AstroWikipStar

The LaTex code that creates this quiz is released to the Public Domain Attribution for each question is documented in the Appendix

Saturday 3rd November, 2018

Latex markup at https://en.wikiversity.org/wiki/special:permalink/1863373

6

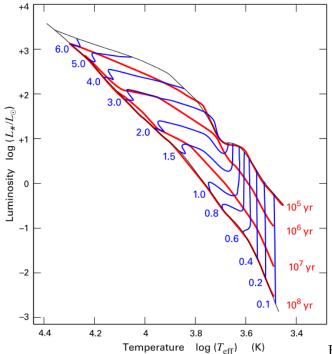
1 Quiz

 $\mathbf{2}$

2 Attribution

1 Quiz

5.


- 1. Why is a star made of plasma? 1
 - A. it is so hot that electrons are stripped away from the protons
 - B. the intense gravity liquefies the substance, just as red blood cells liquefy plasma in the body
 - C. the interstellar gas was mostly plasma
 - D. plasma is always present when there are strong magnetic fields
 - E. plasma is generic word for "important"
- 2. Premain sequence stars are often surrounded by a protoplanetary disk and powered mainly by 2
 - A. the fission of Carbon from Helium
 - B. the fusion of Helium to Carbon
 - C. the release of gravitational energy
 - D. collisions between protoplanets
 - E. chemical reactions

3. Stars that begin with more than 50 solar masses will typically lose _____ while on the main sequence. ³

A. 1% their mass

B. 50% their mass

- C. 10% of their magnetic field
- D. 10% their mass
- E. all of their magnetic field
- 4. The Hayashi and Henyey tracks refer to how T Tauri of different masses will move ⁴
 - A. through an HR diagram as they die
 - B. through a cluster as they die
 - C. through a cluster as they are born
 - D. Two of these are true
 - E. through an HR diagram as they are born

How do low-mass stars change as they are born?⁵

- A. Increasing temperature with no change in luminosity
- B. Increasing luminosity with no change in temperature
- C. Decreasing temperature and increasing luminosity
- D. Decreasing temperature with no change in luminosity

E. Decreasing luminosity with no change in temperature

- 6. When a star with more than 10 solar masses ceases fuse hydrogen to helium, it 6
 - A. it fuses helium to carbon to iron (and other elements), then continues to release more energy by fusing the iron to heavier elements such as uranium.
 - B. it fuses elements up to uranium, and continues to produce energy by the fission of uranium.

C. it fuses helium to carbon and other elements up to iron and then ceases to produce more energy

- D. it fuses helium to carbon and then ceases to produce more energy
- E. ceases to convert nuclear energy.
- 7. Many supernovae begin as a shock wave in the core that was caused by 7

A. electrons being driven into protons to form neutrons

- B. all of these processes contribute to the shock wave
- C. iron fusing into heavier elements such as uranium
- D. the conversion of carbon into diamonds,
- E. carbon and other elements fusing into iron
- 8. A dying star with more than 1.4 solar masses becomes a _____, and those with more than 5 solar masses becomes a _____ 8

A. neutron star....black hole

- B. white dwarf....black hole
- C. white dwarf....neutron star
- D. blue giant....red giant
- E. white dwarf...red dwarf
- 9. According to Wikipedia, a star with over 20 solar masses converts its Hyrogen to Helium in about 8 billion years, but the conversion of Oxygen to heavier elements take about _____ ⁹
 - A. 1 thousand years
 - B. 1 year
 - C. 1 billion years
 - D. 1 million years
 - E. 10 billion years
- 10. What is the difference between a constellation and an asterism? 10

A. constellations represent regions of the sky, like state boundaries on a map of the USA

- B. asterisms are smaller than constellations
- C. asterisms are larger than constellations
- D. none of these is correct
- E. constellations consist of never more than ten stars.
- 11. Stellar parallax is 11

A. None of these is correct.

B. Two of these is correct

- C. Triangulation to deduce the distance to nearby stars
- D. Using spectral lines to deduce the distance to nearby stars
- E. Using changes in the angular position of a star to deduce the starś distance
- 12. Giant molecular clouds with sufficient conditions to form a star cluster would have formed them long ago. Any stellar births in the past couple of billions years probably resulted from _____ between clouds. ¹²
 - A. None of these is correct.

B. collisions

- C. photon exchange
- D. ion exchange
- E. Two of these are correct
- 13. A starburst galaxy. ¹³
 - A. All of these are correct

B. Two of these are correct

- C. has only dead or dying stars
- D. is a region of active stellar birth
- E. usually is a result of collisions between galaxies
- 14. Which of the following expresses Jeanś criterion for the collapse of a giant molecular cloud of mass, M, radius, R, and temperature T, and pressure P? (Here β is a constant)¹⁴
 - A. $P > \beta MT$
 - B. $M > \beta RT$
 - C. R $>\beta MT$
 - D. $P > \beta MR$
 - E. $T > \beta RM$

15. Which of the following changes in the properties of a giant molecular cloud might cause it to collapse?¹⁵

- A. Decrease mass at fixed temperature and size
- B. Increase size at fixed pressure and mass
- C. Two of these are correct
- D. Increase temperature at fixed mass and size

E. Increase mass at fixed temperature and size

- 16. What happens if you increase the size of a giant molecular cloud while keeping temperature and mass fixed? $_{16}^{16}$
 - A. It is less likely to collapse because temperature can never be kept fixed
 - B. It is more likely to collapse because this will increase the temperature
 - C. It is more likely to collapse because larger things have more gravity
 - D. It is less likely to collapse spreading it out weakens the force of gravity
 - E. It is equally likely to collapse because size is not part of the Jean's criterion.
- 17. What is a Bok globule in the formation of stellar systems? 17

- A. A supernovae precurser that attracts more gas atoms
- B. A cluster of giant molecular clouds that coalesce to form a solar system
- C. A small planet that formed before any stars have formed
- D. A black hole that enters a cloud and triggers the collapse
- E. A small portion of a giant cloud that collapses

2 Attribution

Notes

¹ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
² placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
³ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁴ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁵ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁶ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁷ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁸ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
⁹ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹⁰ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹¹ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹² placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹³ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹⁴ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹⁵ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹⁶ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373
¹⁷ placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1863373