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Energy and average power in time domain
power spectral density for continuous time signals

Energy, Average Power – deterministic, time domain

a deterministic signal x(t)

xT (t) =

{
x(t) −T < t < T
0 otherwise

the energy

E (T ) =
∫ +T

−T
x2(t)dt =

∫ +∞

−∞

x2T (t)dt

the average power

P(T ) =
1
2T

∫ +T

−T
x2(t)dt =

1
2T

∫ +∞

−∞

x2T (t)dt
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Fourier transform
power spectral density for continuous time signals

Fourier Transform Pair x(t)⇐⇒ X (ω)

Fourier transform

X (ω) =

∞∫
−∞

x(t)e−jωtdt

a deterministic signal x(t)

x(t) =
1
2π

∞∫
−∞

x(ω)e jωtdω
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Fourier transform of xT (t)
for continuous time signals

bounded duration, bounded variation
for a finite T , xT (t) is assumed to have bounded variation∫ +T

−T
|x(t)|dt < ∞

the Fourier transform of xT (t)

XT (ω) =
∫ +∞

−∞

xT (t)e−jωtdt

=
∫ +T

−T
x(t)e−jωtdt
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Fourier transforms of xT (t) and XT (t)
power spectral density for continuous time signals

deterministic XT (ω) v.s. random XT (ω)

a deterministic sample signal xT (t)

xT (t)⇐⇒ XT (ω)

a random process signal XT (t)

XT (t)⇐⇒ XT (ω)
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Parseval’s theorem (I)
power spectral density for continuous time signals

for a deterministic xT (t)

a deterministic sample signal xT (t)∫ +∞

−∞

xT (τ)x∗T (τ)dτ =
1
2π

∫ +∞

−∞

XT (ω)X ∗T (ω)dω

∫ +∞

−∞

|xT (τ)|2 dτ =
1
2π

∫ +∞

−∞

|XT (ω)|2 dω
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Parseval’s theorem (II)
power spectral density for continuous time signals

for a deterministic xT (t) v.s. a random XT (t)

a deterministic signal xT (t)⇐⇒ XT (ω)∫ +∞

−∞

|xT (t)|2 dt =
1
2π

∫ +∞

−∞

|XT (ω)|2dω

a random signal XT (t)⇐⇒ XT (ω)∫ +∞

−∞

E
[
|XT (t)|2

]
dt =

1
2π

∫ +∞

−∞

E
[
|XT (ω)|2

]
dω
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Energy and average power in frequency domain
power spectral density for continuous time signals

Energy, Average Power – Parseval’s theorem applied

a deterministic signal xT (t)

xT (t) =

{
x(t) −T < t < T
0 otherwise

xT (t)⇐⇒ XT (ω)

the energy by Parseval’s theorem

E(T ) =
∫ +T

−T
x2(t)dt =

1
2π

∫ +∞

−∞

|XT (ω)|2dω

the average power by Parseval’s theorem

P(T ) =
1

2T

∫ +T

−T
x2(t)dt =

1
2π

∫ +∞

−∞

|XT (ω)|2

2T
dω
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E (T ) and P(T ) in frequency domain – deterministic case
power spectral density for continuous time signals

deterministic xT (t)⇐⇒ XT (ω)

the energy for the deterministic XT (ω) in xT (t)⇐⇒ XT (ω)

E (T ) =
1
2π

∫ +∞

−∞

|XT (ω)|2dω

the average power for the deterministic XT (ω)

P(T ) =
1
2π

∫ +∞

−∞

|XT (ω)|2

2T
dω

the power spectral density for the deterministic XT (ω)

lim
T→∞

|XT (ω)|2

2T
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E (T ) and P(T ) in frequency domain – random case
power spectral density for continuous time signals

random XT (t)⇐⇒ XT (ω)

the energy for the random XT (ω) in XT (t)⇐⇒ XT (ω)

E (T ) =
1
2π

∫ +∞

−∞

E
[
|XT (ω)|2

]
dω

the average power for the random XT (ω)

P(T ) =
1
2π

∫ +∞

−∞

E
[
|XT (ω)|2

]
2T

dω

the power spectral density for the random XT (ω)

lim
T→∞

E
[
|XT (ω)|2

]
2T
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Average power P(T ) – bounded duraton (−T ,+T )
power spectral density for continuous time signals

P(T ) =
1
2T

∫ +T

−T
x2(t)dt

not the average power in a random process
only the power in one sample function

to obtain the average power over all possible realizations,
replace x(t) by X (t)
take the expected value of x2(t), that is TE

[
X 2(t)

]
then, the average power is a random variable
with respect to the random process X (t)

not the average power in an entire sample function
take T → ∞ to include all power in the ensemble member
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Average power PXX – unbounded duraton (−∞,+∞)
power spectral density for continuous time signals

P(T ) =
1
2T

∫ +T

−T
x2(t)dt

replace x(t) by the random variable X (t)

take the expected value of x2(t), that is E
[
X 2(t)

]
P(T ) =

1
2T

∫ +T

−T
E
[
X 2(t)

]
dt

take T → ∞ to include all power

PXX = lim
T→∞

P(T ) = lim
T→∞

1
2T

∫ +T

−T
E
[
X 2(t)

]
dt
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Average power PXX – time average A[•]
power spectral density for continuous time signals

The time average

AT [•] =
1
2T

T∫
−T

[•]dt A[•] = lim
T→∞

1
2T

T∫
−T

[•]dt

time average and sample average operations

PXX = lim
T→∞

P(T ) = lim
T→∞

1
2T

∫ +T

−T
E
[
X 2(t)

]
dt

= lim
T→∞

AT

[
E
[
X 2(t)

]]
= A

[
E
[
X 2(t)

]]
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Measuring average power
power spectral density for continuous time signals

for deterministic and random signals

the average power P(T ) for a deterministic signal x(t)

P(T ) =
1
2T

∫ +T

−T
x2(t)dt

the average power PXX for a random process X (t)

PXX = lim
T→∞

P(T )

= lim
T→∞

1
2T

∫ +T

−T
E
[
X 2(t)

]
dt

= A
[
E
[
X 2(t)

]]
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Power Spectral Density SXX (ω)
power spectral density for continuous time signals

the average power via power density

the average power PXX for the random process XT (ω)

PXX =
1
2π

∫ +∞

−∞

lim
T→∞

E
[
|XT (ω)|2

]
2T

dω

=
1
2π

∫ +∞

−∞

SXX (ω) dω

the Power Spectral Density (PSD) SXX (ω)

SXX (ω) = lim
T→∞

E
[
|XT (ω)|2

]
2T
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Properties of Power Spectral Density
power spectral density for continuous time signals

SXX (ω)≥ 0

SXX (−ω) = SXX (ω) X (t) real

SXX (ω) real

1
2π

∫+∞

−∞
SXX (ω)dω = A

[
E
[
X 2(t)

]]
SẊ Ẋ (ω) = ω2SXX (ω)

1
2π

∫+∞

−∞
SXX (ω)e jωtdω = A [RXX (t, t + τ)]

SXX (ω) =
∫+∞

−∞
A [RXX (t, t + τ)]e−jωτdτ
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Equations involving SXX (ω)
power spectral density for continuous time signals

the average power Pxx and the inverse Fourier transform of SXX (ω)

the average power related equation

1
2π

∫ +∞

−∞

SXX (ω)dω = A
[
E
[
X 2(t)

]]
the autocorrelation related equation

1
2π

∫ +∞

−∞

SXX (ω)e jωtdω = A [RXX (t, t + τ)]
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Average power related equation
power spectral density for continuous time signals

the average power Pxx

the average power related equation

1
2π

∫ +∞

−∞

SXX (ω)dω = A
[
E
[
X 2(t)

]]
a random process X (t) in time domain
a random process X (ω) in frequency domain

X (t) = lim
T→∞

XT (t) X (ω) = lim
T→∞

XT (ω)

Parseval’s theorem over XT (t)⇐⇒ XT (ω)
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Average power PXX in time / frequency domain
power spectral density for continuous time signals

Average power PXX using XT (t) and XT (ω)

Using a random process XT (t) in time domain

PXX = lim
T→∞

1
2T

∫ +T

−T
E
[
X 2(t)

]
dt

= lim
T→∞

1
2T

∫ +∞

−∞

E
[
X 2
T (t)

]
dt

= lim
T→∞

AT

[
E
[
X 2(t)

]]
= A

[
E
[
X 2(t)

]]
Using a random process XT (ω) in frequency domain

PXX =
1
2π

∫ +∞

−∞

lim
T→∞

E
[
|XT (ω)|2

]
2T

dω

=
1
2π

∫ +∞

−∞

SXX (ω) dω
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Autocorrelation related equation
power spectral density for continuous time signals

the Inverse Fourier transform of SXX (ω)

the average power related equation

1
2π

∫ +∞

−∞

SXX (ω)e jωtdω = A [RXX (t, t + τ)]

auto-correlation function

RXX (t, t + τ) = E [X (t)X (t + τ)] ⇒ RXX (τ)

a random process X (t) in time domain
a random process X (ω) in frequency domain
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PSD and Auto-correlation
power spectral density for continuous time signals

Fourier transform pairs

A [RXX (t, t + τ)]⇐⇒ SXX (ω)

SXX (ω) =
∫ +∞

−∞

A [RXX (t,t+ τ)]e−jωτdτ

A [RXX (t,t+ τ)] =
1
2π

∫ +∞

−∞

SXX (ω)e jωtdω

RXX (τ)⇐⇒ SXX (ω)

SXX (ω) =
∫ +∞

−∞

RXX (τ)e
−jωτdτ

RXX (τ) =
1
2π

∫ +∞

−∞

SXX (ω)e+jωτdω

for a WSS X (t), A [RXX (t, t + τ)] = RXX (τ)
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PSD and Auto-Correlation
power spectral density for continuous time signals

SXX (ω) and RXX (τ)

the power spectral density

SXX (ω) =
∫ +∞

−∞

RXX (τ)e−jωτdτ

the auto-correlation function

RXX (τ) =
1
2π

∫ +∞

−∞

SXX (ω)e+jωτdω
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Fourier transform of a derivative function
power spectral density for continuous time signals

Fourier transform of dn

dtn x(t)

x(t)⇐⇒ X (ω)

dn

dtn
x(t)⇐⇒ (jω)nX (ω)

XT (t)⇐⇒ XT (ω)

Y (t) =
d

dt
XT (t)⇐⇒ (jω)XT (ω) = Y (ω)
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PSD and Auto-Correlation of a Derivative Function (1)
power spectral density for continuous time signals

SẊ Ẋ (ω) and SXX (ω)

SXX (ω)= lim
T→∞

E
[
|XT (ω)|2

]
2T

XT (t)⇐⇒ XT (ω)

SYY (ω)= lim
T→∞

E
[
|YT (ω)|2

]
2T

YT (t)⇐⇒ YT (ω)

= lim
T→∞

ω2E
[
|XT (ω)|2

]
2T

YT (t) = ẊT (t)

= ω
2SXX (ω) YT (ω) = ω

2XT (ω)
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PSD and Auto-Correlation of a Derivative Function (2)
power spectral density for continuous time signals

E [XT (ω)] and E
[
ẊT (ω)

]

Y (t) = ẊT (t) =
d

dt
XT (t)

|Ẋ (ω)|2 = ẊT (ω)Ẋ ∗T (ω)

= (jω)XT (ω)(−jω)XT (ω)

= ω
2|X (ω)|2

SẊ Ẋ (ω)= lim
T→∞

E
[
|ẊT (ω)|2

]
2T

= lim
T→∞

ω2E
[
|X (ω)|2

]
2T

= ω
2SXX (ω)

Young W Lim Power Spectral Density - Continuous Time



Fourier transforms of autocorrelation functions
power spectral density for continuous time signals

Definition
Fourier transform of an autocorrelation functions

SẊ Ẋ (ω) =
∫ +∞

−∞

RẊ Ẋ (τ)e
−jωτdτ

ω
2SXX (ω) =

∫ +∞

−∞

ω
2RXX (τ)e

−jωτdτ

auto-correlation function

RXX (t,t+ τ) = E [X (t)X (t+ τ)]⇒ RXX (τ)

RẊ Ẋ (t,t+ τ) = E
[
Ẋ (t)Ẋ (t+ τ)

]
⇒ RẊ Ẋ (τ)

a random process X (t) in time domain
Ẋ (t) = d

dtX (t) : the derivative of X (t)
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RMS Bandwidth
power spectral density for continuous time signals

Definition
the standard deviation is
a measure of the spread in a density function.
the analogous quantity for the normalized power spectral density is
a measure of its spread that we call the rms bandwidth
(root-mean-square)

W 2
rms =

∫+∞

−∞
ω2SXX (ω)dω∫+∞

−∞
SXX (ω)dω
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RMS Bandwidth and Mean Frequency
power spectral density for continuous time signals

Definition
the mean frequence ω̄0

ω̄0 =

∫+∞

−∞
ωSXX (ω)dω∫+∞

−∞
SXX (ω)dω

the rms bandwidth

W 2
rms =

4
∫+∞

−∞
(ω− ω̄0)2SXX (ω)dω∫+∞

−∞
SXX (ω)dω
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