
Young Won Lim
12/11/17

Maybe Monad (3B)

Young Won Lim
12/11/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Maybe Monad (3B) 3 Young Won Lim
12/11/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Maybe Monad (3B) 4 Young Won Lim
12/11/17

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

Maybe Monad (3B) 5 Young Won Lim
12/11/17

Haskell does not have states

It’s type system is powerful enough to construct the stateful program flow

defining a Monad type in Haskell

defining a class in an object oriented language (C++, Java)

A Monad can do much more than a class:

A Monad is a type that can be used for

exception handling

constructing parallel program workflow

a parser generator

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

A Type Monad

Maybe Monad (3B) 6 Young Won Lim
12/11/17

types are the rules associated with the data,

not the actual data itself.

Object-Oriented Programming enable us

to use classes / interfaces

to define types,

the rules (methods) that interacts with the actual data.

to use templates(c++) or generics(java)

to define more abstracted rules that are more reusable

Monad is pretty much like generic class.

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Types: rules and data

Maybe Monad (3B) 7 Young Won Lim
12/11/17

A type is just a set of rules, or methods in Object-Oriented terms

A Monad is just yet another type, and the definition of this type is defined by four rules:

1) bind (>>=)

2) then (>>)

3) return

4) fail

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Rules

Maybe Monad (3B) 8 Young Won Lim
12/11/17

1. Exception Handling

2. Accumulate States

3. IO Monad

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Applications

Maybe Monad (3B) 9 Young Won Lim
12/11/17

Monad Class Function >>= & >>

>>= and >> : functions from the Monad class

Monad Sequencing Operator with value passing

>>= passes the result of the expression on the left

as an argument to the expression on the right,

while preserving the context the argument and function use

Monad Sequencing Operator

>> is used to order the evaluation of expressions within some context;

it makes evaluation of the right depend on the evaluation of the left

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Maybe Monad (3B) 10 Young Won Lim
12/11/17

Monad Definition

A monad is defined by

 a type constructor m;

 a function return;

 an operator (>>=) “bind"

The function and operator are methods of the Monad type class and have types

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3B) 11 Young Won Lim
12/11/17

Monad Laws

every instance of the Monad type class must obey the following three laws:

 m >>= return = m -- right unit

 return x >>= f = f x -- left unit

 (m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3B) 12 Young Won Lim
12/11/17

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 x >> y = x >>= _ -> y

 fail :: String -> m a

 fail msg = error msg

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3B) 13 Young Won Lim
12/11/17

Monad – Bind Operation

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b

>>=

func

>>=am

a

bm

bm

1st arg

2nd arg

Return
value

1st arg

1st arg

m aMonad

2nd arg (a -> m b) Function

return m bMonad

func

>>=am

a

bm

bm

Maybe Monad (3B) 14 Young Won Lim
12/11/17

Maybe Monad

the Maybe monad.

The type constructor is m = Maybe,

 return :: a -> Maybe a

 return x = Just x

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

m :: Maybe a (Maybe monad)

g :: (a -> Maybe b) (function)

m >>= g (a function with 2 args)

Maybe Monad (3B) 15 Young Won Lim
12/11/17

Monad Class Function >>= & >>

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

 Nothing

 Just x

g

>>=

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Maybe b g

>>=

 a

 Maybe a Maybe b

 Nothing

 g x

 x g x

m g x

Maybe Monad (3B) 16 Young Won Lim
12/11/17

Monad Class Function >>= & >>

Maybe is the monad

return brings a value into it

by wrapping it with Just

(>>=) takes

a value m :: Maybe a

a function g :: a -> Maybe b

if m is Nothing,

there is nothing to do and the result is Nothing.

Otherwise, in the Just x case,

the underlying value x is wrapped in Just

g is applied to x, to give a Maybe b result.

Note that this result may or may not be Nothing,

depending on what g does to x.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

 Maybe b g

>>=

 a

 Maybe a Maybe b

Maybe Monad (3B) 17 Young Won Lim
12/11/17

Maybe Monad Examples

a family database that provides two functions:

 father :: Person -> Maybe Person

 mother :: Person -> Maybe Person

Input the name of someone's father or mother.

If some relevant information is missing in the database

Maybe returns a Nothing value

to indicate that the lookup failed,

rather than crashing the program.

maternalGrandfather :: Person -> Maybe Person

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 Maybe Person mother Person

father Person Maybe Person

 Person Maybe Person

maternalGrandfather

Maybe Monad (3B) 18 Young Won Lim
12/11/17

Maybe Monad Examples

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
 case mother p of
 Nothing -> Nothing
 Just mom -> father mom

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mother Person

 Maybe Person father

>>= Maybe Person Maybe Person

 Person

Maybe Monad (3B) 19 Young Won Lim
12/11/17

Maybe Monad Examples

 bothGrandfathers :: Person -> Maybe (Person, Person)
 bothGrandfathers p =
 case father p of
 Nothing -> Nothing
 Just dad ->
 case father dad of
 Nothing -> Nothing
 Just gf1 -> -- found first grandfather
 case mother p of
 Nothing -> Nothing
 Just mom ->
 case father mom of
 Nothing -> Nothing
 Just gf2 -> -- found second grandfather
 Just (gf1, gf2)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3B) 20 Young Won Lim
12/11/17

Maybe Monad Examples

 bothGrandfathers p =
 father p >>=
 (\dad -> father dad >>=
 (\gf1 -> mother p >>= -- gf1 is only used in the final return
 (\mom -> father mom >>=
 (\gf2 -> return (gf1,gf2)))))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

dad p

gf1

dad

gf1

father

father

mother

mother

Maybe Monad (3B) 21 Young Won Lim
12/11/17

Maybe Monad Examples

data Maybe a = Just a
 | Nothing

a type definition: Maybe a

a parameter of a type variable a,

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Maybe Monad (3B) 22 Young Won Lim
12/11/17

Maybe Monad Examples

data Maybe a = Just a

 | Nothing

two constructors: Just a and Nothing

a value of Maybe a type must be constructed via either Just or Nothing

there are no other (non-error) possibilities.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 23 Young Won Lim
12/11/17

Maybe Monad Examples

data Maybe a = Just a

 | Nothing

Nothing has no parameter type,

names a constant value

that is a member of type Maybe a for all types a.

Just constructor has a type parameter,

acts like a function from type a to Maybe a,

i.e. it has the type a -> Maybe a

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 24 Young Won Lim
12/11/17

Maybe Monad Examples

the (data) constructors of a type build a value of that type;

when using that value,

pattern matching can be applied

● Unlike functions, constructors can be used in pattern binding expressions
● case analysis of values that belong to types with more than one constructor.
● need to provide a pattern for each constructor

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 25 Young Won Lim
12/11/17

Maybe Monad Examples

case maybeVal of

 Nothing -> "There is nothing!"

 Just val -> "There is a value, and it is " ++ (show val)

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

a pattern for each
constructor

Maybe Monad (3B) 26 Young Won Lim
12/11/17

Maybe

Maybe : Algebraic Data Type (ADT)

Widely used because it effectively extends a type Integer
into a new context in which it has an extra value (Nothing)

that represents a lack of value

check for that extra value before accessing the possible Integer

good for debugging

Many other languages have this sort of "no-value" value via NULL references.

The Haskel Maybe type handle this no-value more effectively.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 27 Young Won Lim
12/11/17

Maybe as a functor

Functor type class:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a has a useful instance of a functor type class

Functor provides fmap method

maps functions of the base type (such as Integer)

to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 28 Young Won Lim
12/11/17

Maybe as a functor

A function f transformed with fmap
cab work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 base type function lifted type function

 f :: Integer -> Integer fmap f :: Maybe Integer -> Maybe Integer

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Integer f Integer Maybe Integer fmap f Maybe Integer

Maybe Monad (3B) 29 Young Won Lim
12/11/17

Maybe as a functor

a Maybe Integer value: m_x

 fmap f m_x

In fact, you could apply a whole chain of
lifted Integer -> Integer functions to Maybe Integer values
and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 30 Young Won Lim
12/11/17

Maybe as a monad

the type signature IO a looks remarkably similar to Maybe a.
● IO doesn't expose its constructors
● only be "run" by the Haskell runtime system
● a Functor
● a Monad

a Monad is just a special kind of Functor with some extra features

value returning
Monads like IO map types to new types
that represent "computations that result in values"

lifting function
can lift functions into Monad types
via a very fmap-like function called liftM
that turns a regular function into a
"computation that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 31 Young Won Lim
12/11/17

Maybe as a monad

valueless return
Maybe is also a Monad
represents "computations that could fail to return a value"

no explicit check in each step
don’t have to check explicitly for errors after each step.

immediate abort
Because of the way the Monad instance is constructed,
a computation on Maybe values stops as soon as a Nothing is encountered,

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3B) 32 Young Won Lim
12/11/17

Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
 x <- [1..10]
 if odd x
 then [x*2]
 else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3B) 33 Young Won Lim
12/11/17

Monad – I/O Examples

do
 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3B) 34 Young Won Lim
12/11/17

Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
 char '"'
 x <- many (noneOf "\"")
 char '"'
 return (StringValue x)

parseNumber = do
 num <- many1 digit
 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3B) 35 Young Won Lim
12/11/17

Monad – Asynchronous Examples

let AsyncHttp(url:string) =
 async { let req = WebRequest.Create(url)
 let! rsp = req.GetResponseAsync()
 use stream = rsp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

Young Won Lim
12/11/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36

