Differentiation

Young W Lim

Jun 25, 2024

Copyright (c) 2024 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Introduction to Matrix Algebra, Autar Kaw
https://ma.mathforcollege.com

Outline

(1) Background on Differentiation

- Tangent and Secant Lines

Outline

(1) Background on Differentiation

- Tangent and Secant Lines

Secant Lines

- Let P and Q be two points on the curve of $f(x)$ $\mathrm{P}(a, f(a))$ and $\mathrm{Q}(a+h, f(a+h))$
- the secant line is the straight line drawn through P and Q .
- the slope of the secant line

$$
\begin{aligned}
m_{\text {secant }} & =\frac{f(a+h)-f(a)}{(a+h)-a} \\
& =\frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Tangent Lines

- as $h \rightarrow 0, \mathrm{Q} \rightarrow \mathrm{P}$ and the secant line \rightarrow the tangent line
- the slope of the tangent line

$$
\begin{aligned}
m_{\text {tangent }} & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{(a+h)-a} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Derivative of a function

the derivative of a function $f(x)$ at $x=a$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

or

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(x)-f(a)}{x-a}
$$

Finding equations of a tangent line

One of the numerical methods used to solve a nonlinear equation is called the Newton- Raphson method.
based on the knowledge of finding the tangent line to a curve at a point.

Theorems of differentiations (1)

- If $f(x)=k$, where k is a constant, $f^{\prime}(x)=0$
- The derivative of $f(x)=x^{n}$, where $n \neq 0$ is $f^{\prime}(x)=n x^{n-1}$
- The derivative of $f(x)=k g(x)$, where k is a constant is $f^{\prime}(x)=k g^{\prime}(x)$
- The derivative of $f(x)=u(x) \pm v(x)$ is $f^{\prime}(x)=u^{\prime}(x) \pm v^{\prime}(x)$

Theorems of differentiations (2)

- The derivative of $f(x)=u(x) \cdot v(x)$ is

$$
f^{\prime}(x)=\frac{d}{d x} u(x) \cdot v(x)+u(x) \cdot \frac{d}{d x} v(x)
$$

- The derivative of $f(x)=\frac{u(x)}{v(x)}$ is

$$
f^{\prime}(x)=\frac{\frac{d}{d x} u(x) \cdot v(x)-u(x) \cdot \frac{d}{d x} v(x)}{(v(x))^{2}}
$$

- The derivative of $f(x)=u(v(x))$ is $f^{\prime}(x)=\frac{d}{d x} u(v(x)) \cdot \frac{d}{d x} v(x)$

Implicit differentiation

- Sometimes, the function to be differentiated is not given explicitly as an expression of the independent variable.
- Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=2 x y$

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(2 x y) \\
& 2 x+2 y \frac{d y}{d x}=2 y+2 x \frac{d y}{d x} \\
& (2 y-2 x) \frac{d y}{d x}=2 y-2 x \\
& \frac{d y}{d x}=1
\end{aligned}
$$

Finding maximum and minimum of a function (1)

- The knowledge of the first derivative and the second derivative of a function is used to find the minimum and maximum of a function.
- Let $f(x)$ be a function in domain D, then
- $f(a)$ is the maximum of the function if $f(a) \geq f(x)$ for all values of x in the domain D.
- $f(a)$ is the minimum of the function if $f(a) \leq f(x)$ for all values of x in the domain D.
- The minimum and maximum of a function are also the critical values of a function.

Finding maximum and minimum of a function (2)

- An extreme value can occur in the interval $[c, d]$ at end points $x=c, x=d$.
- a point in $[c, d]$
- where $f^{\prime}(x)=0$.
- where $f^{\prime}(x)$ does not exist.
- These critical points can be the local maximas and minimas of the function

Tables of derivatives (1)

$f(x)$	$f^{\prime}(x)$
$x^{n}, n \neq 0$	$n x^{n-1}$
$k x^{n}, n \neq 0$	$k n x^{n-1}$
a^{x}	$\ln (a) a^{x}$
$\ln (x)$	$\frac{1}{x}$
$\log _{a}^{-1}(x)$	$\frac{1}{x \ln (a)}$
e^{x}	e^{x}

Tables of derivatives (2)

$f(x)$	$f^{\prime}(x)$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\sec ^{2}(x)$
$\sin ^{-1}(x)$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos ^{-1}(x)$	$\frac{-1}{\sqrt{1-x^{2}}}$
$\tan ^{-1}(x)$	$\frac{1}{1+x^{2}}$

$f(x)$	$f^{\prime}(x)$
$\sinh (x)$	$\cosh (x)$
$\cosh (x)$	$\sinh (x)$
$\tanh (x)$	$1-\tanh ^{2}(x)$
$\sinh ^{-1}(x)$	$\frac{1}{\sqrt{1+x^{2}}}$
$\cosh ^{-1}(x)$	$\frac{-1}{\sqrt{x^{2}-1}}$
$\tanh ^{-1}(x)$	$\frac{1}{1-x^{2}}$

Tables of derivatives (3)

$f(x)$	$f^{\prime}(x)$
$\csc (x)$	$-\csc x \cot x$
$\sec (x)$	$\sec x \tan x$
$\cot (x)$	$-1-\cot ^{2} x$
$\csc ^{-1}(x)$	$\frac{-1}{\|x\| \sqrt{x^{2}-1}}$
$\sec ^{-1}(x)$	$\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\cot ^{-1}(x)$	$\frac{-1}{1+x^{2}}$

