Differentiation

Young W Lim

Jun 25, 2024

æ

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Introduction to Matrix Algebra, Autar Kaw https://ma.mathforcollege.com

Background on Differentiation Tangent and Secant Lines

Background on Differentiation Tangent and Secant Lines

Secant Lines

- Let P and Q be two points on the curve of f(x)
 P (a, f(a)) and Q (a+h, f(a+h))
- \bullet the secant line is the straight line drawn through P and Q .
- the slope of the secant line

$$m_{secant} = \frac{f(a+h) - f(a)}{(a+h) - a}$$
$$= \frac{f(a+h) - f(a)}{h}$$

Tangent Lines

• as $h \rightarrow 0$, $\mathbf{Q} \rightarrow \mathbf{P}$

and the secant line \rightarrow the tangent line

• the slope of the tangent line

$$m_{tangent} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}$$
$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Derivative of a function

the derivative of a function f(x) at x = a

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

or

$$f'(a) = \lim_{h \to 0} \frac{f(x) - f(a)}{x - a}$$

Finding equations of a tangent line

One of the numerical methods used to solve a nonlinear equation is called the Newton- Raphson method.

based on the knowledge of finding the tangent line to a curve at a point.

Theorems of differentiations (1)

- If f(x) = k, where k is a constant, f'(x) = 0
- The derivative of $f(x) = x^n$, where $n \neq 0$ is $f'(x) = nx^{n-1}$
- The derivative of f(x) = kg(x), where k is a constant is f'(x) = kg'(x)
- The derivative of $f(x) = u(x) \pm v(x)$ is $f'(x) = u'(x) \pm v'(x)$

Theorems of differentiations (2)

• The derivative of $f(x) = u(x) \cdot v(x)$ is $f'(x) = \frac{d}{dx}u(x) \cdot v(x) + u(x) \cdot \frac{d}{dx}v(x)$

• The derivative of
$$f(x) = \frac{u(x)}{v(x)}$$
 is

$$f'(x) = \frac{\frac{d}{dx}u(x)\cdot v(x) - u(x)\cdot \frac{d}{dx}v(x)}{(v(x))^2}$$

• The derivative of
$$f(x) = u(v(x))$$
 is
 $f'(x) = \frac{d}{dx}u(v(x)) \cdot \frac{d}{dx}v(x)$

Implicit differentiation

• Sometimes, the function to be differentiated is not given explicitly as an expression of the independent variable.

• Find
$$\frac{dy}{dx}$$
 if $x^2 + y^2 = 2xy$
 $\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(2xy)$
 $2x + 2y\frac{dy}{dx} = 2y + 2x\frac{dy}{dx}$
 $(2y - 2x)\frac{dy}{dx} = 2y - 2x$
 $\frac{dy}{dx} = 1$

Finding maximum and minimum of a function (1)

- The knowledge of
 - the first derivative and the second derivative of a function is used to find the minimum and maximum of a function.
- Let f(x) be a function in domain D, then
 - f(a) is the maximum of the function if $f(a) \ge f(x)$ for all values of x in the domain D.
 - f(a) is the minimum of the function if $f(a) \le f(x)$ for all values of x in the domain D.
- The minimum and maximum of a function are also the critical values of a function.

Finding maximum and minimum of a function (2)

- An extreme value can occur in the interval [c,d] at end points x = c, x = d.
- a point in [c,d]
 - where f'(x) = 0.
 - where f'(x) does not exist.
- These critical points can be the local maximas and minimas of the function

æ

Tables of derivatives (1)

f(x)	f'(x)
$x^n, n \neq 0$	nx^{n-1}
$kx^n, n \neq 0$	knx ⁿ⁻¹
a ^x	$\ln(a)a^{x}$
$\ln(x)$	$\frac{1}{x}$
$\log_a^{-1}(x)$	$\frac{1}{x \ln(a)}$
e ^x	e ^x

Tables of derivatives (2)

f(x)	f'(x)
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1}(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$tan^{-1}(x)$	$\frac{1}{1+x^2}$

f(x)	f'(x)
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
tanh(x)	$1 - tanh^2(x)$
$\sinh^{-1}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$\cosh^{-1}(x)$	$\frac{-1}{\sqrt{x^2-1}}$
$tanh^{-1}(x)$	$\frac{1}{1-x^2}$

Tables of derivatives (3)

f(x)	f'(x)
$\csc(x)$	$-\csc x \cot x$
sec(x)	sec <i>x</i> tan <i>x</i>
$\cot(x)$	$-1 - \cot^2 x$
$\csc^{-1}(x)$	$\frac{=1}{ x \sqrt{x^2-1}}$
$\sec^{-1}(x)$	$\frac{1}{ x \sqrt{x^2-1}}$
$\cot^{-1}(x)$	$\frac{-1}{1+x^2}$

æ

Young W Lim Differentiation

æ