
Young Won Lim
5/30/23

Function (1A)

Young Won Lim
5/30/23

 Copyright (c) 2023 - 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Function 3 Young Won Lim
5/30/23

Function (1)

We use functions to break up our code into small chunks.
These chunks are easier to read, understand and maintain.
If there are bugs, it’s easier to find bugs
in a small chunk than the entire program.
We can also re-use these chunks.

def greet_user(name):
 print(f”Hi {name}”)

greet_user(“John”)

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Function 4 Young Won Lim
5/30/23

Formatted string literals

The f means Formatted string literals and it's new in Python 3.6.

A formatted string literal or f-string is
a string literal that is prefixed with f or F.

These strings may contain replacement fields,
which are expressions delimited by curly braces {}.
While other string literals always have a constant value,
formatted strings are really expressions evaluated at run time.

 print(f”Hi {name}”)

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Function 5 Young Won Lim
5/30/23

Argument types

Parameters are placeholders for the data
we can pass to functions.

Arguments are the actual values we pass.

We have two types of arguments:

● positional arguments:
their position (order) matters

● keyword arguments:
position doesn’t matter
prefix them with the parameter name.

Two positional arguments
greet_user(“John”, “Smith”)

Keyword arguments
calculate_total(order=50, shipping=5, tax=0.1)

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Function 6 Young Won Lim
5/30/23

Function (3)

Our functions can return values.

If we don’t use the return statement,
by default, None is returned.

None is an object that represents
the absence of a value.

def square(number):
 return number * number

result = square(2)
print(result)

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Function 7 Young Won Lim
5/30/23

Function Arguments

A function can take arguments and return values:

the function say_hello
receives the argument “name” and
prints a greeting:

>>> def say_hello(name):
... print(f'Hello {name}')
...
>>> say_hello('Carlos')
Hello Carlos

>>> say_hello('Wanda')
Hello Wanda

>>> say_hello('Rose')
Hello Rose

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 8 Young Won Lim
5/30/23

Keyword Arguments

To improve code readability,
we should be as explicit as possible.

by using Keyword Arguments:

>>> def say_hi(name, greeting):
... print(f"{greeting} {name}")
...
>>> # without keyword arguments
>>> say_hi('John', 'Hello')
Hello John

>>> # with keyword arguments
>>> say_hi(name='Anna', greeting='Hi')
Hi Anna

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 9 Young Won Lim
5/30/23

Return Values

A return statement consists of

 The return keyword.

 The value or expression that the function should return.

>>> def sum_two_numbers(number_1, number_2):
... return number_1 + number_2
...
>>> result = sum_two_numbers(7, 8)
>>> print(result)
15

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 10 Young Won Lim
5/30/23

Local and Global Scope

Code in the global scope
cannot use any local variables.

a local scope
can access global variables.

Code in a function’s local scope
cannot use variables in any other local scope.

You can use the same name for different variables
if they are in different scopes.

That is, there can be a local variable named spam
and a global variable also named spam.

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 11 Young Won Lim
5/30/23

Function (8)

global_variable = 'I am available everywhere'

>>> def some_function():
... print(global_variable) # because is global
... local_variable = "only available within this function"
... print(local_variable)
...
>>> # the following code will throw error because
>>> # 'local_variable' only exists inside 'some_function'
>>> print(local_variable)
Traceback (most recent call last):
 File "<stdin>", line 10, in <module>
NameError: name 'local_variable' is not defined

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 12 Young Won Lim
5/30/23

Global statement

If you need to modify a global variable
from within a function,
use the global statement:

>>> def spam():
... global eggs
... eggs = 'spam'
...
>>> eggs = 'global'
>>> spam()
>>> print(eggs)

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 13 Young Won Lim
5/30/23

Scope rules

If a variable is being used in the global scope
(that is, outside all functions),
then it is always a global variable.

If there is a global statement
for that variable in a function,
it is a global variable.

Otherwise, if the variable is used
in an assignment statement in the function,
it is a local variable.

But if the variable is not used
in an assignment statement,
it is a global variable.

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 14 Young Won Lim
5/30/23

Lambda functions

In Python, a lambda function is
a single-line, anonymous function,
which can have any number of arguments,
but it can only have one expression.

From the Python 3 Tutorial

lambda is a minimal function definition
that can be used inside an expression.

Unlike FunctionDef, body holds a single node.

Single line expression

Lambda functions can only
evaluate an expression,
like a single line of code.

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 15 Young Won Lim
5/30/23

Lambda function examples

>>> def add(x, y):
... return x + y
...
>>> add(5, 3)
8

the equivalent lambda function:

>>> add = lambda x, y: x + y
>>> add(5, 3)
8

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 16 Young Won Lim
5/30/23

Lambda functions as lexical closures

Like regular nested functions, lambdas also work as lexical closures:

>>> def make_adder(n):
... return lambda x: x + n
...
>>> plus_3 = make_adder(3)
>>> plus_5 = make_adder(5)

>>> plus_3(4)
7
>>> plus_5(4)
9

https://www.pythoncheatsheet.org/cheatsheet/functions

Function 17 Young Won Lim
5/30/23

Arbitaray Arguments *args

If you do not know how many arguments
that will be passed into your function,
add a * before the parameter name
in the function definition.

This way the function will
receive a tuple of arguments, and
can access the items accordingly:

If the number of arguments is unknown,
add a * before the parameter name:

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

https://www.w3schools.com/python/python_functions.asp

Function 18 Young Won Lim
5/30/23

Arbitrary Keyword Arguments **kwargs

If you do not know how many keyword arguments
that will be passed into your function,
add two asterisk: ** before the parameter name
in the function definition.

This way the function will
receive a dictionary of arguments, and
can access the items accordingly:

If the number of keyword arguments is unknown,
add a double ** before the parameter name:

def my_function(**kid):
 print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

https://www.w3schools.com/python/python_functions.asp

Function 19 Young Won Lim
5/30/23

Default Parameter Value

If we call the function without argument,
it uses the default value:

def my_function(country = "Norway"):
 print("I am from " + country)

my_function("Sweden")
my_function("India")
my_function() my_function(“Norway”)
my_function("Brazil")

https://www.w3schools.com/python/python_functions.asp

Function 20 Young Won Lim
5/30/23

Passing a List as an Argument

You can send any data types of argument
to a function (string, number, list, dictionary etc.), and
it will be treated as the same data type inside the function.

if you send a List as an argument,
it will still be a List when it reaches the function:

def my_function(food):
 for x in food:
 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

https://www.w3schools.com/python/python_functions.asp

Function 21 Young Won Lim
5/30/23

The pass Statement

function definitions cannot be empty,
but if you for some reason have a function definition with no content,
put in the pass statement to avoid getting an error.

def myfunction():
 pass

https://www.w3schools.com/python/python_functions.asp

Function 22 Young Won Lim
5/30/23

Recursion (1)

Recursion is a common mathematical and programming concept.
It means that a function calls itself.
This has the benefit of meaning
that you can loop through data to reach a result.

very careful with recursion as it can be quite easy
to slip into writing a function which never terminates,
or one that uses excess amounts of memory or processor power.

However, when written correctly recursion
can be a very efficient and
mathematically-elegant approach to programming.

https://www.w3schools.com/python/python_functions.asp

Function 23 Young Won Lim
5/30/23

Recursion (2)

In this example, tri_recursion() is a function
that we have defined to call itself ("recurse").

We use the k variable as the data,
which decrements (-1) every time we recurse.

The recursion ends
when the condition is not greater than 0 (i.e. when it is 0).

def tri_recursion(k):
 if (k > 0):
 result = k + tri_recursion(k - 1)
 print(result)
 else:
 result = 0
 return result

print("\n\nRecursion Example Results")
tri_recursion(6)

https://www.w3schools.com/python/python_functions.asp

Function 24 Young Won Lim
5/30/23

Recursion (3)

tri_recursion(6)
 6 + tri_recursion(5)
 5 + tri_recursion(4)
 4 + tri_recursion(3)
 3 + tri_recursion(2)
 2 + tri_recursion(1)
 1 + tri_recursion(0)

 return 0
 return 1

 return 3
 return 6

 return 10
return 15

return 21

https://www.w3schools.com/python/python_functions.asp

Function 25 Young Won Lim
5/30/23

Lexical Closures

def makeAdder(addend):
def adder(augend):

return augend + addend
return adder

add23 = makeAdder(23)
add42 = makeAdder(42)

print add23(100),add42(100),add23(add42(100))
123 142 165

https://www.w3schools.com/python/python_functions.asp

Young Won Lim
5/30/23

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

