f- ):E[X(t)X(t—f- )] :>Rxx( )

@ a random process X(t) in time domain

@ a random process X(®) in frequency domain
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Power Density Spectrum and Auto-correlation

power density spectrum for continuous time signals

Fourier transform pairs

o A[Rxx(t,t+1)] < Sxx(®)

Sxx( ):LLNA[RXX(t,t+r)]e*f ‘dt

1 e .
A[Rxx(f:f-i'f)]:%/_ Sxx(0)e**dw

o Rxx(f) ——> Sxx( )

oo .
Sxx(0)= | Rxx(r)e’""dt

1 oo i
Rxx(r):gl Sxx(©)eH dw

for a WSS X(t), A[Rxx(t,t+ T)] = Rxx(T)
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Power Spectrum and Auto-Correlation Functions

power density spectrum for continuous time signals

Sxx((t)) and Rxx( )
the power spectrum

oo :
Sxx( ):[ Rxx(f)e_J Tdt

the auto-correlation function

1 o0 .
RXX(T):g Sxx( )e+f ‘do
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Fourier transform of a derivative function

power density spectrum for continuous time signals

Fourier transform of

x(t) <= X(o)

d .
Zax(t) = (o)X (@)
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Fourier transforms of autocorrelation functions

power density spectrum for continuous time signals

Fourier transform of an autocorrelation functions
oo .
Sxx ( )=/ Rxx(t)e /" dz

oo .
SXX( ):‘/700 R)'O'((f)eij Tdt

@ auto-correlation function

Rxx(t,t417) = E[X(£)X(t 4 7)] = Rxx(7)
Ryt t+7) = E [X(0)X(t+7)] = Rex ()
@ a random process X(t) in time domain

o X(t)= %X(t) . the derivative of X(t)
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RMS Bandwidth

power density spectrum for continuous time signals

Definition

the standard deviation is

a measure of the spread in a density function.

the analogous quantity for the normalized power spectrum is
a measure of its spread that we call the rms bandwidth
(root-mean-square)

—oo

» T 02Sxx(0)dw

[T Sk (0)dw
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RMS Bandwidth and Mean Frequency

power density spectrum for continuous time signals

the mean frequence @q

J72 wSxx(w)dw
J72 Sxx(0)dw

(DO —
the rms bandwidth

W2 :4ij:° — @p)?Sxx(0)do
me [12 Sxx(w)dw
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