Monad P2 : State Transformer Basics (1A)

Copyright (c) 2016-2019 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

A State Transformer

A State Transformer ST Example

in https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html
a generic version of the State monad in Control.Monad.State.Lazy
a good example to learn State monad and general monads
do not be confused with monad transformers, StateT
and Control.Monad.ST (with reference variable STRef)

The ST monad in this example is similar to StateT monad
but is very different from the ST monad in Control.Monad.ST

State in Haskell, J. Launchbury, S. Pe Jones, 2016
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A state transformer - a pure function

A state transformer of type (ST s a) is a computation which transforms a state indexed by type s, and delivers a value of type a .

You can think of it as a pure function,
taking a state as its argument, and delivering a state and a value as its result.

A state transformer : a first-class value

From a semantic point of view, this is a purely-functional account of state.
being a pure function,
a state transformer is a first-class value:
it can be passed to a function,
returned as a result,
stored in a data structure,
duplicated freely, and so on.

A state transformer - a stateful computation

we take the term state transformer to be synonymous with stateful computation:
the computation is seen
as transforming one state into another.

A State Transformer - a functional type and a tuple

A state transformer can have
other inputs besides the state;
if so, it will have a functional type.

It can also have many results,
by returning them in a tuple.
a state transformer with two inputs of type Int ,
and two results of type Int and Bool

Int -> Int -> ST s (Int,Bool)
functional type

A state transformer - returnST

The simplest state transformer, returnST, simply delivers a value without a affecting the state at all:

```
returnST :: a -> ST s a
```


A Monad Transformer

Monad Transformers:
special types that allow us to roll two monads into a single one that shares the behavior of both.

MaybeT define a monad transformer that gives the IO monad some characteristics of the Maybe monad

Precursor monad refers to
the non-transformer monad (e.g. Maybe in MaybeT)
on which a transformer is based

Base monad refers to the other monad
(e.g. IO in MaybeT IO) on which the transformer is applied.

IO (Maybe String)
MaybeT IO String
4

Some Monad Transformer Examples

Precursor	Transformer	Original Type by precursor	Combined Type by transformer
Writer	WriterT	(a, w)	m (a, w)
Reader	ReaderT	$r->a$	$r->m$ a
State	StateT	$s->(a, s)$	$s->m(a, s)$
Cont	ContT	$(a->r)->r$	$(a->m$ r) -> m r

IO (Maybe String)
MaybeT IO String

A State Transformer (ST)

```
type State =
type ST = State -> State -- a function type
```

about functions that manipulate some kind of state
this state can be represented by a type (State)
a state transformer ST
a state manipulating function
takes the current state as its argument
produces a modified state as its result
which reflects any side effects performed by the function:
a state tansformer ST not Monad Transformer

A Generalized State Transformer

```
type State = ..
type ST = State -> State
type ST a = State -> (a, State)
```

generalized state transformers
return a result value in addition to the modified state
specify the result type as a parameter of the ST type

Types and Values

type ST a = State -> (a, State)

Types

```
State -> (a, State)
```

Values

$$
\mathrm{s} \quad\left(\mathrm{x}, \mathrm{~s}^{\prime}\right)
$$

A function is also a value func :: ST a
func :: State -> (a, State)

$x::$ a	the result value
$s:: ~ S t a t e$	input state value
$s^{\prime}::$ State	output state value

input state value output state value

func and func s type signatures

```
type ST a = State -> (a, State)
```

func :: ST a
func $s \Rightarrow\left(x, s^{\prime}\right)$
application of
input s gives
output (x, s')

```
func :: State -> (a, State)
```

$s::$ State
func $s::(a, S t a t e)$

```
func :: ST a
x :: a
s :: State
s' :: State
func :: ST a
func :: State -> (a, State)
func s m (x, s')
func s :: (a, State)
```


Function input and output types

st :: ST a
$\mathrm{s}::$ State
(x, s') :: (a, State)

```
type ST a = State -> (a, State)
```

type ST a = State -> (a, State)
st s (x, s')

```
    st s (x, s')
```

generalized state transformer

$$
\begin{aligned}
& \text { st :: ST a } \\
& \text { s :: State } \\
& \text { st s :: (a, State) }
\end{aligned}
$$

application of
input s gives output (x, s')
(a_result, updated_state) : : (a, State)

st $\mathrm{s} \Rightarrow\left(\mathrm{x}, \mathrm{s}^{\prime}\right)$

```
st s :: ST a state st s :: (a, State)
```

```
st s :: ST a state st s :: (a, State)
```

st $s \Rightarrow\left(x, s^{\prime}\right) \quad\left(x, s^{\prime}\right)::$ ST a State $\quad\left(x, s^{\prime}\right)::(a$, State $)$

Taking an additional argument

type ST Int = State -> (Int, State)

How to convert ST Int into a state transformer that takes a character and returns an integer ?
further generalization of the state transformer ST which takes an argument of type b
type ST2 ab
type ST3 b a
type ST2 absb -> State -> (a, State)
type ST3 ba=b -> State -> (a, State)

A Curried Generalized State Transformer

```
type ST a = State -> (a, State) generalized ST
type ST3 b a = b -> State -> (a, State) further generalized ST
    b -> ST a = b -> State -> (a, State) think currying
```

a state transformer
that takes a character
and returns an integer
would have type Char -> ST Int
Char -> State -> (Int, State)
curried form

* Curried Function

$$
\begin{array}{ll}
f x y & f:: a->b->c \\
(f x) y & f:: a->(b->c)
\end{array}
$$

f \mathbf{x} returns a function of type \mathbf{b}-> c
g y

ST Monad Instance - return method

instance Monad ST where

```
-- return :: a -> ST a
return \(\mathrm{x}=\) Is -> (x,s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = ls -> let (x,s') = st s in f x s'
```

ST : an instance of a monadic type
return converts a value (\mathbf{x})
into a state transformer (s ->(x,s))
that simply returns that value (\mathbf{x})
without modifying the state ($s \rightarrow s$)

```
type ST ....
instances (X)
```

data ST ... instances (O)
a function is a value

return x returns a value of ST a type
to execute this function an argument to s is necessary

ST Monad Instance - >>= method

instance Monad ST where
-- return :: a -> ST a
return $x=$ Is -> (x, s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = ls -> let ($\mathrm{x}, \mathrm{s}^{\prime}$) = st s in $\mathrm{x} \mathrm{s}^{\prime}$

$$
\begin{array}{r}
\text { st >>= } \mathrm{f}=\mathrm{ls}->\mathrm{fx} \mathrm{~s}^{\prime} \\
\text { where }\left(\mathrm{x}, \mathrm{~s}^{\prime}\right)=\mathrm{st} \mathrm{~s} \\
\text { st >> } \mathrm{f}=\text { ls }->\left(\mathrm{y}, \mathrm{~s}^{\prime}\right) \\
\text { where }\left(\mathrm{x}, \mathrm{~s}^{\prime}\right)=\text { st s } \\
\left(\mathrm{y}, \mathrm{~s}^{\prime}\right)=\mathrm{f} \times \mathrm{s}^{\prime}
\end{array}
$$

sequencing state transformers:

- the $1^{\text {st }}$ state transformer st
- the $2^{\text {nd }}$ state transformer ($f \mathrm{x}$)
st >>= f
st $s \Rightarrow\left(x, s^{\prime}\right) \quad$ (1) input monad (update + compute)
$f x s^{\prime} \Rightarrow\left(y, s^{\prime}\right) \quad$ (2) return monad (result argument)

1) apply st to an initial state s, to get (x, s^{\prime})
2) apply the function f to the x, the value of result
3) apply ($f x$) to the updated state s'

The type signatures of the sequencer >>=

instance Monad ST where
-- return :: a -> ST a
return $x=1 s->(x, s)$
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = ls -> let (x,s') =st sin f x s'

```
st :: ST a
\(f::\) a -> ST b
(>>=) :: ST a -> (a -> ST b) -> ST b
```

st :: State -> (a, State)
f :: a -> State -> (b, State)
(>>=) :: State -> (a, State) $->(\mathrm{a}->$ State $->(\mathrm{b}$, State $))$ $->$ State $->(\mathrm{b}$, State $)$
st :: ST a

f $\mathbf{x}::$ ST a

type ST a = State -> (a, State)

The type of st s and f x s’

```
st :: State -> (a, State)
f :: a -> State -> (b, State)
(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)
st :: State -> (a, State)
st s :: (a, State)
st \(\mathrm{s} \Rightarrow\left(\mathrm{x}, \mathrm{s}^{\prime}\right) \quad \mathrm{s}->\left(\mathrm{x}, \mathrm{s}^{\prime}\right)\)
\(\mathrm{fxs} \mathrm{s}^{\prime} \Rightarrow\left(\mathrm{y}, \mathrm{s}^{\prime}\right) \quad \mathrm{s}^{\prime}->\left(\mathrm{y}, \mathrm{s}^{\prime}\right)\)
x s' :: (b, State)
```


ST Monad - (>>=) operator type diagram

ST Monad - (>>=) execution of st \& fx

ST Monad - return and >>=

instance Monad ST where
-- return :: a -> ST a
return $\mathbf{x}=$ Is -> (\mathbf{x}, s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = ls -> let $\left(x, s^{\prime}\right)=$ st s in f s $^{\prime}$
a function is a value

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List, Maybe, and ST Monads

```
instance Monad [] where
-- return :: a -> [a]
return x = [x]
-- (>>=) : [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)
```

instance Monad Maybe where
-- return:: a->Maybe a
return $\mathrm{x}=$ Just x
-- (>>=) ::
Maybe a -> (a -> Maybe b) -> M aybe b
Nothing >>=_ = Nothing
(Just x) $\gg=\mathbf{f}=\mathbf{f} \mathrm{x}$

```
instance Monad ST where
```

instance Monad ST where
-- return :: a -> ST a
-- return :: a -> ST a
return x = \s -> (x,s)
return x = \s -> (x,s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = \s -> let (x, s') = st s in f x s'

```
    st >>= f = \s -> let (x, s') = st s in f x s'
```


Dummy Constructor DC

type ST $\mathrm{a}=$ State $->(\mathrm{a}$, State $)$	instances, constructor (X)
data ST0 $\mathrm{a}=\mathrm{DC}($ State $->(\mathrm{a}$, State $))$	instances, constructor (O)

instance Monad ST where ...
instance Monad STO where ...
to make instances
use the data mechanism instead of type with a dummy constructor (DC)
pattern matching purpose - any name is ok data ST0 a = ST0 (State -> (a, State))

STO instead of DC - widely used convention

The application function apply0

```
data ST0 a = DC (State -> (a, State))
to remove (unwrap) the dummy constructor,
the application function apply0 is defined
```

```
apply0 :: ST0 a -> State -> (a, State)
```

apply0 :: ST0 a -> State -> (a, State)
input output

```
    input output
```

pattern matching is used
an accessor function
like a runState function

apply0 and DC

```
data STO a = DC (State -> (a, State))
apply0 :: ST0 a -> State -> (a, State) unwrapping function
    input output
DC :: (State -> (a, State)) -> ST0 a
    input output
```

unwrapping function
wrapping function
an accessor function
like a runState function

Unwrapping Data Constructor using (DC g)

```
data STO a = DC (State -> (a, State)) Data Constructor
apply0 :: ST0 a -> State -> (a, State) Application Function
apply0 (DC g) :: State -> (b, State) pattern matching
apply0 (DC g) = g
apply0 (DC g) s = g s

Data Constructor

Application Function
pattern matching
apply0 (DC g) = g
apply0 (DC g) s=g s
```

s :: State

```
s :: State
g :: State -> (a, State)
g :: State -> (a, State)
g s :: (a, State)
```

```
g s :: (a, State)
```

```
(.) :: (b->c) -> (a->b) -> (a->c)
f. \(g=1 x->f(g x)\)
f. \(g x=f(g x)\)
(DC. f) \(x=D C(f x)\)
not a composite function
but a function argument
(DC g) :: DC (State -> (b, State))
(DC g) :: ST0 a

\section*{ST a and STO a}

\section*{No data constructor}
```

type ST a = State -> (a, State)
st :: State -> (a, State)
st = \s -> (s, s+1)
st s :: (a, State)
f :: a -> ST a
f x :: State -> (b, State)
f x s :: (b, State)

```

\section*{With a data constructor : DC}
```

data ST0 a = DC (State -> (a, State))
st0 :: DC (State -> (a, State))
st0 = DC (\s -> (s, s+1))
apply0 st0 :: State -> (a, State)
apply0 st0 s :: (a, State)
f :: a -> STO a
f x :: STO a
f x :: DC (State -> (a, State))
apply0 f x :: State -> (a, State)
apply0 f x s :: (b, State)

```

\section*{ST a and ST0 a Examples}
```

t.hs
type ST a = Int -> (a, Int)
data STO a = DC (Int -> (a, Int))
st :: ST Int
st = (ls -> (s, s+1))
st0 :: STO Int
st0 = DC (ls -> (s, s+1))
apply0 :: STO a -> Int -> (a, Int)
apply0 (DC f) = f

```
```

:load t.hs

```
:load t.hs
*Main> :t st
*Main> :t st
st :: ST Int
st :: ST Int
*Main> :t st0
*Main> :t st0
st0 :: STO Int
st0 :: STO Int
*Main> :t st 3
*Main> :t st 3
st 3 :: (Int, Int)
st 3 :: (Int, Int)
*Main> :t apply0 st0 3
*Main> :t apply0 st0 3
apply0 st0 3 :: (Int, Int)
apply0 st0 3 :: (Int, Int)
*Main>
```

*Main>

```

\section*{apply0 st0 s and apply0 \(\mathrm{f} \times \mathrm{s}^{\prime}\)}
```

data ST0 a = DC (State -> (a, State))
apply0 :: ST0 a -> State -> (a, State)
apply0 (DC f) x = fx

apply0 $s t 0 \mathrm{~s}$	$=\left(\mathrm{x}, \mathrm{s}^{\prime}\right)$	$\mathrm{s} \rightarrow\left(\mathrm{x}, \mathrm{s}^{\prime}\right)$
apply0 $\mathrm{f} x \mathrm{~s}^{\prime}$	$=\left(\mathrm{y}, \mathrm{s}^{\prime}\right)$	$\mathrm{s}^{\prime} \rightarrow\left(\mathrm{y}, \mathrm{s}^{\prime}\right)$

```

```

 apply0 st0 s }=(\textrm{x},\mp@subsup{\textrm{s}}{}{\prime})\quad\mathrm{ apply0 f x s' }=(\textrm{y},\textrm{s}
    ```

\section*{st0 >> f using apply0}
```

(1)
st >>= f = ls -> let (x,s') = st s in f x s'

```
(1)
st0 >>= f = DC ( Is -> let (x, s') = apply0 st s in apply0 f x s' )
```

type ST a = State -> (a, State)

```
data STO a = DC (State -> (a, State))
binding
variables
\begin{tabular}{ll} 
st s & \(\Rightarrow\left(x, s^{\prime}\right)\) \\
\(f x s^{\prime}\) & \(\Rightarrow\left(y, s^{\prime}\right)\)
\end{tabular}\(\quad s \rightarrow\left(x, s^{\prime}\right)\)
```

apply0 st0 s m (x,s')
s -> (x,s')
apply0fxs m(y,s') s'

```

\section*{ST0 and ST Monad Instance}
```

instance Monad ST0 where
-- return :: a -> STO a
return x = DC (ls -> (x,s))
-- (>>=) :: STO a -> (a -> STO b) -> STO b
st >>= f = DC(ls -> let (x, s') = apply0 st s in apply0 (f x) s')

```
```

instance Monad ST where
-- return :: a -> ST a
return x = \s -> (x,s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = ls -> let (x,s') = st s in f x s'

```
the runtime overhead of manipulating the dummy constructor DC can be eliminated by defining STO using the newtype mechanism
efficiency - enable pointers
```

data
ST0 a = DC (State -> (a, State))
newtype ST0 a = DC (State -> (a, State))

```

\section*{A value of type ST0 a}
a value of type ST a (or ST0 a) is simply an action that returns an a value.
(like state processor function of State Monad)

action

\section*{ST a}
function is a value
State -> (a, State)
function is executable
- taking the inputs
- giving its output
- taking s giving ( \(x, s^{\prime}\) )
- taking s' giving (y, s')

\section*{Executing a value of type ST0 a}
the apply0 allows us
to execute an action from some initial state.
(like runState accessor function of State Monad)

apply0 function input \(\longrightarrow\) output
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

\section*{Sequencing Combinator (>>)}

The sequencing combinators ( \(\gg\) ) allow us
to combine simple actions to get bigger actions,
\[
\begin{aligned}
& \text { (>>) :: Monad } \mathrm{m}=>\mathrm{m} \mathbf{a}->\mathrm{m} \mathbf{b}->\mathrm{m} \text { b; } \\
& (\gg=):: \text { Monad } \mathrm{m}=>\mathrm{m} \text { a }->(\mathrm{a}->\mathrm{m} \mathrm{~b})->\mathrm{m} \text {; }
\end{aligned}
\]
monad returning function
a1 >> a2 takes the actions a1 and a2 and returns the mega action which is
a1-then-a2-returning-the-value-returned-by-a2.

\section*{Sequencer (>>=) and return}
the >>= sequencer is kind of like >>
(>>=): : Monad m => ma-> (a -> mb) -> mb;
only it allows you to "remember" intermediate values
that may have been returned.
return :: a -> ST0 a

takes a value \(\mathbf{x}\) and yields an action
that doesn't actually change the state,
but just returns the same value \(\mathbf{x}\)
remember x
intermediate
return
action
the same state
a function is a value

\section*{Do Notation Example}
```

pairs :: [a] -> [b] -> [(a,b)]
do method
pairs xs ys = do x <- xs
y<- ys
return (x, y)

```
this function returns all possible ways
of pairing elements from two lists
each possible value \(\times\) from the list \(\mathbf{x s}\)
each possible value y from the list ys
return the pair ( \(\mathrm{x}, \mathrm{y}\) ).
\[
\begin{aligned}
& x<-\mathbf{x s} \\
& y<-\mathbf{y s}
\end{aligned}
\]

\section*{Comprehension Notation Example}
```

pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = do x<- xs
y<- ys
return (x, y)
pairs xs ys $=[(x, y) \mid x<-x s, y<-y s] \quad$ comprehension notation
In fact, there is a formal connection
between the do notation and
the comprehension notation.
simply different shorthands

```


Generators
for repeated use of the >>= operator for lists.

\section*{Counter Example (1)}
the state processing function can be defined
using the notion of a state transformer,
in which the internal state is simply the next fresh integer
type State = Int
fresh :: STO Int
fresh = DC (ln -> (n, n+1))
return next state

\section*{Counter Example (2)}
```

type State $=$ Int
fresh :: STO Int
fresh = DC (ln -> (n, n+1))

```
In order to generate a fresh integer,
we define a special state transformer
that simply returns the current state as its result,
and the next integer as the new state:

Note that fresh is a state transformer
(where the State is itself just Int),
that is an action that happens to return integer values.

\section*{Executing wtf1 (1)}
```

type State $=$ Int
fresh :: STO Int
fresh = DC (ln -> (n, n+1))

```
\[
\begin{aligned}
\text { wtf1 }= & D C(\ln ->(n, n+1)) \gg \\
& D C(\ln ->(n, n+1)) \gg \\
& D C((\mathrm{n}->(n, n+1)) \gg \\
& D C(\ln ->(n, n+1))
\end{aligned}
\]
```

```
wtf1 = fresh >>
```

wtf1 = fresh >>
fresh >>
fresh >>
fresh >>
fresh >>
fresh

```
    fresh
```

```
apply0 wtf1 = (\n -> (n, n+1)) >>
                                    (n n>> (n, n+1)) >>
    (ln -> (n, n+1)) >>
    (\n -> (n, n+1))
```

ghci> apply0 wtf1 0

Executing wtf1 (2) - executing a fresh

```
data ST0 a = DC (State -> (a, State))
data ST0 a = DC (Int -> (a, Int))
data STO Int = DC (Int -> (Int, Int))
apply0 :: ST0 a -> State -> (a, State)
apply0 :: ST0 a -> Int -> (a, Int)
apply0 &ST0 Int > Int >
apply0 fresh 0- 0, 1)
apply0 fresh 0}\Longrightarrow(0,1
```

```
fresh :: STO Int
```

fresh :: STO Int
fresh = DC (ln -> (n, n+1))
fresh = DC (ln -> (n, n+1))
apply0 st s = (x,s') s -> (x,s')
apply0 st s = (x,s') s -> (x,s')
apply0 fx s=(y,s') s'->(y,s')

```
apply0 fx s=(y,s') s'->(y,s')
```

data ST0 a = DC ($\operatorname{lnt}->(\mathrm{a}, \mathrm{Int})$)
apply0 :: ST0 a -> Int -> (a, Int)

Executing wtf1 (3) - result is not used, state is updated

```
* Not used result
wtf1 0= DC (0 -> (0,1)) >>
     V Not used result
DC (1 -> (1, 2)) >>
    v Not used result
DC (2 -> (2, 3)) >>
    v Not used result
DC (3 -> (3, 4))
internal state s
external output x
```

wtf1 $0=$ DC $(0->(0,1)) \gg$
DC $(1->(1,2)) \gg$
DC (2 -> (2, 3)) >>
DC (3 -> (3, 4))

```
apply0 wtf1 0 =
(0 -> (0, 1)) >>
(1 -> (1, 2)) >>
(2 -> (2, 3)) >>
(3 -> (3, 4))
```


Executing wtf1 (4) - input parameter is updated

| apply0 wtf1 0 | Not used |
| :---: | :---: |
| apply0 (fresh >> (fresh >> fresh >> fresh) n | $\Rightarrow(0,1)$ |
| $\text { apply0 }(\quad \underline{\text { fresh }} \gg(\text { fresh } \gg \text { fresh })) n$ | $\Rightarrow(1,2)$ |
| apply0 (fresh $\gg($ fresh) n | $\Rightarrow \quad(2,3)$ |
| applyo (fresh) | $\rightarrow(3,4)$ |

$$
\begin{aligned}
& \begin{array}{l}
n=0 \\
n=1 \\
n=2 \\
n=3
\end{array} \Rightarrow n=1 \\
& \\
& \\
& \begin{array}{l}
\text { wtf1 }=\text { fresh } \gg \\
\text { fresh } \gg \\
\text { fresh } \ggg \\
\text { fresh }
\end{array}
\end{aligned}
$$

Executing wtf1 (5) - equivalent expressions

```
type State = Int
fresh :: STO Int
fresh = DC (\n -> (n+0, n+1))
fresh >> fresh = DC (ln -> (n+1, n+2))
fresh >> fresh >> fresh = DC (ln -> (n+2, n+3))
fresh >> fresh >> fresh >> fresh = DC (ln -> (n+3, n+4))
wtf1 = fresh >> wwtf1 = DC (\n -> (n+3, n+4))
wtf1 = fresh >> wtf1 = DC (\n -> (n+3,n+4))
wtf1 = fresh >> wwtf1 = DC (\n -> (n+3, n+4))
wtf1 = fresh >> wwtf1 = DC (\n -> (n+3, n+4))
wtf1 = fresh >> wwtf1 = DC (\n -> (n+3, n+4))
\[
=\mathrm{DC}(\ln ->(\mathrm{n}+0, \mathrm{n}+1))
\]
```

wtf1 $=\operatorname{DC}(\ln ->(n, n+1)) \gg$
DC $(\ln ->(n, n+1)) \gg$
DC $(\ln ->(n, n+1)) \gg$
DC (ln -> (n, n+1))

Executing wtf2

*Main> apply0 wtf2 0
$([0,1], 4)$

```
wtf2 = fresh >>= \n1 ->
    fresh >>= \n2 ->
    fresh >>
    fresh >>
    return [n1, n2]
- f1: monad returning function
* f2: monad returning function
wtf2 = fresh >>=
    ( \n1 -> fresh >>>=
    (ln2 -> fresh >> fresh >> return [n1, n2]) )
\(\mathrm{n} 1=0 \quad\) intermediate result
n2 = \(1 \quad\) intermediate result
- f1: monad returning function
- 12 : monad returning function
wtf2 \(=\) fresh \(\gg=\) -
( \(\ln 2 \rightarrow\) fresh \(\gg\) fresh \(\gg\) return [n1, n2]) )
```

apply0 wtf2 $0=$

| $(0->(0,1)) \gg=\ln 1->$ | $n=1, n 1=0$ |
| :--- | :--- |
| $(1->(1,2)) \gg=\ln 2->$ | $n=2, n 2=1$ |
| $(2->(2,3)) \gg$ | $n=3$ |
| $(3->(3,4)) \gg$ | $n=4$ |
| return $[n 1, n 2]$ | $([0,1], 4)$ |

Executing wtf2‘

```
wtf2' = do { n1 <- fresh; n1 = 0
        n2 <- fresh;
                            n2 = 1
        fresh;
        fresh;
        return [n1, n2];
        }
    do { ; ; } semicolon necessary
```

*Main> apply0 wtf2' 0
([0,1],4)

$$
\begin{aligned}
\text { wtf2 }= & \text { fresh } \gg=\ln 1-> \\
& \text { fresh >>= } \ln 2-> \\
& \text { fresh } \gg \\
& \text { fresh >> } \\
& \text { return [n1, n2] }
\end{aligned}
$$

Executing wtf3

```
```

wtf3 = do n1 <- fresh

```
```

wtf3 = do n1 <- fresh
n1=0
n1=0
fresh
fresh
fresh
fresh
fresh
fresh
return n1
return n1
3 (0,4) instead of (3,4)

```
```

 3 (0,4) instead of (3,4)
    ```
```

*Main> apply0 wtf3 0
$(0,4)$
(0,4)

apply0 wtf3 $0=$	
$(0->(0,1)) \gg=\ln 1->$	$n=1, n 1=0$
$(1->(1,2)) \gg=\ln 2->$	$n=2$
$(2->(2,3)) \gg$	$n=3$
$(3->(3,4)) \gg$	$n=4$
return $[n 1, n 2]$	$(0,4)$

Executing wtf4

```
wtf4 = fresh >>= \n1 -> n1 = 0
    fresh >>= \n2 -> n2 = 1
    fresh >>= \n3 -> n3 = 2
    fresh >>
return (n1+n2+n3)
```

*Main> apply0 wtf4 0
$(3,4)$

apply0 wtf4 $0=$	
$(0->(0,1)) \gg=\ln 1->$	$n=1, n 1=0$
$(1->(1,2)) \gg=\ln 2->$	$n=2, n 2=1$
$(2->(2,3)) \gg=\ln 3->$	$n=2, n 3=2$
$(3->(3,4)) \gg$	$n=4$
return $(n 1+n 2+3)$	$(0+1+2,4)$

Make Functor and Applicative Instances

```
import Control.Applicative
import Control.Monad (liftM, ap)
instance Functor STO where
    fmap = liftM
instance Applicative STO where
    pure = return
    (<*>) = ap
```

```
newtype ST0 a = DC (Int -> (a, Int))
instance Monad ST0 where
    return x = DC(ls -> (x,s))
    st >>= f = DC( ls -> let (x, s') = apply0 st s
        in apply0 (f x) s' )
```


Example Code Listing

```
apply0 :: ST0 a -> Int -> (a, Int)
apply0 (DC f) = f
fresh :: STO Int
fresh = DC (ln -> (n, n+1))
wtf1 = fresh >>
    fresh >>
    fresh >>
    fresh
wtf2 = fresh >>= \n1 ->
    fresh >>= \n2 ->
    fresh >>
    fresh >>
    return [n1, n2]
```

```
wtf2' = do { n1 <- fresh ;
    n2 <- fresh;
    fresh;
        fresh;
        return [n1, n2] ;
    }
wtf3 = do n1 <- fresh
    fresh
    fresh
    fresh
    return n1
wtf4 = fresh >>= \n1 ->
    fresh >>= \n2 ->
    fresh >>= \n3 ->
    fresh (n1+n2+n3)
```


Results

*Main> :load st.hs
[1 of 1] Compiling Main (st.hs, interpreted)
Ok, modules loaded: Main.
*Main> apply0 (fresh) 0
(0,1)
*Main> apply0 (fresh >> fresh) 0
$(1,2)$
*Main> apply0 (fresh \gg fresh \gg fresh) 0
$(2,3)$
*Main> apply0 (fresh \gg fresh \gg fresh \gg fresh) 0
$(3,4)$
*Main> apply0 wtf1 0
$(3,4)$
*Main> apply0 wtf2 0
([0,1],4)
*Main> apply0 wtf2' 0
([0,1],4)
*Main> apply0 wtf3 0
$(0,4)$
*Main> apply0 wtf4 0
$(3,4)$

Transformer Stacks

making a double, triple, quadruple, ... monad
by wrapping around existing monads
that provide wanted functionality.

You have an innermost monad (usually Identity or IO
but you can use any monad). You then wrap monad transformers around this monad to make bigger, better monads.

$\mathbf{a} \Rightarrow \mathrm{Ma} \Rightarrow \mathrm{NMa} \Rightarrow \mathrm{ONMa}$

To do stuff in an inner monad \rightarrow cumbersome \rightarrow monad transformers
lift \$ lift \$ lift \$ foo
https://wiki.haskell.org/Monad_Transformers_Explained

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

